WorldWideScience

Sample records for 14-mev incident neutrons

  1. FEASIBILITY OF MEASURING IRON IN VIVO USING FAST 14 MEV NEUTRONS.

    Energy Technology Data Exchange (ETDEWEB)

    WIELOPOLSKI, L.

    2005-05-01

    In this short report, I reassess the feasibility of measuring iron in vivo in the liver and heart of thalassemia patients undergoing chelation therapy. Despite the multiplicity of analytical methods for analyzing iron, only two, magnetic resonance imaging, and magnetic susceptibility, are suitable for in vivo applications, and these are limited to the liver because of the heart's beat. Previously, a nuclear method, gamma-resonance scattering, offered a quantitative measure of iron in these organs; however, it was abandoned because it necessitated a nuclear reactor to produce the radioactive source. I reviewed and reassessed the status of two alternative nuclear methods, based on iron spectroscopy of gamma rays induced by fast neutron inelastic scattering and delayed activation in iron. Both are quantitative methods with high specificity for iron and adequate penetrating power to measure it in organs sited deep within the human body. My experiments demonstrated that both modalities met the stated qualitative objectives to measure iron. However, neutron dosimetry revealed that the intensity of the neutron radiation field was too weak to reliably assess the minimum detection limits, and to allow quantitative extrapolations to measurements in people. A review of the literature, included in this report, showed that these findings agree qualitatively with the published results, although the doses reported were about three orders-of-magnitude higher than those I used. Reviewing the limitations of the present work, steps were outlined for overcoming some of the shortcomings. Due to a dearth of valid quantitative alternatives for determining iron in vivo, I conclude that nuclear methods remain the only viable option. However, from the lessons learned, further systematic work is required before embarking on clinical studies.

  2. Neutron activitation analysis of an air-dust sample using a high-flux 14 Mev neutron generator

    International Nuclear Information System (INIS)

    The 14 MeV neutron activation analysis technique is illustrated for multielement analysis of a Milanese air-dust sample. The neutron generator and electronic system, the efficiency and flux calibration, the γ-ray background, the sample preparation and the peak analysis used are described. After careful corrections of all possible interferences and error calculations, the results of 24 elemental concentrations are compared with those of other analytical techniques in the scope of an interlaboratory test. (orig.)

  3. Linking laboratory and in situ activation analysis of rock-forming elements using a 14 Mev neutron source. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Truax, J.

    1995-10-06

    This work examines the ability of a borehole-conveyed delayed neutron activation system to perform elemental analysis of earth formations with the combination of a neutron generator and a large germanium spectrometer. High purity germanium spectrometers are now made large enough that detection efficiency rivals that of borehole-compatible scintillators. Elemental concentrations of silicon, aluminum, magnesium, and sodium are important quantities used in the characterization of rocks. A series of activation spectrometry experiments was performed on chemically pure compounds of these elements in a neutron moderating environment similar to what would pertain in a borehole measurement. Then, the geometry of the experimental setup was entered into a radiation transport modeling code based on a Monte Carlo process. The purpose of this exercise was to compare the measured responses with those predicted by the reaction cross sections in the library of the model, which are often ill-defined for high energy neutron interactions.

  4. Grazing Incidence Neutron Optics

    Science.gov (United States)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  5. Fast Neutron Induced Fission neutron Spectra Below the Incident Energy

    Energy Technology Data Exchange (ETDEWEB)

    Woodring, Mitchell L.; Egan, James J.; Kegel, Gunter H.; DeSimone, David J.

    2008-06-15

    Fission neutron spectra from neutron induced fission in 235U and 239Pu for energies below that of the neutron inducing fission have been measured. The spectra were obtained for 1.5 MeV and 2.5 MeV incident neutrons. Previous accelerator-based fission neutron spectra measurements have been seriously complicated by time-correlated gamma rays and scattered neutrons from the fission sample. Three barium fluoride detectors were placed near the sample undergoing induced fission and used to identify fission gamma rays. A coincidence of fission gamma rays was used to gate a liquid scintillator neutron detector to distinguish fission events from other events. The fission neutron spectral shape and average energy measured in this experiment compare well to both previous measurements and prior theory and also suggest a dependence on incident neutron energy and mass of the fissioning nucleus. An overview of the experiment, a discussion of the results, and the importance of this work to homeland security are given.

  6. Grazing-Incidence Neutron Optics based on Wolter Geometries

    Science.gov (United States)

    Gubarev, M. V.; Ramsey, B. D.; Mildner, D. F. R.

    2008-01-01

    The feasibility of grazing-incidence neutron imaging optics based on the Wolter geometries have been successfully demonstrated. Biological microscopy, neutron radiography, medical imaging, neutron crystallography and boron neutron capture therapy would benefit from high resolution focusing neutron optics. Two bounce optics can also be used to focus neutrons in SANS experiments. Here, the use of the optics would result in lower values of obtainable scattering angles. The high efficiency of the optics permits a decrease in the minimum scattering vector without lowering the neutron intensity on sample. In this application, a significant advantage of the reflective optics over refractive optics is that the focus is independent of wavelength, so that the technique can be applied to polychromatic beams at pulsed neutron sources.

  7. Development of Grazing Incidence Optics for Neutron Imaging and Scattering

    Science.gov (United States)

    Gubarev, M. V.; Khaykovich, B.; Liu, D.; Ramsey, B. D.; Zavlin, V. E.; Kilaru, K.; Romaine, S.; Rosati, R. E.; Bruni, R.; Moncton, D. E.

    2012-01-01

    Because of their wave nature, thermal and cold neutrons can be reflected from smooth surfaces at grazing incidence angles, be reflected by multilayer coatings or be refracted at boundaries of different materials. The optical properties of materials are characterized by their refractive indices which are slightly less than unity for most elements and their isotopes in the case of cold and thermal neutrons as well as for x-rays. The motivation for the optics use for neutrons as well as for x-rays is to increase the signal rate and, by virtue of the optic's angular resolution, to improve the signal-to-noise level by reducing the background so the efficiency of the existing neutron sources use can be significantly enhanced. Both refractive and reflective optical techniques developed for x-ray applications can be applied to focus neutron beams. Typically neutron sources have lower brilliance compared to conventional x-ray sources so in order to increase the beam throughput the neutron optics has to be capable of capturing large solid angles. Because of this, the replicated optics techniques developed for x-ray astronomy applications would be a perfect match for neutron applications, so the electroformed nickel optics under development at the Marshall Space Flight Center (MSFC) can be applied to focus neutron beams. In this technique, nickel mirror shells are electroformed onto a figured and superpolished nickel-plated aluminum cylindrical mandrel from which they are later released by differential thermal contraction. Cylindrical mirrors with different diameters, but the same focal length, can be nested together to increase the system throughput. The throughput can be increased further with the use of the multilayer coatings deposited on the reflectivr surface of the mirror shells. While the electroformed nickel replication technique needs to be adopted for neutron focusing, the technology to coat the inside of cylindrical mirrors with neutron multilayers has to be

  8. Few-MeV neutrons incident on yttrium

    International Nuclear Information System (INIS)

    Neutron total and scattering cross sections of elemental yttrium are measured in the few-MeV region with broad resolutions. The total-cross section measurements extend from approx. = 0.5 to 4.2 MeV in steps of less than or equal to 0.1 MeV. Neutron elastic- and inelastic-scattering cross sections are measured from approx. = 1.5 to 4.0 MeV, at incident-neutron energy intervals of less than or equal to 50 keV and at ten or more scattering angles distributed between 20 and 160 deg. Inelastically-scattered neutron groups are observed corresponding to the excitation of levels at 909 +- 23, 1504 +- 20, 1747 +- 16, 2224 +- 16, 2567 +- 26, 2889 +- 12 and 3104 +- 10 keV. The experimental results are discussed in terms of the spherical optical-statistical, coupled-channels and core-coupling models and compared with corresponding quantities given in the evaluated nuclear data file ENDF/B-V

  9. Experimental verification of improved depth-dose distribution using hyper-thermal neutron incidence in neutron capture therapy.

    Science.gov (United States)

    Sakurai, Y; Kobayashi, T

    2001-01-01

    We have proposed the utilization of 'hyper-thermal neutrons' for neutron capture therapy (NCT) from the viewpoint of the improvement in the dose distribution in a human body. In order to verify the improved depth-dose distribution due to hyper-thermal neutron incidence, two experiments were carried out using a test-type hyper-thermal neutron generator at a thermal neutron irradiation field in Kyoto University Reactor (KUR), which is actually utilized for NCT clinical irradiation. From the free-in-air experiment for the spectrum-shift characteristics, it was confirmed that the hyper-thermal neutrons of approximately 860 K at maximum could be obtained by the generator. From the phantom experiment, the improvement effect and the controllability for the depth-dose distribution were confirmed. For example, it was found that the relative neutron depth-dose distribution was about 1 cm improved with the 860 K hyper-thermal neutron incidence, compared to the normal thermal neutron incidence.

  10. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    Science.gov (United States)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  11. Prompt neutron multiplicity distribution for 235U(n,f) at incident energies up to 20 MeV

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-Jing; LIU Ting-Jin

    2011-01-01

    For the n+U fission reaction, the total excitation energy partition of the fission fragments, the average neutron kinetic energy (A) and the total average energies E(A) removed by γ rays as a function of fission fragment mass are given at incident energies up to 20 MeV. The prompt neutron multiplicity as a function of the fragment mass, ν(A), for neutron-induced fission of U at different incident neutron energies is calculated. The calculated results are checked with the total average prompt neutron multiplicities ν and compared with the experimental and evaluated data. Some prompt neutron and γ emission mechanisms are discussed.

  12. Theoretical model application to the evaluation of fission neutron data up to 20 MeV incidence energy

    International Nuclear Information System (INIS)

    A complex statistical theory of fission neutron emission combined with a phenomenological fission model has been used to calculate fission neutron data for 238U. Obtained neutron multiplicities and energy spectra as well as average fragment energies for incidence energies from threshold to 20 MeV (including multiple-chance fission) are compared with traditional data representations. (author). 19 refs, 6 figs

  13. Simulation of Radiation Dose and Neutron Incidence rate for various neutron shielding materials

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yeon-Gyeong; Kim, Yu-Seok [Dongguk University, Gyeongju (Korea, Republic of)

    2014-10-15

    A beam line for PIXE analysis is composed of diffuser foil that scatters proton beam, collimator for selecting a uniform portion of the scattered beam or a nozzle system. A beam extracted from the accelerator generates many neutrons and gamma rays due to this collision between the collimator and diffuser foil. Therefore, since generated neutrons and gamma rays can cause radioactivation on surrounding substances, it must be shielded using appropriate shielding materials. This paper has performed an analysis on the radiation dose absorbed by the carbon plate used as the energy degrader in the PIXE analysis beam line using the 13-MeV cyclotron and a shielding study on the neutrons generated in the nozzle system. Using the Particle and Heavy Ion Transport code System (PHITS) program, a shielding effect comparison was conducted on the polyethylene, borated polyethylene and paraffin which is representing substances used as shielding materials of neutrons and shielding evaluation was conducted through thickness calculation in order to shield the neutrons being generated. In this paper, in order to obtain the radiation dose absorbed by the energy degrader and to shield the neutrons generated in the PIXE nozzle system composed of energy degrader and proton beam nozzle, a comparative analysis on the three types of most commonly used shielding materials, such as polyethylene, borated polyethylene and paraffin blocks was conducted for its shielding effects. In addition, after comparing the shielding effects on the three types of shielding materials, borated polyethylene have shown the most absorption rate of neutrons and seemed to be the most appropriate shielding material.

  14. The dependence of cumulative 238U(n,f) fission yield on incident-neutron energy

    Institute of Scientific and Technical Information of China (English)

    ZHENG Na; ZHONG Chunlai; MA Liyong; CHEN Zhongjing; LI Xiangqing; LIU Tingjin; CHEN Jinxiang; FAN Tieshuan

    2009-01-01

    This work is aim at studying the dependence of fission yields on incident neutron energy,so as to produce evaluated yield sets of the energy dependence.Experimental data at different neutron energies for gas fission products 85m,87,88Kr and 138Xe resulting from the 238U(n,f) reaction are processed using codes AVERAGE for weighed average and ZOTT for simultaneous evaluation.Energy dependence of the cumulative fission product yields on the incident neutron is presented.The evaluated curve of product yield is compared with the results calculated by the TALYS-0.64 code.The present evaluation is consistent with other main libraries in error permission.The fit curve of 87,88Kr can be recommended to predict the unmeasured fission yields.Comparisons of the evaluated energy dependence curves with theoretical calculated results show that the predictions using purely theoretical model for the fission process are not sufficiently accurate and reliable for the calculations of the cumulative fission yields for the 238U(n,f).

  15. MCNP simulation of the incident and Albedo neutron response of the IRD Albedo Neutron Dosemeter for {sup 241}Am-Be moderated sources

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Bruno M.; Martins, Marcelo M.; Mauricio, Claudia L.P.; Mauricio, Claudia L.P. da, E-mail: claudia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Silva, Ademir X. [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    The IRD TLD Albedo dosemeter measures both incident and albedo neutron component. The incident to Albedo ratio is used to take into account the energy dependence of its response. In this paper, the behavior of the IRD Albedo dosemeter response as a function of the incident to Albedo ratio for {sup 241}Am-Be sources was simulated to improve its algorithm. The simulation was performed in MCNPX transport code and presents a good agreement with experimental measurements. The results obtained in this work are very useful to improve the accuracy of the IRD Albedo dosemeter at real neutron workplace. (author)

  16. MCNP simulation of the incident and Albedo neutron response of the IRD Albedo Neutron Dosemeter for 241Am-Be moderated sources

    International Nuclear Information System (INIS)

    The IRD TLD Albedo dosemeter measures both incident and albedo neutron component. The incident to Albedo ratio is used to take into account the energy dependence of its response. In this paper, the behavior of the IRD Albedo dosemeter response as a function of the incident to Albedo ratio for 241Am-Be sources was simulated to improve its algorithm. The simulation was performed in MCNPX transport code and presents a good agreement with experimental measurements. The results obtained in this work are very useful to improve the accuracy of the IRD Albedo dosemeter at real neutron workplace. (author)

  17. Longevity and tumour incidence in mice exposed to fast neutrons at different ages

    International Nuclear Information System (INIS)

    Experiments are under way in the authors' laboratory to observe both neoplastic and non-neoplastic late effects in mice irradiated with fission neutrons and X-rays at three different ages. Analysis of data from over 2800 animals is in progress and a preliminary evaluation can be made on the survival and the pathology at spontaneous death of mice irradiated in utero and at 3 months of age. Single doses of 250kV X-rays or of attenuated fission neutrons obtained in the biological channel of the experimental fast reactor RSV TAPIRO of the Casaccia Centre were given to male BC3F1 mice of 3 months of age and to pregnant females on day 17.5 post coitum. Both male and female offspring of the latter group were followed to spontaneous death, along with appropriate untreated controls. As for the 3 month old irradiated animals their mean survival time was decreased by X-rays, the dose-effect relationship being compatible with a linear fitting. Fission neutrons proved to be more efficient than X-rays in the induction of life shortening, but the shape of the dose-effect relationship did not fit a linear model because efficiency is higher at low than at high neutron doses. Reticulum cell sarcoma (RCS) was decreased by increasing X-ray and neutron doses, the latter being more efficient. The final incidences of all other neoplasms, regardless of tumour type and site, indicate that neutrons are more efficient than X-rays in tumour induction at low and intermediate doses. As for prenatally irradiated mice, no detectable effect on mean lifespan was observed for either type of radiation. A low final frequency of RCS was seen after irradiation at all dose levels of both types of radiation. The incidence of all other tumours was practically unchanged in male mice irradiated as foetuses with X-rays, but a significant excess was found after neutron irradiation, showing a frequency peak in the range of 0.27-0.45Gy. Similar results were obtained after irradiation of foetal females. (author)

  18. Update of neutron dose yields as a function of energy for protons and deuterons incident on beryllium targets

    International Nuclear Information System (INIS)

    Neutron absorbed dose yields (absorbed dose rates per unit incident current on targets at a given SAD or SSD) increase with incident charged particle energy for both protons and deuterons. Analyses of neutron dose yield versus incident particle energy have been performed for both deuterons and protons. It is the purpose of this report to update those analyses by pooling all of the more recent published results and to reanalyze the trend of yield, Y, versus incident energy, E, which in the past has been described by an expression of the form Y = aE/sup b/, where a and b are empirical constants. From the reanalyzed trend it is concluded that for a given size cyclotron (E/sub p/ = 2E/sub d/), the dose yields using protons are higher than those using deuterons up to a proton energy E/sub p/ of 64 MeV

  19. Incidence of leukemia among atomic bomb survivors in relation to neutron and gamma dose, Hiroshima and Nagasaki, 1950-71

    International Nuclear Information System (INIS)

    The incidence of leukemia during 1950-71 in the fixed mortality sample of atomic bomb survivors in Hiroshima and Nagasaki has been analyzed as a function of individual gamma and neutron kerma and marrow dose. Two dose response models were tested for each of acute leukemia, chronic granulocytic leukemia, and all types of leukemia, respectively. Each model postulates that leukemia incidence depends upon the sum of the separate risks imposed by the gamma ray and neutron doses; in Model I both are assumed to be directly proportional to the respective doses, while Model II assumes that while the risk from neutrons is directly proportional to the dose, the risk from gamma rays is proportional to dose-squared. Weighted regression analyses were performed for each model. When the two models were fitted to the data for all types of leukemia, the estimated regression coefficients corresponding to the neutron and gamma ray doses both differed significantly from zero, for each model. However, when analysis was restricted to acute leukemia, both the neutron and gamma ray coefficients were significant only for Model II, and with respect to chronic granulocytic leukemia, only the coefficient of the neutron dose was significant, using either Model I or Model II. It appeared that the responses of the two leukemia types differed by type of radiation. If the chronic granulocytic and acute leukemias are considered together, the Model II appears to fit the data slightly better than Model I, but neither models is rejected by the data. (author)

  20. Axisymmetric Grazing-Incidence Focusing Optics for Small-Angle Neutron Scattering

    OpenAIRE

    Liu, Dazhi; Gubarev, Mikhail V.; Resta, Giacomo; Ramsey, Brian D.; Moncton, David E.; Khaykovich, Boris

    2012-01-01

    We propose and design novel axisymmetric focusing mirrors, known as Wolter optics, for small-angle neutron scattering instruments. Ray-tracing simulations show that using the mirrors can result in more than an order-of-magnitude increase in the neutron flux reaching detectors, while decreasing the minimum wave vector transfer. Such mirrors are made of Ni using a mature technology. They can be coated with neutron supermirror multilayers, and multiple mirrors can be nested to improve their flux...

  1. Nuclear Poincaré cycle synchronizes with the incident de Broglie wave to predict regularity in neutron resonance energies

    Science.gov (United States)

    Ohkubo, Makio

    2016-06-01

    In observed neutron resonances, long believed to be a form of quantum chaos, regular family structures are found in the s-wave resonances of many even-even nuclei in the tens keV to MeV region [M.Ohkubo, Phys. Rev. C 87, 014608(2013)]. Resonance reactions take place when the incident de Broglie wave synchronizes with the Poincaré cycle of the compound nucleus, which is composed of several normal modes with periods that are time quantized by inverse Fermi energy. Based on the breathing model of the compound nucleus, neutron resonance energies in family structures are written by simple arithmetic expressions using Sn and small integers. Family structures in observed resonances of 40Ca+n and 37Cl+n are described as simple cases. A model for time quantization is discussed.

  2. Grazing incidence polarized neutron scattering in reflection geometry from nanolayered spintronic systems

    Indian Academy of Sciences (India)

    Amitesh Paul

    2012-01-01

    This review summarizes recent experimental investigations using neutron scattering on layered nanomagnetic systems (accentuating my contribution), which have applications in spintronics also. Polarized neutron investigations of such artificially structured materials are basically done to understand the interplay between structure and magnetism confined within the nanometer scale that can be additionally depth-resolved. Details of the identification of buried domains and their nature of lateral and vertical correlations within the systems are important. A particularly interesting aspect that has emerged over the years is the capability to measure polarized neutron scattering in directions parallel and perpendicular to the applied field direction (which is also the quantization axis for neutron polarizations). This was added with the capability of measuring in specular as well as in off-specular geometry. Distorted wave Born approximation (DWBA) theory for neutrons has proved to be a remarkable development in the quantitative analysis of the scattering data measured simultaneously for specular and off-specular modes within the same framework. In particular, the depth and lateral distribution of the ferromagnetic spins relative to the interface within interlayercoupled or exchange-coupled system has been extensive. For example, twisted magnetization state at interlayer coupled interfaces or intricacies of symmetric and asymmetric magnetization reversals along with suppression of training effect in exchange coupled system was microscopically identified using neutron scattering only. The investigation on the distribution of magnetic species within dilute ferromagnetic semiconductor superlattices, with low angle neutron scattering, has played a crucial role both from practical and fundamental research points of view.

  3. O(n,xγ) reaction cross section for incident neutron energies between 6.5 and 20.0 MeV

    International Nuclear Information System (INIS)

    Differential cross sections for the neutron-induced gamma-ray production from oxygen were measured for incident neutron energies between 6.5 and 20.0 MeV. The Oak Ridge Electron Linear Accelerator (ORELA) was used to provide the neutrons and a NaI spectrometer to detect the gamma rays at 1250. The data presented are the double differential cross section, d2sigma/dΩdE, for gamma-ray energies between 1.6 and 10.6 MeV for coarse intervals in incident neutron energy. The integrated yield for gamma rays of energies greater than 1.6 MeV with higher resolution in the neutron energy is also presented. The experimental results are compared with the Evaluated Nuclear Data File (ENDF). 34 references

  4. O(n,x. gamma. ) reaction cross section for incident neutron energies between 6. 5 and 20. 0 MeV. [Yield

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G.L.; Chapman, G.T.

    1979-09-01

    Differential cross sections for the neutron-induced gamma-ray production from oxygen were measured for incident neutron energies between 6.5 and 20.0 MeV. The Oak Ridge Electron Linear Accelerator (ORELA) was used to provide the neutrons and a NaI spectrometer to detect the gamma rays at 125/sup 0/. The data presented are the double differential cross section, d/sup 2/sigma/d..cap omega..dE, for gamma-ray energies between 1.6 and 10.6 MeV for coarse intervals in incident neutron energy. The integrated yield for gamma rays of energies greater than 1.6 MeV with higher resolution in the neutron energy is also presented. The experimental results are compared with the Evaluated Nuclear Data File (ENDF). 34 references.

  5. Conclusion Empirical Equations of Asymmetry Parameter for Magic Nuclei in N for (n, α) Reaction of Incident Neutron Energy

    International Nuclear Information System (INIS)

    In this study, the magic nuclei is divided into groups, one of them is light group and the other is middle group, it was calculated shell corrections for all nuclei, and also it was concluded the relationship between cross sections for nuclear reactions (n, α) and the mass number (A) for all nuclei to incident neutrons (14.5MeV).We found empirical equations to asymmetry parameter (N-Z)/A as function of mass number and for that two groups: for A=38 to A=40 light nuclei.(N-Z)/A=-0.0263A+1.0534 for A=50 to A=89 middle nuclei.(N-Z)/A=0.0001A2+0.0151A-0.408 for A=90 to A=144 middle nuclei.(N-Z)/A=-9e-5A2+0.0221A-1.0711

  6. Dose-incidence relationships for exencephalia, anophthalmia and prenatal mortality in mouse embryos irradiated with fission neutrons or 250 kV X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Friedberg, W.; Faulkner, D.N.; Neas, B.R.; Hanneman, G.D.; Darden, E.B. Jr.; Deal, R.B. Jr.; Parker, D.E.

    1987-08-01

    Groups of pregnant mice were irradiated at selected times between 10.00 hours on gestation day 7 and 16.00 hours on day 8. Each group received 0.39 Gy of neutrons or 1.60 Gy of X-rays, or was sham irradiated. We identified a period of high susceptibility of the embryos to radiation-induced exencephalia, anophthalmia and prenatal mortality early in gestation day 8. Dose-incidence relationships in this period were investigated with 0.19-0.48 Gy of neutrons and with 0.40-2.00 Gy of X-rays.

  7. Evaluation of 242Pu data for the incident neutron energy range 5-20 MeV

    International Nuclear Information System (INIS)

    Models, procedures and parameters are presented for the calculation of neutron cross sections, the neutron angular distributions and the neutron energy distributions of 242Pu in the energy range 5-20 MeV. The interaction takes place through direct interaction and compound nucleus mechanism. For heavy deformed nucleus the direct interaction was treated with the coupled channel process, using the ECIS code. For the compound nucleus mechanism, a statistical treatment was used for fission, neutron elastic and inelastic scattering, radiative capture, (n,2n), (n,3n), (n,4n) cross section calculations, using the GNASH code. (R.P.)

  8. Design of axisymmetric multi-mirror grazing incidence system to increase the numerical aperture of neutron and X-ray microscopes

    Science.gov (United States)

    Aoki, Sadao; Watanabe, Norio; Asami, Hiroshi; Shimada, Akihiro

    2016-04-01

    An axisymmetric multi-mirror system for neutron and X-ray microscopes is proposed to increase their numerical aperture and collection efficiency. A Wolter type-I mirror is used as the basis of the multi-mirror system at grazing incidence. The addition of an even number of hyperboloid mirrors to the Wolter type-I mirror can satisfy both an equal optical path length and Abbe's sine condition. The numerical aperture increases in proportion to the number of mirrors. The optical parameters of the system with four tandem mirrors are calculated for neutrons and X-rays with a wavelength of 0.4 nm by assuming that the average grazing angle of incidence is 5.4 mrad and the magnification is 10. The inner diameters of the mirrors are limited to <10 mm considering the total length of the optical system. Tolerance of off-axis distance was calculated using a ray-tracing computer simulation. Ray tracing shows that a blur size <14 nm will be possible at an off-axis displacement of 10 μm.

  9. Measurement of the (n,2n) cross sections for 89Y, 93Nb, 103Rh, 107Ag, 169Tm, 175Lu and 197Au at 14.1 and 14.8 MeV incident neutron energies

    International Nuclear Information System (INIS)

    The (n,2n) cross sections for 89Y, 93Nb, 103Rh, 107Ag, 169Tm, 175Lu and 197Au have been measured at 14.1 and 14.8 MeV incident neutron energies. The samples were irradiated at the 14 MeV neutron generator of C.E. VALDUC. 27Al(n,α)24Na cross section was used for standard. The cross sections were obtained with an accuracy of about 5%

  10. Experiments Relating to Whole-Body Activation Analysis in Man In Vivo Using 14-MeV Incident Neutrons

    International Nuclear Information System (INIS)

    Chromium eczema is a well-known phenomenon in dermatological practice. Different explanations may be given for it. According to one of these the specific texture of the skin of patients is assumed to allow more chromium to pass through the upper layers. As a result, the chromium accumulates faster in the dermis of patients so that a critical value is reached sooner. Another explanation might be that die sensitivity threshold for chromium in patients is lower than in normal persons and can more easily be exceeded. To distinguish between these possibilities and to obtain more information, an investigation was started in which the chromium content in the skin was compared for eczema patients and normal people. The sample weight (10 mg) and the chromium content (0.2 - 0.4 ppm) involved require a sensitive technique. Neutron activation analysis is well suited to this purpose. Under our operation conditions (irradiation time 10 days, neutron flux 1014n/cm2s) it is possible to determine quantities as low as 5 x 1011 g of chromium. Preliminary experiments show relatively large variations in chromium content of comparable samples, even in skin samples taken from the back of a single person. It is further suggested by the results of these experiments that the chromium content in the skin of eczema patients is lower than in that of normal patients. The results of the analysis may be seriously affected by chromium contamination during sample preparation. Therefore chromium-free instruments must be used. To avoid chromium migration in the skin due to degeneration processes, samples must be taken from persons alive or shortly after their death. (author)

  11. Neutron tubes

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  12. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  13. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  14. Neutron and gamma-ray emission double differential cross sections for the nuclear reaction by 1.5 GeV {pi}{sup +} incidence

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Kiminori; Ishibashi, Kenji; Shigyo, Nobuhiro [Kyushu Univ., Fukuoka (Japan)] [and others

    1998-03-01

    Neutron and gamma-ray production double differential cross sections were measured for iron by the use of 1.5 GeV {pi}{sup +} mesons. The measured cross sections were compared with the calculated values by HETC-KFA2. For the neutrons, the calculated results deviate from the experimental data in the neutron energy region below 30 MeV. The calculated values of gamma-ray production agree with the experimental data at gamma-ray energies from 1 to 7 MeV within a factor of three. (author)

  15. Measurement of neutron-production double-differential cross sections for 8 and 15 GeV proton incidence in the most-forward directions

    CERN Document Server

    Shigyo, N; Iwamoto, Y; Ishimoto, S; Kawasaki, Y; Takayama, Y; Tenzou, H; Ishibashi, K; Nakamoto, T; Numajiri, M; Meigo, S

    2002-01-01

    Neutron-production double-differential cross sections in the most- forward directions were measured for proton-induced reactions on Fe and Pb targets at 0.8 and 1.5 GeV. The experiment was performed at the pi 2 beam line of the 12 GeV proton synchrotron in High Energy Accelerator Research Organization (KEK). Neutrons were measured by time-of-flight technique with two different flight path lengths, i.e. 3.5 and 5.0 in at 0.8 and 1.5 GeV, respectively. NE213 liquid organic scintillators 12.7 cm in diameter and 12.7 cm in thickness were set at 0 degrees and 5 degrees as neutron detectors. For the improvement of the energy resolution, the scintillator at 0 degrees was connected with three Hamamatsu H2431 photomultipliers 5.1 cm in diameter. The neutron detection efficiencies were obtained by the SCINFUL-QMD code. The experimental data were compared with the calculation results of the intranuclear-cascade-evaporation and QMD models. (15 refs).

  16. Neutrons from Antiproton Irradiation

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Petersen, Jørgen B.B.

    the volume targeted for irradiation. A major part of this peripheral dose arise from neutrons, which in particular are problematic due to their high RBE for secondary cancer incidence. We have measured the fast and thermal neutron spectrum in different geometrical configurations in order to experimentally...... the neutron spectrum. Additionally, we used a cylindrical polystyrene loaded with several pairs of thermoluminescent detectors containing Lithium-6 and Lithium-7, which effectively detects thermalized neutrons. The obtained results are compared with FLUKA imulations. Results: The results obtained...... the annihilation vertex inside the polystyrene phantom produced a response which corresponds to a neutron fluence of 8000 neutrons/cm2 per 107 antiprotons. This is equivalent to a neutron kerma of 1.4e-9 Gy (adult brain) per 107 antiprotons following ICRU 46. Conclusion: The thermalized part of the neutron...

  17. Life-span shortening and disease incidence in male BALB/c and C57BL mice after single, fractionated d(50)-Be neutron or gamma exposure

    International Nuclear Information System (INIS)

    Life-span shortening and causes of death, ascertained by autopsy and histological examination at the time of spontaneous death, after single or fractionated x-ray, gamma, or d(50)-Be neutron irradiation, are being studied for two mouse strains (BALB/c and C57BL) with different disease characteristics. Fractionation schedules that have been implemented are x rays, four weekly exposures (C57BL); gamma rays, 10 daily exposures (BALB/c; and neutrons, eight exposures at 3-h intervals (C57BL). The data are incomplete but suggest that the dependency of life shortening on dose is related to the types of effects induced by radiation and results in different functions, linear or sigmoid, for the two mouse strains. Fractionated gamma irradiation causes more tumors than single exposure, but, generally, this is a result of multiple tumors occurring in animals. The relative biological effectiveness (RBE) for life shortening for d(50)-Be neutrons as compared to gamma rays is on the order of 1 to 2 and is slightly greater for the C57BL than for the BALB/c strain. 18 refs., 2 figs., 3 tabs

  18. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    Science.gov (United States)

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; Bhatia, C.; Bhike, M.; Bond, E. M.; Bredeweg, T. A.; Fallin, B.; Fowler, M. M.; Howell, C. R.; Kelley, J. H.; Krishichayan; Macri, R.; Rusev, G.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2016-01-01

    -ray counted using shielded HPGe detectors for a period of 1-2 months to determine the yield of various fission products. To the extent possible all irradiation and counting procedures were kept the same to minimize sources of systematic errors. FPY have been determined at incident neutron energies of 0.6, 1.4, 2.4, 3.5, 4.6, 5.5, 8.9 and 14.8 MeV.

  19. Neutron response study

    International Nuclear Information System (INIS)

    Neutron response of the albedo type dosimeter is strongly dependent on the energy of the incident neutrons as well as the moderating material on the backside of the dosimeter. This study characterizes the response of the Hanford dosimeter for a variety of neutron energies for both a water and Rando phantom (a simulated human body consisting of an actual human skeleton with plastic for body muscles and certain organs). The Hanford dosimeter response to neutrons of different energies is typical of albedo type dosimeters. An approximate two orders of magnitude difference in response is observed between neutron energies of 100 keV and 10 MeV. Methods were described to compensate for the difference in dosimeter response between a laboratory neutron spectrum and the different spectra encountered at various facilities in the field. Generally, substantial field support is necessary for accurate neutron dosimetry

  20. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  1. Fast neutrons dosimetry

    International Nuclear Information System (INIS)

    A proton recoil technique has been developed for inducing thermoluminescence with incident fast neutrons. CaF2 was used as the TL phosphor, and cane sugar and polyethylene were used as proton radiators. The phosphor and the hydrogeneous material powders were well mixed, encapsulated in glass tubes and exposed to Am-Be sources, resulting in recoils from incident fast neutrons of energy between 0,25 and 11,25 MeV. The intrinsic response of pure CaF2 to fast neutrons without a hydrogeneous radiator was checked by using LiF (TLD-700). Glow curves were recorded from room temperature up to 3500C after different doses of neutrons and gamma rays of 60Co. First collision dose due to fast neutrons in tissue like materials such as cane sugar and polyethylene was also calculated

  2. Basic neutronics. Neutrons migration

    International Nuclear Information System (INIS)

    This article presents the basic neutronics necessary for the understanding of the operation of the different types of nuclear reactors: 1 - introduction to neutronics: principle of fission chain reactions, fast neutron reactors and thermal neutron reactors, capture, neutron status, variations with the reactor lattices; 2 - Boltzmann equation: neutrons population, neutrons migration, characterization of neutrons population and reactions, integral form of the Boltzmann equation, integral-differential form, equivalence between the two forms; 3 - reactor kinetics: fast neutrons and delayed neutrons, kinetic equations in punctual model, Nordheim equation, reactivity jumps, reactivity ramp; 4 - diffusion equation: local neutron status, Fick's law, diffusion equation, initial, boundary and interface conditions, nuclei in infinite and homogenous medium, some examples of solutions, developments in Eigenmodes; 5 - one-group theory: equation of the 'one-group - diffusion' theory, critical condition of the naked and homogenous reactor, critical condition of a reactor with reflectors, generalizations; 6 - neutrons moderation: different moderation mechanisms, elastic shock laws, moderation equation, some examples of solutions; 7 - resonance absorption of neutrons: advantage of the discontinuous moderation character, advantage of an heterogenous disposition, classical formula of the anti-trap factor in homogenous and heterogenous situation; 8 - neutrons thermalization: notions of thermalization mechanisms, thermalization equation, Maxwell spectrum, real spectrum, classical formula of the thermal utilisation factor, classical formula of the reproduction factor, moderation optimum. (J.S.)

  3. Phenomenological dirac optical potential for neutron cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Shin-ichi; Kitsuki, Hirohiko; Shigyo, Nobuhiro; Ishibashi, Kenji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-03-01

    Because of limitation on neutron-incident data, it is difficult to obtain global optical model potential for neutrons. In contrast, there are some global optical model potentials for proton in detail. It is interesting to convert the proton-incident global optical potentials into neutron-incident ones. In this study we introduce (N-Z)/A dependent symmetry potential terms into the global proton-incident optical potentials, and then obtain neutron-incident ones. The neutron potentials reproduce total cross sections in an acceptable degree. However, a comparison with potentials proposed by other authors brings about a confused situation in the sign of the symmetry terms. (author)

  4. Apparatus for measuring a flux of neutrons

    Science.gov (United States)

    Stringer, James L.

    1977-01-01

    A flux of neutrons is measured by disposing a detector in the flux and applying electronic correlation techniques to discriminate between the electrical signals generated by the neutron detector and the unwanted interfering electrical signals generated by the incidence of a neutron flux upon the cables connecting the detector to the electronic measuring equipment at a remote location.

  5. Neutron reflectometry: Filling Δq with neutrons

    Science.gov (United States)

    Pleshanov, N. K.

    2016-06-01

    Luminosity of the reflectometer is defined as the neutron flux incident onto the sample surface for measurements made with a given momentum transfer resolution Δq. The filling of Δq with neutrons near a certain q depends not only on the source luminance and the source-sample tract transmittance, but also on the neutron beam tailoring. The correct choice of the working wavelength and measurements with optimum neutron beam parameters increase luminosity in several times. New optimization criteria for neutron reflectometers are suggested. Standard schemes of the reflectivity measurement with monochromatic and white beams are re-examined. Optimization of reflectivity measurements generally requires numerical calculations. Analytically, its potential is demonstrated by considering thermalized neutron beams. Such innovations as velocity selector on the basis of aperiodic multilayers, small angle Soller collimator with traps for neutrons reflected from the channel walls and fan beam time-of-flight technique are proposed to further increase the luminosity of reflectometers.

  6. Prompt Neutrons from Fission

    International Nuclear Information System (INIS)

    A survey is given of the present state of knowledge of the spectrum, angular distribution and number of prompt fission neutrons, as functions of incident neutron energy and individual fragment mass, for low-energy fission. The energy spectrum of prompt neutrons has been found to be of the same form (nearly Maxwellian) for many different types of fission. It has been shown that this type of spectrum is to be expected on the basis of evaporation from moving fragments, and theoretical predictions of the spectrum agree very accurately with experimental data. Some data are now available on the variation of the neutron spectrum with fragment mass and angle of emission. Only recently has it become possible to take accurate data on the angular distribution of the neutrons. It appears that the neutrons have the angular distribution to be expected if emitted almost isotropically from the moving fragments, with a possibility that some small fraction are not emitted in this way, but directly from the fissioning nuclide. Much work has been done on the variation of fission neutron number v with incident neutron energy for neutron-induced fission. The neutron number increases roughly linearly with energy, with a slope of about 0.15 n/MeV. There is now evidence that this slope changes somewhat with energy. This change must be associated with other changes in the-fission process. The most interesting recent discovery concerning fission neutrons is the strong dependence of neutron number on individual fragment mass. The data are being rapidly improved by means of the newer techniques of determining fragment mass yields from velocity and pulse-height data, and of determining neutron yields from cumulative mass yields. There is evidence of similar dependence of neutron yield on fragment mass in a number of cases. It has been suggested that this property is directly connected with the deformability of the fragments, and in particular with the near-spherical shapes of magic

  7. Neutron stress measurement using neutron image plate. 4

    International Nuclear Information System (INIS)

    A fundamental study on the neutron stress measurement using an image plate neutron detector was described. First, a method for determining internal mean stress over the area where incident beams pass through was explained. The method is based on the α angle method by which the stress analysis is conducted using information along a diffraction ring. Second, a neutron diffraction experiment was shown. This was conducted using the research reactor, JRR-3M, at Japan Atomic Energy Research Institute (JAERI). The 211 diffraction rings from steel sample were obtained using the image plate neutron detector. It was found that the mean stress obtained by the image plate agreed with stress applied. (author)

  8. Integral Fission Cross Section Ratios of Th232, U236 and U238 Relative to U235 in the Neutron Spectrum Produced by 23.2 MeV Deuterons Incident on a Thick Be Metal Target

    International Nuclear Information System (INIS)

    Integral neutron fission cross section ratios have been measured for Th232 /U238 , U23S/U235 and U236/U235 in the neutron field produced by bombardment of a thick Be metal target with 23.2 MeV deuterons. Validation of Th232, U236, U23S fission cross sections in a high energy neutron continuum spectrum is the object of this work. The neutron spectrum in the irradiation site has been obtained by unfolding of the neutron induced activity of eleven selected reactions. The average standard deviation between calculated activities with SAND-II unfolding code and the experimental input activities was 2.5%. Calculated values of the fission cross section ratios were obtained from, the ENDF/B-y evaluated library of cross sections and the measured spectrum. These ratios were not sensitive (<0.7%) to quite different SAND-II input spectra assumed in the low energy spectrum range (0.5 to 2. MeV). Analysis of error sources, errors propagation and their correlations was made and the correlation matrix of the experimental results was calculated. The experimental and calculated values obtained are consistent within the errors. Examination of the fissile ratios measured in other continuum neutron spectra shows a similar consistency in the spectrum produced by 7 MeV deuterons on Be. However in Cf252 and thermal U235 fission neutron spectra, a large discrepancy is found for Th232. (author)

  9. Neutron Radiography

    OpenAIRE

    Reddy, A. R.; Rao, M. V. N.

    2012-01-01

    The field of neutron radiography with special reference to isotopic neutron radiography has been reviewed. Different components viz., sources, collimators, imaging systems are described. Various designs of neutron radiography facilities, their relative merits and demerits , the appropriateness of each design depending on the object to be radiographed, and economics of each technique are also dealt. The applications of neutron radiography are also briefly presented.

  10. A fundamental study on hyper-thermal neutrons for neutron capture therapy.

    Science.gov (United States)

    Sakurai, Y; Kobayashi, T; Kanda, K

    1994-12-01

    The utilization of hyper-thermal neutrons, which have an energy spectrum with a Maxwellian distribution at a higher temperature than room temperature (300 K), was studied in order to improve the thermal neutron flux distribution at depth in a living body for neutron capture therapy. Simulation calculations were carried out using a Monte Carlo code 'MCNP-V3' in order to investigate the characteristics of hyper-thermal neutrons, i.e. (i) depth dependence of the neutron energy spectrum, and (ii) depth distribution of the reaction rate in a water phantom for materials with 1/v neutron absorption. It is confirmed that hyper-thermal neutron irradiation can improve the thermal neutron flux distribution in the deeper areas in a living body compared with thermal neutron irradiation. When hyper-thermal neutrons with a 3000 K Maxwellian distribution are incident on a body, the reaction rates of 1/v materials such as 14N, 10B etc are about twice that observed for incident thermal neutrons at 300 K, at a depth of 5 cm. The limit of the treatable depth for tumours having 30 ppm 10B is expected to be about 1.5 cm greater by utilizing hyper-thermal neutrons at 3000 K compared with the incidence of thermal neutrons at 300 K.

  11. Nested Focusing Optics for Compact Neutron Sources

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center, the Massachusetts Institute of Technology (MIT), and the University of Alabama Huntsville (UAH) have developed novel neutron grazing incidence optics for use with small-scale portable neutron generators. The technology was developed to enable the use of commercially available neutron generators for applications requiring high flux densities, including high performance imaging and analysis. Nested grazing incidence mirror optics, with high collection efficiency, are used to produce divergent, parallel, or convergent neutron beams. Ray tracing simulations of the system (with source-object separation of 10m for 5 meV neutrons) show nearly an order of magnitude neutron flux increase on a 1-mm diameter object. The technology is a result of joint development efforts between NASA and MIT researchers seeking to maximize neutron flux from diffuse sources for imaging and testing applications.

  12. Calibration of the IRD two-component TLD albedo neutron dosemeter in some moderated neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Bruno M.; Silva, Ademir X. da, E-mail: bfreitas@nuclear.ufrj.br, E-mail: ademir@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Martins, Marcelo M.; Pereira, Walsan W.; Mauricio, Claudia L.P., E-mail: marcelo@ird.gov.br, E-mail: walsan@ird.gov.br, E-mail: claudia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    In some stray neutron fields, like those found in practices involving the handling of radionuclide sources, the neutron calibration factor for albedo neutron dosemeter can vary widely compared to the factor for bare sources. This is the case for well logging, which is the area with the largest number of workers exposed to neutrons in Brazil. The companies employ routinely {sup 241}Am-Be neutron sources. The albedo response variation is mainly due to the presence of scattered and moderated neutrons. This paper studies the response variation of the two-component TLD albedo neutron dosemeter used in the neutron individual monitoring service of Instituto de Radioprotecao e Dosimetria, in different radionuclide neutron source beams. The neutron spectra were evaluated applying a Bonner sphere spectrometer with a {sup 6}LiI(Eu) detector in the Brazilian National Metrology Neutron Laboratory. Standard neutron sources of {sup 241}Am-Be and {sup 252}Cf were employed, besides {sup 238}Pu-Be. Measurements were also made with scattered and moderated neutron beams, including {sup 252}Cf(D{sub 2}O) reference spectrum, {sup 241}Am-Be moderated with paraffin and silicone and a thermal neutron flux facility. New neutron calibration factors, as a function of the incident to albedo neutron ratio, were proposed for use in the albedo algorithm for occupational fields where the primary neutron beam is one of those studied sources. (author)

  13. Hybrid Superconducting Neutron Detectors

    OpenAIRE

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection...

  14. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  15. Shielding the LANSCE [Los Alamos Neutron Scattering Center] 800-MeV spallation neutron source

    International Nuclear Information System (INIS)

    Neutrons produced by medium-energy (800-MeV) proton reactions at the Los Alamos Neutron Scattering Center spallation neutron source cause a variety of difficult shield problems. We describe the general shielding questions encountered at such a spallation source, and contrast spallation and reactor source shielding issues using an infinite slab-shield composed of 100 cm of iron and 15 cm of borated polyethylene. The calculations show that (for an incident spallation spectrum characteristic of neutrons leaking at 90 degrees from a tungsten target) high-energy neutrons dominate the dose at the shield surface. Secondary low-energy neutrons (produced by high-energy neutron attenuation) and attendant gamma-rays add significantly to the dose. The primary low-energy neutrons produced directly at the tungsten source contribute negligibly to the dose, and behave similarly to neutrons with a fission spectrum distribution. 8 refs., 10 figs

  16. Neutron Radiography

    Directory of Open Access Journals (Sweden)

    A. R. Reddy

    1982-07-01

    Full Text Available The field of neutron radiography with special reference to isotopic neutron radiography has been reviewed. Different components viz., sources, collimators, imaging systems are described. Various designs of neutron radiography facilities, their relative merits and demerits , the appropriateness of each design depending on the object to be radiographed, and economics of each technique are also dealt. The applications of neutron radiography are also briefly presented.

  17. Fast-Neutron Surveys Using Indium-Foil Activation

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Lloyd D.; Smith, Alan R.

    1958-08-13

    Activation of indium foils by thermal neutrons has been applied to measurement of fast-neutron fluxes. Foils are encased in paraffin spheres placed in cadmium boxes. The high-energy neutrons that penetrate the cadmium become thermal neutrons; the thermal-neutron flux is proportional to the incident fast-neutron flux over a range of about 20 kev to 20 Mev. The foils are removed from the boxes and counted on a methane-flow proportional counter. High instantaneous neutron fluxes are easily detected and counted by use of these foils. Many simultaneous measurements have been made easily by this method.

  18. Neutron-induced background by an {alpha}-beam incident on a deuterium gas target and its implications for the study of the {sup 2}H({alpha},{gamma}){sup 6}Li reaction at LUNA

    Energy Technology Data Exchange (ETDEWEB)

    Anders, M.; Bemmerer, D.; Elekes, Z.; Marta, M. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Trezzi, D.; Mazzocchi, C. [INFN, Sezione di Milano, Milano (Italy); Bellini, A.; Costantini, H.; Corvisiero, P.; Lemut, A.; Prati, P. [Universita di Genova (Italy); INFN, Sezione di Genova, Dipartimento di Fisica, Genova (Italy); Aliotta, M.; Davinson, T.; Scott, D. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Broggini, C.; Caciolli, A.; Erhard, M.; Menegazzo, R.; Rossi Alvarez, C. [INFN, Sezione di Padova, Padova (Italy); Formicola, A.; Junker, M. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy); Fueloep, Zs.; Gyuerky, G.; Somorjai, E.; Szuecs, T. [Institute of Nuclear Research (ATOMKI), Debrecen (Hungary); Gervino, G. [Universita di Torino (Italy); INFN, Dipartimento di Fisica Sperimentale, Torino (Italy); Guglielmetti, A. [INFN, Sezione di Milano, Milano (Italy); Universita degli Studi di Milano, Milano (Italy); Gustavino, C. [INFN, Sezione di Roma ' ' La Sapienza' ' , Roma (Italy); Straniero, O. [INFN, Sezione di Napoli, Napoli (Italy); Osservatorio Astronomico di Collurania, Teramo (Italy); Collaboration: LUNA Collaboration

    2013-02-15

    The production of the stable isotope {sup 6}Li in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological {sup 6}Li plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of {sup 7}Li abundances and would point to a predominantly primordial origin of {sup 6}Li, contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang {sup 6}Li production must be revisited. The main production channel for {sup 6}Li in the Big Bang is the {sup 2}H({alpha},{gamma}){sup 6}Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an {alpha}-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the {sup 2}H(d,n){sup 3}He reaction. Due to the ultra-low laboratory neutron background at LUNA, the effect of this weak flux of 2-3 MeV neutrons on well-shielded high-purity germanium detectors has been studied in detail. Data have been taken at 280 and 400keV {alpha}-beam energy and for comparison also using an americium-beryllium neutron source. (orig.)

  19. Neutron Capture and Neutron Halos

    OpenAIRE

    A.Mengoni; Otsuka, T; Nakamura, T.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Ishihara, M.

    1996-01-01

    The connection between the neutron halo observed in light neutron rich nuclei and the neutron radiative capture process is outlined. We show how nuclear structure information such as spectroscopic factors and external components of the radial wave function of loosely bound states can be derived from the neutron capture cross section. The link between the direct radiative capture and the Coulomb dissociation process is elucidated.

  20. Neutron forward diffraction by single crystal prisms

    Indian Academy of Sciences (India)

    Sohrab Abbas; Apoorva G Wagh; Markus Strobl; Wolfgang Treimer

    2008-11-01

    We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater sensitivity to the incidence angle. We have measured the variation of neutron deflection and transmission across a Bragg reflection, for several single crystal prisms. The results agree well with theory.

  1. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  2. Hybrid superconducting neutron detectors

    Science.gov (United States)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  3. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  4. Albedo method applied to coupled neutron-gamma shielding radiations

    International Nuclear Information System (INIS)

    The Albedo Theory was applied in order to develop an one-group algorithm for coupled neutron-gamma shielding calculations. The configuration analyzed consists of multilayered plane systems, where a incident neutron current generates gamma radiation through neutron-gamma reactions. The results obtained by Albedo Method and ANISN code have shown excellent agreement. (author)

  5. DPZ-1M rhodium neutron detector performance

    International Nuclear Information System (INIS)

    The characteristics of the DPZ-1M rhodium self-powered neutron detector based on the calculational technique using corrected experimental data are given. These detectors are used for power distribution monitoring in the WWER reactors. For calculating neutron absorption in an emitter incident neutron flux is specified, while the probability of β-particles escape is determined on the base of empirical dependence of extrapolated electron path on its energy. In addition correction by the emither radius of the probability distribution of β-particles escape by experimental data is performed. The results obtained permit to conclude that the rhodium detector possesses high sensitivity to epithermal neutrons Which depends on the neutron spectrum form; current relation of burned-up and non burned- up detector seightly depends on the spectrum form, neutron gas temperature and average neutron spectral hardness

  6. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C.; Jardret; Vincent D.

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  7. Atmospheric neutrons

    International Nuclear Information System (INIS)

    Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J2/sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV

  8. Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument

    CERN Document Server

    Doa, Changwoo; Stanley, Christopher; Gallmeier, Franz X; Doucet, Mathieu; Smith, Gregory S

    2013-01-01

    It is generally assumed by most of the small-angle neutron scattering (SANS) user community that a neutrons energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from water. Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room-temperature thermal energies (~20 meV) regardless of the incident neutron energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at the detector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature-depe...

  9. Methods of Neutron Spectroscopy

    International Nuclear Information System (INIS)

    1. Introduction. 2. Methods of spectral distribution measurements. 2.1. General remarks. 2.2. Methods using the wave properties of radiation. 2.2.1. Electromagnetic radiation. 2.2.2. Neutrons. 2.3. Methods using the corpuscular properties of radiation. 2.3.1. Electromagnetic radiation. 2.3.2. Neutrons. 3. Crystal lattice; momentum space; crystal monochromators. 3.1. Crystal lattice in real space. 3.2. Reciprocal lattice.. 3.3. Bragg's equation. 3.4. Ewald's construction. 3.5. Single crystal monochromators. 4. Structure analysis. 4.1. Introductory remarks. 4.2. Structure analysis using single crystals. 4.2.1. Crystal spectrometer method (DAS). 4.2.2. Time-of-flight method (TOF). 4.3. Structure analysis using powdered crystals. 4.3.1. Crystal spectrometer method (DAS). 4.3.2. Time- of-flight method (TOF). 4.4. DAS method VS. TOF method. 5. Lattice dynamics studies. 5.1. Introductory remarks. 5.2. Crystal spectrometer methods. 5.2.1. Triple axes spectrometer (TAS). 5.2.2. The neutron crystal spectrometer with a polycrystalline filter in front of the detector. 5.3. Time-of-methods. 5.3.1. The TOF methods using a monochromatic incident beam. 5. 3.2. The TOF methods using a polychromatic incident beam. 5. 4. Crystal spectrometer methods vs. TOF methods. 6. Outlook for the future. (author)

  10. "Skew" scattering of cold unpolarized neutrons in ferromagnetic crystal

    OpenAIRE

    Udalov, O. G.

    2012-01-01

    The problem of neutron scattering by the single magnetic atom is theoretically considered in the second order perturbation theory. It is demonstrated that elastic scattering of unpolarized neutron by magnetic atom is skewed, i.e. contains the term with the symmetry of mixed product of the atom magnetic moment and wave vectors of incident and scattered neutrons. The problem of dynamical diffraction of unpolarized neutrons by the perfect ferromagnetic crystal is investigated. The case is consid...

  11. Quality incidents in projects

    OpenAIRE

    Eren, Serkan

    2010-01-01

    A quality incident is an occurrence that has a negative consequence on time, cost and quality.These incidents are important for quality management in the projects. Similar to Health,Safety and Environment Incidents (HSE incidents) which are widely used in organizations allaround the world and in their projects, quality incidents should also be reported. For thepurpose of this, quality incident reporting systems can be used.The main purpose of this project is to define and explain the current ...

  12. Compact neutron imaging system using axisymmetric mirrors

    Science.gov (United States)

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  13. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  14. Neutron-induced background by an alpha-beam incident on a deuterium gas target and its implications for the study of the 2H(alpha,gamma)6Li reaction at LUNA

    CERN Document Server

    Anders, M; Bellini, A; Aliotta, M; Bemmerer, D; Broggini, C; Caciolli, A; Costantini, H; Corvisiero, P; Davinson, T; Elekes, Z; Erhard, M; Formicola, A; Fülöp, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, Gy; Junker, M; Lemut, A; Marta, M; Mazzocchi, C; Menegazzo, R; Prati, P; Alvarez, C Rossi; Scott, D; Somorjai, E; Straniero, O; Szücs, T

    2013-01-01

    The production of the stable isotope Li-6 in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological Li-6 plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of Li-7 abundances and would point to a predominantly primordial origin of Li-6, contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang Li-6 production must be revisited. The main production channel for Li-6 in the Big Bang is the 2H(alpha,gamma)6Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an {\\alpha}-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the 2H(d,n)3He reaction....

  15. Neutron cross section evaluations of europium isotopes in 1 keV - 30 MeV energy range. Format - validation - comparison; Evaluation de sections efficaces pour des neutrons incidents sur des isotopes d'europium aux energies 1 keV - 30 MeV. Format - validation - comparaison

    Energy Technology Data Exchange (ETDEWEB)

    Dossantos-Uzarralde, P.; Le Luel, C.; Bauge, E. [CEA Bruyeres le Chatel, 91 (France). Dept. de Physique Theorique et Appliquee

    2004-07-01

    This paper presents neutron cross section evaluations of Europium isotopes. The cross sections are evaluated in 1 keV - 30 MeV energy range for the isotopes {sup 146}Eu, {sup 147}Eu, {sup 148}Eu, {sup 149}Eu, {sup 150}Eu, {sup 151}Eu, {sup 152}Eu, {sup 153}Eu, {sup 154}Eu in their ground state. This evaluation includes cross section productions of the long life isomeric states. Special attention is put on the options used for the description of the files written in ENDF-6 format. The final issue is a proposal of a new breed of ENDF-6 formatted neutron activation file. (authors)

  16. A NEW SINGLE-CRYSTAL FILTERED THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    Energy Technology Data Exchange (ETDEWEB)

    John D. Brockman; David W. Nigg; M. Frederick Hawthorne

    2008-09-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron flux produced at the irradiation location is on the order of 9.5x108 neutrons/cm2-s, with a measured cadmium ratio (Au foils) of 105, indicating a well-thermalized spectrum.

  17. Neutron radiography

    International Nuclear Information System (INIS)

    This introduction is addressed to an audience active in diverse forms of neutron source applications but not directly familiar with neutron radiography. Neutron radiography is, of course, similar to, and complementary to, radiography using x-rays. However, neutrons, being sensitive to the nuclear properties of materials, provide information fundamentally different from x-rays. For example, neutrons can penetrate many dense metals such as uranium, lead, bismuth or steel, and can reveal details of internal hydrogenous components: explosives, lubricants and gaskets. For nuclear fuel inspection neutron radiography offers the ability to penetrate dense uranium-238 and contrast the isotopes U-235 or Pu-239 and also offers the ability to discriminate against unwanted interference from gamma radiation. In addition to advantages in industrial applications, there are special situations in fields such as medical diagnostics, dentistry, agriculture and forensic science. Comprehensive accounts of applications in the field can be found in the proceedings of the world conferences on neutron radiography: USA (1981), FRANCE (1986). A third conference in this series is scheduled for May 1989 in Japan

  18. Neutron radiography

    International Nuclear Information System (INIS)

    The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H2O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.

  19. Neutron tomography

    International Nuclear Information System (INIS)

    In this paper a survey is given of recent developments in selected areas of neutron tomography, within the context of several applications Argonne is involved in, including high penetration of reactor-fuel bundles in thick containers (involving TREAT and NRAD facilities), dual-energy hydrogen imaging (performed at IPNS), dynamic coarse-resolution emission tomography of rector fuel under test (a proposed modification to the TREAT hodoscope), and an associated-particle system that uses neutron flight-time to electronically collimate transmitted neutrons and to tomographically image nuclides identified by reaction gamma-rays

  20. Neutron scattering from -Ce at epithermal neutron energies

    Indian Academy of Sciences (India)

    A P Murani

    2008-10-01

    Neutron scattering data, using neutrons of incident energies as high as 2 eV, on -Ce and -Ce-like systems such as CeRh2, CeNi2, CeFe24, CeRu2, and many others that point clearly to the substantially localized 4f electronic state in these systems are reviewed. The present interpretation is contrary to the widely held view that the 4f electrons in these systems form a narrow itinerant electron 4f band.

  1. Neutron scattering

    International Nuclear Information System (INIS)

    This report contains the text of 16 lectures given at the Summer School and the report on a panel discussion entitled ''the relative merits and complementarities of x-rays, synchrotron radiation, steady- and pulsed neutron sources''. figs., tabs., refs

  2. Piezonuclear Neutrons

    CERN Document Server

    Cardone, Fabio; Petrucci, Andrea

    2008-01-01

    We report the results of neutron measurements carried out during the application of ultrasounds to a solution containing only stable elements like Iron and Chlorine, without any other radioactive source of any kind. These measurements, carried out by CR39 detectors and a Boron TriFouride electronic detector, evidenced the emission of neutron pulses. These pulses stand well above the electronic noise and the background of the laboratory where the measurements were carried out.

  3. FOREWORD: Neutron metrology Neutron metrology

    Science.gov (United States)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  4. Personnel neutron monitoring based on albedo technique

    International Nuclear Information System (INIS)

    This work deals with the study, design and test of a personal neutron monitor based on the detection of albedo neutrons from the body and its further relation to the incident flux. By this method, neutrons of energies below about 100 KeV can be efficiently detected, providing good information in the region where the biological effectiveness of neutron radiation starts to rise. The system consists of a pair of Thermoluminescent Detectors (6 LiF - 7 LiF) ∼ inside a polyethylene moderating body, in order to increase the sensitivity. The surface of the dosimeter facing away from the body is covered by a layer of a borated resin to assure appropriate shielding of incident low energy neutrons. The response of the dosimeter to monoenergetic neutrons from a 3 MeV Van de Graaff, to Am Be neutrons and to neutrons from a thermal column was investigated. The directional sensitivity, the effect of beam divergence was well as the effect of changes in dosimeter-to-body distances were also studied. (author)

  5. Neutron capture cross sections of 151,153Eu

    International Nuclear Information System (INIS)

    The neutron capture cross section of 151,153Eu nuclei was measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center (LANSCE). Neutrons were produced at the Lujan Neutron Scattering Center and their energies were determined by the time-of-flight technique. The relative yield versus neutron incident energy from 0.1 eV to 2.0 keV for both 151Eu(n,) and 153Eu(n,) reactions was derived from events gated on the total energy and multiplicity measured by the DANCE array. The absolute cross section was determined by scaling the relative yield to the measured cross sections of well-known resonances. The shape of the yield curve agrees well with previous measurements in the resonance region for both 151Eu and 153Eu capture cross sections. New data are reported for neutron incident energies between 100 eV and 2.0 keV. The trend of data in the 0.3 keV to 2.0 keV region of neutron incident energy is consistent with the ENDF/BVI and the measurements of Macklin and Young. Crucial skills, acquired from these measurements in the early implementation of DANCE, are important to plan future experiments, which will yield results up to a few hundred keV neutron incident energy

  6. Incident Information Management Tool

    CERN Document Server

    Pejovic, Vladimir

    2015-01-01

    Flaws of\tcurrent incident information management at CMS and CERN\tare discussed. A new data\tmodel for future incident database is\tproposed and briefly described. Recently developed draft version of GIS-­‐based tool for incident tracking is presented.

  7. Neutron Repulsion

    CERN Document Server

    Manuel, Oliver K

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  8. UCN Source at an External Beam of Thermal Neutrons

    OpenAIRE

    2015-01-01

    We propose a new method for production of ultracold neutrons (UCNs) in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections ...

  9. Neutron scattering and models: Titanium

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.

    1997-07-01

    Differential neutron elastic-scattering cross sections of elemental titanium were measured from 4.5 {r_arrow} 10.0 MeV in incident energy increments of {approx} 0.5 MeV. At each energy the measurements were made at forty or more scattering angles distributed between {approx} 17 and 160{degree}. Concurrently, differential neutron inelastic-scattering cross sections were measured for observed excitations of 0.975 {+-} 0.034, 1.497 {+-} 0.033, 2.322 {+-} 0.058, 3.252 {+-} 0.043, 3.700 {+-} 0.093, 4.317 {+-} 0.075 and 4.795 {+-} 0.100 MeV. All of the observed inelastically-scattered neutron groups were composites of contributions from several isotopes and/or levels. The experimental results were used to develop energy-average optical, statistical and coupled-channels models.

  10. neutron radiography

    International Nuclear Information System (INIS)

    Neutron radiography (or radiology) is a diverse filed that uses neutrons of various energies, subthermal, thermal, epithermal or fast in either steady state or pulsed mode to examine objects for industrial, medical, or other purposes, both microscopic and macroscopic. The applications include engineering design, biological studies, nondestructive inspection and materials evaluation. In the past decade, over 100 different centers in some 30 countries have published reports of pioneering activities using reactors, accelerators and isotopic neutron sources. While film transparency and electronic video are most common imaging methods for static or in motion objects respectively, there are other important data gathering techniques, including track etch, digital gauging and computed tomography. A survey of the world-wide progress shows the field to be gaining steadily in its diversity, its sophistication and its importance. (author)

  11. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  12. Fast-neutron scattering from elemental cadmium

    International Nuclear Information System (INIS)

    Neutron differential-elastic-scattering cross sections of elemental cadmium are measured from approx. = 1.5 to 4.0 MeV at incident-neutron energy intervals of 50 to 200 keV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Concurrently, lumped-level neutron inelastic-excitation cross sections are measured. The experimental results are used to deduce parameters of an optical-statistical model that is descriptive of the observables and are compared with corresponding quantities given in ENDF/B-V

  13. Study of a gold-foil-based multisphere neutron spectrometer.

    Science.gov (United States)

    Wang, Z; Hutchinson, J D; Hertel, N E; Burgett, E; Howell, R M

    2008-01-01

    Multisphere neutron spectrometers with active thermal neutron detectors cannot be used in high-intensity radiation fields due to pulse pile-up and dead-time effects. Thus, a multisphere spectrometer using a passive detection system, specifically gold foils, has been investigated in this work. The responses of a gold-foil-based Bonner sphere neutron spectrometer were studied for two different gold-foil holder designs; an aluminium-polyethylene holder and a polyethylene holder. The responses of the two designs were calculated for four incident neutron beam directions, namely, parallel, perpendicular and at +/-45 degrees relative to the flat surface of the foil. It was found that the use of polyethylene holder resulted in a more isotropic response to neutrons for the four incident directions considered. The computed responses were verified by measuring the neutron spectrum of a 252Cf source with known strength.

  14. Method and apparatus for detecting neutrons

    Science.gov (United States)

    Perkins, Richard W.; Reeder, Paul L.; Wogman, Ned A.; Warner, Ray A.; Brite, Daniel W.; Richey, Wayne C.; Goldman, Don S.

    1997-01-01

    The instant invention is a method for making and using an apparatus for detecting neutrons. Scintillating optical fibers are fabricated by melting SiO.sub.2 with a thermal neutron capturing substance and a scintillating material in a reducing atmosphere. The melt is then drawn into fibers in an anoxic atmosphere. The fibers may then be coated and used directly in a neutron detection apparatus, or assembled into a geometrical array in a second, hydrogen-rich, scintillating material such as a polymer. Photons generated by interaction with thermal neutrons are trapped within the coated fibers and are directed to photoelectric converters. A measurable electronic signal is generated for each thermal neutron interaction within the fiber. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation. When the fibers are arranged in an array within a second scintillating material, photons generated by kinetic neutrons interacting with the second scintillating material and photons generated by thermal neutron capture within the fiber can both be directed to photoelectric converters. These electronic signals are then manipulated, stored, and interpreted by normal methods to infer the quality and quantity of incident radiation.

  15. Fast neutron capture with a white neutron source

    International Nuclear Information System (INIS)

    A system has been developed at the Los Alamos National Laboratory to measure gamma-rays following fast neutron reactions. The neutron beam is produced by bombarding a thick tantalum target with the 800 MeV proton beam from the LAMPF accelerator. Incident neutron energies, from 1 to over 200 MeV, are determined by their times of flight over a 7.6-m flight path. The gamma-rays are detected in five 7.6 x 7.6-cm cylindrical bismuth germanate (BGO) detectors which span an angular range from 450 to 1450 in the reaction plane. With this system it is possible to simultaneously measure the cross section and angular distribution of gamma-rays as a function of neutron energy. The results for the cross section of the 12C(n,n'γ=4.44 MeV) reaction at 900 and 1250 show good agreement with previous measurements while the complete angular distributions show the need for a large a4 coefficient which was not previously observed. Preliminary results for the 12C(n,n'γ=15.1 MeV) reaction have also been obtained. The data obtained for the 40Ca(n,γ0) reaction in the region of the giant dipole resonance demonstrate the unique capabilities of this system. Future developments to the neutron source which will enhance the capabilities of the system are presented. 14 references

  16. Diagnosis of mucoviscidosis by neutron activation analysis. Part 1

    International Nuclear Information System (INIS)

    Symptoms pathology, incidence, and gravity of the inherent syndrome called mucoviscidosis, or cystic fibrosis are described in this Part I. The analytical methods used for its diagnosis, both the conventional chemical ones and by neutron activation analysis are also summarised. Finally, an analytical method to study the incidence of mucoviscidosis in Brazil is presented. This , essentially, consists in bromine determination, in fingernails, by resonance neutron activation analysis. (author)

  17. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P.; Longhurst, Glen R.; Porter, Douglas L.; Parry, James R.

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  18. Neutron Scattering Simulations at the University of Kentucky Accelerator Laboratory

    Science.gov (United States)

    Nguyen, Thienan; Jackson, Daniel; Hicks, S. F.; Rice, Ben; Vanhoy, J. R.

    2015-10-01

    The Monte-Carlo N-Particle Transport code (MCNP) has many applications ranging from radiography to reactor design. It has particle interaction capabilities, making it useful for simulating neutron collisions on surfaces of varying compositions. The neutron flux within the accelerator complex at the University of Kentucky was simulated using MCNP. With it, the complex's capabilities to contain and thermalize 7 MeV neutrons produced via 2H(d,n)3He source reaction to an acceptable level inside the neutron hall and adjoining rooms were analyzed. This will aid in confirming the safety of researchers who are working in the adjacent control room. Additionally, the neutron transport simulation was used to analyze the impact of the collimator copper shielding on various detectors located around the neutron scattering hall. The purpose of this was to attempt to explain any background neutrons that are observed at these detectors. The simulation shows that the complex performs very well with regards to neutron containment and thermalization. Also, the tracking information for the paths taken by the neutrons show that most of the neutrons' lives are spent inside the neutron hall. Finally, the neutron counts were analyzed at the positions of the neutron monitor detectors located at 90 and 45 degrees relative to the incident beam direction. This project was supported in part by the DOE NEUP Grant NU-12-KY-UK-0201-05 and the Donald A. Cowan Physics Institute at the University of Dallas.

  19. Diagnosis of mucoviscidosis by neutron activation analysis. Part 1; Diagnostico da mucoviscidose utilizando analise por ativacao com neutrons. Parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, Luis F.; Bellido, Alfredo V

    1997-02-01

    Symptoms pathology, incidence, and gravity of the inherent syndrome called mucoviscidosis, or cystic fibrosis are described in this Part I. The analytical methods used for its diagnosis, both the conventional chemical ones and by neutron activation analysis are also summarised. Finally, an analytical method to study the incidence of mucoviscidosis in Brazil is presented. This , essentially, consists in bromine determination, in fingernails, by resonance neutron activation analysis. (author) 33 refs., 13 figs.

  20. The neutron-deuteron elastic scattering angular distribution at 95 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mermod, Philippe

    2004-04-01

    The neutron-deuteron elastic scattering differential cross section has been measured at 95 MeV incident neutron energy, with the Medley setup at TSL in Uppsala. The neutron-proton differential cross section has also been measured for normalization purposes. The data are compared with theoretical calculations to investigate the role of three-nucleon force effects.

  1. The neutron-deuteron elastic scattering angular distribution at 95 MeV

    International Nuclear Information System (INIS)

    The neutron-deuteron elastic scattering differential cross section has been measured at 95 MeV incident neutron energy, with the Medley setup at TSL in Uppsala. The neutron-proton differential cross section has also been measured for normalization purposes. The data are compared with theoretical calculations to investigate the role of three-nucleon force effects

  2. Neutron rich nuclei and neutron stars

    OpenAIRE

    Horowitz, C. J.

    2013-01-01

    The PREX experiment at Jefferson Laboratory measures the neutron radius of 208Pb with parity violating electron scattering in a way that is free from most strong interaction uncertainties. The 208Pb radius has important implications for neutron rich matter and the structure of neutron stars. We present first PREX results, describe future plans, and discuss a follow on measurement of the neutron radius of 48Ca. We review radio and X-ray observations of neutron star masses and radii. These cons...

  3. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...... of new material. Understanding self-assembly of 2D-3D nanostructures at surfaces and the related interfaces in layered films is a precondition for the development of tailored tools with distributed functions, like new clothes (self-cleaning surfaces combined with mechanical resistance, low permeability...

  4. Neutron scattering. Lectures of the JCNS laboratory course held at Forschungszentrum Juelich and the research reactor FRM II of TU Munich

    International Nuclear Information System (INIS)

    The following topics are dealt with: Fourier transform, basic assumptions of quantum mechanics and the Born approximation, symmtery in crystals, neutron sources, neutron elastic scattering and properties, polarized neutron scattering, correlation functions measured by scattering experiments, grazing incidence neutron scattering, neutron diffractometers, small-angle scattewring inelastic crystal spectrometers, time-of-flight spectrometers using NSE, structure determination, inelastic neutron scattering with phonon and magnon excitations, structure of complex fluids and macromolecules, polymer dynamics, magnetism. (HSI)

  5. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  6. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  7. Development of neutron spectrometer toward deuterium plasma diagnostics in LHD

    International Nuclear Information System (INIS)

    Neutron spectrometer based on coincident counting of associated particles has been developed for deuterium plasma diagnostics on Large Helical Device (LHD) at the National Institute for Fusion Science. Efficient detection of 2.5 MeV neutron with high energy resolution would be achievable by coincident detection of a scattered neutron and a recoiled proton associated with an elastic scattering of incident neutron in a plastic scintillator as a radiator. The calculated neutron spectra from deuterium plasma heated by neutral beam injection indicate that the energy resolution of better than 7% is required for the spectrometer to evaluate energetic deuterium confinement. By using a prototype of the proposed spectrometer, the energy resolution of 6.3% and the detection efficiency of 3.3x10-7 count/neutron were experimentally demonstrated for 2.5 MeV monoenergetic neutron, respectively.

  8. Neutron dosimetry

    International Nuclear Information System (INIS)

    It is the object of the present invention to provide a method of measuring neutron radiation which eliminates the use of powders as dosimeter target materials and reduces the requirement for repetitive weighing of dosimeters, for expensive radioisotopes as dosimeter target material, and for dosimeter housings (in many cases). The invention described is a method of measuring neutron radiation within a nuclear reactor consisting of placing one or more extruded sintered oxide wires comprising a dosimeter target oxide within the reactor and measuring the radioactivity induced in the wires by neutron radiation. These oxide wires consist of a dilution containing at least 0.1% by weight of the dosimeter target oxide in a diluent oxide. The diluent oxide is selected from a group consisting of Al2O3 and BeO. Almost any metal oxide may be used as a target oxide. The wires may be encapsulated within a co-extruded housing. These mixed oxide wires have been found to be sufficiently uniform for quantitative analyses. (JTA)

  9. Quasi-specular albedo of cold neutrons from powder of nanoparticles

    OpenAIRE

    Cubitt, R.; Lychagin, E. V.; Muzychka, A. Yu.; Nekhaev, G. V.; Nesvizhevsky, V. V.; Pignol, G.; Protasov, K.V.; Strelkov, A. V.

    2009-01-01

    We predicted and observed for the first time the quasi-specular albedo of cold neutrons at small incidence angles from a powder of nanoparticles. This albedo (reflection) is due to multiple neutron small-angle scattering. The reflection angle as well as the half-width of angular distribution of reflected neutrons is approximately equal to the incidence angle. The measured reflection probability was equal to ~30% within the detector angular size that corresponds to 40-50% total calculated prob...

  10. Picosecond Neutron Yields from Ultra-Intense Laser-Target Interactions

    Science.gov (United States)

    Ellison, C. Leland; Fuchs, Julien

    2009-11-01

    High-flux neutron sources for neutron imaging and materials analysis applications have typically been provided by accelerator-based (Spallation Neutron Source) and reactor-based (High Flux Isotope Reactor) neutron sources. A novel approach is to use ultra-intense (> 10^18 W/cm^2) laser-target interactions to generate picosecond, collimated neutrons. Here we examine the feasibility of a source based on current (LULI) and upcoming laser facility capabilities. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. The parameters of the deuteron beam are well understood from laser-plasma and laser-target studies relevant to fast-ignition fusion. Expected neutron yields are presented in comparison to conventional neutron sources, previous experimental neutron yields, and within the context of neutron shielding safety requirements.

  11. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  12. Optimizing Laser-accelerated Ion Beams for a Collimated Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Ellison and J. Fuchs

    2010-09-23

    High-flux neutrons for imaging and materials analysis applications have typically been provided by accelerator- and reactor-based neutron sources. A novel approach is to use ultraintense (>1018W/cm2) lasers to generate picosecond, collimated neutrons from a dual target configuration. In this article, the production capabilities of present and upcoming laser facilities are estimated while independently maximizing neutron yields and minimizing beam divergence. A Monte-Carlo code calculates angular and energy distributions of neutrons generated by D-D fusion events occurring within a deuterated target for a given incident beam of D+ ions. Tailoring of the incident distribution via laser parameters and microlens focusing modifies the emerging neutrons. Projected neutron yields and distributions are compared to conventional sources, yielding comparable on-target fluxes per discharge, shorter time resolution, larger neutron energies and greater collimation.

  13. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  14. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  15. REFRACTIVE NEUTRON LENS

    OpenAIRE

    Petrov, P. V.; Kolchevsky, N.N.

    2013-01-01

    Compound concave refractive lenses are used for focusing neutron beam. Investigations of spectral and focusing properties of a refractive neutron lens are presented. Resolution of the imaging system on the base of refractive neutron lenses depends on material properties and parameters of neutron source. Model of refractive neutron lens are proposed. Results of calculation diffraction resolution and focal depth of refractive neutron lens are discussed.

  16. Neutron Capture Nucleosynthesis

    OpenAIRE

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these resu...

  17. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  18. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  19. Large whale incident database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Large whale stranding, death, ship strike and entanglement incidents are all recorded to monitor the health of each population and track anthropogenic factors that...

  20. Police Incident Blotter (Archive)

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Police Blotter Archive contains crime incident data after it has been validated and processed to meet Uniform Crime Reporting (UCR) standards, published on a...

  1. Incident Report - Legacy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Incident Report is a mandatory post trip legal document observers fill out to report any enforcement related situations they have encountered on an observed...

  2. Titanium-I: fast neutron cross section measurements

    International Nuclear Information System (INIS)

    Energy averaged total neutron cross sections are measured from approximately 1.0 to 4.5 MeV with few percent statistical accuracies. Differential elastic neutron scattering angular distributions are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of less than or equal to 0.2 MeV. Differential cross sections for the inelastic neutron excitation of ''states'' at 158 +- 26, 891 +- 8, 984 +- 15, 1428 +- 39, 1541 +- 30, 1670 +- 80, 2007 +- 8, 2304 +- 22, 2424 +- 16, and 2615 +- 10 keV are measured for incident neutron energies from 1.5 to 4.0 MeV. Additional ''states'' are observed at approximately 2845 and 3009 keV. An energy-averaged optical-statistical model is deduced from the measured values and the implications of its use in the context of the strong fluctuating structure is discussed

  3. LENS: A New Pulsed Neutron Source for Research and Education

    OpenAIRE

    Leuschner, M.; Baxter, D. V.; Cameron, J. M.; Derenchuk, V.; Lavelle, C.; Lone, A; Nann, H.; Rinckel, T.; Snow, W. M.

    2005-01-01

    A new pulsed neutron source is under construction at the Indiana University Cyclotron Facility (IUCF). Neutrons are produced via (p,n) reactions by a low-energy proton beam incident on a thin beryllium target. The source is tightly coupled to a cold methane moderator held at a temperature of 20 K or below. The resulting time-averaged cold neutron flux is expected to be comparable to that of the Intense Pulsed Neutron Source (IPNS) facility at Argonne National Laboratory. The initial experimen...

  4. NRC Incident Response Plan

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission (NRC) regulates civilian nuclear activities to protect the public health and safety and to preserve environmental quality. An Incident Response Plan had been developed and has now been revised to reflect current Commission policy. NUREG-0728, Rev. 2 assigns responsibilities for responding to any potentially threatening incident involving NRC licensed activities and for assuring that the NRC will fulfill it statutory mission. This report has also been reproduced for staff use as NRC Manual Chapter 0502

  5. Study of damages by neutron irradiation in lithium aluminates; Estudio de danos por irradiacion neutronica en aluminatos de litio

    Energy Technology Data Exchange (ETDEWEB)

    Palacios G, O

    1999-06-01

    Lithium aluminates proposed to the production of tritium in fusion nuclear reactors, due to the thermal stability that they present as well as the behavior of the aluminium to the irradiation. As a neutron flux with profile ({approx_equal} 14 Mev) of a fusion reactor is not available. A irradiation experiment was designed in order to know the micro and nano structure damages produced by fast and thermal neutrons in two irradiation positions of the fusion nuclear reactor Triga Mark III: CT (Thermal Column) and SIFCA (System of Irradiation Fixed of Capsules). In this work samples of lithium aluminate were characterized by XRD (X-Ray Diffraction), TEM (Transmission Electron Microscopy) and SEM (Scanning Electron Microscopy). Two samples were prepared by two methods: a) coalition method and b) peroxide method. This characterization comprised original and irradiated samples. The irradiated sample amounted to 4 in total: one for each preparation method and one for each irradiation position. The object of this analysis was to correlate with the received neutron dose the damages suffered by the samples with the neutron irradiation during long periods (440 H), in their micro and nano structure aspects; in order to understand the changes as a function of the irradiation zone (with thermal and fast neutron flux) and the preparation methods of the samples and having as an antecedent the irradiation in SIFCA position by short times (2h). The obtained results are referred to the stability of {gamma} -aluminate phase, under given conditions of irradiation and defined nano structure arrangement. They also refer to the proposals of growth mechanism and nucleation of new phases. The error associated with the measurement of neutron dose is also discussed. (Author)

  6. Design of a transportable high efficiency fast neutron spectrometer

    Science.gov (United States)

    Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.

    2016-08-01

    A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.

  7. Comparison between LYRA and SAND code performance for the extrapolation of data from activation detectors used for determining spectra of acceleration neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Birattari, C.; Cesana, P.; Salomone, A.

    1980-08-26

    Mathematical descriptions are given of the LYRA and SAND programs which are then used to evaluate typical acceleration neutron spectra or various energy conditions of incident protons, bombardment materials, and angle of neutron emission. 16 references, 12 figures, 1 table.

  8. UCN Source at an External Beam of Thermal Neutrons

    Directory of Open Access Journals (Sweden)

    E. V. Lychagin

    2015-01-01

    Full Text Available We propose a new method for production of ultracold neutrons (UCNs in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections from methane; also the source size could be significantly larger than the incident beam diameter. We provide preliminary calculations of cooling of neutrons. These calculations show that such a source being installed at an intense source of thermal or cold neutrons like the ILL or PIK reactor or the ESS spallation source could provide the UCN density 105 cm−3, the production rate 107 UCN/s−1. Main advantages of such an UCN source include its low radiative and thermal load, relatively low cost, and convenient accessibility for any maintenance. We have carried out an experiment on cooling of thermal neutrons in a methane cavity. The data confirm the results of our calculations of the spectrum and flux of neutrons in the methane cavity.

  9. Compact variable-energy neutron generators for fast neutron applications

    International Nuclear Information System (INIS)

    Full text: The advent of compact low-energy accelerators capable of delivering intense beams of charged particles has opened up the opportunity of generating fast neutron beams of sufficient intensity for many previously inaccessible applications. A continuing drawback in the intensity or quality of the neutron beam stems from the nature of the beam-target interaction. To generate mono-energetic neutrons the ideal reaction is the d(d,n)3He reaction. For a sufficiently dense target material the deuterium should be a liquid or solid, but this is invariably impractical due to the associated complex cryogenic requirements. The only alternative is a gas target maintained at high pressure. The disadvantage of a gas target is the question of how to contain a high pressure gas cell and introduce an energetic ion beam with minimal incident beam energy degradation. The concept of an advanced differential pumping system has already been demonstrated, with spinning discs to isolate the gas cell during non-delivery of beam from a pulsed accelerator. Such a process is however, ineffective for higher duty cycles. To overcome this, a novel system has been developed utilizing a plasma porthole in conjunction with a differential pumping system. Such a system has been demonstrated to be highly effective in terms of installing a compact fast neutron generator for applications in the materials research industry. During recent years considerable effort has been directed towards the use of fast neutron generators for contraband and explosives detection. The methodology can also be directed to other applications, more specifically in minerals prospecting and materials characterization. Here we discuss two specific applications that can have a direct impact on the South African economy: 1) Assaying of gold ore in rock: The 279 keV gamma-ray emitted during the decay of 197mAu can be readily observed through the irradiation of natural gold using neutrons of energy 1-6 MeV with optimum

  10. Isotope identification capabilities using time resolved prompt gamma emission from epithermal neutrons

    International Nuclear Information System (INIS)

    We present a concept of integrated measurements for isotope identification which takes advantage of the time structure of spallation neutron sources for time resolved γ spectroscopy. Time resolved Prompt Gamma Activation Analysis (T-PGAA) consists in the measurement of gamma energy spectrum induced by the radioactive capture as a function of incident neutron Time Of Flight (TOF), directly related with the energy of incident neutrons. The potential of the proposed concept was explored on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (U.K.). Through this new technique we show an increase in the sensitivity to specific elements of archaeometric relevance, through incident neutron energy selection in prompt γ spectra for multicomponent samples. Results on a standard bronze sample are presented

  11. Neutron source for Neutron Capture Synovectomy

    International Nuclear Information System (INIS)

    Monte Carlo calculations were performed to obtain a thermal neutron field from a 239PuBe neutron source inside a cylindrical heterogeneous moderators for Neutron Capture Synovectomy. Studied moderators were light water and heavy water, graphite and heavy water, lucite and polyethylene and heavy water. The neutron spectrum of polyethylene and heavy water moderator was used to determine neutron spectra inside a knee model. In this model the elemental composition of synovium and synovial liquid was assumed like blood. Kerma factors for synovium and synovial liquid were calculated to compare with water Kerma factors, in this calculations the synovium was loaded with two different concentrations of Boron

  12. Neutron dosimetry - A review

    International Nuclear Information System (INIS)

    This review summarizes information on the following subjects: (1) physical processes of importance in neutron dosimetry; (2) biological effects of neutrons; (3) neutron sources; and (4) instruments and methods used in neutron dosimetry. Also, possible improvements in dosimetry instrumentation are outlined and discussed. (author)

  13. Borner Ball Neutron Detector

    Science.gov (United States)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  14. Superfluid neutron stars

    OpenAIRE

    Langlois, David

    2001-01-01

    Neutron stars are believed to contain (neutron and proton) superfluids. I will give a summary of a macroscopic description of the interior of neutron stars, in a formulation which is general relativistic. I will also present recent results on the oscillations of neutron stars, with superfluidity explicitly taken into account, which leads in particular to the existence of a new class of modes.

  15. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  16. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  17. Neutrostriction in Neutron stars

    OpenAIRE

    Ignatovich, V. K.

    2003-01-01

    It is demonstrated that not only gravity, but also neutrostriction forces due to optical potential created by coherent elastic neutron-neutron scattering can hold a neutron star together. The latter forces can be stronger than gravitational ones. The effect of these forces on mass, radius and structure of the neutron star is estimated.

  18. Dosimetry Methods of Fast Neutron Using the Semiconductor Diodes

    Science.gov (United States)

    H. Zaki, Dizaji; Kakavand, T.; F. Abbasi, Davani

    2014-01-01

    Semiconductor detectors based on a silicon pin diode are frequently used in the detection of different nuclear radiations. For the detection and dosimetry of fast neutrons, these silicon detectors are coupled with a fast neutron converter. Incident neutrons interact with the converter and produce charged particles that can deposit their energy in the detectors and produce a signal. In this study, three methods are introduced for fast neutron dosimetry by using the silicon detectors, which are: recoil proton spectroscopy, similarity of detector response function with conversion function, and a discriminator layer. Monte Carlo simulation is used to calculate the response of dosimetry systems based on these methods. In the different doses of an 241Am-Be neutron source, dosimetry responses are evaluated. The error values of measured data for dosimetry by these methods are in the range of 15-25%. We find fairly good agreement in the 241Am-Be neutron sources.

  19. High-energy neutron spectroscopy with thick silicon detectors

    Science.gov (United States)

    Kinnison, James D.; Maurer, Richard H.; Roth, David R.; Haight, Robert C.

    2003-01-01

    The high-energy neutron component of the space radiation environment in thick structures such as the International Space Station contributes to the total radiation dose received by an astronaut. Detector design constraints such as size and mass have limited the energy range of neutron spectrum measurements in orbit to about 12 MeV in Space Shuttle studies. We present a new method for high-energy neutron spectroscopy using small silicon detectors that can extend these measurements to more than 500 MeV. The methodology is based on measurement of the detector response function for high-energy neutrons and inversion of this response function with measured deposition data to deduce neutron energy spectra. We also present the results of an initial shielding study performed with the thick silicon detector system for high-energy neutrons incident on polyethylene.

  20. Radiative neutron capture cross sections on 176Lu at DANCE

    Science.gov (United States)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  1. Neutron-neutron quasifree scattering in nd breakup at 10 MeV

    Science.gov (United States)

    Malone, R. C.; Crowe, B.; Crowell, A. S.; Cumberbatch, L. C.; Esterline, J. H.; Fallin, B. A.; Friesen, F. Q. L.; Han, Z.; Howell, C. R.; Markoff, D.; Ticehurst, D.; Tornow, W.; Witała, H.

    2016-03-01

    The neutron-deuteron (nd) breakup reaction provides a rich environment for testing theoretical models of the neutron-neutron (nn) interaction. Current theoretical predictions based on rigorous ab-initio calculations agree well with most experimental data for this system, but there remain a few notable discrepancies. The cross section for nn quasifree (QFS) scattering is one such anomaly. Two recent experiments reported cross sections for this particular nd breakup configuration that exceed theoretical calculations by almost 20% at incident neutron energies of 26 and 25 MeV [1, 2]. The theoretical values can be brought into agreement with these results by increasing the strength of the 1S0 nn potential matrix element by roughly 10%. However, this modification of the nn effective range parameter and/or the 1S0 scattering length causes substantial charge-symmetry breaking in the nucleon-nucleon force and suggests the possibility of a weakly bound di-neutron state [3]. We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n)3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.

  2. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  3. Latest developments of neutron scattering instrumentation at the Juelich Centre for Neutron Science

    International Nuclear Information System (INIS)

    Jülich Centre for Neutron Science (JCNS) is operating a number of world-class neutron scattering instruments situated at the most powerful and advanced neutron sources (FRM II, ILL and SNS) and is continuously undertaking significant efforts in the development and upgrades to keep this instrumentation in line with the continuously changing scientific request. These developments are mostly based upon the latest progress in neutron optics and polarized neutron techniques. For example, the low-Q limit of the suite of small angle-scattering instruments has been extended to 4·10-5 Å-1 by the successful use of focusing optics. A new generation of correction elements for the neutron spin-echo spectrometer has allowed for the use of the full field integral available, thus pushing further the instrument resolution. A significant progress has been achieved in the developments of 3He neutron spin filters for purposes of the wide-angle polarization analysis for off-specular reflectometry and (grazing incidence) small-angle neutron scattering, e.g. the on-beam polarization of 3He in large cells is allowing to achieve a high neutron beam polarization without any degradation in time. The wide Q-range polarization analysis using 3He neutron spin filters has been implemented for small-angle neutron scattering that lead to the reduction up to 100 times of the intrinsic incoherent background from non-deuterated biological molecules. Also the work on wide-angle XYZ magnetic cavities (Magic PASTIS) will be presented. (author)

  4. Imaging with Scattered Neutrons

    CERN Document Server

    Ballhausen, H; Gähler, R; Trapp, M; Van Overberghe, A

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

  5. High energy neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wiegand, C.

    1948-04-27

    It is the purpose of this paper to describe a neutron detector suitable for monitoring a flux of neutrons whose energy is greater than about 50 MeV. Detection of the neutrons is accomplished by their ability to induce fission in heavy elements. Kelly and Wiegand studied the neutron fission of Bi, Pb, Ti, Hg, Au, and Pt at various neutron energies and the presently described counter is an application of this work.

  6. Study on spatial resolution of micromegas as a neutron detector under condition of high neutron flux and γ ray background

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Xin; ZHANG Yi; WANG Ji-Jin; HU Bi-Tao

    2009-01-01

    In this paper Micromegas has been designed to detect neutrons. The simulation of the spatial reso-lution of Micromegas as neutron detector is carried out by GEANT4 toolkit. The neutron track reconstruction method based on the time coincidence technology is employed in the present work. The influence of the flux of incident 14 MeV neutron and high gamma background on the spatial resolution is carefully studied. Our results show that the spatial resolution of the detector is sensitive to the neutron flux, but insensitive to the intensity of γ background if the neutron track reconstruction method proposed by our group is used. The γ insensitivity makes it possible for us to use the Micromegas detector under condition which has high γ-rays background.

  7. Two-dimensional neutron imaging method using scintillators with wavelength shifting fibers

    International Nuclear Information System (INIS)

    We have developed a two-dimensional neutron imaging method using rectangular scintillators with wavelength shifting (WLS) fibers for neutron scattering experiments using a next-generation high-intense pulsed-neutron source. In the method, rectangular scintillators are arranged at longitudinal direction and transverse direction and WLS fibers are arranged on the four sides of these scintillators. Luminescences generated in the scintillator are absorbed by the four fibers and wavelength-shifted luminescences are detected by multi-anode photomultipliers. The position of incident neutron is decided by coincidence of the four signals. By preliminary experiments using 5 mmx5 mmx2 mmt6Li glass scintillators and 0.5 mm diameter WLS fibers, it was concluded that detection efficiency for thermal neutron was 13%. By scanning experiment using a 4x4 6Li glass scintillator array neutron detection system, we obtained the clear spot of incident neutron beam that the cross talk was <10%

  8. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  9. Neutron conversion and cascaded cooling in paramagnetic systems for a high-flux source of very cold neutrons

    Science.gov (United States)

    Zimmer, Oliver

    2016-03-01

    A new neutron-cooling mechanism is proposed with potential benefits for novel intense sources of very cold neutrons with wavelengths >2 nm, and for enhancing the production of ultracold neutrons. It employs inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic energy is removed from the neutron stepwise in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. The stationary neutron transport equation is analyzed for an infinite, homogeneous medium with Maxwellian neutron sources, using inelastic scattering cross sections derived in an appendix. Nonmagnetic inelastic scattering processes are neglected. The solution therefore still underestimates very cold neutron densities that should be achievable in a real medium. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated O2-clathrate hydrate. Other possibilities are dry O2-4He van der Waals clusters and O2 intercalated in fcc-C60. For conversion of cold to ultracold neutrons, where an incident neutron imparts only a single energy quantum to the medium, the paramagnetic scattering in the clathrate system is found to be stronger, by more than an order of magnitude, than the single-phonon emission in superfluid helium, when evaluated for an incident neutron spectrum with the optimum temperature for the respective medium. Moreover, the multistep paramagnetic cooling cascade leads to further strong enhancements of very cold neutron densities, e.g., by a factor 14 (57) for an initial neutron temperature of 30 K (100 K ), for the moderator held at about 1.3 K . Due to a favorable Bragg cutoff of the O2 clathrate, the cascade-cooling can take effect in a moderator with linear extensions smaller than a meter.

  10. Neutron Scintillators for Downscattered Neutron Imaging

    International Nuclear Information System (INIS)

    Images of neutron emission from Inertial Confinement Fusion (ICF) (D,T) targets reveal the internal structure of the target during the fusion burn. 14-MeV neutrons provide images which show the size and shape of the region where (D,T) fusion is most intense. Images based on ''downscattered'' neutrons with energies from 5 to 10 MeV emphasize the distribution of deuterium and tritium fuel within the compressed target. The downscattered images are difficult to record because the lower energy neutrons are detected with less efficiency than the much more intense pulse of 14-MeV neutrons which precedes them at the detector. The success of downscattered neutron imaging will depend on the scintillation decay times and the sensitivities to lower-energy neutrons of the scintillator materials that are used in the detectors. A time-correlated photon counting system measured the decay of neutron-induced scintillation for times as long as several hundred ns. Accelerators at the University of California, Berkeley, and the Lawrence Livermore National Laboratory provided stable 14-MeV neutron sources for the measurements. Measurements of scintillator decay characteristics indicate that some commercially available scintillators should be suitable for recording both 14-MeV and downscattered neutron images of compressed ICF targets

  11. The measurement of neutron energy response of the thin plastic scintillator using white neutron source

    International Nuclear Information System (INIS)

    At the HI-13 accelerator of CIAE, using D (d, n) break-up reaction,the experiment of neutron energy response of the thin plastic scintillator has been performed. The incident energy of D ions are three points of 9 MeV, 12 MeV, 14 MeV, and the neutron energy is between 0.75 MeV and 17 MeV. The intensity of neutron beam is measured by standard liquid scintillation detector at zero degree. The uncertainties of experimental results are discussed in detail. The experimental neutron response curves of the plastic scintillator show that the calculated energy response is in good agreement with the experimental data. (authors)

  12. Neutron capture cross section of Am241

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for En<12 eV were obtained using an R-matrix fit to the measured cross section. The results are compared with values from the ENDF/B-VII.0, Mughabghab, JENDL-3.3, and JEFF-3.1 evaluations. Γn neutron widths for the first three resonances are systematically larger by 5-15% than the ENDF/B-VII.0 values. The resonance integral above 0.5 eV was determined to be 1553±7 b. Cross sections in the resolved and unresolved energy regions above 12 eV were calculated using the Hauser-Feshbach theory incorporating the width-fluctuation correction of Moldauer. The calculated results agree well with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  13. Neutron source strength monitors for ITER

    International Nuclear Information System (INIS)

    There are several goals for the neutron source strength monitor system for the International Thermonuclear Experimental Reactor (ITER). Desired is a stable, reliable, time-dependent neutron detection system which exhibits a wide dynamic range and broad energy response to incident neutrons while being insensitive to gamma rays and having low noise characteristics in a harsh reactor environment. This system should be able to absolutely calibrated in-situ using various neutron sources. An array of proportional counters of varying sensitivities is proposed along with the most promising possible locations. One proposed location is in the pre-shields of the neutron camera collimators which would allow an integrated design of neutron systems with good detector access. As part of an ongoing conceptual design for this system, the detector-specific issues of dynamic range, performance monitoring, and sensitivity will be presented. The location options of the array will be discussed and most importantly, the calibration issues associated with a heavily shielded vessel will be presented

  14. Neutron source strength monitors for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.W. [Sandia National Labs., Albuquerque, NM (United States); Roquemore, A.L. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1996-05-07

    There are several goals for the neutron source strength monitor system for the International Thermonuclear Experimental Reactor (ITER). Desired is a stable, reliable, time-dependent neutron detection system which exhibits a wide dynamic range and broad energy response to incident neutrons while being insensitive to gamma rays and having low noise characteristics in a harsh reactor environment. This system should be able to absolutely calibrated in-situ using various neutron sources. An array of proportional counters of varying sensitivities is proposed along with the most promising possible locations. One proposed location is in the pre-shields of the neutron camera collimators which would allow an integrated design of neutron systems with good detector access. As part of an ongoing conceptual design for this system, the detector-specific issues of dynamic range, performance monitoring, and sensitivity will be presented. The location options of the array will be discussed and most importantly, the calibration issues associated with a heavily shielded vessel will be presented.

  15. Understanding inelastically scattered neutrons from water on a time-of-flight small-angle neutron scattering (SANS) instrument

    Energy Technology Data Exchange (ETDEWEB)

    Do, Changwoo, E-mail: doc1@ornl.gov [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Heller, William T.; Stanley, Christopher [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Gallmeier, Franz X. [Instrument and Source Design Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Doucet, Mathieu [Neutron Data Analysis and Visualization Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Smith, Gregory S. [Biology and Soft Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-02-11

    It is generally assumed by most of the small-angle neutron scattering (SANS) user community that a neutron's energy is unchanged during SANS measurements. Here, the scattering from water, specifically light water, was measured on the EQ-SANS instrument, a time-of-flight (TOF) SANS instrument located at the Spallation Neutron Source of Oak Ridge National Laboratory. A significant inelastic process was observed in the TOF spectra of neutrons scattered from water. Analysis of the TOF spectra from the sample showed that the scattered neutrons have energies consistent with room-temperature thermal energies (∼20 meV) regardless of the incident neutron's energy. With the aid of Monte Carlo particle transport simulations, we conclude that the thermalization process within the sample results in faster neutrons that arrive at the detector earlier than expected based on the incident neutron energies. This thermalization process impacts the measured SANS intensities in a manner that will ultimately be sample- and temperature-dependent, necessitating careful processing of the raw data into the SANS cross-section.

  16. Radiation incident in oil well logging

    International Nuclear Information System (INIS)

    On June 4th 1997 equipment failure and violation of approved procedures by a crew of workers initiated a series of events that resulted in the unnecessary exposure to neutron and gamma radiation, from a 666 GBq Am241Be source, of forty two workers from a well logging company in Venezuela. Due to the presence of dry mud or drilling fluids inside the logging tool, the nosepiece was screwed off the rest of the source holder; this piece was mistaken for the entire source holder thus leaving the source inside the tool. The tool was labelled for maintenance and electronic laboratory personal worked near the source for seven hours before they identify its presence. As soon as the incident was detected a contingency plan was implemented and the source could be retrieved from the tool and placed in its shipping container. The TLD badges indicate doses well below the annual limit of 20 mSv, and none of the workers involved in the incident seem to show serious health consequences from it. After the incident, in order to avoid the occurrence of similar situations, a better source and tool maintenance program was implemented, all the workers were re-trained, and area monitors were installed in all operations bases. (author)

  17. Incident users of antipsychotics

    DEFF Research Database (Denmark)

    Baandrup, Lone; Kruse, Marie

    2016-01-01

    PURPOSE: In Denmark, as well as in many other countries, consumption of antipsychotics is on the rise, partly due to increasing off-label use. The aim of this study was to analyze and quantify the extent of off-label use and polypharmacy in incident users of antipsychotic medication, and to exami....... As a consequence of the range of adverse effects associated with antipsychotic drug use, the documented widespread off-label prescribing practices warrant careful monitoring for adverse effects and prompt discontinuation in case of an unfavorable risk-benefit ratio.......PURPOSE: In Denmark, as well as in many other countries, consumption of antipsychotics is on the rise, partly due to increasing off-label use. The aim of this study was to analyze and quantify the extent of off-label use and polypharmacy in incident users of antipsychotic medication, and to examine...

  18. Neutron in biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10{sup 2} to 10{sup 3} times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  19. Broadband Neutron Interferometer

    CERN Document Server

    Pushin, Dmitry A; Hussey, Dan; Miao, Houxun; Arif, Muhammad; Cory, David G; Huber, Michael G; Jacobson, David; LaManna, Jacob; Parker, Joseph D; Shinohara, Taken; Ueno, Wakana; Wen, Han

    2016-01-01

    We demonstrate a two phase-grating, multi-beam neutron interferometer by using a modified Ronchi setup in a far-field regime. The functionality of the interferometer is based on the universal \\moire effect that was recently implemented for X-ray phase-contrast imaging in the far-field regime. Interference fringes were achieved with monochromatic, bichromatic, and polychromatic neutron beams; for both continuous and pulsed beams. This far-field neutron interferometry allows for the utilization of the full neutron flux for precise measurements of potential gradients, and expands neutron phase-contrast imaging techniques to more intense polycromatic neutron beams.

  20. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  1. Reactor neutron dosimetry

    International Nuclear Information System (INIS)

    An analysis of requirements and possibilities for experimental neutron spectrum determination during the reactor pressure vessel surveil lance programme is given. Fast neutron spectrum and neutron dose rate were measured in the Fast neutron irradiation facility of our TRIGA reactor. It was shown that the facility can be used for calibration of neutron dosimeters and for irradiation of samples sensitive to neutron radiation. The investigation of the unfolding algorithm ITER was continued. Based on this investigations are two specialized unfolding program packages ITERAD and ITERGS written this year. They are able to unfold data from activation detectors and NaI(T1) gamma spectrometer respectively

  2. Neutron streak camera

    Science.gov (United States)

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  3. Broad energy range neutron spectroscopy using a liquid scintillator and a proportional counter: Application to a neutron spectrum similar to that from an improvised nuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanping, E-mail: yx2132@cumc.columbia.edu; Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n){sup 3}He and D(d,n){sup 3}He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the {sup 9}Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  4. Broad energy range neutron spectroscopy using a liquid scintillator and a proportional counter: Application to a neutron spectrum similar to that from an improvised nuclear device

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-09-01

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  5. Incidence of dilated cardiomyopathy

    OpenAIRE

    Abelmann, Walter H.

    1985-01-01

    Full reliable data on the incidence and prevalence of dilated cardiomyopathy are not available. In the United States, at least 0.7% of cardiac deaths are attributable to cardiomyopathy. Dilated cardiomyopathy probably contributes the great majority of these cases. The mortality rate for cardiomyopathy in males is twice that of females, and for blacks it is 2.4 times that of whites. Cardiomyopathy was diagnosed in 0.67% of patients discharged from hospitals in 1979 with diagnoses of disease of...

  6. Neutron scattering and spallation neutron sources

    International Nuclear Information System (INIS)

    Neutron scattering as a probe of microscopic structure and dynamics is a powerful tool for research in a wide variety of fields, and an accelerator-based spallation neutron source can supply high flux pulses for neutron scattering. The characteristics of neutron scattering, the principle and development of spallation neutron sources, and their advantages in multidisciplinary applications are summarized. In the proposed project of the Chinese Spallation Neutron Source the target station will consist of a piece-stacked tungsten target, a Be/Fe reflector and an Fe/heavy concrete bio-protected shelter. The pulsed neutron flux will be up to 2.4 x 1016 n/cm2/s under a nuclear power of 100 kW. Five neutron scattering instruments--a high flux powder diffractometer, a high resolution powder diffractometer, small angle diffractometer, multi-functional reflectometer and direct geometry inelastic spectrometer, will be constructed as the first step to cover most neutron scattering applications. (authors)

  7. Contaminated Mexican steel incident

    International Nuclear Information System (INIS)

    This report documents the circumstances contributing to the inadvertent melting of cobalt 60 (Co-60) contaminated scrap metal in two Mexican steel foundries and the subsequent distribution of contaminated steel products into the United States. The report addresses mainly those actions taken by US Federal and state agencies to protect the US population from radiation risks associated with the incident. Mexico had much more serious radiation exposure and contamination problems to manage. The United States Government maintained a standing offer to provide technical and medical assistance to the Mexican Government. The report covers the tracing of the source to its origin, response actions to recover radioactive steel in the United States, and return of the contaminated materials to Mexico. The incident resulted in significant radiation exposures within Mexico, but no known significant exposure within the United States. Response to the incident required the combined efforts of the Nuclear Regulatory Commission (NRC), Department of Energy, Department of Transportation, Department of State, and US Customs Service (Department of Treasury) personnel at the Federal level and representatives of all 50 State Radiation Control Programs and, in some instances, local and county government personnel. The response also required a diplomatic interface with the Mexican Government and cooperation of numerous commercial establishments and members of the general public. The report describes the factual information associated with the event and may serve as information for subsequent recommendations and actions by the NRC. 8 figures

  8. Cancer incidence among waiters

    DEFF Research Database (Denmark)

    Reijula, Jere; Kjaerheim, Kristina; Lynge, Elsebeth;

    2015-01-01

    AIMS: To study cancer risk patterns among waiters in the Nordic countries. METHODS: We identified a cohort of 16,134 male and 81,838 female waiters from Denmark, Finland, Iceland, Norway and Sweden. During the follow-up period from 1961 to 2005, we found that 19,388 incident cancer cases were...... diagnosed. Standardised incidence ratio (SIR) was defined as the observed number of cancer cases divided by the expected number, based on national age, time period and gender-specific cancer incidence rates in the general population. RESULTS: The SIR of all cancers in waiters, in the five countries combined......, was 1.46 (95% CI 1.41-1.51) in men and 1.09 (1.07-1.11) in women. In male waiters, the SIR decreased from 1.79 (1.63-1.96) in 1961-1975, to 1.33 (1.26-1.40) in 1991-2005, but remained stable among women. The SIR among male waiters was highest for cancers in the pharynx (6.11; 95% CI 5.02-7.37), oral...

  9. Neutron anatomy

    International Nuclear Information System (INIS)

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone

  10. Neutron anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G.E. [Univ. of Sheffield (United Kingdom)

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  11. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Science.gov (United States)

    Neudecker, D.; Talou, P.; Kawano, T.; Kahler, A. C.; Rising, M. E.; White, M. C.

    2016-03-01

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  12. Evaluating the 239Pu Prompt Fission Neutron Spectrum Induced by Thermal to 30 MeV Neutrons

    Directory of Open Access Journals (Sweden)

    Neudecker D.

    2016-01-01

    Full Text Available We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. Selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  13. Integral measurements of neutron production in spallation targets

    International Nuclear Information System (INIS)

    Measurements of neutron production for thick iron, tungsten and lead targets of different diameter prototypic for spallation systems have been made at SATURNE in an incident proton energy range from 400 MeV to 2 GeV. TIERCE code system calculations are in good agreement with experiment for iron and large diameter tungsten and lead targets. They overestimate the measured neutron production for tungsten and lead targets for diameter ≤20 cm. (author)

  14. Characteristics of fabricated SiC radiation detectors for fast neutron detection

    International Nuclear Information System (INIS)

    Silicon carbide (SiC) is a promising material for neutron detection at harsh environments because of its capability to withstand strong radiation fields and high temperatures. Two PIN-type SiC semiconductor neutron detectors, which can be used for nuclear power plant (NPP) applications, such as in-core reactor neutron flux monitoring and measurement, were designed and fabricated. As a preliminary test, MCNPX simulations were performed to estimate reaction probabilities with respect to neutron energies. In the experiment, I-V curves were measured to confirm the diode characteristic of the detectors, and pulse height spectra were measured for neutron responses by using a 252Cf neutron source at KRISS (Korea Research Institute of Standards and Science), and a Tandem accelerator at KIGAM (Korea Institute of Geoscience and Mineral Resources). The neutron counts of the detector were linearly increased as the incident neutron flux got larger.

  15. A Micromegas Detector for Neutron Beam Imaging at the n_TOF Facility at CERN

    CERN Document Server

    Belloni, F; Berthoumieux, E; Calviani, M; Chiaveri, E; Colonna, N; Giomataris, Y; Guerrero, C; Gunsing, F; Iguaz, F J; Kebbiri, M; Pancin, J; Papaevangelou, T; Tsinganis, A; Vlachoudis, V; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Corté-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Marítnez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A J M; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T J; Žugec, P

    2014-01-01

    Micromegas (Micro-MEsh Gaseous Structure) detectors are gas detectors consisting of a stack of one ionization and one proportional chamber. A micromesh separates the two communicating regions, where two different electric fields establish respectively a charge drift and a charge multiplication regime. The n\\_TOF facility at CERN provides a white neutron beam (from thermal up to GeV neutrons) for neutron induced cross section measurements. These measurements need a perfect knowlodge of the incident neutron beam, in particular regarding its spatial profile. A position sensitive micromegas detector equipped with a B-10 based neutron/charged particle converter has been extensively used at the n\\_TOF facility for characterizing the neutron beam profile and extracting the beam interception factor for samples of different size. The boron converter allowed to scan the energy region of interest for neutron induced capture reactions as a function of the neutron energy, determined by the time of flight. Experimental ...

  16. Ten years of personal neutron dosimetry with albedo dosemeters in The Netherlands.

    Science.gov (United States)

    Draaisma, F S; Verhagen, H W

    2002-01-01

    Since 1987, the dosimetry service of the Netherlands Energy Research Foundation (ECN) has been certified by the Dutch government to perform personal dosimetry, using thermoluminescence dosemeters (TLDs). Performing neutron personal dosimetry requires a rather large investment in readers, TLDs and personnel to operate the service. About 800 persons are subjected to routine neutron monitoring in The Netherlands and their annual neutron doses are a relatively small fraction (less than 10%) of the annual Hp(10). In general, the measured neutron dose values are low (on average 93% of the users receive an annual neutron dose neutron) dose has tended to decrease since 1992, but incidentally high doses have been observed. Leaving these incidents out, the average collective annual neutron doses for the different users of neutron sources are about the same. PMID:12382755

  17. The Neutron Star Interior Composition Explorer (NICER)

    Science.gov (United States)

    Wilson-Hodge, Colleen A.; Gendreau, K.; Arzoumanian, Z.

    2014-01-01

    The Neutron Star Interior Composition Explorer (NICER) is an approved NASA Explorer Mission of Opportunity dedicated to the study of the extraordinary gravitational, electromagnetic, and nuclear-physics environments embodied by neutron stars. Scheduled to be launched in 2016 as an International Space Station payload, NICER will explore the exotic states of matter, using rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft (0.2-12 keV) X-ray band. Grazing-incidence "concentrator" optics coupled with silicon drift detectors, actively pointed for a full hemisphere of sky coverage, will provide photon-counting spectroscopy and timing registered to GPS time and position, with high throughput and relatively low background. The NICER project plans to implement a Guest Observer Program, which includes competitively selected user targets after the first year of flight operations. I will describe NICER and discuss ideas for potential Be/X-ray binary science.

  18. Application of SSNTD for neutron monitoring

    International Nuclear Information System (INIS)

    CR-39 is the most sensitive detector for neutron monitoring and dosimetry applications but its dose equivalent response is strongly direction dependent with respect to the incident neutrons. This is considered to be a major drawback for their use. In the present study, an attempt has been made to develop a pyramid shaped dosimeter, which consists of polyethylene material of thickness 1 mm with the provision to hold three CR-39 films at an angle of 35 deg to each other. The response of CR-39 in this configuration under optimum electrochemical etching at elevated temperature have been found nearly angular independent and can be used for neutron monitoring i.e. personnel as well as area monitoring. (author)

  19. Neutron color image intensifier

    International Nuclear Information System (INIS)

    Neutron radiography is expanding from the conventional reactor based imaging to the imaging by accelerator based pulsed neutron source. Among them, an expectation for image intensifier technology is increasing especially for video rate dynamic image detection or time dependent imaging in a pulsed neutron source. Based on the X-ray color image intensifier technology, Toshiba has developed neutron color image intensifiers as a powerful imaging tool for dynamic and time dependent neutron radiographics. In this paper, the construction and the feature of the developed neutron color image intensifier and some examples of neutron images are presented. I would be grateful if this paper helps for wide application of neutron color image intensifiers. (author)

  20. Neutron radiation capture

    International Nuclear Information System (INIS)

    For all stable and experimentally studied radionuclides evaluated data are presented on cross sections of thermal neutrons, on resonance integrals and medium neutron cross sections with energy of 30 KeV. Refs, figs and tabs

  1. Imaging with Scattered Neutrons

    OpenAIRE

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  2. Properties of neutron sources

    International Nuclear Information System (INIS)

    The Conference presentations were divided into sessions devoted to the following topics: white neutron sources, primarily pulsed (6 papers); fast neutron fields (5 papers); Californium-252 prompt fission neutron spectra (14 papers); monoenergetic sources and filtered beams (11 papers); 14 MeV neutron sources (10 papers); selected special application (one paper); and a general interest session (4 papers). Individual abstracts were prepared separately for the papers

  3. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  4. Medication incidents reported to an online incident reporting system.

    LENUS (Irish Health Repository)

    Alrwisan, Adel

    2011-01-15

    AIMS: Approximately 20% of deaths from adverse events are related to medication incidents, costing the NHS an additional £500 million annually. Less than 5% of adverse events are reported. This study aims to assess the reporting rate of medication incidents in NHS facilities in the north east of Scotland, and to describe the types and outcomes of reported incidents among different services. Furthermore, we wished to quantify the proportion of reported incidents according to the reporters\\' profession. METHODS: A retrospective description was made of medication incidents reported to an online reporting system (DATIX) over a 46-month-period (July 2005 to April 2009). Reports originated from acute and community hospitals, mental health, and primary care facilities. RESULTS: Over the study period there were 2,666 incidents reported with a mean monthly reporting rate of 78.2\\/month (SD±16.9). 6.1% of all incidents resulted in harm, with insulin being the most commonly implicated medication. Nearly three-quarters (74.2%, n=1,978) of total incidents originated from acute hospitals. Administration incidents were implicated in the majority of the reported medication incidents (59%), followed by prescribing (10.8%) and dispensing (9.9%), while the nondescript "other medication incidents" accounted for 20.3% of total incidents. The majority of reports were made by nursing and midwifery staff (80%), with medical and dental professionals reporting the lowest number of incidents (n=56, 2%). CONCLUSIONS: The majority of medication incidents in this study were reported by nursing and midwifery staff, and were due to administration incidents. There is a clear need to elucidate the reasons for the limited contribution of the medical and dental professionals to reporting medication incidents.

  5. Congestion with incidents

    DEFF Research Database (Denmark)

    Fosgerau, Mogens

    2010-01-01

    This paper considers the impact of random delays during a repeatedly occurring demand peak in a congested facility, such as an airport or an urban road. Congestion is described in the form of a dynamic queue using the Vickrey bottleneck model and assuming Nash equilibrium in departure times. Every...... period an incident may occur at a random time, temporarily reducing the bottleneck capacity to zero. The paper gives some properties of Nash equilibrium and the social optimum as well as a pretty good welfare improving tolling scheme....

  6. Scattering depth correction of evanescent waves in inelastic neutron scattering using a neutron prism

    International Nuclear Information System (INIS)

    Grazing Incidence Neutron Spin Echo Spectroscopy (GINSES) has recently been applied to measure the dynamics of surfactant membranes close to a hydrophilic silicon wall. The scattering depth of the evanescent wave inside the microemulsion depends strongly on the angle of incidence and the wavelength. The inherently low scattering intensity of GINSES measurements, however, requires the integration over a rather broad wavelength band. In particular, at a pulsed source the instrument operates with a broad wavelength band covering all neutrons within one frame between two pulses. In order to yield viable counting statistics it is highly desirable to integrate data corresponding to significant fractions of the wavelength band. Therefore, in a normal reflectometry setup the penetration length would be smeared and blur the depth dependence of the experimental results. Here we describe a new method to strongly mitigate this effect and show its application in a GINSES experiment at the neutron spin echo instrument at the Spallation Neutron Source (SNS). A prism in front of the sample was introduced in order to adapt the angle of the incoming beam according to the wavelength by this optical component. As an example an experiment on a bicontinuous microemulsion using these neutron optics is presented.

  7. Scattering depth correction of evanescent waves in inelastic neutron scattering using a neutron prism

    Energy Technology Data Exchange (ETDEWEB)

    Frielinghaus, H. [Juelich Centre for Neutron Science (JCNS), Outstation at FRM II, D-85747 Garching (Germany); Holderer, O., E-mail: o.holderer@fz-juelich.de [Juelich Centre for Neutron Science (JCNS), Outstation at FRM II, D-85747 Garching (Germany); Lipfert, F. [Juelich Centre for Neutron Science (JCNS), Outstation at FRM II, D-85747 Garching (Germany); Monkenbusch, M. [Juelich Centre for Neutron Science (JCNS) and Institute for Complex Systems, Forschungszentrum Juelich, D-52425 Juelich (Germany); Arend, N. [Juelich Centre for Neutron Science (JCNS), Outstation at SNS, Oak Ridge (United States); Richter, D. [Juelich Centre for Neutron Science (JCNS), Outstation at FRM II, D-85747 Garching (Germany); Juelich Centre for Neutron Science (JCNS) and Institute for Complex Systems, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2012-09-11

    Grazing Incidence Neutron Spin Echo Spectroscopy (GINSES) has recently been applied to measure the dynamics of surfactant membranes close to a hydrophilic silicon wall. The scattering depth of the evanescent wave inside the microemulsion depends strongly on the angle of incidence and the wavelength. The inherently low scattering intensity of GINSES measurements, however, requires the integration over a rather broad wavelength band. In particular, at a pulsed source the instrument operates with a broad wavelength band covering all neutrons within one frame between two pulses. In order to yield viable counting statistics it is highly desirable to integrate data corresponding to significant fractions of the wavelength band. Therefore, in a normal reflectometry setup the penetration length would be smeared and blur the depth dependence of the experimental results. Here we describe a new method to strongly mitigate this effect and show its application in a GINSES experiment at the neutron spin echo instrument at the Spallation Neutron Source (SNS). A prism in front of the sample was introduced in order to adapt the angle of the incoming beam according to the wavelength by this optical component. As an example an experiment on a bicontinuous microemulsion using these neutron optics is presented.

  8. Fundamental neutron physics

    International Nuclear Information System (INIS)

    Fundamental physics experiments of merit can be conducted at the proposed intense neutron sources. Areas of interest include: neutron particle properties, neutron wave properties, and fundamental physics utilizing reactor produced γ-rays. Such experiments require intense, full-time utilization of a beam station for periods ranging from several months to a year or more

  9. International Neutron Radiography Newsletter

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing...

  10. Thermal neutron beamline monitor

    International Nuclear Information System (INIS)

    A detector has been developed which has characteristics that make it suitable for use as a neutron beamline monitor on the Spallation Neutron Source. Efficiency has been reduced to 10-4, pulse pair resolution is 50 nSecs and it presents minimal obstruction to the neutron beam. (author)

  11. Polarized Neutron Scattering

    OpenAIRE

    Roessli, B.; Böni, P.

    2000-01-01

    The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.

  12. Use of ultracold neutrons for condensed-matter studies

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1997-05-01

    Ultracold neutrons have such low velocities that they are reflected by most materials at all incident angles and can be stored in material bottles for long periods of time during which their intrinsic properties can be studied in great detail. These features have been mainly used for fundamental-physics studies including the detection of a possible neutron electric dipole moment and the precise determination of neutron-decay properties. Ultracold neutrons can also play a role in condensed-matter studies with the help of high-resolution spectrometers that use gravity as a strongly dispersive medium for low-velocity neutrons. Such studies have so far been limited by the low intensity of existing ultracold-neutron sources but could be reconsidered with more intense sources, which are now envisaged. This report provides a broad survey of the properties of ultracold neutrons (including their reflectivity by different types of samples), of ultracold-neutron spectrometers that are compared with other high-resolution instruments, of results obtained in the field of condensed matter with these instruments, and of neutron microscopes. All these subjects are illustrated by numerous examples.

  13. Analytical modeling of thermoluminescent albedo detectors for neutron dosimetry.

    Science.gov (United States)

    Glickstein, S S

    1983-02-01

    In order to gain an in-depth understanding of the neutron physics of a 6LiF TLD when used as an albedo neutron dosimeter, an analytical model was developed to simulate the response of a 6LiF chip. The analytical model was used to examine the sensitivity of the albedo TLD response to incident monoenergetic neutrons and to evaluate a multiple chip TLD neutron dosimeter. Contrary to initial experimental studies, which were hampered by statistical uncertainties, the analytical evaluation revealed that a three-energy-group detector could not reliably measure the dose equivalent to personnel exposed to multiple neutron spectra. The analysis clearly illustrates that there may be order of magnitude errors in the measured neutron dose if the dosimeter has not been calibrated for the same flux spectrum to which it is exposed. As a result of this analysis, it was concluded that, for personnel neutron monitoring, a present TLD badge must be calibrated for the neutron spectrum into which the badge is to be introduced. The analytical model used in this study can readily be adopted for evaluating other possible detectors and shield material that might be proposed in the future as suitable for use in neutron dosimetry applications. PMID:6826377

  14. Upgrades to the Polarized Neutron Reflectometer Asterix at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, Roger

    2015-03-16

    We have upgraded the polarized neutron reflectometer, Asterix, at the Lujan Neutron Scattering Center at Los Alamos for the benefit of the research communities that study magnetic and complex-fluid films, both of which play important roles in support of the DOE’s energy mission. The upgrades to the instrument include: • A secondary spectrometer that was integrated with a Huber sample goniometer purchased with other funds just prior to the start of our project. The secondary spectrometer provides a flexible length for the scattered flight path, includes a mechanism to select among 3 alternative polarization analyzers as well as a support for new neutron detectors. Also included is an optic rail for reproducible positioning of components for Spin Echo Scattering Angle Measurement (SESAME). The entire secondary spectrometer is now non-magnetic, as required for neutron Larmor labeling. • A broad-band neutron polarizer for the incident neutron beam based on the V geometry. • A wide-angle neutron polarization analyzer • A 2d position-sensitive neutron detector • Electromagnetic coils (Wollaston prisms) for SESAME plus the associated power supplies, cooling, safety systems and integration into the data acquisition system. The upgrades allowed a nearly effortless transition between configurations required to serve the polarized neutron reflectometry community, users of the 11 T cryomagnet and users of SESAME.

  15. Experimental study of ultracold neutron production in pressurized superfluid helium

    CERN Document Server

    Schmidt-Wellenburg, P; Farhi, E; Fertl, M; Leung, K K H; Rahli, A; Soldner, T; Zimmer, O

    2015-01-01

    We have investigated experimentally the pressure dependence of the production of ultracold neutrons (UCN) in superfluid helium in the range from saturated vapor pressure to 20bar. A neutron velocity selector allowed the separation of underlying single-phonon and multiphonon pro- cesses by varying the incident cold neutron (CN) wavelength in the range from 3.5 to 10{\\AA}. The predicted pressure dependence of UCN production derived from inelastic neutron scattering data was confirmed for the single-phonon excitation. For multiphonon based UCN production we found no significant dependence on pressure whereas calculations from inelastic neutron scattering data predict an increase of 43(6)% at 20bar relative to saturated vapor pressure. From our data we conclude that applying pressure to superfluid helium does not increase the overall UCN production rate at a typical CN guide.

  16. The sensitivity of the UKAEA criticality dosimeter to slow neutrons

    International Nuclear Information System (INIS)

    Improvements have been made in the determination of the thermal and epithermal neutron sensitivity of the thick gold foil combination of the UKAEA personnel criticality dosimeter which is used to measure the neutron leakage spectra from critical assemblies and reactors. Calculations are presented to enable incident and reflected components of the thermal fluence and the epithermal fluence per unit lethargy interval to be derived from β-ray measurements from each gold foil surface. Gold foils and criticality dosimeters have been exposed to reference neutron fluence rates to verify the calibration, and the uncertainties of the method are described both for these reference exposures and for exposures in typical criticality conditions. (author)

  17. Neutron interaction and their transport with bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Esther Kalpana, E-mail: esther.kalpanarani@gmail.com [Department of Physics JNT University, Nachupally, Karimnagar, Telangana, 500055 (India); Radhika, K., E-mail: radhikanit@gmail.com [Department of Humanities and Applied Sciences, Talla Padmavathi College of Engineering, Warangal, Telangana, 506004 (India)

    2015-05-15

    In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.

  18. Review of neutron data: 10 to 40 MeV

    International Nuclear Information System (INIS)

    Neutron data are reviewed for incident neutron energies between 10 and 40 MeV. A census of the data shows that there are many gaps in this range and that the existing data are primarily for neutron energies around 14 MeV. Aside from total cross sections, there are few data between 10 and 13 MeV and between 15 and 40 MeV. Examples are presented to show the quality of selected data for total, elastic, inelastic, activation, and charged-particle and gamma-ray production cross sections. The spectra of emitted particles are also discussed

  19. Eikonal reaction theory for two-neutron removal reactions

    CERN Document Server

    Minomo, K; Egashira, K; Ogata, K; Yahiro, M

    2014-01-01

    The eikonal reaction theory (ERT) proposed lately is a method of calculating one-neutron removal reactions at intermediate incident energies in which Coulomb breakup is treated accurately with the continuum discretized coupled-channels method. ERT is extended to two-neutron removal reactions. ERT reproduces measured one- and two-neutron removal cross sections for 6He scattering on 12C and 208Pb targets at 240 MeV/nucleon and also on a 28Si target at 52 MeV/nucleon. For the heavier target in which Coulomb breakup is important, ERT yields much better agreement with the measured cross sections than the Glauber model.

  20. Spin dynamics in polarized neutron interferometry

    International Nuclear Information System (INIS)

    Since its first implementation in 1974, perfect crystal neutron interferometry has become an extremely successful method applicable to a variety of research fields. Moreover, it proved as an illustrative and didactically valuable experiment for the demonstration of the fundamental principles of quantum mechanics, the neutron being an almost ideal probe for the detection of various effects, as it interacts by all four forces of nature. For instance, the first experimental verification of the 4-pi-periodicity of spinor wave functions was performed with perfect crystal neutron interferometry, and it remains the only method known which demonstrates the quantum mechanical wave-particle-duality of massive particles at a macroscopic separation of the coherent matter waves of several centimeters. A particular position is taken herein by polarized neutron interferometry, which as a collective term comprises all techniques and experiments which not only aim at the coherent splitting and macroscopic separation of neutron beams in the interferometer with the purpose of their separate treatment, but which aim to do so with explicit employment of the spin-magnetic properties of the neutron as a fermion. Remarkable aspects may arise, for example, if nuclear and magnetic potentials are concurrently applied to a partial beam of the interferometer: among other results, it is found that - in perfect agreement to the theoretical predictions - the neutron beam leaving the interferometer features non-zero polarization, even if the incident neutron beam, and hence either of the partial beams, is unpolarized. The main emphasis of the present work lies on the development of an appropriate formalism that describes the effect of simultaneous occurrence of nuclear and magnetic interaction on the emerging intensity and polarization for an arbitrary number of sequential magnetic regions, so-called domains. The confrontation with subtle theoretical problems was inevitable during the experimental

  1. Studies of 54,56Fe Neutron Scattering Cross Sections

    Directory of Open Access Journals (Sweden)

    Hicks S. F.

    2015-01-01

    Full Text Available Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented.

  2. Measured and evaluated neutron cross sections of elemental bismuth

    International Nuclear Information System (INIS)

    Neutron total cross sections of elemental bismuth are measured with broad resolution from 1.2 to 4.5 MeV to accuracies of approx. = 1%. Neutron-differential-elastic-scattering cross sections of bismuth are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of approx.< 0.2 MeV over the scattered-neutron angular range approx. = 20 to 160 deg. Differential neutron cross sections for the excitation of observed states in bismuth at 895 +- 12, 1606 +- 14, 2590 +- 15, 2762 +- 29, 3022 +- 21, and 3144 +- 15 keV are determined at incident neutron energies up to 4.0 MeV. An optical-statistical model is deduced from the measured values. This model, the present experimental results, and information available elsewhere in the literature are used to construct a comprehensive evaluated nuclear data file for elemental bismuth in the ENDF format. The evaluated file is particularly suited to the neutronic needs of the fusion-fission hybrid designer. 87 references, 10 figures, 6 tables

  3. Advanced modeling of prompt fission neutrons and gamma rays

    International Nuclear Information System (INIS)

    Prompt fission neutrons and gamma rays are computed using a Monte Carlo treatment of the statistical evaporation of the excited primary fission fragments. The assumption of two fragments in thermal equilibrium at the time of neutron emission is addressed by studying the neutron multiplicity as a function of fragment mass. Results for the neutron-induced fission of 235U are discussed, for incident neutron energies from 0.5 to 5.5 MeV. Recent experimental data on the fission fragment yields as a function of mass and total kinetic energy are used as input data. Monte-Carlo calculations allow the exploration of physical observables beyond average quantities. A new parameter RT has been introduced: RT=Tl/Th where Tl and Th are the temperatures in the light and heavy fragments. The average neutron multiplicity computed as a function of the fragment mass agrees best with the experimental data (with En=5.5 MeV) when RT=1 which can be understood as follows: as the incident neutron energy increases, the role of shell effects diminishes and the ratio of collective energies stored in the light and heavy fragment tends toward 1

  4. IMPROVED COMPUTATIONAL CHARACTERIZATION OF THE THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    Energy Technology Data Exchange (ETDEWEB)

    Stuart R. Slattery; David W. Nigg; John D. Brockman; M. Frederick Hawthorne

    2010-05-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential for detailed dosimetric studies required for the anticipated research program.

  5. Neutron removal cross section as a measure of neutron skin

    OpenAIRE

    D. Q. Fang; Y. G. Ma; Cai, X. Z.(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China); Tian, W.D.; Wang, H. W.

    2010-01-01

    We study the relation between neutron removal cross section ($\\sigma_{-N}$) and neutron skin thickness for finite neutron rich nuclei using the statistical abrasion ablation (SAA) model. Different sizes of neutron skin are obtained by adjusting the diffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between $\\sigma_{-N}$ and the neutron skin thickness for neutron rich nuclei. Further analysis suggests that the relative increa...

  6. Critical Incidents in Internal Relationships

    OpenAIRE

    Voima, PÀivi

    2000-01-01

    Critical incidents have had an important role in service quality and service management research. The focus of critical-incident studies has gradually shifted from separate acts and episodes towards relationships, and even switching from one relationship to another. The Critical Incident Technique has mainly been used when studying the service sector, concentrating on the customer's perception of critical incidents. Although some studies have considered the perceptions of employees important,...

  7. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  8. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2012-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, the neutron polarization analyzer DNS, the neutron spin-echo spectrometer J-NSE, the small-angle neutron diffractometers KWS-1/-2, the very-small-angle neutron diffractometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  9. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  10. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, the neutron polarization analyzer DNS, the neutron spin-echo spectrometer J-NSE, the small-angle neutron diffractometers KWS-1/-2, the very-small-angle neutron diffractometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  11. Neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  12. Incident Management: Process into Practice

    Science.gov (United States)

    Isaac, Gayle; Moore, Brian

    2011-01-01

    Tornados, shootings, fires--these are emergencies that require fast action by school district personnel, but they are not the only incidents that require risk management. The authors have introduced the National Incident Management System (NIMS) and the Incident Command System (ICS) and assured that these systems can help educators plan for and…

  13. Racist Incident-Based Trauma

    Science.gov (United States)

    Bryant-Davis, Thema; Ocampo, Carlota

    2005-01-01

    Racist incidents are potentially traumatizing forms of victimization that may lead to increased psychiatric and psychophysiological symptoms in targets. The magnitude of the problem of racist incidents in the United States is difficult to estimate; however, data from several sources permit the inference that the prevalence of racist incidents,…

  14. Three-port beam splitter for slow neutrons using holographic nanoparticle-polymer composite diffraction gratings

    OpenAIRE

    Klepp, J.; Tomita, Y; Pruner, C.; Kohlbrecher, J.; Fally, M.

    2012-01-01

    Diffraction of slow neutrons by nanoparticle-polymer composite gratings has been observed. By carefully choosing grating parameters such as grating thickness and spacing, a three-port beam splitter operation for cold neutrons - splitting the incident neutron intensity equally into the plus-minus first and zeroth diffraction orders - was realized. As a possible application, a Zernike three-path interferometer is briefly discussed.

  15. Advances in neutron tomography

    Indian Academy of Sciences (India)

    W Treimer

    2008-11-01

    In the last decade neutron radiography (NR) and tomography (NCT) have experienced a number of improvements, due to the well-known properties of neutrons interacting with matter, i.e. the low attenuation by many materials, the strong attenuation by hydrogenous constituent in samples, the wavelength-dependent attenuation in the neighbourhood of Bragg edges and due to better 2D neutron detectors. So NR and NCT were improved by sophisticated techniques that are based on the attenuation of neutrons or on phase changes of the associated neutron waves if they pass through structured materials. Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works. Now one can present much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neutrons. Magnetic fields in different coils and in samples (superconductors) at low temperatures could be visualized. In this lecture a summary about standard signals (attenuation) and the more `sophisticated' imaging signals as refraction, small angle scattering and polarized neutrons will be given.

  16. A Monte Carlo simulation of ultra-cold neutron production by Bragg reflection from a moving single crystal

    International Nuclear Information System (INIS)

    A Monte Carlo simulation was performed of a 'Gedanken Experiment' where ultra-cold neutrons are produced by Bragg reflection from a moving mosaic single crystal. It is shown that ultra-cold neutrons can be obtained by using thermal or cold neutrons (in practice only the latter). The space and velocity distributions of the reflected neutrons are calculated and it is shown that the cross-section of the reflected ultra-cold neutron beam is of elliptical shape. The length of the minor axis of this ellipse has an upper limit determined by the mosaic spread of the moving crystal, and the length of the major axis increases with the ratio of the velocity of the incident neutrons to the velocity of the reflected neutrons. The proposed method of production of ultra-cold neutrons might be useful in cases where a beam of ultra-cold quasimonochromatic neutrons is required. (Auth.)

  17. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  18. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    Directory of Open Access Journals (Sweden)

    R. E. Phillips

    2013-07-01

    Full Text Available A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  19. Note on the elastic-scattering of few-MeV neutrons from elemental calcium

    International Nuclear Information System (INIS)

    Neutron differential-elastic-scattering cross sections of elemental calcium are measured from 0. Incident-neutron energy resolutions are approximately 50 to 100 keV. The experimental results are compared with values given in ENDF/B-V and are examined in the context of shielding applications. An optical potential is deduced from the measured values and its possible implications are discussed

  20. Statement of nuclear incidents

    International Nuclear Information System (INIS)

    Eight incidents were reported. Three mothers (two at BNFL's Sellafield Reprocessing Plant and one at Berkeley Nuclear Laboratories) had been contaminated and received more than the annual dose limit. At the Winfrith Atomic Energy Establishment, Cs124 and Cs137 had been washed off the outside of a flask onto the ground. At the BNFL Springfields works a discharge of a solution of natural uranium had occurred to the site foul drain. At the Drigg storage and disposal site a leak from a storage tank was reported. In the other three cases no radioactive release occurred. There was a loose coupling on a tiebar of a fuel stringer at Heysham-I reactor, water beneath a pipeline discharging from Harwell Laboratory was found not to be contaminated and at Dungeness-B a fuel assembly was dropped to the bottom of the reactor during refuelling. (UK)

  1. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  2. Nuclear astrophysics with neutrons

    Science.gov (United States)

    Dillmann, I.; Reifarth, R.

    2012-04-01

    Neutrons play a crucial role in astrophysics during the heavy element nucleosynthesis. The largest fraction of isotopes heavier than iron is produced by neutron capture processes on short (r process) and long timescales (s process). During the ``slow neutron capture process'' (s process) heavier elements are produced by successive captures of in-situ produced neutrons from the reactions 13C(α,n)16O and 22Ne(α,n)25Mg (with densities of 106-1010 cm-3) in the interior of stars and following β-decays. With this scenario the reaction path runs along the valley of stability up to 209Bi and produces about 50% of the solar abundances of the heavy elements. Important nuclear physics parameters for s-process nucleosynthesis are neutron capture cross sections (for En = 0.3-300 keV, corresponding to stellar temperatures between kT= 8 and 90 keV) and β-decay half-lives. Neutron capture measurements can be performed via activation in a quasi-stellar neutron spectrum utilizing several (p,n) reactions, or by the time-of-flight technique. The ``rapid neutron capture process'' (r process) is responsible for the remaining 50% of the solar abundances. Here neutrons with densities of 1020-1030 cm-3 are captured on a very fast timescale (ms) during a Core Collapse Supernova in a region close to the forming neutron star. The r-process nuclei are thus very short-lived, neutron-rich isotopes up to the actinides, which can only be produced and investigated at large-scale radioactive-beam facilities. Here the most important nuclear physics parameters are masses, half-lives, and at later stages also β-delayed neutrons. This paper will summarize the role of neutrons in nuclear astrophysics and give a short overview about the related astrophysics programs at the GSI Helmholtz research center and the FRANZ facility in Germany.

  3. A novel laser-collider used to produce monoenergetic 13.3 MeV (7)Li (d, n) neutrons.

    Science.gov (United States)

    Zhao, J R; Zhang, X P; Yuan, D W; Li, Y T; Li, D Z; Rhee, Y J; Zhang, Z; Li, F; Zhu, B J; Li, Yan F; Han, B; Liu, C; Ma, Y; Li, Yi F; Tao, M Z; Li, M H; Guo, X; Huang, X G; Fu, S Z; Zhu, J Q; Zhao, G; Chen, L M; Fu, C B; Zhang, J

    2016-01-01

    Neutron energy is directly correlated with the energy of the incident ions in experiments involving laser-driven nuclear reactions. Using high-energy incident ions reduces the energy concentration of the generated neutrons. A novel "laser-collider" method was used at the Shenguang II laser facility to produce monoenergetic neutrons via (7)Li (d, n) nuclear reactions. The specially designed K-shaped target significantly increased the numbers of incident d and Li ions at the keV level. Ultimately, 13.3 MeV neutrons were obtained. Considering the time resolution of the neutron detector, we demonstrated that the produced neutrons were monoenergetic. Interferometry and a Multi hydro-dynamics simulation confirmed the monoenergetic nature of these neutrons. PMID:27250660

  4. A novel laser-collider used to produce monoenergetic 13.3 MeV 7Li (d, n) neutrons

    Science.gov (United States)

    Zhao, J. R.; Zhang, X. P.; Yuan, D. W.; Li, Y. T.; Li, D. Z.; Rhee, Y. J.; Zhang, Z.; Li, F.; Zhu, B. J.; Li, Yan F.; Han, B.; Liu, C.; Ma, Y.; Li, Yi F.; Tao, M. Z.; Li, M. H.; Guo, X.; Huang, X. G.; Fu, S. Z.; Zhu, J. Q.; Zhao, G.; Chen, L. M.; Fu, C. B.; Zhang, J.

    2016-01-01

    Neutron energy is directly correlated with the energy of the incident ions in experiments involving laser-driven nuclear reactions. Using high-energy incident ions reduces the energy concentration of the generated neutrons. A novel “laser-collider” method was used at the Shenguang II laser facility to produce monoenergetic neutrons via 7Li (d, n) nuclear reactions. The specially designed K-shaped target significantly increased the numbers of incident d and Li ions at the keV level. Ultimately, 13.3 MeV neutrons were obtained. Considering the time resolution of the neutron detector, we demonstrated that the produced neutrons were monoenergetic. Interferometry and a Multi hydro-dynamics simulation confirmed the monoenergetic nature of these neutrons. PMID:27250660

  5. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    Science.gov (United States)

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  6. Parametric analysis of neutron streaming through major penetrations in the 0.914 m TFTR test cell floor

    International Nuclear Information System (INIS)

    Neutron streaming through penetrations in the 0.914 m TFTR test cell floor has two distinct features: (1) the oblique angle of incidence; and (2) the high order of anisotropy in the angular distribution for incident neutrons with energies > 10 keV. The effects of these features on the neutron streaming into the TFTR basement were studied parametrically for isolated penetrations. Variations with respect to the source energies, angular distributions, and sizes of the penetrations were made. The results form a data base from which the spatial distribution of the neutron flux in the basement due to multiple penetrations may be evaluated

  7. Pulsed neutron porosity logging system

    International Nuclear Information System (INIS)

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  8. Focusing cold neutrons using capillary optics for analytical nuclear methods

    International Nuclear Information System (INIS)

    The authors demonstrate improved detection limits and lateral resolution for prompt gamma activation analysis (PGAA) by using a neutron focusing device to increase the neutron intensity. The neutron lens, made of glass fibers with hollow polycapillaries, was designed and constructed by X-Ray Optical Systems, Inc. It has been characterized and used for preliminary experiments at the PGAA station of the Cold Neutron Research Facility (CNRF) at NIST. The lens accepts a polychromatic cold neutron beam (wavelengths longer than 0.4 run) from a neutron guide 50 mm x 45 mm in cross section, and delivers a focused beam of 0.5 mm in diameter (full width at half maximum) at 52 mm from the exit of the capillaries. The average neutron current density at the focus within the FWHM is 80 times higher than that of the direct incident beam. Test samples of 2% gadolinium glass particles of size about 0.1 to 0.2 mm, and cylindrical glass samples of 0.5 mm and 1 mm in diameter containing 15 % boron have been scanned across the focal plane to determine the spatial response as well as the peak count rate. Results from both sets of measurements show promise for higher detection sensitivity on small samples, and for two-dimensional mapping of samples with lateral compositional variation. Problems associated with neutron background will be addressed

  9. Predicted performance of neutron spectrometers using scintillating fibers

    International Nuclear Information System (INIS)

    A variety of needs exists for knowing the energy spectral content of a neutron flux. Among these needs are arms-control and national-security applications, which arise because different neutron sources produce different neutron energy spectra. This work is primarily directed at these applications. The concept described herein is a spectrometer in the same sense as a Bonner sphere. The instrument response reflects a statistical average of the energy spectrum. The Bonner sphere is an early rendition of this class. In this, a neutron detector is placed at the center of a moderating (and absorbing) sphere (of varying thickness and composition). Spectral unfolding is required, and the resolution and efficiency are, typically, poor, although the potential bandwidth is very large. A recent variation on the Bonner-sphere approach uses 3He gas proportional counters with resistive wires to locate the position of the event (Toyokawa et al 1996). The spectrometer concept investigated here has the potential for better resolution and much improved neutron efficiency compared to Bonner spheres and similar devices. These improvements are possible because of the development of neutron-sensitive, scintillating-glass fibers. These fibers can be precisely located in space, which allows a corresponding precision in energy resolution. Also, they can be fabricated into arrays that intercept a large fraction of incident thermal neutrons, providing the improvement in neutron economy

  10. Neutron chopper development at LANSCE

    International Nuclear Information System (INIS)

    Progress is reported on neutron chopper systems for the Los Alamos Neutron Scattering Center pulsed spallation neutron source. This includes the development of 600+ Hz active magnetic bearing neutron chopper and a high speed control system designed to operate with the Proton Storage Ring to phase the chopper to the neutron source. 5 refs., 3 figs

  11. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  12. Neutron radiography using neutron imaging plate.

    Science.gov (United States)

    Chankow, Nares; Punnachaiya, Suvit; Wonglee, Sarinrat

    2010-01-01

    The aims of this research are to study properties of a neutron imaging plate (NIP) and to test it for use in nondestructive testing (NDT) of materials. The experiments were carried out by using a BAS-ND 2040 Fuji NIP and a neutron beam from the Thai Research Reactor TRR-1/M1. The neutron intensity and Cd ratio at the specimen position were approximately 9x10(5) ns/cm(2) s and 100 respectively. It was found that the photostimulated luminescence (PSL) readout of the imaging plate was directly proportional to the exposure time and approximately 40 times faster than the conventional NR using Gd converter screen/X-ray film technique. The sensitivities of the imaging plate to slow neutron and to Ir-192 gamma-rays were found to be approximately 4.2x10(-3) PSL/mm(2) per neutron and 6.7x10(-5) PSL/mm(2) per gamma-ray photon respectively. Finally, some specimens containing light elements were selected to be radiographed with neutrons using the NIP and the Gd converter screen/X-ray film technique. The image quality obtained from the two recording media was found to be comparable. PMID:19828321

  13. Cancer incidence among firefighters

    DEFF Research Database (Denmark)

    Pukkala, Eero; Martinsen, Jan Ivar; Weiderpass, Elisabete;

    2014-01-01

    OBJECTIVES: Firefighters are potentially exposed to a wide range of known and suspected carcinogens through their work. The objectives of this study were to examine the patterns of cancer among Nordic firefighters, and to compare them with the results from previous studies. METHODS: Data for this......OBJECTIVES: Firefighters are potentially exposed to a wide range of known and suspected carcinogens through their work. The objectives of this study were to examine the patterns of cancer among Nordic firefighters, and to compare them with the results from previous studies. METHODS: Data...... for this study were drawn from a linkage between the census data for 15 million people from the five Nordic countries and their cancer registries for the period 1961-2005. SIR analyses were conducted with the cancer incidence rates for the entire national study populations used as reference rates. RESULTS......: A total of 16 422 male firefighters were included in the final cohort. A moderate excess risk was seen for all cancer sites combined, (SIR=1.06, 95% CI 1.02 to 1.11). There were statistically significant excesses in the age category of 30-49 years in prostate cancer (SIR=2.59, 95% CI 1.34 to 4...

  14. Delay Adjusted Incidence Infographic

    Science.gov (United States)

    This Infographic shows the National Cancer Institute SEER Incidence Trends. The graphs show the Average Annual Percent Change (AAPC) 2002-2011. For Men, Thyroid: 5.3*,Liver & IBD: 3.6*, Melanoma: 2.3*, Kidney: 2.0*, Myeloma: 1.9*, Pancreas: 1.2*, Leukemia: 0.9*, Oral Cavity: 0.5, Non-Hodgkin Lymphoma: 0.3*, Esophagus: -0.1, Brain & ONS: -0.2*, Bladder: -0.6*, All Sites: -1.1*, Stomach: -1.7*, Larynx: -1.9*, Prostate: -2.1*, Lung & Bronchus: -2.4*, and Colon & Rectum: -3/0*. For Women, Thyroid: 5.8*, Liver & IBD: 2.9*, Myeloma: 1.8*, Kidney: 1.6*, Melanoma: 1.5, Corpus & Uterus: 1.3*, Pancreas: 1.1*, Leukemia: 0.6*, Brain & ONS: 0, Non-Hodgkin Lymphoma: -0.1, All Sites: -0.1, Breast: -0.3, Stomach: -0.7*, Oral Cavity: -0.7*, Bladder: -0.9*, Ovary: -0.9*, Lung & Bronchus: -1.0*, Cervix: -2.4*, and Colon & Rectum: -2.7*. * AAPC is significantly different from zero (p<.05). Rates were adjusted for reporting delay in the registry. www.cancer.gov Source: Special section of the Annual Report to the Nation on the Status of Cancer, 1975-2011.

  15. Measurement of double-differential neutron emission cross sections of 238U, 232Th and 12C for 18 MeV neutrons

    International Nuclear Information System (INIS)

    Double-differential neutron emission cross sections of 238U, 232Th and 12C have been measured for 18-MeV incident neutrons using the neutron time-of-flight technique and Tohoku University 4.5MV Dynamitron accelerator as a pulsed neutron generator. In the experiment, energy resolution of the spectrometer was improved by employing a newly developed post-acceleration beam-chopper and by adjustment of timing property of the neutron detector. Measurements were made at laboratory angles between 30- and 145- deg., and data were obtained for secondary neutrons between 0.8 and 18 MeV. In the data processing, a care was taken for the data correction for the effects of parasitic neutrons associated with primary neutrons; the correction proved to be of special importance in the present measurement. We compared the data obtained in the present experiment with the evaluated data, JENDL-3 and ENDF/B-IV (B-V for 12C), and discussed the origin of the discrepancies. The anisotropy observed for secondary neutrons from 238U and 232Th was found to be reproduced by Kalbach-Mann systematics on the assumption of isotropy of fission neutrons. The experimental results for 12C showed marked discrepancies concerning the scattering cross sections and neutron spectrum in the continuum region. (author)

  16. Neutron scattering and models: molybdenum

    International Nuclear Information System (INIS)

    A comprehensive interpretation of the fast-neutron interaction with elemental and isotopic molybdenum at energies of le 30 MeV is given. New experimental elemental-scattering information over the incident energy range 4.5 rarrow 10 MeV is presented. Spherical, vibrational and dispersive models are deduced and discussed, including isospin, energy-dependent and mass effects. The vibrational models are consistent with the ''Lane potential''. The importance of dispersion effects is noted. Dichotomies that exist in the literature are removed. The models are vehicles for fundamental physical investigations and for the provision of data for applied purposes. A ''regional'' molybdenum model is proposed. Finally, recommendations for future work are made

  17. Biological effects of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ogiu, Toshiaki; Ohmachi, Yasushi; Ishida, Yuka [National Inst. of Radiological Sciences, Chiba (JP)] [and others

    2003-03-01

    Although the occasion to be exposed to neutrons is rare in our life, except for nuclear accidents like in the critical accident at Tokai-mura in 1999, countermeasures against accident should be always prepared. In the Tokai-mura accident, residents received less than 21 mSv of neutrons and gamma rays. The cancer risks and fetal effects of low doses of neutrons were matters of concern among residents. The purpose of this program is to investigate the relative biological effectiveness (RBE) for leukemias, and thereby to assess risks of neutrons. Animal experiments are planed to obtain the following RBEs: (1) RBE for the induction of leukemias in mice and (2) RBE for effects on fetuses. Cyclotron fast neutrons (10 MeV) and electrostatic accelerator-derived neutrons (2 MeV) are used for exposure in this program. Furthermore, cytological and cytogenetic analyses will be performed. (author)

  18. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  19. Neutron sources and applications

    International Nuclear Information System (INIS)

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications

  20. Resonance neutron radiography

    International Nuclear Information System (INIS)

    The production of images by the use of neutrons having energies in the resonance region is described. Two-dimensional position-sensitive neutron detectors are used to produce transmission images using neutron time-of-flight techniques at the National Bureau of Standards' electron linac facility. Two types of detectors are described. The first is a crossed-wire proportional counter using 3He as the neutron-sensitive component. The second type utilizes a multichannel plate electron multiplier and a resistive anode readout. A lithium glass scintillator is the neutron-sensitive component in the latter detector. Resonance neutron radiography, using these detectors, has the capability of producing images with isotopic and chemical element discrimination in a complex matrix with a resolution of 1 mm or better. (Auth.)

  1. Designing a new type of neutron detector for neutron and gamma-ray discrimination via GEANT4.

    Science.gov (United States)

    Shan, Qing; Chu, Shengnan; Ling, Yongsheng; Cai, Pingkun; Jia, Wenbao

    2016-04-01

    Design of a new type of neutron detector, consisting of a fast neutron converter, plastic scintillator, and Cherenkov detector, to discriminate 14-MeV fast neutrons and gamma rays in a pulsed n-γ mixed field and monitor their neutron fluxes is reported in this study. Both neutrons and gamma rays can produce fluorescence in the scintillator when they are incident on the detector. However, only the secondary charged particles of the gamma rays can produce Cherenkov light in the Cherenkov detector. The neutron and gamma-ray fluxes can be calculated by measuring the fluorescence and Cherenkov light. The GEANT4 Monte Carlo simulation toolkit is used to simulate the whole process occurring in the detector, whose optimum parameters are known. Analysis of the simulation results leads to a calculation method of neutron flux. This method is verified by calculating the neutron fluxes using pulsed n-γ mixed fields with different n/γ ratios, and the results show that the relative errors of all calculations are <5%. PMID:26844541

  2. The DIORAMA Neutron Emitter

    Energy Technology Data Exchange (ETDEWEB)

    Terry, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  3. Broadband Neutron Interferometer

    OpenAIRE

    Pushin, Dmitry A.; Sarenac, Dusan; Hussey, Dan; Miao, Houxun; Arif, Muhammad; Cory, David G.; Huber, Michael G.; Jacobson, David; LaManna, Jacob; Parker, Joseph D.; Shinohara, Taken; Ueno, Wakana; Wen, Han

    2016-01-01

    We demonstrate a two phase-grating, multi-beam neutron interferometer by using a modified Ronchi setup in a far-field regime. The functionality of the interferometer is based on the universal \\moire effect that was recently implemented for X-ray phase-contrast imaging in the far-field regime. Interference fringes were achieved with monochromatic, bichromatic, and polychromatic neutron beams; for both continuous and pulsed beams. This far-field neutron interferometry allows for the utilization...

  4. Polysiloxane based neutron detectors

    OpenAIRE

    Dalla Palma, Matteo

    2016-01-01

    In the last decade, neutron detection has been attracting the attention of the scientific community for different reasons. On one side, the increase in the price of 3He, employed in the most efficient and the most widely used neutron detectors. On the other side, the harmfulness of traditional xylene based liquid scintillators, used in extremely large volumes for the detection of fast neutrons. Finally, the demand for most compact and rough systems pushed by the increased popularity of neutro...

  5. An empirical fit to estimated neutron emission cross sections from proton induced reactions

    Indian Academy of Sciences (India)

    Moumita Maiti; Maitreyee Nandy; S N Roy; P K Sarkar

    2003-01-01

    Neutron emission cross section for various elements from 9Be to 209Bi have been calculated using the hybrid model code ALICE-91 for proton induced reactions in the energy range 25 MeV to 105 MeV. An empirical expression relating neutron emission cross section to target mass number and incident proton energy has been obtained. The simple expression reduces the computation time significantly. The trend in the variation of neutron emission cross sections with respect to the target mass number and incident proton energy has been discussed within the framework of the model used.

  6. Quasi-specular albedo of cold neutrons from powder of nanoparticles

    CERN Document Server

    Cubitt, R; Muzychka, A Yu; Nekhaev, G V; Nesvizhevsky, V V; Pignol, G; Protasov, K V; Strelkov, A V

    2009-01-01

    We predicted and observed for the first time the quasi-specular albedo of cold neutrons at small incidence angles from a powder of nanoparticles. This albedo (reflection) is due to multiple neutron small-angle scattering. The reflection angle as well as the half-width of angular distribution of reflected neutrons is approximately equal to the incidence angle. The measured reflection probability was equal to ~30% within the detector angular size that corresponds to 40-50% total calculated probability of quasi-specular reflection.

  7. Eurados trial performance test for neutron personal dosimetry

    DEFF Research Database (Denmark)

    Bordy, J.M.; Stadtmann, H.; Ambrosi, P.;

    2001-01-01

    measured, but particular problems were noted in the determination of intermediate energy fields and large incident angles, demonstrating the difficulties of neutron personal dosimetry. Of particular concern from a radiological protection point of view was the large number of results underestimating...... personal dose equivalent. A considerable over-response was noted in a few cases....

  8. Neutron scattering. Experiment manuals

    International Nuclear Information System (INIS)

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  9. Neutron powder diffraction

    International Nuclear Information System (INIS)

    Neutron powder diffraction is a powerful technique that provides a detailed description of moderately complex crystal structures. This is nowhere more apparent than in the area of high temperature superconductors where neutron powder diffraction has provided precise structural and magnetic information, not only under ambient conditions but also at high and low temperatures and high pressures. Outside superconductor research, the variety of materials studied by neutron powder diffraction is equally impressive including zeolites, fast ionic conductors, permanent magnets and materials undergoing phase transitions. Recent advances that include high resolution studies and real-time crystallography are presented. Future possibilities of neutron powder diffraction are discussed

  10. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  11. Neutron structural biology

    International Nuclear Information System (INIS)

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  12. Neutrons in biology

    International Nuclear Information System (INIS)

    The start of JRR-3M in 1990 was a great epoch to the neutron scattering research in Japan. Abundant neutron beam generated by the JRR-3M made it possible to widen the research field of neutron scattering in Japan. In the early days of neutron scattering, biological materials were too difficult object to be studied by neutrons not only because of their complexity but also because of the strong incoherent scattering by hydrogen. However, the remarkable development of the recent neutron scattering and its related sciences, as well as the availability of higher flux, has made the biological materials one of the most attractive subjects to be studied by neutrons. In early September 1992, an intensive workshop titled 'Neutrons in Biology' was held in Hitachi City by making use of the opportunity of the 4th International Conference on Biophysics and Synchrotron Radiation (BSR92) held in Tsukuba. The workshop was organized by volunteers who are eager to develop the researches in this field in Japan. Numbers of outstanding neutron scattering biologists from U.S., Europe and Asian countries met together and enthusiastic discussions were held all day long. The editors believe that the presentations at the workshop were so invaluable that it is absolutely adequate to put them on record as an issue of JAERI-M and to make them available for scientists to refer to in order to further promote the research in the future. (author)

  13. Neutron visual sensing technique

    International Nuclear Information System (INIS)

    The neutron visual sensing technique is a technology to extract physical quantities from the information on inner structures of complex materials or machineries which have been visualized and recorded by using neutron beams. Research and utilization of this technique is now under worldwide development since it can provide the information that is not possible by X-ray radiography. We show how to use stationary neutron sources (Research reactors) in chapter 2, and how to utilize pulsed neutron source (Japan Proton Accelerator Complex, J-PARC). Also the production of micro-element analyzer by an enterprise using the knowledge on radiological equipment is described as an example. (author)

  14. A neutron prism

    International Nuclear Information System (INIS)

    A neutron detector with an energy and time resolution makes it possible to realize a new type of a scattering instrument. Such kind of detector can be developed by combining the neutron refractive device (neutron prism) and position-sensitive-detector (PSD) with a time resolution. As the neutron refractive device, two candidates are considered; a compound refractive device and magnetic field gradient. In former case, suitable choice of material and design of the refractive device overcomes a problem of neutron absorption and weak refraction due to material. On the other hand, the magnetic field gradient has an advantage that it has a large refraction and zero neutron absorption comparing with the compound refractive device. A refractive device has been developed with suitable material and design for neutron optics and a quadrupole magnet with permanent magnets in which a constant field gradient is realized. In this paper, the construction and performance of the energy and time resoluble detectors using the neutron refractive devices are described and their application to a neutron scattering experiment is discussed. (author)

  15. Effect of wall thickness on measurement of dose for high energy neutrons.

    Science.gov (United States)

    Perez-Nunez, Delia; Braby, Leslie A

    2010-01-01

    Neutrons produced from the interaction between galactic cosmic rays and spacecraft materials are responsible for a very important portion of the dose received by astronauts. The neutron energy spectrum depends on the incident charged particle spectrum and the scattering environment but generally extends to beyond 100 MeV. Tissue-equivalent proportional counters (TEPC) are used to measure the dose during the space mission, but their weight and size are very important factors for their design and construction. To achieve ideal neutron dosimetry, the wall thickness should be at least the range of a proton having the maximum energy of the neutrons to be monitored. This proton range is 0.1 cm for 10 MeV neutrons and 7.6 cm for 100 MeV neutrons. A 7.6 cm wall thickness TEPC would provide charged particle equilibrium (CPE) for neutrons up to 100 MeV, but for space applications it would not be reasonable in terms of weight and size. In order to estimate the errors in measured dose due to absence of CPE, MCNPX simulations of energy deposited by 10 MeV and 100 MeV neutrons in sites with wall thickness between 0.1 cm and 8.5 cm were performed. The results for 100 MeV neutrons show that energy deposition per incident neutron approaches a plateau as the wall thickness approaches 7.6 cm. For the 10 MeV neutrons, energy deposition per incident neutron decreases as the wall thickness increases above 0.1 cm due to attenuation. PMID:19959949

  16. Neutron Stars: Formation and Structure

    OpenAIRE

    Kutschera, Marek

    1998-01-01

    A short introduction is given to astrophysics of neutron stars and to physics of dense matter in neutron stars. Observed properties of astrophysical objects containing neutron stars are discussed. Current scenarios regarding formation and evolution of neutron stars in those objects are presented. Physical principles governing the internal structure of neutron stars are considered with special emphasis on the possible spin ordering in the neutron star matter.

  17. Multi-modal calculations of prompt fission neutrons from 238U(n, f) at low induced energy

    Institute of Scientific and Technical Information of China (English)

    ZHENG Na; ZHONG Chun-Lai; FAN Tie-Shuan

    2011-01-01

    Properties of prompt fission neutrons from 238U(n,f) are calculated for incident neutron energies below 6 MeV using the multi-modal model,including the prompt fission neutron spectrum,the average prompt fission neutron multiplicity,and the prompt fission neutron multiplicity as a function of the fission fragment mass v(A) (usually named “sawtooth” data) The three most dominant fission modes are taken into account.The model parameters are determined on the basis of experimental fission fragment data.The predicted results are in good agreement with the experimental data.

  18. Neutron optics requirements for neutron imaging techniques

    International Nuclear Information System (INIS)

    The utilization of X-rays for material research is common in many respects since their discovery at the end of the 19th century. New sources as electron synchrotrons or free-electron lasers push the methodology and the application ranges further. A similar approach started 50 years later with neutrons when sources with reasonable high intensity became available. Today, there are many similarities and complementarities visible between X-ray and neutron studies and the involved techniques. Therefore, it is worth to compare and to adapt from the advanced X-ray techniques and to translate it into the neutron world. Despite of the lack of neutron intensities compared to the most brilliant X-ray beams, the specific properties of neutrons (contrast, spin, magnetic moment, penetration power) are utilized and they will further play an important role in non-invasive studies on the micro- and macro scale. This paper wants to encourage to 'look over the fence' into activities of the X-ray community as currently running in the COST action MP-1203.

  19. Neutron monitoring for radiological protection

    International Nuclear Information System (INIS)

    Neutron monitoring is a subject of increasing general interest and considerable attention is being paid to the development of improved techniques and methods for neutron monitoring. The Agency, therefore, considered it important to prepare a guide on the subject of neutron monitoring for radiation protection purposes. The present Manual is intended for those persons or authorities in Member States, particularly developing countries, who are responsible for the organization of neutron monitoring programmes and practical neutron monitoring. This Manual consequently, deals with topics such as neutron dosimetry, sources of neutrons and neutron detection as well as field instruments and operational systems used in this context

  20. Comparison of DD, DT and Cf-252 neutron excitation of light and medium mass nuclei for field PGNAA applications

    Energy Technology Data Exchange (ETDEWEB)

    Seabury, E.H. [Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 8341-3840 (United States)]. E-mail: Edward.Seabury@inl.gov; Blackburn, B.W. [Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 8341-3840 (United States); Chichester, D.L. [Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 8341-3840 (United States); Wharton, C.J. [Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 8341-3840 (United States); Caffrey, A.J. [Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 8341-3840 (United States)

    2007-08-15

    Prompt Gamma Ray Neutron activation analysis can offer significant cost and safety advantages in the identification of explosives and toxic chemicals. As an example, the US military examined over a thousand suspect chemical munitions with Idaho National Laboratory's PINS Chemical Assay System last year. PGNAA requires, of course, a neutron source to excite the atomic nuclei of the item under test via neutron capture and inelastic neutron scattering reactions and the choice of neutron source can drastically affect PGNAA system performance. We have carried out Monte Carlo and laboratory experiments comparing DD, DT and Cf-252 neutrons incident on light and medium mass chemical elements, toward optimizing the design of future neutron-generator-based PGNAA systems for field use. We report the excitation of (n, {gamma}) and (n, n') gamma rays from these elements by each type of neutron source.

  1. Comparison of DD, DT and Cf-252 neutron excitation of light and medium mass nuclei for field PGNAA applications

    International Nuclear Information System (INIS)

    Prompt Gamma Ray Neutron activation analysis can offer significant cost and safety advantages in the identification of explosives and toxic chemicals. As an example, the US military examined over a thousand suspect chemical munitions with Idaho National Laboratory's PINS Chemical Assay System last year. PGNAA requires, of course, a neutron source to excite the atomic nuclei of the item under test via neutron capture and inelastic neutron scattering reactions and the choice of neutron source can drastically affect PGNAA system performance. We have carried out Monte Carlo and laboratory experiments comparing DD, DT and Cf-252 neutrons incident on light and medium mass chemical elements, toward optimizing the design of future neutron-generator-based PGNAA systems for field use. We report the excitation of (n, γ) and (n, n') gamma rays from these elements by each type of neutron source

  2. Comparison of DD, DT and Cf-252 neutron excitation of light and medium mass nuclei for field PGNAA applications

    Science.gov (United States)

    Seabury, E. H.; Blackburn, B. W.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2007-08-01

    Prompt Gamma Ray Neutron activation analysis can offer significant cost and safety advantages in the identification of explosives and toxic chemicals. As an example, the US military examined over a thousand suspect chemical munitions with Idaho National Laboratory's PINS Chemical Assay System last year. PGNAA requires, of course, a neutron source to excite the atomic nuclei of the item under test via neutron capture and inelastic neutron scattering reactions and the choice of neutron source can drastically affect PGNAA system performance. We have carried out Monte Carlo and laboratory experiments comparing DD, DT and Cf-252 neutrons incident on light and medium mass chemical elements, toward optimizing the design of future neutron-generator-based PGNAA systems for field use. We report the excitation of (n, γ) and (n, n‧) gamma rays from these elements by each type of neutron source.

  3. Spectral performance of a composite single-crystal filtered thermal neutron beam for BNCT research at the University of Missouri.

    Science.gov (United States)

    Brockman, J; Nigg, D W; Hawthorne, M F; McKibben, C

    2009-07-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The calculated and measured thermal neutron fluxes produced at the irradiation location are 9.6 x 10(8) and 8.8 x 10(8)neutrons/cm(2)s, respectively. Calculated and measured cadmium ratios (Au foils) are 217 and 132. These results indicate a well-thermalized neutron spectrum with sufficient thermal neutron flux for a variety of small animal BNCT studies.

  4. Commissioning of the 1.4 Mev/u High Current Heavy Ion Linac at Gsi

    CERN Document Server

    Barth, W

    2000-01-01

    The disassembly of the Unilac prestripper linac of the Wideroe type took place at the beginning of 1999. An increase of more than two orders of magnitude in particle number for the most heavy elements in the SIS had to be gained. Since that time the new High Current Injector (HSI) consisting of H-type RFQ and DTL-structures for dual beam operation was installed and successfully commissioned. The High Charge Injector (HLI) supplied the main linac during that time. Simultaneously conditioning and running in of the rf-transmitters and rf-structures were done. The HSI commissioning strategy included beam investigation after each transport and acceleration section, using a versatile diagnostic test stand. Results of the extensive commissioning measurements (e.g. transverse emittance, bunch width, beam transmission) behind LEBT, RFQ, Super Lens, IH tank I and II and stripping section will be discussed. An 40Ar1+ beam coming from a MUCIS ion source was used to fill the linac up to the theoretical space charge limit....

  5. Experimental study of the fast neutron scattering from 24Mg, 28Si and 32S

    International Nuclear Information System (INIS)

    Differential cross section measurements for neutron scattering from 24Mg, 28Si and 32S at 9.76 and 14.83 MeV incident neutron energies have been undertaken. The experimental technique is based on the time-of-flight method with a pulsed neutron beam. Scattered neutrons have been detected by a spectrometer composed of five detectors. Elastic and inelastic scattering cross sections for levels of up to 6 MeV excitation energy have been obtained for the angular range from 15 to 1600 in 50 steps. These measurements will be used in a coupled-channel analysis to extract potential and deformation parameters

  6. Neutron response function characterization of 4He scintillation detectors

    International Nuclear Information System (INIS)

    Time-of-flight measurements were conducted to characterize the neutron energy response of pressurized 4He fast neutron scintillation detectors for the first time, using the Van de Graaff generator at Ohio University. The time-of-flight spectra and pulse height distributions were measured. This data was used to determine the light output response function, which was found to be linear at energies below 3.5 MeV. The intrinsic efficiency of the detector as a function of incident energy was also calculated: the average efficiency up to 10 MeV was 3.1%, with a maximum efficiency of 6.6% at 1.05 MeV. These results will enable development of neutron spectrum unfolding algorithms for neutron spectroscopy applications with these detectors

  7. Neutron response function characterization of {sup 4}He scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Ryan P.; Rolison, Lucas M.; Lewis, Jason M. [University of Florida, Nuclear Engineering Program, Gainesville, FL 32611-6400 (United States); Murer, David [Arktis Radiation Detectors Ltd., Räffelstrasse 11, 8045 Zürich (Switzerland); Massey, Thomas N. [Ohio University, Institute of Nuclear and Particle Physics, Athens, OH 45701 (United States); Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Nuclear Engineering Program, Gainesville, FL 32611-6400 (United States)

    2015-09-01

    Time-of-flight measurements were conducted to characterize the neutron energy response of pressurized {sup 4}He fast neutron scintillation detectors for the first time, using the Van de Graaff generator at Ohio University. The time-of-flight spectra and pulse height distributions were measured. This data was used to determine the light output response function, which was found to be linear at energies below 3.5 MeV. The intrinsic efficiency of the detector as a function of incident energy was also calculated: the average efficiency up to 10 MeV was 3.1%, with a maximum efficiency of 6.6% at 1.05 MeV. These results will enable development of neutron spectrum unfolding algorithms for neutron spectroscopy applications with these detectors.

  8. Control of neutron albedo in toroidal fusion reactors

    International Nuclear Information System (INIS)

    The MCNP and ANISN codes have been used to obtain basic neutron albedo data for materials of interest for fusion applications. Simple physical models are presented which explain albedo dependence on pre- and post-reflection variables. The angular distribution of reflected neutrons. The energy spectra of reflected neutrons are presented, and it is shown that substantial variations in the total neutron current at the outboard wall of a torus can be effected by changing materials behind the inboard wall. Analyses show that a maximum of four isolated incident-current environments may be established simultaneously on the outboard side of a torus. With suitable inboard reflectors, global tritium breeding ratios significantly larger than unity can be produced in limited-coverage breeding blankets when the effects of outboard penetrations are included

  9. Incident reporting in general practice

    NARCIS (Netherlands)

    Zwart, D.L.M.

    2011-01-01

    Background and aim An incident reporting procedure (IRP) is an important part of patient safety management in healthcare. Currently, patient safety efforts are mainly guided by the ‘systems approach’: incidents, defined as ‘unintended or unexpected events which could have led or did lead to harm for

  10. True incidence of vestibular schwannoma?

    DEFF Research Database (Denmark)

    Stangerup, Sven-Eric; Tos, Mirko; Thomsen, Jens;

    2010-01-01

    The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging.......The incidence of diagnosed sporadic unilateral vestibular schwannomas (VS) has increased, due primarily to more widespread access to magnetic resonance imaging....

  11. Synovectomy by Neutron capture

    International Nuclear Information System (INIS)

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu239 Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  12. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  13. Cardiovascular disease incidence and survival

    DEFF Research Database (Denmark)

    Byberg, Stine; Agyemang, Charles; Zwisler, Ann Dorthe;

    2016-01-01

    Studies on cardiovascular disease (CVD) incidence and survival show varying results between different ethnic groups. Our aim was to add a new dimension by exploring the role of migrant status in combination with ethnic background on incidence of-and survival from-CVD and more specifically acute...... and differences in incidence were assessed by Poisson regression and stratified by sex. Survival differences were assessed by Cox regression using all-cause and cause-specific mortality as outcome. Male refugees had significantly lower incidence of CVD (RR = 0.89; 95 % CI 0.85-0.93) and stroke (IRR = 0.62; 95...... significantly lower incidence of CVD, AMI and stroke. All-cause and cause-specific survival after CVD, AMI and stroke was similar or significantly better for migrants compared to Danish-born, regardless of type of migrant (refugee vs. family-reunified) or country of origin. Refugees are disadvantaged in terms...

  14. Neutron energy-dependent initial DNA damage and chromosomal exchange

    International Nuclear Information System (INIS)

    This study was undertaken to investigate the biological effect of monoenergetic neutrons on human lymphocyte DNA and chromosomes. Monoenergetic neutrons of 2.3, 1.0, 0.79, 0.57, 0.37 and 0.186 MeV were generated, and 252Cf neutrons and 60Co γ-rays were also used for comparison. Biological effect was evaluated two ways. The RBE values with the comet assay were estimated as 6.3 and 5.4 at 0.37 MeV and 0.57 MeV relative to that of 60Co γ-rays, and chromosome aberration rates were also observed in these different levels of monoenergetic neutrons. The yield of chromosome aberrations per unit dose was high at lower neutron energies with a gradual decline with 0.186 MeV neutron energy. The RBE was increased to 10.7 at 0.57 MeV from 3.9 at 252Cf neutrons and reached 16.4 as the highest RBE at 0.37 MeV, but the value decreased to 11.2 at 0.186 MeV. The response patterns of initial DNA damage and chromosome exchange were quite similar to that of LET. These results show that the intensity of DNA damage and chromosomal exchange is LET dependent. RBE of low energy neutrons is higher than that of fission neutrons. Low energy neutrons containing Hiroshima atomic bomb radiation may have created a significantly higher incidence of biological effect in atomic bomb survivors. (author)

  15. A Neutron Rem Counter

    International Nuclear Information System (INIS)

    A neutron detector is described which measures the neutron dose rate in rem/h independently of the energy of the neutrons from thermal to 15 MeV. The detector consists of a BF3 proportional counter surrounded by a shield made of polyethylene and boron plastic that gives the appropriate amount of moderation and absorption to the impinging neutrons to obtain rem response. Two different versions have been developed. One model can utilize standard BF3 counters and is suitable for use in installed monitors around reactors and accelerators and the other model is specially designed for use in a portable survey instrument. The neutron rem counter for portable instruments has a sensitivity of 2.4 cps/mrem/h and is essentially nondirectional in response. With correct bias setting the counter is insensitive to gamma exposure up to 200 r/h from Co-60

  16. Neutron production during thunderstorms

    International Nuclear Information System (INIS)

    We have analyzed the neutron fluxes correlated with thunderstorm activity recently measured at mountain altitudes by Tien-Shan, Tibet and Aragats groups. We perform simulations of the photonuclear reactions of gamma rays born in the electron-gamma ray avalanches in the thunderstorm atmosphere and calculate expected count rates of the neutron counters used by 3 groups. Our analysis supported the Tibet group conclusion on the photonuclear nature of thunderstorm-correlated neutrons. The photonuclear reactions of the gamma rays born in the electron-photon avalanches in the thunderstorm atmospheres interacting in the lead producer of a Neutron monitor can provide neutron yield compatible with additional count of NM at least for the largest Thunderstorm Ground Enhancements (TGEs).

  17. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  18. THERMAL NEUTRON BACKSCATTER IMAGING.

    Energy Technology Data Exchange (ETDEWEB)

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  19. Neutrons against cancer

    Science.gov (United States)

    Dovbnya, A. N.; Kuplennikov, E. L.; Kandybey, S. S.; Krasiljnikov, V. V.

    2014-09-01

    The review is devoted to the analysis and generalization of the research carried out during recent years in industrially advanced countries on the use of fast, epithermal, and thermal neutrons for therapy of malignant tumors. Basic facilities for neutron production used for cancer treatment are presented. Optimal parameters of therapeutic beams are described. Techniques using neutrons of different energy regions are discussed. Results and medical treatment efficiency are given. Comparison of the current state of neutron therapy of tumors and alternative treatments with beams of protons and carbon ions has been conducted. Main attention is given to the possibility of the practical use of accumulated experience of application of neutron beams for cancer therapy.

  20. Fission neutron statistical emission

    International Nuclear Information System (INIS)

    The statistical model approach FINESSE (FIssion NEutronS' Statistical Emission) for the description of fission neutron multiplicities, energy spectra and angular distributions is described. Based on an extended Weisskopf ansatz and on a realistic temperature distribution it provides a fragment mass number dependent description of fission neutron data. Model parameters (optical potential, n/γ competition) were fixed on the basis of the 252Cf(sf) (nuclear data standard). Combined with a phenomenological fission model for predicting relevant fragment data as function of asymmetry. FINESSE can be applied to any fission reaction of actinides in the Th-Cf region without further parameter adjustment. Results are presented for 252Cf(sf) and neutron induced fission of 235U, 239Pu, 232Th. Effects of multiple-chance fission are discussed for 232Th(n,xnf) reacation. (author). 46 refs, 11 figs

  1. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  2. Gamma discrimination in pillar structured thermal neutron detectors

    Science.gov (United States)

    Shao, Q.; Radev, R. P.; Conway, A. M.; Voss, L. F.; Wang, T. F.; Nikolić, R. J.; Deo, N.; Cheung, C. L.

    2012-06-01

    Solid-state thermal neutron detectors are desired to replace 3He tube based technology for the detection of special nuclear materials. 3He tubes have some issues with stability, sensitivity to microphonics and very recently, a shortage of 3He. There are numerous solid-state approaches being investigated that utilize various architectures and material combinations. By using the combination of high-aspect-ratio silicon PIN pillars, which are 2 μm wide with a 2 μm separation, arranged in a square matrix, and surrounded by 10B, the neutron converter material, a high efficiency thermal neutron detector is possible. Besides intrinsic neutron detection efficiency, neutron to gamma discrimination is an important figure of merit for unambiguous signal identification. In this work, theoretical calculations and experimental measurements are conducted to determine the effect of structure design of pillar structured thermal neutron detectors including: intrinsic layer thickness, pillar height, substrate doping and incident gamma energy on neutron to gamma discrimination.

  3. Linear position sensitive neutron detector using fiber optic encoded scintillators

    International Nuclear Information System (INIS)

    A linear position sensitive slow neutron detector with 3 mm resolution is described. It uses the fiber optic coding principle in which the resolution elements are separate pieces of lithium loaded glass scintillator each coupled by means of flexible polymer optical fibers to a unique combination of 3 photo multipliers (PM's) out of a bank of 12. A decoder circuit repsponds to a triple coincidence between PM outputs and generates a 12 bit work which identifies the scintillator element which stopped the incident neutron. Some details of the construction and decoding electronics are given together with test results obtained using a laboratory isotope neutron source and a monochomated, collimated neutron beam from a reactor. The count rate in the absence of neutron sources is 2 to 3 c min-1 per element; the element to element variation in response to a uniform flux is a few percent for 95% of the elements; the resolution as measured by a 1 mm wide prode neutron beam is 3 mm; the relative long term stability is about 0.1% over 3 days and the detection efficiency measured by comparison with an end windowed, high pressure gas counter is about 65% at a neutron wavelength of 0.9A0

  4. Analysis and optimization of energy resolution of neutron-TPC

    Institute of Scientific and Technical Information of China (English)

    黄孟; 李玉兰; 牛莉博; 李金; 李元景

    2015-01-01

    Neutron-TPC (nTPC) is a fast neutron spectrometer based on GEM-TPC (Gas Electron Multiplier-Time Pro-jection Chamber) and expected to be used in nuclear physics, nuclear reactor operation monitoring, and thermo-nuclear fusion plasma diagnostics. By measuring the recoiled proton energy and slopes of the proton tracks, the incident neutron energy can be deduced. It has higher n/γseparation ability and higher detection efficiency than conventional neutron spectrometers. In this paper, neutron energy resolution of nTPC is studied using the analytical method. It is found that the neutron energy resolution is determined by 1) the proton energy resolu-tion (σEp/Ep), and 2) standard deviation of slopes of the proton tracks caused by multiple Coulomb scattering (σk(scat ering)) and by the track fitting accuracy (σk(fit)). Suggestions are made for optimizing energy resolution of nTPC. Proper choices of the cut parameters of reconstructed proton scattering angles (θcut), the number of fitting track points (N ), and the working gas help to improve the neutron energy resolution.

  5. Elastic Neutron Scattering at 96 MeV

    Science.gov (United States)

    Hildebrand, A.; Blomgren, J.; Ataç, A.; Bergenwall, B.; Johansson, C.; Klug, J.; Mermod, P.; Nilsson, L.; Pomp, S.; Österlund, M.; Dangtip, s.; Tippawan, U.; Phansuke, P.; Jonsson, O.; Renberg, P.-U.; Prokofiev, A.; Nadel-Turonski, P.; Elmgren, K.; Olsson, N.; Blideanu, V.; Le Brun, C.; Lecolley, J.-F.; Lecolley, F.-R.; Louvel, M.; Marie-Noury, N.; Schweitzer, C.; Eudes, Ph.; Haddad, F.; Lebrun, C.; Koning, A. J.

    2005-05-01

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20 - 180-MeV neutron beam line of The Svedberg Laboratory, Uppsala. Elastic neutron scattering from 12C, 16O, 56Fe, 89Y, and 208Pb has been studied at 96 MeV in the 10 - 70° interval. The results from 12C and 208Pb have recently been published,6 while the data from 16O, 56Fe, and 89Y are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions, based on phenomenology or microscopic theory. Applications for these measurements are nuclear-waste incineration, single-event upsets in electronics, and fast-neutron therapy.

  6. Gamma discrimination in pillar structured thermal neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Q; Radev, R P; Conway, A M; Voss, L F; Wang, T F; Nikolic, R J; Deo, N; Cheung, C L

    2012-03-26

    Solid-state thermal neutron detectors are desired to replace {sup 3}He tube based technology for the detection of special nuclear materials. {sup 3}He tubes have some issues with stability, sensitivity to microphonics and very recently, a shortage of {sup 3}He. There are numerous solid-state approaches being investigated that utilize various architectures and material combinations. By using the combination of high-aspect-ratio silicon PIN pillars, which are 2 {micro}m wide with a 2 {micro}m separation, arranged in a square matrix, and surrounded by {sup 10}B, the neutron converter material, a high efficiency thermal neutron detector is possible. Besides intrinsic neutron detection efficiency, neutron to gamma discrimination is an important figure of merit for unambiguous signal identification. In this work, theoretical calculations and experimental measurements are conducted to determine the effect of structure design of pillar structured thermal neutron detectors including: intrinsic layer thickness, pillar height, substrate doping and incident gamma energy on neutron to gamma discrimination.

  7. Measurements of {sup 237}Np secondary neutron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kornilov, N.V.

    1997-03-01

    The activities carried out during the first year of the project are summarized. The main problems for Np spectra measurements arise from high intrinsic gamma-ray activity of the sample and admixture of the oxygen and iron nuclei. The inelastically scattered neutrons and the fission neutrons spectra for {sup 237}Np were measured by time-of-flight spectrometer of the IPPE at incident neutron energies {approx_equal}1.5 MeV, and {approx_equal}0.5 MeV. A solid tritium target and a Li-metallic target were used as neutron sources. The neutron scattering on C sample (C(n,n) standard reaction) was measured to normalize the Np data. The experimental data should be simulated by Monte Carlo method to correct the experimental data for oxygen and iron admixture as well as for multiple scattering of the neutrons in the sample. Therefore the response function of the spectrometer, and the neutron energy distribution from the source were investigated in detail. (author)

  8. A three element etched track neutron dosemeter with good angular and energy response characteristics

    International Nuclear Information System (INIS)

    A weakness of all single element etched track neutron dosemeters is that the sensitivity falls off too rapidly with increasing angle of incidence. This can lead to significant errors in practical situations. A possible solution is to incorporate in a single dosemeter one or more planar etched track detectors set at an angle to the body surface so that the sensitivity to obliquely incident neutrons is enhanced. The response of a dosemeter in which three planar elements are set in a pyramid structure is investigated. Relationships are developed which allow the response to be estimated for any given direction of incidence and any given angle between face and base of the pyramid. The results indicate that the response is close to that required to measure Hp(10) for any given direction of neutron incidence if the angle between face and base is between 30o and 40o. (author)

  9. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  10. Single event upsets calculated from new ENDF/B-VI proton and neutron data up to 150 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B. [Los Alamos National Lab., NM (United States). Theoretical Div.; Normand, E. [Boeing Military Aircraft and Missile Systems, Seattle, WA (United States)

    1999-06-01

    Single-event upsets (SEU) in microelectronics are calculated from newly-developed silicon nuclear reaction recoil data that extend up to 150 MeV, for incident protons and neutrons. Calculated SEU cross sections are compared with measured data.

  11. Calculation of neutron fluence to dose equivalent conversion coefficients using GEANT4; Calculo de coeficientes de fluencia de neutrons para equivalente de dose individual utilizando o GEANT4

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Rosane M.; Santos, Denison de S.; Queiroz Filho, Pedro P. de; Mauricio, CLaudia L.P.; Silva, Livia K. da; Pessanha, Paula R., E-mail: rosanemribeiro@oi.com.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Fluence to dose equivalent conversion coefficients provide the basis for the calculation of area and personal monitors. Recently, the ICRP has started a revision of these coefficients, including new Monte Carlo codes for benchmarking. So far, little information is available about neutron transport below 10 MeV in tissue-equivalent (TE) material performed with Monte Carlo GEANT4 code. The objective of this work is to calculate neutron fluence to personal dose equivalent conversion coefficients, H{sub p} (10)/Φ, with GEANT4 code. The incidence of monoenergetic neutrons was simulated as an expanded and aligned field, with energies ranging between thermal neutrons to 10 MeV on the ICRU slab of dimension 30 x 30 x 15 cm{sup 3}, composed of 76.2% of oxygen, 10.1% of hydrogen, 11.1% of carbon and 2.6% of nitrogen. For all incident energy, a cylindrical sensitive volume is placed at a depth of 10 mm, in the largest surface of the slab (30 x 30 cm{sup 2}). Physic process are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles which reach the sensitive volume. Results obtained are thus compared with values published in ICRP 74. Neutron fluence in the sensitive volume was calculated for benchmarking. The Monte Carlo GEANT4 code was found to be appropriate to calculate neutron doses at energies below 10 MeV correctly. (author)

  12. Evaluation of D(d,n)3 He reaction neutron source models for BNCT irradiation system design

    Institute of Scientific and Technical Information of China (English)

    YAO Ze'en; LUO Peng; Tooru KOBAYASHI; Gerard BENGUA

    2007-01-01

    A mathematical method was developed to calculatc the yield.energy spectrum and angular distribution of neutrons from D(d,n)3 He(D-D)reaction in a thick deuterium-titanium target for incident deuterons in energies lower than 1.0MeV.The data of energy spectrum and angular distribution wefe applied to set up the neutron source model for the beam-shaping-assembly(BSA)design of Boron-Neutron-Capture-Therapy(BNCT)using MCNP-4C code.Three cases of D-D neutron source corresponding to incident deuteron energy of 1000.400 and 150 kaV were investigated.The neutron beam characteristics were compared with the model of a 2.45 MeV mono-energetic and isotropic neutron source using an example BSA designed for BNCT irradiation.The results show significant differences in the neutron beam characteristics,particularly the fast neutron component and fast neutron dose in air,between the non-isotropic neutron source model and the 2.5 MeV mono-energetic and isotropic neutron source model.

  13. Influence of fission modes on prompt neutron characteristics in the neutron-induced fission of 235U

    International Nuclear Information System (INIS)

    The de-excitation of the fission fragments formed in the neutron-induced fission of 235U, for incident energies from 0.5 to 6.0 MeV, is simulated numerically. Neutrons are emitted sequentially from a Weisskopf spectrum with a temperature set by previous neutron emissions. The complete decay chain is followed until a fission product is formed and no further neutron emission is allowed energetically. Detailed results are obtained, such as the average prompt neutron multiplicity as a function of the fragment mass and the total kinetic energy ν(A,TKE) and the multiplicity distribution P(ν). An interpretation in terms of fission modes is proposed. It appears that numerical modeling tools have to be sharpened. The results presented here are very promising and should be improved. The proper Hauser-Feshbach treatment (as opposed to Weisskopf-Ewing) of the evaporation process of the excited fission fragments has to be implemented, in particular to correctly account for the competition between neutron and gamma emission near the neutron binding energy

  14. Decreasing incidence rates of bacteremia

    DEFF Research Database (Denmark)

    Nielsen, Stig Lønberg; Pedersen, C; Jensen, T G;

    2014-01-01

    BACKGROUND: Numerous studies have shown that the incidence rate of bacteremia has been increasing over time. However, few studies have distinguished between community-acquired, healthcare-associated and nosocomial bacteremia. METHODS: We conducted a population-based study among adults with first......-acquired, 50.0 for healthcare-associated and 66.7 for nosocomial bacteremia. During 2000-2008, the overall incidence rate decreased by 23.3% from 254.1 to 198.8 (3.3% annually, p ...) and the incidence rate of nosocomial bacteremia decreased by 28.9% from 82.2 to 56.0 (4.2% annually, p

  15. NEUTRON WAVE OPTICS STUDIED WITH ULTRACOLD NEUTRONS

    OpenAIRE

    Steyerl, A.

    1984-01-01

    The paper reports experiments demonstrating or utilizing the wave properties of neutrons with wavelengths of about 100 nm. The significant effects of gravity are discussed, and special features of the flight parabola have been used in designing high-resolution instruments and image-forming systems.

  16. Plastic neutron detectors

    International Nuclear Information System (INIS)

    This work demonstrated the feasibility and limitations of semiconducting π-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor π-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in photoresponse

  17. Plastic neutron detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in

  18. Neutron-Phonon Interaction in Neutron Star Crusts

    OpenAIRE

    Sedrakian, Armen

    1998-01-01

    The phonon spectrum of Coulomb lattice in neutron star crusts above the neutron drip density is affected by the interaction with the ambient neutron Fermi-liquid. For the values of the neutron-phonon coupling constant in the range $0.1 \\le \\lambda \\le 1$ an appreciable renormalization of the phonon spectrum occurs which can lead to a lattice instability manifested in an exponential growth of the density fluctuations. The BCS phonon exchange mechanism of superconductivity leads to neutron pair...

  19. ${}^3$H production via neutron-neutron-deuteron recombination

    OpenAIRE

    Deltuva, A; Fonseca, A.C.

    2013-01-01

    We study the recombination of two neutrons and deuteron into neutron and ${}^3$H using realistic nucleon-nucleon potential models. Exact Alt, Grassberger, and Sandhas equations for the four-nucleon transition operators are solved in the momentum-space framework using the complex-energy method with special integration weights. We find that at astrophysical or laboratory neutron densities the production of ${}^3$H via the neutron-neutron-deuteron recombination is much slower as compared to the ...

  20. The neutron radii of Lead and neutron stars

    OpenAIRE

    Horowitz, Charles J.; Piekarewicz, Jorge

    2001-01-01

    A new relation between the neutron skin of a heavy nucleus and the radius of a neutron star is proposed: the larger the neutron skin of the nucleus the larger the radius of the star. Relativistic models that reproduce a variety of ground-state observables can not determine uniquely the neutron skin of a heavy nucleus. Thus, a large range of neutron skins is generated by supplementing the models with nonlinear couplings between isoscalar and isovector mesons. We illustrate how the correlation ...

  1. Fusion Based Neutron Sources for Security Applications: Neutron Techniques

    OpenAIRE

    Albright, S.; Seviour, Rebecca

    2014-01-01

    The current reliance on X-Rays and intelligence for na- tional security is insufficient to combat the current risks of smuggling and terrorism seen on an international level. There are a range of neutron based security techniques which have the potential to dramatically improve national security. Neutron techniques can be broadly grouped into neutron in/neutron out and neutron in/photon out tech- niques. The use of accelerator based fusion devices will potentially enable to wide spread applic...

  2. Neutron - Mirror Neutron Oscillations: How Fast Might They Be?

    OpenAIRE

    Berezhiani, Zurab; Bento, Luis

    2005-01-01

    We discuss the phenomenological implications of the neutron (n) oscillation into the mirror neutron (n'), a hypothetical particle exactly degenerate in mass with the neutron but sterile to normal matter. We show that the present experimental data allow a maximal n-n' oscillation in vacuum with a characteristic time $\\tau$ much shorter than the neutron lifetime, in fact as small as 1 sec. This phenomenon may manifest in neutron disappearance and regeneration experiments perfectly accessible to...

  3. Search for three-body force effects in neutron-deuteron scattering at 95 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Mermod, P. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Blomgren, J. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden)]. E-mail: jan.blomgren@tsl.uu.se; Bergenwall, B. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Hildebrand, A. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Johansson, C. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Klug, J. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Nilsson, L. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Svedberg Laboratory, Uppsala University (Sweden); Olsson, N. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Swedish Defence Research Agency (FOI), Stockholm (Sweden); Oesterlund, M. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Pomp, S. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Tippawan, U. [Department of Neutron Research, Uppsala University, Box 525, S-75120 Uppsala (Sweden); Jonsson, O. [Svedberg Laboratory, Uppsala University (Sweden); Prokofiev, A. [Svedberg Laboratory, Uppsala University (Sweden); Renberg, P.-U. [Svedberg Laboratory, Uppsala University (Sweden); Nadel-Turonski, P. [Department of Radiation Sciences, Uppsala University (Sweden); Maeda, Y. [Department of Physics, University of Tokyo (Japan); Sakai, H. [Department of Physics, University of Tokyo (Japan); Tamii, A. [Department of Physics, University of Tokyo (Japan)

    2004-09-16

    The neutron-deuteron (nd) elastic scattering differential cross section has been measured at 95 MeV incident neutron energy. The neutron-proton (np) differential cross section has also been measured for normalization purposes. An inclusion of three-nucleon forces gives a considerable improvement in the theoretical description of the nd data in the angular region of the cross-section minimum.

  4. Theoretical Analysis of Neutron Double-differental Cross Section of n+10B at 14.2 MeV

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Having very large neutron absorption cross-section at low energies, 10B has long been selected as theshielding material in nuclear engineering. In the reactions of n+10B there are many partial reactionchannels to be opened even at incident neutron energies of 14 MeV Since the new approach fordescription of neutron induced light nucleus reaction was proposed in 1999, many experimental data,

  5. The neutron channeling phenomenon.

    Science.gov (United States)

    Khanouchi, A; Sabir, A; Boulkheir, M; Ichaoui, R; Ghassoun, J; Jehouani, A

    1997-01-01

    Shields, used for protection against radiation, are often pierced with vacuum channels for passing cables and other instruments for measurements. The neutron transmission through these shields is an unavoidable phenomenon. In this work we study and discuss the effect of channels on neutron transmission through shields. We consider an infinite homogeneous slab, with a fixed thickness (20 lambda, with lambda the mean free path of the neutron in the slab), which contains a vacuum channel. This slab is irradiated with an infinite source of neutrons on the left side and on the other side (right side) many detectors with windows equal to 2 lambda are placed in order to evaluate the neutron transmission probabilities (Khanouchi, A., Aboubekr, A., Ghassoun, J. and Jehouani, A. (1994) Rencontre Nationale des Jeunes Chercheurs en Physique. Casa Blanca Maroc; Khanouchi, A., Sabir, A., Ghassoun, J. and Jehouani, A. (1995) Premier Congré International des Intéractions Rayonnements Matière. Eljadida Maroc). The neutron history within the slab is simulated by the Monte Carlo method (Booth, T. E. and Hendricks, J. S. (1994) Nuclear Technology 5) and using the exponential biasing technique in order to improve the Monte Carlo calculation (Levitt, L. B. (1968) Nuclear Science and Engineering 31, 500-504; Jehouani, A., Ghassoun, J. and Aboubker, A. (1994) In Proceedings of the 6th International Symposium on Radiation Physics, Rabat, Morocco). Then different geometries of the vacuum channel have been studied. For each geometry we have determined the detector response and calculated the neutron transmission probability for different detector positions. This neutron transmission probability presents a peak for the detectors placed in front of the vacuum channel. This study allowed us to clearly identify the neutron channeling phenomenon. One application of our study is to detect vacuum defects in materials. PMID:9463884

  6. Preliminary proposals for extending the ENDF format to allow incident charged particles and energy-angle correlation for emitted particles

    International Nuclear Information System (INIS)

    This rewrite of Data Formats and Procedures for the Evaluated Nuclear Data File, ENDF pertains to the latest version, ENDF/B-VI. Earlier versions provided representations for neutron cross sections and distributions, photon production from neutron reactions, a limited amount of charged-particle production from neutron reactions, photo-atomic interaction data, thermal neutron scattering data, and radionuclide production and decay data (including fission products). This version allows higher incident energies, adds more complete descriptions of the distributions of emitted particles, and provides for incident charged particles and photo-nuclear data by partitioning the ENDF library into sublibraries. Decay data, fission product yield data, thermal scattering data, and photo-atomic data have also been formally placed in sublibraries. In addition, this rewrite represents an extensive update to the Version V manual

  7. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    Science.gov (United States)

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection.

  8. Study of Neutron-Induced Ionization in Helium and Argon Chamber Gases

    CERN Document Server

    Indurthy, D; Harris, D; Kopp, S; Proga, M; Zwaska, R M

    2004-01-01

    Ion chambers used to monitor the secondary hadron and tertiary muon beam in the NuMI neutrino beamline will be exposed to background particles, including low energy neutrons produced in the beam dump. To understand these backgrounds, we have studied Helium- and Argon-filled ionization chambers exposed to intense neutron fluxes from PuBe neutron sources ($E_n=1-10$ MeV). The sources emit about 10$^8$ neutrons per second. The number of ion pairs in the chamber gas volume per incident neutron is derived. While limited in precision because of a large gamma ray background from the PuBe sources, our results are consistent with the expectation that the neutrons interact purely elastically in the chamber gas.

  9. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code.

    Science.gov (United States)

    Jamil, M; Rhee, J T; Kim, H G; Ahmad, Farzana; Jeon, Y J

    2014-10-22

    In this work, we report the design configuration and the performance of the hybrid Gas Electron Multiplier (GEM) detector. In order to make the detector sensitive to thermal neutrons, the forward electrode of the GEM has been coated with the enriched boron-10 material, which works as a neutron converter. A total of 5×5cm(2) configuration of GEM has been used for thermal neutron studies. The response of the detector has been estimated via using GEANT4 MC code with two different physics lists. Using the QGSP_BIC_HP physics list, the neutron detection efficiency was determined to be about 3%, while with QGSP_BERT_HP physics list the efficiency was around 2.5%, at the incident thermal neutron energies of 25meV. The higher response of the detector proves that GEM-coated with boron converter improves the efficiency for thermal neutrons detection. PMID:25464183

  10. Neutrons in soft matter

    CERN Document Server

    Imae, Toyoko; Furusaka, Michihiro; Torikai, Naoya

    2011-01-01

    Neutron and synchrotron facilities, which are beyond the scale of the laboratory, and supported on a national level in countries throughout the world.  These tools for probing micro- and nano-structure research and on fast dynamics research of atomic location in materials have been key in the development of new polymer-based materials. Different from several existing professional books on neutron science, this book focuses on theory, instrumentation, an applications. The book is divided into five parts: Part 1 describes the underlying theory of neutron scattering. Part 2 desc

  11. METHOD OF PRODUCING NEUTRONS

    Science.gov (United States)

    Imhoff, D.H.; Harker, W.H.

    1964-01-14

    This patent relates to a method of producing neutrons in which there is produced a heated plasma containing heavy hydrogen isotope ions wherein heated ions are injected and confined in an elongated axially symmetric magnetic field having at least one magnetic field gradient region. In accordance with the method herein, the amplitude of the field and gradients are varied at an oscillatory periodic frequency to effect confinement by providing proper ratios of rotational to axial velocity components in the motion of said particles. The energetic neutrons may then be used as in a blanket zone containing a moderator and a source fissionable material to produce heat and thermal neutron fissionable materials. (AEC)

  12. Coupled moderator neutronics

    International Nuclear Information System (INIS)

    Optimizing the neutronic performance of a coupled-moderator system for a Long-Pulse Spallation Source is a new and challenging area for the spallation target-system designer. For optimal performance of a neutron source, it is essential to have good communication with instrument scientists to obtain proper design criteria and continued interaction with mechanical, thermal-hydraulic, and materials engineers to attain a practical design. A good comprehension of the basics of coupled-moderator neutronics will aid in the proper design of a target system for a Long-Pulse Spallation Source

  13. International Neutron Radiography Newsletter

    OpenAIRE

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing (BJNDT) has agreed to publish the INRNL in i t s column "NDT Bookcase". The Revue Practique de Control Industriel has also agreed to publish the French version of the INRNL. Up t i l l now 12 issues of...

  14. Neutron scattering in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Barocchi, F. [Florence Univ. (Italy). Ist. di Fisica

    1996-12-31

    Together with X-rays, thermal neutrons are the ideal probe to study the microscopic structure of condensed matter, however the precision attainable usually with neutrons for the measurement of atomic position correlation functions in liquids is, at least, one order of magnitude better than for X-rays. In order to measure properly the microscopic dynamics a wide range of momentum transfer with corresponding energy transfer must be available in the range of liquid state excitations. This again is only attainable, with good resolution, with neutrons. (author) 7 figs., 3 refs.

  15. Estimation of Incident Wave Height

    DEFF Research Database (Denmark)

    Frigaard, Peter; Helm-Petersen, J.

    1994-01-01

    The paper is the results found by Aalborg University in the calculations of the incident wave heights hm0 and the reflection coefficients α from the LIP-MAST investigations in the Vinje-Basin during May to July 1994....

  16. The NEA incident reporting system

    International Nuclear Information System (INIS)

    The Nuclear Energy Agency (NEA) Incident Reporting System (IRS) was established in 1980 in order to exchange operating experience gained in thermal nuclear power plants and to facilitate proper feedback of this experience to benefit nuclear regulatory authorities, utilities and manufacturers as well as to provide additional guidance for safety research programmes. The purpose of the system is to collect and disseminate sufficiently detailed information on incidents of safety significance in nuclear power plants, as soon as practicable, and feed back appropriate conclusions from such incidents. The exchange of information, in the form of reports, is supplemented by a database storage system designed to facilitate the process of identifying relevant reported incidents for specific studies. The NEA-IRS is an efficient and effective way of collecting and distributing information about operational experience of nuclear power plants on an international scale. (author)

  17. Idiot Savants: Rate of Incidence

    Science.gov (United States)

    Hill, A. Lewis

    1977-01-01

    A survey of 300 public residential facilities for the mentally retarded revealed a .06 percent incidence rate for idiot savants, persons of low intelligence who possess an unusually high skill in some special task. (CL)

  18. Scattering of MeV neutrons from elemental iron

    International Nuclear Information System (INIS)

    Neutron elastic- and inelastic-scattering cross sections of elemental iron are measured from 1.5 to 4.0 MeV with incident-neutron resolutions of < or approx. = to 50 keV and at incident-neutron energy intervals of < or approx. = to 50 keV. Cross sections for the excitation of observed levels at 0.853, 1.389, 2.097, 2.579, 2.677, 2.974 and 3.152 MeV are determined. The observed elastic- and inelastic-scattering angular distributions fluctuate strongly with incident energy. The experimental results are averaged over broad energy intervals and interpreted in terms of spherical optical-statistical and coupled-channels models including consideration of direct-vibrational excitations. The importance of a comprehensive data base in such energy-averaged interpretations and of the direct-vibrational excitations is stressed. The present measured and calculated results, combined with those reported in the literature, are used to formulate an evaluated scattered-neutron data file in the ENDF format extending from 1.0 to 4.0 MeV. 41 references

  19. NRC Incident-Response Plan

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission (NRC) regulates civilian nuclear activities to protect the public health and safety and to preserve environmental quality. An Incident Response Plan had been developed and has now been revised to reflect current Commission policy. NUREG-0728, Rev. 1 assigns responsibilities for responding to any potentially threatening incident involving NRC licensed activities and for assuring that the NRC will fulfill its statutory mission. This report has also been reproduced for staff use as NRC Manual Chapter 0502

  20. Isotope-Identifying neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru; Petrenko, A. V.; Gundorin, N. A.; Gledenov, Yu. M. [Joint Institute for Nuclear Research (Russian Federation); Aksenov, V. L. [National Research Centre “Kurchatov Institute”, St. Petersburg Nuclear Physics Institute (Russian Federation)

    2015-07-15

    The possibilities of an isotope-indentifying study of layered structures in different regimes of a neutron wave field are considered. The detection of specularly reflected neutrons and secondary radiation (caused by neutron capture) in the form of charged particles, γ quanta, and nuclear fission fragments, as well as neutrons spin-flipped in a noncollinear magnetic field and on nuclei of elements with spin, makes it possible to implement isotope-indentifying neutron reflectometry.

  1. Magnetic trapping of ultracold neutrons

    OpenAIRE

    Brome, C. R.; Butterworth, J. S.; Dzhosyuk, S. N.; Mattoni, C. E. H.; McKinsey, D. N.; Doyle, J. M.; Huffman, P. R.; Dewey, M. S.; Wietfeldt, F. E.; Golub, R.; Habicht, K.; Greene, G. L.; Lamoreaux, S. K.; Coakley, K. J.

    2001-01-01

    Three-dimensional magnetic confinement of neutrons is reported. Neutrons are loaded into an Ioffe-type superconducting magnetic trap through inelastic scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low energy and in the appropriate spin state are confined by the magnetic field until they decay. The electron resulting from neutron decay produces scintillations in the liquid helium bath that results in a pulse of extreme ultraviolet light. This light is frequency dow...

  2. Euratom Neutron Radiography Working Group

    OpenAIRE

    Domanus, Joseph Czeslaw

    1986-01-01

    In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Buratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made ...

  3. Cyber Incidents Involving Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Turk

    2005-10-01

    The Analysis Function of the US-CERT Control Systems Security Center (CSSC) at the Idaho National Laboratory (INL) has prepared this report to document cyber security incidents for use by the CSSC. The description and analysis of incidents reported herein support three CSSC tasks: establishing a business case; increasing security awareness and private and corporate participation related to enhanced cyber security of control systems; and providing informational material to support model development and prioritize activities for CSSC. The stated mission of CSSC is to reduce vulnerability of critical infrastructure to cyber attack on control systems. As stated in the Incident Management Tool Requirements (August 2005) ''Vulnerability reduction is promoted by risk analysis that tracks actual risk, emphasizes high risk, determines risk reduction as a function of countermeasures, tracks increase of risk due to external influence, and measures success of the vulnerability reduction program''. Process control and Supervisory Control and Data Acquisition (SCADA) systems, with their reliance on proprietary networks and hardware, have long been considered immune to the network attacks that have wreaked so much havoc on corporate information systems. New research indicates this confidence is misplaced--the move to open standards such as Ethernet, Transmission Control Protocol/Internet Protocol, and Web technologies is allowing hackers to take advantage of the control industry's unawareness. Much of the available information about cyber incidents represents a characterization as opposed to an analysis of events. The lack of good analyses reflects an overall weakness in reporting requirements as well as the fact that to date there have been very few serious cyber attacks on control systems. Most companies prefer not to share cyber attack incident data because of potential financial repercussions. Uniform reporting requirements will do much to make this

  4. Neutron resonance averaging

    International Nuclear Information System (INIS)

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs

  5. Cylindrical neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  6. Decoherence Free Neutron Interferometry

    CERN Document Server

    Pushin, Dmitry A; Cory, David G

    2016-01-01

    Perfect single-crystal neutron interferometers are adversely sensitive to environmental disturbances, particularly mechanical vibrations. The sensitivity to vibrations results from the slow velocity of thermal neutrons and the long measurement time that are encountered in a typical experiment. Consequently, to achieve a good interference solutions for reducing vibration other than those normally used in optical experiments must be explored. Here we introduce a geometry for a neutron interferometer that is less sensitive to low-frequency vibrations. This design may be compared with both dynamical decoupling methods and decoherence-free subspaces that are described in quantum information processing. By removing the need for bulky vibration isolation setups, this design will make it easier to adopt neutron interferometry to a wide range of applications and increase its sensitivity.

  7. NEUTRONIC REACTOR FUEL COMPOSITION

    Science.gov (United States)

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  8. Temperature of neutron stars

    Science.gov (United States)

    Tsuruta, Sachiko

    2016-07-01

    We start with a brief introduction to the historical background in the early pioneering days when the first neutron star thermal evolution calculations predicted the presence of neutron stars hot enough to be observable. We then report on the first detection of neutron star temperatures by ROSAT X-ray satellite, which vindicated the earlier prediction of hot neutron stars. We proceed to present subsequent developments, both in theory and observation, up to today. We then discuss the current status and the future prospect, which will offer useful insight to the understanding of basic properties of ultra-high density matter beyond the nuclear density, such as the possible presence of such exotic particles as pion condensates.

  9. Neutron phase spin echo

    CERN Document Server

    Piegsa, Florian M; Schanzer, Christian

    2016-01-01

    A novel neutron spin resonance technique is presented based on the well-know neutron spin echo method. In a first proof-of-principle measurement using a monochromatic neutron beam, it is demonstrated that relative velocity changes of down to a precision of $4 \\times 10^{-7}$ can be resolved, corresponding to an energy resolution of better than 3~neV. Currently, the sensitivity is only limited by counting statistics and not by systematic effects. An improvement by another two orders of magnitude can be achieved with a dedicated setup, allowing for energy resolutions in the 10~peV regime. The new technique is ideally suited for investigations in the field of precision fundamental neutron physics, but will also be beneficial in scattering applications.

  10. Intense pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Kustom, R.L.

    1981-01-01

    Accelerator requirements for pulsed spallation neutron sources are stated. Brief descriptions of the Argonne IPNS-I, the Japanese KENS, Los Alamos Scientific Laboratory WNR/PSR, the Rutherford Laboratory SNS, and the West German SNQ facilities are presented.

  11. Neutrons from Piezonuclear Reactions

    CERN Document Server

    Cardone, F; Mignani, R; Perconti, W; Petrucci, A; Rosetto, F; Spera, G

    2007-01-01

    We report the results obtained by cavitating water solutions of iron salts (iron chloride and iron nitrate) with different concentrations at different ultrasound powers. In all cases we detected a neutron radiation well higher than the background level. The neutron production is perfectly reproducible and can at some extent be controlled. These evidences for neutron emission generated by cavitation support some preliminary clues for the possibility of piezonuclear reactions (namely nuclear reactions induced by pressure and shock waves) obtained in the last ten years. We have been able for the first time to state some basic features of such a neutron emission induced by cavitation, namely: 1) a marked threshold behavior in power, energy and time; 2) its occurring without a concomitant production of gamma radiation.

  12. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  13. Neutron irradiation of seeds

    International Nuclear Information System (INIS)

    Neutrons are a valuable type of ionizing radiation for seed irradiation and radiobiological studies and for inducing mutations in crop plants. In experiments where neutrons are used in research reactors for seed irradiation it is difficult to measure the dose accurately and therefore to establish significant comparisons between experimental results obtained in various reactors and between repeated experiments in the same reactor. A further obstacle lies in the nature and response of the seeds themselves and the variety of ways in which they are exposed in reactors. The International Atomic Energy Agency decided to initiate international efforts to improve and standardize methods of exposing seeds in research reactors and of measuring and reporting the neutron dose. For this purpose, an International Neutron Seed Irradiation Programme has been established. The present report aims to give a brief but comprehensive picture of the work so far done in this programme. Refs, figs and tabs

  14. The intense neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  15. Neutron personnel dosimetry

    International Nuclear Information System (INIS)

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments

  16. Neutron Capture Reactions for Stockpile Stewardship and Basic Science

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W; Agvaanluvsan, U; Becker, J; Wilk, P; Wu, C; Bredeweg, T; Couture, A; Haight, R; Jandel, M; O' Donnell, J; Reifarth, R; Rundberg, R; Ullmann, J; Vieira, D; Wouters, J; Sheets, S; Mitchell, G; Becvar, F; Krticka, M

    2007-08-04

    The capture process is a nuclear reaction in which a target atom captures an incident projectile, e.g. a neutron. The excited-state compound nucleus de-excites by emitting photons. This process creates an atom that has one more neutron than the target atom, so it is a different isotope of the same element. With low energy (slow) neutron projectiles, capture is the dominant reaction, other than elastic scattering. However, with very heavy nuclei, fission competes with capture as a method of de-excitation of the compound nucleus. With higher energy (faster) incident neutrons, additional reactions are also possible, such as emission of protons or emission of multiple neutrons. The probability of a particular reaction occurring (such as capture) is referred to as the cross section for that reaction. Cross sections are very dependent on the incoming neutron's energy. Capture reactions can be studied either using monoenergetic neutron sources or 'white' neutron sources. A 'white' neutron source has a wide range of neutron energies in one neutron beam. The advantage to the white neutron source is that it allows the study of cross sections as they depend on neutron energies. The Los Alamos Neutron Science Center, located at Los Alamos National Laboratory, provides an intense white neutron source. Neutrons there are created by a high-energy proton beam from a linear accelerator striking a heavy metal (tungsten) target. The neutrons range in energy from subthermal up to very fast - over 100 MeV in energy. Low-energy neutron reaction cross sections fluctuate dramatically from one target to another, and they are very difficult to predict by theoretical modeling. The cross sections for particular capture reactions are important for defense sciences, advanced reactor concepts, transmutation of radioactive wastes and nuclear astrophysics. We now have a strong collaboration between Lawrence Livermore National Laboratory, Los Alamos National Laboratory

  17. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  18. Neutron-Proton Collisions

    OpenAIRE

    Di Grezia, E.

    2011-01-01

    A theoretical model describing neutron-proton scattering developed by Majorana as early as in 1932, is discussed in detail with the experiments that motivated it. Majorana using collisions' theory, obtained the explicit expression of solutions of wave equation of the neutron-proton system. In this work two different models, the unpublished one of Majorana and the contemporary work of Massey, are studied and compared.

  19. Neutron Compton Scattering

    OpenAIRE

    Watson, Greg

    1996-01-01

    Neutron Compton scattering measurements have the potential to provide direct information about atomic momentum distributions and adiabatic energy surfaces in condensed matter. First applied to measuring the condensate fraction in superfluid helium, the technique has recently been extended to study a variety of classical and quantum liquids and solids. This article reviews the theoretical background for the interpretation of neutron Compton scattering, with emphasis on studies of solids.

  20. Neutrons and fusion

    International Nuclear Information System (INIS)

    The production of energy from fusion reactions does not require neutrons in the fundamental sense that they are required in a fission reactor. Nevertheless, the dominant fusion reaction, that between deuterium and tritium, yields a 14 MeV neutron. To contrast a fusion reactor based on this reaction with the fission case, 3 x 1020 such neutrons produced per gigawatt of power. This is four times as many neutrons as in an equivalent fission reactor and they carry seven times the energy of the fission neutrons. Thus, they dominate the energy recovery problem and create technological problems comparable to the original plasma confinement problem as far as a practical power producing device is concerned. Further contrasts of the fusion and fission cases are presented to establish the general role of neutrons in fusion devices. Details of the energy deposition processes are discussed and those reactions necessary for producing additional tritium are outlined. The relatively high energy flux with its large intensity will activate almost any materials of which the reactor may be composed. This activation is examined from the point of view of decay heat, radiological safety, and long-term storage. In addition, a discussion of the deleterious effects of neutron interactions on materials is given in some detail; this includes the helium and hydrogen producing reactions and displacement rate of the lattice atoms. The various materials that have been proposed for structural purposes, for breeding, reflecting, and moderating neutrons, and for radiation shielding are reviewed from the nuclear standpoint. The specific reactions of interest are taken up for various materials and finally a report is given on the status and prospects of data for fusion studies

  1. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  2. Teaching neutron diffusion theory

    International Nuclear Information System (INIS)

    A method has been developed of introducing to, in particular, engineering students, neutron diffusion theory and the relevant one-group neutron equations. This new approach to Fick's law suggests a concise, speedy and physically-based method of introducing the subject which is seen to encompass a wider class of spatially dependent problems and which offers an alternative method of introducing boundary continuity conditions. (U.K.)

  3. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  4. Neutron scattering in Australia

    International Nuclear Information System (INIS)

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains

  5. Opal neutron beams shutters

    International Nuclear Information System (INIS)

    Full text: The Opal Reactor has five beam tubes for neutron beams. Of these 5 tubes, two come from a cold neutron source, another two from thermal sources, and a fifth is ready for a future hot neutron source. Neutron guides come from the cold and thermal beam tubes. Neutron beams are enabled/disabled through shutters located inside the reactor pool's radial shield. These shutters were specially designed by INVAP for the OPAL reactor. They comprise fixed and movable shields. The movable part allows neutron beam enabling or disabling. The design of these shutters demanded the construction of prototypes that were further submitted to comprehensive tests to be qualified in light of the strict movement precision and high reliability requirements involved. The shielding material - a plastic and steel mix - was also specifically designed for this facility. The design required great efforts as to shield calculation and energy deposition. A heat removal system was designed to dissipate the energy absorbed by the shields. The cold and thermal beam shutters are built following a single vertical axis design. The hot shutter, due to different requirements, was designed with a horizontal axis

  6. Neutrons for materials science

    International Nuclear Information System (INIS)

    The discussion will be limited to applied materials research performed on a customer/contractor basis. The information obtained using neutrons must therefore compete both scientifically and financially with information obtained using other techniques, particularly electron microscopy, X-ray, NMR, infra-red and Raman spectroscopy. It will be argued that the unique nature of the information gained from neutrons often outweighs the undoubted difficulties of access to neutron beams. Examples are given. Small angle scattering has emerged as the neutron technique of widest application in applied materials research. The penetration of neutron beams through containment vessels, as well as through the sample, allows the measurement of 'in situ' time dependent experiments within a furnace, cryostat, pressure vessel or chemical reactor vessel. High resolution powder diffraction is another technique with wide applications. Structural studies are possible on increasing complex phases. The structure and volume fraction of minority phases can be measured at levels appreciably below that possible by X-ray diffraction. A rapidly growing field at present is the measurement of internal strains through the small shifts in lattice spacing. Inelastic scattering measurements exploit the unique property of neutrons to measure the orientations of vibrating molecules. (author)

  7. Neutron beam applications

    International Nuclear Information System (INIS)

    For the materials science by neutron technique, the development of the various complementary neutron beam facilities at horizontal beam port of HANARO and the techniques for measurement and analysis has been performed. High resolution powder diffractometer, after the installation and performance test, has been opened and used actively for crystal structure analysis, magnetic structure analysis, phase transition study, etc., since January 1998. The main components for four circle diffractometer were developed and, after performance test, it has been opened for crystal structure analysis and texture measurement since the end of 1999. For the small angle neutron spectrometer, the main component development and test, beam characterization, and the preliminary experiment for the structure study of polymer have been carried out. Neutron radiography facility, after the precise performance test, has been used for the non-destructive test of industrial component. Addition to the development of main instruments, for the effective utilization of those facilities, the scattering techniques relating to quantitative phase analysis, magnetic structure analysis, texture measurement, residual stress measurement, polymer study, etc, were developed. For the neutron radiography, photographing and printing technique on direct and indirect method was stabilized and the development for the real time image processing technique by neutron TV was carried out. The sample environment facilities for low and high temperature, magnetic field were also developed

  8. Passive neutron dosemeter design

    International Nuclear Information System (INIS)

    A passive neutron dosemeter was designed to be used in mixed radiation fields. The design was carried out using Monte Carlo method. The dosemeter model was a 25.4 cm-diameter polyethylene sphere with a thermoluminescent dosemeter, TLD600, located at the sphere center. This model was irradiated with 50 monoenergetic neutron sources with energies from 10-8 to 20 MeV. A 506.71 cm2-area disk was used to model the source term whose center was located at 100 cm from polyethylene sphere's center. The dosemeter response was compared with the responses of SNOOPY, Harwell 95/0075 and PNR-4. With these responses it was calculated the dosemeter responses for 252Cf, 252Cf/D2O and 239PuBe neutron sources. The passive dosemeter relative response has the same shape of SNOOPY, Harwell 95/0075 and PNR-4 dosemeters. Due to the type of thermal neutron detector used in the passive dosemeter the absolute response per unit fluence, is lower than the absolute response of SNOOPY, Harwell 95/0075 and PNR-4 dosemeters. However the passive dosemeter response in function of the average neutron energy of the 252Cf, 252Cf/D2O and 239PuBe neutron energy was more linear

  9. Neutron scattering in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  10. Development and characterization of a neutron detector based on a lithium glass–polymer composite

    International Nuclear Information System (INIS)

    We report on the fabrication and characterization of a neutron scintillation detector based on a Li-glass–polymer composite that utilizes a combination of pulse height and pulse shape discrimination (PSD) to achieve high gamma rejection. In contrast to fast neutron detection in a PSD medium, we combine two scintillating materials that do not possess inherent neutron/gamma PSD properties to achieve effective PSD/pulse height discrimination in a composite material. Unlike recoil-based fast neutron detection, neutron/gamma discrimination can be robust even at low neutron energies due to the high Q-value neutron capture on 6Li. A cylindrical detector with a 5.05 cm diameter and 5.08 cm height was fabricated from scintillating 1 mm diameter Li-glass rods and scintillating polyvinyltoluene. The intrinsic efficiency for incident fission neutrons from 252Cf and gamma rejection of the detector were measured to be 0.33% and less than 10−8, respectively. These results demonstrate the high selectivity of the detector for neutrons and provide motivation for prototyping larger detectors optimized for specific applications, such as detection and event-by-event spectrometry of neutrons produced by fission

  11. Neutron production for 250 MeV protons bombarding on thick grain-made tungsten target

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xueying; Zhang, Yanbin; Ma, Fei; Ju, Yongqin; Chen, Liang; Wang, Jianguo; Ge, Honglin [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Zhang, Hongbin; Li, Yanyan; Wan, Bo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China)

    2015-08-15

    Neutron yield for 250 MeV protons incident on a tungsten target has been measured using the water bath method. The target was made of many randomly placed tungsten grains. Through analyzing the activity of Au foils, the neutron flux distribution in water was obtained. The neutrons slowing down process shows that the neutrons from tungsten have an average energy lower than neutrons from the lead target. The neutron yield was experimentally determined to be 2.02 ± 0.15 neutron/proton. Detailed simulation was also performed with the Geant4 toolkit. Comparison has been made with the experimentally derived neutron yield. It was found that, around 250 MeV, experimental results were described satisfactorily with a combination of high-energy spallation, low-energy neutron reaction and scattering. It was shown that the grain-packed target does not affect much the main neutronic properties, which are of crucial importance for the design of the spallation target. (orig.)

  12. Use of Apollo 17 Epoch Neutron Spectrum as a Benchmark in Testing LEND Collimated Sensor

    Science.gov (United States)

    Chin, Gordon; Sagdeev, R.; Milikh, G.

    2011-01-01

    The Apollo 17 neutron experiment LPNE provided a unique set of data on production of neutrons in the Lunar soil bombarded by Galactic Cosmic Rays (GCR). It serves as valuable "ground-truth" in the age of orbital remote sensing. We used the neutron data attributed to Apollo 17 epoch as a benchmark for testing the LEND's collimated sensor, as introduced by the geometry of collimator and efficiency of He3 counters. The latter is defined by the size of gas counter and pressure inside it. The intensity and energy spectrum of neutrons escaping the lunar surface are dependent on incident flux of Galactic Cosmic Rays (GCR) whose variability is associated with Solar Cycle and its peculiarities. We obtain first the share of neutrons entering through the field of view of collimator as a fraction of the total neutron flux by using the angular distribution of neutron exiting the Moon described by our Monte Carlo code. We computed next the count rate of the 3He sensor by using the neutron energy spectrum from McKinney et al. [JGR, 2006] and by consider geometry and gas pressure of the LEND sensor. Finally the neutron count rate obtained for the Apollo 17 epoch characterized by intermediate solar activity was adjusted to the LRO epoch characterized by low solar activity. It has been done by taking into account solar modulation potential, which affects the GCR flux, and in turn changes the neutron albedo flux.

  13. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  14. Determination of Neutron Flux at the HANARO Cold Neutron Guides

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Min Young; Sun, Gwang Min; Lee, Yuna; Yoo, Sang Ho; Lee, Chang Hee; Park, Byung Gun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A Cold neutron source (CNS) has been installed at the HANARO research reactor. After the completion of the CNS, it was most important to characterize the neutron beam from the CNS and along the neutron guides. Time-of-Flight (TOF) and gold activation methods were utilized to measure the neutron speed distribution and neutron flux, respectively. In this study, we described the neutron flux monitoring at several positions such as a primary shutter, secondary shutters, and sample or monochromator of the experimental instruments and so on

  15. Neutron beam imaging with micromegas detectors in combination with neutron time-of-flight at the (nTOF) facility at CERN

    International Nuclear Information System (INIS)

    A bulk micromegas detector with the anode segmented in 2 orthogonal directions and equipped with a neutron/charged particle converter is employed at the neutron time-of-flight (nTOF) facility at CERN to determine the incident neutron beam profile and beam interception factor as a function of the neutron energy determined by the time of flight. Discrepancies between experimental results and simulations in the values of the beam interception factor range up to 12 % and are to be ascribed to a defect in the mesh of the bulk. Nevertheless the detector proved to be really useful for checking the alignment of the neutron beam optics of the facility. Measurements with a new pixelized bulk detector for the determination of the beam interception factor are for seen before the end of 2012

  16. MEASUREMENT OF NEUTRON SPECTRA FROM THICK Be TARGET BOMBARDED WITH DEUTERONS

    Institute of Scientific and Technical Information of China (English)

    王效忠; 白希祥; 等

    1994-01-01

    Neutron spectra of Be(d.n)reaction were measured for deuteron energies from 13.5 to 22 MeV by using a stilbene scintillator detector and flight time technique.A special calibration method of neutron detector efficiency for higher energy portion was adopted.The spectral neutron yield per unit beam charge on the Be target at 0° was determined.The fluence-averaged mean neutron energies of the neutron spectra are given as a function of the incident energy for several thresholds.The measured neutron spectra have an almost same shape at differnet incident deuteron energies.High energy portion(En>1.8MeV) and low energy portion(En<2.0MeV) of the neutron spectra were separately measured and they were concerned with each other by normalization.The energy range of whloe neutron spectra is 0.7 MeV to 30 MeV.

  17. Improvement of dose distribution by central beam shielding in boron neutron capture therapy

    Science.gov (United States)

    Sakurai, Yoshinori; Ono, Koji

    2007-12-01

    Since boron neutron capture therapy (BNCT) with epithermal neutron beams started at the Kyoto University Reactor (KUR) in June 2002, nearly 200 BNCT treatments have been carried out. The epithermal neutron irradiation significantly improves the dose distribution, compared with the previous irradiation mainly using thermal neutrons. However, the treatable depth limit still remains. One effective technique to improve the limit is the central shield method. Simulations were performed for the incident neutron energies and the annular components of the neutron source. It was clear that thermal neutron flux distribution could be improved by decreasing the lower energy neutron component and the inner annular component of the incident beam. It was found that a central shield of 4-6 cm diameter and 10 mm thickness is effective for the 12 cm diameter irradiation field. In BNCT at KUR, the depth dose distribution can be much improved by the central shield method, resulting in a relative increase of the dose at 8 cm depth by about 30%. In addition to the depth dose distribution, the depth dose profile is also improved. As the dose rate in the central area is reduced by the additional shielding, the necessary irradiation time, however, increases by about 30% compared to normal treatment.

  18. Neutron scattering on neutron irradiated steel

    International Nuclear Information System (INIS)

    Three pressure vessel steel systems (two base material and one weld material) with a 50% irradiation induced hardness enhancement were investigated by small angle neutron scattering. All three steel systems were irradiated in the light water moderated research reactor FRJ-1 at a temperature of 1500C. The strongest scattering effect was found for steel A; a pressure vessel containment steel ASTM a 533 B. This system was irradiated with a fluence of 7 1019 n/cm2 (E > 1 MeV). The annealing behaviour was then investigated after isochronal anneals of 300, 350, 400 and 4500C. Viker's hardness measurements were made parallel to the neutron scattering experiments. The hardness enhancement of 50% decreased after the first anneal to 30% and after the second to 18%. The neutron scattering patterns show a decrease in the number of very small voids having a Guinier radius less than 5 A. These voids have annealed, or coagulated into larger voids (Rg = 20-25 A) with a density of n = 1015 cm-3. After the third anneal at 4000C, the scattering patterns became, within statistical errors, identical to the scattering pattern of the unirradiated specimen; but a hardness enhancement of 13% was measured. (orig./WBU)

  19. Fundamental neutron physics at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  20. Radiography with polarised neutrons

    International Nuclear Information System (INIS)

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd1-xNix and Ni3Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd1-xNix and Ni3Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni3Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature TC on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with different ordering temperatures. This procedure was

  1. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  2. Differential and integral experiments of neutron multiplier candidate elements

    International Nuclear Information System (INIS)

    Using the Time-of-Flight technique to measure double differential neutron emission cross sections, (n, 2n) cross sections at 14 MeV incident neutron energy were obtained for Be, Pb and Bi which are representative elements for neutron multiplier candidates. Secondary neutron spectra and angular distributions were also obtained. From these differential experiments, secondary neutron spectra for Be and Pb showed different spectral shapes from those of ENDF/B-IV. Obtained (n, 2n) cross section for Pb is by 20% larger than the evaluated value of ENDF/B-IV. Measurements of neutron multiplication factors by spherical shells were carried out, for Pb only, to measure total leakage current spectra in the energy range 15 MeV to 10 KeV. Results were compared with calculated multiplication factors by the 1-d Ssub(n) code NITRAN with ENDF/B-IV data. Experimental multiplication factors were by 10 to 12 % larger than the calculated. Sensitivity analysis was applied to explain the consistency between differential and integral results, for Pb. The sensitivity of (n, 2n) cross section to multiplication factor explained clearly that both of differential and integral experiment for Pb showed the same result. (author)

  3. Fast neutrons set the pace. [Radiobiological investigations with fast neutrons at the CSIR cyclotron in Pretoria

    Energy Technology Data Exchange (ETDEWEB)

    Hough, J.H.; Slabbert, J.P. (Council for Scientific and Industrial Research, Pretoria (South Africa). National Accelerator Centre)

    1985-01-01

    Radiobiological investigations with fast neutrons have been initiated at the CSIR cyclotron in Pretoria. It was proposed some years ago to create a neutron therapy facility using the CSIR cyclotron. Neutrons are classified as high linear energy transfer (LET) particles. Biological damage occurring in tissue is a direct function of the LET of the incident radiation. To quantify the biological effects of different types of radiation on mammalian cells, several procedures and concepts have evolved from radiobiological research. Probably the most significant laboratory techniques developed, were the derivation of cell survival curves which are obtained by determining the number of cell colonies that have survived a certain radiation dose. A semi-logarithmic plot of surviving fraction versus the absorbed dose yields the survival curve. Dose modifying factors such as the relative biological effectiveness (RBE) of the radiation can be quantified in terms of this relationship. A radiobiological programme has to be undertaken before patients can receive neutron therapy at the CSIR cyclotron. The article is a discussion of this programme.

  4. Risk - hazardous incident - communication 1

    International Nuclear Information System (INIS)

    Terms such as 'risk', 'hazardous incident', and 'communication' have become major catchwords in discussions about present-day problems, and may be reduced to a common denominator: disaster. Such an association, however, is inappropriate, as the concept indicated by the term 'risk' for instance covers a wide scale of possible danger. Even the term 'hazardous incident' describes events or conditions that are very different in terms of possible danger, let alone disastrous effects. The discrepancy to be observed between the facts and the public perception usually is due to the fact that people have little insight into the complex of problems involved, and to insufficient communication between the world of experts and the general public. The contributions to this publication present information and discuss a variety of solution sets to improve the communication problems in the context of the problem area of 'risk - hazardous incident - communication'. (orig./CB)

  5. Risk - hazardous incident - communication 2

    International Nuclear Information System (INIS)

    It is difficult to develop an objective approach to risks and effects of a hazardous incident that would be acceptable to the community at large. It is a matter of fact that there is great dissimilarity in the way various social groups perceive and define the risks of a particular technology, or the effects of hazardous incidents, sometimes they have even contrary opinions. Hence, open communication is seriously hampered, which in turn aggravates the problems encountered in this context. This second volume of the publication dealing with the problem area of 'risk - hazardous incident - communication' is intended to reveal patterns of the recurrent process which impedes communication, and to bridge the gaps between the various 'styles' of risk perception and definition. (orig./CB)

  6. Incidence Handling and Response System

    CERN Document Server

    Kalbande, Prof Dhananjay R; Singh, Mr Manish

    2009-01-01

    A computer network can be attacked in a number of ways. The security-related threats have become not only numerous but also diverse and they may also come in the form of blended attacks. It becomes difficult for any security system to block all types of attacks. This gives rise to the need of an incidence handling capability which is necessary for rapidly detecting incidents, minimizing loss and destruction, mitigating the weaknesses that were exploited and restoring the computing services. Incidence response has always been an important aspect of information security but it is often overlooked by security administrators. in this paper, we propose an automated system which will handle the security threats and make the computer network capable enough to withstand any kind of attack. we also present the state-of-the-art technology in computer, network and software which is required to build such a system.

  7. Recent waterway incidents around dams

    Energy Technology Data Exchange (ETDEWEB)

    Rowat, L. [Ontario Power Generation Inc., Niagara Falls, ON (Canada)

    2009-07-01

    This presentation discussed recent waterway incidents around dams. Several case histories were presented, including a man who drowned when he slipped from the top of the South Idaho Power Plant Spillway in June 3 2004; 2 brothers who drowned near a spillway in Watson Minnesota, in June, 2004; a jet-skier who plunged to his death after ramping the 50 foot Brasfield Dam, in Virginia in June, 2004; a couple whose boat on Lake Austin was swept up against the sluicegate; an angler who drowned at a dam in Bridgeville, Delaware; a man who drowned swimming below a dam in San Marcos, Texas in April, 2005; and a fisherman who drowned at Logan Martin Dam in Birmingham, Alabama in April, 2005. A list of examples of fatalities at dams in 2004 and international incidents at dams from 2005 and 2006 to 2008 were also provided. Examples of Canadian incidents at dams were also listed. figs.

  8. Neutron radiography, techniques and applications

    International Nuclear Information System (INIS)

    After describing the principles of the ''in pool'' and ''dry'' installations, techniques used in neutron radiography are reviewed. Use of converter foils with silver halide films for the direct and transfer methods is described. Advantages of the use of nitrocellulose film for radiographying radioactive objects are discussed. Dynamic imaging is shortly reviewed. Standardization in the field of neutron radiography (ASTM and Euratom Neutron Radiography Working Group) is described. The paper reviews main fields of use of neutron radiography. Possibilities of use of neutron radiography at research reactors in various scientific, industrial and other fields are mentioned. Examples are given of application of neutron radiography in industry and the nuclear field. (author)

  9. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  10. Numerical simulation of high-energy neutron radiation effect of scintillation fiber

    Institute of Scientific and Technical Information of China (English)

    MA Qingli; TANG Shibiao; ZOU Jiwei

    2008-01-01

    Due to their low cost,flexibility,and convenience for long distance data transfer,plastic scintillation fibers (PSF) have been increasingly used in building detectors or sensors for detecting various radiations and imaging.In this paper,GEANT4 Monte Carlo simulation tool was used to obtain some radiation effects of PSF under high-energy neutron irradiation.BCF-20,a plastic fiber material,produced by Saint-Gobain,was used in the simulation.The fiber consists of a core scintillating material of polystyrene and an acrylic outer cladding.Incident neutrons produce energy deposition in fiber through neutron induced recoil proton events.The relationships between energy deposition efficiency and fiber length,fiber radius and incident neutron energy are presented.The variation with those parameters and parameter selection are also analyzed.

  11. Determination of Energy and Angular Response of an Albedo Neutron Personal Dosemeter

    International Nuclear Information System (INIS)

    The result of the determination of energy and angular response for the albedo neutron personal dosemeter used by CPHR, is described. The dosemeters consist of two pairs of LiF detectors (6LiF+7LiF) separated by a piece of boron-loaded plastic. For the study, the dosemeters were irradiated in three mixed neutron-gamma fields (thermal neutrons, moderated 241Am-Be and 241Am-Be) and at two incidence angles of radiation (0 deg. and 60 deg. ). The variation of the sensibility at different neutron spectra and incidence angles of radiation was determined. The methodology of dose evaluation, applying the obtained coefficients, was established. (author)

  12. Neutron induced fission of 234U

    Directory of Open Access Journals (Sweden)

    Pomp S.

    2012-02-01

    Full Text Available The fission fragment properties of 234U(n,f were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f is relevant, since it involves the same compound nucleus as formed after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f. The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the standard 1 (S1 mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean

  13. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  14. Neutron scattering cross sections of liquid hydrogen and deuterium for cold neutron production

    International Nuclear Information System (INIS)

    The double-differential and total cross sections for neutron scattering from liquid hydrogen and deuterium at temperatures between the melting and boiling points are calculated. It is based on a generalized cross-section model describing properly the molecular motions in the liquids in terms of individual translations and intermolecular correlations. Intramolecular motions such as the nuclear spin correlations, free rotations and harmonic vibrations are also included similarly to the Young-Koppel model. The results of numerical calculations agree very well with a variety of the experimental cross-section results, both double-differential and total, at different temperatures and in different ortho-para contents over a wide range of incident neutron energies. Furthermore it is shown that the velocity autocorrelation functions inherent in the liquids are determined successfully. (author)

  15. Comparison of neutron doses measured by CR-39 via LET spectrometry and neutron rem meter

    International Nuclear Information System (INIS)

    Neutron dose for proton induced reactions on the combination of 7Li and 181Ta target was measured using CR-39 detector and a neutron rem meter, at five different proton energies (8-24 MeV). In case of CR-39, the dose equivalent (HLET) was measured via linear energy transfer (LET) spectrometry method using the major, minor radii of each track and thickness of removed surface, whereas the rem meter provided the direct reading of ambient dose equivalent [H*(10)]. Both these quantities per incident proton were found to increase with the proton energy. The response ratio of HLET to [H*(10)] was found to be in the range of 0.15-0.3 with an average 0.20 ± 0.09. (author)

  16. Design of grazing-incidence multilayer supermirrors for hard-X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K. D.; Voutov, P.; Szentgyorgyi, A.;

    1995-01-01

    Extremely broadband grazing-incidence multilayers for hard-X-ray reflection can be obtained by a gradual change of the layer thicknesses down through the structure. Existing approaches for designing similar neutron optics, called supermirrors, are shown to provide respectable performance when app......-X-ray reflector and a hard-X-ray telescope) shows that an improved performance can be obtained. A multilayer whose bilayer thicknesses are given by a power law expression is found to provide the best solution; however, it is only slightly better than some of the adapted neutron designs...

  17. Neutron drip transition in accreting and nonaccreting neutron star crusts

    CERN Document Server

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  18. Neutron imaging system for neutron tomography, radiography, and beam diagnostics

    International Nuclear Information System (INIS)

    A neutron imaging system (NIS) has been recently installed at the University of Texas TRIGA reactor facility. The imaging system establishes new capabilities for beam diagnostics at the Texas Cold Neutron Source (TCNS) for real-time neutron radiography (RTNR) and for neutron computed tomography (NCT) research. The NIS will also be used for other research projects. The system consists of two subsystems as follows: (1) Thomson 9-in. neutron image intensifier (NII) tube sensitive to cold, thermal, and epithermal neutrons, (2) image-processing unit consisting of vidicon camera, two high-resolution monitors, image enhancement and measurement processor, and video printer. The NIS is installed at the cold neutron beam of the TCNS for testing and cold neutron beam diagnostics

  19. Development of highly effective neutron shields and neutron absorbing materials

    International Nuclear Information System (INIS)

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  20. Extracting the neutron-neutron scattering length -- recent developments

    OpenAIRE

    Gardestig, Anders

    2009-01-01

    The experimental and theoretical issues and challenges for extracting the neutron-neutron scattering length are discussed. Particular emphasis is placed on recent results and their impact on the field. Comments are made regarding current experimental and theoretical possibilities.

  1. Neutron nuclear physics under the neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    The concept of fast neutron physics facility in the Neutron Science Research project is described. This facility makes use of an ultra-short proton pulse (width < 1 ns) for fast neutron time-of-flight works. The current design is based on an assumption of the maximum proton current of 100 {mu}A. Available neutron fluence and energy resolution are explained. Some of the research subjects to be performed at this facility are discussed. (author)

  2. Time-resolved neutron imaging at ANTARES cold neutron beamline

    OpenAIRE

    Tremsin, A.S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-01-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time...

  3. Neutron spectra and dosimetric assessment around a neutron Howitzer container

    OpenAIRE

    Barros, Silvia; Gallego Díaz, Eduardo F.; Lorente Fillol, Alfredo; Gonçalves, Isabel F.; Vaz, Pedro; Vega-Carrillo, Héctor René; Zankl, María

    2014-01-01

    The neutron Howitzer container at the Neutron Measurements Laboratory of the Nuclear Engineering Department of the Polytechnic University of Madrid (UPM), is equipped with a 241Am-Be neutron source of 74 GBq in its center. The container allows the source to be in either the irradiation or the storage position. To measure the neutron fluence rate spectra around the Howitzer container, measurements were performed using a Bonner spheres spectrometer and the spectra were unfolded using the NSDann...

  4. Twisting Neutron Waves

    Science.gov (United States)

    Pushin, Dmitry

    Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.

  5. Neutron whispering gallery

    Science.gov (United States)

    Nesvizhevsky, Valery V.; Voronin, Alexei Yu.; Cubitt, Robert; Protasov, Konstantin V.

    2010-02-01

    The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms and neutrons. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. Here, we present for the first time the quantum whispering-gallery effect for cold neutrons. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to the recently discovered gravitationally bound quantum states of neutrons . These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a pure quantum state. Deeply bound whispering-gallery states are long-living and weakly sensitive to surface potential; highly excited states are short-living and very sensitive to the wall potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects.

  6. Neutron halos in hypernuclei

    CERN Document Server

    Lue, H F; Meng, J; Zhou, S G

    2003-01-01

    Properties of single-LAMBDA and double-LAMBDA hypernuclei for even-N Ca isotopes ranging from the proton dripline to the neutron dripline are studied using the relativistic continuum Hartree-Bogolyubov theory with a zero-range pairing interaction. Compared with ordinary nuclei, the addition of one or two LAMBDA-hyperons lowers the Fermi level. The predicted neutron dripline nuclei are, respectively, sup 7 sup 5 subLAMBDA Ca and sup 7 sup 6 sub 2 subLAMBDA Ca, as the additional attractive force provided by the LAMBDA-N interaction shifts nuclei from outside to inside the dripline. Therefore, the last bound hypernuclei have two more neutrons than the corresponding ordinary nuclei. Based on the analysis of two-neutron separation energies, neutron single-particle energy levels, the contribution of continuum and nucleon density distribution, giant halo phenomena due to the pairing correlation, and the contribution from the continuum are suggested to exist in Ca hypernuclei similar to those that appear in ordinary ...

  7. Apollo 16 neutron stratigraphy.

    Science.gov (United States)

    Russ, G. P., III

    1973-01-01

    The Apollo 16 soils have the largest low-energy neutron fluences yet observed in lunar samples. Variations in the isotopic ratios Gd-158/Gd-157 and Sm-150/Sm-149 (up to 1.9 and 2.0%, respectively) indicate that the low-energy neutron fluence in the Apollo 16 drill stem increases with depth throughout the section sampled. Such a variation implies that accretion has been the dominant regolith 'gardening' process at this location. The data may be fit by a model of continuous accretion of pre-irradiated material or by models involving as few as two slabs of material in which the first slab could have been deposited as long as 1 b.y. ago. The ratio of the number of neutrons captured per atom by Sm to the number captured per atom by Gd is lower than in previously measured lunar samples, which implies a lower energy neutron spectrum at this site. The variation of this ratio with chemical composition is qualitatively similar to that predicted by Lingenfelter et al. (1972). Variations are observed in the ratio Gd-152/Gd-160 which are fluence-correlated and probably result from neutron capture by Eu-151.

  8. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    During 1988--1990 the magnetic resonance dosimetry project was completed, as were the 250 MeV proton shielding measurements. The first cellular experiment using human cells in vitro at the 1 GeV electron storage ring was also accomplished. More detail may be found in DOE Report number-sign DOE/EV/60417-002 and the open literature cited in the individual progress subsections. We report Kinetic Energy Released in Matter (KERMA), factor measurements in several elements of critical importance to neutron radiation therapy and radiation protection for space habitation and exploration for neutron energies below 30 MeV. The results of this effort provide the only direct measurements of the oxygen and magnesium kerma factors above 20 MeV neutron energy, and the only measurements of the iron kerma factor above 15 MeV. They provide data of immediate relevance to neutron radiotherapy and impose strict criteria for normalizing and testing nuclear models used to calculate kerma factors at higher neutron energies

  9. Neutron shielding material

    International Nuclear Information System (INIS)

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  10. Neutron yields and emission rates in the forward direction for 50MeV/u 18O—ion on thick Be,Cu,Au targets

    Institute of Scientific and Technical Information of China (English)

    LiGui-Sheng; ZhangTian-Mei; 等

    1997-01-01

    Total neutron yields and neutron emission rates in the forward direction for 50MeV/u 18O-ion on thick Be,Cu,Au targets have been measured using an activation technique.The results indicate that neutron yields and emission rates in the forward direction depend on the atomic number of target nuclei,i.e.the lighter target the greater neurtron yield and neutron emission rate.Meanwhile,the neutron yield of 18O-ion is greater than that of 12C-ion when target nucleus and incident energy per nucleon are identical.

  11. Fast neutron measurements with 7Li and 6Li enriched CLYC scintillators

    Science.gov (United States)

    Giaz, A.; Blasi, N.; Boiano, C.; Brambilla, S.; Camera, F.; Cattadori, C.; Ceruti, S.; Gramegna, F.; Marchi, T.; Mattei, I.; Mentana, A.; Million, B.; Pellegri, L.; Rebai, M.; Riboldi, S.; Salamida, F.; Tardocchi, M.

    2016-07-01

    The recently developed Cs2LiYCl6:Ce (CLYC) crystals are interesting scintillation detectors not only for their gamma energy resolution (neutrons. The thermal neutrons were detected by the 6Li(n,α)t reaction while for the fast neutrons the 35Cl(n,p)35S and 35Cl(n,α)32P neutron-capture reactions were exploited. The energy of the outgoing proton or α particle scales linearly with the incident neutron energy. The kinetic energy of the fast neutrons can be measured using both the Time Of Flight (TOF) technique and using the CLYC energy signal. In this work, the response to monochromatic fast neutrons (1.9-3.8 MeV) of two CLYC 1″×1″ crystals was measured using both the TOF and the energy signal. The observables were combined to identify fast neutrons, to subtract the thermal neutron background and to identify different fast neutron-capture reactions on 35Cl, in other words to understand if the detected particle is an α or a proton. We performed a dedicated measurement at the CN accelerator facility of the INFN Legnaro National Laboratories (Italy), where the fast neutrons were produced by impinging a proton beam (4.5, 5.0 and 5.5 MeV) on a 7LiF target. We tested a CLYC detector 6Li-enriched at about 95%, which is ideal for thermal neutron measurements, in parallel with another CLYC detector 7Li-enriched at more than 99%, which is suitable for fast neutron measurements.

  12. Smaller, Lower-Power Fast-Neutron Scintillation Detectors

    Science.gov (United States)

    Patel, Jagdish; Blaes, Brent

    2008-01-01

    Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.

  13. Measurement of neutron inelastic scattering cross section of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Takako; Baba, Mamoru; Ibaraki, Masanobu; Sanami, Toshiya; Win, Than; Hirasawa, Yoshitaka; Matsuyama, Shigeo; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan)

    1998-03-01

    Neutron scattering from the 0{sup +}, 2{sup +} (1-st) and 4{sup +} (2nd) levels of {sup 238}U was measured for incident energies between 0.4 and 0.85 MeV at the Tohoku University 4.5 MV Dynamitron facility, using the time-of-flight (TOF) method with monoenergetic pulsed neutrons by the {sup 7}Li(p,n) reaction. The results are presented in comparison with other experimental data and evaluated data. (author)

  14. Backward emitted high-energy neutrons in hard reactions of p and pi^+ on carbon

    OpenAIRE

    Malki, A.; Alster, J.; Asryan, G.; Barton, D; Baturin, V.; Buchkojarova, N.; Carroll, A.; Chtchetkovski, A.; Heppelmann, S.; Kawabata, T.; Leksanov, A.; Makdisi, Y.; Minina, E.; Navon, I.; Nicholson, H.

    2000-01-01

    Beams of protons and pions of 5.9 GeV/c were incident on a C target. Neutrons emitted into the back hemisphere, in the laboratory system, were detected in (triple) coincidence with two emerging $p_t>$0.6 GeV/c particles. We present the momentum spectra of the backward going neutrons, which have the same universal shape observed in earlier (inclusive) reactions induced by hadrons, $\\gamma$, $\

  15. Calculated neutron KERMA factors based on the LLNL ENDL data file. Volume 27

    International Nuclear Information System (INIS)

    Neutron KERMA factors calculated from the LLNL ENDL data file are tabulated for 15 composite materials and for the isotopes or elements in the ENDL file from Z = 1 to Z = 29. The incident neutron energies range from 1.882 x 10-5 to 20. MeV for the composite materials and from 1.30 x 10-9 to 20. MeV for the isotopes and elements

  16. Serious Incident Management in Australia

    Science.gov (United States)

    Ellis, Ike; Thorley-Smith, Sara

    2007-01-01

    As part of its efforts to ensure school safety, the government of New South Wales, Australia, has developed simulation exercises to better prepare principals to manage serious incidents, in collaboration with police. This article describes two initiatives implemented across NSW. The exercises provide principals in both secondary and primary…

  17. [Incidence of cancer in Navarre].

    Science.gov (United States)

    Ardanaz, E; Moreno, C; Pérez de Rada Arístegui, M E; Ezponda, C; Navaridas, N

    2004-01-01

    Between 1998 and 2000 an annual average of 3,303 cases of invasive cancer were registered in Navarre, 58% of them in men. If we except non melanoma skin tumours, the annual number of cases was 2,495, with gross incidence rates of 559 and 372 per 100,000 in men and women, and rates adjusted to the world population of 312 and 203 per 100,000 respectively. Amongst men, the four most frequently diagnosed tumoural localisations were the prostate, lung, colorectal and bladder, accounting for 57% of all cases. The most notable due to their frequency amongst women were tumours of the breast, colorectal, uterus body and ovary, accounting for 54% of all cases. With respect to the five year period from 1993 to 1997, the global incidence of cancer in the three year period from 1998 to 2000 has increased 4.2% in men and 7.4% in women. The incidence of lung cancer and non-Hodgkin lymphomas in both sexes and of breast cancer in women and prostate cancer in men are notable. There continues to be a fall in the incidence rates of stomach cancer in both sexes, following the tendency begun in the 1970s. PMID:15644889

  18. Cooling of Neutron Stars and 3P_2 neutron gap

    OpenAIRE

    Grigorian, H.; Voskresensky, D.N.(National Research Nuclear University (MEPhI), Moscow, 115409, Russia)

    2005-01-01

    We study the dependence of the cooling of isolated neutron stars on the magnitude of the $3P_2$ neutron gap. It is demonstrated that our ``Nuclear medium cooling scenario'' is in favor of a suppressed value of the $3P_2$ neutron gap.

  19. Neutron imaging and small angle neutron scattering instruments at KUR

    International Nuclear Information System (INIS)

    We review the neutron imaging (NI) and small-angle neutron scattering (SANS) instruments at KUR, Kumatori, Osaka, Japan. There are two NI and one SANS instruments. The both instruments are compact and used flexibly. Some challenging experiments taking advantage of low neutron fluence are described. The feature of KUR is also described briefly. (author)

  20. On the yield of cold and ultracold neutrons for liquid hydrogen at low temperatures near the melting point

    CERN Document Server

    Morishima, N

    1999-01-01

    The neutron scattering cross sections for liquid hydrogen in the temperature range from the melting point to the boiling point are calculated. It is shown that lowering the temperature results in a significant increase in the yield of cold neutrons: for instance, a 44% increase for an incident neutron energy of 19.4 meV. The major cause of this increment is the para-to-ortho transition of a hydrogen molecule though accompanied by an appreciable increase in the density. The results of the cold- and ultracold-neutron yields are discussed in connection with the experimental results of Altarev et al. at the WWR-M reactor.

  1. Development of inverse-planning system for neutron capture therapy

    International Nuclear Information System (INIS)

    To lead proper irradiation condition effectively, Japan Atomic Energy Agency (JAEA) is developing an inverse-planning system for neutron capture therapy (NCT-IPS) based on the JAEA computational dosimetry system (JCDS) for BNCT. The leading methodology of an optimum condition in the NCT-IPS has been applied spatial channel theory with adjoint flux solution of Botzman transport. By analyzing the results obtained from the adjoint flux calculations according to the theory, optimum incident point of the beam against the patient can be found, and neutron spectrum of the beam which can generate ideal distribution of neutron flux around tumor region can be determined. The conceptual design of the NCT-IPS was investigated, and prototype of NCT-IPS with JCDS is being developed. (author)

  2. High-energy neutron detection and spectrometry with superheated emulsions

    Science.gov (United States)

    d'Errico, Francesco; Prokofiev, Alexander; Sannikov, Alexander; Schuhmacher, Helmut

    2003-06-01

    The response of some superheated emulsions was investigated using quasi-monoenergetic neutron beams in the 46-134 MeV energy range at the Université Catholique de Louvain, Louvain la Neuve, Belgium and at The Svedberg Laboratory, Uppsala, Sweden. In order to determine the detector response to the high-energy beams, the spectra of incident neutrons were folded over functions modeled after the cross-sections for the neutron-induced production of heavy ions from the detector elements. The cross-sections for fluorine and chlorine were produced in this work by means of the Monte Carlo high-energy transport code HADRON based on the cascade-exciton model of nuclear interactions.

  3. Crystal mosaic spread determination by slow neutron scattering

    International Nuclear Information System (INIS)

    A method has been established for determination of the crystal mosaic spread. The method is based on recording all neutron-reflected, under bragg condition, from a certain crystal plane. A computer code was developed especially in order to fit the measured wavelength's distribution of the reflected neutrons with the calculated one, assuming that the crystal mosaic spread has a Gaussian shape. The code accounts for the parameters of the time of flight spectrometer used during the present measurements, as well as divergence of the incident neutron beam. The developed method has been applied for determination of the mosaic spread of both zinc and pyrolytic graphite (P.G.) crystals. The mosaic spread values deduced from the present measurements, are 10'+-6' and 3.600+-0.160 respectively for Zn and P.G. crystals

  4. Recent advances in neutron tomography

    International Nuclear Information System (INIS)

    Neutron imaging has been shown to be an excellent imaging tool for many nondestructive evaluation applications. Significantly improved contrast over X-ray images is possible for materials commonly found in engineering assemblies. The major limitations have been the neutron source and detection. A low cost, position sensitive neutron tomography detector system has been designed and built based on an electro-optical detector system using a LiF-ZnS scintillator screen and a cooled charge coupled device. This detector system can be used for neutron radiography as well as two and three-dimensional neutron tomography. Calculated performance of the system predicted near-quantum efficiency for position sensitive neutron detection. Experimental data was recently taken using this system at McClellan Air Force Base, Air Logistics Center, Sacramento, CA. With increased availability of low cost neutron sources and advanced image processing, neutron tomography will become an increasingly important nondestructive imaging method

  5. Direct Fast-Neutron Detection

    CERN Document Server

    Stromswold, D C; Peurrung, A; Reede, P

    2000-01-01

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gam...

  6. Nuclear fusion and neutron processes

    International Nuclear Information System (INIS)

    Problems of providing development of the design of an experimental fusion reactor with necessary neutron-physical data are discussed. Isotope composition of spent fuel in the blanket of a hybride fusion reactor (HFR) is given. Neutron balance of the reactor with Li-blanket and neutron balance of the reactor with Pb-multiplier are disclosed. A simplified scheme of neutron and energy balance in the HFR blanket is given. Development and construction of the experimental power reactor is shown to become the nearest problem of the UTS program. Alongside with other complex physical and technical problems solution of this problem requires realization of a wide program of neutron-physical investigations including measurements with required accuracy of neutron cross sections, development of methodical, program and constant basis of neutron calculations and macroscopic experiments on neutron sources

  7. Uniformly rotating neutron stars

    CERN Document Server

    Boshkayev, Kuantay

    2016-01-01

    In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...

  8. Plasma focus neutron source

    International Nuclear Information System (INIS)

    A neutron source not permanently active is obtained from an electric discharge plasma focus (PF) device. A small PF device, a Mather model device, works in the limit of low energy, 100 to 200 J at charging voltage of 20 to 30 kV with a capacitor bank of 160 nF, and a characteristic inductance of 25 to 50 nH. A theoretical model leads us to estimate the optimum values of capacitance, inductance, initial charging voltage and electrode geometry. In this work is presented the design evolution and construction of a first PF neutron source prototype, preliminary measures of current, voltage and temporal evolution of the current with the end of have an electric characterization. This parameters must be optimized with the objective of geeting an emission of 104 to 105 neutrons per pulse when Deuterium is used like filled gas (C.W)

  9. Ultrafast neutron detector

    Science.gov (United States)

    Wang, Ching L.

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  10. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  11. Atmospheres around Neutron Stars

    Science.gov (United States)

    Fryer, Chris L.; Benz, Willy

    1994-12-01

    Interest in the behavior of atmospheres around neutron stars has grown astronomically in the past few years. Some of this interest arrived in the wake of the explosion of Supernova 1987A and its elusive remnant; spawning renewed interest in a method to insure material ``fall-back'' onto the adolescent neutron star in an effort to transform it into a silent black hole. However, the bulk of the activity with atmospheres around neutron stars is concentrated in stellar models with neutron star, rather than white dwarf, cores; otherwise known as Thorne-Zytkow objects. First a mere seed in the imagination of theorists, Thorne-Zytkow objects have grown into an observational reality with an ever-increasing list of formation scenarios and observational prospects. Unfortunately, the analytic work of Chevalier on supernova fall-back implies that, except for a few cases, the stellar simulations of Thorne-Zytkow objects are missing an important aspect of physics: neutrinos. Neutrino cooling removes the pressure support of these atmospheres, allowing accretion beyond the canonical Eddington rate for these objects. We present here the results of detailed hydrodynamical simulations in one and two dimensions with the additional physical effects of neutrinos, advanced equations of state, and relativity over a range of parameters for our atmosphere including entropy and chemical composition as well as a range in the neutron star size. In agreement with Chevalier, we find, under the current list of formation scenarios, that the creature envisioned by Thorne and Zytkow will not survive the enormous appetite of a neutron star. However, neutrino heating (a physical effect not considered in Chevalier's analysis) can play an important role in creating instabilities in some formation schemes, leading to an expulsion of matter rather than rapid accretion. By placing scrutiny upon the formation methods, we can determine the observational prospects for each.

  12. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  13. Neutron imaging in materials science

    OpenAIRE

    Nikolay Kardjilov; Ingo Manke; André Hilger; Markus Strobl; John Banhart

    2011-01-01

    Neutron imaging is a non-destructive technique that can reveal the interior of many materials and engineering components and also probe magnetic fields. Within the past few years, several new imaging modes have been introduced that extend the scope of neutron imaging beyond conventional neutron attenuation imaging, yielding both 2- and 3D information about properties and phenomena inaccessible until now. We present an overview of the most important advances in the application of neutron imagi...

  14. Neutron skin in Osmium isotopes

    International Nuclear Information System (INIS)

    Here we have made an attempt to calculate neutron skin thickness in rare earth even-even osmium isotopes. The selected isotopes ranges from 2-p to 2-n drip line. Neutron skin is an important feature of neutron rich nuclei. The ground state proton and neutron rms radii have been calculated using HFB approximation. A comparison of calculated radii have been done by using two different Skyrme parameterizations and two different basis

  15. Fast neutron dosimetry

    International Nuclear Information System (INIS)

    Research concentrated on three major areas during the last twelve months: (1) investigations of energy fluence and absorbed dose measurements using crystalline and hot pressed TLD materials exposes to ultrasoft beams of photons, (2) fast neutron kerma factor measurements for several important elements as well as NE-213 scintillation material response function determinations at the intense ''white'' source available at the WNR facility at LAMPF, and (3) kerma factor ratio determinations for carbon and oxygen to A-150 tissue equivalent plastic at the clinical fast neutron radiation facility at Harper Hospital, Detroit, MI. Progress summary reports of these efforts are given in this report

  16. GUIDE FOR POLARIZED NEUTRONS

    Science.gov (United States)

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  17. Fast neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  18. Spallation neutron production measurements

    International Nuclear Information System (INIS)

    Measurements of neutron production by the proton bombardment of range-thick targets of lead (Pb) and of tungsten (W) at energies of 0.8, 1.0, 1.2, and 1.4 GeV were made for comparison with calculations based on the computer codes LAHET for neutrons with Eη > 20 MeV and MCNP for Eη ≤ 20 MeV and also to compare with each of two prior experiments dating from about 1965. 2 refs., 7 figs., 4 tabs

  19. The Neutron Star Zoo

    CERN Document Server

    Harding, Alice K

    2013-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission.

  20. Comparison between electron and neutron Compton scattering studies

    OpenAIRE

    Moreh Raymond; Finkelstein Yacov; Vos Maarten

    2015-01-01

    We compare two techniques: Electron Compton Scattering (ECS) and neutron Compton scattering (NCS) and show that using certain incident energies, both can measure the atomic kinetic energy of atoms in molecules and solids. The information obtained is related to the Doppler broadening of nuclear levels and is very useful for deducing the widths of excited levels in many nuclei in self absorption measurements. A comparison between the atomic kinetic energies measured by the two methods on the sa...

  1. Inversion of neutron/gamma spectra from scintillator measurements

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, J., E-mail: koehler@physik.uni-kiel.de [IEAP, Christian Albrechts University, Kiel (Germany); Ehresmann, B.; Martin, C.; Boehm, E.; Kharytonov, A. [IEAP, Christian Albrechts University, Kiel (Germany); Kortmann, O. [IEAP, Christian Albrechts University, Kiel (Germany); Space Sciences Laboratory, Berkley, CA (United States); Zeitlin, C.; Hassler, D.M. [Southwest Research Institute, Department of Space Studies, Boulder, CO (United States); Wimmer-Schweingruber, R.F. [IEAP, Christian Albrechts University, Kiel (Germany)

    2011-11-15

    The Radiation Assessment Detector (RAD) on-board NASA's Mars Science Laboratory (MSL) rover will measure charged particles as well as neutron and gamma radiation on the Martian surface. Neutral particles are an important contribution to this radiation environment. RAD measures them with a CsI (Tl) and a plastic scintillator, which are both surrounded by an anticoincidence. The incident neutron/gamma spectrum is obtained from the measurements using inversion methods which often fit a functional behavior, e.g., a power law, to the measured data applying the instrument response function and, e.g., a least-squares method. In situations where count rates are small, i.e., where the stochastic nature of the measurement is evident, maximum likelihood estimates with underlying Poissonian statistics improve the resulting spectra. We demonstrate the measurement and inversion of gamma/neutron spectra for a detector concept featuring one high-density scintillator and one high-proton-content scintillator. The applied inversion methods derive the original spectra without any strong assumptions of the functional behavior. Instrument response functions are obtained from Monte-Carlo simulations in matrix form with which the instrument response is treated as a set of linear equations. Using the response matrices we compare a constrained least-squares minimization, a chi-squared minimization and a maximum likelihood method with underlying Poissonian statistics. We make no assumptions about the incident particle spectrum and the methods intrinsically satisfy the constraint of non-negative counts. We analyzed neutron beam measurements made at the Physikalisch Technische Bundesanstalt (PTB) and inverted the measurement data for both neutron and gamma spectra. Monte-Carlo-generated measurements of the expected Martian neutron/gamma spectra were inverted as well, here the maximum likelihood method with underlying Poissonian statistics produces significantly better results.

  2. EURADOS intercomparison 2012 for neutron dosemeters

    Energy Technology Data Exchange (ETDEWEB)

    Fantuzzi, E. [ENEA-Radiation Protection Institute, Bologna (Italy); Chevallier, M.A. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France); Cruz-Suarez, R. [International Atomic Energy Agency, Vienna (Austria); Luszik-Bhadra, M. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Mayer, S. [Paul Scherrer Institute (PSI), Villigen (Switzerland); Thomas, D.J. [National Physical Laboratory (NPL), Teddington (United Kingdom); Tanner, R. [Public Health England, Oxon (United Kingdom); Vanhavere, F. [SCK-CEN, Belgian Nuclear Research Centre, Mol (Belgium)

    2014-11-15

    EURADOS, within the work performed by Working Group 2 - Harmonization of Individual Monitoring in Europe, has started a self-sustained programme of regular intercomparisons and has successfully executed three intercomparisons for whole body photon dosemeters (IC2008, IC2010, IC2012) and one intercomparison for extremity dosemeters for photon and beta fields (IC2009). In 2012, the EURADOS intercomparison IC2012n was launched for personal neutron dosemeters routinely used to measure personal dose equivalent, Hp(10), in individual monitoring. No systems under development were allowed to participate. IC2012n was carried out by a EURADOS nominated Organization Group (OG) consisting of: Marie- Anne Chevallier (IRSN, F), Rodolfo Cruz-Suarez (IAEA, UN-Vienna), Marlies Luszik-Bhadra (PTB, D), Sabine Mayer (PSI, CH), David J. Thomas (NPL, UK), Rick Tanner (PHE, UK), Filip Vanhavere (SCK-CEN, B) led by a Coordinator, Elena Fantuzzi (ENEA, I). 31 participants registered for the comparison, with 34 dosimetry systems. In total 816 dosemeters were irradiated in selected neutron fields on an ISO slab phantom. The irradiations were performed at 2 European accredited laboratories which are both National Primary Metrology Laboratories for ionizing radiation: NPL (National Physical Laboratory, UK) and PTB (Physikalisch-Technische Bundesanstalt, D). All irradiations were carried out according to the irradiation plan developed by the OG. The overall results show that most, although not all, dosimetric systems perform acceptably well (within a factor of 2) for irradiations with a bare radionuclide source ({sup 252}Cf at 0 ), whilst more than half of the systems underestimate the reference value for irradiations from non-normal angles of incidence irradiations ({sup 252}Cf at 45 ) or for simulated workplace fields ({sup 252}Cf(D{sub 2}O) or {sup 252}Cf source behind a shadow cone). The performance for 250 keV mono-energetic neutron irradiations varies mainly reflecting the detection

  3. Neutron Energy Spectra from Neutron Induced Fission of 235U at 0.95 MeV a of 238U at 1.35 and 2.02 MeV

    International Nuclear Information System (INIS)

    The shapes of fission neutron spectra are of interest for power reactor calculations. Recently it has been suggested that the neutron induced fission spectrum of 235U may be harder than was earlier assumed. For this reason measurements of the neutron spectra of some fissile isotopes are in progress at our laboratory. This report will present results from studies of the energy spectra of the neutrons emitted in the neutron induced fission of 235U and 238U. The measurements were performed at an incident neutron energy of 0.95 MeV for 235U and at energies of 1.35 and 2.02 MeV for 238U using time-of-flight techniques. The time-of-flight spectra were only analysed at energies higher than those of the incident neutrons and up to about 10 MeV. Corrections for neutron attenuation in the uranium samples were calculated using a Monte Carlo program. The corrected fission neutron spectra were fitted to Maxwellian temperature distributions. For 235U a temperature of 1.27 ± 0.01 MeV gives the best fit to the experimental data and for 238U the corresponding values are 1.29 ± 0.03 MeV at 1.35 MeV and 1.29 ± 0.02 MeV at 2.02 MeV

  4. Rotational Deformation of Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    WEN De-Hua; CHEN Wei; LIU Liang-Gang

    2005-01-01

    @@ The rotational deformations of two kinds of neutron stars are calculated by using Hartle's slow-rotation formulism.The results show that only the faster rotating neutron star gives an obvious deformation. For the slow rotating neutron star with a period larger than hundreds of millisecond, the rotating deformation is very weak.

  5. Neutronic measurements of radioactive waste

    International Nuclear Information System (INIS)

    This document presents the general matters involved in the radioactive waste management and the different non destructive assays of radioactivity. The neutronic measurements used in the characterization of waste drums containing emitters are described with more details, especially the active neutronic interrogation assays with prompt or delayed neutron detection: physical principle, signal processing and evaluation of the detection limit. (author)

  6. New electronically black neutron detectors

    International Nuclear Information System (INIS)

    Two neutron detectors are described that can function in a continuous radiation background. Both detectors identify neutrons by recording a proton recoil pulse followed by a characteristic capture pulse. This peculiar signature indicates that the neutron has lost all its energy in the scintillator. Resolutions and efficiencies have been measured for both detectors

  7. Time-of-flight measurement of fast neutrons with Timepix detectors

    Science.gov (United States)

    Bergmann, B.; Nelson, R. O.; O'Donnell, J. M.; Pospisil, S.; Solc, J.; Takai, H.; Vykydal, Z.

    2014-05-01

    Timepix pixel detectors have been used to study the response of silicon hybrid pixel detectors to fast neutrons from a pulsed neutron beam at WNR FP30R, a 14 m long flight path, in the Los Alamos Neutron Science Center. Neutrons with kinetic energies up to 600 MeV were available. In order to enhance the conversion of neutrons to energetic charged particles, several converter foils and filters were attached to the 300 μm thick silicon sensor, i.e. polyethylene, polyethylene with aluminum, 6LiF, 6LiF with aluminum, aluminum. The Time-of-Arrival mode of the Timepix detectors has permitted the application of the Time-of-Flight (TOF) technique for the assignment of the detected interactions in the form of clusters (groups of adjacent pixels) in the pixel matrix, to the kinetic energies of the incident neutrons. It was found that, for lower neutron energies ( ~ MeV range) the cluster rates below the polyethylene and the polyethylene and aluminum region, produced by recoil protons, are a good measure for the mean kinetic energies of neutrons. For energies above 50 MeV nuclear reactions in the silicon dominate the detector response. In this energy range the shape of the clusters indicates the neutron kinetic energy.

  8. Improvement of neutron dose calculation algorithm using panasonic UD-809P type albedo TLD

    International Nuclear Information System (INIS)

    Panasonic UD-809P type albedo TLD mounted on a water phantom were used to measure neutron personal dose equivalent in a Korean nuclear power plant. From the measured TL readings, personal dose equivalents from thermal, epithermal and fast neutrons were evaluated by using a method adopted in a neutron dose calculation algorithm for Panasonic UD-809P type albedo TLD, which was recommended in a Panasonic TLD System User's Manual. The results showed that personal dose equivalent for fast neutrons could not be adequately evaluated in a field with high thermal neutron fraction. This seems to be related to the incomplete incidence of albedo thermal neutrons to the TLD. In order to calculate the personal dose equivalent from fast neutrons in the field condition to be encountered in a nuclear power plant, new method for the neutron dose calculation algorithm were suggested. For a known energy spectrum, it is very easy and simple to use this method for the evaluation of neutron personal dose equivalent

  9. Neutron detection with a Micromegas type detector: from nuclear physics to imaging

    International Nuclear Information System (INIS)

    Micromegas is a double stage gaseous detector consisting of a drift space and an amplification gap separated by a micro-mesh. It was invented in 1996, initially for the detection of high energy particles. Thanks to its favorable features (low cost, good spatial and time resolution), this detector can be used in other applications, especially in neutron detection. Since neutrons don't produce ionisation, two processes of conversion permit to detect them with a Micromegas. At low energy, the reactions n(6Li,α)t or 10B(n,α)7Li are used by putting 6Li or 10B at the entry of the detector. At higher energy, above several keV, neutrons are detected through their elastic collisions with the gas atoms, hydrogen or helium, that are then producing ionisation. This new neutron detector has been studied more particularly with three applications: the calculation of the neutron beam shape of the n-TOF facility at CERN, the evaluation of the incident neutron energy studying the recoil angles and neutron imaging. These three applications required different configurations of the detector with one dimensional or two dimensional strip layout, and several ways of functioning using the charge or the current of the strips. Consequently, this work is a wide review of the possibilities given by this type of neutron detection and it demonstrates the large adaptability of the Micromegas detector for neutrons. (author)

  10. Neutron scattering from 12C in the few-MeV region

    International Nuclear Information System (INIS)

    Neutron total cross sections of natural carbon are deduced from the observed transmission of approximately monoenergetic neutrons through carbon samples of varying thickness. The measurements extend from approximately equal to 0.1 to 4.5 MeV with resolutions of approximately equal to 2 to 100 keV. Neutron differential-elastic-scattering cross sections of natural carbon are measured from 1.5 to 4.0 MeV at incident-neutron energy intervals of approximately less than 100 keV, over an angular range of approximately equal to 20 to 1600 and with energy resolutions of 20 to 50 keV. The experimental results are interpreted in terms of a multilevel R-function analysis. Results are compared with the large body of measured and evaluated neutron total and scattering cross sections and scattered neutron polarizations reported in the literature. It is suggested that the observed neutron total and scattering cross sections of carbon are physically consistent and suitable for use as a reference standard in experimental studies of neutron processes. The R-function description should provide a convenient description of neutron total and scattering cross sections of carbon as a function of both angle and energy. 88 references

  11. Contributions to the theory of fission neutron emission

    International Nuclear Information System (INIS)

    This report gives a compilation of recent work performed at Technical University, Dresden by D. Seeliger, H. Maerten and A. Ruben on the topic of fission neutron emission. In the first paper calculated fission neutron spectra are presented using the temperature distribution model FINESSE for fissioning actinide nuclei. In the second paper, starting from a general energy balance, Terrell's approach is generalized to describe average fragment energies as a function of incident energy; trends of fragment energy data in the Th-Pu region are well reproduced. In the third contribution, prompt fission neutron spectra and fragment characteristics for spontaneous fission of even Pu-isotopes are presented and discussed in comparison with experimental data using a phenomenological scission point model including temperature dependent shell effects. In the fourth paper, neutron multiplicities and energy spectra as well as average fragment energies for incident energies from threshold to 20 MeV (including multiple-chance fission) for U-238 are compared with traditional data representations. (author). Refs, figs and tabs

  12. Neutron recognition in the LAND detector for large neutron multiplicity

    International Nuclear Information System (INIS)

    The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment.

  13. Measurements of fast neutron-induced fission data of Np-237

    Energy Technology Data Exchange (ETDEWEB)

    Win, Than; Saito, Keiichiro; Baba, Mamoru; Iwasaki, Tomohiko; Ibaraki, Masanobu; Miura, Takako; Sanami, Toshiya; Nauchi, Yasushi; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1998-03-01

    We have performed the following measurements for {sup 237}Np using the 4.5 MV Dynamitron accelerator of Tohoku University as the pulsed neutron source: (1) Prompt fission neutron spectrum for 0.62 MeV incident neutrons, and (2) Neutron-Induced fission cross-section between 10 and 100 keV. The prompt fission neutron spectrum was measured using TOF method with a heavily shielded NE213 scintillation detector. The Maxwellian temperature T{sub m} derived is 1.28 MeV, which is lower than that of 1.38 MeV in JENDL-3.2. The fission cross sections were measured between 10 - 100 keV. The results are between JENDL-3.2 and ENDF/B-VI. (author)

  14. Calibration of LiBaF sub 3 Ce scintillator for fission spectrum neutrons

    CERN Document Server

    Reeder, P L

    2002-01-01

    The scintillator LiBaF sub 3 doped with small amounts of Ce sup + sup 3 has the ability to distinguish heavy charged particles (p, d, t, or alpha) from beta and/or gamma radiation based on the presence or absence of nanosecond components in the scintillation light output. Since the neutron capture reaction on sup 6 Li produces recoil alphas and tritons, this scintillator also discriminates between neutron induced events and beta or gamma interactions. An experimental technique using a time-tagged sup 2 sup 5 sup 2 Cf source has been used to measure the efficiency of this scintillator for neutron capture, the calibration of neutron capture pulse height, and the pulse height resolution--all as a function of incident neutron energy.

  15. Time-of-flight diffraction at pulsed neutron sources: An introduction to the symposium

    International Nuclear Information System (INIS)

    In the 25 years since the first low-power demonstration experiments, pulsed neutron sources have become as productive as reactor sources for many types of diffraction experiments. The pulsed neutron sources presently operating in the United States, England, and Japan offer state of the art instruments for powder and single crystal diffraction, small angle scattering, and such specialized techniques as grazing-incidence neutron reflection, as well as quasielastic and inelastic scattering. In this symposium, speakers review the latest advances in diffraction instrumentation for pulsed neutron sources and give examples of some of the important science presently being done. In this introduction to the symposium, I briefly define the basic principles of pulsed neutron sources, review their development, comment in general terms on the development of time-of-flight diffraction instrumentation for these sources, and project how this field will develop in the next ten years

  16. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, D. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); INAIL – DIT, Via di Fontana Candida n.1, 00040 Monteporzio Catone (Italy); Bedogni, R., E-mail: roberto.bedogni@lnf.infn.it [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Bortot, D. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Palomba, M. [ENEA Casaccia, Via Anguillarese, 301, S. Maria di Galeria, 00123 Roma (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); INFN – Milano, Via Celoria16, 20133 Milano (Italy); Introini, M.V.; Lorenzoli, M. [Politecnico di Milano, Dipartimento di Energia, Via La Masa 34, 20156 Milano (Italy); Gentile, A. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); Strigari, L. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Pressello, C. [Department of Medical Physics, Azienda Ospedaliera San Camillo Forlanini, Circonvallazione Gianicolense 87, 00152 Roma (Italy); Soriani, A. [Laboratory of Medical Physics, Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Roma (Italy); Gómez-Ros, J.M. [INFN – LNF, Via E. Fermi n.40, Frascati, 00044 Roma (Italy); CIEMAT, Av. Complutense 40, 28040 Madrid (Spain)

    2015-10-21

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 10{sup 9}–10{sup 10} cm{sup −2}, using the ex-core radial thermal neutron column of the ENEA Casaccia – TRIGA reactor. The results are presented in this work.

  17. Thermal neutron imaging through XRQA2 GAFCHROMIC films coupled with a cadmium radiator

    Science.gov (United States)

    Sacco, D.; Bedogni, R.; Bortot, D.; Palomba, M.; Pola, A.; Introini, M. V.; Lorenzoli, M.; Gentile, A.; Strigari, L.; Pressello, C.; Soriani, A.; Gómez-Ros, J. M.

    2015-10-01

    A simple and inexpensive method to perform passive thermal neutron imaging on large areas was developed on the basis of XRQA2 GAFCHROMIC films, commonly employed for quality assurance in radiology. To enhance their thermal neutron response, the sensitive face of film was coupled with a 1 mm thick cadmium radiator, forming a sandwich. By exchanging the order of Cd filter and sensitive film with respect to the incident neutron beam direction, two different configurations (beam-Cd-film and beam-film-Cd) were identified. These configurations were tested at thermal neutrons fluence values in the range 109-1010 cm-2, using the ex-core radial thermal neutron column of the ENEA Casaccia - TRIGA reactor. The results are presented in this work.

  18. Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region

    Science.gov (United States)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2016-03-01

    Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  19. Investigating Prompt Fission Neutron Emission from 235U(n,f in the Resolved Resonance Region

    Directory of Open Access Journals (Sweden)

    Göök Alf

    2016-01-01

    Full Text Available Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  20. Investigation of the Statistical Properties of Stable Eu Nuclei using Neutron-Capture Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Agvaanluvsan, U; Alpizar-Vicente, A; Becker, J A; Becvar, F; Bredeweg, T A; Clement, R; Esch, E; Folden, III, C M; Hatarik, R; Haight, R C; Hoffman, D C; Krticka, M; Macri, R A; Mitchell, G E; Nitsche, H; O' Donnell, J M; Parker, W; Reifarth, R; Rundberg, R S; Schwantes, J M; Sheets, S A; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wilk, P; Wouters, J M; Wu, C Y

    2005-10-04

    Neutron capture for incident neutron energies <1eV up to 100 keV has been measured for {sup 151,153}Eu targets. The highly efficient DANCE (Detector for Advanced Neutron Capture Experiments) array coupled with the intense neutron beam at Los Alamos Neutron Science Center is used for the experiment. Stable Eu isotopes mass separated and electroplated on Be backings were used. Properties of well-resolved, strong resonances in two Eu nuclei are examined. The parameters for most of these resonances are known. Detailed multiplicity information for each resonance is obtained employing the high granularity of the DANCE array. The radiative decay cascades corresponding to each resonance are obtained in the experiment. The measurements are compared to simulation of these cascades which calculated with various models for the radiative strength function. Comparison between the experimental data and simulation provides an opportunity to investigate the average quantities.

  1. Development of a scattering probability method for accurate vapor fraction measurements by neutron radiography

    CERN Document Server

    Joo, H

    1999-01-01

    Recent test results indicated drawbacks associated with the simple exponential attenuation method (SEAM) as currently applied to neutron radiography measurements to determine vapor fractions in a hydrogenous two-phase flow in a metallic conduit. The scattering component of the neutron beam intensity exiting the flow system is not adequately accounted for by SEAM, and this leads to inaccurate results. To properly account for the scattering effect, a neutron scattering probability method (SPM) is developed. The method applies a neutron-hydrogen scattering kernel to scattered thermal neutrons that leave the incident beam in narrow conduits but eventually show up elsewhere in the measurements. The SPM has been tested with known vapor (void) distributions within an acrylic disk and a water/vapor channel. The vapor (void) fractions deduced by SPM are in good agreement with the known exact values. Details of the scattering correction method and the test results are discussed.

  2. Observation of the one- to six-neutron transfer reactions at sub-barrier energies

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.L.; Rehm, K.E.; Gehring, J. [and others

    1995-08-01

    It was suggested many years ago that when two heavy nuclei are in contact during a grazing collision, the transfer of several correlated neutron-pairs could occur. Despite considerable experimental effort, however, so far only cross sections for up to four-neutron transfers have been uniquely identified. The main difficulties in the study of multi-neutron transfer reactions are the small cross sections encountered at incident energies close to the barrier, and various experimental uncertainties which can complicate the analysis of these reactions. We have for the first time found evidence for multi-neutron transfer reactions covering the full sequence from one- to six-neutron transfer reactions at sub-barrier energies in the system {sup 58}Ni + {sup 100}Mo.

  3. Fast-neutron imaging spectrometer based on liquid scintillator loaded capillaries

    Science.gov (United States)

    Mor, I.; Vartsky, D.; Brandis, M.; Goldberg, M. B.; Bar, D.; Mardor, I.; Dangendorf, V.; Bromberger, B.

    2012-04-01

    A fast-neutron imaging detector based on micrometric glass capillaries loaded with high refractive index liquid scintillator has been developed Neutron energy spectrometry is based on event-by-event detection and reconstruction of neutron energy from the measurement of the knock-on proton track length and the amount of light produced in the track. In addition, the detector can provide fast-neutron imaging with position resolution of tens of microns. The detector principle of operation, simulations and experimental results obtained with a small detector prototype are described. We have demonstrated by simulation energy spectrum reconstruction for incident neutrons in the range of 4-20 MeV. The energy resolution in this energy range was 10-15%. Preliminary experimental results of detector spectroscopic capabilities are presented

  4. Summary report of the consultants' meeting on neutron sources spectra for EXFOR

    International Nuclear Information System (INIS)

    The participants highlighted the importance of complementing the averaged cross section data already stored in EXFOR by the incident neutron energy spectra. They shared their experience on measurement and simulation of neutron fields produced at reactors and accelerators over a wide energy range. The source characteristics, format and rules needed for storage in EXFOR were discussed. The participants submitted the numerical information on spectra that will essentially increase the number of 'complete' data sets in EXFOR. The report additionally provides an overview of (i) neutron production cross sections and thick target yields missing from the EXFOR database; (ii) codes for neutron spectra calculations; (iii) informational resources for reactor, radioactive and spallation neutron sources; (iv) codes for spectrum unfolding and (v) EXFOR compilation rules for the Maxwellian averaged cross sections measured for the reactor and astrophysical applications. (author)

  5. Some Implications of Neutron Mirror Neutron Oscillation

    CERN Document Server

    Mohapatra, Rabindra N; Nussinov, S

    2005-01-01

    We comment on a recently discussed possibility of oscillations between neutrons and degenerate mirror neutrons in the context of mirror models for particles and forces. It has been noted by Bento and Berezhiani that if these oscillations occurred at a rate of $\\tau^{-1}_{NN'}\\sim sec^{-1}$, it would help explain putative super GKZ cosmic ray events provided the temperature of the mirror radiation is $\\sim 0.3-0.4$ times that of familiar cosmic microwave background radiation. We discuss how such oscillation time scales can be realized in mirror models and find that the simplest nonsupersymmetric model for this idea requires the existence of a low mass (30-3000 GeV) color triplet scalar or vector boson. A supersymmetric model, where this constraint can be avoided is severely constrained by the requirement of maintaining a cooler mirror sector. We also find that the reheat temperature after inflation in generic models that give fast $n-n'$ oscillation be less than about 100 GeV in order to maintain the required ...

  6. Measurement of the angular distribution of neutron-proton scattering at 10 MeV

    International Nuclear Information System (INIS)

    The relative angular distribution of neutrons scattered from protons was measured at an incident neutron energy of 10 MeV at the Ohio University Accelerator Laboratory. An array of 11 detector telescopes at laboratory angles of 0 to 60 degrees was used to detect recoil protons from neutron interactions with a CH2 (polypropylene) target. Data for 7 of these telescopes were obtained with one set of electronics and are presented here. These data, from 108 to 180 degrees for the center-of-mass scattering angles, have a small slope which agrees better with angular distributions predicted by the Arndt phase shifts than with the ENDF/B-VI angular distribution

  7. The Radiative Strength Function Using the Neutron-Capture Reaction on 151,153Eu

    Science.gov (United States)

    Agvaanluvsan, U.; Alpizar-Vicente, A.; Becker, J. A.; Bečvář, F.; Bredeweg, T. A.; Clement, R.; Esch, E.; Folden, C. M.; Hatarik, R.; Haight, R. C.; Hoffman, D. C.; Krtička, M.; Macri, R. A.; Mitchell, G. E.; Nitsche, H.; O'Donnell, J. M.; Parker, W.; Reifarth, R.; Rundberg, R. S.; Schwantes, J. M.; Sheets, S. A.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wilk, P.; Wouters, J. M.; Wu, C. Y.

    2006-03-01

    Radiative strength functions in 152,154Eu nuclei for γ-ray energies below 6 MeV have been investigated. Neutron capture for incident neutron energies <1eV up to 100 keV has been measured for 151,153Eu targets. Properties of γ decay of neutron resonances in 152,154Eu nuclei are examined. The results of measurements are compared to outcome of simulation of γ cascades based on various models for the radiative strength function. Comparison between experimental data and simulation suggests existence of the low-energy resonance in these two nuclei.

  8. Neutronic studies of the coupled moderators for spallation neutron sources

    Institute of Scientific and Technical Information of China (English)

    Yin Wen; Liang Jiu-Qing

    2005-01-01

    We investigate the neutronic performance of coupled moderators to be implemented in spallation neutron sources by Monte-Carlo simulation and give the slow neutron spectra for the cold and thermal moderators. CH4 moderator can provide slow neutrons with highly desirable characteristics and will be used in low-power spallation neutron soureces. The slow neutron intensity extracted from different angles has been calculated. The capability of moderation of liquid H2 is lower than H2O and liquid CH4 due to lower atomic number density of hydrogen but we can compensate for this disadvantage by using a premoderator. The H2O premoderator of 2cm thickness can reduce the heat deposition in the cold moderator by about 33% without spoiling the neutron pulse.

  9. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons...... section varies through the periodic table in a seemingly random fashion. Neutron scattering offers a unique possibility to study light elements that have relatively high cross sections. The first main topic is on neutron instrumentation for the European Spallation Source (ESS). ESS is currently under...... in the appended published paper. A short summary is given in the main text of the thesis. HEIMDAL will be a multi length scale neutron scattering instrument for the study of structures covering almost nine orders of magnitude from 0.01 nm to 50 mm. The instrument features a variable resolution thermal neutron...

  10. Compensated bismuth-loaded plastic scintillators for neutron detection using low-energy pseudo-spectroscopy

    Science.gov (United States)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu

    2016-05-01

    Gadolinium-covered modified plastic scintillators show a high potential for the deployment of cost-effective neutron detectors. Taking advantage of the low-energy photon and electron signature of thermal neutron captures in gadolinium-155 and gadolinium-157 however requires a background correction. In order to display a trustable rate, dual compensation schemes appear as an alternative to Pulse Shape Discrimination. This paper presents the application of such a compensation scheme to a two-bismuth loaded plastic scintillator system. A detection scintillator interacts with incident photon and fast neutron radiations and is covered with a gadolinium converter to become thermal neutron-sensitive as well. In the meantime, an identical compensation scintillator, covered with terbium, solely interacts with the photon and fast neutron part of incident radiations. After the acquisition and the treatment of the counting signals from both sensors, a hypothesis test determines whether the resulting count rate after subtraction falls into statistical fluctuations or provides a robust image of neutron activity. A laboratory prototype is tested under both photon and neutron radiations, allowing us to investigate the performance of the overall compensation system. The study reveals satisfactory results in terms of robustness to a cesium-137 background and in terms of sensitivity in presence of a californium-252 source.

  11. Good Gradings of Generalized Incidence Rings

    CERN Document Server

    Price, Kenneth L

    2011-01-01

    This inquiry is based on both the construction of generalized incidence rings due to Gene Abrams and the construction of good group gradings of incidence algebras due to Molli Jones. We provide conditions for a generalized incidence ring to be graded isomorphic to a subring of an incidence ring over a preorder. We also extend Jones's construction to good group gradings for incidence algebras over preorders with crosscuts of length one or two.

  12. Dissociative Tendencies and Traffic Incidents

    Directory of Open Access Journals (Sweden)

    Valle, Virginia

    2012-01-01

    Full Text Available This paper analyses the relationship between dissociative experiences and road traffic incidents (crashes and traffic tickets in drivers (n=295 from Mar del Plata (Argentina city. A self-report questionnaire was applied to assess traffic crash involvement and sociodemographic variables. Dissociative tendencies were assessed by a modified version of the DES scale. To examine differences in DES scores tests of the difference of means were applied. Drivers who reported to be previously involved in traffic incidents obtained higher puntuations in the dissociative experiences scale than drivers who did not report such events. This result is observed for the total scale and for the three sub-scales (absorption, amnesia and depersonalization. However, differences appeared mainly for minor damage collisions. Further studies are needed to evaluate the role of dissociative tendencies as a risk factor in road traffic safety.

  13. The tokamak as a neutron source

    International Nuclear Information System (INIS)

    This paper describes the tokamak in its role as a neutron source, with emphasis on experimental results for D-D neutron production. The sections summarize tokamak operation, sources of fusion and non-fusion neutrons, principal neutron detection methods and their calibration, neutron energy spectra and fluxes outside the tokamak plasma chamber, history of neutron production in tokamaks, neutron emission and fusion power gain from JET and TFTR (the largest present-day tokamaks), and D-T neutron production from burnup of D-D tritons. This paper also discusses the prospects for future tokamak neutron production and potential applications of tokamak neutron sources. 100 refs., 16 figs., 4 tabs

  14. Incidence of respiratory distress syndrome

    International Nuclear Information System (INIS)

    Objective: To determine the incidence of respiratory distress syndrome (RDS) in hospital born babies. Subjects and Methods: All live born infants delivered at the hospital and who fulfilled the diagnostic criteria of respiratory distress syndrome (RDS) were included in the study. Results: Ninety-four neonates developed RDS. Out of these, 88 (93.61%) were preterm and 06 (6.38%) were term infants. There was a male preponderance (65.95%). RDS was documented in 1.72% of total live births. 37.28% of preterm and 0.11% of term neonates born at the hospital. The incidence of RDS was 100% at 26 or less weeks of gestation, 57.14% at 32 weeks, and 3.70% at 36 weeks. The mortality with RDS was 41 (43.61%). Conclusion: RDS is the commonest cause of respiratory distress in the newborn, particularly, in preterm infants. It carries a high mortality rate and the incidence is more than that documented in the Western world. (author)

  15. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  16. NEUTRONIC REACTOR FUEL ELEMENT

    Science.gov (United States)

    Picklesimer, M.L.; Thurber, W.C.

    1961-01-01

    A chemically nonreactive fuel composition for incorporation in aluminum- clad, plate type fuel elements for neutronic reactors is described. The composition comprises a mixture of aluminum and uranium carbide particles, the uranium carbide particles containing at least 80 wt.% UC/sub 2/.

  17. Tomography with thermal neutrons

    International Nuclear Information System (INIS)

    This paper describes some tomographic measurements performed with thermal neutrons at the Instituto de Engenharia Nuclear - IEN/CNEN. The Argonauta Reactor at this Institute was used as neutron source. During the measurements this reactor produced a 36 x 105 n.cm-1.s-1 thermal neutron flux at end of the irradiation channel, wherein the tomographic system was installed. An homogeneous aluminum cylindrical rod was used to calibrate the system and to determine parameters governing the quality of the images. The aluminum cross section emerging from the image reconstruction process, was then compared with the values found in the literature. To evaluate the capability of this technique as a complementary tool, to the X-ray tomography, images of a solid aluminum cylinder, wherein, several thin rods of different materials were inserted, were taken. These materials were chosen among elements with high atomic numbers, as well as, among elements having a Z close to each other. A tomographic image of a small electric motor, displayed several elements of its internal structure. The overall results have demonstrated the capability of the thermal neutron tomography to complement the X-ray tomography, specially for samples containing elements of high atomic numbers such as lead (Z=82), or elements having atomic numbers close to each other such as iron (Z=26) and copper (Z=29). (author)

  18. New Neutron Dosimeter

    CERN Multimedia

    2001-01-01

    CERN has been operating an Individual Dosimetry Service for neutrons for about 35 years. The service was based on nuclear emulsions in the form of film packages which were developed and scanned in the Service. In 1999, the supplier of theses packages informed CERN that they will discontinue production of this material. TIS-RP decided to look for an external service provider for individual neutron dosimetry. After an extensive market survey and an invitation for tender, a supplier that met the stringent technical requirements set up by CERN's host states for personal dosimeters was identified. The new dosimeter is based on a track-etching technique. Neutrons have the capability of damaging plastic material. The microscopic damage centres are revealed by etching them in a strong acid. The resulting etch pits can be automatically counted and their density is proportional to dose equivalent from neutrons. On the technical side, the new dosimeter provides an improved independence of its response from energy and th...

  19. The violent neutron star

    OpenAIRE

    Watts, Anna L.

    2012-01-01

    Neutron stars enable us to study both the highest densities and the highest magnetic fields in the known Universe. In this article I review what can be learned about such fundamental physics using magnetar bursts. Both the instability mechanisms that trigger the bursts, and the subsequent dynamical and radiative response of the star, can be used to explore stellar and magnetospheric structure and composition.

  20. Californium-252 neutron sources

    International Nuclear Information System (INIS)

    Major production programs for the Savannah River reactors and the High Flux Isotopes Reactor at Oak Ridge have made 252Cf one of the most available and, at the USAEC's sales price of $10/μg, one of the least-expensive isotopic neutron sources. Reactor production has totaled approximately 2 g, and, based on expected demand, an additional 10 g will be produced in the next decade. The approximately 800 mg chemically separated to date has been used to prepare over 600 neutron sources. Most, about 500, have been medical sources containing 1 to 5 μg of 252Cf plated in needles for experimental cancer therapy studies. The remainder have generally been point sources containing 10 μg to 12 mg of oxide for activation, well logging, or radiography uses. Bulk sources have also been supplied to the commercial encapsulators. The latest development has been the production of 252Cf cermet wire which can be cut into almost contamination-free lengths of the desired 252Cf content. Casks are available for transport of sources up to 50 mg. Subcritical assemblies have been developed to multiply the source neutrons by a factor of 10 to 40, and collimators and thermalizers have also been extensively developed to shape the neutron flux and energy distributions for special applications. (U.S.)

  1. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.)

  2. The Violent Neutron Star

    NARCIS (Netherlands)

    A.L. Watts

    2012-01-01

    Neutron stars enable us to study both the highest densities and the highest magnetic fields in the known Universe. In this article I review what can be learned about such fundamental physics using magnetar bursts. Both the instability mechanisms that trigger the bursts, and the subsequent dynamical

  3. Air Force neutron dosimetry program

    International Nuclear Information System (INIS)

    Approximately 1000 Air Force personnel are monitored for neutron radiation resulting from various sources at more than thirty worldwide locations. Neutron radiation spanning several orders of magnitude in energy is encountered. The Air Force currently uses albedo thermoluminescent neutron dosimeters for personnel monitoring. The energy dependence of the albedo neutron dosimeter is a current problem and the development of site specific correction factors is ongoing. A summary of data on the energy dependence is presented as well as efforts to develop algorithms for the dosimeter. An overview of current Air Force neutron dosimetry users and needs is also presented

  4. A review on neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Soo; Lee, Chang Hee; Shim, Hae Seop; Seong, Baek Seok

    1999-03-01

    This report contains principle and characteristic of neutron reflectometry. Therefore, in case of operating neutron reflectometer at HANARO in future, it will be a reference to the user who wishes to use the instrument effectively. Also, the current situation of neutron reflectometer operating in the world was examined. The detail of neutron reflectometer such as GANS(MURR), ADAM(ILL), POSY II(ANL), ROG(IRI) was described. The recent research situation on neutron reflectometry was also examined and it helps us to determine research field. (author)

  5. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, D.E. Gonzalez [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: crowell@tunl.duke.edu; Meneses, F. Salinas [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Crowell, A.S.; Howell, C.R. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Schmidt, D. [Physikalisch-Technische Bundesanstalt, D-38116, Braunschweig (Germany); Walter, R.L. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2009-02-11

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the {sup 1}S{sub 0} neutron-neutron and neutron-proton scattering lengths a{sub nn} and a{sub np}, respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E{sub n}=13MeV.

  6. BR2 reactor neutron beams

    International Nuclear Information System (INIS)

    The use of reactor neutron beams is becoming increasingly more widespread for the study of some properties of condensed matter. It is mainly due to the unique properties of the ''thermal'' neutrons as regards wavelength, energy, magnetic moment and overall favorable ratio of scattering to absorption cross-sections. Besides these fundamental reasons, the impetus for using neutrons is also due to the existence of powerful research reactors (such as BR2) built mainly for nuclear engineering programs, but where a number of intense neutron beams are available at marginal cost. A brief introduction to the production of suitable neutron beams from a reactor is given. (author)

  7. Neutron multiplicity analysis tool

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Scott L [Los Alamos National Laboratory

    2010-01-01

    I describe the capabilities of the EXCOM (EXcel based COincidence and Multiplicity) calculation tool which is used to analyze experimental data or simulated neutron multiplicity data. The input to the program is the count-rate data (including the multiplicity distribution) for a measurement, the isotopic composition of the sample and relevant dates. The program carries out deadtime correction and background subtraction and then performs a number of analyses. These are: passive calibration curve, known alpha and multiplicity analysis. The latter is done with both the point model and with the weighted point model. In the current application EXCOM carries out the rapid analysis of Monte Carlo calculated quantities and allows the user to determine the magnitude of sample perturbations that lead to systematic errors. Neutron multiplicity counting is an assay method used in the analysis of plutonium for safeguards applications. It is widely used in nuclear material accountancy by international (IAEA) and national inspectors. The method uses the measurement of the correlations in a pulse train to extract information on the spontaneous fission rate in the presence of neutrons from ({alpha},n) reactions and induced fission. The measurement is relatively simple to perform and gives results very quickly ({le} 1 hour). By contrast, destructive analysis techniques are extremely costly and time consuming (several days). By improving the achievable accuracy of neutron multiplicity counting, a nondestructive analysis technique, it could be possible to reduce the use of destructive analysis measurements required in safeguards applications. The accuracy of a neutron multiplicity measurement can be affected by a number of variables such as density, isotopic composition, chemical composition and moisture in the material. In order to determine the magnitude of these effects on the measured plutonium mass a calculational tool, EXCOM, has been produced using VBA within Excel. This

  8. Design of grazing-incidence multilayer supermirrors for hard-x-ray reflectors.

    Science.gov (United States)

    Joensen, K D; Voutov, P; Szentgyorgyi, A; Roll, J; Gorenstein, P; Høghøj, P; Christensen, F E

    1995-12-01

    Extremely broadband grazing-incidence multilayers for hard-x-ray reflection can be obtained by a gradual change of the layer thicknesses down through the structure. Existing approaches for designing similar neutron optics, called supermirrors, are shown to provide respectable performance when applied to x-ray multilayers. However, none of these approaches consider the effects of imperfect layer interfaces and absorption in the overlying layers. Adaptations of neutron designs that take these effects into account are presented, and a thorough analysis of two specific applications (a single hard-x-ray reflector and a hard-x-ray telescope) shows that an improved performance can be obtained. A multilayer whose bilayer thicknesses are given by a power law expression is found to provide the best solution; however, it is only slightly better than some of the adapted neutron designs.

  9. Determination of cross sections for the production of low-energy monoenergetic neutron fields

    International Nuclear Information System (INIS)

    The response of a neutron detector, defined as the reading of the device per unit of incident fluence or dose, varies with neutron energy. The experimental determination of this variation, i.e. of the response function of this instrument, has to be performed by facilities producing monoenergetic neutron fields. These neutrons are commonly produced by interaction between accelerated ions (proton or deuteron) onto a thin target composed of a reactive layer deposited on a metallic backing. Using the 7Li(p, n), 3H(p, n), 2H(d, n) and 3H(d, n) reactions, monoenergetic neutrons are obtained between 120 keV and 20 MeV in the ion beam direction (0 deg.). To reach lower neutron energies, the angle of the measuring point with respect to the ion beam direction can be increased. However, this method presents several problems of neutron energy and fluence homogeneities over the detector surface, as well as an important increase of the scattered neutron contribution. Another solution is to investigate other nuclear reactions, as 45Sc(p, n) allowing to extend the neutron energy range down to 8 keV at 0 deg.. A complete study of this reaction and its cross section has been undertaken within the framework of a scientific cooperation between the laboratory of neutron metrology and dosimetry (IRSN, France), two European national metrological institutes, the National Physical Laboratory (UK) and the Physikalisch-Technische Bundesanstalt (Germany), and IRMM, the Institute for Reference Materials and Measurements (EC). In parallel, other possible reactions have been investigated: 65Cu(p, n), 51V(p, n), 57Fe(p, n), 49Ti(p, n), 53Cr(p, n) and 37Cl(p, n). They were compared in terms of neutron fluence and minimum energy of the produced neutrons. (author)

  10. Critical analysis of major incidents risks in civil nuclear energy; Analyse critique des risques d'incidents majeurs dans l'energie nucleaire civile

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The differences existing between the PWR type reactors and the RBMK type reactors are explained as well as the risk associated to each type when it exists. The Ines scale, tool to give the level of an accident gravity comprises seven levels, the number seven is the most serious and corresponds to the Chernobyl accident; The number zero is of no consequence but must be mentioned as a matter of form. The incidents from 1 to 3 concern increasing incidents, affecting the nuclear power plant but not the external public. The accidents from 4 to 7 have a nature to affect the nuclear power plant and the environment. An efficient tool exists between nuclear operators it is made of the reports on incidents encountered by close reactors. Two others type reactors are coming, the high temperature type reactors and the fast neutrons reactors. different risks are evoked, terrorism, proliferation, transport and radioactive wastes. (N.C.)

  11. A detector for neutron imaging

    CERN Document Server

    Britton, C L; Wintenberg, A L; Warmack, R J; McKnight, T E; Frank, S S; Cooper, R G; Dudney, N J; Veith, G M; Stephan, A C

    2004-01-01

    A bright neutron source such as the Spallation Neutron Source (SNS) places extreme requirements on detectors including excellent 2-D spatial imaging and high dynamic range. Present imaging detectors have either shown position resolutions that are less than acceptable or they exhibit excessive paralyzing dead times due to the brightness of the source. High neutron detection efficiency with good neutron- gamma discrimination is critical for applications in neutron scattering research where the usefulness of the data is highly dependent on the statistical uncertainty associated with each detector pixel.. A detector concept known as MicroMegas (MicroMEsh GAseous Structure) has been developed at CERN in Geneva for high- energy physics charged-particle tracking applications and has shown great promise for handling high data rates with a rather low-cost structure. We are attempting to optimize the MicroMegas detector concept for thermal neutrons and have designed a 1-D neutron strip detector which we have tested In ...

  12. Clinical application of fast neutrons

    International Nuclear Information System (INIS)

    The results of treatments and clinical experiments with neutrons (from a medical d+T neutron generator with an output of 1012 neutrons per second) are reported and discussed. Data on RBE values are presented after single doses and multiple fractions of neutrons and 60Co-gamma rays on pulmonary metastases. The results of pilot studies on head and neck tumours, brain tumours and pelvic tumours are discussed. The accuracy of the calculated dose is tested with some in-vivo experiments during neutron irradiation of the pelvis. Estimations of RBE values for tumour control, skin damage and intestinal damage after fractionated neutron therapy are dealt with and the results obtained in treatment of sarcomas are discussed. The preliminary results are given of some clinical trials in Amsterdam. Also some data from other centres are reviewed. From these data some remarks about the future of neutron therapy are made. (Auth.)

  13. Nanostructure Neutron Converter Layer Development

    Science.gov (United States)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  14. The Tricastin incident; L'incident du Tricastin

    Energy Technology Data Exchange (ETDEWEB)

    Nifenecker, H.

    2008-07-01

    The author comments the incident which occurred on the Tricastin site in July 2008: the release of 30 cubic meters of a uranium-containing solution. First, he recalls the international nuclear event scale, outlines that the Tricastin is not a nuclear power plant, that uranium is more a chemical toxic product than a radiological toxic product. After having briefly recalled some dose threshold values, he discusses the presence of uranium in the environment, and states that the event is actually a non-event which has been in fact magnified by the media

  15. Neutron capture and (n,2n) measurements on 241Am

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, D; Jandel, M; Bredeweg, T; Bond, E; Clement, R; Couture, A; Haight, R; O' Donnell, J; Reifarth, R; Ullmann, J; Wilhelmy, J; Wouters, J; Tonchev, A; Hutcheson, A; Angell, C; Crowell, A; Fallin, B; Hammond, S; Howell, C; Karowowski, H; Kelley, J; Pedroni, R; Tornow, W; Macri, R; Agvaanluvsan, U; Becker, J; Dashdorj, D; Stoyer, M; Wu, C

    2007-07-18

    We report on a set of neutron-induced reaction measurements on {sup 241}Am which are important for nuclear forensics and advanced nuclear reactor design. Neutron capture measurements have been performed on the DANCE detector array at the Los Alamos Neutron Scattering CEnter (LANSCE). In general, good agreement is found with the most recent data evaluations up to an incident neutron energy of {approx} 300 keV where background limits the measurement. Using mono-energetic neutrons produced in the {sup 2}H(d,n){sup 3}He reaction at Triangle University Nuclear Laboratory (TUNL), we have measured the {sup 241}Am(n,2n) excitation function from threshold (6.7 MeV) to 14.5 MeV using the activation method. Good agreement is found with previous measurements, with the exception of the three data points reported by Perdikakis et al. around 11 MeV, where we obtain a much lower cross section that is more consistent with theoretical estimates.

  16. Design, construction and characterization of a dosimeter for neutron radiation

    International Nuclear Information System (INIS)

    An individual dosimeter for neutron-gamma mixed field dosimetry was design and developed aiming monitoring the increasing number of workers potentially exposed to neutrons. The proposed dosimeter was characterized to an Americium-Beryllium source spectrum and dose range of radiation protection interest (up to 20 mSv). Thermoluminescent albedo dosimetry and nuclear tracks dosimetry, traditional techniques found in the international literature, with materials of low cost and national production, were used. A commercial polycarbonate, named SS-1, was characterized for solid state tack detector application. The chemical etching parameters and the methodology of detectors evaluation were determined. The response of TLD-600, TLD-700 and SS-1 were studied and algorithms for dose calculation of neutron and gamma radiation of Americium- Beryllium sources were proposed. The ratio between thermal, albedo and fast neutrons responses, allows analyzing the spectrum to which the dosimeter was submitted and correcting the track detector response to variations in the radiation incidence angle. The new dosimeter is fully characterized, having sufficient performance to be applied as neutron dosimeter in Brazil. (author)

  17. Incident-response monitoring technologies for aircraft cabin air quality

    Science.gov (United States)

    Magoha, Paul W.

    Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained

  18. Ascertaining directionality information from incident nuclear radiation

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, Brian C. [Purdue University (United States); Lapinskas, Joseph R. [QSA Global, Inc. (United States); Wang Jing; Webster, Jeffrey A. [Purdue University (United States); McDeavitt, Sean [Texas A and M University (United States); Taleyarkhan, Rusi P., E-mail: rusi@purdue.edu [Purdue University (United States)

    2011-10-15

    Highlights: > Use of tensioned metastable fluids for detection of fast neutron radiation. > Monitored neutrons with 100% gamma photon blindness capability. > Monitored direction of incoming neutron radiation from special nuclear material emissions. > Ascertained directionality of neutron source to within 30 deg. and with 80% confidence with 2000 detection events at rate of 30-40 per second. > Conducted successful blind test for determining source of neutrons from a hidden neutron emitting source. > Compared results with MCNP5-COMSOL based multi-physics model. - Abstract: Unprecedented capabilities for the detection of nuclear particles via tailored resonant acoustic systems such as the acoustic tensioned metastable fluid detection (ATMFD) systems were assessed for determining directionality of incoming fast neutrons. This paper presents advancements that expand on these accomplishments, thereby increasing the accuracy and precision of ascertaining directionality information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on demand enlargement of the detector sensitive volume. Advances in the development of ATMFD systems were accomplished utilizing a combination of experimentation and theoretical modeling. Modeling methodologies include Monte-Carlo based nuclear particle transport using MCNP5 and multi-physics based assessments accounting for acoustic, structural, and electromagnetic coupling of the ATMFD system via COMSOL's multi-physics simulation platform. Benchmarking and qualification studies have been conducted with a 1 Ci Pu-Be neutron-gamma source. These results show that the specific ATMFD system used for this study can enable detection of directionality of incoming fast neutrons from the neutron source to within 30{sup o} with 80% confidence; this required {approx}2000 detection events which could be collected within {approx}50 s at a detection rate of {approx}30-40 per second. Blind testing was

  19. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  20. Observation of 2.45 MeV neutrons correlated with natural atmospheric lightning discharges by Lead-Free Gulmarg Neutron Monitor

    Science.gov (United States)

    Ishtiaq, P. M.; Mufti, S.; Darzi, M. A.; Mir, T. A.; Shah, G. N.

    2016-01-01

    The first experimental evidence of detecting the neutrons correlated with the natural atmospheric lightning discharges (NALD) was obtained with Lead-Free Gulmarg Neutron Monitor (LFGNM) operating at High Altitude Research Laboratory, Gulmarg, Kashmir, India, and was reported in the year 1985. The neutron observations still continue with LFGNM. However, the current configuration of LFGNM is the upgraded version of the system used earlier to record neutron bursts (in the recording period of 320 μs in four successive electronic gates of 80 μs each) supposedly originating from an NALD. In the current system the neutron recording time period/interval has been extended to 1260 μs with 63 successive gates of 20 μs each. The system also simultaneously records the differential times—maximum up to 14—between the consecutive strokes of a multistroke lightning flash. The distance between an NALD channel and LFGNM setup is determined empirically by making use of the time delay (td)/time of flight (TOF) measurement of the first detected neutron subsequent to the sensing of the electrostatic field variation caused by the initiation of an NALD in the ambient atmosphere of the LFGNM setup. Assuming a priori incident energy as 2.45 MeV of the detected neutrons supposedly generated due to the fusion of deuterium ions in the lightning discharge channel leads to quantifying the neutron emission flux if the NALD channel distance with respect to the LFGNM setup is established. In this paper we discuss the experiment and the time profiles of several of a large number of the major neutron burst events recorded with LFGNM in association with NALDs. Moreover, a rare and an extraordinary neutron burst event, in terms of its associated "td/TOF" of first detected neutron after triggering, recorded by this system is specifically discussed. In this event, the recorded TOF of 14 μs of the escaping neutron detected by the system immediately after getting triggered by the NALD that struck a

  1. Grazing incidence diffraction : A review

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, B. [LTPCM, ENSEEG. St. Martin d`Heres. (France)

    1996-09-01

    Different Grazing Incidence Diffraction (GID) methods for the analysis of thin films and multilayer structures are reviewed in three sections: the reflectivity is developed in the first one, which includes the non-specular diffuse scattering. The second one is devoted to the extremely asymmetric Bragg diffraction and the third one to the in-plane Bragg diffraction. Analytical formulations of the scattered intensities are developed for each geometry, in the framework of the kinetical analysis as well as the dynamical theory. Experimental examples are given to illustrate the quantitative possibility of the GID techniques.

  2. 3D imaging of neutron tracks using confocal microscopy

    Science.gov (United States)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  3. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Yoshinori, E-mail: yosakura@rri.kyoto-u.ac.jp; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira [Kyoto University Research Reactor Institute, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the

  4. Direct Fast-Neutron Detection

    Energy Technology Data Exchange (ETDEWEB)

    DC Stromswold; AJ Peurrung; RR Hansen; PL Reeder

    2000-01-18

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gamma rays. However, the difference in pulse widths between neutrons and gamma rays using the best commercially available scintillators was not sufficiently large to provide a practical means for distinguishing fast neutrons and gamma rays on a pulse-by-pulse basis. A faster scintillator is needed, and that scintillator might become available in the literature. Results of the pulse-width studies were presented in a previous report (peurrung et al. 1998), and they are only summarized here.

  5. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  6. Materials and neutronic research at the Low Energy Neutron Source

    Science.gov (United States)

    Baxter, David V.

    2016-04-01

    In the decade since the Low Energy Neutron Source (LENS) at Indiana University Center for Exploration of Energy and Matter (CEEM) produced its first neutrons, the facility has made important contributions to the international neutron scattering community. LENS employs a 13MeV proton beam at up to 4kW beam power onto one of two Be targets to produce neutrons for research in fields ranging from radiation effects in electronics to studies of the structure of fluids confined in nanoporous materials. The neutron source design at the heart of LENS facilitates relatively rapid hands-on access to most of its components which provides a foundation for a research program in experimental neutronics and affords numerous opportunities for novel educational experiences. We describe in some detail a number of the unique capabilities of this facility.

  7. Neutron-gamma competition for $\\beta$-delayed neutron emission

    CERN Document Server

    Mumpower, Matthew; Moller, Peter

    2016-01-01

    We present a coupled Quasi-particle Random Phase Approximation and Hauser-Feshbach (QRPA+HF) model for calculating delayed particle emission. This approach uses microscopic nuclear structure information which starts with Gamow-Teller strength distributions in the daughter nucleus, and then follows the statistical decay until the initial available excitation energy is exhausted. Explicitly included at each particle emission stage is $\\gamma$-ray competition. We explore this model in the context of neutron emission of neutron-rich nuclei and find that neutron-gamma competition can lead to both increases and decreases in neutron emission probabilities, depending on the system considered. A second consequence of this formalism is a prediction of more neutrons on average being emitted after $\\beta$-decay for nuclei near the neutron dripline compared to models that do not consider the statistical decay.

  8. Fast Neutron Resonance Radiography in a Pulsed Neutron Beam

    OpenAIRE

    Dangendorf, V.; Laczko, G; Kersten, C.; Jagutzki, O.; Spillmann, U

    2003-01-01

    The feasibility of performing fast neutron resonance radiography at the PTB accelerator facility is studied. A neutron beam of a broad spectral distribution is produced by a pulsed 13 MeV deuterium beam hitting a thick Be target. The potential of 3 different neutron imaging detectors with time-of flight capability are investigated. The applied methods comprise wire chambers with hydrogenous converter layers and a fast plastic scintillator with different optical readout schemes. We present the...

  9. Novel neutron focusing mirrors for compact neutron sources

    OpenAIRE

    Gubarev, M. V.; Zavlin, V. E.; Katz, R.; Resta, G.; Robertson, L; Crow, L.; Ramsey, B. D.; Khaykovich, Boris; Liu, DaZhi; Moncton, David E.

    2012-01-01

    We demonstrated neutron beam focusing and neutron imaging using axisymmetric optics, based on pairs of confocal ellipsoid and hyperboloid mirrors. Such systems, known as Wolter mirrors, are commonly used in x-ray telescopes. A system containing four nested Ni mirror pairs was implemented and tested by focusing a polychromatic neutron beam at the MIT Reactor and conducting an imaging experiment at HFIR. The major advantage of the Wolter mirrors is the possibility of nesting for large angular c...

  10. Neutron beam tomography software

    International Nuclear Information System (INIS)

    When a sample is traversed by a neutron beam, inhomogeneities in the sample will cause deflections, and the deflections will permit conclusions to be drawn concerning the location and size of the inhomogeneities. The associated computation is similar to problems in tomography, analogous to X-ray tomography though significantly different in detail. We do not have any point-sample information, but only mean values over short line segments. Since each mean value is derived from a separate neutron counter, the quantity of available data has to be modest; also, since each datum is an integral, its geometric precision is inferior to that of X-ray data. Our software is designed to cope with these difficulties. (orig.)

  11. Imaging with polarized neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Martin; Manke, Ingo; Kardjilov, Nikolay; Hilger, Andre; Strobl, Markus; Banhart, John [Helmholtz Centre Berlin for Materials and Energy (Germany)], E-mail: manke@helmholtz-berlin.de

    2009-04-15

    Neutrons have zero net electrical charge and can thus penetrate deeply into matter, but their intrinsic magnetic moment makes them highly sensitive to magnetic fields. These properties have been combined with radiographic (2D) and tomographic (3D) imaging methods to provide a unique technique to probe macroscopic magnetic phenomena both within and around bulk matter. Based on the spin-rotation of a polarized neutron beam as it passes through a magnetic field, this method allows the direct, real-space visualization of magnetic field distributions. It has been used to investigate the Meissner effect in a type I (Pb) and a type II (YBCO) superconductor, flux trapping in a type I (Pb) superconductor, and the electromagnetic field associated with a direct current flowing in a solenoid. The latter results have been compared to predictions calculated using the Biot-Savart law and have been found to agree well.

  12. Short pulse neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2016-08-02

    Short pulse neutron generators are described herein. In a general embodiment, the short pulse neutron generator includes a Blumlein structure. The Blumlein structure includes a first conductive plate, a second conductive plate, a third conductive plate, at least one of an inductor or a resistor, a switch, and a dielectric material. The first conductive plate is positioned relative to the second conductive plate such that a gap separates these plates. A vacuum chamber is positioned in the gap, and an ion source is positioned to emit ions in the vacuum chamber. The third conductive plate is electrically grounded, and the switch is operable to electrically connect and disconnect the second conductive plate and the third conductive plate. The at least one of the resistor or the inductor is coupled to the first conductive plate and the second conductive plate.

  13. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  14. Neutron radiobiology revisited

    International Nuclear Information System (INIS)

    The present paper reviews the experimental results of normal tissue and tumour studies in animals. The dose per fraction dependence of the RBE in normal tissues has been long recognised, together with the steeper increase of RBE at low doses for late responding tissues compared with acute reactions. The dose dependence for tumours is more complex, because of hypoxia and reoxygenation, as well as differences in repair capability after high LET damage. A comparison of tumour and normal tissue RBE values shows that there is little experimental evidence for a therapeutic advantage at clinically relevant doses. In particular, the RBE for slow growing tumours is even lower than that for the faster growing mouse tumours. The reasons for the loss of expected neutron benefits in clinically relevant experiments are discussed. The disappointing prospects for neutrons are contrasted with the current multifactorial approaches to overcoming resistance to more conventional low LET radiations, including acceleration, hyperfractionation and several types of hypoxic cell radiosensitizers. (orig.)

  15. Neutron Computed Tomography

    International Nuclear Information System (INIS)

    Computed tomography is a non-destructive testing method which can visualize cross-section of materials based on their nuclear characteristics. In the previous work, X-ray was used as its radiation media. The aim of this experiment was to improve the computed tomography technique using neutron beam. For reconstructing the cross-section image of materials, a filtered back projection was used. Result indicated that a minimum hole shown was 3 mm in diameter using a black and white presentation. While using eight colour levels, a hole of 2 mm in diameter could be seen clearly. It is expected that neutron computed tomography can improve the results of non-destructive testing. (author). 5 refs., 6 figs

  16. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10{sup 7} neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF{sub 3} composite and a stacked Al/Teflon design) at various incident electron energies.

  17. Fast-neutron induced background in LaBr3:Ce detectors

    International Nuclear Information System (INIS)

    The response of a scintillation detector with a cylindrical 1.5-in. LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2–12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5–14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced γ rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5–10 MeV

  18. Secondary neutron doses received by paediatric patients during intracranial proton therapy treatments

    International Nuclear Information System (INIS)

    This paper’s goal is to assess secondary neutron doses received by paediatric patients treated for intracranial tumours using a 178 MeV proton beam. The MCNPX Monte Carlo model of the proton therapy facility, previously validated through experimental measurements for both proton and neutron dosimetry, was used. First, absorbed dose was calculated for organs located outside the clinical target volume using a series of hybrid computational phantoms for different ages and considering a realistic treatment plan. In general, secondary neutron dose was found to decrease as the distance to the treatment field increases and as the patient age increases. In addition, secondary neutron doses were studied as a function of the beam incidence. Next, neutron equivalent dose was assessed using organ-specific energy-dependent radiation weighting factors determined from Monte Carlo simulations of neutron spectra at each organ. The equivalent dose was found to reach a maximum value of ∼155 mSv at the level of the breasts for a delivery of 49 proton Gy to an intracranial tumour of a one-year-old female patient. Finally, a thorough comparison of the calculation results with published data demonstrated the dependence of neutron dose on the treatment configuration and proved the need for facility-specific and treatment-dependent neutron dose calculations. (paper)

  19. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies

  20. Fast-neutron induced background in LaBr{sub 3}:Ce detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kiener, J., E-mail: Jurgen.Kiener@csnsm.in2p3.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Tatischeff, V.; Deloncle, I. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Séréville, N. de [Institut de Physique Nucléaire d' Orsay, CNRS-IN2P3 and Université Paris-Sud, 91406 Orsay (France); Laurent, P. [CEA/IRFU Service d' Astrophysique, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Laboratoire Astroparticules et Cosmologie (APC), 10, rue A. Domon et L. Duquet, 75205 Paris (France); Blondel, C. [Laboratoire AIM, CEA/IRFU, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Chabot, M. [Institut de Physique Nucléaire d' Orsay, CNRS-IN2P3 and Université Paris-Sud, 91406 Orsay (France); Chipaux, R. [CEA/DMS/IRFU/SEDI, CEA Saclay, 91191 Gif sur Yvette (France); Coc, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); Dubos, S. [Laboratoire AIM, CEA/IRFU, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette (France); Gostojic, A. [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS-IN2P3 et Université Paris-Sud, 91405 Campus Orsay (France); and others

    2015-10-21

    The response of a scintillation detector with a cylindrical 1.5-in. LaBr{sub 3}:Ce crystal to incident neutrons has been measured in the energy range E{sub n} = 2–12 MeV. Neutrons were produced by proton irradiation of a Li target at E{sub p} = 5–14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr{sub 3}:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced γ rays emitted by the LaBr{sub 3}:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr{sub 3}:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr{sub 3}:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range E{sub n} = 0.5–10 MeV.