WorldWideScience

Sample records for 14-3-3 protein mediated

  1. 14-3-3 proteins in apoptosis

    Directory of Open Access Journals (Sweden)

    M. Rosenquist

    2003-04-01

    Full Text Available The once obscure members of the 14-3-3 protein family play significant roles in the determination of cell fate. By inhibiting the pro-apoptotic BAD (Bcl-2-antagonist of cell death and the transcription factor FKHRL-1, 14-3-3 displays important anti-apoptotic characteristics. To date, five points of interaction of 14-3-3 with the apoptotic machinery have been identified. How these interactions are regulated still remains a mystery.

  2. 14-3-3 proteins in guard cell signaling

    Directory of Open Access Journals (Sweden)

    Valérie eCotelle

    2016-01-01

    Full Text Available Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.

  3. 14-3-3 proteins-an update

    Institute of Scientific and Technical Information of China (English)

    Paulette MHAWECH

    2005-01-01

    14-3-3 is a highly conserved acidic protein family, composed of seven isoforms in mammals. 14-3-3 protein can interact with over 200 target proteins by phosphoserine-dependent and phosphoserine-independent manners. Little is known about the consequences of these interactions, and thus are the subjects of ongoing studies. 14-3-3 controls cell cycle, cell growth, differentiation, survival, apoptosis, migration and spreading. Recent studies have revealed new mechanisms and new functions of 14-3-3, giving us more insights on this fascinating and complex family of proteins.Of all the seven isoforms, 14-3-3σ seems to be directly involved in human cancer. 14-3-3σ itself is subject to regulation by p53 upon DNA damage and by epigenetic deregulation. Gene silencing of 14-3-3σ by CpG methylation has been found in many human cancer types. This suggests that therapy-targeting 14-3-3σ may be beneficial for future cancer treatment.

  4. Characterization of 14-3-3 Proteins from Cryptosporidium parvum

    OpenAIRE

    Brokx, Stephen J.; Wernimont, Amy K.; Aiping Dong; Wasney, Gregory A.; Yu-Hui Lin; Jocelyne Lew; Masoud Vedadi; Wen Hwa Lee; Raymond Hui

    2011-01-01

    UNLABELLED: The parasite Cryptosporidium parvum has three 14-3-3 proteins: Cp14ε, Cp14a and Cp14b, with only Cp14ε similar to human 14-3-3 proteins in sequence, peptide-binding properties and structure. Structurally, Cp14a features the classical 14-3-3 dimer but with a uniquely wide pocket and a disoriented RRY triad potentially incapable of binding phosphopeptides. The Cp14b protein deviates from the norm significantly: (i) In one subunit, the phosphorylated C-terminal tail is bound in the b...

  5. Eimeria tenella: 14-3-3 protein interacts with telomerase.

    Science.gov (United States)

    Zhao, Na; Gong, Pengtao; Cheng, Baiqi; Li, Jianhua; Yang, Zhengtao; Li, He; Yang, Ju; Zhang, Guocai; Zhang, Xichen

    2014-10-01

    Telomerase, consisting of telomerase RNA and telomerase reverse transcriptase (TERT), is responsible for the maintenance of the end of linear chromosomes. TERT, as the catalytic subunit of telomerase, plays a critical role in telomerase activity. Researches indicate TERT-associated proteins participate in the regulation of telomerase assembly, posttranslational modification, localization, and enzymatic function. Here, the telomerase RNA-binding domain of Eimeria tenella TERT (EtTRBD) was cloned into pGBKT7 and performed as the bait. α-Galactosidase assay showed that the bait plasmid did not activate Gal4 reporter gene. Further, we isolated an EtTRBD-associated protein, 14-3-3, by yeast two-hybrid screening using the constructed bait plasmid. To confirm the interaction, EtTRBD and 14-3-3 were expressed by prokaryotic and eukaryotic expression systems. Pull-down assays by purified proteins demonstrated a direct bind between EtTRBD and 14-3-3. Co-immunoprecipitation techniques successfully validated that 14-3-3 interacted with EtTRBD in 293T cells. The protein-protein interaction provides a starting point for more in-depth studies on telomerase and telomere regulation in E. tenella.

  6. Characterization of 14-3-3 proteins from Cryptosporidium parvum.

    Directory of Open Access Journals (Sweden)

    Stephen J Brokx

    Full Text Available UNLABELLED: The parasite Cryptosporidium parvum has three 14-3-3 proteins: Cp14ε, Cp14a and Cp14b, with only Cp14ε similar to human 14-3-3 proteins in sequence, peptide-binding properties and structure. Structurally, Cp14a features the classical 14-3-3 dimer but with a uniquely wide pocket and a disoriented RRY triad potentially incapable of binding phosphopeptides. The Cp14b protein deviates from the norm significantly: (i In one subunit, the phosphorylated C-terminal tail is bound in the binding groove like a phosphopeptide. This supports our binding study indicating this protein was stabilized by a peptide mimicking its last six residues. (ii The other subunit has eight helices instead of nine, with αA and αB forming a single helix and occluding the peptide-binding cleft. (iii The protein forms a degenerate dimer with the two binding grooves divided and facing opposite directions. These features conspire to block and disrupt the bicameral substrate-binding pocket, suggesting a possible tripartite auto-regulation mechanism that has not been observed previously. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  7. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jing; Du, Yuhong; Horton, John R.; Upadhyay, Anup K.; Lou, Bin; Bai, Yan; Zhang, Xing; Du, Lupei; Li, Minyong; Wang, Binghe; Zhang, Lixin; Barbieri, Joseph T.; Khuri, Fadlo R.; Cheng, Xiaodong; Fu, Haian (Emory-MED); (GSU); (MCW); (Chinese Aca. Sci.)

    2013-02-14

    The 14-3-3 family of phosphoserine/threonine-recognition proteins engage multiple nodes in signaling networks that control diverse physiological and pathophysiological functions and have emerged as promising therapeutic targets for such diseases as cancer and neurodegenerative disorders. Thus, small molecule modulators of 14-3-3 are much needed agents for chemical biology investigations and therapeutic development. To analyze 14-3-3 function and modulate its activity, we conducted a chemical screen and identified 4-[(2Z)-2-[4-formyl-6-methyl-5-oxo-3-(phosphonatooxymethyl)pyridin-2-ylidene]hydrazinyl]benzoate as a 14-3-3 inhibitor, which we termed FOBISIN (FOurteen-three-three BInding Small molecule INhibitor) 101. FOBISIN101 effectively blocked the binding of 14-3-3 with Raf-1 and proline-rich AKT substrate, 40 kD{sub a} and neutralized the ability of 14-3-3 to activate exoenzyme S ADP-ribosyltransferase. To provide a mechanistic basis for 14-3-3 inhibition, the crystal structure of 14-3-3{zeta} in complex with FOBISIN101 was solved. Unexpectedly, the double bond linking the pyridoxal-phosphate and benzoate moieties was reduced by X-rays to create a covalent linkage of the pyridoxal-phosphate moiety to lysine 120 in the binding groove of 14-3-3, leading to persistent 14-3-3 inactivation. We suggest that FOBISIN101-like molecules could be developed as an entirely unique class of 14-3-3 inhibitors, which may serve as radiation-triggered therapeutic agents for the treatment of 14-3-3-mediated diseases, such as cancer.

  8. 14-3-3 proteins and the p53 family : a study in keratinocytes

    NARCIS (Netherlands)

    Niemantsverdriet, Maarten

    2008-01-01

    Several associations between 14-3-3 proteins and members of the p53 family have been revealed. However, numerous questions regarding 14-3-3 proteins, p53 family members and the relationships between thetwo families remain. This thesis contributes to answer these questions. Downregulation of 14-3-3ζ

  9. Intracellular Generation of a Diterpene-Peptide Conjugate that Inhibits 14-3-3-Mediated Interactions.

    Science.gov (United States)

    Parvatkar, Prakash; Kato, Nobuo; Uesugi, Motonari; Sato, Shin-Ichi; Ohkanda, Junko

    2015-12-23

    Synthetic agents that disrupt intracellular protein-protein interactions (PPIs) are highly desirable for elucidating signaling networks and developing new therapeutics. However, designing cell-penetrating large molecules equipped with the many functional groups necessary for binding to large interfaces remains challenging. Here, we describe a rational strategy for the intracellular oxime ligation-mediated generation of an amphipathic bivalent inhibitor composed of a peptide and diterpene natural product, fusicoccin, which binds 14-3-3 protein with submicromolar affinity. Our results demonstrate that co-treatment of cells with small module molecules, the aldehyde-containing fusicoccin 1 and the aminooxy-containing peptide 2, generates the corresponding conjugate 3 in cells, resulting in significant cytotoxicity. In contrast, chemically synthesized 3 is not cytotoxic, likely due to its inability to penetrate cells. Compound 3, but not 1 or 2, disrupts endogenous 14-3-3/cRaf interactions, suggesting that cell death is caused by inhibition of 14-3-3 activity. These results suggest that intracellular generation of large-sized molecules may serve as a new approach for modulating PPIs.

  10. Involvement of 14-3-3 Proteins in Regulating Tumor Progression of Hepatocellular Carcinoma.

    Science.gov (United States)

    Wu, Yi-Ju; Jan, Yee-Jee; Ko, Bor-Sheng; Liang, Shu-Man; Liou, Jun-Yang

    2015-01-01

    There are seven mammalian isoforms of the 14-3-3 protein, which regulate multiple cellular functions via interactions with phosphorylated partners. Increased expression of 14-3-3 proteins contributes to tumor progression of various malignancies. Several isoforms of 14-3-3 are overexpressed and associate with higher metastatic risks and poorer survival rates of hepatocellular carcinoma (HCC). 14-3-3β and 14-3-3ζ regulate HCC cell proliferation, tumor growth and chemosensitivity via modulating mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and p38 signal pathways. Moreover, 14-3-3ε suppresses E-cadherin and induces focal adhesion kinase (FAK) expression, thereby enhancing epithelial-mesenchymal transition (EMT) and HCC cell migration. 14-3-3ζ forms complexes with αB-crystallin, which induces EMT and is the cause of sorafenib resistance in HCC. Finally, a recent study has indicated that 14-3-3σ induces heat shock protein 70 (HSP70) expression, which increases HCC cell migration. These results suggest that selective 14-3-3 isoforms contribute to cell proliferation, EMT and cell migration of HCC by regulating distinct targets and signal pathways. Targeting 14-3-3 proteins together with specific downstream effectors therefore has potential to be therapeutic and prognostic factors of HCC. In this article, we will overview 14-3-3's regulation of its downstream factors and contributions to HCC EMT, cell migration and proliferation. PMID:26083935

  11. Involvement of 14-3-3 Proteins in Regulating Tumor Progression of Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yi-Ju [Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Taiwan (China); Jan, Yee-Jee [Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Ko, Bor-Sheng [Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan (China); Liang, Shu-Man; Liou, Jun-Yang, E-mail: jliou@nhri.org.tw [Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan 350, Taiwan (China)

    2015-06-15

    There are seven mammalian isoforms of the 14-3-3 protein, which regulate multiple cellular functions via interactions with phosphorylated partners. Increased expression of 14-3-3 proteins contributes to tumor progression of various malignancies. Several isoforms of 14-3-3 are overexpressed and associate with higher metastatic risks and poorer survival rates of hepatocellular carcinoma (HCC). 14-3-3β and 14-3-3ζ regulate HCC cell proliferation, tumor growth and chemosensitivity via modulating mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and p38 signal pathways. Moreover, 14-3-3ε suppresses E-cadherin and induces focal adhesion kinase (FAK) expression, thereby enhancing epithelial-mesenchymal transition (EMT) and HCC cell migration. 14-3-3ζ forms complexes with αB-crystallin, which induces EMT and is the cause of sorafenib resistance in HCC. Finally, a recent study has indicated that 14-3-3σ induces heat shock protein 70 (HSP70) expression, which increases HCC cell migration. These results suggest that selective 14-3-3 isoforms contribute to cell proliferation, EMT and cell migration of HCC by regulating distinct targets and signal pathways. Targeting 14-3-3 proteins together with specific downstream effectors therefore has potential to be therapeutic and prognostic factors of HCC. In this article, we will overview 14-3-3’s regulation of its downstream factors and contributions to HCC EMT, cell migration and proliferation.

  12. Involvement of 14-3-3 Proteins in Regulating Tumor Progression of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Yi-Ju Wu

    2015-06-01

    Full Text Available There are seven mammalian isoforms of the 14-3-3 protein, which regulate multiple cellular functions via interactions with phosphorylated partners. Increased expression of 14-3-3 proteins contributes to tumor progression of various malignancies. Several isoforms of 14-3-3 are overexpressed and associate with higher metastatic risks and poorer survival rates of hepatocellular carcinoma (HCC. 14-3-3β and 14-3-3ζ regulate HCC cell proliferation, tumor growth and chemosensitivity via modulating mitogen-activated protein kinase (MAPK, c-Jun N-terminal kinase (JNK and p38 signal pathways. Moreover, 14-3-3ε suppresses E-cadherin and induces focal adhesion kinase (FAK expression, thereby enhancing epithelial-mesenchymal transition (EMT and HCC cell migration. 14-3-3ζ forms complexes with αB-crystallin, which induces EMT and is the cause of sorafenib resistance in HCC. Finally, a recent study has indicated that 14-3-3σ induces heat shock protein 70 (HSP70 expression, which increases HCC cell migration. These results suggest that selective 14-3-3 isoforms contribute to cell proliferation, EMT and cell migration of HCC by regulating distinct targets and signal pathways. Targeting 14-3-3 proteins together with specific downstream effectors therefore has potential to be therapeutic and prognostic factors of HCC. In this article, we will overview 14-3-3's regulation of its downstream factors and contributions to HCC EMT, cell migration and proliferation.

  13. Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes

    Directory of Open Access Journals (Sweden)

    Diaz Celine

    2011-11-01

    Full Text Available Abstract Background 14-3-3 proteins are considered master regulators of many signal transduction cascades in eukaryotes. In plants, 14-3-3 proteins have major roles as regulators of nitrogen and carbon metabolism, conclusions based on the studies of a few specific 14-3-3 targets. Results In this study, extensive novel roles of 14-3-3 proteins in plant metabolism were determined through combining the parallel analyses of metabolites and enzyme activities in 14-3-3 overexpression and knockout plants with studies of protein-protein interactions. Decreases in the levels of sugars and nitrogen-containing-compounds and in the activities of known 14-3-3-interacting-enzymes were observed in 14-3-3 overexpression plants. Plants overexpressing 14-3-3 proteins also contained decreased levels of malate and citrate, which are intermediate compounds of the tricarboxylic acid (TCA cycle. These modifications were related to the reduced activities of isocitrate dehydrogenase and malate dehydrogenase, which are key enzymes of TCA cycle. In addition, we demonstrated that 14-3-3 proteins interacted with one isocitrate dehydrogenase and two malate dehydrogenases. There were also changes in the levels of aromatic compounds and the activities of shikimate dehydrogenase, which participates in the biosynthesis of aromatic compounds. Conclusion Taken together, our findings indicate that 14-3-3 proteins play roles as crucial tuners of multiple primary metabolic processes including TCA cycle and the shikimate pathway.

  14. Arabidopsis 14-3-3 proteins: fascinating and less fascinating aspects

    Directory of Open Access Journals (Sweden)

    Nina eJaspert

    2011-12-01

    Full Text Available 14-3-3 dimers are well known to interact with diverse target proteins throughout eukaryotes. Most notably, association of 14-3-3s commonly requires phosphorylation of a serine or threonine residue within a specific sequence motif of the client protein. Studies with a focus on individual target proteins have unequivocally demonstrated 14-3-3s to be the crucial factors modifying the client’s activity state upon phosphorylation and, thus, finishing the job initiated by a kinase. In this respect, a recent in-depth analysis of the rice transcription factor FLOWERING LOCUS D1 (OsFD1 revealed 14-3-3s to be essential players in floral induction. However, such fascinating discoveries can often be ascribed to the random identification of 14-3-3 as an interaction partner of the favorite protein. In contrast, our understanding of 14-3-3 function in higher organisms is frustratingly limited, mainly due to an overwhelming spectrum of putative targets in combination with the existence of a multigene 14-3-3 family. In this review we will discuss our current understanding of the function of plant 14-3-3 proteins, taking into account surveys of the Arabidopsis 14-3-3 interactome.

  15. Role 14-3-3 Protein in Regulation Some Cellular Processes

    Directory of Open Access Journals (Sweden)

    Nagam Khudhair

    2014-09-01

    Full Text Available The aim of this study to review an overview of the current information on the structure of proteins 14-3-3 and their complexes, in addition to that it provides insights into the mechanisms of their functions. The 14-3-3 proteins are from families maintain regulatory molecules expressed in all eukaryotic cells. It was discovered before thirty years, it is attributes of 14-3-3 proteins are able to connect a large number of signalling proteins are functionally diverse, including kinases, phosphatases and transmembrane receptors. 14-3-3 proteins play an important role in a variety of vital regulatory processes, such as protein regulation, apoptotic cell death and cell cycle control. In this review, we discussed the structural basis of 14-3-3 proteins, common structural features of their complexes, Phosphorylation, Cell cycle and Apoptosis.

  16. 14-3-3σ induces heat shock protein 70 expression in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    14-3-3σ is implicated in promoting tumor development of various malignancies. However, the clinical relevance of 14-3-3σ in hepatocellular carcinoma (HCC) tumor progression and modulation and pathway elucidation remain unclear. We investigated 14-3-3σ expression in 109 HCC tissues by immunohistochemistry. Overexpression and knockdown experiments were performed by transfection with cDNA or siRNA. Protein expression and cell migration were determined by Western blot and Boyden chamber assay. In this study, we found that 14-3-3σ is abundantly expressed in HCC tumors. Stable or transient overexpression of 14-3-3σ induces the expression of heat shock factor-1α (HSF-1α) and heat shock protein 70 (HSP70) in HCC cells. Moreover, expression of 14-3-3σ significantly correlates with HSF-1α/HSP70 in HCC tumors and both 14-3-3σ and HSP70 overexpression are associated with micro-vascular thrombi in HCC patients, suggesting that 14-3-3σ/HSP70 expression is potentially involved in cell migration/invasion. Results of an in vitro migration assay indicate that 14-3-3σ promotes cell migration and that 14-3-3σ-induced cell migration is impaired by siRNA knockdown of HSP70. Finally, 14-3-3σ-induced HSF-1α/HSP70 expression is abolished by the knockdown of β-catenin or activation of GSK-3β. Our findings indicate that 14-3-3σ participates in promoting HCC cell migration and tumor development via β-catenin/HSF-1α/HSP70 pathway regulation. Thus, 14-3-3σ alone or combined with HSP70 are potential prognostic biomarkers for HCC

  17. Hyperglycemia decreases expression of 14-3-3 proteins in an animal model of stroke.

    Science.gov (United States)

    Jeon, Seong-Jun; Sung, Jin-Hee; Koh, Phil-Ok

    2016-07-28

    Diabetes is a severe metabolic disorder and a major risk factor for stroke. Stroke severity is worse in patients with diabetes compared to the non-diabetic population. The 14-3-3 proteins are a family of conserved acidic proteins that are ubiquitously expressed in cells and tissues. These proteins are involved in many cellular processes including metabolic pathways, signal transduction, protein trafficking, protein synthesis, and cell cycle control. This study investigated 14-3-3 proteins expression in the cerebral cortex of animals with diabetes, cerebral ischemic injury and a combination of both diabetes and cerebral ischemic injury. Diabetes was induced by intraperitoneal injection of streptozotocin (40mg/kg) in adult male rats. After 4 weeks of treatment, middle cerebral artery occlusion (MCAO) was performed for the induction of focal cerebral ischemia and cerebral cortex tissue was collected 24h after MCAO. We confirmed that diabetes increases infarct volume following MCAO compared to non-diabetic animals. In diabetic animals with MCAO injury, reduction of 14-3-3 β/α, 14-3-3 ζ/δ, 14-3-3 γ, and 14-3-3 ε isoforms was detected. The expression of these proteins was significantly decreased in diabetic animals with MCAO injury compared to diabetic-only and MCAO-only animals. Moreover, Western blot analysis ascertained the decreased expression of 14-3-3 family proteins in diabetic animals with MCAO injury, including β/α, ζ/δ, γ, ε, τ, and η isoforms. These results show the changes of 14-3-3 proteins expression in streptozotocin-induced diabetic animals with MCAO injury. Thus, these findings suggest that decreases in 14-3-3 proteins might be involved in the regulation of 14-3-3 proteins under the presence of diabetes following MCAO. PMID:27177727

  18. The crystal structure of the non-liganded 14-3-3σ protein: insights into determinants of isoform specific ligand binding and dimerization

    Institute of Scientific and Technical Information of China (English)

    Anne BENZINGER; Grzegorz M. POPOWICZ; Joma K. JOY; Sudipta MAJUMDAR; Tad A. HOLAK; Heiko HERMEKING

    2005-01-01

    Seven different, but highly conserved 14-3-3 proteins are involved in diverse signaling pathways in human cells. It is unclear how the 14-3-3σ isoform, a transcriptional target of p53, exerts its inhibitory effect on the cell cycle in the presence of other 14-3-3 isoforms, which are constitutively expressed at high levels. In order to identify structural differences between the 14-3-3 isoforms, we solved the crystal structure of the human 14-3-3σ protein at a resolution of 2.8 A and compared it to the known structures of 14-3-3ζ and 14-3-3τ. The global architecture of the 14-3-3σ fold is similar to the previously determined structures of 14-3-3ζ and 14-3-3τ: two 14-3-3σ molecules form a cup-shaped dimer. Significant differences between these 14-3-3 isoforms were detected adjacent to the amphipathic groove, which mediates the binding to phosphorylated consensus motifs in 14-3-3-1igands. Another specificity determining region is localized between amino-acids 203 to 215. These differences presumably select for the interaction with specific ligands,which may explain the different biological functions of the respective 14-3-3 isoforms. Furthermore, the two 14-3-3σ molecules forming a dimer differ by the spatial position of the ninth helix, which is shifted to the inside of the ligand interaction surface, thus indicating adaptability of this part of the molecule. In addition, 5 non-conserved residues are located at the interface between two 14-3-3σ proteins forming a dimer and represent candidate determinants of homoand hetero-dimerization specificity. The structural differences among the 14-3-3 isoforms described here presumably contribute to isoform-specific interactions and functions.

  19. Expression of 14-3-3 protein isoforms in mouse oocytes, eggs and ovarian follicular development

    Directory of Open Access Journals (Sweden)

    De Santanu

    2012-01-01

    Full Text Available Abstract Background The 14-3-3 (YWHA proteins are a highly conserved, ubiquitously expressed family of proteins. Seven mammalian isoforms of 14-3-3 are known (β, γ, ε, ζ, η, τ and, σ. These proteins associate with many intracellular proteins involved in a variety of cellular processes including regulation of the cell cycle, metabolism and protein trafficking. We are particularly interested in the role of 14-3-3 in meiosis in mammalian eggs and the role 14-3-3 proteins may play in ovarian function. Therefore, we examined the expression of 14-3-3 proteins in mouse oocyte and egg extracts by Western blotting after polyacrylamide gel electrophoresis, viewed fixed cells by indirect immunofluorescence, and examined mouse ovarian cells by immunohistochemical staining to study the expression of the different 14-3-3 isoforms. Results We have determined that all of the mammalian 14-3-3 isoforms are expressed in mouse eggs and ovarian follicular cells including oocytes. Immunofluorescence confocal microscopy of isolated oocytes and eggs confirmed the presence of all of the isoforms with characteristic differences in some of their intracellular localizations. For example, some isoforms (β, ε, γ, and ζ are expressed more prominently in peripheral cytoplasm compared to the germinal vesicles in oocytes, but are uniformly dispersed within eggs. On the other hand, 14-3-3η is diffusely dispersed in the oocyte, but attains a uniform punctate distribution in the egg with marked accumulation in the region of the meiotic spindle apparatus. Immunohistochemical staining detected all isoforms within ovarian follicles, with some similarities as well as notable differences in relative amounts, localizations and patterns of expression in multiple cell types at various stages of follicular development. Conclusions We found that mouse oocytes, eggs and follicular cells within the ovary express all seven isoforms of the 14-3-3 protein. Examination of the

  20. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells.

    Science.gov (United States)

    Li, Tong; Paudel, Hemant K

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer's disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445-6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  1. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis.

    Science.gov (United States)

    Liang, Xiubin; Da Paula, Ana Carina; Bozóky, Zoltán; Zhang, Hui; Bertrand, Carol A; Peters, Kathryn W; Forman-Kay, Julie D; Frizzell, Raymond A

    2012-03-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP/protein kinase A (PKA)-regulated chloride channel whose phosphorylation controls anion secretion across epithelial cell apical membranes. We examined the hypothesis that cAMP/PKA stimulation regulates CFTR biogenesis posttranslationally, based on predicted 14-3-3 binding motifs within CFTR and forskolin-induced CFTR expression. The 14-3-3β, γ, and ε isoforms were expressed in airway cells and interacted with CFTR in coimmunoprecipitation assays. Forskolin stimulation (15 min) increased 14-3-3β and ε binding to immature and mature CFTR (bands B and C), and 14-3-3 overexpression increased CFTR bands B and C and cell surface band C. In pulse-chase experiments, 14-3-3β increased the synthesis of immature CFTR, reduced its degradation rate, and increased conversion of immature to mature CFTR. Conversely, 14-3-3β knockdown decreased CFTR B and C bands (70 and 55%) and elicited parallel reductions in cell surface CFTR and forskolin-stimulated anion efflux. In vitro, 14-3-3β interacted with the CFTR regulatory region, and by nuclear magnetic resonance analysis, this interaction occurred at known PKA phosphorylated sites. In coimmunoprecipitation assays, forskolin stimulated the CFTR/14-3-3β interaction while reducing CFTR's interaction with coat protein complex 1 (COP1). Thus 14-3-3 binding to phosphorylated CFTR augments its biogenesis by reducing retrograde retrieval of CFTR to the endoplasmic reticulum. This mechanism permits cAMP/PKA stimulation to make more CFTR available for anion secretion.

  2. Dexamethasone downregulated the expression of CSF 14-3-3β protein in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection.

    Science.gov (United States)

    Tsai, Hung-Chin; Lee, Bi-Yao; Yen, Chuan-Min; Wann, Shue-Ren; Lee, Susan Shin-Jung; Chen, Yao-Shen; Tai, Ming-Hong

    2014-03-01

    Angiostrongylus cantonensis is the main causative agent of human eosinophilic meningitis in Southeast Asia and the Pacific Islands. A previous study demonstrated that the 14-3-3β protein is a neuropathological marker in monitoring neuronal damage in meningitis. Steroids are commonly used in patients with eosinophilic meningitis caused by A. cantonensis infection. However, the mechanism by which steroids act in eosinophilic meningitis is unknown. We hypothesized that the beneficial effect of steroids on eosinophilic meningitis is partially mediated by the down-regulation of 14-3-3β protein expression in the cerebrospinal fluid (CSF). In this animal study, we determined the dynamic changes of 14-3-3β protein in mice with eosinophilic meningitis. The 14-3-3β protein in serum and CSF was increased in week 2 and 3 after infections. Dexamethasone administration significantly decreased the amounts of CSF 14-3-3β protein. By developing an in-house ELISA to measure 14-3-3β protein, it was found that the amounts of 14-3-3β protein in the CSF and serum increased over a three-week period after infection. There was a remarkable reduction of 14-3-3β protein in the CSF after 2 weeks of dexamethasone treatment. In conclusion, the administration of corticosteroids in mice with eosinophilic meningitis decreased the expression of 14-3-3β protein in the CSF.

  3. Neuroprotective effect of TAT-14-3-3ε fusion protein against cerebral ischemia/reperfusion injury in rats.

    Directory of Open Access Journals (Sweden)

    Yuanjun Zhu

    Full Text Available Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB due to its large size. A protein transduction domain (PTD of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP, which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic

  4. 14-3-3 Proteins Buffer Intracellular Calcium Sensing Receptors to Constrain Signaling.

    Directory of Open Access Journals (Sweden)

    Michael P Grant

    Full Text Available Calcium sensing receptors (CaSR interact with 14-3-3 binding proteins at a carboxyl terminal arginine-rich motif. Mutations identified in patients with familial hypocalciuric hypercalcemia, autosomal dominant hypocalcemia, pancreatitis or idiopathic epilepsy support the functional importance of this motif. We combined total internal reflection fluorescence microscopy and biochemical approaches to determine the mechanism of 14-3-3 protein regulation of CaSR signaling. Loss of 14-3-3 binding caused increased basal CaSR signaling and plasma membrane levels, and a significantly larger signaling-evoked increase in plasma membrane receptors. Block of core glycosylation with tunicamycin demonstrated that changes in plasma membrane CaSR levels were due to differences in exocytic rate. Western blotting to quantify time-dependent changes in maturation of expressed wt CaSR and a 14-3-3 protein binding-defective mutant demonstrated that signaling increases synthesis to maintain constant levels of the immaturely and maturely glycosylated forms. CaSR thus operates by a feed-forward mechanism, whereby signaling not only induces anterograde trafficking of nascent receptors but also increases biosynthesis to maintain steady state levels of net cellular CaSR. Overall, these studies suggest that 14-3-3 binding at the carboxyl terminus provides an important buffering mechanism to increase the intracellular pool of CaSR available for signaling-evoked trafficking, but attenuates trafficking to control the dynamic range of responses to extracellular calcium.

  5. Phosphorylation and Interaction with the 14-3-3 Protein of the Plasma Membrane H+-ATPase are Involved in the Regulation of Magnesium-Mediated Increases in Aluminum-Induced Citrate Exudation in Broad Bean (Vicia faba. L).

    Science.gov (United States)

    Chen, Qi; Kan, Qi; Wang, Ping; Yu, Wenqian; Yu, Yuzhen; Zhao, Yan; Yu, Yongxiong; Li, Kunzhi; Chen, Limei

    2015-06-01

    Several studies have shown that external application of micromolar magnesium (Mg) can increase the resistance of legumes to aluminum (Al) stress by enhancing Al-induced citrate exudation. However, the exact mechanism underlying this regulation remains unknown. In this study, the physiological and molecular mechanisms by which Mg enhances Al-induced citrate exudation to alleviate Al toxicity were investigated in broad bean. Micromolar concentrations of Mg that alleviated Al toxicity paralleled the stimulation of Al-induced citrate exudation and increased the activity of the plasma membrane (PM) H(+)-ATPase. Northern blot analysis shows that a putative MATE-like gene (multidrug and toxic compound extrusion) was induced after treatment with Al for 4, 8 and 12 h, whereas the mRNA abundance of the MATE-like gene showed no significant difference between Al plus Mg and Al-only treatments during the entire treatment period. Real-time reverse transcription-PCR (RT-PCR) and Western blot analyses suggest that the transcription and translation of the PM H(+)-ATPase were induced by Al but not by Mg. In contrast, immunoprecipitation suggests that Mg enhanced the phosphorylation levels of VHA2 and its interaction with the vf14-3-3b protein under Al stress. Taken together, our results suggest that micromolar concentrations of Mg can alleviate the Al rhizotoxicity by increasing PM H(+)-ATPase activity and Al-induced citrate exudation in YD roots. This enhancement is likely to be attributable to Al-induced increases in the expression of the MATE-like gene and vha2 and Mg-induced changes in the phosphorylation levels of VHA2, thus changing its interaction with the vf14-3-3b protein.

  6. Molecular Dynamics Simulations and Structural Analysis of Giardia duodenalis 14-3-3 Protein-Protein Interactions.

    Science.gov (United States)

    Cau, Ylenia; Fiorillo, Annarita; Mori, Mattia; Ilari, Andrea; Botta, Maurizo; Lalle, Marco

    2015-12-28

    Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duodenalis, which affects annually over 200 million people worldwide. The limited antigiardial drug arsenal and the emergence of clinical cases refractory to standard treatments dictate the need for new chemotherapeutics. The 14-3-3 family of regulatory proteins, extensively involved in protein-protein interactions (PPIs) with pSer/pThr clients, represents a highly promising target. Despite homology with human counterparts, the single 14-3-3 of G. duodenalis (g14-3-3) is characterized by a constitutive phosphorylation in a region critical for target binding, thus affecting the function and the conformation of g14-3-3/clients interaction. However, to approach the design of specific small molecule modulators of g14-3-3 PPIs, structural elucidations are required. Here, we present a detailed computational and crystallographic study exploring the implications of g14-3-3 phosphorylation on protein structure and target binding. Self-Guided Langevin Dynamics and classical molecular dynamics simulations show that phosphorylation affects locally and globally g14-3-3 conformation, inducing a structural rearrangement more suitable for target binding. Profitable features for g14-3-3/clients interaction were highlighted using a hydrophobicity-based descriptor to characterize g14-3-3 client peptides. Finally, the X-ray structure of g14-3-3 in complex with a mode-1 prototype phosphopeptide was solved and combined with structure-based simulations to identify molecular features relevant for clients binding to g14-3-3. The data presented herein provide a further and structural understanding of g14-3-3 features and set the basis for drug design studies. PMID:26551337

  7. Regulation of starch accumulation by granule-associated plant 14-3-3 proteins

    OpenAIRE

    Sehnke, Paul C.; Chung, Hwa-Jee; Wu, Ke; Ferl, Robert J.

    2001-01-01

    In higher plants the production of starch is orchestrated by chloroplast-localized biosynthetic enzymes, namely starch synthases, ADP-glucose pyrophosphorylase, and starch branching and debranching enzymes. Diurnal regulation of these enzymes, as well as starch-degrading enzymes, influences both the levels and composition of starch, and is dependent in some instances upon phosphorylation-linked regulation. The phosphoserine/threonine-binding 14-3-3 proteins partici...

  8. 14-3-3σ regulates β-catenin-mediated mouse embryonic stem cell proliferation by sequestering GSK-3β.

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Chang

    Full Text Available BACKGROUND: Pluripotent embryonic stem cells are considered to be an unlimited cell source for tissue regeneration and cell-based therapy. Investigating the molecular mechanism underlying the regulation of embryonic stem cell expansion is thus important. 14-3-3 proteins are implicated in controlling cell division, signaling transduction and survival by interacting with various regulatory proteins. However, the function of 14-3-3 in embryonic stem cell proliferation remains unclear. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we show that all seven 14-3-3 isoforms were detected in mouse embryonic stem cells. Retinoid acid suppressed selectively the expression of 14-3-3σ isoform. Knockdown of 14-3-3σ with siRNA reduced embryonic stem cell proliferation, while only 14-3-3σ transfection increased cell growth and partially rescued retinoid acid-induced growth arrest. Since the growth-enhancing action of 14-3-3σ was abrogated by β-catenin knockdown, we investigated the influence of 14-3-3σ overexpression on β-catenin/GSK-3β. 14-3-3σ bound GSK-3β and increased GSK-3β phosphorylation in a PI-3K/Akt-dependent manner. It disrupted β-catenin binding by the multiprotein destruction complex. 14-3-3σ overexpression attenuated β-catenin phosphorylation and rescued the decline of β-catenin induced by retinoid acid. Furthermore, 14-3-3σ enhanced Wnt3a-induced β-catenin level and GSK-3β phosphorylation. DKK, an inhibitor of Wnt signaling, abolished Wnt3a-induced effect but did not interfere GSK-3β/14-3-3σ binding. SIGNIFICANCE: Our findings show for the first time that 14-3-3σ plays an important role in regulating mouse embryonic stem cell proliferation by binding and sequestering phosphorylated GSK-3β and enhancing Wnt-signaled GSK-3β inactivation. 14-3-3σ is a novel target for embryonic stem cell expansion.

  9. Small-Molecule Stabilization of the 14-3-3/Gab2 Protein-Protein Interaction (PPI) Interface.

    Science.gov (United States)

    Bier, David; Bartel, Maria; Sies, Katharina; Halbach, Sebastian; Higuchi, Yusuke; Haranosono, Yu; Brummer, Tilman; Kato, Nobuo; Ottmann, Christian

    2016-04-19

    Small-molecule modulation of protein-protein interactions (PPIs) is one of the most promising new areas in drug discovery. In the vast majority of cases only inhibition or disruption of PPIs is realized, whereas the complementary strategy of targeted stabilization of PPIs is clearly under-represented. Here, we report the example of a semi-synthetic natural product derivative--ISIR-005--that stabilizes the cancer-relevant interaction of the adaptor protein 14-3-3 and Gab2. The crystal structure of ISIR-005 in complex with 14-3-3 and the binding motif of Gab2 comprising two phosphorylation sites (Gab2pS210pT391) showed how the stabilizing molecule binds to the rim-of-the-interface of the protein complex. Only in the direct vicinity of 14-3-3/Gab2pT391 site is a pre-formed pocket occupied by ISIR-005; binding of the Gab2pS210 motif to 14-3-3 does not create an interface pocket suitable for the molecule. Accordingly, ISIR-005 only stabilizes the binding of the Gab2pT391 but not the Gab2pS210 site. This study represents structural and biochemical proof of the druggability of the 14-3-3/Gab2 PPI interface with important implications for the development of PPI stabilizers. PMID:26644359

  10. Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates

    OpenAIRE

    Tinti, Michele; Johnson, Catherine; Toth, Rachel; Ferrier, David Ellard Keith; MacKintosh, Carol

    2012-01-01

    14-3-3 proteins regulate cellular responses to stimuli by docking onto pairs of phosphorylated residues on target proteins. The present study shows that the human 14-3-3-binding phosphoproteome is highly enriched in 2R-ohnologues, which are proteins in families of two to four members that were generated by two rounds of whole genome duplication at the origin of the vertebrates. We identify 2R-ohnologue families whose members share a ‘lynchpin’, defined as a 14-3-3-binding phosphosite that is ...

  11. Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates

    Science.gov (United States)

    Tinti, Michele; Johnson, Catherine; Toth, Rachel; Ferrier, David E. K.; MacKintosh, Carol

    2012-01-01

    14-3-3 proteins regulate cellular responses to stimuli by docking onto pairs of phosphorylated residues on target proteins. The present study shows that the human 14-3-3-binding phosphoproteome is highly enriched in 2R-ohnologues, which are proteins in families of two to four members that were generated by two rounds of whole genome duplication at the origin of the vertebrates. We identify 2R-ohnologue families whose members share a ‘lynchpin’, defined as a 14-3-3-binding phosphosite that is conserved across members of a given family, and aligns with a Ser/Thr residue in pro-orthologues from the invertebrate chordates. For example, the human receptor expression enhancing protein (REEP) 1–4 family has the commonest type of lynchpin motif in current datasets, with a phosphorylatable serine in the –2 position relative to the 14-3-3-binding phosphosite. In contrast, the second 14-3-3-binding sites of REEPs 1–4 differ and are phosphorylated by different kinases, and hence the REEPs display different affinities for 14-3-3 dimers. We suggest a conceptual model for intracellular regulation involving protein families whose evolution into signal multiplexing systems was facilitated by 14-3-3 dimer binding to lynchpins, which gave freedom for other regulatory sites to evolve. While increased signalling complexity was needed for vertebrate life, these systems also generate vulnerability to genetic disorders. PMID:22870394

  12. Altered expression of 14-3-3ζ protein in spinal cords of rat fetuses with spina bifida aperta.

    Directory of Open Access Journals (Sweden)

    Li-na Wu

    Full Text Available BACKGROUND: A large number of studies have confirmed that excessive apoptosis is one of the reasons for deficient neuronal function in neural tube defects (NTDs. A previous study from our laboratory used 2-D gel electrophoresis to demonstrate that 14-3-3ζ expression was low in the spinal cords of rat fetuses with spina bifida aperta at embryonic day (E 17. As a member of the 14-3-3 protein family, 14-3-3ζ plays a crucial role in the determination of cell fate and anti-apoptotic activity. However, neither the expression of 14-3-3ζ in defective spinal cords, nor the correlation between 14-3-3ζ and excessive apoptosis in NTDs has been fully confirmed. METHODOLOGY/PRINCIPAL FINDINGS: We used immunoblotting and quantitative real-time PCR (qRT-PCR to quantify the expression of 14-3-3ζ and double immunofluorescence to visualize 14-3-3ζ and apoptosis. We found that, compared with controls, 14-3-3ζ was down-regulated in spina bifida between E12 and E15. Excessive apoptotic cells and low expression of 14-3-3ζ were observed in the dorsal region of spinal cords with spina bifida during the same time period. To initially explore the molecular mechanisms of apoptosis in NTDs, we investigated the expression of microRNA-7 (miR-7, microRNA-375 (miR-375 and microRNA-451 (miR-451, which are known to down-regulate 14-3-3ζ in several different cell types. We also investigated the expression of p53, a molecule that is downstream of 14-3-3ζ and can be down-regulated by it. We discovered that, in contrast to the reduction of 14-3-3ζ expression, the expression of miR-451, miR-375 and p53 increased in spina bifida rat fetuses. CONCLUSIONS/SIGNIFICANCE: These data suggest that the reduced expression of 14-3-3ζ plays a role in the excessive apoptosis that occurs in spina bifida and may be partly regulated by the over-expression of miR-451 and miR-375, and the consequent up-regulation of p53 might further promote apoptosis in spina bifida.

  13. CSF Tau proteins reduce misdiagnosis of sporadic Creutzfeldt-Jakob disease suspected cases with inconclusive 14-3-3 result.

    Science.gov (United States)

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-09-01

    Cerebrospinal fluid (CSF) 14-3-3 protein supports sporadic Creutzfeldt-Jakob (sCJD) diagnosis, but often leads to weak-positive results and lacks standardization. In this study, we explored the added diagnostic value of Total Tau (t-Tau) and phosphorylated Tau (p-Tau) in sCJD diagnosis, particularly in the cases with inconclusive 14-3-3 result. 95 definite sCJD and 287 patients without prion disease (non-CJD) were included in this study. CSF samples were collected in routine clinical diagnosis and analysed for 14-3-3 detection by Western blot (WB). CSF t-Tau and p-Tau were quantified by commercial ELISA kits and PRNP and APOE genotyping assessed by PCR-RFLP. In a regression analysis of the whole cohort, 14-3-3 protein revealed an overall accuracy of 82 % (sensitivity = 96.7 %; specificity = 75.6 %) for sCJD. Regarding 14-3-3 clear positive results, we observed no added value either of t-Tau alone or p-Tau/t-Tau ratio in the model. On the other hand, considering 14-3-3 weak-positive cases, t-Tau protein increased the overall accuracy of 14-3-3 alone from 91 to 94 % and specificity from 74 to 93 % (p < 0.05), with no sensitivity improvement. However, inclusion of p-Tau/t-Tau ratio did not significantly improve the first model (p = 0.0595). Globally, t-Tau protein allowed a further discrimination of 65 % within 14-3-3 inconclusive results. Furthermore, PRNP MV genotype showed a trend to decrease 14-3-3 sensitivity (p = 0.051), but such effect was not seen on t-Tau protein. In light of these results, we suggest that t-Tau protein assay is of significant importance as a second marker in identifying 14-3-3 false-positive results among sCJD probable cases. PMID:27357003

  14. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja Regulates ABA Sensitivity in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiaoli Sun

    Full Text Available It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.

  15. A 14-3-3 Family Protein from Wild Soybean (Glycine Soja) Regulates ABA Sensitivity in Arabidopsis.

    Science.gov (United States)

    Sun, Xiaoli; Sun, Mingzhe; Jia, Bowei; Chen, Chao; Qin, Zhiwei; Yang, Kejun; Shen, Yang; Meiping, Zhang; Mingyang, Cong; Zhu, Yanming

    2015-01-01

    It is widely accepted that the 14-3-3 family proteins are key regulators of multiple stress signal transduction cascades. By conducting genome-wide analysis, researchers have identified the soybean 14-3-3 family proteins; however, until now, there is still no direct genetic evidence showing the involvement of soybean 14-3-3s in ABA responses. Hence, in this study, based on the latest Glycine max genome on Phytozome v10.3, we initially analyzed the evolutionary relationship, genome organization, gene structure and duplication, and three-dimensional structure of soybean 14-3-3 family proteins systematically. Our results suggested that soybean 14-3-3 family was highly evolutionary conserved and possessed segmental duplication in evolution. Then, based on our previous functional characterization of a Glycine soja 14-3-3 protein GsGF14o in drought stress responses, we further investigated the expression characteristics of GsGF14o in detail, and demonstrated its positive roles in ABA sensitivity. Quantitative real-time PCR analyses in Glycine soja seedlings and GUS activity assays in PGsGF14O:GUS transgenic Arabidopsis showed that GsGF14o expression was moderately and rapidly induced by ABA treatment. As expected, GsGF14o overexpression in Arabidopsis augmented the ABA inhibition of seed germination and seedling growth, promoted the ABA induced stomata closure, and up-regulated the expression levels of ABA induced genes. Moreover, through yeast two hybrid analyses, we further demonstrated that GsGF14o physically interacted with the AREB/ABF transcription factors in yeast cells. Taken together, results presented in this study strongly suggested that GsGF14o played an important role in regulation of ABA sensitivity in Arabidopsis.

  16. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions.

    Science.gov (United States)

    Jaumot, M; Hancock, J F

    2001-07-01

    Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions. We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation. General serine-threonine phosphatase inhibitors such sodium fluoride, or ss-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I(1) or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains. These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.

  17. Revealing the binding modes and the unbinding of 14-3-3σ proteins and inhibitors by computational methods.

    Science.gov (United States)

    Hu, Guodong; Cao, Zanxia; Xu, Shicai; Wang, Wei; Wang, Jihua

    2015-01-01

    The 14-3-3σ proteins are a family of ubiquitous conserved eukaryotic regulatory molecules involved in the regulation of mitogenic signal transduction, apoptotic cell death, and cell cycle control. A lot of small-molecule inhibitors have been identified for 14-3-3 protein-protein interactions (PPIs). In this work, we carried out molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) method to study the binding mechanism between a 14-3-3σ protein and its eight inhibitors. The ranking order of our calculated binding free energies is in agreement with the experimental results. We found that the binding free energies are mainly from interactions between the phosphate group of the inhibitors and the hydrophilic residues. To improve the binding free energy of Rx group, we designed the inhibitor R9 with group R9 = 4-hydroxypheny. However, we also found that the binding free energy of inhibitor R9 is smaller than that of inhibitor R1. By further using the steer molecular dynamics (SMD) simulations, we identified a new hydrogen bond between the inhibitor R8 and residue Arg64 in the pulling paths. The information obtained from this study may be valuable for future rational design of novel inhibitors, and provide better structural understanding of inhibitor binding to 14-3-3σ proteins. PMID:26568041

  18. 14-3-3 gamma and zeta protein expression in active microglia Immune response mechanisms of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Jing He; Shenggang Sun; Xiaowu Chen

    2008-01-01

    BACKGROUND: The progressive degeneration of dopaminergic neurons in Parkinson's disease is associated with an activated glial reaction, combined with an inflammatory process. These responses lead to the production of cytokines, such as interferon-γ, tumor necrosis factor-α(TNF-α), and interleukin-1β. In addition, 14-3-3 protein is a component of Lewy bodies in Parkinson's disease.OBJECTIVE: To observe the expression of 14-3-3 γ and ζ protein, as well as TNF-α, in mouse microglia, as well as changes after lipopolysaccharide (LPS) activation. To investigate possible mechanisms of dopaminergic neuronal injury due to activated microglia. To and clarify the immune response mechanisms of Parkinson's disease.DESIGN: Randomized controlled observation, cell study.SETTING: Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology.MATERIALS: The BV-2 immortalized murine microglia cell line was purchased from China Unit cell center. LPS was provided by Sigma Company. Cell cultures were purchased from Gibco. Phospho-(Ser) 14-3-3 binding motif antibody was purchased from Santa Cruz Biotechnologies. FITC was provided by Linfei Biotechnology, Wuhan, China. TNF-α ELISA was provided by Jingmei Biotech Co, Wuhan, China. The flow cytometer was provided by Becton Dickinson, Canada.METHODS: The present experiment was performed at the Laboratory of Department of Neurology, the Affiliated Union Hospital of Tongji Medical College, Huazhong University of Science and Technology from April to December 2006. The microglial cell line, BV-2, was cultured in vitro and stimulated with LPS for 2, 6, 12, and 24 hours. BV-2 cultures without LPS were used as controls.MAIN OUTCOME MEASURES: Expression of 14-3-3 γ protein was detected by flow cytometry. 14-3-3 ζ percentage expression and the mean fluorescence intensity was detected by immunofluorescence. TNF-αexpression was detected by ELISA.RESULTS: 14-3-3

  19. SGK and 14-3-3 protein areinvolved in the serine/threonine phosphorylationmechanism for TPO/MPLsignal transduction

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Thrombopioetin (TPO), the critical regulator of platelet production, acts by binding to its cell surface receptor, c-Mpl. Yeast two-hybrid screening was performed to isolate the proteins interacting with the cytoplasmic domain of c-Mpl. 48 positive clones were isolated from 5 × 106 independent transformants. The results of sequence analysis demonstrate that they represent 13 different protein encoding sequences. Among them there are a partial coding sequence of serine/threonine protein kinase SGK (serum and glucocorticoid-inducible kinase ) and 14-3-3 theta protein partial coding sequence. GST-pull-down assay and co-immunoprecipitation in mammal cells have confirmed the interaction between these two proteins and c-Mpl. By constructing a series of deleted c-Mpl cytoplasmic domain, the interaction region in c-Mpl cytoplasmic tail was localized in amino acids 523-554. At the same time, the directed interaction between SGK and 14-3-3 proteins also has been verified by yeast two-hybrid assay. The present note is the first time to report that two proteins act with c-Mpl at the same time and put forward that SGK and 14-3-3 protein may be involved in the serine/threonine phosphorylation mechanism for signal transduction.``

  20. 细粒棘球绦虫14-3-3zeta蛋白的生物信息学分析%Application of bioinformatic analysis in 14-3-3zeta protein of Echinococcus granulosus

    Institute of Scientific and Technical Information of China (English)

    符瑞佳; 吕刚; 尹飞飞; 梁培

    2015-01-01

    目的:应用生物信息学技术对细粒棘球绦虫(Echinococcus granulosus)14-3-3zeta蛋白的结构和功能进行预测和分析,为进一步的实验研究提供依据。方法利用美国国家生物技术信息中心(NCBI,http://www.ncbi.nlm.nih.gov/)和瑞士生物信息学研究所的蛋白分析专家系统(ExPASY,http://expasy.org/)提供的各种有关基因和蛋白序列、结构信息分析的工具,并结合其它生物信息学分析软件,对该蛋白质的结构和功能进行预测和分析。结果该基因全长为771 bp ,编码256个氨基酸,其编码的蛋白相对分子量理论预测值和等电点分别是29.4 kDa和5.04。预测该蛋白无信号肽和跨膜区,二级结构含8个α-螺旋和12个β-折叠股,氨基酸序列中有9个潜在抗原表位。结论初步认识了细粒棘球绦虫14-3-3zeta蛋白的基本特征,为深入研究该蛋白的生物学功能奠定了基础。%Objective To predict and analyze the structure and function of 14-3-3zeta protein from Echinococcus granulosus by bioinformatics technology. Methods The structure and function of Eg14-3-3zeta protein was identified from two biological information sites, USA National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/), and Expert System for analysis of protein of the Swiss Institute of bioinformatics (ExPASY,http://expasy.org/), which offer the analysis of various related gene and protein sequence, structure information tools, and other bioinformatics analysis software. Results The full-length cDNA sequence encoding Eg14-3-3zeta included a complete open reading frame (ORF) of 771 bp coding to a putative protein with 256 amino acids. Molecular weight of Eg14-3-3zeta was predicted to be 29.4 kDa and its isoelectric point was 5.04. The protein had no signal peptide site and transmembrane do-main. Secondary structure of Eg14-3-3zeta contained 8 alpha-helices and 12 beta-strands.There were

  1. A novel pathway down-modulating T cell activation involves HPK-1–dependent recruitment of 14-3-3 proteins on SLP-76

    OpenAIRE

    Bartolo, Vincenzo Di; Montagne, Benjamin; Salek, Mogjiborahman; Jungwirth, Britta; Carrette, Florent; Fourtane, Julien; Sol-Foulon, Nathalie; Michel, Frédérique; Schwartz, Olivier; Lehmann, Wolf D.; Acuto, Oreste

    2007-01-01

    The SH2 domain–containing leukocyte protein of 76 kD (SLP-76) is a pivotal element of the signaling machinery controlling T cell receptor (TCR)-mediated activation. Here, we identify 14-3-3ɛ and ζ proteins as SLP-76 binding partners. This interaction was induced by TCR ligation and required phosphorylation of SLP-76 at serine 376. Ribonucleic acid interference and in vitro phosphorylation experiments showed that serine 376 is the target of the hematopoietic progenitor kinase 1 (HPK-1). Intere...

  2. Transcription variants of the prostate-specific PrLZ gene and their interaction with 14-3-3 proteins

    International Nuclear Information System (INIS)

    We have reported isolation and characterization of the prostate-specific and androgen-regulated PrLZ gene abnormally expressed in prostate cancer. PrLZ is a potential biomarker for prostate cancer and a candidate oncogene promoting cell proliferation and survival in prostate cancer cells. A full delineation of the PrLZ gene and its gene products may provide clues to the mechanisms regulating its expression and function. In this report, we identified three additional exons in the PrLZ gene and recognized five transcript variants from alternative splicing that could be detected by RT-PCR and Western blotting. Structural comparison demonstrated that the PrLZ proteins are highly conserved among species. PrLZ contains multiple potential sites for interaction with other proteins. We used mammalian two-hybrid assays to demonstrate that PrLZ isoforms interact with 14-3-3 proteins, and multiple sites in the PrLZ may be involved in the interaction. Alternative splicing may contribute to abnormally enhanced PrLZ levels in prostate cancer, and interaction with 14-3-3 proteins may be a mechanism by which PrLZ promotes cell proliferation and survival during prostate cancer development and progression. This information is a valuable addition to the investigation of the oncogenic properties of the PrLZ gene.

  3. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference.

    KAUST Repository

    Fiorillo, Annarita

    2014-03-21

    The 14-3-3s are a family of dimeric evolutionary conserved pSer/pThr binding proteins that play a key role in multiple biological processes by interacting with a plethora of client proteins. Giardia duodenalis is a flagellated protozoan that affects millions of people worldwide causing an acute and chronic diarrheal disease. The single giardial 14-3-3 isoform (g14-3-3), unique in the 14-3-3 family, needs the constitutive phosphorylation of Thr214 and the polyglycylation of its C-terminus to be fully functional in vivo. Alteration of the phosphorylation and polyglycylation status affects the parasite differentiation into the cyst stage. To further investigate the role of these post-translational modifications, the crystal structure of the g14-3-3 was solved in the unmodified apo form. Oligomers of g14-3-3 were observed due to domain swapping events at the protein C-terminus. The formation of filaments was supported by TEM. Mutational analysis, in combination with native PAGE and chemical cross-linking, proved that polyglycylation prevents oligomerization. In silico phosphorylation and molecular dynamics simulations supported a structural role for the phosphorylation of Thr214 in promoting target binding. Our findings highlight unique structural features of g14-3-3 opening novel perspectives on the evolutionary history of this protein family and envisaging the possibility to develop anti-giardial drugs targeting g14-3-3.

  4. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference.

    Directory of Open Access Journals (Sweden)

    Annarita Fiorillo

    Full Text Available The 14-3-3s are a family of dimeric evolutionary conserved pSer/pThr binding proteins that play a key role in multiple biological processes by interacting with a plethora of client proteins. Giardia duodenalis is a flagellated protozoan that affects millions of people worldwide causing an acute and chronic diarrheal disease. The single giardial 14-3-3 isoform (g14-3-3, unique in the 14-3-3 family, needs the constitutive phosphorylation of Thr214 and the polyglycylation of its C-terminus to be fully functional in vivo. Alteration of the phosphorylation and polyglycylation status affects the parasite differentiation into the cyst stage. To further investigate the role of these post-translational modifications, the crystal structure of the g14-3-3 was solved in the unmodified apo form. Oligomers of g14-3-3 were observed due to domain swapping events at the protein C-terminus. The formation of filaments was supported by TEM. Mutational analysis, in combination with native PAGE and chemical cross-linking, proved that polyglycylation prevents oligomerization. In silico phosphorylation and molecular dynamics simulations supported a structural role for the phosphorylation of Thr214 in promoting target binding. Our findings highlight unique structural features of g14-3-3 opening novel perspectives on the evolutionary history of this protein family and envisaging the possibility to develop anti-giardial drugs targeting g14-3-3.

  5. Ablation of the 14-3-3gamma Protein Results in Neuronal Migration Delay and Morphological Defects in the Developing Cerebral Cortex.

    Science.gov (United States)

    Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-oka, Kazuhito

    2016-06-01

    14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects.

  6. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase

    DEFF Research Database (Denmark)

    Jahn, T.; Fuglsang, A.T.; Olsson, A.;

    1997-01-01

    Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H(+)-AT...... plasma membrane H(+)-ATPase. We propose that the 14-3-3 protein is a natural ligand of the plasma membrane H(+)-ATPase, regulating proton pumping by displacing the C-terminal autoinhibitory domain of the H(+)-ATPase....

  7. Heterologous expression of Schistosoma japanicum signal protein 14-3-3 in Pichia pastoris and the subsequent immune response in mice

    Institute of Scientific and Technical Information of China (English)

    Meijuan ZHENG; Jilong SHEN; Yuanhong XU; Qingli LUO

    2008-01-01

    Schistosomiasis japonica, a zoonosis caused by Schistosomajaponicum, is endemic to the Philippines and China. Several vaccine candidates have been identified and tested in different animal models, but it is still unclear which will be optimal for testing in the field. Therefore, new antigens and strategies are necessary for vaccine development against schistosomiasis japonica. The Sj14-3-3 gene was amplified and subcloned into the expression vector pPICZα-B and transformed into P. pastoris X-33 by electroporation. Three transformants were induced with methanol. The cultural supernatant was collected and tested by SDS-PAGE and Western blotting. The pro-tein of rSj14-3-3 was prepared and purified and BALB/c mice were immunized which was followed by a challen-ging infection. The immuno-protection was then evalu-ated. The Sj14-3-3 gene was expressed and secreted into the medium and its molecular weight was about 35000 as determined by SDS-PAGE. Western blotting showed that the protein had a high specificity against mouse-anti-Sj14-3-3 monoclonal antibody and rSj14-3-3 had a promising immune reactivity. The results of the immuno-protective experiments revealed that the worm reduction was 26.0%, 32.2%, and 36.8%, respectively. The number of eggs in liver tissue was reduced by 36.8%, 43.2%, and 46.1%, respectively. The recombinant Sj14-3-3 of eukaryotic expression in Pichia pastoris was successfully harvested. The molecular vaccine of Sj14-3-3 could partially induce resistance to the infection with S. japonicum in BALB/c mice. The recombinant protein Sj14-3-3 has promising immunological potentials for further approach to the dia-gnosis and development of molecular vaccine.

  8. Dual phosphorylation of Btk by Akt/protein kinase b provides docking for 14-3-3ζ, regulates shuttling, and attenuates both tonic and induced signaling in B cells.

    Science.gov (United States)

    Mohammad, Dara K; Nore, Beston F; Hussain, Alamdar; Gustafsson, Manuela O; Mohamed, Abdalla J; Smith, C I Edvard

    2013-08-01

    Bruton's tyrosine kinase (Btk) is crucial for B-lymphocyte activation and development. Mutations in the Btk gene cause X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Using tandem mass spectrometry, 14-3-3ζ was identified as a new binding partner and negative regulator of Btk in both B-cell lines and primary B lymphocytes. The activated serine/threonine kinase Akt/protein kinase B (PKB) phosphorylated Btk on two sites prior to 14-3-3ζ binding. The interaction sites were mapped to phosphoserine pS51 in the pleckstrin homology domain and phosphothreonine pT495 in the kinase domain. The double-alanine, S51A/T495A, replacement mutant failed to bind 14-3-3ζ, while phosphomimetic aspartate substitutions, S51D/T495D, caused enhanced interaction. The phosphatidylinositol 3-kinase (PI3-kinase) inhibitor LY294002 abrogated S51/T495 phosphorylation and binding. A newly characterized 14-3-3 inhibitor, BV02, reduced binding, as did the Btk inhibitor PCI-32765 (ibrutinib). Interestingly, in the presence of BV02, phosphorylation of Btk, phospholipase Cγ2, and NF-κB increased strongly, suggesting that 14-3-3 also regulates B-cell receptor (BCR)-mediated tonic signaling. Furthermore, downregulation of 14-3-3ζ elevated nuclear translocation of Btk. The loss-of-function mutant S51A/T495A showed reduced tyrosine phosphorylation and ubiquitination. Conversely, the gain-of-function mutant S51D/T495D exhibited intense tyrosine phosphorylation, associated with Btk ubiquitination and degradation, likely contributing to the termination of BCR signaling. Collectively, this suggests that Btk could become an important new candidate for the general study of 14-3-3-mediated regulation.

  9. Do 14-3-3 proteins and plasma membrane H+-AtPases interact in the barley epidermis in response to the barley powdery mildew fungus?

    DEFF Research Database (Denmark)

    Finni, Christine; Andersen, Claus H; Borch, Jonas;

    2002-01-01

    , or treatment with fusicoccin, results in an increase in fusicoccin binding ability of barley leaf membranes. Overlay assays show a fungus-induced increase in binding of digoxygenin-labelled 14-3-3 protein to several proteins including a 100 kDa membrane protein, probably the plasma membrane H...

  10. Do 14-3-3 proteins and plasma membrane H+-ATPases interact in the barley epidermis in response to the barley powdery mildew fungus?

    DEFF Research Database (Denmark)

    Finnie, C.; Andersen, C.H.; Borch, J.;

    2002-01-01

    , or treatment with fusicoccin, results in an increase in fusicoccin binding ability of barley leaf membranes. Overlay assays show a fungus-induced increase in binding of digoxygenin-labelled 14-3-3 protein to several proteins including a 100 kDa membrane protein, probably the plasma membrane H...

  11. Amifostine alleviates radiation-induced lethal small bowel damage via promotion of 14-3-3σ-mediated nuclear p53 accumulation.

    Science.gov (United States)

    Huang, Eng-Yen; Wang, Feng-Sheng; Chen, Yu-Min; Chen, Yi-Fan; Wang, Chung-Chi; Lin, I-Hui; Huang, Yu-Jie; Yang, Kuender D

    2014-10-30

    Amifostine (AM) is a radioprotector that scavenges free radicals and is used in patients undergoing radiotherapy. p53 has long been implicated in cell cycle arrest for cellular repair after radiation exposure. We therefore investigated the protective p53-dependent mechanism of AM on small bowel damage after lethal whole-abdominal irradiation (WAI). AM increased both the survival rate of rats and crypt survival following lethal 18 Gy WAI. The p53 inhibitor PFT-α compromised AM-mediated effects when administered prior to AM administration. AM significantly increased clonogenic survival in IEC-6 cells expressing wild type p53 but not in p53 knockdown cells. AM significantly increased p53 nuclear accumulation and p53 tetramer expression before irradiation through the inhibition of p53 degradation. AM inhibited p53 interactions with MDM2 but enhanced p53 interactions with 14-3-3σ. Knockdown of 14-3-3σ also compromised the effect of AM on clonogenic survival and p53 nuclear accumulation in IEC-6 cells. For the first time, our data reveal that AM alleviates lethal small bowel damage through the induction of 14-3-3σ and subsequent accumulation of p53. Enhancement of the p53/14-3-3σ interaction results in p53 tetramerization in the nucleus that rescues lethal small bowel damage. PMID:25230151

  12. Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage.

    Science.gov (United States)

    Teichmann, Aline; Vargas, Daiani M; Monteiro, Karina M; Meneghetti, Bruna V; Dutra, Cristine S; Paredes, Rodolfo; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique B

    2015-04-01

    The 14-3-3 protein family of eukaryotic regulators was studied in Echinococcus granulosus, the causative agent of cystic hydatid disease. These proteins mediate important cellular processes in eukaryotes and are expected to play important roles in parasite biology. Six isoforms of E. granulosus 14-3-3 genes and proteins (Eg14-3-3.1-6) were analyzed, and their phylogenetic relationships were established with bona fide 14-3-3 orthologous proteins from eukaryotic species. Eg14-3-3 isoforms with previous evidence of expression (Eg14-3-3.1-4) in E. granulosus pathogenic larval stage (metacestode) were cloned, and recombinant proteins were used for functional studies. These protein isoforms were detected in different components of E. granulosus metacestode, including interface components with the host. The roles that are played by Eg14-3-3 proteins in parasite biology were inferred from the repertoires of interacting proteins with each isoform, as assessed by gel overlay, cross-linking, and affinity chromatography assays. A total of 95 Eg14-3-3 protein ligands were identified by mass spectrometry. Eg14-3-3 isoforms have shared partners (44 proteins), indicating some overlapping functions; however, they also bind exclusive partners (51 proteins), suggesting Eg14-3-3 functional specialization. These ligand repertoires indicate the involvement of Eg14-3-3 proteins in multiple biochemical pathways in the E. granulosus metacestode and note some degree of isoform specialization.

  13. Studies on Clinical Aspects, Pathological Changes, Immunohistochemistry, 14-3-3 protein, PrP Gene, and Animal Transmission of Creutzldt-Jakob Disease in China

    Institute of Scientific and Technical Information of China (English)

    Lin Shilie; Zhao Jiexu; Jiang Xinmei; Song Xiaonan; Wang Weimin; Fan Yengyeng; Tao Yuiqin; Chen Xiuyun

    2000-01-01

    Objectives To investigate the clinical manifestations, pathological changes, expression of PrP gene, 14-3-3 protein in cerebrospinal fluid (CSF) and experimental animal transmission of Creuizfeldt-Jakob disease (CJD) in China. Methods Clinical aspects of 24 patients with CJD which was confirmed neuropathological were evaluated. Brain sections of 10 cases of them were given immunostaining with antiserum to a synthetic polypeptide of prioni protein (PrP). PrP gene was analyzed in 10 cases, and 14-3-3 protein in CSF was detected in 5 cases. Experimental mouse transmission was carried out using brain suspension from 7 patients with CJD. Results 1) Nineteen cases with sporadic CJD, 3 cases with iatrogenic CJD, 1 case with inherited CJD and 1 case with coexistence of Alzheimer disease(AD) and CJD were found. 2) The percentage of acute and subacute onset was high up to 96%. The illness duration was shorter in a subacute onset and the brain atrophy was not obvious.3) The synaptic type of PrP deposition was shown in paraffin sections in all -cases by immunostaining.4) 14-3-3 protein was detected in 5 eases in cerebrospinal fluid with CJD 5) Spongiform degeneration and PrP deposition could be shown in the brain sections of experimental mouse transmission. Conclusion There are special characteristics in clinical aspects of CJD in China. The detection of 14-3-3 protein can provide objective evidence for early diagnosis of CJD in order to prevent its transmission

  14. 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif

    DEFF Research Database (Denmark)

    Andersen, Sofie Dabros; Keijzers, Guido; Rampakakis, Emmanouil;

    2012-01-01

    are regulatory phosphorserine/threonine binding proteins involved in the control of diverse cellular events, including cell cycle checkpoint and apoptosis signaling. hEXO1 is regulated by post-translation Ser/Thr phosphorylation in a yet not fully clarified manner, but evidently three phosphorylation sites...... are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding...

  15. Protein kinase CK2 interacts at the neuromuscular synapse with Rapsyn, Rac1, 14-3-3γ, and Dok-7 proteins and phosphorylates the latter two.

    Science.gov (United States)

    Herrmann, Dustin; Straubinger, Marion; Hashemolhosseini, Said

    2015-09-11

    Previously, we demonstrated that the protein kinase CK2 associates with and phosphorylates the receptor tyrosine kinase MuSK (muscle specific receptor tyrosine kinase) at the neuromuscular junction (NMJ), thereby preventing fragmentation of the NMJs (Cheusova, T., Khan, M. A., Schubert, S. W., Gavin, A. C., Buchou, T., Jacob, G., Sticht, H., Allende, J., Boldyreff, B., Brenner, H. R., and Hashemolhosseini, S. (2006) Genes Dev. 20, 1800-1816). Here, we asked whether CK2 interacts with other proteins involved in processes at the NMJ, which would be consistent with the previous observation that CK2 appears enriched at the NMJ. We identified the following proteins to interact with protein kinase CK2: (a) the α and β subunits of the nicotinic acetylcholine receptors with weak interaction, (b) dishevelled (Dsh), and (c) another four proteins, Rapsyn, Rac1, 14-3-3γ, and Dok-7, with strong interaction. CK2 phosphorylated 14-3-3γ at serine residue 235 and Dok-7 at several serine residues but does not phosphorylate Rapsyn or Rac1. Furthermore, phosphomimetic Dok-7 mutants aggregated nicotinic acetylcholine receptors in C2C12 myotubes with significantly higher frequency than wild type Dok-7. Additionally, we mapped the interacting epitopes of all four binding partners to CK2 and thereby gained insights into the potential role of the CK2/Rapsyn interaction.

  16. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    International Nuclear Information System (INIS)

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH2-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking

  17. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    Science.gov (United States)

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  18. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    Science.gov (United States)

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  19. Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle

    DEFF Research Database (Denmark)

    Frøsig, Christian; Pehmøller, Christian; Birk, Jesper Bratz;

    2010-01-01

    TBC1D1 is a Rab-GTPase activating protein involved in regulation of GLUT4 translocation in skeletal muscle. We here evaluated exercise-induced regulation of TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. In separate experiments healthy men performed all......-out cycle exercise lasting either 30 sec, 2 min or 20 min. After all exercise protocols, TBC1D1 Ser237 phosphorylation increased (~70 - 230%, Pprotein showed a similar pattern of regulation...... increasing 60 - 250% (Pprotein kinase (AMPK) induced both Ser237 phosphorylation and 14-3-3 binding properties on human TBC1D1 when evaluated in vitro. To further characterize the role of AMPK as an upstream kinase regulating TBC1D1, extensor digitorum longus...

  20. A rare case of rapidly progressive dementia with elevated RT-QuIC and negative 14-3-3 and tau proteins.

    Science.gov (United States)

    Trikamji, Bhavesh; Hamlin, Clive; Baldwin, Kelly J

    2016-05-01

    Creutzfeldt-Jakob disease (CJD) is characterized by rapidly progressing dementia with death usually occurring within 6 months. There is no verified disease-specific pre-mortem diagnostic test besides brain biopsy. We describe a 66 y old previously high functioning male who presented with a 5 month history of rapidly progressive dementia. Neurological examination revealed a score of 19/30 on MOCA testing. An extensive workup into various causes of dementia including electroencephalography and imaging studies was unremarkable. The cerebrospinal fluid was sent to National Prion Disease Center and it revealed elevated RT-QuIC levels with negative 14-3-3 and T tau proteins. Based on literature review, our case is one of few living subjects with elevated RT-QuIC levels and negative 14-3-3 and tau proteins. PMID:27249661

  1. Accumulation of Carbohydrate and Regulation of 14-3-3 Protein on Sucrose Phosphate Synthase (SPS) Activity in Two Tomato Species

    Institute of Scientific and Technical Information of China (English)

    WANG Li; CUI Na; ZHAO Xiao-cui; FAN Hai-yan; LI Tian-lai

    2014-01-01

    To explore the differences of carbohydrate metabolism in two tomato species and discuss the possible regulation of 14-3-3 proteins on the sucrose phosphate synthase (SPS) activity, we determined the contents of soluble sugar and starch through high performance liquid chromatography (HPLC). The activities of sugar-metabolizing enzymes were assayed in desalted extract, and the relative expression levels of related genes in sugar metabolism were determined though real-time RT-PCR. The results indicated that glucose and fructose were mainly accumulated during the maturation of the fruit because of the high acid invertase (AI) and neutral invertase (NI) in Micro-Tom (Solanum lycopersicum) fruit, while inSolanum chmielewskii fruit, SPS which went along with the change of sucrose content led to the rapid sucrose increase during the fruit ripening. TFT1 and TFT10, belonging to 14-3-3 protein in tomato, were likely to down-regulated SPS activity during young and intumescence period.

  2. Influence of the Paracoccidioides brasiliensis 14-3-3 and gp43 proteins on the induction of apoptosis in A549 epithelial cells

    OpenAIRE

    Julhiany de Fátima da Silva; Juliana Vicentim; Haroldo Cesar de Oliveira; Caroline Maria Marcos; Patricia Akemi Assato; Patrícia Ferrari Andreotti; Juliana Leal Monteiro da Silva; Christiane Pienna Soares; Gil Benard; Ana Marisa Fusco Almeida; Maria José Soares Mendes-Giannini

    2015-01-01

    The fungal strain Paracoccidioides brasiliensis remains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensis molecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were t...

  3. A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Sun, Xiaoli; Luo, Xiao; Sun, Mingzhe; Chen, Chao; Ding, Xiaodong; Wang, Xuedong; Yang, Shanshan; Yu, Qingyue; Jia, Bowei; Ji, Wei; Cai, Hua; Zhu, Yanming

    2014-01-01

    It is well established that 14-3-3 proteins are key regulators of multiple stress signal transduction cascades. However, the biological functions of soybean 14-3-3 proteins, especially in plant drought response, are not yet known. In this study, we characterized a Glycine soja 14-3-3 gene, GsGF14o, which is involved in plant development and drought response. GsGF14o expression was greatly induced by drought stress, as evidenced by the quantitative real-time PCR and β-glucuronidase (GUS) activity analysis. GsGF14o overexpression in Arabidopsis thaliana resulted in decreased drought tolerance during seed germination and seedling growth. Furthermore, silencing of AtGF14µ, the most homologous 14-3-3 gene of GsGF14o, led to enhanced drought tolerance at both the seed germination and seedling stage. Unexpectedly, GsGF14o transgenic lines showed reduced water loss and transpiration rates compared with wild-type plants, which was demonstrated to be the consequence of the decreased stomatal size. At the same time, the smaller stomata due to GsGF14o overexpression led to a relatively slow net photosynthesis rate, which led to a growth penalty under drought stress. We further demonstrated that GsGF14o overexpression caused deficits in root hair formation and development, and thereby reduced the water intake capacity of the transgenic root system. In addition, GsGF14o overexpression down-regulated the transcript levels of drought-responsive marker genes. Finally, we also investigated the tissue-specific accumulation of GsGF14o by using a GUS activity assay. Collectively, the results presented here confirm that GsGF14o plays a dual role in drought stress responses through its involvement in the regulation of stomatal size and root hair development.

  4. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress.

    Science.gov (United States)

    He, Yuchi; Wu, Jingjing; Lv, Bing; Li, Jia; Gao, Zhiping; Xu, Weifeng; Baluška, František; Shi, Weiming; Shaw, Pang Chui; Zhang, Jianhua

    2015-04-01

    Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein-protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress.

  5. Inhibition of blue-light-dependent binding of 14-3-3 proteins to phototropins by hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao; SHIMAZAKI Kenichiro

    2005-01-01

    @@ Phototropins, following the discovery of phytochromes[1,2] and cryptochromes[3,4], are the most recently characterized blue-light (BL) receptors in plants. The N- terminal regions of the proteins contain two light oxygen and voltage (LOV)――LOV1 and LOV2, which belong to PAS domain involved in protein-protein interaction and ligand binding, possessing non-covalent binding sites for the chromophore FMN[5]. The C-terminal regions contain Ser/Thr kinase domains[6].

  6. Positive 14-3-3 and tau proteins in a sporadic Creutzfeldt-Jakob disease case and a brief perspective of prion diseases in Colombia.

    Science.gov (United States)

    Escandón-Vargas, Kevin; Zorrilla-Vaca, Andrés; Corral-Prado, Raúl Heli

    2016-01-01

    Prion diseases are rare neurodegenerative disorders occurring worldwide and affecting both humans and animals. Herein, we present the case of a patient diagnosed with definite sporadic Creutzfeldt-Jakob disease in Cali, Colombia. Besides neurological examination, 14-3-3 and tau proteins were valuable tools supporting the diagnosis. We also present a brief perspective of the prion diseases reported in Colombia to date. Although the incidence of prion diseases is unknown in Colombia, our literature review revealed that one case of scrapie in 1981 and 29 human sporadic cases of Creutzfeldt-Jakob disease have been documented and published in our country. PMID:27622622

  7. Phospho-specific recognition by 14-3-3 proteins and antibodies monitored by a high throughput label-free optical biosensor.

    Science.gov (United States)

    Wu, Meng; Coblitz, Brian; Shikano, Sojin; Long, Shunyou; Spieker, Matt; Frutos, Anthony G; Mukhopadhyay, Sunil; Li, Min

    2006-10-16

    Label-free detection of molecular interactions has considerable potential in facilitating assay development. When combined with high throughput capability, it may be applied to small molecule screens for drug candidates. Phosphorylation is a key posttranslational process that confers diverse regulation in biological systems involving specific protein-protein interactions recognizing the phosphorylated motifs. Using a resonant waveguide grating biosensor, the Epic mark System, we have developed a generic assay to quantitatively measure phospho-specific interactions between a trafficking signal-phosphorylated SWTY peptide and 14-3-3 proteins or anti-phosphopeptide antibodies. Compared with a solution-based fluorescence anisotropy assay, our results support that the high throughput resonant waveguide grating biosensor system has favorable technical profiles in detecting protein-protein interactions that recognize phosphorylated motifs. Hence it provides a new generic HTS platform for phospho-detection. PMID:17011553

  8. Echinococcus multilocularis laminated-layer components and the E14t 14-3-3 recombinant protein decrease NO production by activated rat macrophages in vitro.

    Science.gov (United States)

    Andrade, M Amparo; Siles-Lucas, Mar; Espinoza, Elsa; Pérez Arellano, José Luis; Gottstein, Bruno; Muro, Antonio

    2004-05-01

    Echinococcus multilocularis and Echinococcus granulosus cause alveolar and cystic (unilocular) echinococcosis, respectively, in humans and animals. It is known that these parasites can affect, among other molecules, nitric oxide (NO) production by periparasitic host cells. Nevertheless, detailed dissection of parasite components specifically affecting cell NO production has not been done to date. We compare the effect of E. granulosus and E. multilocularis defined metacestode structural (laminated-layer associated) and metabolic (14-3-3 protein, potentially related with E. multilocularis metacestode tumor-like growth) components on the NO production by rat alveolar macrophages in vitro. Our results showed that none of these antigens could stimulate macrophage NO production in vitro. However, a reversed effect of some Echinococcus antigens on NO in vitro production was found when cells were previously exposed to LPS stimulation. This inhibitory effect was found when E. multilocularis laminated-layer (LL) or cyst wall (CW) soluble components from both species were used. Pre-stimulation of cells with LPS also resulted in a strong, dose-dependent reduction of NO and iNOS mRNA production after incubation of cells with the E14t protein. Thus, the E. multilocularis 14-3-3 protein appears to be one of the components accounting for the suppressive effect of the CW and LL metacestode extracts.

  9. Significance of change of 14-3-3 protein in cerebrospinal fluid in different types of meningo encephalitis in children and value of judging brain injury%不同类型脑膜炎患儿脑脊液14-3-3蛋白变化的意义

    Institute of Scientific and Technical Information of China (English)

    张交生; 李冰; 董意妹; 周桂芬; 廖建湘

    2013-01-01

    目的 检测脑脊液14-3-3蛋白在不同类型脑膜炎中的变化及在判断脑损伤程度中的价值.方法 收集2009年7月至2010年6月深圳市儿童医院诊断的22例病毒性脑膜炎、20例细菌性脑膜炎及15例单纯热性惊厥对照组脑脊液标本,采用Western blot法分析脑脊液14-3-3蛋白条带,并用ELISA定量检测14-3-3蛋白水平,同时与临床表现、预后、EEG、头颅CT或MRI进行相关性分析.结果 细菌性脑膜炎中14-3-3蛋白阳性率为65.0%(13/22例),病毒性脑膜炎组阳性率为27.3%(6/22例),2组比较差异有统计学意义.ELISA定量检测中,与对照组[(0.9±0.1)μg/L]比较,细菌性脑膜炎组[(5.6±0.2) μg/L]及病毒性脑膜炎组[(3.2±0.3) μg/L]脑脊液14-3-3蛋白水平均升高,治疗后14-3-3蛋白均明显下降,差异有统计学意义;在临床表现、影像学、EEG表现脑损伤严重的病例,脑脊液中14-3-3蛋白也明显升高;在预后方面,14-3-3蛋白明显升高的病例,预后差,表现为癫(痫)、死亡等.结论 脑脊液14-3-3蛋白可用于鉴别病毒性脑膜炎及细菌性脑膜炎,同时14-3-3蛋白升高程度与疾病严重程度有一定相关性.%Objective To investigate the change of 14-3-3 protein in cerebrospinal fluid (CSF) in different types of meningoencephalitis in children and its value in judging brain injury.Methods CSF 14-3-3 protein bands were detected by means of Western blot in 22 patients with viral meningoencephalitis and 20 cases of purulent meningoencephalitis and with 15 cases of febrile seizures as the control group from Jul.2009 to Jun.2010,and in addition,the quantitative detection of 14-3-3 protein was done by way of ELISA.Correlation was analyzed between the clinical manifestations,prognosis,EEG,head CT or MRI and the changes of 14-3-3 protein.Results The positive rate of 14-3-3 protein in cases of purulent meningitis was 65.0(13/22 cases),higher than viral meningoencephalitis group(27.3%,6/22 cases),and the

  10. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    Directory of Open Access Journals (Sweden)

    Tonika Lam

    Full Text Available Class switch DNA recombination (CSR of the immunoglobulin heavy chain (IgH locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID expression and AID targeting to switch (S regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit and PKA-RIα (regulatory inhibitory subunit and uracil DNA glycosylase (Ung. 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198 or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR. 14-3-3 adaptors colocalized with AID and replication protein A (RPA in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr, an accessory protein of human immunodeficiency virus type-1 (HIV-1, which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  11. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    Science.gov (United States)

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  12. Influence of the Paracoccidioides brasiliensis 14-3-3 and gp43 proteins on the induction of apoptosis in A549 epithelial cells.

    Science.gov (United States)

    Silva, Julhiany de Fátima da; Vicentim, Juliana; Oliveira, Haroldo Cesar de; Marcos, Caroline Maria; Assato, Patricia Akemi; Andreotti, Patrícia Ferrari; Silva, Juliana Leal Monteiro da; Soares, Christiane Pienna; Benard, Gil; Almeida, Ana Marisa Fusco; Mendes-Giannini, Maria José Soares

    2015-06-01

    The fungal strain Paracoccidioides brasiliensis remains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensis molecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensis uses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis. PMID:26038961

  13. Influence of the Paracoccidioides brasiliensis 14-3-3 and gp43 proteins on the induction of apoptosis in A549 epithelial cells

    Directory of Open Access Journals (Sweden)

    Julhiany de Fátima da Silva

    2015-06-01

    Full Text Available The fungal strain Paracoccidioides brasiliensis remains viable inside of epithelial cells and can induce apoptosis in this population. However, until now, the molecules that participate in this process remained unknown. Thus, this study evaluated the contribution of two P. brasiliensis molecules, the 14-3-3 and glycoprotein of 43 kDa proteins, which had been previously described as extracellular matrix adhesins and apoptosis inductors in human pneumocytes. Accordingly, epithelial cells were treated with these molecules for different periods of time and the expression of the apoptosis regulating-proteins Bak, Bax, Bcl-2, p53 and caspases were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling, flow cytometry and real-time polymerase chain reaction analysis. Our results demonstrated that treatment with these molecules induces apoptosis signalling in pulmonary epithelial cells, showing the same pattern of programmed cell-death as that observed during infection with P. brasiliensis. Thus, we could conclude that P. brasiliensis uses these molecules as virulence factors that participate not only in the fungal adhesion process to host cells, but also in other important cellular mechanisms such as apoptosis.

  14. Development of a dot blot assay with antibodies to recombinant “core” 14-3-3 protein: Evaluation of its usefulness in diagnosis of Creutzfeldt–Jakob disease

    Directory of Open Access Journals (Sweden)

    Sarada Subramanian

    2016-01-01

    Full Text Available Background and Purpose: Definitive diagnosis of Creutzfeldt–Jakob disease (CJD requires demonstration of infective prion protein (PrPSc in brain tissues by immunohistochemistry or immunoblot, making antemortem diagnosis of CJD difficult. The World Health Organization (WHO recommends detection of 14-3-3 protein in cerebrospinal fluid (CSF in cases of dementia, with clinical correlation, as a useful diagnostic marker for CJD, obviating the need for brain biopsy.This facility is currently available in only a few specialized centers in the West and no commercial kit is available for clinical diagnostic use in India. Hence the objective of this study was to develop an in-house sensitive assay for quantitation of 14-3-3 protein and to evaluate its diagnostic potential to detect 14-3-3 proteins in CSF as a biomarker in suspected cases of CJD. Materials and Methods: A minigene expressing the “core” 14-3-3 protein was synthesized by overlapping polymerase chain reaction (PCR and the recombinant protein was produced by employing a bacterial expression system. Polyclonal antibodies raised in rabbit against the purified recombinant protein were used for developing a dot blot assay with avidin-biotin technology for signal amplification and quantitation of 14-3-3 protein in CSF. Results: The results in the present study suggest the diagnostic potential of the dot blot method with about 10-fold difference (P< 0.001 in the CSF levels of 14-3-3 protein between the CJD cases (N= 50 and disease controls (N= 70. The receiver operating characteristic (ROC analysis of the results suggested an optimal cutoff value of 2 ng/mL. Conclusions: We have developed an indigenous, economical, and sensitive dot blot method for the quantitation of 14-3-3 protein in CSF.

  15. Up-regulation and interaction of the plasma membrane H(+)-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress.

    Science.gov (United States)

    Chen, Qi; Guo, Chuan-Long; Wang, Ping; Chen, Xuan-Qin; Wu, Kong-Huan; Li, Kui-Zhi; Yu, Yong-Xiong; Chen, Li-Mei

    2013-09-01

    Our previous study showed that citrate excretion coupled with a concomitant release of protons was involved in aluminum (Al) resistance in the broad bean. Furthermore, genes encoding plasma membrane (PM) H(+)-ATPase (vha2) and the 14-3-3 protein (vf14-3-3b) were up-regulated by Al in Al-resistant (YD) broad bean roots. In this study, the roles of PM H(+)-ATPase (E.C. 3.6.3.6) and the 14-3-3 protein in the regulation of citrate secretion were further investigated in Al-resistant (YD) and Al-sensitive (AD) broad bean cultivars under Al stress. The results showed that greater citrate exudation was positively correlated with higher activities of PM H(+)-ATPase in roots of YD than AD. Real-time RT-PCR analysis revealed that vha2 was clearly up-regulated by Al in YD but not in AD roots, whereas the transcription levels of vf14-3-3b were elevated in a time-dependent manner in both YD and AD roots. Immunoprecipitation and Western analysis suggested that phosphorylation and interaction with the vf14-3-3b protein of the VHA2 were enhanced in YD roots but not in AD roots with increasing Al treatment time. Fusicoccin or adenosine 5'-monophosphate increased or decreased the interaction between the phosphorylated VHA2 and the vf14-3-3b protein, followed by an enhancement or reduction of the PM H(+)-ATPase activity and citrate exudation in both cultivars under Al stress conditions, respectively. Taken together, these results suggested that Al enhanced the expression and interaction of the PM H(+)-ATPase and the 14-3-3 protein, which thereby led to higher activity of the PM H(+)-ATPase and more citrate exudation from YD plants.

  16. Molecular characterization and expression analysis of three homoeologous Ta14S genes encoding 14-3-3 proteins in wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Xinguo Wang

    2016-06-01

    Full Text Available The purpose of this study was to characterize Ta14S homoeologs and assess their functions in wheat seed development. The genomic and cDNA sequences of three Ta14S homoeologous genes encoding 14-3-3 proteins were isolated. Sequence analysis revealed that the three homoeologs consisted of five exons and four introns and were very highly conserved in the coding regions and in exon/intron structure, whereas the cDNA sequences were variable in the 5′ and 3′-UTR. The three genes, designated as Ta14S-2A, Ta14S-2B and Ta14S-2D, were located in homoeologous group 2 chromosomes. The polypeptide chains of the three Ta14S genes were highly similar. These genes were most homologous to Hv14A from barley. Real-time quantitative PCR indicated that the three Ta14S genes were differentially expressed in different organs at different developmental stages and all exhibited greater expression in primary roots of 1-day-old germlings than in other tissues. Comparison of the expression patterns of the three homoeologous genes at different times after pollination also revealed that their expression was developmentally regulated. The transcription of Ta14S-2B was clearly higher during seed germination, whereas expressions of Ta14S-2A and Ta14S-2D were up-regulated at the beginning of seed imbibition (0–12 h, but declined thereafter. The results suggested that the three Ta14S homoeologous genes have regulatory roles in seed development and germination.

  17. Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis.

    Science.gov (United States)

    Marcos, Caroline Maria; Silva, Julhiany de Fátima ds; Oliveira, Haroldo Cesar de; Assato, Patrícia Akemi; Singulani, Junya de Lacorte; Lopez, Angela Maria; Tamayo, Diana Patricia; Hernandez-Ruiz, Orville; McEwen, Juan G; Mendes-Giannini, Maria José Soares; Fusco-Almeida, Ana Marisa

    2016-01-01

    The interaction between the fungal pathogen Paracoccidioides brasiliensis and host cells is usually mediated by specific binding events between adhesins on the fungal surface and receptors on the host extracellular matrix or cell surface. One molecule implicated in the P. brasiliensis-host interaction is the 14-3-3 protein. The 14-3-3 protein belongs to a family of conserved regulatory molecules that are expressed in all eukaryotic cells and are involved in diverse cellular functions. Here, we investigated the relevance of the 14-3-3 protein to the virulence of P. brasiliensis. Using antisense RNA technology and Agrobacterium tumefaciens-mediated transformation, we generated a 14-3-3-silenced strain (expression reduced by ˜55%). This strain allowed us to investigate the interaction between 14-3-3 and the host and to correlate the functions of P. brasiliensis 14-3-3 with cellular features, such as morphological characteristics and virulence, that are important for pathogenesis. PMID:26646480

  18. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein

    DEFF Research Database (Denmark)

    Fuglsang, Anja Thoe; Guo, Yan; Cuin, Tracey A.;

    2007-01-01

    Regulation of the trans-plasma membrane pH gradient is an important part of plant responses to several hormonal and environmental cues, including auxin, blue light, and fungal elicitors. However, little is known about the signaling components that mediate this regulation. Here, we report that an ...... an increase in the concentration of cytosolic-free calcium. These results suggest that PKS5 is part of a calcium-signaling pathway mediating PM Hþ-ATPase regulation....

  19. Structure-Function Analysis of PPP1R3D, a Protein Phosphatase 1 Targeting Subunit, Reveals a Binding Motif for 14-3-3 Proteins which Regulates its Glycogenic Properties.

    Directory of Open Access Journals (Sweden)

    Carla Rubio-Villena

    Full Text Available Protein phosphatase 1 (PP1 is one of the major protein phosphatases in eukaryotic cells. It plays a key role in regulating glycogen synthesis, by dephosphorylating crucial enzymes involved in glycogen homeostasis such as glycogen synthase (GS and glycogen phosphorylase (GP. To play this role, PP1 binds to specific glycogen targeting subunits that, on one hand recognize the substrates to be dephosphorylated and on the other hand recruit PP1 to glycogen particles. In this work we have analyzed the functionality of the different protein binding domains of one of these glycogen targeting subunits, namely PPP1R3D (R6 and studied how binding properties of different domains affect its glycogenic properties. We have found that the PP1 binding domain of R6 comprises a conserved RVXF motif (R102VRF located at the N-terminus of the protein. We have also identified a region located at the C-terminus of R6 (W267DNND that is involved in binding to the PP1 glycogenic substrates. Our results indicate that although binding to PP1 and glycogenic substrates are independent processes, impairment of any of them results in lack of glycogenic activity of R6. In addition, we have characterized a novel site of regulation in R6 that is involved in binding to 14-3-3 proteins (RARS74LP. We present evidence indicating that when binding of R6 to 14-3-3 proteins is prevented, R6 displays hyper-glycogenic activity although is rapidly degraded by the lysosomal pathway. These results define binding to 14-3-3 proteins as an additional pathway in the control of the glycogenic properties of R6.

  20. Expression of 14-3-3 transcript isoforms in response to ethanol exposure and their regulation by miRNAs.

    Science.gov (United States)

    Mathew, Divya Elizabeth; Larsen, Kaitlyn; Janeczek, Paulina; Lewohl, Joanne M

    2016-09-01

    The 14-3-3 proteins are a family of highly conserved molecular chaperones involved in the regulation of a number of key cellular functions including metabolism, stress response, protein trafficking, cell-cycle control, signal transduction, transcription, apoptosis and neurotransmission. 14-3-3 proteins have also been implicated in the pathophysiology of neurodegenerative disorders including Alzheimer disease and Parkinson disease. Recent studies have also shown that 14-3-3s are differentially expressed in the frontal cortex of human alcoholics suggesting a potential role in the pathophysiology of alcohol use disorders. Here we measured the expression of 14-3-3 transcripts in HEK293T cells in response to chronic ethanol treatment. Five of the seven transcripts (14-3-3β, 14-3-3γ, 14-3-3ζ, 14-3-3ε and 14-3-3θ) were significantly down-regulated following chronic exposure to ethanol for a five day period with these changes persisting even after withdrawal from ethanol treatment. One transcript, 14-3-3σ, was significantly up-regulated following chronic ethanol exposure and 14-3-3η showed no differences in expression in the same treatment model. The pattern of expression changes is similar to those seen in the frontal cortex of human alcoholics. To investigate the role of miRNAs in mediating the expression changes we measured the expression of the 14-3-3 transcripts following transfection with miR-203, miR-144 and miR-7 mimics. Although these miRNAs had predicted target sites in the 3'untranslated region of each 14-3-3 isoform, only miR-203 resulted in a down-regulation of 14-3-3θ transcript. In addition, the expression of 14-3-3γ was upregulated following transfection with miR-7 and miR-144 mimics. MiRNA regulation of these isoforms following alcohol exposure may lead to alterations in neurotransmission, the balance between cell survival and cell death, as well as changing the rewarding effects of alcohol. PMID:27370936

  1. The interaction between ADAM22 and 14-3-3β

    Institute of Scientific and Technical Information of China (English)

    ZHU; Pengcheng(朱鹏程); SANG; Yingying(桑瑛颖); XU; Rener(徐人尔); ZHAO; Jing(赵璟); LI; Changben(李昌本); ZHAO; Shouyuan(赵寿元)

    2002-01-01

    ADAM family consists of a number of transmembrane proteins that contain a disintegrin and metalloprotease domain. ADAMs are involved in a highly diverse set of biological processes, including fertilization, neurogenesis, myogenesis and inflammatory response. The ADAM proteins have both cell adhesion and protease activities. Adam22 is highly expressed in human brain. The adam22-/- mice presented severe ataxia and died before weaning, but the function of ADAM22 is still unknown. 14-3-3β interacting with ADAM22 was detected by using yeast two-hybrid assay. The specificity of interaction between ADAM22 and 14-3-3β was proved by in vitro binding assay and immunoprecipitation. The major 14-3-3β binding site was located in the last 28 amino acid residues of ADAM22 cytoplasmic tail. Protein 14-3-3β is abundant and plays an important role in mediating cell diffusion, migration and cell cycle control. The interaction of ADAM22 and 14-3-3β suggests that the ADAM22 may play a crucial role in neural function and development.

  2. 14-3-3θ is a binding partner of rat Eag1 potassium channels.

    Directory of Open Access Journals (Sweden)

    Po-Hao Hsu

    Full Text Available The ether-à-go-go (Eag potassium (K(+ channel belongs to the superfamily of voltage-gated K(+ channel. In mammals, the expression of Eag channels is neuron-specific but their neurophysiological role remains obscure. We have applied the yeast two-hybrid screening system to identify rat Eag1 (rEag1-interacting proteins from a rat brain cDNA library. One of the clones we identified was 14-3-3θ, which belongs to a family of small acidic protein abundantly expressed in the brain. Data from in vitro yeast two-hybrid and GST pull-down assays suggested that the direct association with 14-3-3θ was mediated by both the N- and the C-termini of rEag1. Co-precipitation of the two proteins was confirmed in both heterologous HEK293T cells and native hippocampal neurons. Electrophysiological studies showed that over-expression of 14-3-3θ led to a sizable suppression of rEag1 K(+ currents with no apparent alteration of the steady-state voltage dependence and gating kinetics. Furthermore, co-expression with 14-3-3θ failed to affect the total protein level, membrane trafficking, and single channel conductance of rEag1, implying that 14-3-3θ binding may render a fraction of the channel locked in a non-conducting state. Together these data suggest that 14-3-3θ is a binding partner of rEag1 and may modulate the functional expression of the K(+ channel in neurons.

  3. 5株内阿米巴14-3-3蛋白序列比较及生物信息学分析%Comparison of 14-3-3 proteins in 5 Entamoeba strains and their relative bioinformatics analysis

    Institute of Scientific and Technical Information of China (English)

    林育涛; 付永峰; 程训佳; Hiroshi Tachibana

    2008-01-01

    目的 比较具有不同致病性以及毒力的5株内阿米巴的14-3-3蛋白序列,并选取溶组织内阿米巴HM1∶IMSS株进行相关生物信息学预测,用以指导进一步实验研究.方法 收集各虫株滋养体的基因组DNA,根据GenBank收录的溶组织内阿米巴编码基因序列设计特异引物,以基因组DNA为模板扩增目的 基因片段,测序后利用生物信息学网站的各种在线分析工具和Genetyx软件ver 13.0,对所得序列进行比较,构建分子进化树,并对溶组织内阿米巴HM1∶IMSS株的14-3-3蛋白进行相关的生物信息学分析. 结果 5株内阿米巴属虫株均含有3个14-3-3基因,编码的氨基酸序列同源性较高,个别位点存在差异.取溶组织内阿米巴HM1∶IMSS株14-3-3-1序列与其他物种的同源蛋白比较并构建分子进化树,与种系进化过程非常吻合.根据生物信息学分析结果预测,溶组织内阿米巴HM1∶IMSS株14-3-3-1含720个碱基,编码239个氨基酸;14-3-3-2含717个碱基,编码238个氨基酸;14-3-3-3含723个碱基,编码240个氨基酸.3种异构体都带有2个14-3-3蛋白家族标记,含有多个潜在的磷酸化位点,但不含线粒体、过氧化物酶体等细胞器定位序列以及信号肽.该蛋白在大肠埃希菌中表达的半衰期>10 h. 结论 内阿米巴属14-3-3基因高度保守.生物信息学分析结果提示14-3-3蛋白是研究物种进化的理想分子.

  4. 14-3-3 family members act coordinately to regulate mitotic progression.

    Science.gov (United States)

    Dalal, Sorab N; Yaffe, Michael B; DeCaprio, James A

    2004-05-01

    The mitosis promoting phosphatase, cdc25C, is a target of both the DNA replication and DNA damage checkpoint pathways. These pathways regulate cdc25C function, in part, by promoting the association of cdc25C with 14-3-3 proteins, which results in the retention of cdc25C in the cytoplasm. To determine which 14-3-3 proteins were required to regulate cdc25C function, we tested the ability of various 14-3-3 family members to form a complex with and negatively regulate cdc25C in human cells. Two 14-3-3 family members, 14-3-3epsilon and 14-3-3gamma specifically formed a complex with cdc25C but not with the 14-3-3 binding defective cdc25C mutant, S216A. In addition, 14-3-3epsilon and 14-3-3gamma inhibited the ability of cdc25C, but not the S216A mutant, to induce premature chromatin condensation (PCC) in U-2OS cells. These results suggested that the reduction in PCC by 14-3-3epsilon and 14-3-3gamma was due to inhibition of cdc25C function. In contrast, 14-3-3sigma was unable to form a complex with cdc25C, but was able to inhibit the ability of both wild type cdc25C and S216A to induce PCC. This suggests that 14-3-3sigma regulates entry into mitosis independently of cdc25C and 14-3-3epsilon and 14-3-3gamma. Thus, specific members of the 14-3-3 family of proteins may act coordinately to maintain the DNA replication checkpoint by regulating the activity of different cell cycle proteins. PMID:15107609

  5. Molecular and biochemical mining of heat-shock and 14-3-3 proteins in drug-induced protoscolices of Echinococcus granulosus and the detection of a candidate gene for anthelmintic resistance.

    Science.gov (United States)

    Pan, D; Das, S; Bera, A K; Bandyopadhyay, S; Bandyopadhyay, S; De, S; Rana, T; Das, S K; Suryanaryana, V V; Deb, J; Bhattacharya, D

    2011-06-01

    Cystic echinococcosis (CE) caused by the larval stage of Echinococcus granulosus is a disease that affects both humans and animals. In humans the disease is treated by surgery with a supplementary option of chemotherapy with a benzimidazole compound. During the present study heat-shock protein 60 (HSP 60) was identified as one of the most frequently expressed biomolecules by E. granulosus after albendazole treatment. Data were correlated with 14-3-3 protein signature, and overexpression of this molecule after albendazole induction was an indicator of cell survival and signal transduction during in vitro maintenance of E. granulosus for up to 72 h. This observation was further correlated with a uniform expression pattern of a housekeeping gene (actin II). Out of three β-tubulin gene isoforms of E. granulosus, β-tubulin gene isoform 2 showed a conserved point mutation indicative of benzimidazole resistance.

  6. The role of 14-3-3{beta} in transcriptional activation of estrogen receptor {alpha} and its involvement in proliferation of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoonseo; Kim, Hyungjin; Jang, Sung-Wuk [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Ko, Jesang, E-mail: jesangko@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2011-10-14

    Highlights: {yields} 14-3-3{beta} interacts with ER{alpha} and the interaction is Akt-dependent. {yields} 14-3-3{beta} regulates the transcriptional activity of ER{alpha} in a ligand-dependent manner. {yields} 14-3-3{beta} increases expressions of ER{alpha} target genes. {yields} 14-3-3{beta} increases breast cancer cell proliferation. -- Abstract: The estrogen receptor (ER) functions as a transcription factor that mediates the effects of estrogen. ER{alpha}, which plays a crucial role in the development and progression of breast cancer, is activated by estrogen binding, leading to receptor phosphorylation, dimerization, and recruitment of co-activators and chaperons to the estrogen-bound receptor complex. The 14-3-3 proteins bind to target proteins via phosphorylation and influence many cellular events by altering their subcellular localization or acting as a chaperone. However, regulation of ER{alpha} expression and transactivation by the 14-3-3 proteins has not been reported. We demonstrate that 14-3-3{beta} functions as a positive regulator of ER{alpha} through a direct protein-protein interaction in an estrogen-dependent manner. Ectopic expression of 14-3-3{beta} stimulated ER{alpha}-mediated transcriptional activity in MCF-7 breast cancer cells. Enhanced ER{alpha} transcriptional activity due to 14-3-3{beta} increased the expressions of the endogenous ER{alpha} target genes, leading to proliferation of breast cancer cells. We suggest that 14-3-3{beta} has oncogenic potential in breast cancer via binding to ER{alpha} and activation of the transcriptional activity of ER{alpha}.

  7. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose

    DEFF Research Database (Denmark)

    Harthill, Jean E; Meek, Sarah E M; Morrice, Nick;

    2006-01-01

    -like domains, although whether these have enzymatic activity is unknown. In this paper, we show that TPS5, 6 and 7 are phosphoproteins that bind to 14-3-3 proteins, by using 14-3-3 affinity chromatography, 14-3-3 overlay assays, and by co-immunoprecipitating TPS5 and 14-3-3 isoforms from cell extracts. GST...

  8. 14-3-3 theta binding to cell cycle regulatory factors is enhanced by HIV-1 Vpr

    Directory of Open Access Journals (Sweden)

    Sakai Keiko

    2008-04-01

    Full Text Available Abstract Background Despite continuing advances in our understanding of AIDS pathogenesis, the mechanism of CD4+ T cell depletion in HIV-1-infected individuals remains unclear. The HIV-1 Vpr accessory protein causes cell death, likely through a mechanism related to its ability to arrest cells in the G2,M phase. Recent evidence implicated the scaffold protein, 14-3-3, in Vpr cell cycle blockade. Results We found that in human T cells, 14-3-3 plays an active role in mediating Vpr-induced cell cycle arrest and reveal a dramatic increase in the amount of Cdk1, Cdc25C, and CyclinB1 bound to 14-3-3 θ during Vprv-induced G2,M arrest. By contrast, a cell-cycle-arrest-dead Vpr mutant failed to augment 14-3-3 θ association with Cdk1 and CyclinB1. Moreover, G2,M arrest caused by HIV-1 infection strongly correlated with a disruption in 14-3-3 θ binding to centrosomal proteins, Plk1 and centrin. Finally, Vpr caused elevated levels of CyclinB1, Plk1, and Cdk1 in a complex with the nuclear transport and spindle assembly protein, importin β. Conclusion Thus, our data reveal a new facet of Vpr-induced cell cycle arrest involving previously unrecognized abnormal rearrangements of multiprotein assemblies containing key cell cycle regulatory proteins. Reviewers This article was reviewed by David Kaplan, Nathaniel R. Landau and Yan Zhou.

  9. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport

    OpenAIRE

    Brunet, Anne; Kanai, Fumihiko; Stehn, Justine; Xu, Jian; Sarbassova, Dilara; Frangioni, John V.; Dalal, Sorab N.; DeCaprio, James A.; Greenberg, Michael E.; Yaffe, Michael B.

    2002-01-01

    14-3-3 proteins regulate the cell cycle and prevent apoptosis by controlling the nuclear and cytoplasmic distribution of signaling molecules with which they interact. Although the majority of 14-3-3 molecules are present in the cytoplasm, we show here that in the absence of bound ligands 14-3-3 homes to the nucleus. We demonstrate that phosphorylation of one important 14-3-3 binding molecule, the transcription factor FKHRL1, at the 14-3-3 binding site occurs within the nucleus immediately bef...

  10. 14-3-3 phosphoprotein interaction networks – does isoform diversity present functional interaction specification?

    Directory of Open Access Journals (Sweden)

    Anna-Lisa ePaul

    2012-08-01

    Full Text Available The 14-3-3 proteins have emerged as major phosphoprotein interaction proteins and thereby constitute a key node in the Arabidopsis Interactome Map, a node through which a large number of important signals pass. Throughout their history of discovery and description, the 14-3-3s have been described as protein families and there has been some evidence that the different 14-3-3 family members within any organisms might carry isoform specific functions. However there has also been evidence for redundancy of 14-3-3 function, suggesting that the perceived 14-3-3 diversity may be the accumulation of neutral mutations over evolutionary time and as some 14-3-3 genes develop tissue or organ specific expression. This situation has led to a currently unresolved question – does 14-3-3 isoform sequence diversity indicate functional diversity at the biochemical or cellular level? We discuss here some of the key observations on both sides of the resulting debate, and present a set of contrastable observations to address the theory that sequence diversity does lead to functional diversity among 14-3-3 isoforms. The resulting model suggests strongly that there are indeed functional specificities in the 14-3-3s of Arabidopsis. The model further suggests that 14-3-3 diversity and specificity should enter into the discussion of 14-3-3 roles in signal transduction and be directly approached in experiments designed to address 14-3-3 functional roles. It is hoped that future studies involving 14-3-3s will continue to address specificity in experimental design and analysis.

  11. 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification?

    Science.gov (United States)

    Paul, Anna-Lisa; Denison, Fiona C; Schultz, Eric R; Zupanska, Agata K; Ferl, Robert J

    2012-01-01

    The 14-3-3 proteins have emerged as major phosphoprotein interaction proteins and thereby constitute a key node in the Arabidopsis Interactome Map, a node through which a large number of important signals pass. Throughout their history of discovery and description, the 14-3-3s have been described as protein families and there has been some evidence that the different 14-3-3 family members within any organism might carry isoform-specific functions. However, there has also been evidence for redundancy of 14-3-3 function, suggesting that the perceived 14-3-3 diversity may be the accumulation of neutral mutations over evolutionary time and as some 14-3-3 genes develop tissue or organ-specific expression. This situation has led to a currently unresolved question - does 14-3-3 isoform sequence diversity indicate functional diversity at the biochemical or cellular level? We discuss here some of the key observations on both sides of the resulting debate, and present a set of contrastable observations to address the theory functional diversity does exist among 14-3-3 isoforms. The resulting model suggests strongly that there are indeed functional specificities in the 14-3-3s of Arabidopsis. The model further suggests that 14-3-3 diversity and specificity should enter into the discussion of 14-3-3 roles in signal transduction and be directly approached in 14-3-3 experimentation. It is hoped that future studies involving 14-3-3s will continue to address specificity in experimental design and analysis. PMID:22934100

  12. The role of epigenetic inactivation of 14-3-3σin human cancer

    Institute of Scientific and Technical Information of China (English)

    Dmitri LODYGIN; Heiko HERMEKING

    2005-01-01

    Cancer cells show characteristic alterations in DNA methylation patterns. Aberrant CpG methylation of specific promoters results in inactivation of tumor suppressor genes and therefore plays an important role in carcinogenesis. The p53-regulated gene 14-3-3σ undergoes frequent epigenetic silencing in several types of cancer, including carcinoma of the breast, prostate, and skin, suggesting that the loss of 14-3-3σ expression may be causally involved in tumor progression.Functional studies demonstrated that 14-3-3σ is involved in cell-cycle control and prevents the accumulation of chromosomal damage. The recent identification of novel 14-3-3σ-associated proteins by a targeted proteomics approach implies that 14-3-3σ regulates diverse cellular processes, which may become deregulated after silencing of 14-3-3σ expression in cancer cells.

  13. P53 suppresses expression of the 14-3-3gamma oncogene

    Directory of Open Access Journals (Sweden)

    Qi Wenqing

    2011-08-01

    Full Text Available Abstract Background 14-3-3 proteins are a family of highly conserved proteins that are involved in a wide range of cellular processes. Recent evidence indicates that some of these proteins have oncogenic activity and that they may promote tumorigenesis. We previously showed that one of the 14-3-3 family members, 14-3-3gamma, is over expressed in human lung cancers and that it can induce transformation of rodent cells in vitro. Methods qRTPCR and Western blot analysis were performed to examine 14-3-3gamma expression in non-small cell lung cancers (NSCLC. Gene copy number was analyzed by qPCR. P53 mutations were detected by direct sequencing and also by western blot. CHIP and yeast one hybrid assays were used to detect p53 binding to 14-3-3gamma promoter. Results Quantitative rtPCR results showed that the expression level of 14-3-3gamma was elevated in the majority of NSCLC that we examined which was also consistent with protein expression. Further analysis of the expression pattern of 14-3-3gamma in lung tumors showed a correlation with p53 mutations suggesting that p53 might suppress 14-3-3 gamma expression. Analysis of the gamma promoter sequence revealed the presence of a p53 consensus binding motif and in vitro assays demonstrated that wild-type p53 bound to this motif when activated by ionizing radiation. Deletion of the p53 binding motif eliminated p53's ability to suppress 14-3-3gamma expression. Conclusion Increased expression of 14-3-3gamma in lung cancer coincides with loss of functional p53. Hence, we propose that 14-3-3gamma's oncogenic activities cooperate with loss of p53 to promote lung tumorigenesis.

  14. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome

    Science.gov (United States)

    Tinti, Michele; Madeira, Fábio; Murugesan, Gavuthami; Hoxhaj, Gerta; Toth, Rachel; MacKintosh, Carol

    2014-01-01

    The dimeric 14-3-3 proteins dock onto pairs of phosphorylated Ser and Thr residues on hundreds of proteins, and thereby regulate many events in mammalian cells. To facilitate global analyses of these interactions, we developed a web resource named ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome, which integrates multiple data sets on 14-3-3-binding phosphoproteins. ANIA also pinpoints candidate 14-3-3-binding phosphosites using predictor algorithms, assisted by our recent discovery that the human 14-3-3-interactome is highly enriched in 2R-ohnologues. 2R-ohnologues are proteins in families of two to four, generated by two rounds of whole genome duplication at the origin of the vertebrate animals. ANIA identifies candidate ‘lynchpins’, which are 14-3-3-binding phosphosites that are conserved across members of a given 2R-ohnologue protein family. Other features of ANIA include a link to the catalogue of somatic mutations in cancer database to find cancer polymorphisms that map to 14-3-3-binding phosphosites, which would be expected to interfere with 14-3-3 interactions. We used ANIA to map known and candidate 14-3-3-binding enzymes within the 2R-ohnologue complement of the human kinome. Our projections indicate that 14-3-3s dock onto many more human kinases than has been realized. Guided by ANIA, PAK4, 6 and 7 (p21-activated kinases 4, 6 and 7) were experimentally validated as a 2R-ohnologue family of 14-3-3-binding phosphoproteins. PAK4 binding to 14-3-3 is stimulated by phorbol ester, and involves the ‘lynchpin’ site phosphoSer99 and a major contribution from Ser181. In contrast, PAK6 and PAK7 display strong phorbol ester-independent binding to 14-3-3, with Ser113 critical for the interaction with PAK6. These data point to differential 14-3-3 regulation of PAKs in control of cell morphology. Database URL: https://ania-1433.lifesci.dundee.ac.uk/prediction/webserver/index.py PMID:24501395

  15. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome.

    Science.gov (United States)

    Tinti, Michele; Madeira, Fábio; Murugesan, Gavuthami; Hoxhaj, Gerta; Toth, Rachel; Mackintosh, Carol

    2014-01-01

    The dimeric 14-3-3 proteins dock onto pairs of phosphorylated Ser and Thr residues on hundreds of proteins, and thereby regulate many events in mammalian cells. To facilitate global analyses of these interactions, we developed a web resource named ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome, which integrates multiple data sets on 14-3-3-binding phosphoproteins. ANIA also pinpoints candidate 14-3-3-binding phosphosites using predictor algorithms, assisted by our recent discovery that the human 14-3-3-interactome is highly enriched in 2R-ohnologues. 2R-ohnologues are proteins in families of two to four, generated by two rounds of whole genome duplication at the origin of the vertebrate animals. ANIA identifies candidate 'lynchpins', which are 14-3-3-binding phosphosites that are conserved across members of a given 2R-ohnologue protein family. Other features of ANIA include a link to the catalogue of somatic mutations in cancer database to find cancer polymorphisms that map to 14-3-3-binding phosphosites, which would be expected to interfere with 14-3-3 interactions. We used ANIA to map known and candidate 14-3-3-binding enzymes within the 2R-ohnologue complement of the human kinome. Our projections indicate that 14-3-3s dock onto many more human kinases than has been realized. Guided by ANIA, PAK4, 6 and 7 (p21-activated kinases 4, 6 and 7) were experimentally validated as a 2R-ohnologue family of 14-3-3-binding phosphoproteins. PAK4 binding to 14-3-3 is stimulated by phorbol ester, and involves the 'lynchpin' site phosphoSer99 and a major contribution from Ser181. In contrast, PAK6 and PAK7 display strong phorbol ester-independent binding to 14-3-3, with Ser113 critical for the interaction with PAK6. These data point to differential 14-3-3 regulation of PAKs in control of cell morphology. Database URL: https://ania-1433.lifesci.dundee.ac.uk/prediction/webserver/index.py.

  16. 14-3-3 Sigma And p53 Expression in Gastric Cancer and Its Clinical Applications

    Directory of Open Access Journals (Sweden)

    Gilbert Mühlmann

    2010-01-01

    Full Text Available 14-3-3 sigma (σ induces G2 arrest enabling the repair of damaged DNA. The function of 14-3-3 σ is frequently lost in tumor cells, indicating a potential tumor suppressor function. The purpose of this study was to evaluate the prognostic value of 14-3-3 σ expression in human gastric cancer. 14-3-3 σ expression was analyzed by immunohistochemistry in 157 tumor samples of patients, who underwent resection for gastric cancer. Since 14-3-3 σ is involved in the p53 network, p53 expression was detected in parallel and correlated with 14-3-3 σ. 14-3-3 σ was found to be overexpressed in 75 (47.8% of 157 cases, the overexpression rate of p53 protein was 27.4%. 14-3-3 σ overexpression was statistically significantly associated with pT-stage (p=0.041 pN-stage (p=0.015 and UICC-stage (p=0.019 and showed a borderline significance with Lauren classification (p=0.057. Univariate survival calculations revealed a coexistent 14-3-3 σ and p53 overexpression as a significant predictor of disease-free survival. Multivariate analysis did not unfold 14-3-3 as an independent prognostic factor for disease-free survival and overall survival. Concomitant 14-3-3 σ and p53 overexpression in tumor cells of patients with gastric cancer identifies a population of patients with relatively unfavorable prognosis.

  17. Over-expression of 14-3-3zeta is an early event in oral cancer

    International Nuclear Information System (INIS)

    The functional and clinical significance of 14-3-3 proteins in human cancers remain largely undetermined. Earlier, we have reported differential expression of 14-3-3ζ mRNA in oral squamous cell carcinoma (OSCC) by differential display. The clinical relevance of 14-3-3ζ protein in oral tumorigenesis was determined by immunohistochemistry in paraffin embedded sections of oral pre-malignant lesions (OPLs), OSCCs and histologically normal oral tissues and corroborated by Western Blotting. Co-immunoprecipitation assays were carried out to determine its association with NFκB, β-catenin and Bcl-2. Intense immunostaining of 14-3-3ζ protein was observed in 61/89 (69%) OPLs and 95/120 (79%) OSCCs. Immunohistochemistry showed significant increase in expression of 14-3-3ζ protein from normal mucosa to OPLs to OSCCs (ptrend < 0.001). Significant increase in expression of 14-3-3ζ protein was observed as early as in hyperplasia (p = 0.009), with further elevation in moderate and severe dysplasia, that was sustained in OSCCs. These findings were validated by Western blotting. Using Co-immunoprecipitation, we demonstrated that 14-3-3ζ protein binds to NFκB, β-catenin and Bcl-2, suggesting its involvement in cellular signaling, leading to proliferation of oral cancer cells. Our findings suggest that over-expression of 14-3-3ζ is an early event in oral tumorigenesis and may have an important role in its development and progression. Thus, 14-3-3ζ may serve as an important molecular target for designing novel therapy for oral cancer

  18. Clinical implication of 14-3-3 epsilon expression in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Mariana Ferreira Leal; Danielle Queiroz Calcagno; S(a)mia Demachki; Paulo Pimentel Assump(c)(a)o; Roger Chammas; Rommel Rodríguez Burbano; Marília de Arruda Cardoso Smith

    2012-01-01

    AIM:To evaluate for the first time the protein and mRNA expression of 14-3-3ε in gastric carcinogenesis.METHODS:14-3-3ε protein expression was determined by western blotting,and mRNA expression was examined by real-time quantitative RT-PCR in gastric tumors and their matched non-neoplastic gastric tissue samples.RESULTS:Authors observed a significant reduction of 14-3-3ε protein expression in gastric cancer (GC) samples compared to their matched non-neoplastic tissue.Reduced levels of 14-3-3ε were also associated with diffuse-type GC and early-onset of this pathology.Our data suggest that reduced 14-3-3ε may have a role in gastric carcinogenesis process.CONCLUSION:Our results reveal that the reduced 14-3-3ε expression in GC and investigation of 14-3-3ε interaction partners may help to elucidate the carcinogenesis process.

  19. 14-3-3 Binding and Sumoylation Concur to the Down-Modulation of β-catenin Antagonist chibby 1 in Chronic Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Manuela Mancini

    Full Text Available The down-modulation of the β-catenin antagonist Chibby 1 (CBY1 associated with the BCR-ABL1 fusion gene of chronic myeloid leukemia (CML contributes to the aberrant activation of β-catenin, particularly in leukemic stem cells (LSC resistant to tyrosine kinase (TK inhibitors. It is, at least partly, driven by transcriptional events and gene promoter hyper-methylation. Here we demonstrate that it also arises from reduced protein stability upon binding to 14-3-3σ adapter protein. CBY1/14-3-3σ interaction in BCR-ABL1+ cells is mediated by the fusion protein TK and AKT phosphorylation of CBY1 at critical serine 20, and encompasses the 14-3-3σ binding modes I and II involved in the binding with client proteins. Moreover, it is impaired by c-Jun N-terminal kinase (JNK phosphorylation of 14-3-3σ at serine 186, which promotes dissociation of client proteins. The ubiquitin proteasome system UPS participates in reducing stability of CBY1 bound with 14-3-3σ through enhanced SUMOylation. Our results open new routes towards the research on molecular pathways promoting the proliferative advantage of leukemic hematopoiesis over the normal counterpart.

  20. 14-3-3ε Is required for germ cell migration in Drosophila.

    Directory of Open Access Journals (Sweden)

    K Kirki Tsigkari

    Full Text Available Although 14-3-3 proteins participate in multiple biological processes, isoform-specific specialized functions, as well as functional redundancy are emerging with tissue and developmental stage-specificity. Accordingly, the two 14-3-3ε proteins in Drosophila exhibit functional specificity and redundancy. Homozygotes for loss of function alleles of D14-3-3ε contain significantly fewer germ line cells (pole cells in their gonads, a phenotype not shared by mutants in the other 14-3-3 gene leo. We show that although D14-3-3ε is enriched within pole cells it is required in mesodermal somatic gonad precursor cells which guide pole cells in their migration through the mesoderm and coalesce with them to form the embryonic gonad. Loss of D14-3-3ε results in defective pole cell migration, reduced pole cell number. We present evidence that D14-3-3ε loss results in reduction or loss of the transcription factor Zfh-1, one of the main regulatory molecules of the pole cell migration, from the somatic gonad precursor cells.

  1. Overexpression of 14-3-3z promotes tau phosphorylation at Ser262 and accelerates proteosomal degradation of synaptophysin in rat primary hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Hamid Y Qureshi

    Full Text Available b-Amyloid peptide accumulation, tau hyperphosphorylation, and synapse loss are characteristic neuropathological symptoms of Alzheimer's disease (AD. Tau hyperphosphorylation is suggested to inhibit the association of tau with microtubules, making microtubules unstable and causing neurodegeneration. The mechanism of tau phosphorylation in AD brain, therefore, is of considerable significance. Although PHF-tau is phosphorylated at over 40 Ser/Thr sites, Ser(262 phosphorylation was shown to mediate b-amyloid neurotoxicity and formation of toxic tau lesions in the brain. In vitro, PKA is one of the kinases that phosphorylates tau at Ser(262, but the mechanism by which it phosphorylates tau in AD brain is not very clear. 14-3-3z is associated with neurofibrillary tangles and is upregulated in AD brain. In this study, we show that 14-3-3z promotes tau phosphorylation at Ser(262 by PKA in differentiating neurons. When overexpressed in rat hippocampal primary neurons, 14-3-3z causes an increase in Ser(262 phosphorylation, a decrease in the amount of microtubule-bound tau, a reduction in the amount of polymerized microtubules, as well as microtubule instability. More importantly, the level of pre-synaptic protein synaptophysin was significantly reduced. Downregulation of synaptophysin in 14-3-3z overexpressing neurons was mitigated by inhibiting the proteosome, indicating that 14-3-3z promotes proteosomal degradation of synaptophysin. When 14-3-3z overexpressing neurons were treated with the microtubule stabilizing drug taxol, tau Ser(262 phosphorylation decreased and synaptophysin level was restored. Our data demonstrate that overexpression of 14-3-3z accelerates proteosomal turnover of synaptophysin by promoting the destabilization of microtubules. Synaptophysin is involved in synapse formation and neurotransmitter release. Our results suggest that 14-3-3z may cause synaptic pathology by reducing synaptophysin levels in the brains of patients suffering

  2. Transgenic overexpression of 14-3-3 zeta protects hippocampus against endoplasmic reticulum stress and status epilepticus in vivo.

    Directory of Open Access Journals (Sweden)

    Gary P Brennan

    Full Text Available 14-3-3 proteins are ubiquitous molecular chaperones that are abundantly expressed in the brain where they regulate cell functions including metabolism, the cell cycle and apoptosis. Brain levels of several 14-3-3 isoforms are altered in diseases of the nervous system, including epilepsy. The 14-3-3 zeta (ζ isoform has been linked to endoplasmic reticulum (ER function in neurons, with reduced levels provoking ER stress and increasing vulnerability to excitotoxic injury. Here we report that transgenic overexpression of 14-3-3ζ in mice results in selective changes to the unfolded protein response pathway in the hippocampus, including down-regulation of glucose-regulated proteins 78 and 94, activating transcription factors 4 and 6, and Xbp1 splicing. No differences were found between wild-type mice and transgenic mice for levels of other 14-3-3 isoforms or various other 14-3-3 binding proteins. 14-3-3ζ overexpressing mice were potently protected against cell death caused by intracerebroventricular injection of the ER stressor tunicamycin. 14-3-3ζ overexpressing mice were also potently protected against neuronal death caused by prolonged seizures. These studies demonstrate that increased 14-3-3ζ levels protect against ER stress and seizure-damage despite down-regulation of the unfolded protein response. Delivery of 14-3-3ζ may protect against pathologic changes resulting from prolonged or repeated seizures or where injuries provoke ER stress.

  3. Expression analysis of two novel cotton 14-3-3 genes in root development and in response to salt stress

    Institute of Scientific and Technical Information of China (English)

    Xinzheng Wei; Zeting Zhang; Yang Li; Xiulan Wang; Suqiang Shao; Liang Chen; Xuebao Li

    2009-01-01

    14-3-3 proteins are phosphoserine-binding proteins that regulate the activities of a wide array of targets via direct protein-protein interactions, and may play an important role in response to biotic and abiotic stresses. In this study, two cDNAs (designated as Gh14-3-3b and Gh14-3-3c) encoding putative 14-3-3 proteins were isolated from cotton cDNA libraries. Gh14-3-3b gene encodes a pro-tein of 268 amino acids, while Gh14-3-3c gene encodes a protein of 261 amino acids. Real-time RT-PCR analysis revealed that both the Gh14-3-3b and Gh14-3-3c genes were preferentially expressed in roots. The transcript levels of both the genes were the highest in 3-day-old roots, and then dramatically decreased to relatively low levels in parallel with root development. In addition, the expression of these Gh14-3-3 genes in roots was significantly up regulated by salt treatments, suggesting that they may be involved in the signaling pathways in response to salt stress in cotton.

  4. Visualization and Biochemical Analyses of the Emerging Mammalian 14-3-3-Phosphoproteome*

    Science.gov (United States)

    Johnson, Catherine; Tinti, Michele; Wood, Nicola T.; Campbell, David G.; Toth, Rachel; Dubois, Fanny; Geraghty, Kathryn M.; Wong, Barry H. C.; Brown, Laura J.; Tyler, Jennifer; Gernez, Aurélie; Chen, Shuai; Synowsky, Silvia; MacKintosh, Carol

    2011-01-01

    Hundreds of candidate 14-3-3-binding (phospho)proteins have been reported in publications that describe one interaction at a time, as well as high-throughput 14-3-3-affinity and mass spectrometry-based studies. Here, we transcribed these data into a common format, deposited the collated data from low-throughput studies in MINT (http://mint.bio.uniroma2.it/mint), and compared the low- and high-throughput data in VisANT graphs that are easy to analyze and extend. Exploring the graphs prompted questions about technical and biological specificity, which were addressed experimentally, resulting in identification of phosphorylated 14-3-3-binding sites in the mitochondrial import sequence of the iron-sulfur cluster assembly enzyme (ISCU), cytoplasmic domains of the mitochondrial fission factor (MFF), and endoplasmic reticulum-tethered receptor expression-enhancing protein 4 (REEP4), RNA regulator SMAUG2, and cytoskeletal regulatory proteins, namely debrin-like protein (DBNL) and kinesin light chain (KLC) isoforms. Therefore, 14-3-3s undergo physiological interactions with proteins that are destined for diverse subcellular locations. Graphing and validating interactions underpins efforts to use 14-3-3-phosphoproteomics to identify mechanisms and biomarkers for signaling pathways in health and disease. PMID:21725060

  5. 14-3-3σ regulates keratinocyte proliferation and differentiation by modulating Yap1 cellular localization

    Science.gov (United States)

    Sambandam, Sumitha A.T.; Kasetti, Ramesh Babu; Xue, Lei; Dean, Douglas C.; Lu, Qingxian; Li, Qiutang

    2015-01-01

    The homozygous repeated epilation (Er/Er) mouse mutant of the gene encoding 14-3-3σ displays an epidermal phenotype characterized by hyperproliferative keratinocytes and undifferentiated epidermis. Heterozygous Er/+ mice develop spontaneous skin tumors and are highly sensitive to tumor-promoting DMBA/TPA induction. The molecular mechanisms underlying 14-3-3σ regulation of epidermal proliferation, differentiation, and tumor formation have not been well elucidated. In the present study, we found that Er/Er keratinocytes failed to sequester Yap1 in the cytoplasm, leading to its nuclear localization during epidermal development in vivo and under differentiation-inducing culture conditions in vitro. In addition, enhanced Yap1 nuclear localization was also evident in DMBA/TPA-induced tumors from Er/+ skin. Furthermore, shRNA knockdown of Yap1 expression in Er/Er keratinocytes inhibited their proliferation, suggesting that YAP1 functions as a downstream effector of 14-3-3σ controlling epidermal proliferation. We then demonstrated that keratinocytes express all seven 14-3-3 protein isoforms, some of which form heterodimers with 14-3-3σ, either full-length WT or the mutant form found in Er/Er mice. However Er 14-3-3σ does not interact with Yap1, as demonstrated by co-immunoprecipitation. We conclude that Er 14-3-3σ disrupts the interaction between 14-3-3 and Yap1, thus fails to block Yap1 nuclear transcriptional function, causing continued progenitor expansion and inhibition of differentiation in Er/Er epidermis. PMID:25668240

  6. Down-regulation of 14-3-3β exerts anti-cancer effects through inducing ER stress in human glioma U87 cells: Involvement of CHOP–Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Lei, Hui; Chang, Ming-Ze; Liu, Zhi-Qin [Department of Neurological Disease, Xi' an Central Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710000 (China); Bie, Xiao-Hua, E-mail: biexiaohua_xjtu@126.com [Department of Functional Neurosurgery, Xi' an Red Cross Hospital, Xi' an Jiaotong University, Xi' an, Shaanxi 710054 (China)

    2015-07-10

    We previously identified 14-3-3β as a tumor-specific isoform of 14-3-3 protein in astrocytoma, but its functional role in glioma cells and underlying mechanisms are poorly understood. In the present study, we investigated the effects of 14-3-3β inhibition in human glioma U87 cells using specific targeted small interfering RNA (siRNA). The results showed that 14-3-3β is highly expressed in U87 cells but not in normal astrocyte SVGp12 cells. Knockdown of 14-3-3β by Si-14-3-3β transfection significantly decreased the cell viability but increased the LDH release in a time-dependent fashion in U87 cells, and these effects were accompanied with G0/G1 cell cycle arrest and apoptosis. In addition, 14-3-3β knockdown induced ER stress in U87 cells, as evidenced by ER calcium release, increased expression of XBP1S mRNA and induction of ER related pro-apoptotic factors. Down-regulation of 14-3-3β significantly decreased the nuclear localization of β-catenin and inhibited Topflash activity, which was shown to be reversely correlated with CHOP. Furthermore, Si-CHOP and sFRP were used to inhibit CHOP and Wnt, respectively. The results showed that the anti-cancer effects of 14-3-3β knockdown in U87 cells were mediated by increased expression of CHOP and followed inhibition of Wnt/β-catenin pathway. In summary, the remarkable efficiency of 14-3-3β knockdown to induce apoptotic cell death in U87 cells may find therapeutic application for the treatment of glioma patients. - Highlights: • Knockdown of 14-3-3β leads to cytotoxicity in human glioma U87 cells. • Knockdown of 14-3-3β induces cell cycle arrest and apoptosis in U87 cells. • Knockdown of 14-3-3β results in ER stress in U87 cells. • Knockdown of 14-3-3β inhibits Wnt/β-catenin pathway via CHOP activation.

  7. Dynamic interaction between 14-3-3zeta and bax during TNF-α-induced apoptosis in living cells

    Science.gov (United States)

    Gao, Xuejuan; Xing, Da; Chen, Tongsheng

    2006-09-01

    Bax, a proapoptotic member of the Bcl-2 family, localizes largely in the cytoplasm but redistributes to mitochondria and undergoes oligomerization to induce the release of apoptogenic factors such as cytochrome c in response to apoptotic stimuli. Cytoplasmic protein 14-3-3zeta binds to Bax and, upon apoptotic stimulation, releases Bax by a caspase-independent mechanism. However, the direct interaction of the cytoplasmic 14-3-3zeta and Bax in living cells has not been observed. In present study, to monitor the dynamic interaction between 14-3-3zeta and Bax in living cells in real time during apoptosis induced by tumor necrosis factor (TNF-α), DsRed-14-3-3zeta plasmid is constructed. By cotransfecting DsRed- 14-3-3zeta and GFP-Bax plasmids into human lung adenocarcinoma cells (ASTC-a-1), we observe the dynamic interaction between Bax and 14-3-3zeta using fluorescence resonance energy transfer (FRET) technique on laser scanning confocal microscope. The results show that 14-3-3zeta remains in the cytoplasm but GFP-Bax translocates to mitochondria completely after TNF-α stimulation. These results reveal that 14-3-3zeta binds directly to Bax in healthy cells, and that 14-3-3zeta negatively regulates Bax translocation to mitochondria during TNF-α-induced apoptosis.

  8. Comparative analysis of the 14-3-3 gene and its expression in Echinococcus granulosus and Echinococcus multilocularis metacestodes.

    Science.gov (United States)

    Siles-Lucas, M; Nunes, C P; Zaha, A

    2001-03-01

    It was suggested that the unlimited proliferative capacity of the Echinococcus multilocularis metacestode may be related to overproduction of the 14-3-3 protein. As is known, the proliferative capacities of E. granulosus and E. multilocularis metacestodes are very different. By comparing the expression levels of the 14-3-3 gene between in vitro-obtained E. granulosus and E. multilocularis metacestodes, we were able to provide experimental evidence of the potential relation between 14-3-3 over-expression and tumour-like growth in E. multilocularis metacestodes. RT-PCR and Northern blot experiments indicated that 14-3-3 expression level is about 4-fold higher in the E. multilocularis metacestode. This differential expression was confirmed both by immunoblotting and immunocytochemistry experiments, which allowed detection of the protein in the cyst wall from E. multilocularis but not in the cyst wall from E. granulosus. The alignment of the Echinococcus 14-3-3 cDNA sequence with known 14-3-3 isoforms from other organisms, grouped the parasite sequence into the tumour growth-related isoforms. The known relation between over-expression of some 14-3-3 isoforms and tumour-related processes, together with the present results, suggest that the Echinococcus 14-3-3 protein could be one of the molecules responsible for the differences between E. granulosus and E. multilocularis metacestode growth behaviour.

  9. Pear 14-3-3a gene (Pp14-3-3a) is regulated during fruit ripening and senescense, and involved in response to salicylic acid and ethylene signalling

    Indian Academy of Sciences (India)

    Haiyan Shi; Yuxing Zhang

    2014-12-01

    14-3-3 proteins play important roles in regulating plant development and phytohormone (abscisic acid, gibberellin and brassinosteroids) signalling. However, their regulation in fruit ripening and senescense, and response to salicylic acid and ethylene signalling are yet to be illustrated. One cDNA encoding putative 14-3-3 protein was isolated from pear (Pyrus pyrifolia) and designated Pp14-3-3a. Phylogenetic analysis clearly demonstrated that Pp14-3-3a belonged to -like group of 14-3-3 super-families. Real-time quantitative PCR analysis indicated that the expression of Pp14-3-3a gene was developmentally regulated in the fruit. Further study demonstrated that Pp14-3-3a expression was inhibited by salicylic acid and induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid in pear fruit. These data suggested that Pp14-3-3a might be involved in response to salicylic acid and ethylene signalling during fruit ripening and senescence of pear.

  10. Interaction of hookworm 14-3-3 with the forkhead transcription factor DAF-16 requires intact Akt phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Hawdon John M

    2009-04-01

    Full Text Available Abstract Background Third-stage infective larvae (L3 of hookworms are in an obligatory state of developmental arrest that ends upon entering the definitive host, where they receive a signal that re-activates development. Recovery from the developmentally arrested dauer stage of Caenorhabditis elegans is analogous to the resumption of development during hookworm infection. Insulin-like signaling (ILS mediates recovery from arrest in C. elegans and activation of hookworm dauer L3. In C. elegans, phosphorylation of the forkhead transcription factor DAF-16 in response to ILS creates binding cites for the 14-3-3 protein Ce-FTT-2, which translocates DAF-16 out of the nucleus, resulting in resumption of reproductive development. Results To determine if hookworm 14-3-3 proteins play a similar role in L3 activation, hookworm FTT-2 was identified and tested for its ability to interact with A. caninum DAF-16 in vitro. The Ac-FTT-2 amino acid sequence was 91% identical to the Ce-FTT-2, and was most closely related to FTT-2 from other nematodes. Ac-FTT-2 was expressed in HEK 293T cells, and was recognized by an antibody against human 14-3-3β isoform. Reciprocal co-immunoprecipitations using anti-epitope tag antibodies indicated that Ac-FTT-2 interacts with Ac-DAF-16 when co-expressed in serum-stimulated HEK 293T cells. This interaction requires intact Akt consensus phosphorylation sites at serine107 and threonine312, but not serine381. Ac-FTT-2 was undetectable by Western blot in excretory/secretory products from serum-stimulated (activated L3 or adult A. caninum. Conclusion The results indicate that Ac-FTT-2 interacts with DAF-16 in a phosphorylation-site dependent manner, and suggests that Ac-FTT-2 mediates activation of L3 by binding Ac-DAF-16 during hookworm infection.

  11. Class-specific evolution and transcriptional differentiation of 14-3-3 family members in mesohexaploid Brassica rapa

    OpenAIRE

    Ruby eChandna; Rehna eAugustine; Praveena eKanchupati; Roshan eKumar; Pawan eKumar; Arya, Gulab C.; Naveen Chandra Bisht

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa cont...

  12. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa

    OpenAIRE

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C.; Bisht, Naveen C.

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa cont...

  13. 14-3-3/HIP-55 complex increases the stability of HIP-55%14-3-3/HIP-55复合体增强HIP-55蛋白稳定性

    Institute of Scientific and Technical Information of China (English)

    田爱炬; 李子健

    2015-01-01

    目的:用双分子荧光互补及免疫共沉淀技术验证HIP-55与14-3-3在HEK293细胞中存在相互作用,并进一步研究其生物学意义. 方法:利用GATEWAY系统构建PDEST-N-Venus-HIP-55WT(野生型),PDEST-N-Venus-HIP-55AA(突变体S269A/T291A),PDEST-GST-HIP-55WT及PDEST-C-Venus-14-3-3τ重组质粒,利用双分子荧光互补及免疫共沉淀技术检测两者的相互作用,同时应用14-3-3蛋白相互作用抑制肽R18和HIP-55蛋白突变体( HIP-55AA突变体S269A/T291A不能与14-3-3相互作用)作为工具研究两者结合后对嘌呤霉素诱导的HIP-55蛋白表达的影响. 结果:外源转入的Venus-HIP-55WT、Venus-HIP-55AA及Venus-14-3-3蛋白能够在HEK293细胞中表达;双分子荧光互补实验结果表明HIP-55与14-3-3存在相互作用,HIP-55蛋白的S269/T291位点介导HIP-55与14-3-3的相互作用;免疫共沉淀技术表明内源性HIP-55与14-3-3存在相互作用;进一步研究发现HIP-55与14-3-3复合体增强HIP-55蛋白的稳定性,保护HIP-55不被降解. 结论:14-3-3与HIP-55存在相互作用,14-3-3/HIP-55复合体可以促进HIP-55蛋白的稳定性.%Objective:To further demonstrate the interaction of a new 14-3-3 interaction protein hema-topoietic progenitor kinase 1 [ HPK1 ]-interacting protein ( HIP-55 ) and 14-3-3 proteins and its potential biological function in HEK293 cells. Methods:PDEST-N-Venus-HIP-55WT (wild type),PDEST-N-Ve-nus-HIP-55AA (mutants, S269A/T291A, abolishing the binding of HIP-55 to 14-3-3),PDEST-GST-HIP-55WT and PDEST-C-Venus-14-3-3τplasmids were constructed by gateway system. Their expressions were demonstrated by Western blotting method. Then we used Bimolecular Fluorescence Complementation ( BiFC) and co-immunoprecipitation ( co-IP) methods to demonstrate the interaction of HIP-55 and 14-3-3 in HEK293 cells. Moreover, the 14-3-3 antagonist peptide, R18 and HIP-55 protein mutant plasmid HIP-55 AA were used to detect the protein synthesis of HIP-55 at different time points

  14. Sporadic Creutzfeldt-Jakob disease diagnostic accuracy is improved by a new CSF ELISA 14-3-3γ assay.

    Science.gov (United States)

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-05-13

    Protein 14-3-3 is a reliable marker of rapid neuronal damage, specifically increased in cerebrospinal fluid (CSF) of sporadic Creutzfeldt-Jakob disease (sCJD) patients. Its detection is usually performed by Western Blot (WB), prone to methodological issues. Our aim was to evaluate the diagnostic performance of a recently developed quantitative enzyme-linked immunosorbent (ELISA) assay for 14-3-3γ, in comparison with WB and other neurodegeneration markers. CSF samples from 145 patients with suspicion of prion disease, later classified as definite sCJD (n=72) or Non-prion diseases (Non-CJD; n=73) comprised our population. 14-3-3 protein was determined by WB and ELISA. Total Tau (t-Tau) and phosphorylated Tau (p-Tau) were also evaluated. Apolipoprotein E gene (ApoE) and prionic protein gene (PRNP) genotyping was assessed. ELISA 14-3-3γ levels were significantly increased in sCJD compared to Non-CJD patients (p<0.001), showing very good accuracy (AUC=0.982; sensitivity=97%; specificity=94%), and matching WB results in 81% of all cases. It strongly correlated with t-Tau and p-Tau (p<0.0001), showing slightly higher specificity (14-3-3 WB - 63%; Tau - 90%; p-Tau/t-Tau ratio - 88%). From WB inconclusive results (n=44), ELISA 14-3-3γ correctly classified 41 patients. Additionally, logistic regression analysis selected ELISA 14-3-3γ as the best single predictive marker for sCJD (overall accuracy=93%). ApoE and PRNP genotypes did not influence ELISA 14-3-3γ levels. Despite specificity for 14-3-3γ isoform, ELISA results not only match WB evaluation but also help discrimination of inconclusive results. Our results therefore reinforce this assay as a single screening test, allowing higher sample throughput and unequivocal results. PMID:26940479

  15. 14-3-3σ is an independent prognostic biomarker for gastric cancer and is associated with apoptosis and proliferation in gastric cancer.

    Science.gov (United States)

    Li, Yi-Liang; Liu, Lihua; Xiao, Yang; Zeng, Tao; Zeng, Chao

    2015-01-01

    14-3-3 proteins participate in various cellular processes, including apoptosis, proliferation and malignant transformation. 14-3-3σ, a member of the 14-3-3 protein family, is important in several types of cancer; however, little is known about the clinical significance and biological roles of 14-3-3σ in gastric cancer. The present study analyzed the expression pattern of 14-3-3σ in gastric cancer and investigated its correlation with the prognosis of gastric cancer patients. Furthermore, the association of 14-3-3σ with Ki-67, Bcl-2 and Bax was evaluated. 14-3-3σ was expressed at higher level in gastric cancer tissue compared with healthy gastric tissue, and 14-3-3σ expression was significantly correlated with tumor size and tumor node metastasis stage (Pknowledge, the present study data are the first to suggest that 14-3-3σ expression has been significantly associated with poor prognosis in gastric cancer. Additionally, 14-3-3σ overexpression was positively correlated with Ki-67 and Bcl-2 expression levels. Thus, 14-3-3σ is a potential prognostic marker for gastric cancer patients, and may be involved in regulating the apoptosis and proliferation of gastric cancer cells. PMID:25435977

  16. Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana

    Science.gov (United States)

    Li, Meiying; Ren, Licheng; Xu, Biyu; Yang, Xiaoliang; Xia, Qiyu; He, Pingping; Xiao, Susheng; Guo, Anping; Hu, Wei; Jin, Zhiqiang

    2016-01-01

    Plant 14-3-3 proteins act as critical components of various cellular signaling processes and play an important role in regulating multiple physiological processes. However, less information is known about the 14-3-3 gene family in banana. In this study, 25 14-3-3 genes were identified from the banana genome. Based on the evolutionary analysis, banana 14-3-3 proteins were clustered into ε and non-ε groups. Conserved motif analysis showed that all identified banana 14-3-3 genes had the typical 14-3-3 motif. The gene structure of banana 14-3-3 genes showed distinct class-specific divergence between the ε group and the non-ε group. Most banana 14-3-3 genes showed strong transcript accumulation changes during fruit development and postharvest ripening in two banana varieties, indicating that they might be involved in regulating fruit development and ripening. Moreover, some 14-3-3 genes also showed great changes after osmotic, cold, and salt treatments in two banana varieties, suggested their potential role in regulating banana response to abiotic stress. Taken together, this systemic analysis reveals the involvement of banana 14-3-3 genes in fruit development, postharvest ripening, and response to abiotic stress and provides useful information for understanding the functions of 14-3-3 genes in banana. PMID:27713761

  17. Research progress on Sj14-3-3 vaccine of Schistosoma japonicum%日本血吸虫Sj14-3-3疫苗研究进展

    Institute of Scientific and Technical Information of China (English)

    谭建蓉; 李文桂

    2014-01-01

    日本血吸虫病是由日本血吸虫引起的一类严重危害人类健康的人兽共患寄生虫病,研制疫苗防治该病是目前的研究热点.Sj14-3-3蛋白是一种有效的疫苗分子,该文就Sj14-3-3蛋白疫苗和核酸疫苗的研究进展进行综述.%Schistosomiasis japonica is a serious health-threatening parasitic zoonosis to human beings,which is caused by Schistosomajaponicum.Developing vaccines for schistosomiasis is a hot spot in the present studies.Sj14-3-3 protein is an effective vaccine.This article reviewed the progress on Sj14-3-3 protein vaccines and DNA vaccines.

  18. The prognostic value of 14-3-3 isoforms in vulvar squamous cell carcinoma cases: 14-3-3β and ε are independent prognostic factors for these tumors.

    Directory of Open Access Journals (Sweden)

    Zhihui Wang

    Full Text Available BACKGROUND: The 14-3-3 family is comprised of highly conserved proteins that are functionally important in the maintenance of homeostasis. Their involvement with the cell cycle, their association with proto-oncogenes and oncogenes, and their abnormal expression in various tumors has linked this family of proteins to the etiology of human cancer. Mounting evidence now indicates that 14-3-3σ is a cancer suppressor gene but the roles of the other 14-3-3 isoforms and their interactions in tumorigenesis have not yet been elucidated. In our current study, we examined the expression of 14-3-3β, γ, ε, ζ, η and τ in a large series of vulvar squamous cell carcinomas to evaluate any clinical significance. METHODS: Tumor biopsies from 298 vulvar carcinomas were examined by immunohistochemistry for the expression of 14-3-3β, γ, ε, ζ, η and τ. Statistical analyses were employed to validate any associations between the expression of any 14-3-3 isoform and clinicopathologic variables for this disease. RESULTS: High cytoplasmic levels of 14-3-3β, γ, ζ, ε and η were observed in 79%, 58%, 50%, 86% and 54% of the vulvar carcinomas analyzed, respectively, whereas a low nuclear expression of 14-3-3τ was present in 80% of these cases. The elevated cytoplasmic expression of 14-3-3β, γ, ε, ζ and η was further found to be associated with advanced disease and aggressive features of these cancers. The overexpression of cytoplasmic 14-3-3β and ε significantly correlated with a poor disease-specific survival by univariate analysis (P = 0.007 and P = 0.04, respectively. The independent prognostic significance of these factors was confirmed by multivariate analysis (P = 0.007 and P = 0.009, respectively. CONCLUSIONS: We reveal for the first time that the 14-3-3β, γ, ε, ζ, η and τ isoforms may be involved in the progression of vulvar carcinomas. Furthermore, our analyses show that high cytoplasmic levels of 14-3-3β and ε

  19. Regulation of poly(A) polymerase by 14-3-3ε

    OpenAIRE

    Kim, Hana; Lee, June Hyung; Lee, Younghoon

    2003-01-01

    Poly(A) polymerase (PAP) is a key enzyme responsible for the addition of the poly(A) at the 3′ end of pre-mRNA. The C-terminal region of mammalian PAP carries target sites for protein–protein interaction with the 25 kDa subunit of cleavage factor I and with splicing factors U1A and U2AF65. We used a yeast two-hybrid screen to identify 14-3-3ε as an additional protein binding to the C-terminal region of PAP. Interaction between PAP and 14-3-3ε was confirmed by both in vitro and in vivo binding...

  20. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability.

    Science.gov (United States)

    Seo, Gi Won; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Kim, Sun-Am; Lee, Yong Seok; Kim, Yu Jung; Han, Yeon Soo

    2016-01-01

    The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform. PMID:27556493

  1. Cloning, expression and identification of the 14-3-3 gene of Trichomonas vaginalis%阴道毛滴虫14-3-3基因的克隆、表达及鉴定

    Institute of Scientific and Technical Information of China (English)

    刘畅; 张西臣; 丁鹤; 刘鑫; 宫鹏涛; 李建华; 李淑红; 李赫; 张国才; 杨举

    2012-01-01

    目的 克隆阴道毛滴虫14-3-3基因并进行原核表达.方法 根据阴道毛滴虫14-3-3基因序列设计特异性引物,以阴道毛滴虫cDNA为模板通过PCR扩增获得目的片段,与pMD-18-T连接,构建克隆载体pMD-Tv-14-3-3,经双酶切后回收目的片段,进行测序鉴定,然后与表达载体pGEX-T连接,构建原核表达载体pGEX-T-Tv-14-3-3,用异丙基-β-D硫代半乳糖苷(IPTG)诱导表达,通过SDS-PAGE及Western blot鉴定表达产物.结果 成功构建了阴道毛滴虫14-3-3基因原核表达载体pGEX-T-Tv-14-3-3;SDS-PAGE电泳检测显示,在IPTG诱导下,阳性菌高效表达分子质量单位为27 ku的蛋白质;Western blot显示表达产物可被抗阴道毛滴虫多克隆血清识别.结论 成功构建了阴道毛滴虫14-3-3基因原核表达载体,并在大肠埃希菌BL21(DE3)中高效表达.%Objective To clone and express 14-3-3 gene of Trichomonas vaginalis. Methods Special primers were designed on the basis of the reported T. vaginalis 14-3-3 gene. The 14-3-3 gene was amplified by PCR from the total DNA of T. vaginalis and was cloned into pMD-18-T to construct pMD-14-3-3. The plasmid pMD-14-3-3 was then digested with restriction ribozymes and subcloned into the prokaryotic expression plasmid pGEXT to construct pGEX-T-Tv-14-3-3. It was then expressed in E. coli BL21 (DE3) induced with IPTG. The fusion product was identified by SDS-PAGE and Western blot. Results A prokaryotic expression vector of the 14-3-3 gene was constructed and expressed in Esche-richia. coli. Induced with IPTG, the expressed recombinant protein was detected as a band of 27 ku by SDS-PAGE. A special reaction band to anti-14-3-3 sera was observed in Western blot. Conclusion The fusion protein of the 14-3-3 gene was successfully expressed in prokaryotic cells.

  2. Expression and biological significance of 14-3-3 in gliomas%14-3-3蛋白在人脑胶质瘤中的表达及生物学意义

    Institute of Scientific and Technical Information of China (English)

    曹卫东; 宋蕾; 谢莉; 章翔; 张剑宁; 杨志军; 甄海宁; 程光; 李兵; 高大宽; 王西玲

    2006-01-01

    Objective To investigate the expression and its biological significance of 14-3-3 proteins in human gliomas. Methods The expression of 14-3-3 proteins was detected in five glioma cell lines (U251MG, U87MG,BT325, SHG44, and C6), 121 cases of formalin-fixed, paraffin embedded archival tumor tissue from patients with glioma, and 10 normal human brain tissues by immunohistochemical avidin-biotin-peroxidase complex (ABC) method. And the biological significance of 14-3-3 proteins expression was analyzed in the etiopathogenesis of glioma.Results In the normal control brains, 14-3-3 immunoreactivity was localized mainly in the neuronal somata and processes, and some glial cells showed only weak immunoreactivity. However, 14-3-3 immunoreactivity was seen in all of the five glioma cell lines and the majority of astrocytomas [78.6% in grade Ⅰ (11/14), 75% in grade Ⅱ (18/24), 76.2% in grade Ⅲ (16/21), and 80% in grade Ⅳ (20/25)]. No differences were found among the positive expression rates of 14-3-3 in different grades of astrocytomas. But the intensity and the degree of 14-3-3 expression showed trends with tumor grade. The 14-3-3 immunoreactivity was also seen in the majority of other gliomas [66.7% in oligodendroglioma (4/6), 100% in anaplastic oligodendroglioma (4/4), 50% in ependymoma (2/4), 66.7% in anaplastic ependymoma (2/3), 100% in choroid plexus papilloma (5/5), 100% in pineocytoma (3/3), and 66.7% in medulloblastoma (8/12) ]. Conclusion Most human gliomas are positive for 14-3-3 proteins in this research. For most human gliomas, one common mechanism for escaping apoptosis may be the up-regulated expression of 14-3-3,and targeting 14-3-3 may be a novel promising strategy for the treatment of gliomas.%目的 检测14-3-3蛋白在人脑胶质瘤中的表达情况,探讨其在胶质瘤发生发展中的生物学意义.方法 采用免疫组化亲和素-生物素过氧化物酶复合物(ABC)法检测5个胶质瘤细胞系(U251MG,U87MG,BT325,SHG44和C6)、121

  3. The peripheral binding of 14-3-3γ to membranes involves isoform-specific histidine residues.

    Directory of Open Access Journals (Sweden)

    Helene J Bustad

    Full Text Available Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners and regulate many cellular processes. Some 14-3-3-isoforms, notably γ, have elevated affinity for membranes, which might contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to phospholipid bilayers is stimulated when 14-3-3γ is complexed with its partner, a peptide corresponding to the Ser19-phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of kosmotropic ions, which also stabilize 14-3-3γ. Electrostatic analysis of available crystal structures of γ and of the non-membrane-binding ζ-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential distribution of phosphopeptide-bound 14-3-3γ is optimal for interaction with the membrane through amphipathic helices at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3γ and located at the convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish the 14-3-3γ scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.

  4. A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response

    DEFF Research Database (Denmark)

    Blasius, Melanie; Wagner, Sebastian A; Choudhary, Chuna Ram;

    2014-01-01

    RNA metabolism is altered following DNA damage, but the underlying mechanisms are not well understood. Through a 14-3-3 interaction screen for DNA damage-induced protein interactions in human cells, we identified protein complexes connected to RNA biology. These include the nuclear exosome...

  5. Class-specific evolution and transcriptional differentiation of 14-3-3 family members in mesohexaploid Brassica rapa

    Directory of Open Access Journals (Sweden)

    Ruby eChandna

    2016-01-01

    Full Text Available 14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks0.48, suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1-5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14s indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses.

  6. Class-Specific Evolution and Transcriptional Differentiation of 14-3-3 Family Members in Mesohexaploid Brassica rapa.

    Science.gov (United States)

    Chandna, Ruby; Augustine, Rehna; Kanchupati, Praveena; Kumar, Roshan; Kumar, Pawan; Arya, Gulab C; Bisht, Naveen C

    2016-01-01

    14-3-3s are highly conserved, multigene family proteins that have been implicated in modulating various biological processes. The presence of inherent polyploidy and genome complexity has limited the identification and characterization of 14-3-3 proteins from globally important Brassica crops. Through data mining of Brassica rapa, the model Brassica genome, we identified 21 members encoding 14-3-3 proteins namely, BraA.GRF14.a to BraA.GRF14.u. Phylogenetic analysis indicated that B. rapa contains both ε (epsilon) and non-ε 14-3-3 isoforms, having distinct intron-exon structural organization patterns. The non-ε isoforms showed lower divergence rate (Ks 0.48), suggesting class-specific divergence pattern. Synteny analysis revealed that mesohexaploid B. rapa genome has retained 1-5 orthologs of each Arabidopsis 14-3-3 gene, interspersed across its three fragmented sub-genomes. qRT-PCR analysis showed that 14 of the 21 BraA.GRF14 were expressed, wherein a higher abundance of non-ε transcripts was observed compared to the ε genes, indicating class-specific transcriptional bias. The BraA.GRF14 genes showed distinct expression pattern during plant developmental stages and in response to abiotic stress, phytohormone treatments, and nutrient deprivation conditions. Together, the distinct expression pattern and differential regulation of BraA.GRF14 genes indicated the occurrence of functional divergence of B. rapa 14-3-3 proteins during plant development and stress responses. PMID:26858736

  7. Keratin 23, a novel DPC4/Smad4 target gene which binds 14-3-3ε

    Directory of Open Access Journals (Sweden)

    Schmiegel Wolff

    2011-04-01

    Full Text Available Abstract Background Inactivating mutations of SMAD4 are frequent in metastatic colorectal carcinomas. In previous analyses, we were able to show that restoration of Smad4 expression in Smad4-deficient SW480 human colon carcinoma cells was adequate to suppress tumorigenicity and invasive potential, whereas in vitro cell growth was not affected. Using this cellular model system, we searched for new Smad4 targets comparing nuclear subproteomes derived from Smad4 re-expressing and Smad4 negative SW480 cells. Methods High resolution two-dimensional (2D gel electrophoresis was applied to identify novel Smad4 targets in the nuclear subproteome of Smad4 re-expressing SW480 cells. The identified candidate protein Keratin 23 was further characterized by tandem affinity purification. Immunoprecipitation, subfractionation and immunolocalization studies in combination with RNAi were used to validate the Keratin 23-14-3-3ε interaction. Results We identified keratins 8 and 18, heat shock proteins 60 and 70, plectin 1, as well as 14-3-3ε and γ as novel proteins present in the KRT23-interacting complex. Co-immunoprecipitation and subfractionation analyses as well as immunolocalization studies in our Smad4-SW480 model cells provided further evidence that KRT23 associates with 14-3-3ε and that Smad4 dependent KRT23 up-regulation induces a shift of the 14-3-3ε protein from a nuclear to a cytoplasmic localization. Conclusion Based on our findings we propose a new regulatory circuitry involving Smad4 dependent up-regulation of KRT23 (directly or indirectly which in turn modulates the interaction between KRT23 and 14-3-3ε leading to a cytoplasmic sequestration of 14-3-3ε. This cytoplasmic KRT23-14-3-3 interaction may alter the functional status of the well described 14-3-3 scaffold protein, known to regulate key cellular processes, such as signal transduction, cell cycle control, and apoptosis and may thus be a previously unappreciated facet of the Smad4 tumor

  8. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR.

    Science.gov (United States)

    Stevers, Loes M; Lam, Chan V; Leysen, Seppe F R; Meijer, Femke A; van Scheppingen, Daphne S; de Vries, Rens M J M; Carlile, Graeme W; Milroy, Lech G; Thomas, David Y; Brunsveld, Luc; Ottmann, Christian

    2016-03-01

    Cystic fibrosis is a fatal genetic disease, most frequently caused by the retention of the CFTR (cystic fibrosis transmembrane conductance regulator) mutant protein in the endoplasmic reticulum (ER). The binding of the 14-3-3 protein to the CFTR regulatory (R) domain has been found to enhance CFTR trafficking to the plasma membrane. To define the mechanism of action of this protein-protein interaction, we have examined the interaction in vitro. The disordered multiphosphorylated R domain contains nine different 14-3-3 binding motifs. Furthermore, the 14-3-3 protein forms a dimer containing two amphipathic grooves that can potentially bind these phosphorylated motifs. This results in a number of possible binding mechanisms between these two proteins. Using multiple biochemical assays and crystal structures, we show that the interaction between them is governed by two binding sites: The key binding site of CFTR (pS768) occupies one groove of the 14-3-3 dimer, and a weaker, secondary binding site occupies the other binding groove. We show that fusicoccin-A, a natural-product tool compound used in studies of 14-3-3 biology, can stabilize the interaction between 14-3-3 and CFTR by selectively interacting with a secondary binding motif of CFTR (pS753). The stabilization of this interaction stimulates the trafficking of mutant CFTR to the plasma membrane. This definition of the druggability of the 14-3-3-CFTR interface might offer an approach for cystic fibrosis therapeutics.

  9. 14-3-3σ confers cisplatin resistance in esophageal squamous cell carcinoma cells via regulating DNA repair molecules.

    Science.gov (United States)

    Lai, Kenneth K Y; Chan, Kin Tak; Choi, Mei Yuk; Wang, Hector K; Fung, Eva Y M; Lam, Ho Yu; Tan, Winnie; Tung, Lai Nar; Tong, Daniel K H; Sun, Raymond W Y; Lee, Nikki P; Law, Simon

    2016-02-01

    Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal cancer in Asia. Cisplatin is commonly used in chemoradiation for unresectable ESCC patients. However, the treatment efficacy is diminished in patients with established cisplatin resistance. To understand the mechanism leading to the development of cisplatin resistance in ESCC, we compared the proteomes from a cisplatin-resistant HKESC-2R cell line with its parental-sensitive counterpart HKESC-2 to identify key molecule involved in this process. Mass spectrometry analysis detected 14-3-3σ as the most abundant molecule expressed exclusively in HKESC-2R cells, while western blot result further validated it to be highly expressed in HKESC-2R cells when compared to HKESC-2 cells. Ectopic expression of 14-3-3σ increased cisplatin resistance in HKESC-2 cells, while its suppression sensitized SLMT-1 cells to cisplatin. Among the molecules involved in drug detoxification, drug transportation, and DNA repair, the examined DNA repair molecules HMGB1 and XPA were found to be highly expressed in HKESC-2R cells with high 14-3-3σ expression. Subsequent manipulation of 14-3-3σ by both overexpression and knockdown approaches concurrently altered the expression of HMGB1 and XPA. 14-3-3σ, HMGB1, and XPA were preferentially expressed in cisplatin-resistant SLMT-1 cells when compared to those more sensitive to cisplatin. In ESCC patients with poor response to cisplatin-based chemoradiation, their pre-treatment tumors expressed higher expression of HMGB1 than those with response to such treatment. In summary, our results demonstrate that 14-3-3σ induces cisplatin resistance in ESCC cells and that 14-3-3σ-mediated cisplatin resistance involves DNA repair molecules HMGB1 and XPA. Results from this study provide evidences for further work in researching the potential use of 14-3-3σ and DNA repair molecules HMGB1 and XPA as biomarkers and therapeutic targets for ESCC.

  10. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity.

    Science.gov (United States)

    Shandala, Tetyana; Woodcock, Joanna M; Ng, Yeap; Biggs, Lisa; Skoulakis, Efthimios M C; Brooks, Doug A; Lopez, Angel F

    2011-07-01

    The secretion of anti-microbial peptides is recognised as an essential step in innate immunity, but there is limited knowledge of the molecular mechanism controlling the release of these effectors from immune response cells. Here, we report that Drosophila 14-3-3ε mutants exhibit reduced survival when infected with either Gram-positive or Gram-negative bacteria, indicating a functional role for 14-3-3ε in innate immunity. In 14-3-3ε mutants, there was a reduced release of the anti-microbial peptide Drosomycin into the haemolymph, which correlated with an accumulation of Drosomycin-containing vesicles near the plasma membrane of cells isolated from immune response tissues. Drosomycin appeared to be delivered towards the plasma membrane in Rab4- and Rab11-positive vesicles and smaller Rab11-positive vesicles. RNAi silencing of Rab11 and Rab4 significantly blocked the anterograde delivery of Drosomycin from the perinuclear region to the plasma membrane. However, in 14-3-3ε mutants there was an accumulation of small Rab11-positive vesicles near the plasma membrane. This vesicular phenotype was similar to that observed in response to the depletion of the vesicular Syntaxin protein Syx1a. In wild-type Drosophila immune tissue, 14-3-3ε was detected adjacent to Rab11, and partially overlapping with Syx1a, on vesicles near the plasma membrane. We conclude that 14-3-3ε is required for Rab11-positive vesicle function, which in turn enables antimicrobial peptide secretion during an innate immune response.

  11. Progression of 14-3-3σ in nasopharyngeal carcinoma%14-3-3σ及其在鼻咽癌中的研究进展

    Institute of Scientific and Technical Information of China (English)

    王堃; 易斌

    2011-01-01

    14-3-3σ,an vital tumor suppressor which is regulated by p53,plays a key role in cell cycle regulation, apoptosis, migration and proliferation, affecting tumor formation, invasion and metastasis. The methylation inactivation of 14-3-3σ is widely recognized as one of the mechanisms of tumorigenesis,and be associated with the metastasis of NPC.%14-3-3σ是p53调控的重要肿瘤抑制因子,在细胞周期调控、凋亡、迁移和扩散等过程中起关键作用,影响肿瘤的形成、浸润和转移.14-3-3σ甲基化失活是目前公认的肿瘤发生的重要机制之一,且与鼻咽癌的浸润转移等有关.

  12. Dysregulated 14-3-3 Family in Peripheral Blood Leukocytes of Patients with Schizophrenia

    OpenAIRE

    Ying Qing; Liya Sun; Chao Yang; Jie Jiang; Xuhan Yang; Xiaowen Hu; Donghong Cui; Yifeng Xu; Lin He; Dongmei Han; Chunling Wan

    2016-01-01

    The 14-3-3 family, which is composed of seven distinct members in humans, plays important roles in the cell cycle, apoptosis, synaptic plasticity and neuronal differentiation and migration. Previous genetic and post-mortem gene expression studies have linked this family to schizophrenia. However, the direction of gene expression changes in these studies has been inconsistent, and reports of 14-3-3 gene expression in living schizophrenic patients are still lacking. Here, we assessed 14-3-3 gen...

  13. A Negative Regulatory Mechanism Involving 14-3-3ζ Limits Signaling Downstream of ROCK to Regulate Tissue Stiffness in Epidermal Homeostasis

    DEFF Research Database (Denmark)

    Kular, Jasreen; Scheer, Kaitlin G; Pyne, Natasha T;

    2015-01-01

    ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can...... promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling...... antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel...

  14. 拟穴青蟹14-3-3基因全长cDNA的克隆及组织表达分析%The full length cDNA cloning and expression profile of 14-3-3 gene from the mud crab(Scylla paramamosain)

    Institute of Scientific and Technical Information of China (English)

    舒妙安; 张龙韬; 徐宾朋; 胡杭娇; 郭晓令

    2012-01-01

    采用RT-PCR及RACE技术,从拟穴青蟹眼柄组织中克隆获得14-3-3基因cDNA全序列.序列分析结果表明:拟穴青蟹14-3-3基因全长1112bp,开放阅读框长744 bp,编码由247个氨基酸组成的蛋白,分子量为28.086 ku,等电点为4.675.与其他物种14-3-3基因氨基酸序列进行同源性比较分析显示,拟穴青蟹14-3-3基因与斑节对虾14-3-3基因同源性最高(95%),依次为墨吉对虾(93%)、苜蓿切叶蜂(92%).聚类分析表明,拟穴青蟹14-3-3基因氨基酸序列与斑节对虾、墨吉对虾紧密聚为一支.经荧光定量检测,拟穴青蟹14-3-3基因在肝胰腺和肌肉中的表达量较高,其次为鳃、眼柄、心脏和肠,在胃中表达最少.盐度骤变实验结果表明:盐度胁迫24 h后,盐度的下降(5)或者上升(15、20、25、30)都引起了14-3-3基因在鳃中的表达量极显著上升(P<0.01),盐度变化的幅度越大,14-3-3基因的表达量越多.实验结果为进一步深入研究14-3-3基因的功能及调控机理奠定基础.%Full-length cDNA sequence of 14-3-3 gene was isolated from the eyestalk of mud crab Scylla paramamosairi through RT-PCR and RACE. Sequence analysis indicated that 14-3-3 gene had an open reading frame of 744 bp encoding 247aa of 28.086 ku and pI at 4.675. The amino acid sequences of 14-3-3 gene possessed 95%, 93%, 92% identity with the 14-3-3 genes of Penaeus monodon, Fenneropenaeus merguiensis, Megachile rotundata respectively. 14-3-3 protein firstly clustered with 14-3-3 proteins of Penaeus monodon and Fenneropenaeus merguiensis in the phylogenetic analysis. The expression of 14-3-3 gene in tissues was analyzed by Real-Time PCR, the result showed that 14-3-3 gene was most expressed in hepatopancreas and muscle, then in eyestalk, intestinal, heart and gill, the lest in stomach. After 24h's stress in salinity, the expression of 14-3-3 gene increased great significantly (P<0.01) whatever the salinity reduced (5) or raise (15, 20, 25, 30). The more

  15. Functional relationship between CABIT, SAM and 14-3-3 binding domains of GAREM1 that play a role in its subcellular localization

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, Tasuku; Matsunaga, Ryota; Konishi, Hiroaki, E-mail: hkonishi@pu-hiroshima.ac.jp

    2015-08-21

    GAREM1 (Grb2-associated regulator of Erk/MAPK1) is an adaptor protein that is involved in the epidermal growth factor (EGF) pathway. The nuclear localization of GAREM1 depends on the nuclear localization sequence (NLS), which is located at the N-terminal CABIT (cysteine-containing, all in Themis) domain. Here, we identified 14-3-3ε as a GAREM-binding protein, and its binding site is closely located to the NLS. This 14-3-3 binding site was of the atypical type and independent of GAREM phosphorylation. Moreover, the binding of 14-3-3 had an effect on the nuclear localization of GAREM1. Unexpectedly, we observed that the CABIT domain had intramolecular association with the C-terminal SAM (sterile alpha motif) domain. This association might be inhibited by binding of 14-3-3 at the CABIT domain. Our results demonstrate that the mechanism underlying the nuclear localization of GAREM1 depends on its NLS in the CABIT domain, which is controlled by the binding of 14-3-3 and the C-terminal SAM domain. We suggest that the interplay between 14-3-3, SAM domain and CABIT domain might be responsible for the distribution of GAREM1 in mammalian cells. - Highlights: • 14-3-3ε regulated the nuclear localization of GAREM1 as its binding partner. • The atypical 14-3-3 binding site of GAREM1 is located near the NLS in CABIT domain. • The CABIT domain had intramolecular association with the SAM domain in GAREM1. • Subcellular localization of GAREM1 is affected with its CABIT-SAM interaction.

  16. Regulation of 14-3-3 in the First Mitotic Cell Cycle in One-cell Stage Mouse Fertilized Eggs%14-3-3蛋白调节1-细胞期小鼠受精卵有丝分裂

    Institute of Scientific and Technical Information of China (English)

    崔城; 秦鑫; 任秀丽; 于秉治

    2013-01-01

    目的 研究14-3-3蛋白在1-细胞期小鼠受精卵有丝分裂中的作用.方法 RT-PCR技术鉴定小鼠受精卵14-3-3蛋白亚型.采用显微注射方法将14-3-3 siRNA注射入小鼠受精卵G1期,观察受精卵的卵裂率、形态学变化及MPF活性.结果 小鼠受精卵中的14-3-3蛋白亚型是14-3-3ε.小鼠受精卵注射pSUPER-14-3-3ε siRNA后,与对照组相比,卵裂率下降,有丝分裂延迟,有更多的受精卵发生形态异常,MPF活性最高值显著下降.结论 14-3-3蛋白在调节小鼠受精卵有丝分裂中发挥重要作用.%Objective To study the effects of 14-3-3 proteins in regulation of the first mitotic cell cycle in one-cell stage mouse fertilized eggs. Methods 14-3-3 isoform in the mouse fertilized eggs was identified by RT-PCR. 14-3-3 siRNA was introduced to G1 phase fertilized eggs by microinjection to study the cleavage rate, morphology and MPF activity. Results 14-3-3 ε was identified in one-cell stage of mouse fertilized eggs. Compared with the control group,the cleavage rate in pSUPER-14-3-3ε siRNA injection group was significantly decreased, mitosis was delayed and more abnormal morphology eggs were observed. Moreover, the maximal value of MPF activity was significantly decreased. Conclusion 14-3-3 proteins play critical roles in the first mitotic cell cycle in mouse fertilized eggs.

  17. Ustilago maydis Rho1 and 14-3-3 homologues participate in pathways controlling cell separation and cell polarity.

    Science.gov (United States)

    Pham, Cau D; Yu, Zhanyang; Sandrock, Björn; Bölker, Michael; Gold, Scott E; Perlin, Michael H

    2009-07-01

    Proteins of the 14-3-3 and Rho-GTPase families are functionally conserved eukaryotic proteins that participate in many important cellular processes such as signal transduction, cell cycle regulation, malignant transformation, stress response, and apoptosis. However, the exact role(s) of these proteins in these processes is not entirely understood. Using the fungal maize pathogen, Ustilago maydis, we were able to demonstrate a functional connection between Pdc1 and Rho1, the U. maydis homologues of 14-3-3epsilon and Rho1, respectively. Our experiments suggest that Pdc1 regulates viability, cytokinesis, chromosome condensation, and vacuole formation. Similarly, U. maydis Rho1 is also involved in these three essential processes and exerts an additional function during mating and filamentation. Intriguingly, yeast two-hybrid and epistasis experiments suggest that both Pdc1 and Rho1 could be constituents of the same regulatory cascade(s) controlling cell growth and filamentation in U. maydis. Overexpression of rho1 ameliorated the defects of cells depleted for Pdc1. Furthermore, we found that another small G protein, Rac1, was a suppressor of lethality for both Pdc1 and Rho1. In addition, deletion of cla4, encoding a Rac1 effector kinase, could also rescue cells with Pdc1 depleted. Inferring from these data, we propose a model for Rho1 and Pdc1 functions in U. maydis.

  18. Effects of physical exercise on the P38MAPK/REDD1/14-3-3 pathways in the myocardium of diet-induced obesity rats.

    Science.gov (United States)

    Pieri, B L S; Souza, D R; Luciano, T F; Marques, S O; Pauli, J R; Silva, A S R; Ropelle, E R; Pinho, R A; Lira, F S; De Souza, C T

    2014-08-01

    Obesity is associated with myocardial insulin resistance and impairment of the mammalian target of rapamycin (mTOR) signaling pathway. The activation of the mTOR cascade by exercise has been largely shown in skeletal muscle, but insufficiently analyzed in myocardial tissue. In addition, little is known regarding the mTOR upstream molecules in the hearts of obese animals and even less about the role of exercise in this process. Thus, the present study was aimed to evaluate the effects of physical exercise on P38 Mitogen-Activated Protein Kinase (P38MAPK) phosphorylation and the REDD1 (regulated in development and DNA damage responses 1) and 14-3-3 protein levels in the myocardium of diet-induced obesity (DIO) rats. After achievement of DIO and insulin resistance, Wistar rats were divided in 2 groups: sedentary obese rats and obese rats performed treadmill running (50-min/day, 5 days per week velocity of 1.0 km/h for 2 months). Forty-eight hours after the final physical exercise, the rats were killed, and the myocardial tissue was removed for Western blot analysis. DIO increased the REDD1 protein levels and reduced the 14-3-3 protein levels and P38MAPK, mTOR, P70S6k (p70 ribosomal S6 protein kinase), and 4EBP1 (4E-binding protein-1) phosphorylation. Interestingly, physical exercise reduced the REDD1 protein levels and increased the 14-3-3 protein levels and P38MAPK, mTOR, P70S6k, and 4EBP1 phosphorylation. Moreover, exercise increased the REDD1/14-3-3 association in the heart. Our results indicate that the phospho-P38MAPK, REDD1, and 14-3-3 protein levels were reduced in the myocardium of obese rats and that physical exercise increased the protein levels of these molecules. PMID:24691733

  19. A role of TGFß1 dependent 14-3-3σ phosphorylation at Ser69 and Ser74 in the regulation of gene transcription, stemness and radioresistance.

    Directory of Open Access Journals (Sweden)

    Olena Zakharchenko

    Full Text Available Transforming growth factor-β (TGFβ is a potent regulator of tumorigenesis, although mechanisms defining its tumor suppressing and tumor promoting activities are not understood. Here we describe phosphoproteome profiling of TGFβ signaling in mammary epithelial cells, and show that 60 identified TGFβ-regulated phosphoproteins form a network with scale-free characteristics. The network highlighted interactions, which may distribute signaling inputs to regulation of cell proliferation, metabolism, differentiation and cell organization. In this report, we identified two novel and TGFβ-dependent phosphorylation sites of 14-3-3σ, i.e. Ser69 and Ser74. We observed that 14-3-3σ phosphorylation is a feed-forward mechanism in TGFβ/Smad3-dependent transcription. TGFβ-dependent 14-3-3σ phosphorylation may provide a scaffold for the formation of the protein complexes which include Smad3 and p53 at the Smad3-specific CAGA element. Furthermore, breast tumor xenograft studies in mice and radiobiological assays showed that phosphorylation of 14-3-3σ at Ser69 and Ser74 is involved in regulation of cancer progenitor population and radioresistance in breast cancer MCF7 cells. Our data suggest that TGFβ-dependent phosphorylation of 14-3-3σ orchestrates a functional interaction of TGFβ/Smad3 with p53, plays a role in the maintenance of cancer stem cells and could provide a new potential target for intervention in breast cancer.

  20. Klotho Regulates 14-3-3ζ Monomerization and Binding to the ASK1 Signaling Complex in Response to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Reynolds K Brobey

    Full Text Available The reactive oxygen species (ROS-sensitive apoptosis signal-regulating kinase 1 (ASK1 signaling complex is a key regulator of p38 MAPK activity, a major modulator of stress-associated with aging disorders. We recently reported that the ratio of free ASK1 to the complex-bound ASK1 is significantly decreased in Klotho-responsive manner and that Klotho-deficient tissues have elevated levels of free ASK1 which coincides with increased oxidative stress. Here, we tested the hypothesis that: 1 covalent interactions exist among three identified proteins constituting the ASK1 signaling complex; 2 in normal unstressed cells the ASK1, 14-3-3ζ and thioredoxin (Trx proteins simultaneously engage in a tripartite complex formation; 3 Klotho's stabilizing effect on the complex relied solely on 14-3-3ζ expression and its apparent phosphorylation and dimerization changes. To verify the hypothesis, we performed 14-3-3ζ siRNA knock-down experiments in conjunction with cell-based assays to measure ASK1-client protein interactions in the presence and absence of Klotho, and with or without an oxidant such as rotenone. Our results show that Klotho activity induces posttranslational modifications in the complex targeting 14-3-3ζ monomer/dimer changes to effectively protect against ASK1 oxidation and dissociation. This is the first observation implicating all three proteins constituting the ASK1 signaling complex in close proximity.

  1. Silencing neuroglobin enhances neuronal vulnerability to oxidative injury by down-regulating 14-3-3Y

    Institute of Scientific and Technical Information of China (English)

    Shi-qiao YE; Xin-yu ZHOU; Xiao-jing LAI; Li ZHENG; Xiao-qian CHEN

    2009-01-01

    Aim:To explore the protective role and mechanism of endogenous neuroglobin (Ngb) in neuronal cells under oxidative stress.Methods:A stable N2a neuroblastoma cell line expressing the Ngb-siRNA plasmid (N2a/Ngb-siRNA) was established by neomycin screening.Reverse transcription (RT)-PCR and Western blot analysis were used to detect Ngb gene and protein levels.Hydrogen peroxide was used to induce oxidative stress in N2a cells.Cytotoxicity and cell viability were measured by lactate dehydrogenase (LDH) and WST-8 assays.Apoptotic cells were detected by Hoechst staining.Results:Cotransfection of Ngb-siRNA with Ngb-GFP plasmids suppressed the expression of Ngb-GFP in N2a cells.RT-PCR and Western blot analysis showed that the expression of endogenous Ngb was successfully knocked down to about 20% in N2a/Ngb-siRNA cells compared with control cells.A WST-8 assay demonstrated that viability was significantly decreased in N2a/Ngb-siRNA cells and N2a cells transiently transfected with Ngb-siRNA plasmids compared with controls following hydrogen peroxide treatment.An LDH assay demonstrated a time-dependent increase in the death of Ngb-siRNA-transfected N2a cells following hydrogen peroxide treatment.Hoechst staining demonstrated that the quantity of apoptotic cells among N2a/Ngb-siRNA cells following hydrogen peroxide treatment significantly increased compared with controls.In N2a/Ngb-siRNA cells,the expression level of activated caspase-3 significantly increased,whereas the expression of 14-3-3Y decreased compared with that of N2a/vec cells.Transfection of 14-3-3Y plasmids significantly enhanced the viability of N2a/Ngb-siRNA cells following hydrogen peroxide treatment compared with vector controls.Conclusion:Ngb contributes to neuronal defensive machinery against oxidative injuries by regulating 14-3-3Y expression.

  2. 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Lixin Liu

    2015-07-01

    Full Text Available As a protective factor for lipopolysaccharide (LPS-induced injury, 14-3-3γ has been the subject of recent research. Nevertheless, whether 14-3-3γ can regulate lactation in dairy cow mammary epithelial cells (DCMECs induced by LPS remains unknown. Here, the anti-inflammatory effect and lactation regulating ability of 14-3-3γ in LPS-induced DCMECs are investigated for the first time, and the molecular mechanisms responsible for their effects are explored. The results of qRT-PCR showed that 14-3-3γ overexpression significantly inhibited the mRNA expression of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS. Enzyme-linked immunosorbent assay (ELISA analysis revealed that 14-3-3γ overexpression also suppressed the production of TNF-α and IL-6 in cell culture supernatants. Meanwhile, CASY-TT Analyser System showed that 14-3-3γ overexpression clearly increased the viability and proliferation of cells. The results of kit methods and western blot analysis showed that 14-3-3γ overexpression promoted the secretion of triglycerides and lactose and the synthesis of β-casein. Furthermore, the expression of genes relevant to nuclear factor-κB (NF-κB and mitogen-activated protein kinase (MAPKs and lactation-associated proteins were assessed by western blot, and the results suggested that 14-3-3γ overexpression inactivated the NF-κB and MAPK signaling pathways by down-regulating extracellular signal regulated protein kinase (ERK, p38 mitogen-activated protein kinase (p38MAPK and inhibitor of NF-κB (IκB phosphorylation levels, as well as by inhibiting NF-κB translocation. Meanwhile, 14-3-3γ overexpression enhanced the expression levels of β-casein, mammalian target of rapamycin (mTOR, ribosomal protein S6 kinase 1 (S6K1, serine/threonine protein kinase Akt 1 (AKT1, sterol regulatory element binding protein 1 (SREBP1 and peroxisome proliferator-activated receptor gamma

  3. Constitutive Photomorphogensis Protein1 (COP1 mediated p53 pathway and its oncogenic role

    Directory of Open Access Journals (Sweden)

    Md. Golam Rabbani

    2014-05-01

    Full Text Available We have reviewed the COP1 mediated tumor suppressor protein p53 pathway and its oncogenic role. COP1 is a negative regulator of p53 and acts as a pivotal controller of p53-Akt death-live switch (Protein kinase B. In presence of p53, COP1 is overexpressed in breast, ovarian, gastric cancers, even without MDM2 (Mouse double minute-2 amplification. Following DNA damage, COP1 is phosphorylated instantly by ATM (Ataxia telangiectasia mutated and degraded by 14-3-3 and #963; following nuclear export and enhancing ubiquitination. In ATM lacking cell, other kinases, i.e. ATR (ataxia telangiectasia and Rad3-related protein, Jun kinases and DNA-PK (DNA-dependent protein kinase cause COP1 and CSN3 (COP9 signalosome complex subunit-3 phosphorylation and initiate COP1's down regulation. Although, it has been previously found that co-knockout of MDM2 and COP1 enhance p53's half life by eight fold, the reason is still unknown. Additionally, while interacting with p53, COP1 upregulate MDM2's E3 ubiquitin ligase, Akt, CSN6 (COP9 signalosome 6 activity and inhibit 14-3-3 and #963;'s negative regulation on MDM2 and COP1 itself. Conclusively, there persists an amplification loop among COP1, MDM2, Akt and 14-3-3 and #963; to regulate p53's stability and activity. However, the role of another tumor suppressor PTEN (phosphatase and tensin homologue is yet to be discovered. This study provides insight on the molecular genetic pathways related to cancer and might be helpful for therapeutic inventions. [Biomed Res Ther 2014; 1(5.000: 142-151

  4. 多房棘球绦虫Em14-3-3抗原编码基因在BCG中的表达%Expression of Echinococcus multilocularis 14-3-3 antigen encoding gene in BCG

    Institute of Scientific and Technical Information of China (English)

    王鸿; 李文桂

    2006-01-01

    目的:研究多房棘球绦虫Em14-3-3抗原编码基因在BCG中的表达.方法:将重组质粒pBCG-Em14-3-3用电穿孔法导人BCG构建rBCG,将含有重组子的细菌培养至对数生长期,在收菌前3天每天45℃热诱导30min,然后对表达产物作SDS-PAGE及免疫印迹分析.结果:多房棘球绦虫pBCG-Em14-3-3在BCG中成功表达了Em14-3-3重组蛋白,在相对分子量为27KDa处可见明显的表达蛋白带,其表达量占菌体总蛋白量的11%.结论:多房棘球绦虫pBCG-Emi4-3-3能在BCG中高效表达,且能与鼠血清抗体发生特异结合,提示rBCG-Em14-3-3疫苗表达的Em14-3-3重组蛋白具有特异的抗原性.

  5. Rôle des protéines 14-3-3 dans la régulation de la longévité par la voie DAF-2/Insuline/IGF-1 chez Caenorhabditis elegans

    OpenAIRE

    Araiz, Caroline

    2008-01-01

    14-3-3 proteins are ubiquitous proteins highly conserved among eukaryotes. They are involved in the regulation of several cellular processes by modifying the function and the localization of many targeted proteins. FTT-1 and FTT-2 are the two 14-3-3 orthologs identified in C. elegans. We showed that FTT proteins are involved in the main longevity pathway of C. elegans : the AF-2/Insulin/IGF-1-like pathway which also regulates stress resistance and metabolism through the activity of its final ...

  6. Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly

    Directory of Open Access Journals (Sweden)

    Williams David E

    2011-05-01

    Full Text Available Abstract Background Histone deacetylase (HDAC inhibitors are currently undergoing clinical evaluation as anti-cancer agents. Dietary constituents share certain properties of HDAC inhibitor drugs, including the ability to induce global histone acetylation, turn-on epigenetically-silenced genes, and trigger cell cycle arrest, apoptosis, or differentiation in cancer cells. One such example is sulforaphane (SFN, an isothiocyanate derived from the glucosinolate precursor glucoraphanin, which is abundant in broccoli. Here, we examined the time-course and reversibility of SFN-induced HDAC changes in human colon cancer cells. Results Cells underwent progressive G2/M arrest over the period 6-72 h after SFN treatment, during which time HDAC activity increased in the vehicle-treated controls but not in SFN-treated cells. There was a time-dependent loss of class I and selected class II HDAC proteins, with HDAC3 depletion detected ahead of other HDACs. Mechanism studies revealed no apparent effect of calpain, proteasome, protease or caspase inhibitors, but HDAC3 was rescued by cycloheximide or actinomycin D treatment. Among the protein partners implicated in the HDAC3 turnover mechanism, silencing mediator for retinoid and thyroid hormone receptors (SMRT was phosphorylated in the nucleus within 6 h of SFN treatment, as was HDAC3 itself. Co-immunoprecipitation assays revealed SFN-induced dissociation of HDAC3/SMRT complexes coinciding with increased binding of HDAC3 to 14-3-3 and peptidyl-prolyl cis/trans isomerase 1 (Pin1. Pin1 knockdown blocked the SFN-induced loss of HDAC3. Finally, SFN treatment for 6 or 24 h followed by SFN removal from the culture media led to complete recovery of HDAC activity and HDAC protein expression, during which time cells were released from G2/M arrest. Conclusion The current investigation supports a model in which protein kinase CK2 phosphorylates SMRT and HDAC3 in the nucleus, resulting in dissociation of the corepressor

  7. In-vivo administration of clozapine affects behaviour but does not reverse dendritic spine deficits in the 14-3-3ζ KO mouse model of schizophrenia-like disorders.

    Science.gov (United States)

    Jaehne, Emily J; Ramshaw, Hayley; Xu, Xiangjun; Saleh, Eiman; Clark, Scott R; Schubert, Klaus Oliver; Lopez, Angel; Schwarz, Quenten; Baune, Bernhard T

    2015-11-01

    Clozapine is an atypical antipsychotic drug used in the treatment of schizophrenia, which has been shown to reverse behavioural and dendritic spine deficits in mice. It has recently been shown that deficiency of 14-3-3ζ has an association with schizophrenia, and that a mouse model lacking this protein displays several schizophrenia-like behavioural deficits. To test the effect of clozapine in this mouse model, 14-3-3ζ KO mice were administered clozapine (5mg/kg) for two weeks prior to being analysed in a test battery of cognition, anxiety, and despair (depression-like) behaviours. Following behavioural testing brain samples were collected for analysis of specific anatomical defects and dendritic spine formation. We found that clozapine reduced despair behaviour of 14-3-3ζ KO mice in the forced swim test (FST) and altered the behaviour of wild types and 14-3-3ζ KO mice in the Y-maze task. In contrast, clozapine had no effects on hippocampal laminar defects or decreased dendritic spine density observed in 14-3-3ζ KO mice. Our results suggest that clozapine may have beneficial effects on clinical behaviours associated with deficiencies in the 14-3-3ζ molecular pathway, despite having no effects on morphological defects. These findings may provide mechanistic insight to the action of this drug.

  8. Expression of OsSPY and 14-3-3 genes involved in plant height variations of ion-beam-induced KDML 105 rice mutants

    Energy Technology Data Exchange (ETDEWEB)

    Phanchaisri, Boonrak [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Samsang, Nuananong [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, Liang Deng; Singkarat, Somsorn [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, Somboon, E-mail: soanu.1@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2012-06-01

    The culm length of two semidwarf rice mutants (PKOS1, HyKOS1) obtained from low-energy N-ion beam bombardments of dehusked Thai jasmine rice (Oryza sativa L. cv. KDML 105) seeds showed 25.7% and 21.5% height reductions and one spindly rice mutant (TKOS4) showed 21.4% increase in comparison with that of the KDML 105 control. A cDNA-RAPD analysis identified differential gene expression in internode tissues of the rice mutants. Two genes identified from the cDNA-RAPD were OsSPY and 14-3-3, possibly associated with stem height variations of the semidwarf and spindly mutants, respectively. The OsSPY gene encoded the SPY protein which is considered to be a negative regulator of gibberellin (GA). On the other hand, the 14-3-3 encoded a signaling protein which can bind and prevent the RSG (repression of shoot growth) protein function as a transcriptional repressor of the kaurene oxidase (KO) gene in the GA biosynthetic pathway. Expression analysis of OsSPY, 14-3-3, RSG, KO, and SLR1 was confirmed in rice internode tissues during the reproductive stage of the plants by semi-quantitative RT-PCR technique. The expression analysis showed a clear increase of the levels of OsSPY transcripts in PKOS1 and HyKOS1 tissue samples compared to that of the KDML 105 and TKOS4 samples at the age of 50-60 days which were at the ages of internode elongation. The 14-3-3 expression had the highest increase in the TKOS4 samples compared to those in KDML 105, PKOS1 and HyKOS1 samples. The expression analysis of RSG and KO showed an increase in TKOS4 samples compared to that of the KDML 105 and that of the two semidwarf mutants. These results indicate that changes of OsSPY and 14-3-3 expression could affect internode elongation and cause the phenotypic changes of semidwarf and spindly rice mutants, respectively.

  9. Effect of 14-3-3σ on Transcriptional Activity of p73 Gene%14-3-3σ对p73基因转录活性的影响

    Institute of Scientific and Technical Information of China (English)

    桑梅香; 耿翠芝; 单保恩

    2007-01-01

    背景与目的:p53基因是14-3-3σ的主要调节基因,活化的p53可以诱导14-3-3σ的表达,反过来14-3-3σ又可以稳定p53的表达并且增加其转录活性.p53基因家族中的其它成员p63和p73也存存着一些与p53基因相似的功能.本研究目的在于探讨14-3-3σ对p73基因转录活性的影响.方法:采用荧光素酶报告剂分析、反转录聚合酶链反应(reverse transcription-polymerase chain reaction,RT-PCR)及Western blot研究在p53缺失型人类肺癌细胞系H1299中14-3-3σ对p73基因转录活性的调节作用;用集落形成实验研究在p53突变型人类乳腺癌细胞系MDA-MB-436中14-3-3σ对p73基因转录活性的调节作用.结果:荧光素酶报告剂分析结果显示,在H1299细胞系中,转染p73可以使bax和p21WAF1启动子介导的荧光素酶表达增加;共转染p73和14-3-3σ后,bax和p21WAFI启动子介导的荧光素酶表达均比单独转染p73时的表达高,并且荧光素酶的表达和14-3-3σ的转染剂量之间存在着浓度依赖性(P<0.01).RT-PCR和Western blot结果也显示,转染p73可以使bax和p21WAF1的表达增加;共转染p73和14-3-3σ后,bax和p21WAF1的表达均比单独转染p73时的表达高(P<0.01).集落形成实验结果显示,在MDA-MB-436细胞系中,转染p73可以使细胞的克隆数减少;共转染p73和14-3-3σ后,细胞克隆数比单独转染p73时少(P<0.01).结论:14-3-3σ可以增加p73基因的转录活性,并且14-3-3σ对p73基因转录活性的调节存在剂量依赖性.

  10. 高尔基体基质蛋白130、14-3-3ξ、整合素α3在中、低分化胃癌组织的表达及意义%Expression and significance of GM130,14-3-3ξ and integrin in moderately differentiated and poorly differentiated gastric cancer tissues

    Institute of Scientific and Technical Information of China (English)

    陈婕; 牟玲; 易永芬

    2014-01-01

    Objective:To detect the different expressions of GM130,14-3-3ξ and integrin α3 in normal gastric tissues,moderately differentiated gastric cancer tissues and poorly differentiated gastric cancer tissues thus to explore its relationship with gastric cancer.Methods:The expression of GM130,14-3-3ξ and integrin oα3 in gastric carcinoma tissues of 84 patients with gastric cancer and the 84 samples of normal gastric tissues(from 5 cm above the edge of the gastric tumor tissues) were detected by SABC immunohistochemistry.The expression of proteins and the clinical pathological data were analyzed.The expression of mRNA and protein of GM130,14-3-3ξ and integrin α3 were detected by RT-PCR and Western blot.Results:The positive expression rates of GM1301,14-3-3ξ2and integrin α33(88.1%,90.5%,95.2%) were significantly higher in gastric cancer tissues than those in normal gastric tissues (52.4%,27.4%,42.9%);the expression of the above three indicators in poorly differentiated gastric cancer group were higher than those in moderately differentiated gastric cancer group,with statistically significant differences (P1=0.000,P2=0.007,P3=0.000).Spearman correlation analysis showed that positive correlation were observed in GM130,14-3-3ξ and integrin α3 in gastric cancer (P<0.05).The expression of GM 130,14-3-3ξ and integrin α3 in gastric cancer was obviously related with pathological differentiation and clinical stage(P<0.05),but its correlation with age,gender,tumor location,tumor size infiltration depth or whether the lymph node metastasis was not found(P>0.05).The levels of mRNA and proteins were higher in gastric cancer group than in normal gastric tissue group,higher in poorly differentiated gastric cancer than in moderately differentiated gastric cancer,with statistically significant differences between the two groups(P<0.05).Conclusion:The abnormal expression of GM130 may play an important role in the occurrence and development of gastric cancer

  11. Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL

    Directory of Open Access Journals (Sweden)

    Hastie C James

    2006-01-01

    Full Text Available Abstract Background Pim-1, 2 and 3 are a group of enzymes related to the calcium calmodulin family of protein kinases. Over-expression of Pim-1 and Pim-2 in mice promotes the development of lymphomas, and up-regulation of Pim expression has been observed in several human cancers. Results Here we show that the pim kinases are constitutively active when expressed in HEK-293 cells and are able to phosphorylate the Bcl-2 family member Bad on three residues, Ser112, Ser136 and Ser155 in vitro and in cells. In vitro mapping showed that Pim-2 predominantly phosphorylated Ser112, while Pim-1 phosphorylated Ser112, but also Ser136 and Ser155 at a reduced rate compared to Ser112. Pim-3 was found to be the least specific for Ser112, and the most effective at phosphorylating Ser136 and Ser155. Pim-3 was also able to phosphorylate other sites in Bad in vitro, including Ser170, another potential in vivo site. Mutation of Ser136 to alanine prevented the phosphorylation of Ser112 and Ser155 by Pim kinases in HEK-293 cells, suggesting that this site must be phosphorylated first in order to make the other sites accessible. Pim phosphorylation of Bad was also found to promote the 14-3-3 binding of Bad and block its association with Bcl-XL. Conclusion All three Pim kinase family members predominantly phosphorylate Bad on Ser112 and in addition are capable of phosphorylating Bad on multiple sites associated with the inhibition of the pro-apoptotic function of Bad in HEK-293 cells. This would be consistent with the proposed function of Pim kinases in promoting cell proliferation and preventing cell death.

  12. Temporal and Tissue-Specific Expression of Tomato 14-3-3 Gene Family in Response to Phosphorus Deficiency

    Institute of Scientific and Technical Information of China (English)

    XU Wei-Feng; SHI Wei-Ming; YAN Feng

    2012-01-01

    Plants adapt to phosphorus (P) deficiency through a complex of biological processes and many genes are involved.Tomato (Solanum lycopersicum L.'Hezuo906’) plants were selected to grown hydroponically to study the temporal and spatial gene expression patterns of the 14-3-3 gene family and their roles in response to P deficiency in tomato plants.Using real-time reverse-transcriptase polymerase chain reaction (RT-PCR),we investigated the expression profiles in different tissues (root,stem and leaf) at short-term and long-term P-deficient stress phases.Results revealed that i) four members of 14-3-3 gene family (TFT1,TFT4,TFT6 and TFT7)were involved in the adaptation of tomato plants to P deficiency,ii) TFT7 responded quickly to P deficiency in the root,while TFT6 responded slowly to P deficiency in the leaf,iii) expression response of TFT4 to P-deficient stress was widely distributed in different tissues (root,stem and leaf) while TFT8 only displayed stem-specific expression,and iv) temporal and tissues-specific expression patterns to P deficiency suggested that isoform specificity existed in tomato 14-3-3 gene family.We propose that TFT7 (one member of ε-like group in tomato 14-3-3 family) is the early responsive gene and may play a role in the adaptation of tomato plants to short-term P deficiency,while TFT6 (one member of non-ε group in tomato 14-3-3 family) is the later responsive gene and may play a role in the adaptation of tomato plants to long-term P deficiency.

  13. Impact of the clinical context on the 14-3-3 test for the diagnosis of sporadic CJD

    Directory of Open Access Journals (Sweden)

    Sierra-Moros Maríajosé

    2006-07-01

    Full Text Available Abstract Background The 14-3-3 test appears to be a valuable aid for the clinical diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD in selected populations. However, its usefulness in routine practice has been challenged. In this study, the influence of the clinical context on the performance of the 14-3-3 test for the diagnosis of sCJD is investigated through the analysis of a large prospective clinical series. Methods Six hundred seventy-two Spanish patients with clinically suspected sCJD were analyzed. Clinical classification at sample reception according to the World Health Organization's (WHO criteria (excluding the 14-3-3 test result was used to explore the influence of the clinical context on the pre-test probabilities, and positive (PPV and negative (NPV predictive values of the 14-3-3 test. Results Predictive values of the test varied greatly according to the initial clinical classification: PPV of 98.8%, 96.5% and 45.0%, and NPV of 26.1%, 66.6% and 100% for probable sCJDi (n = 115, possible sCJDi (n = 73 and non-sCJDi (n = 484 cases, respectively. According to multivariate and Bayesian analyses, these values represent an improvement of diagnostic certainty compared to clinical data alone. Conclusion In three different contexts of sCJD suspicion, the 14-3-3 assay provides useful information complementary to clinical and electroencephalographic (EEG data. The test is most useful supporting a clinical impression, whilst it may show deceptive when it is not in agreement with clinical data.

  14. Aqueous Extract from Hibiscus sabdariffa Linnaeus Ameliorate Diabetic Nephropathy via Regulating Oxidative Status and Akt/Bad/14-3-3γ in an Experimental Animal Model

    Directory of Open Access Journals (Sweden)

    Shou-Chieh Wang

    2011-01-01

    Full Text Available Several studies point out that oxidative stress maybe a major culprit in diabetic nephropathy. Aqueous extract of Hibiscus sabdariffa L. (HSE has been demonstrated as having beneficial effects on anti-oxidation and lipid-lowering in experimental studies. This study aimed at investigating the effects of Hibiscus sabdariffa L. on diabetic nephropathy in streptozotocin induced type 1 diabetic rats. Our results show that HSE is capable of reducing lipid peroxidation, increasing catalase and glutathione activities significantly in diabetic kidney, and decreasing the plasma levels of triglyceride, low-density lipoprotein (LDL and increasing high-density lipoprotein (HDL value. In histological examination, HSE improves hyperglycemia-caused osmotic diuresis in renal proximal convoluted tubules (defined as hydropic change in diabetic rats. The study also reveals that up-regulation of Akt/Bad/14-3-3γ and NF-κB-mediated transcription might be involved. In conclusion, our results show that HSE possesses the potential effects to ameliorate diabetic nephropathy via improving oxidative status and regulating Akt/Bad/14-3-3γ signaling.

  15. Orders induced by segments in floorplan partitions and (2-14-3,3-41-2)-avoiding permutations

    CERN Document Server

    Asinowski, Andrei; Bousquet-Mélou, Mireille; Mansour, Toufik; Pinter, Ron

    2010-01-01

    Floorplan partitions are certain tilings of a rectangle by other rectangles. There are natural ways to order their elements (rectangles and segments). In particular, Ackerman, Barequet, and Pinter studied a pair of orders induced by neighborhood relations between rectangles of a floorplan partition, and obtained a natural bijection between these pairs and (2-41-3, 3-14-2)-avoiding permutations (also known as Baxter permutations). In the present paper, we study a pair of orders induced by neighborhood relations between segments of a floorplan partition. We obtain a natural bijection between these pairs and another family of permutations, namely (2-14-3,3-41-2)-avoiding permutations. We also enumerate these permutations, investigate relations between the two kinds of pairs of orders --- and correspondingly, between (2-14-3,3-41-2)-avoiding permutations and Baxter permutations --- and study the special case of "guillotine" partitions.

  16. Mitochondria-Mediated Protein Regulation Mechanism of Polymorphs-Dependent Inhibition of Nanoselenium on Cancer Cells.

    Science.gov (United States)

    Wang, Ge; Guo, Yuming; Yang, Gai; Yang, Lin; Ma, Xiaoming; Wang, Kui; Zhu, Lin; Sun, Jiaojiao; Wang, Xiaobing; Zhang, Hua

    2016-01-01

    The present study was (i) to prepare two types of selenium nanoparticles, namely an amorphous form of selenium quantum dots (A-SeQDs) and a crystalline form of selenium quantum dots (C-SeQDs); and (ii) to investigate the nano-bio interactions of A-SeQDs and C-SeQDs in MCF-7, HepG2, HeLa, NIH/3T3, L929 cells and BRL-3A cells. It was found that A-SeQDs could induce the mitochondria-mediated apoptosis, necrosis and death of cells, while C-SeQDs had much weaker effects. This polymorphs-dependent anti-proliferative activity of nano-selenium was scarcely reported. Further investigation demonstrated that A-SeQDs could differentially regulate 61 proteins and several pathways related to stress response, protein synthesis, cell migration and cell cycle, including "p38 MAPK Signaling", "p53 Signaling", "14-3-3-mediated Signaling", "p70S6K Signaling" and "Protein Ubiquitination Pathway". This was the first report to demonstrate the involvement of protein synthesis and post-translational modification pathways in the anti-proliferative activity associated with NMs. Compared with previously fragmentary studies, this study use a nanomics approach combining bioinformatics and proteomics to systematically investigate the nano-bio interactions of selenium nanoparticles in cancer cells. PMID:27514819

  17. Mitochondria-Mediated Protein Regulation Mechanism of Polymorphs-Dependent Inhibition of Nanoselenium on Cancer Cells

    Science.gov (United States)

    Wang, Ge; Guo, Yuming; Yang, Gai; Yang, Lin; Ma, Xiaoming; Wang, Kui; Zhu, Lin; Sun, Jiaojiao; Wang, Xiaobing; Zhang, Hua

    2016-08-01

    The present study was (i) to prepare two types of selenium nanoparticles, namely an amorphous form of selenium quantum dots (A-SeQDs) and a crystalline form of selenium quantum dots (C-SeQDs); and (ii) to investigate the nano-bio interactions of A-SeQDs and C-SeQDs in MCF-7, HepG2, HeLa, NIH/3T3, L929 cells and BRL-3A cells. It was found that A-SeQDs could induce the mitochondria-mediated apoptosis, necrosis and death of cells, while C-SeQDs had much weaker effects. This polymorphs-dependent anti-proliferative activity of nano-selenium was scarcely reported. Further investigation demonstrated that A-SeQDs could differentially regulate 61 proteins and several pathways related to stress response, protein synthesis, cell migration and cell cycle, including “p38 MAPK Signaling”, “p53 Signaling”, “14-3-3-mediated Signaling”, “p70S6K Signaling” and “Protein Ubiquitination Pathway”. This was the first report to demonstrate the involvement of protein synthesis and post-translational modification pathways in the anti-proliferative activity associated with NMs. Compared with previously fragmentary studies, this study use a nanomics approach combining bioinformatics and proteomics to systematically investigate the nano-bio interactions of selenium nanoparticles in cancer cells.

  18. Multiscale Simulation of Protein Mediated Membrane Remodeling

    OpenAIRE

    Ayton, Gary S.; Voth, Gregory A.

    2009-01-01

    Proteins interacting with membranes can result in substantial membrane deformations and curvatures. This effect is known in its broadest terms as membrane remodeling. This review article will survey current multiscale simulation methodologies that have been employed to examine protein-mediated membrane remodeling.

  19. Decreased expression of 14-3-3σ is predictive of poor prognosis for patients with human uterine papillary serous carcinoma.

    Science.gov (United States)

    Suzuki, Fumihiko; Nagase, Satoru; Suzuki, Kichiya; Oba, Etsuko; Hiroki, Eri; Matsuda, Yukika; Akahira, Jun-Ichi; Nishigori, Hidekazu; Sugiyama, Takashi; Otsuki, Takeo; Yoshinaga, Kousuke; Takano, Tadao; Niikura, Hitoshi; Ito, Kiyoshi; Sasano, Hironobu; Yaegashi, Nobuo

    2013-01-01

    Uterine papillary serous carcinoma (UPSC) morphologically resembles ovarian serous carcinoma and is categorized as a type II endometrial cancer. UPSC comprises about 10% of all types of endometrial cancer and has an aggressive clinical course and a poor prognosis. The 14-3-3σ gene was originally discovered as a p53-inducible gene; its expression is induced by DNA damage in a p53-dependent manner, which leads to G2 arrest and repair of damaged DNA. Moreover, it has been reported that expression of 14-3-3σ is frequently lost in various types of human cancer, including ovarian cancer. We therefore examined the association between 14-3-3σ expression determined by immunohistochemistry and clinical outcomes of 51 patients with UPSC. UPSC was considered positive for 14-3-3σ when > 30% of tumor cells were stained with a specific antibody. Of these patients, 29 (58.7%) showed positive immunoreactivity for 14-3-3σ and 22 (41.3%) had decreased 14-3-3σ staining. Decreased immunoreactivity for 14-3-3σ was associated with stage (P = 0.001) and lymphovascular space involvement (P = 0.005). Moreover, decreased 14-3-3σ expression was an independent risk factor for reduced overall survival (P = 0.0416) in multivariate analysis. Direct bisulfite sequencing was performed to evaluate the methylation status of the 27 CpG islands in the promoter region and first exon of the 14-3-3σ gene. These CpG islands were hypermethylated in 30% of 14-3-3σ-positive UPSC and 80% of 14-3-3σ-negative UPSC, although the difference was not statistically significant. These findings suggest that decreased expression of immunoreactive 14-3-3σ may be a predictor of poor prognosis in patients with UPSC. PMID:24201220

  20. Diagnosing Sporadic Creutzfeldt-Jakob Disease: Accuracy of CSF 14-3-3 Protein Test of the Spinal Fluid

    Science.gov (United States)

    ... personality changes • Loss of muscle coordination • Vision problems • Insomnia (difficulty falling asleep or staying asleep) • Depression • Unusual sensations As the disease progresses, the person usually develops dementia. This leads to thinking problems that are severe enough to ...

  1. Upregulation of lactate dehydrogenase a by 14-3-3ζ leads to increased glycolysis critical for breast cancer initiation and progression

    Science.gov (United States)

    Chang, Chia-Chi; Zhang, Chenyu; Zhang, Qingling; Sahin, Ozgur; Wang, Hai; Xu, Jia; Xiao, Yi; Zhang, Jian; Rehman, Sumaiyah K.; Li, Ping; Hung, Mien-Chie; Behbod, Fariba; Yu, Dihua

    2016-01-01

    Metabolic reprogramming is a hallmark of cancer. Elevated glycolysis in cancer cells switches the cellular metabolic flux to produce more biological building blocks, thereby sustaining rapid proliferation. Recently, new evidence has emerged that metabolic dysregulation may occur at early-stages of neoplasia and critically contribute to cancer initiation. Here, our bioinformatics analysis of microarray data from early-stages breast neoplastic lesions revealed that 14-3-3ζ expression is strongly correlated with the expression of canonical glycolytic genes, particularly lactate dehydrogenase A (LDHA). Experimentally, increasing 14-3-3ζ expression in human mammary epithelial cells (hMECs) up-regulated LDHA expression, elevated glycolytic activity, and promoted early transformation. Knockdown of LDHA in the 14-3-3ζ-overexpressing hMECs significantly reduced glycolytic activity and inhibited transformation. Mechanistically, 14-3-3ζ overexpression activates the MEK-ERK-CREB axis, which subsequently up-regulates LDHA. In vivo, inhibiting the activated the MEK/ERK pathway in 14-3-3ζ-overexpressing hMEC-derived MCF10DCIS.COM lesions led to effective inhibition of tumor growth. Therefore, targeting the MEK/ERK pathway could be an effective strategy for intervention of 14-3-3ζ-overexpressing early breast lesions. Together, our data demonstrate that overexpression of 14-3-3ζ in early stage pre-cancerous breast epithelial cells may trigger an elevated glycolysis and transcriptionally up-regulating LDHA, thereby contributes to human breast cancer initiation. PMID:27150057

  2. Protein-mediated surface structuring in biomembranes

    Directory of Open Access Journals (Sweden)

    Maggio B.

    2005-01-01

    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  3. Molecular Modeling of Differentially Phosphorylated Serine 10 and Acetylated lysine 9/14 of Histone H3 Regulates their Interactions with 14-3-3ζ, MSK1, and MKP1

    Science.gov (United States)

    Sharma, Ajit K.; Mansukh, Abhilasha; Varma, Ashok; Gadewal, Nikhil; Gupta, Sanjay

    2013-01-01

    Histone modifications occur in precise patterns, with several modifications known to affect the binding of proteins. These interactions affect the chromatin structure, gene regulation, and cell cycle events. The dual modifications on the H3 tail, serine10 phosphorylation, and lysine14 acetylation (H3Ser10PLys14Ac) are reported to be crucial for interaction with 14-3-3ζ. However, the mechanism by which H3Ser10P along with neighboring site-specific acetylation(s) is targeted by its regulatory proteins, including kinase and phosphatase, is not fully understood. We carried out molecular modeling studies to understand the interaction of 14-3-3ζ, and its regulatory proteins, mitogen-activated protein kinase phosphatase-1 (MKP1), and mitogen- and stress-activated protein kinase-1 (MSK1) with phosphorylated H3Ser10 alone or in combination with acetylated H3Lys9 and Lys14. In silico molecular association studies suggested that acetylated Lys14 and phosphorylated Ser10 of H3 shows the highest binding affinity towards 14-3-3ζ. In addition, acetylation of H3Lys9 along with Ser10PLys14Ac favors the interaction of the phosphatase, MKP1, for dephosphorylation of H3Ser10P. Further, MAP kinase, MSK1 phosphorylates the unmodified H3Ser10 containing N-terminal tail with maximum affinity compared to the N-terminal tail with H3Lys9AcLys14Ac. The data clearly suggest that opposing enzymatic activity of MSK1 and MKP1 corroborates with non-acetylated and acetylated, H3Lys9Lys14, respectively. Our in silico data highlights that site-specific phosphorylation (H3Ser10P) and acetylation (H3Lys9 and H3Lys14) of H3 are essential for the interaction with their regulatory proteins (MKP1, MSK1, and 14-3-3ζ) and plays a major role in the regulation of chromatin structure. PMID:24027420

  4. Protective immunity of Eg14-3-3 against Echinococcus granulosus in mice%细粒棘球绦虫(中国大陆株)14-3-3重组蛋白的免疫保护力

    Institute of Scientific and Technical Information of China (English)

    李宗吉; 雄英; 孙俊峰; 赵巍

    2012-01-01

    Objective To investigate the protective immunity against Echinococcus granulosus in mice immunized with rEgl4-3-3. Methods ICR mice were subcutaneously immunized three times with rEgl4-3-3, followed by the challenge with Echinococcus granulosus protoscoleces intraperitoneally, and then sacrificed in the sixth month post-challenge to detect the proliferation of splenocytes with MTT assay and to measure the secretion of IL-2, IL-4, IL-10 and IFN-γ with ELISA. The rate of reduced hydatid cyst and the levels of IgE, IgG and IgG subclasses in sera were examined. Results Compared with the control group, mice vaccinated with rEgl4-3-3 and challenged intraperitoneally with E. granulosus protoscoleces revealed significant protective immunity of 84. 47% (P<0. 05). Enzyme-linked immunosorbent assay and Western blot analysis indicated that immunized mice generated specific high level of IgG against rEgl4-3-3. The prevailing isotypes of IgG induced by rEgl4-3-3 in mice were IgGl and IgG2a. Spleen lymphocytes from mice immunized with rEgl4-3-3 showed a significant proliferation response to rEgl4-3-3. The culture of spleen cells showed that secretion of IFN-y and IL-2 increased significantly in the vaccinated mice whereas IL-4 and IL-10 levels did not differ significantly between vaccinated and control mice. Conclusion The results indicate that rEgl4-3-3 vaccination elicit significant levels of protective immunity against Echinococcus granulosus infection. Thus, rEgl4-3-3 protein is a promising candidate as an effective vaccine to prevent cystic echinococcosis.%目的 探讨细粒棘球蚴Eg14-3-3重组蛋白的免疫保护性及其伴随的免疫反应.方法 ICR小鼠随机分为rEg14-3-3蛋白免疫组和PBS佐剂对照组,每隔2周背部皮下免疫1次,连续免疫3次.在第3次免疫后6周,用细粒棘球蚴活的原头蚴进行攻击感染,感染后24周杀鼠取脾,分离培养脾细胞,MTT检测淋巴细胞增殖率,用试剂盒检测脾细胞培养上清液的IL-2

  5. Evidence against a role for the JIL-1 kinase in H3S28 phosphorylation and 14-3-3 recruitment to active genes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Chao Wang

    Full Text Available JIL-1 is the major kinase controlling phosphorylation of histone H3S10 and has been demonstrated to function to counteract heterochromatization and gene silencing. However, an alternative model has been proposed in which JIL-1 is required for transcription to occur, additionally phosphorylates H3S28, and recruits 14-3-3 to active genes. Since these findings are incompatible with our previous demonstration that there are robust levels of transcription in the complete absence of JIL-1 and that JIL-1 is not present at developmental or heat shock-induced polytene chromosome puffs, we have reexamined JIL-1's possible role in H3S28 phosphorylation and 14-3-3 recruitment. Using two different H3S28ph antibodies we show by immunocytochemistry and immunoblotting that in Drosophila the H3S28ph mark is not present at detectable levels above background on polytene chromosomes at interphase but only on chromosomes at pro-, meta-, and anaphase during cell division in S2 cells and third instar larval neuroblasts. Moreover, this mitotic H3S28ph signal is also present in a JIL-1 null mutant background at undiminished levels suggesting that JIL-1 is not the mitotic H3S28ph kinase. We also demonstrate that H3S28ph is not enriched at heat shock puffs. Using two different pan-specific 14-3-3 antibodies as well as an enhancer trap 14-3-3ε-GFP line we show that 14-3-3, while present in salivary gland nuclei, does not localize to chromosomes but only to the nuclear matrix surrounding the chromosomes. In our hands 14-3-3 is not recruited to developmental or heat shock puffs. Furthermore, using a lacO repeat tethering system to target LacI-JIL-1 to ectopic sites on polytene chromosomes we show that only H3S10ph is present and upregulated at such sites, not H3S28ph or 14-3-3. Thus, our results argue strongly against a model where JIL-1 is required for H3S28 phosphorylation and 14-3-3 recruitment at active genes.

  6. Endoplasmic Reticulum-Mediated Protein Quality Control in Arabidopsis

    OpenAIRE

    Jianming eLi; Yidan eLiu

    2014-01-01

    A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC) mechanism to monitor folding processes of secretory and membrane proteins, allowing export of only correctly folded proteins to their physiological destinations, retaining incompletely/mis...

  7. Intracellular targeting of peroxiredoxin 6 to lysosomal organelles requires MAPK activity and binding to 14-3-3ε

    OpenAIRE

    Sorokina, Elena M.; Feinstein, Sheldon I.; Zhou, Suiping; Fisher, Aron B.

    2011-01-01

    Peroxiredoxin 6 (Prdx6), a bifunctional protein with GSH peroxidase and lysosomal-type phospholipase A2 activities, has been localized to both cytosolic and acidic compartments (lamellar bodies and lysosomes) in lung alveolar epithelium. We postulate that Prdx6 subcellular localization affects the balance between the two activities. Immunostaining localized Prdx6 to lysosome-related organelles in the MLE12 and A549 alveolar epithelial cell lines. Inhibition of trafficking by brefeldin A indic...

  8. RIN4-like proteins mediate resistance protein-derived soybean defense against Pseudomonas syringae

    OpenAIRE

    Selote, Devarshi; Kachroo, Aardra

    2010-01-01

    Resistance (R) protein mediated recognition of pathogen avirulence effectors triggers signaling that induces a very robust form of species-specific immunity in plants. The soybean Rpg1-b protein mediates this form of resistance against the bacterial blight pathogen, Pseudomonas syringae expressing AvrBPgyrace4. Likewise, the Arabidopsis RPM1 protein also mediates species-specific resistance against AvrB expressing bacteria. RPM1 and Rpg1-b are non-orthologous and differ in their requirements ...

  9. Roles of vimentin and 14-3-3 zeta/delta in the inhibitory effects of heparin on PC-3M cell proliferation and B16-F10-luc-G5 cells metastasis

    Institute of Scientific and Technical Information of China (English)

    Yah PAN; Xue-jun LI; Li-jun ZHONG; Hong ZHOU; Xin WANG; Kui CHEN; Hao-peng YANG; Yilixiati XIAOKAITI; Aikebaier MAIMAITI; Ling JIANG

    2012-01-01

    Aim:To investigate the inhibitory effects of heparin on PC-3M cells proliferation in vitro and B16-F10-luc-G5 cells metastasis in Balb/c nude mice and identify the protein expression patterns to elucidate the action mechanism of heparin.Methods:Human prostate cancer PC-3M cells were incubated with heparin 0.5 to 125 μg/mL for 24 h.The proliferation of PC-3M ceils was assessed by MTS assay.BrdU incoporation and Ki67 expression were detected using a high content screening (HCS) assay.The cell cycle and apoptosis of PC-3M cells were tested by flow cytometry.B16-F10-luc-G5 cardinoma cells were injected into the lateral tail vein of 6-week old male Balb/c nude mice and heparin 30 mg/kg was administered iv 30 min before and 24 h after injection.The metasis of B16-F10-luc-G5 cells was detected by bioluminescence assay.Activated partial thromboplastin time (APTT) and hemorheological parameters were measured on d 14 after injection of B16-F10-luc-G5 carcinoma cells in Balb/c mice.The global protein changes in PC-3M cells and frozen lung tissues from mice burdened with B16-F10-luc-G5 cells were determined by 2-dimensional gel electrophoresis and image analysis.The protein expression of vimentin and 14-3-3 zeta/delta was measured by Western blot.The mRNA transcription of vimentin,transforming growth factor (TGF)-β,E-cadherin,and αv-integrin was measured by RT-PCR.Results:Heparin 25 and 125 μg/mL significantly inhibited the proliferation,arrested the cells in G1 phase,and suppressed BrdU incorporation and Ki67 expression in PC-3M cells compared with the model group.But it had no significant effect on apoptosis of PC-3M cells.Heparin 30 mg/kg markedly inhibits the metastasis of B16-F10-luc-G5 cells on day 8.Additionally,heparin administration maintained relatively normal red blood hematocrit but had no influence on APTT in nude mice burdened with B16-F10-luc-G5 cells.Thirty of down-regulated protein spots were identified after heparin treatment,many of which are related to

  10. Cyclic nucleotide dependent dephosphorylation of regulator of G-protein signaling 18 in human platelets.

    LENUS (Irish Health Repository)

    Gegenbauer, Kristina

    2013-11-01

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein that turns off Gq signaling in platelets. RGS18 is regulated by binding to the adaptor protein 14-3-3 via phosphorylated serine residues S49 and S218 on RGS18. In this study we confirm that thrombin, thromboxane A2, or ADP stimulate the interaction of RGS18 and 14-3-3 by increasing the phosphorylation of S49. Cyclic AMP- and cyclic GMP-dependent kinases (PKA, PKG) inhibit the interaction of RGS18 and 14-3-3 by phosphorylating S216. To understand the effect of S216 phosphorylation we studied the phosphorylation kinetics of S49, S216, and S218 using Phos-tag gels and phosphorylation site-specific antibodies in transfected cells and in platelets. Cyclic nucleotide-induced detachment of 14-3-3 from RGS18 coincides initially with double phosphorylation of S216 and S218. This is followed by dephosphorylation of S49 and S218. Dephosphorylation of S49 and S218 might be mediated by protein phosphatase 1 (PP1) which is linked to RGS18 by the regulatory subunit PPP1R9B (spinophilin). We conclude that PKA and PKG induced S216 phosphorylation triggers the dephosphorylation of the 14-3-3 binding sites of RGS18 in platelets.

  11. Biochemistry and pathology of radical-mediated protein oxidation

    DEFF Research Database (Denmark)

    Dean, R T; Fu, S; Stocker, R;

    1997-01-01

    Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several catego...

  12. Bilayer-thickness-mediated interactions between integral membrane proteins.

    Science.gov (United States)

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  13. Bilayer-thickness-mediated interactions between integral membrane proteins

    Science.gov (United States)

    Kahraman, Osman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  14. Membrane-mediated interaction between strongly anisotropic protein scaffolds.

    Directory of Open Access Journals (Sweden)

    Yonatan Schweitzer

    2015-02-01

    Full Text Available Specialized proteins serve as scaffolds sculpting strongly curved membranes of intracellular organelles. Effective membrane shaping requires segregation of these proteins into domains and is, therefore, critically dependent on the protein-protein interaction. Interactions mediated by membrane elastic deformations have been extensively analyzed within approximations of large inter-protein distances, small extents of the protein-mediated membrane bending and small deviations of the protein shapes from isotropic spherical segments. At the same time, important classes of the realistic membrane-shaping proteins have strongly elongated shapes with large and highly anisotropic curvature. Here we investigated, computationally, the membrane mediated interaction between proteins or protein oligomers representing membrane scaffolds with strongly anisotropic curvature, and addressed, quantitatively, a specific case of the scaffold geometrical parameters characterizing BAR domains, which are crucial for membrane shaping in endocytosis. In addition to the previously analyzed contributions to the interaction, we considered a repulsive force stemming from the entropy of the scaffold orientation. We computed this interaction to be of the same order of magnitude as the well-known attractive force related to the entropy of membrane undulations. We demonstrated the scaffold shape anisotropy to cause a mutual aligning of the scaffolds and to generate a strong attractive interaction bringing the scaffolds close to each other to equilibrium distances much smaller than the scaffold size. We computed the energy of interaction between scaffolds of a realistic geometry to constitute tens of kBT, which guarantees a robust segregation of the scaffolds into domains.

  15. Water-mediated ionic interactions in protein structures

    Indian Academy of Sciences (India)

    R Sabarinathan; K Aishwarya; R Sarani; M Kirti Vaishnavi; K Sekar

    2011-06-01

    It is well known that water molecules play an indispensable role in the structure and function of biological macromolecules. The water-mediated ionic interactions between the charged residues provide stability and plasticity and in turn address the function of the protein structures. Thus, this study specifically addresses the number of possible water-mediated ionic interactions, their occurrence, distribution and nature found in 90% non-redundant protein chains. Further, it provides a statistical report of different charged residue pairs that are mediated by surface or buried water molecules to form the interactions. Also, it discusses its contributions in stabilizing various secondary structural elements of the protein. Thus, the present study shows the ubiquitous nature of the interactions that imparts plasticity and flexibility to a protein molecule.

  16. Statistical thermodynamics of membrane bending mediated protein-protein attraction

    OpenAIRE

    Chou, Tom; Kim, Ken S.; Oster, George

    1999-01-01

    Integral membrane proteins deform the surrounding bilayer creating long-ranged forces that influence distant proteins. These forces can be attractive or repulsive, depending on the proteins' shape, height, contact angle with the bilayer, as well as the local membrane curvature. Although interaction energies are not pairwise additive, for sufficiently low protein density, thermodynamic properties depend only upon pair interactions. Here, we compute pair interaction potentials and entropic cont...

  17. Sortase A-mediated multi-functionalization of protein nanoparticles.

    Science.gov (United States)

    Chen, Qi; Sun, Qing; Molino, Nicholas M; Wang, Szu-Wen; Boder, Eric T; Chen, Wilfred

    2015-08-01

    We report here a new strategy to enable fast, covalent, and site-directed functionalization of protein nanoparticles using Sortase A-mediated ligation using functional proteins ranging from monomeric to large tetrameric structures. Easy purification of the modified E2 nanoparticles is achieved by functionalization with a thermo-responsive elastin-like-peptide. The resulting protein nanoparticles remained intact and active even after repeated phase transitions, suggesting their use in biocatalysis, biosensing, and imaging applications.

  18. Synthesis of an Intein-mediated Artificial Protein Hydrogel

    OpenAIRE

    Ramirez, Miguel A.; Chen, Zhilei

    2014-01-01

    We present the synthesis of a highly stable protein hydrogel mediated by a split-intein-catalyzed protein trans-splicing reaction. The building blocks of this hydrogel are two protein block-copolymers each containing a subunit of a trimeric protein that serves as a crosslinker and one half of a split intein. A highly hydrophilic random coil is inserted into one of the block-copolymers for water retention. Mixing of the two protein block copolymers triggers an intein trans-splicing reaction, y...

  19. p53突变型乳腺癌细胞系中14-3-3σ对p73基因稳定性的影响%Effect of 14-3-3σ on p73 stability in p53-mutant breast cancer cell line

    Institute of Scientific and Technical Information of China (English)

    桑梅香; 杨瑞玲; 周军; 周岩; 耿翠芝; 单保恩

    2007-01-01

    目的 探讨在p53突变的乳腺癌细胞系MDA-MB-231中,14-3-3σ对p73基因稳定性的影响.方法 采用基因转染、反转录聚合酶链反应(RT-PCR)、蛋白质印迹检测(Western blot)和放线菌酮(CHX)蛋白抑制分析的方法研究14-3-3σ对p73基因稳定性的影响.结果 RT-PCR显示,单独转染1μg p73后,p73与GAPDH的灰度值比为0.635;转染1μg p73+1 μg 14-3-3σ和1 μg p73+2 μg 14-3-3σ后,p73与GAPDH的灰度值比分别为0.643和0.631.Western-blot显示,单独转染1μg p73后,p73与actin的灰度值比为0.333;转染1μg p73+1μg 14-3-3σ和1μg p73+2μg 14-3-3σ之后,p73与actin的灰度值比分别为0.797和0.826.放线菌酮蛋白抑制分析显示:单独转染p73的对照组,放线菌酮处理0、1、2、4、6 h后,p73与actin灰度比值分别为0.075、0.166、0.124、0.100和0.092;而共转染p73和14-3-3σ的实验组结果分别为0.963、0.244、0.244、0.234和0.185.结论 在转录水平上,14-3-3σ不影响p73基因的稳定性;而在蛋白表达水平上,14-3-3σ可以增加p73基因的稳定性.

  20. The usefulness of S100P, mesothelin, fascin, prostate stem cell antigen, and 14-3-3 sigma in diagnosing pancreatic adenocarcinoma in cytological specimens obtained by endoscopic ultrasound guided fine-needle aspiration.

    Science.gov (United States)

    Dim, Daniel C; Jiang, Feng; Qiu, Qi; Li, Ting; Darwin, Peter; Rodgers, William H; Peng, Hong Qi

    2014-03-01

    Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) of the pancreas is an efficient and minimally invasive procedure for the diagnosis and staging of pancreatic adenocarcinoma. Because of some limitations of EUS-FNA in diagnosis of well-differentiated or early stage cancers, the purpose of this study is to assess the added benefit of immunohistochemistry. We studied five proteins overexpressed in pancreatic adenocarcinoma, namely, prostate stem cell antigen, fascin, 14-3-3 sigma, mesothelin and S100P utilizing immunohistochemistry on paraffin sections from cellblocks obtained by EUS-FNA. Sixty-two cases of EUS-FNA of the pancreas that had follow-up histological and/or clinical diagnosis and sufficient material in cell blocks were included. Using histological diagnosis and/or clinical outcome as the reference standard, EUS-FNA shows the highest sensitivity (95%) and specificity (91%) and is superior to any marker in this study. Among five antibodies, S100P reveals the best diagnostic characters showing 90% of sensitivity and 67% of specificity. Fascin shows high specificity (92%) but low sensitivity (38%). Mesothelin has a moderate sensitivity (74%) and low specificity (33%), PSCA and 14-3-3 show high sensitivity but zero specificity. S100P and mesothelin were useful in nine indeterminate cases. S100P correctly predicted six of seven cancers and one of one without cancer and mesothelin correctly diagnosed five of seven cancers and one of two noncancers in this group. EUS-FNA cytomorphology is superior to any of the immunohistochemical markers used in this study. Use of S100P and mesothelin in cytologically borderline cases can increase the diagnostic accuracy in this group. PMID:21538952

  1. Serotonin signaling mediates protein valuation and aging.

    Science.gov (United States)

    Ro, Jennifer; Pak, Gloria; Malec, Paige A; Lyu, Yang; Allison, David B; Kennedy, Robert T; Pletcher, Scott D

    2016-01-01

    Research into how protein restriction improves organismal health and lengthens lifespan has largely focused on cell-autonomous processes. In certain instances, however, nutrient effects on lifespan are independent of consumption, leading us to test the hypothesis that central, cell non-autonomous processes are important protein restriction regulators. We characterized a transient feeding preference for dietary protein after modest starvation in the fruit fly, Drosophila melanogaster, and identified tryptophan hydroxylase (Trh), serotonin receptor 2a (5HT2a), and the solute carrier 7-family amino acid transporter, JhI-21, as required for this preference through their role in establishing protein value. Disruption of any one of these genes increased lifespan up to 90% independent of food intake suggesting the perceived value of dietary protein is a critical determinant of its effect on lifespan. Evolutionarily conserved neuromodulatory systems that define neural states of nutrient demand and reward are therefore sufficient to control aging and physiology independent of food consumption. PMID:27572262

  2. 核酸疫苗Sj14-3-3联合CpG和mIL-12免疫小鼠抗日本血吸虫攻击感染的研究%Immune protection of Sj14-3-3 nucleic acid vaccination with mIL-12 and CpG as adjuvants against Schistosoma japonicum in mice

    Institute of Scientific and Technical Information of China (English)

    徐元宏; 胡元生; 沈继龙

    2006-01-01

    目的在证明核酸疫苗pcDNA3.1(+)-Sj14-3-3具有部分抗血吸虫感染的基础上,联合使用CpG和pcDNA3.1(+)-mIL-12,观察此二种佐剂在攻击感染小鼠的免疫效果及其抗血吸虫感染的保护机制.方法分别用pcDNA3.1(+)-Sj14-3-3+pcDNA3.1(+)-mIL-12、pcDNA3.1(+)-Sj14-3-3+CpG、pcDNA3.1(+)-mIL-12和CpG免疫小鼠.攻击感染后6 w计数成虫负荷和肝虫卵数;检测免疫后0 w、6 w和12 w小鼠血清总IgG、IgG1和IgG2a水平;检测小鼠脾细胞培养上清中IFN-γ和IL-4;流式细胞术检测免疫鼠脾细胞中CD4+和CD8+T细胞的比率.结果pcDNA3.1(+)-Sj14-3-3+pcDNA3.1(+)-mIL-12和pcDNA3.1(+)-Sj14-3-3+CpG免疫小鼠的减虫率分别为41.2%和28.7%;减卵率分别为52.6%和41.2%.单独使用pcDNA3.1(+)-mIL-12和CpG也有一定的免疫保护作用.保护性免疫主要通过诱导宿主产生CTL、TH1型和体液免疫应答.结论pcDNA3.1(+)-mIL-12和CpG具有较强的增强核酸疫苗pcDNA3.1(+)-Sj14-3-3抗血吸虫攻击感染作用.

  3. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan;

    2005-01-01

    Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva...... to bind and mediate cellular uptake of FBP. Surface plasmon resonance analysis shows binding of bovine and human milk FBP to immobilized megalin, but not to low density lipoprotein receptor related protein. Binding of (125)I-labeled folate binding protein (FBP) to sections of kidney proximal tubule, known...... to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is inhibited...

  4. Bilayer-thickness-mediated interactions between integral membrane proteins

    CERN Document Server

    Kahraman, Osman; Klug, William S; Haselwandter, Christoph A

    2016-01-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology al...

  5. Orm family proteins mediate sphingolipid homeostasis

    DEFF Research Database (Denmark)

    Breslow, David K; Collins, Sean R; Bodenmiller, Bernd;

    2010-01-01

    Despite the essential roles of sphingolipids both as structural components of membranes and critical signalling molecules, we have a limited understanding of how cells sense and regulate their levels. Here we reveal the function in sphingolipid metabolism of the ORM genes (known as ORMDL genes...... in humans)-a conserved gene family that includes ORMDL3, which has recently been identified as a potential risk factor for childhood asthma. Starting from an unbiased functional genomic approach in Saccharomyces cerevisiae, we identify Orm proteins as negative regulators of sphingolipid synthesis that form...... a conserved complex with serine palmitoyltransferase, the first and rate-limiting enzyme in sphingolipid production. We also define a regulatory pathway in which phosphorylation of Orm proteins relieves their inhibitory activity when sphingolipid production is disrupted. Changes in ORM gene expression...

  6. 脑脊液14-3-3蛋白对不同类型Creutzfeldt-Jakob病的诊断价值

    Institute of Scientific and Technical Information of China (English)

    于雪凡; 林世和; 赵珩

    2006-01-01

    大多数Creutzfeldt—Jakob病(CJD)患者的脑组织内都能找到朊蛋白(PrPsc)沉积。当PrPc转变为PrPsc时具有相对不溶性和抗蛋白酶性,在脑内聚集形成淀粉样结构。不同类型CJD其脑脊液(CSF)中14—3—3蛋白的阳性有很大的不同。现将CSF14-3-3蛋白检测在不同类型CJD中的诊断价值作综述如下。

  7. Electron-mediating Cu(A) centers in proteins

    DEFF Research Database (Denmark)

    Epel, Boris; Slutter, Claire S; Neese, Frank;

    2002-01-01

    High field (W-band, 95 GHz) pulsed electron-nuclear double resonance (ENDOR) measurements were carried out on a number of proteins that contain the mixed-valence, binuclear electron-mediating Cu(A) center. These include nitrous oxide reductase (N(2)OR), the recombinant water-soluble fragment of s...

  8. Membrane tension and peripheral protein density mediate membrane shape transitions

    Science.gov (United States)

    Shi, Zheng; Baumgart, Tobias

    2015-01-01

    Endocytosis is a ubiquitous eukaryotic membrane budding, vesiculation and internalization process fulfilling numerous roles including compensation of membrane area increase after bursts of exocytosis. The mechanism of the coupling between these two processes to enable homeostasis is not well understood. Recently, an ultrafast endocytosis (UFE) pathway was revealed with a speed significantly exceeding classical clathrin-mediated endocytosis (CME). Membrane tension reduction is a potential mechanism by which endocytosis can be rapidly activated at remote sites. Here, we provide experimental evidence for a mechanism whereby membrane tension reduction initiates membrane budding and tubulation mediated by endocytic proteins, such as endophilin A1. We find that shape instabilities occur at well-defined membrane tensions and surface densities of endophilin. From our data, we obtain a membrane shape stability diagram that shows remarkable consistency with a quantitative model. This model applies to all laterally diffusive curvature-coupling proteins and therefore a wide range of endocytic proteins.

  9. Identification of the amino acids 300-600 of IRS-2 as 14-3-3 binding region with the importance of IGF-1/insulin-regulated phosphorylation of Ser-573.

    Directory of Open Access Journals (Sweden)

    Sabine S Neukamm

    Full Text Available Phosphorylation of insulin receptor substrate (IRS-2 on tyrosine residues is a key event in IGF-1/insulin signaling and leads to activation of the PI 3-kinase and the Ras/MAPK pathway. Furthermore, phosphorylated serine/threonine residues on IRS-2 can induce 14-3-3 binding. In this study we searched IRS-2 for novel phosphorylation sites and investigated the interaction between IRS-2 and 14-3-3. Mass spectrometry identified a total of 24 serine/threonine residues on IRS-2 with 12 sites unique for IRS-2 while the other residues are conserved in IRS-1 and IRS-2. IGF-1 stimulation led to increased binding of 14-3-3 to IRS-2 in transfected HEK293 cells and this binding was prevented by inhibition of the PI 3-kinase pathway and an Akt/PKB inhibitor. Insulin-stimulated interaction between endogenous IRS-2 and 14-3-3 was observed in rat hepatoma cells and in mice liver after an acute insulin stimulus and refeeding. Using different IRS-2 fragments enabled localization of the IGF-1-dependent 14-3-3 binding region spanning amino acids 300-600. The 24 identified residues on IRS-2 included several 14-3-3 binding candidates in the region 300-600. Single alanine mutants of these candidates led to the identification of serine 573 as 14-3-3 binding site. A phospho-site specific antibody was generated to further characterize serine 573. IGF-1-dependent phosphorylation of serine 573 was reduced by inhibition of PI 3-kinase and Akt/PKB. A negative role of this phosphorylation site was implicated by the alanine mutant of serine 573 which led to enhanced phosphorylation of Akt/PKB in an IGF-1 time course experiment. To conclude, our data suggest a physiologically relevant role for IGF-1/insulin-dependent 14-3-3 binding to IRS-2 involving serine 573.

  10. 多房棘球绦虫重组质粒pGEX-EmⅡ/3-Em14-3-3在大肠埃希菌BL21(DE3)表达效率的研究%Study of expression efficiency of the recombinant plasmid pGEX-Em Ⅱ/3-Em14-3-3 of Echinococcus multilocularis in Escherichia coli BL21(DE3)

    Institute of Scientific and Technical Information of China (English)

    杨梅; 李文桂; 朱佑明

    2007-01-01

    目的 研究多房棘球绦虫(Em)重组质粒pGEX-EmⅡ/3-Em14-3-3在大肠埃希菌BL21(DE3)中的表达效率.方法 通过PCR扩增EmⅡ/3和Em14-3-3抗原编码基因,然后采用基因拼接法(gene SOEing)剪接EmⅡ/3和Em14-3-3,得到EmⅡ/3-Em14-3-3融合基因;将该融合基因定向克隆于含有谷胱甘肽-S-转移酶(GST)基因的高效原核表达载体pGEX-1λT,经酶切鉴定后以IPTG诱导表达EmⅡ/3-Em14-3-3/GST融合蛋白;SDS-PAGE及Western blot对表达产物进行鉴定.结果 PCR成功扩增出2 554 bp的EmⅡ/3-Em14-3-3融合基因;双酶切证实EmⅡ/3-Em14-3-3融合基因插入pGEX-1λT中,成功构建了pGEX-EmⅡ/3-Em14-3-3重组质粒;SDS-PAGE及Western blot分析显示重组质粒转化宿主菌在IPTG诱导下高效表达了能被活动性泡球蚴病鼠血清识别的EmⅡ/3-Em14-3-3/GST融合蛋白,分子质量单位119 ku.结论 多房棘球绦虫EmⅡ/3-Em14-3-3融合基因在大肠埃希菌中获得了高效融合表达,表达出的EmⅡ/3-Em14-3-3重组蛋白具有特异的抗原性.

  11. Protein kinase C mediated phosphorylation blocks juvenile hormone action.

    Science.gov (United States)

    Kethidi, Damu R; Li, Yiping; Palli, Subba R

    2006-03-01

    Juvenile hormones (JH) regulate a wide variety of developmental and physiological processes in insects. Although the biological actions of JH are well documented, the molecular mechanisms underlying JH action are poorly understood. We studied the molecular basis of JH action using a JH response element (JHRE) identified in the promoter region of JH esterase gene cloned from Choristoneura fumiferana, which is responsive to JH and 20-hydroxyecdysone (20E). In Drosophila melanogaster L57 cells, the JHRE-regulated reporter gene was induced by JH I, JH III, methoprene, and hydroprene. Nuclear proteins isolated from L57 cells bound to the JHRE and exposure of these proteins to ATP resulted in a reduction in their DNA binding. Either JH III or calf intestinal alkaline phosphatase (CIAP) was able to restore the binding of nuclear proteins to the DNA. In addition, protein kinase C inhibitors increased and protein kinase C activators reduced the binding of nuclear proteins to the JHRE. In transactivation assays, protein kinase C inhibitors induced the luciferase gene placed under the control of a minimal promoter and the JHRE. These data suggest that protein kinase C mediated phosphorylation prevents binding of nuclear proteins to juvenile hormone responsive promoters resulting in suppression of JH action. PMID:16448742

  12. Yarrowia lipolytica vesicle-mediated protein transport pathways

    Directory of Open Access Journals (Sweden)

    Beckerich Jean-Marie

    2007-11-01

    Full Text Available Abstract Background Protein secretion is a universal cellular process involving vesicles which bud and fuse between organelles to bring proteins to their final destination. Vesicle budding is mediated by protein coats; vesicle targeting and fusion depend on Rab GTPase, tethering factors and SNARE complexes. The Génolevures II sequencing project made available entire genome sequences of four hemiascomycetous yeasts, Yarrowia lipolytica, Debaryomyces hansenii, Kluyveromyces lactis and Candida glabrata. Y. lipolytica is a dimorphic yeast and has good capacities to secrete proteins. The translocation of nascent protein through the endoplasmic reticulum membrane was well studied in Y. lipolytica and is largely co-translational as in the mammalian protein secretion pathway. Results We identified S. cerevisiae proteins involved in vesicular secretion and these protein sequences were used for the BLAST searches against Génolevures protein database (Y. lipolytica, C. glabrata, K. lactis and D. hansenii. These proteins are well conserved between these yeasts and Saccharomyces cerevisiae. We note several specificities of Y. lipolytica which may be related to its good protein secretion capacities and to its dimorphic aspect. An expansion of the Y. lipolytica Rab protein family was observed with autoBLAST and the Rab2- and Rab4-related members were identified with BLAST against NCBI protein database. An expansion of this family is also found in filamentous fungi and may reflect the greater complexity of the Y. lipolytica secretion pathway. The Rab4p-related protein may play a role in membrane recycling as rab4 deleted strain shows a modification of colony morphology, dimorphic transition and permeability. Similarly, we find three copies of the gene (SSO encoding the plasma membrane SNARE protein. Quantification of the percentages of proteins with the greatest homology between S. cerevisiae, Y. lipolytica and animal homologues involved in vesicular

  13. Endoplasmic Reticulum-Mediated Protein Quality Control in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jianming eLi

    2014-04-01

    Full Text Available A correct three-dimensional structure is crucial for the physiological functions of a protein, yet the folding of proteins to acquire native conformation is a fundamentally error-prone process. Eukaryotic organisms have evolved a highly conserved endoplasmic reticulum-mediated protein quality control (ERQC mechanism to monitor folding processes of secretory and membrane proteins, allowing export of only correctly folded proteins to their physiological destinations, retaining incompletely/mis-folded ones in the ER for additional folding attempts, marking and removing terminally-misfolded ones via a unique multiple-step degradation process known as ER-associate degradation (ERAD. Most of our current knowledge on ERQC and ERAD came from genetic and biochemical investigations in yeast and mammalian cells. Recent studies in the reference plant Arabidopsis thaliana uncovered homologous components and similar mechanisms in plants for monitoring protein folding and for retaining, repairing, and removing misfolded proteins. These studies also revealed critical roles of the plant ERQC/ERAD systems in regulating important biochemical/physiological processes, such as abiotic stress tolerance and plant defense. In this review, we discuss our current understanding about the molecular components and biochemical mechanisms of the plant ERQC/ERAD system in comparison to yeast and mammalian systems.

  14. Morphology, biophysical properties and protein-mediated fusion of archaeosomes.

    Directory of Open Access Journals (Sweden)

    Vid Šuštar

    Full Text Available As variance from standard phospholipids of eubacteria and eukaryotes, archaebacterial diether phospholipids contain branched alcohol chains (phytanol linked to glycerol exclusively with ether bonds. Giant vesicles (GVs constituted of different species of archaebacterial diether phospholipids and glycolipids (archaeosomes were prepared by electroformation and observed under a phase contrast and/or fluorescence microscope. Archaebacterial lipids and different mixtures of archaebacterial and standard lipids formed GVs which were analysed for size, yield and ability to adhere to each other due to the mediating effects of certain plasma proteins. GVs constituted of different proportions of archaeal or standard phosphatidylcholine were compared. In nonarchaebacterial GVs (in form of multilamellar lipid vesicles, MLVs the main transition was detected at T(m = 34. 2°C with an enthalpy of ΔH = 0.68 kcal/mol, whereas in archaebacterial GVs (MLVs we did not observe the main phase transition in the range between 10 and 70°C. GVs constituted of archaebacterial lipids were subject to attractive interaction mediated by beta 2 glycoprotein I and by heparin. The adhesion constant of beta 2 glycoprotein I-mediated adhesion determined from adhesion angle between adhered GVs was in the range of 10(-8 J/m(2. In the course of protein mediated adhesion, lateral segregation of the membrane components and presence of thin tubular membranous structures were observed. The ability of archaebacterial diether lipids to combine with standard lipids in bilayers and their compatibility with adhesion-mediating molecules offer further evidence that archaebacterial lipids are appropriate for the design of drug carriers.

  15. Dividing roles of prion protein in staurosporine-mediated apoptosis.

    Science.gov (United States)

    Zhang, Ying; Qin, Kefeng; Wang, Jianwei; Hung, Tao; Zhao, Richard Y

    2006-10-20

    Prion protein (PrPC) is a normal cellular glycoprotein that is expressed in almost all tissues including the central nervous system. Much attention has been focused on this protein because conversion of the normal PrPC to the diseased form (PrPSc) plays an essential role in transmissible spongiform encephalopathies such as mad cow disease and Creutzfeldt-Jakob disease. In spite of the extensive effort, the normal physiological function of PrPC remains elusive. Emerging evidence suggests that PrPC plays a protective role against cellular stresses including apoptosis induced by various pro-apoptotic agents such as Bax and staurosporine (STS), however, other reports showed overexpression of PrPC enhances STS-mediated apoptosis. In this study, we took a different approach by depleting endogenous PrPC using specific interfering RNA technique and compared the depleting and overproducing effects of PrPC on STS-induced apoptosis in neuro-2a (N2a) cells. We demonstrate here that down-regulation of PrPC sensitizes N2a cells to STS-induced cytotoxicity and apoptosis. The enhanced apoptosis induced by STS was shown by increased DNA fragmentation, immunoreactivity of Bax, and caspase-3 cleavage. We also showed that overproduction of PrPC had little or no effect on STS-mediated DNA fragmentation in N2a cells but it augments STS-mediated apoptosis in HEK293 cells, suggesting a cell line-specific effect. In addition, the inhibitory effect of PrPC on STS-mediated cellular stress appears to be modulated in part through induction of cell cycle G2 accumulation. Together, our data suggest that physiological level of endogenous PrPC plays a protective role against STS-mediated cellular stress. Loss of this protection could render cells more prone to cellular insults such as STS. PMID:16950206

  16. The polymorphism of YWHAE, a gene encoding 14-3-3epsilon, and brain morphology in schizophrenia: a voxel-based morphometric study.

    Directory of Open Access Journals (Sweden)

    Mikio Kido

    Full Text Available BACKGROUND: YWHAE is a possible susceptibility gene for schizophrenia that encodes 14-3-3epsilon, a Disrupted-in-Schizophrenia 1 (DISC1-interacting molecule, but the effect of variation in its genotype on brain morphology remains largely unknown. METHODS: In this voxel-based morphometric magnetic resonance imaging study, we conducted whole-brain analyses regarding the effects of YWHAE single-nucleotide polymorphisms (SNPs (rs28365859, rs11655548, and rs9393 and DISC1 SNP (rs821616 on gray matter volume in a Japanese sample of 72 schizophrenia patients and 86 healthy controls. On the basis of a previous animal study, we also examined the effect of rs28365859 genotype specifically on hippocampal volume. RESULTS: Whole-brain analyses showed no significant genotype effect of these SNPs on gray matter volume in all subjects, but we found significant genotype-by-diagnosis interaction for rs28365859 in the left insula and right putamen. The protective C allele carriers of rs28365859 had a significantly larger left insula than the G homozygotes only for schizophrenia patients, while the controls with G allele homozygosity had a significantly larger right putamen than the C allele carriers. The C allele carriers had a larger right hippocampus than the G allele homozygotes in schizophrenia patients, but not in healthy controls. No significant interaction was found between rs28365859 and DISC1 SNP on gray matter volume. CONCLUSIONS: These different effects of the YWHAE (rs28365859 genotype on brain morphology in schizophrenia and healthy controls suggest that variation in its genotype might be, at least partly, related to the abnormal neurodevelopment, including in the limbic regions, reported in schizophrenia. Our results also suggest its specific role among YWHAE SNPs in the pathophysiology of schizophrenia.

  17. Contextual specificity in peptide-mediated protein interactions.

    Directory of Open Access Journals (Sweden)

    Amelie Stein

    Full Text Available Most biological processes are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. Although sufficient to ensure binding, these linear motifs alone are usually too short to achieve the high specificity observed, and additional contacts are often encoded in the residues surrounding the motif (i.e. the context. Here, we systematically identified all instances of peptide-mediated protein interactions of known three-dimensional structure and used them to investigate the individual contribution of motif and context to the global binding energy. We found that, on average, the context is responsible for roughly 20% of the binding and plays a crucial role in determining interaction specificity, by either improving the affinity with the native partner or impeding non-native interactions. We also studied and quantified the topological and energetic variability of interaction interfaces, finding a much higher heterogeneity in the context residues than in the consensus binding motifs. Our analysis partially reveals the molecular mechanisms responsible for the dynamic nature of peptide-mediated interactions, and suggests a global evolutionary mechanism to maximise the binding specificity. Finally, we investigated the viability of non-native interactions and highlight cases of potential cross-reaction that might compensate for individual protein failure and establish backup circuits to increase the robustness of cell networks.

  18. Infectious Keratitis: Secreted Bacterial Proteins That Mediate Corneal Damage

    Directory of Open Access Journals (Sweden)

    Mary E. Marquart

    2013-01-01

    Full Text Available Ocular bacterial infections are universally treated with antibiotics, which can eliminate the organism but cannot reverse the damage caused by bacterial products already present. The three very common causes of bacterial keratitis—Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae—all produce proteins that directly or indirectly cause damage to the cornea that can result in reduced vision despite antibiotic treatment. Most, but not all, of these proteins are secreted toxins and enzymes that mediate host cell death, degradation of stromal collagen, cleavage of host cell surface molecules, or induction of a damaging inflammatory response. Studies of these bacterial pathogens have determined the proteins of interest that could be targets for future therapeutic options for decreasing corneal damage.

  19. Observation on protection by immunization with mix recombinant BCG-Em Ⅱ/3 and BCG-Em14-3-3 vaccine of echinococcus multilocularis%多房棘球绦虫混合重组BCG-EmⅡ/3和BCG-Em14-3-3疫苗诱导的保护力观察

    Institute of Scientific and Technical Information of China (English)

    蒋光琼; 李文桂; 王鸿; 朱佑明

    2008-01-01

    目的:探讨多房棘球绦虫(Echinococcus multilocularis,Em)混合重组BCC-EmⅡ/3和BCG-Em14-3-3疫苗免疫小鼠后对Em原头节攻击感染的保护性作用.方法:将混合重组BCG疫苗采用皮下注射和鼻腔内接种分别免疫BALB/c鼠,免疫后8周用多房棘球绦虫原头节进行攻击感染,感染后18周剖杀小鼠,计算减蚴率,测定血清中IgG及其亚类和IgE水平,同时设有空载体、BCG和PBS对照.结果:混合疫苗接种组的减蚴率为45.29%~76.47%,血清IgG、IgG2a、IgG2b和lgE水平明显升高,IgG1和IgG3显著降低.结论:多房棘球绦虫混合重组BCG-EmⅡ/3和BCG-Em14-3-3疫苗鼻腔内接种是一种较好的途径,IgG、IgG2a、IgG2b和IgE在疫苗诱导的保护力中起重要作用.

  20. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    Science.gov (United States)

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. PMID:27080133

  1. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    Science.gov (United States)

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins.

  2. Nitrosative stress and nitrated proteins in trichloroethene-mediated autoimmunity.

    Directory of Open Access Journals (Sweden)

    Gangduo Wang

    Full Text Available Exposure to trichloroethene (TCE, a ubiquitous environmental contaminant, has been linked to a variety of autoimmune diseases (ADs including SLE, scleroderma and hepatitis. Mechanisms involved in the pathogenesis of ADs are largely unknown. Earlier studies from our laboratory in MRL+/+ mice suggested the contribution of oxidative/nitrosative stress in TCE-induced autoimmunity, and N-acetylcysteine (NAC supplementation provided protection by attenuating oxidative stress. This study was undertaken to further evaluate the contribution of nitrosative stress in TCE-mediated autoimmunity and to identify proteins susceptible to nitrosative stress. Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, ∼ 250 mg/kg/day via drinking water. TCE exposure led to significant increases in serum anti-nuclear and anti-histone antibodies together with significant induction of iNOS and increased formation of nitrotyrosine (NT in sera and livers. Proteomic analysis identified 14 additional nitrated proteins in the livers of TCE-treated mice. Furthermore, TCE exposure led to decreased GSH levels and increased activation of NF-κB. Remarkably, NAC supplementation not only ameliorated TCE-induced nitrosative stress as evident from decreased iNOS, NT, nitrated proteins, NF-κB p65 activation and increased GSH levels, but also the markers of autoimmunity, as evident from decreased levels of autoantibodies in the sera. These findings provide support to the role of nitrosative stress in TCE-mediated autoimmune response and identify specific nitrated proteins which could have autoimmune potential. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for designing therapeutic strategies.

  3. Reorganization of cytoskeletal proteins of mouse oocytes mediated by integrins

    Institute of Scientific and Technical Information of China (English)

    YUE; Limin; ZHANG; Lei; HE; Yaping; ZHANG; Jinhu; ZHENG; Ji

    2004-01-01

    To study whether integrins on cell membrane ligate with intracellular cytoskeletal proteins and mediate their reorganization in egg activation, female mice were used for superovulation. The zona-free oocytes were incubated separately with specific ligand of integrins,an active RGD peptide, in vitro for certain period of time. RGE peptide and mouse capacitated sperm were used as controls. Freshly ovulated oocytes and those treated with different factors were immunostained with FITC-labeled anti-actin antibody, then detected with confocal microscope. The results demonstrated that freshly ovulated mouse oocytes, oocytes incubated for 2 h in vitro and those treated with control RGE peptide for 15 min showed hardly visible fluorescene or only thin fluorescence in plasma membrane region. Oocytes coincubated with sperms for 15 min and those treated with active RGD peptide for 10 min, 30 min and 2 hours respectively had strong and thick fluorescence in the plasma membrane and cortical region of oocytes, and some of them showed asymmetrically fluorescent distribution. It is proved that integrins on membrane are ligated directly with cytoskeletal protein. Integrins binding with their ligands regulate reorganization of cytoskelal protein, which may be involved in transmembrane signaling in egg activation.

  4. Protein-spanning water networks and implications for prediction of protein-protein interactions mediated through hydrophobic effects.

    Science.gov (United States)

    Cui, Di; Ou, Shuching; Patel, Sandeep

    2014-12-01

    Hydrophobic effects, often conflated with hydrophobic forces, are implicated as major determinants in biological association and self-assembly processes. Protein-protein interactions involved in signaling pathways in living systems are a prime example where hydrophobic effects have profound implications. In the context of protein-protein interactions, a priori knowledge of relevant binding interfaces (i.e., clusters of residues involved directly with binding interactions) is difficult. In the case of hydrophobically mediated interactions, use of hydropathy-based methods relying on single residue hydrophobicity properties are routinely and widely used to predict propensities for such residues to be present in hydrophobic interfaces. However, recent studies suggest that consideration of hydrophobicity for single residues on a protein surface require accounting of the local environment dictated by neighboring residues and local water. In this study, we use a method derived from percolation theory to evaluate spanning water networks in the first hydration shells of a series of small proteins. We use residue-based water density and single-linkage clustering methods to predict hydrophobic regions of proteins; these regions are putatively involved in binding interactions. We find that this simple method is able to predict with sufficient accuracy and coverage the binding interface residues of a series of proteins. The approach is competitive with automated servers. The results of this study highlight the importance of accounting of local environment in determining the hydrophobic nature of individual residues on protein surfaces.

  5. GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling.

    Science.gov (United States)

    Thomsen, Alex R B; Plouffe, Bianca; Cahill, Thomas J; Shukla, Arun K; Tarrasch, Jeffrey T; Dosey, Annie M; Kahsai, Alem W; Strachan, Ryan T; Pani, Biswaranjan; Mahoney, Jacob P; Huang, Liyin; Breton, Billy; Heydenreich, Franziska M; Sunahara, Roger K; Skiniotis, Georgios; Bouvier, Michel; Lefkowitz, Robert J

    2016-08-11

    Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid β-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, β-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with β-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with β-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs. PMID:27499021

  6. Protein kinase C mediates cholinergically regulated protein phosphorylation in a Cl(-)-secreting epithelium.

    Science.gov (United States)

    Cohn, J A

    1990-02-01

    T84 cell monolayers were used to study the cholinergic regulation of protein phosphorylation in epithelial cells. When T84 cell monolayers are labeled with 32Pi and stimulated with carbachol, six proteins exhibit altered phosphorylation. The most prominent response is a fivefold increase in labeling of p83, an acidic protein of Mr 83,000. Increasing labeling of p83 parallels stimulated secretion with respect to the onset of agonist action, agonist potency, and antagonism by atropine. However, the p83 and secretory responses differ in that the p83 response is more sustained. When T84 cell fractions are incubated with [gamma-32P]ATP, Ca2(+)-phospholipid stimulates p83 labeling. Phosphorylation of p83 also occurs when a T84 cell extract is incubated with purified protein kinase C and when intact cells are exposed to phorbol myristate acetate. p83 does not become phosphorylated in cell fractions incubated with adenosine 3',5'-cyclic monophosphate (cAMP) or in monolayers stimulated with agonists acting via cAMP. Thus carbachol stimulates the phosphorylation of an endogenous substrate for protein kinase C in T84 cells. The duration of this phosphorylation response suggests that protein kinase C may mediate a sustained response to carbachol, possibly acting to limit the duration of stimulated secretion.

  7. Computerized video time lapse study of cell cycle delay and arrest, mitotic catastrophe, apoptosis and clonogenic survival in irradiated 14-3-3sigma and CDKN1A (p21) knockout cell lines.

    Science.gov (United States)

    Chu, Kenneth; Teele, Noella; Dewey, Michael W; Albright, Norman; Dewey, William C

    2004-09-01

    Computerized video time lapse (CVTL) microscopy was used to observe cellular events induced by ionizing radiation (10-12 Gy) in nonclonogenic cells of the wild-type HCT116 colorectal carcinoma cell line and its three isogenic derivative lines in which p21 (CDKN1A), 14-3-3sigma or both checkpoint genes (double-knockout) had been knocked out. Cells that fused after mitosis or failed to complete mitosis were classified together as cells that underwent mitotic catastrophe. Seventeen percent of the wild-type cells and 34-47% of the knockout cells underwent mitotic catastrophe to enter generation 1 with a 4N content of DNA, i.e., the same DNA content as irradiated cells arrested in G(2) at the end of generation 0. Radiation caused a transient division delay in generation 0 before the cells divided or underwent mitotic catastrophe. Compared with the division delay for wild-type cells that express CDKN1A and 14-3-3sigma, knocking out CDKN1A reduced the delay the most for cells irradiated in G(1) (from approximately 15 h to approximately 3- 5 h), while knocking out 14-3-3sigma reduced the delay the most for cells irradiated in late S and G(2) (from approximately 18 h to approximately 3-4 h). However, 27% of wild-type cells and 17% of 14-3-3sigma(-/-) cells were arrested at 96 h in generation 0 compared with less than 1% for CDKN1A(-/-) and double-knockout cells. Thus expression of CDKN1A is necessary for the prolonged delay or arrest in generation 0. Furthermore, CDKN1A plays a crucial role in generation 1, greatly inhibiting progression into subsequent generations of both diploid cells and polyploid cells produced by mitotic catastrophe. Thus, in CDKN1A-deficient cell lines, a series of mitotic catastrophe events occurred to produce highly polyploid progeny during generations 3 and 4. Most importantly, the polyploid progeny produced by mitotic catastrophe events did not die sooner than the progeny of dividing cells. Death was identified as loss of cell movement, i

  8. Translocator protein mediates the anxiolytic and antidepressant effects of midazolam.

    Science.gov (United States)

    Qiu, Zhi-Kun; Li, Ming-Sheng; He, Jia-Li; Liu, Xu; Zhang, Guan-Hua; Lai, Sha; Ma, Jian-Chun; Zeng, Jia; Li, Yan; Wu, Hong-Wei; Chen, Yong; Shen, Yong-Gang; Chen, Ji-Sheng

    2015-12-01

    The translocator protein (18 kDa) (TSPO) plays an important role in stress-related disorders, such as anxiety, depression and post-traumatic stress disorder (PTSD), caused by neurosteroids (e.g. allopregnanolone). The present study sought to evaluate the significance of TSPO in anxiolytic and antidepressant effects induced by midazolam. The animals were administrated midazolam (0.25, 0.5 and 1 mg/kg, i.p.) and subjected to behavioral tests, including Vogel-type conflict test, elevated plus-maze test, forced swimming test. Midazolam produced anxiolytic- and antidepressant-like effects Vogel-type conflict test (1 mg/kg, i.p.), elevated plus-maze test (0.5 and 1 mg/kg, i.p.), and forced swimming test (0.5 and 1 mg/kg, i.p.). These effects of Midazolam were totally blocked by the TSPO antagonist PK11195 (3 mg/kg, i.p.). To evaluate the role of allopregnanolone in the anxiolytic- and antidepressant-like effects of midazolam, the animals were decapitated at the end of the behavioral tests. The allopregnanolone levels of the prefrontal cortex and hippocampus were measured by enzyme-linked immunosorbent assay (ELISA). The allopregnanolone level of the prefrontal cortex and hippocampus was increased by midazolam (0.5, 1 mg/kg, i.p.) and the increase was reversed by PK11195 (3 mg/kg, i.p.). Overall, the results indicated that the anxiolytic- and antidepressant-like effects of midazolam were mediated by TSPO, via stimulation of allopregnanolone biosynthesis. PMID:26455280

  9. Aptamer-mediated indirect quantum dot labeling and fluorescent imaging of target proteins in living cells

    International Nuclear Information System (INIS)

    Protein labeling for dynamic living cell imaging plays a significant role in basic biological research, as well as in clinical diagnostics and therapeutics. We have developed a novel strategy in which the dynamic visualization of proteins within living cells is achieved by using aptamers as mediators for indirect protein labeling of quantum dots (QDs). With this strategy, the target protein angiogenin was successfully labeled with fluorescent QDs in a minor intactness model, which was mediated by the aptamer AL6-B. Subsequent living cell imaging analyses indicated that the QDs nanoprobes were selectively bound to human umbilical vein endothelial cells, gradually internalized into the cytoplasm, and mostly localized in the lysosome organelle, indicating that the labeled protein retained high activity. Compared with traditional direct protein labeling methods, the proposed aptamer-mediated strategy is simple, inexpensive, and provides a highly selective, stable, and intact labeling platform that has shown great promise for future biomedical labeling and intracellular protein dynamic analyses. (paper)

  10. High mobility group box 1 protein as a late-acting mediator of acute lung inflammation.

    Science.gov (United States)

    Lutz, Waldemar; Stetkiewicz, Jan

    2004-01-01

    Acute inflammatory lung injury is often a delayed complication of critical illness and is associated with increased mortality. High mobility group box 1 (HMGB1) protein, in addition to its role as a transcriptional regulator factor, has been identified as a late mediator of endotoxin lethality and might be also involved in the development and progression of acute lung injury. HMGB1 protein itself can cause an acute inflammatory response manifested by increased production of proinflammatory cytokines and neutrophil accumulation. The delayed kinetics of HMGB1 protein release indicate that this protein is a distal mediator of acute inflamatory lung injury. Anti-HMGB1 protein antibodies attenuated endotoxin-induced lung injury, but not the early release of TNF-alpha and IL-1beta, indicating that HMGB1 protein is a late mediator of endotoxin-induced acute lung injury. HMGB1 protein is not released by apoptotic cells but is passively released by necrotic or damaged somatic and immune cells and it functions as a major stimulus of necrosis-induced inflammation. HMGB1 protein is also released by activated monocytes/macrophages and induces delayed and biphasic release of proinflammatory mediators from these cells. HMGB1 protein failed to stimulate cytokines release in lymphocytes, indicating that cellular stimulation is specific. We would like to suggest that HMGB1 protein may be also a primary mediator of the inflammatory responses to lung cells injury caused by toxic environmental chemicals.

  11. Neutrophils and the calcium-binding protein MRP-14 mediate carrageenan-induced antinociception in mice

    Directory of Open Access Journals (Sweden)

    Rosana L. Pagano

    2002-01-01

    Full Text Available Background: We have previously shown that the calcium-binding protein MRP-14 secreted by neutrophils mediates the antinociceptive response in an acute inflammatory model induced by the intraperitoneal injection of glycogen in mice.

  12. Transition metal complexes as mediator-titrants in protein redox potentiometry.

    Science.gov (United States)

    Bernhardt, Paul V; Chen, Kuan-I; Sharpe, Philip C

    2006-10-01

    A selection of nine macrocyclic Fe(III/II) and Co(III/II) transition metal complexes has been chosen to serve as a universal set of mediator-titrants in redox potentiometry of protein samples. The potential range spanned by these mediators is approximately from +300 to -700 mV vs the normal hydrogen electrode, which covers the range of most protein redox potentials accessible in aqueous solution. The complexes employed exhibit stability in both their oxidized and their reduced forms as well as pH-independent redox potentials within the range 6 < pH < 9. The mediators were also chosen on the basis of their very weak visible absorption maxima in both oxidation states, which will enable (for the first time) optical redox potentiometric titrations of proteins with relatively low extinction coefficients. This has previously been impractical with organic mediators, such as indoles, viologens and quinones, whose optical spectra interfere strongly with those of the protein.

  13. Photoactivatable protein labeling by singlet oxygen mediated reactions.

    Science.gov (United States)

    To, Tsz-Leung; Medzihradszky, Katalin F; Burlingame, Alma L; DeGrado, William F; Jo, Hyunil; Shu, Xiaokun

    2016-07-15

    Protein-protein interactions regulate many biological processes. Identification of interacting proteins is thus an important step toward molecular understanding of cell signaling. The aim of this study was to investigate the use of photo-generated singlet oxygen and a small molecule for proximity labeling of interacting proteins in cellular environment. The protein of interest (POI) was fused with a small singlet oxygen photosensitizer (miniSOG), which generates singlet oxygen ((1)O2) upon irradiation. The locally generated singlet oxygen then activated a biotin-conjugated thiol molecule to form a covalent bond with the proteins nearby. The labeled proteins can then be separated and subsequently identified by mass spectrometry. To demonstrate the applicability of this labeling technology, we fused the miniSOG to Skp2, an F-box protein of the SCF ubiquitin ligase, and expressed the fusion protein in mammalian cells and identified that the surface cysteine of its interacting partner Skp1 was labeled by the biotin-thiol molecule. This photoactivatable protein labeling method may find important applications including identification of weak and transient protein-protein interactions in the native cellular context, as well as spatial and temporal control of protein labeling. PMID:27220724

  14. Chemotaxis to cyclic AMP and folic acid is mediated by different G proteins in Dictyostelium discoideum

    NARCIS (Netherlands)

    Kesbeke, Fanja; Haastert, Peter J.M. van; Wit, René J.W. de; Snaar-Jagalska, B. Ewa

    1990-01-01

    Mutant Frigid A (fgdA) of Dictyostelium discoideum is defective in a functional Gα2 subunit of a G protein and is characterized by a complete blockade of the cyclic AMP-mediated sensory transduction steps, including cyclic AMP relay, chemotaxis and the cyclic GMP response. Folic acid-mediated transm

  15. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo, E-mail: innks@khu.ac.kr

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  16. Imaging multiple intermediates of single-virus membrane fusion mediated by distinct fusion proteins.

    Science.gov (United States)

    Joo, Kye-Il; Tai, April; Lee, Chi-Lin; Wong, Clement; Wang, Pin

    2010-09-01

    Membrane fusion plays an essential role in the entry of enveloped viruses into target cells. The merging of viral and target cell membranes is catalyzed by viral fusion proteins, which involves multiple sequential steps in the fusion process. However, the fusion mechanisms mediated by different fusion proteins involve multiple transient intermediates that have not been well characterized. Here, we report a synthetic virus platform that allows us to better understand the different fusion mechanisms driven by the diverse types fusion proteins. The platform consists of lentiviral particles coenveloped with a surface antibody, which serves as the binding protein, along with a fusion protein derived from either influenza virus (HAmu) or Sindbis virus (SINmu). By using a single virus tracking technique, we demonstrated that both HAmu- and SINmu-bearing viruses enter cells through clathrin-dependent endocytosis, but they required different endosomal trafficking routes to initiate viral fusion. Direct observation of single viral fusion events clearly showed that hemifusion mediated by SINmu upon exposure to low pH occurs faster than that mediated by HAmu. Monitoring sequential fusion processes by dual labeling the outer and inner leaflets of viral membranes also revealed that the SINmu-mediated hemifusion intermediate is relatively long-lived as compared with that mediated by HAmu. Taken together, we have demonstrated that the combination of this versatile viral platform with the techniques of single virus tracking can be a powerful tool for revealing molecular details of fusion mediated by various fusion proteins.

  17. Polycomb group protein-mediated repression of transcription

    DEFF Research Database (Denmark)

    Morey, Lluís; Helin, Kristian

    2010-01-01

    The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work as transcri......The polycomb group (PcG) proteins are essential for the normal development of multicellular organisms. They form multi-protein complexes that work as transcriptional repressors of several thousand genes controlling differentiation pathways during development. How the PcG proteins work...... as transcriptional repressors is incompletely understood, but involves post-translational modifications of histones by two major PcG protein complexes: polycomb repressive complex 1 and polycomb repressive complex 2....

  18. The Sec translocon mediated protein transport in prokaryotes and eukaryotes.

    Science.gov (United States)

    Denks, Kärt; Vogt, Andreas; Sachelaru, Ilie; Petriman, Narcis-Adrian; Kudva, Renuka; Koch, Hans-Georg

    2014-01-01

    Protein transport via the Sec translocon represents an evolutionary conserved mechanism for delivering cytosolically-synthesized proteins to extra-cytosolic compartments. The Sec translocon has a three-subunit core, termed Sec61 in Eukaryotes and SecYEG in Bacteria. It is located in the endoplasmic reticulum of Eukaryotes and in the cytoplasmic membrane of Bacteria where it constitutes a channel that can be activated by multiple partner proteins. These partner proteins determine the mechanism of polypeptide movement across the channel. During SRP-dependent co-translational targeting, the ribosome threads the nascent protein directly into the Sec channel. This pathway is in Bacteria mainly dedicated for membrane proteins but in Eukaryotes also employed by secretory proteins. The alternative pathway, leading to post-translational translocation across the Sec translocon engages an ATP-dependent pushing mechanism by the motor protein SecA in Bacteria and a ratcheting mechanism by the lumenal chaperone BiP in Eukaryotes. Protein transport and biogenesis is also assisted by additional proteins at the lateral gate of SecY/Sec61α and in the lumen of the endoplasmic reticulum or in the periplasm of bacterial cells. The modular assembly enables the Sec complex to transport a vast array of substrates. In this review we summarize recent biochemical and structural information on the prokaryotic and eukaryotic Sec translocons and we describe the remarkably complex interaction network of the Sec complexes.

  19. Singlet oxygen-mediated damage to proteins and its consequences

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2003-01-01

    the absorption of UV radiation by the protein, or bound chromophore groups, thereby generating excited states (singlet or triplets) or radicals via photo-ionisation. The second major process involves indirect oxidation of the protein via the formation and subsequent reactions of singlet oxygen generated...

  20. THE REGULATORY EFFECT OF NUCLEOSIDE DIPHOSPHATE KINASE ON G-PROTEIN AND G-PROTEIN MEDIATED PHOSPHOLIPASE C

    Institute of Scientific and Technical Information of China (English)

    张德昌; 张宽仁

    1995-01-01

    The effect of nueleoside diphosphate kinase (NDPK) on the activity of guanine nueleotide regulatory protein (G-protein) mediated phospholipase C (PLC) and on the [35S ] GTPTτS binding of G-protein was investigated in this work in order to demonstrate the mechanism behind the regulation of G-protein and its effector PLC by NDPK. The stimulation of PLC in turkey erythrocyte membrane by both GTP and GTPτS indicated that the PLC stimulation was msdiated by G-protein, NDPK alone stimulated PLC activity, as well as the stimulation in the presence of GTP and GDP, in a dose-dependent manner. However, NDPK inhibited GTPτS-stimulated PLC, Furthermore, NDPK inhibited [35S] GTPτS binding of purified Gi-protein in a non-competitive manner. A hypothesis implying an important role of direct interaction of G-protein and NDPK in the regulation of their functions is suggested and discussed.

  1. Multiple GTP-binding proteins participate in clathrin-coated vesicle- mediated endocytosis

    OpenAIRE

    1993-01-01

    We have examined the effects of various agonists and antagonists of GTP- binding proteins on receptor-mediated endocytosis in vitro. Stage- specific assays which distinguish coated pit assembly, invagination, and coat vesicle budding have been used to demonstrate requirements for GTP-binding protein(s) in each of these events. Coated pit invagination and coated vesicle budding are both stimulated by addition of GTP and inhibited by GDP beta S. Although coated pit invagination is resistant to ...

  2. Protein-mediated autoreduction of gold salts to gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Nivedita; Bhattacharya, Resham; Mukherjee, Priyabrata [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, MN 55905 (United States)], E-mail: Mukherjee.Priyabrata@mayo.edu

    2008-09-01

    Here we report for the first time that proteins can function as unique reducing agents to produce gold nanoparticles from gold salts. We demonstrate that three different proteins, namely, bovine serum albumin (BSA), Rituximab (RIT-an anti-CD20 antibody) and Cetuximab (C225-anti-EGFR antibody), reduce gold salts to gold nanoparticles (GNP). Interestingly, among all the three proteins tested, only BSA can reduce gold salts to gold nanotriangles (GNT). BSA-induced formation of GNT can be controlled by carefully selecting the reaction condition. Heating or using excess of ascorbic acid (AA) as additional reducing agent shifts the reaction towards the formation of GNP with flower-like morphology, whereas slowing down the reaction either by cooling or by adding small amount of AA directs the synthesis towards GNT formation. GNT is formed only at pH 3; higher pHs (pH 7 and pH 10) did not produce any nanoparticles, suggesting the involvement of specific protein conformation in GNT formation. The nanomaterials formed by this method were characterized using UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). This is an important finding that will have uses in various nanotechnological applications, particularly in the green synthesis of novel nanomaterials based on protein structure.

  3. Systematic discovery of new recognition peptides mediating protein interaction networks

    DEFF Research Database (Denmark)

    Neduva, Victor; Linding, Rune; Su-Angrand, Isabelle;

    2005-01-01

    Many aspects of cell signalling, trafficking, and targeting are governed by interactions between globular protein domains and short peptide segments. These domains often bind multiple peptides that share a common sequence pattern, or "linear motif" (e.g., SH3 binding to PxxP). Many domains...... molecular details of how interaction networks are constructed, and can explain how one protein is able to bind to very different partners. Here we show that binding motifs can be detected using data from genome-scale interaction studies, and thus avoid the normally slow discovery process. Our approach based...... that binds Translin with a KD of 43 microM. We estimate that there are dozens or even hundreds of linear motifs yet to be discovered that will give molecular insight into protein networks and greatly illuminate cellular processes.Many aspects of cell signalling, trafficking, and targeting are governed...

  4. Bacillus anthracis secretes proteins that mediate heme acquisition from hemoglobin.

    Directory of Open Access Journals (Sweden)

    Anthony W Maresso

    Full Text Available Acquisition of iron is necessary for the replication of nearly all bacterial pathogens; however, iron of vertebrate hosts is mostly sequestered by heme and bound to hemoglobin within red blood cells. In Bacillus anthracis, the spore-forming agent of anthrax, the mechanisms of iron scavenging from hemoglobin are unknown. We report here that B. anthracis secretes IsdX1 and IsdX2, two NEAT domain proteins, to remove heme from hemoglobin, thereby retrieving iron for bacterial growth. Unlike other Gram-positive bacteria, which rely on cell wall anchored Isd proteins for heme scavenging, B. anthracis seems to have also evolved NEAT domain proteins in the extracellular milieu and in the bacterial envelope to provide for the passage of heme.

  5. Ca2+ channels as integrators of G protein-mediated signaling in neurons.

    Science.gov (United States)

    Strock, Jesse; Diversé-Pierluissi, María A

    2004-11-01

    The observations from Dunlap and Fischbach that transmitter-mediated shortening of the duration of action potentials could be caused by a decrease in calcium conductance led to numerous studies of the mechanisms of modulation of voltage-dependent calcium channels. Calcium channels are well known targets for inhibition by receptor-G protein pathways, and multiple forms of inhibition have been described. Inhibition of Ca(2+) channels can be mediated by G protein betagamma-subunits or by kinases, such as protein kinase C and tyrosine kinases. In the last few years, it has been shown that integration of G protein signaling can take place at the level of the calcium channel by regulation of the interaction of the channel pore-forming subunit with different cellular proteins.

  6. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  7. Histamine stimulates calcium-mediated protein phosphorylation in a colonic epithelial cell line.

    Science.gov (United States)

    Cohn, J A; Dougherty, N C; King, W F

    1989-12-15

    Protein phosphorylation responses in intact enterocytes were examined by stimulating 32Pi-labeled T84 cell monolayers with histamine and resolving proteins by two-dimensional gel electrophoresis. Histamine increases 32P-incorporation into two acidic proteins of Mr 83,000 and of Mr 29,000, designated p83 and p29. Labeling of p83 and p29 is also increased in cells exposed to ionomycin, but not in cells exposed to vasoactive intestinal peptide under conditions resulting in cAMP-mediated secretion and cAMP-stimulated protein phosphorylation. When T84 cell fractions are incubated with [gamma-32P]ATP, labeling of p83 is stimulated by Ca++, but not by cAMP. Thus, histamine stimulates Ca++-mediated protein phosphorylation during the regulation of Cl- secretion.

  8. Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer.

    Science.gov (United States)

    Latysheva, Natasha S; Oates, Matt E; Maddox, Louis; Flock, Tilman; Gough, Julian; Buljan, Marija; Weatheritt, Robert J; Babu, M Madan

    2016-08-18

    Gene fusions are common cancer-causing mutations, but the molecular principles by which fusion protein products affect interaction networks and cause disease are not well understood. Here, we perform an integrative analysis of the structural, interactomic, and regulatory properties of thousands of putative fusion proteins. We demonstrate that genes that form fusions (i.e., parent genes) tend to be highly connected hub genes, whose protein products are enriched in structured and disordered interaction-mediating features. Fusion often results in the loss of these parental features and the depletion of regulatory sites such as post-translational modifications. Fusion products disproportionately connect proteins that did not previously interact in the protein interaction network. In this manner, fusion products can escape cellular regulation and constitutively rewire protein interaction networks. We suggest that the deregulation of central, interaction-prone proteins may represent a widespread mechanism by which fusion proteins alter the topology of cellular signaling pathways and promote cancer. PMID:27540857

  9. C-reactive protein is a mediator of cardiovascular disease

    NARCIS (Netherlands)

    R.J. Bisoendial; S.M. Boekholdt; M. Vergeer; E.S.G. Stroes; J.J.P. Kastelein

    2010-01-01

    C-reactive protein is postulated to embody an index that can reflect cardiovascular risk and can be used to independently predict major cardiovascular events and mortality. On the other hand, credible experimental data have become available that demonstrate the abundant presence of C-reactive protei

  10. The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response

    Institute of Scientific and Technical Information of China (English)

    Gan WANG; Alan DOMBKOWSKI; Lynn CHUANG; Xiao Xin S XU

    2004-01-01

    Recognition of DNA damage is a critical step for DNA damage-mediated cellular response. XPC is an important DNA damage recognition protein involved in nucleotide excision repair (NER). We have studied the XPC protein in cisplatin DNA damaging treatment-mediated cellular response. Comparison of the microarray data from both normal and XPCdefective human fibroblasts identified 861 XPC-responsive genes in the cisplatin treatment (with minimum fold change≥1.5).The cell cycle and cell proliferation-related genes are the most affected genes by the XPC defect in the treatment. Many other cellular function genes, especially the DNA repair and signal transduction-related genes, were also affected by the XPC defect in the treatment. To validate the microarray data, the transcription levels of some microarray-identified genes were also determined by an RT-PCR based real time PCR assay. The real time PCR results are consistent with the microarray data for most of the tested genes, indicating the reliability of the microarray data. To further validate the microarray data, the cisplatin treatment-mediated caspase-3 activation was also determined. The Western blot hybridization results indicate that the XPC defect greatly attenuates the cisplatin treatment-mediated Caspase-3 activation. We elucidated the role of p53 protein in the XPC protein DNA damage recognition-mediated signaling process. The XPC defect reduces the cisplatin treatment-mediated p53 response. These results suggest that the XPC protein plays an important role in the cisplatin treatment-mediated cellular response. It may also suggest a possible mechanism of cancer cell drug resistance.

  11. A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protien-mediated kinetic scaffolding.

    Science.gov (United States)

    Zhong, Huailing; Wade, Susan M; Woolf, Peter J; Linderman, Jennifer J; Traynor, John R; Neubig, Richard R

    2003-02-28

    Regulators of G protein signaling (RGS) are GTPase-accelerating proteins (GAPs), which can inhibit heterotrimeric G protein pathways. In this study, we provide experimental and theoretical evidence that high concentrations of receptors (as at a synapse) can lead to saturation of GDP-GTP exchange making GTP hydrolysis rate-limiting. This results in local depletion of inactive heterotrimeric G-GDP, which is reversed by RGS GAP activity. Thus, RGS enhances receptor-mediated G protein activation even as it deactivates the G protein. Evidence supporting this model includes a GTP-dependent enhancement of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) binding to G(i) by RGS. The RGS domain of RGS4 is sufficient for this, not requiring the NH(2)- or COOH-terminal extensions. Furthermore, a kinetic model including only the GAP activity of RGS replicates the GTP-dependent enhancement of GTPgammaS binding observed experimentally. Finally in a Monte Carlo model, this mechanism results in a dramatic "spatial focusing" of active G protein. Near the receptor, G protein activity is maintained even with RGS due to the ability of RGS to reduce depletion of local Galpha-GDP levels permitting rapid recoupling to receptor and maintained G protein activation near the receptor. In contrast, distant signals are suppressed by the RGS, since Galpha-GDP is not depleted there. Thus, a novel RGS-mediated "kinetic scaffolding" mechanism is proposed which narrows the spatial range of active G protein around a cluster of receptors limiting the spill-over of G protein signals to more distant effector molecules, thus enhancing the specificity of G(i) protein signals.

  12. Bone Morphogenetic Protein 4 Mediates Human Embryonic Germ Cell Derivation

    OpenAIRE

    Hiller, Marc; Liu, Cyndi; Blumenthal, Paul D; John D Gearhart; Kerr, Candace L.

    2010-01-01

    Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). Unlike embryonic stem cells, virtually little is known regarding the factors that regulate EGC survival and maintenance. In mice, the growth factor bone morphogenetic protein 4 (BMP4) has been shown to be required for maintaining mouse embryonic stem cells, and disruptions in this gene lead to defects in mouse PGC specification. Here, we sought to determine whether recom...

  13. DOMMINO 2.0: integrating structurally resolved protein-, RNA-, and DNA-mediated macromolecular interactions.

    Science.gov (United States)

    Kuang, Xingyan; Dhroso, Andi; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2016-01-01

    Macromolecular interactions are formed between proteins, DNA and RNA molecules. Being a principle building block in macromolecular assemblies and pathways, the interactions underlie most of cellular functions. Malfunctioning of macromolecular interactions is also linked to a number of diseases. Structural knowledge of the macromolecular interaction allows one to understand the interaction's mechanism, determine its functional implications and characterize the effects of genetic variations, such as single nucleotide polymorphisms, on the interaction. Unfortunately, until now the interactions mediated by different types of macromolecules, e.g. protein-protein interactions or protein-DNA interactions, are collected into individual and unrelated structural databases. This presents a significant obstacle in the analysis of macromolecular interactions. For instance, the homogeneous structural interaction databases prevent scientists from studying structural interactions of different types but occurring in the same macromolecular complex. Here, we introduce DOMMINO 2.0, a structural Database Of Macro-Molecular INteractiOns. Compared to DOMMINO 1.0, a comprehensive database on protein-protein interactions, DOMMINO 2.0 includes the interactions between all three basic types of macromolecules extracted from PDB files. DOMMINO 2.0 is automatically updated on a weekly basis. It currently includes ∼1,040,000 interactions between two polypeptide subunits (e.g. domains, peptides, termini and interdomain linkers), ∼43,000 RNA-mediated interactions, and ∼12,000 DNA-mediated interactions. All protein structures in the database are annotated using SCOP and SUPERFAMILY family annotation. As a result, protein-mediated interactions involving protein domains, interdomain linkers, C- and N- termini, and peptides are identified. Our database provides an intuitive web interface, allowing one to investigate interactions at three different resolution levels: whole subunit network

  14. Computational Framework for Prediction of Peptide Sequences That May Mediate Multiple Protein Interactions in Cancer-Associated Hub Proteins.

    Directory of Open Access Journals (Sweden)

    Debasree Sarkar

    Full Text Available A considerable proportion of protein-protein interactions (PPIs in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs, often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME were used to identify such peptides in three cancer-associated hub proteins-MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs. These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI

  15. Computational Framework for Prediction of Peptide Sequences That May Mediate Multiple Protein Interactions in Cancer-Associated Hub Proteins.

    Science.gov (United States)

    Sarkar, Debasree; Patra, Piya; Ghosh, Abhirupa; Saha, Sudipto

    2016-01-01

    A considerable proportion of protein-protein interactions (PPIs) in the cell are estimated to be mediated by very short peptide segments that approximately conform to specific sequence patterns known as linear motifs (LMs), often present in the disordered regions in the eukaryotic proteins. These peptides have been found to interact with low affinity and are able bind to multiple interactors, thus playing an important role in the PPI networks involving date hubs. In this work, PPI data and de novo motif identification based method (MEME) were used to identify such peptides in three cancer-associated hub proteins-MYC, APC and MDM2. The peptides corresponding to the significant LMs identified for each hub protein were aligned, the overlapping regions across these peptides being termed as overlapping linear peptides (OLPs). These OLPs were thus predicted to be responsible for multiple PPIs of the corresponding hub proteins and a scoring system was developed to rank them. We predicted six OLPs in MYC and five OLPs in MDM2 that scored higher than OLP predictions from randomly generated protein sets. Two OLP sequences from the C-terminal of MYC were predicted to bind with FBXW7, component of an E3 ubiquitin-protein ligase complex involved in proteasomal degradation of MYC. Similarly, we identified peptides in the C-terminal of MDM2 interacting with FKBP3, which has a specific role in auto-ubiquitinylation of MDM2. The peptide sequences predicted in MYC and MDM2 look promising for designing orthosteric inhibitors against possible disease-associated PPIs. Since these OLPs can interact with other proteins as well, these inhibitors should be specific to the targeted interactor to prevent undesired side-effects. This computational framework has been designed to predict and rank the peptide regions that may mediate multiple PPIs and can be applied to other disease-associated date hub proteins for prediction of novel therapeutic targets of small molecule PPI modulators. PMID

  16. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori.

    Science.gov (United States)

    Michielse, C B; Ram, A F J; Hooykaas, P J J; Hondel, C A M J J van den

    2004-05-01

    The Agrobacterium-mediated transformation of Aspergillus awamori was optimized using defined co-cultivation conditions, which resulted in a reproducible and efficient transformation system. Optimal co-cultivation conditions were used to study the role of Agrobacterium tumefaciens virulence proteins in T-DNA transfer. This study revealed that inactivation of either of the regulatory proteins (VirA, VirG), any of the transport pore proteins (VirB), proteins involved in generation of the T-strand (VirD, VirC) or T-strand protection and targeting (VirE2) abolishes or severely reduces the formation of transformants. The results indicate that the Agrobacterium-mediated transformation of A. awamori requires an intact T-DNA machinery for efficient transformation; however, the plant host range factors, like VirE3, VirH, and VirF, are not important. PMID:15050546

  17. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins

    OpenAIRE

    1982-01-01

    Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to r...

  18. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  19. Distinct Mechanisms Regulate ATGL-Mediated Adipocyte Lipolysis by Lipid Droplet Coat Proteins

    OpenAIRE

    Yang, Xingyuan; Heckmann, Bradlee L; Zhang, Xiaodong; Smas, Cynthia M.; Liu, Jun

    2012-01-01

    Adipose triglyceride lipase (ATGL) is the key triacylglycerol hydrolase in adipocytes. The precise mechanisms by which ATGL action is regulated by lipid droplet (LD) coat proteins and responds to hormonal stimulation are incompletely defined. By combining usage of loss- and gain-of-function approaches, we sought to determine the respective roles of perilipin 1 and fat-specific protein 27 (FSP27) in the control of ATGL-mediated lipolysis in adipocytes. Knockdown of endogenous perilipin 1 expre...

  20. Phospholipase D1 Mediates AMP-Activated Protein Kinase Signaling for Glucose Uptake

    OpenAIRE

    Jong Hyun Kim; Ji-Man Park; Kyungmoo Yea; Hyun Wook Kim; Pann-Ghill Suh; Sung Ho Ryu

    2010-01-01

    BACKGROUND: Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK) is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glu...

  1. Vacuolar Sorting Receptor-Mediated Trafficking of Soluble Vacuolar Proteins in Plant Cells

    Directory of Open Access Journals (Sweden)

    Hyangju Kang

    2014-08-01

    Full Text Available Vacuoles are one of the most prominent organelles in plant cells, and they play various important roles, such as degradation of waste materials, storage of ions and metabolites, and maintaining turgor. During the past two decades, numerous advances have been made in understanding how proteins are specifically delivered to the vacuole. One of the most crucial steps in this process is specific sorting of soluble vacuolar proteins. Vacuolar sorting receptors (VSRs, which are type I membrane proteins, are involved in the sorting and packaging of soluble vacuolar proteins into transport vesicles with the help of various accessory proteins. To date, large amounts of data have led to the development of two different models describing VSR-mediated vacuolar trafficking that are radically different in multiple ways, particularly regarding the location of cargo binding to, and release from, the VSR and the types of carriers utilized. In this review, we summarize current literature aimed at elucidating VSR-mediated vacuolar trafficking and compare the two models with respect to the sorting signals of vacuolar proteins, as well as the molecular machinery involved in VSR-mediated vacuolar trafficking and its action mechanisms.

  2. Iron Regulatory Proteins Mediate Host Resistance to Salmonella Infection.

    Science.gov (United States)

    Nairz, Manfred; Ferring-Appel, Dunja; Casarrubea, Daniela; Sonnweber, Thomas; Viatte, Lydie; Schroll, Andrea; Haschka, David; Fang, Ferric C; Hentze, Matthias W; Weiss, Guenter; Galy, Bruno

    2015-08-12

    Macrophages are essential for systemic iron recycling, and also control iron availability to pathogens. Iron metabolism in mammalian cells is orchestrated posttranscriptionally by iron-regulatory proteins (IRP)-1 and -2. Here, we generated mice with selective and combined ablation of both IRPs in macrophages to investigate the role of IRPs in controlling iron availability. These animals are hyperferritinemic but otherwise display normal clinical iron parameters. However, mutant mice rapidly succumb to systemic infection with Salmonella Typhimurium, a pathogenic bacterium that multiplies within macrophages, with increased bacterial burdens in liver and spleen. Ex vivo infection experiments indicate that IRP function restricts bacterial access to iron via the EntC and Feo bacterial iron-acquisition systems. Further, IRPs contain Salmonella by promoting the induction of lipocalin 2, a host antimicrobial factor that inhibits bacterial uptake of iron-laden siderophores, and by suppressing the ferritin iron pool. This work reveals the importance of the IRPs in innate immunity.

  3. High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder.

    Science.gov (United States)

    Peng, Zhenling; Kurgan, Lukasz

    2015-10-15

    Intrinsically disordered proteins and regions (IDPs and IDRs) lack stable 3D structure under physiological conditions in-vitro, are common in eukaryotes, and facilitate interactions with RNA, DNA and proteins. Current methods for prediction of IDPs and IDRs do not provide insights into their functions, except for a handful of methods that address predictions of protein-binding regions. We report first-of-its-kind computational method DisoRDPbind for high-throughput prediction of RNA, DNA and protein binding residues located in IDRs from protein sequences. DisoRDPbind is implemented using a runtime-efficient multi-layered design that utilizes information extracted from physiochemical properties of amino acids, sequence complexity, putative secondary structure and disorder and sequence alignment. Empirical tests demonstrate that it provides accurate predictions that are competitive with other predictors of disorder-mediated protein binding regions and complementary to the methods that predict RNA- and DNA-binding residues annotated based on crystal structures. Application in Homo sapiens, Mus musculus, Caenorhabditis elegans and Drosophila melanogaster proteomes reveals that RNA- and DNA-binding proteins predicted by DisoRDPbind complement and overlap with the corresponding known binding proteins collected from several sources. Also, the number of the putative protein-binding regions predicted with DisoRDPbind correlates with the promiscuity of proteins in the corresponding protein-protein interaction networks. Webserver: http://biomine.ece.ualberta.ca/DisoRDPbind/.

  4. High expression level of soluble SARS spike protein mediated by adenovirus in HEK293 cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhong; Zhen-Yu Zhong; Shuang Liang; Xiu-Jin Li

    2006-01-01

    AIM: To develop a highly efficacious method for preparation of soluble SARS S-protein using adenovirus vector to meet the requirement for S-protein investigation.METHODS: The human adenovirus vector was used to express the soluble S-protein (corresponding to 1~1190 amino acids) fused with Myc/His tag using codon-optimized gene construct in HEK239 cells. The recombinant adenovirus bearing S-protein gene was generated by ligation method. The expressed S-protein with Myc/His tag was purified from culture medium with Ni-NTA agarose beads followed by dialysis. The S-protein was detected by Western blot and its biologic activity was analyzed by binding to Vero cells.RESULTS: Under the conditions of infection dose (MOI of 50) and expression time (48 h), the high-level expression of S-protein was obtained. The expression level was determined to be approximately 75 μg/106cells after purification. Purified soluble S-protein was readily detected by Western blot with anti-Myc antibody and showed the ability to bind to surface of Vero cells,demonstrating that the soluble S-protein could remain the biologic activity in the native molecule.CONCLUSION: The high-level expression of S-protein in HEK293 cells mediated by adenovirus can be achieved under the optimized expression conditions. The proteins possess the biologic activity, which lays a foundation for further investigation of S-protein biological function.

  5. Residue 182 influences the second step of protein-tyrosine phosphatase-mediated catalysis

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Guo, X.; Møller, K.B.;

    2004-01-01

    Previous enzyme kinetic and structural studies have revealed a critical role for Asp(181) (PTP1B numbering) in PTP (protein-tyrosine phosphatase)-mediated catalysis. In the E-P (phosphoenzyme) formation step, Asp(181) functions as a general acid, while in the E-P hydrolysis step it acts as a gene...

  6. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P;

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...

  7. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori

    NARCIS (Netherlands)

    Michielse, C.B.; Ram, A.F.J.; Hooykaas, P.J.J.; Hondel, C.A.M.J.J. van den

    2004-01-01

    The Agrobacterium-mediated transformation of Aspergillus awamori was optimized using defined co-cultivation conditions, which resulted in a reproducible and efficient transformation system. Optimal co-cultivation conditions were used to study the role of Agrobacterium tumefaciens virulence proteins

  8. Visualizing virulence proteins and their translocation into the host during agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Sakalis, Philippe Alexandre

    2013-01-01

    The project focuses on visualizing Agrobacterium Mediated Transformation (AMT) of host cells by real time microscopy. With new visualization techniques the function of several proteins, which have recently been discovered in our lab to play a role during AMT, are studied.

  9. Statistical thermodynamics of membrane bending-mediated protein-protein attractions.

    OpenAIRE

    Chou, T; Kim, K. S.; Oster, G

    2001-01-01

    Highly wedge-shaped integral membrane proteins, or membrane-adsorbed proteins can induce long-ranged deformations. The strain in the surrounding bilayer creates relatively long-ranged forces that contribute to interactions with nearby proteins. In contrast, to direct short-ranged interactions such as van der Waal's, hydrophobic, or electrostatic interactions, both local membrane Gaussian curvature and protein ellipticity can induce forces acting at distances of up to a few times their typical...

  10. Bone morphogenetic protein 4 mediates human embryonic germ cell derivation.

    Science.gov (United States)

    Hiller, Marc; Liu, Cyndi; Blumenthal, Paul D; Gearhart, John D; Kerr, Candace L

    2011-02-01

    Human primordial germ cells (PGCs) have proven to be a source of pluripotent stem cells called embryonic germ cells (EGCs). Unlike embryonic stem cells, virtually little is known regarding the factors that regulate EGC survival and maintenance. In mice, the growth factor bone morphogenetic protein 4 (BMP4) has been shown to be required for maintaining mouse embryonic stem cells, and disruptions in this gene lead to defects in mouse PGC specification. Here, we sought to determine whether recombinant human BMP4 could influence EGC derivation and/or human PGC survival. We found that the addition of recombinant BMP4 increased the number of human PGCs after 1 week of culture in a dose-responsive manner. The efficiency of EGC derivation and maintenance in culture was also enhanced by the presence of recombinant BMP4 based on alkaline phosphatase and OCT4 staining. In addition, an antagonist of the BMP4 pathway, Noggin, decreased PGC proliferation and led to an increase in cystic embryoid body formation. Quantitative real-time (qRT)-polymerase chain reaction analyses and immunostaining confirmed that the constituents of the BMP4 pathway were upregulated in EGCs versus PGCs. Downstream activators of the BMP4 pathway such as ID1 and phosphorylated SMADs 1 and 5 were also expressed, suggesting a role of this growth factor in EGC pluripotency. PMID:20486775

  11. PDZ domain-mediated interactions of G protein-coupled receptors with postsynaptic density protein 95

    DEFF Research Database (Denmark)

    Møller, Thor C; Wirth, Volker F; Roberts, Nina Ingerslev;

    2013-01-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome. Their signaling is regulated by scaffold proteins containing PDZ domains, but although these interactions are important for GPCR function, they are still poorly understood. We here present...

  12. Ras protein participated in histone acetylation-mediated cell cycle control in Physarum polycephalum

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoxue; LU Jun; ZHAO Yanmei; WANG Xiuli; HUANG Baiqu

    2005-01-01

    In this paper, we demonstrate that in Physarum polycephalum, a naturally synchronized slime mold, histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), arrestes the cell cycle at the checkpoints of S/G2, G2/M and mitosis exit, and influences the transcription of two ras genes Ppras1 and Pprap1, as well as the Ras protein level. Antibody neutralization experiment using anti-Ras antibody treatment showed that Ras protein played an important role in cell cycle checkpoint control through regulation of the level of Cyclin B1, suggesting that Ras protein might be a key factor for histone acetylation-mediated cell cycle regulation in P. polycephalum.

  13. DMPD: Protein kinase C epsilon: a new target to control inflammation andimmune-mediated disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14643884 Protein kinase C epsilon: a new target to control inflammation andimmune-media...g) (.html) (.csml) Show Protein kinase C epsilon: a new target to control inflammation andimmune-mediated di...l inflammation andimmune-mediated disorders. Authors Aksoy E, Goldman M, Willems F. Publication Int J Bioche

  14. Protein Corona Modulates Uptake and Toxicity of Nanoceria via Clathrin-Mediated Endocytosis.

    Science.gov (United States)

    Mazzolini, Julie; Weber, Ralf J M; Chen, Hsueh-Shih; Khan, Abdullah; Guggenheim, Emily; Shaw, Robert K; Chipman, James K; Viant, Mark R; Rappoport, Joshua Z

    2016-08-01

    Particles present in diesel exhaust have been proposed as a significant contributor to the development of acute and chronic lung diseases, including respiratory infection and allergic asthma. Nanoceria (CeO2 nanoparticles) are used to increase fuel efficiency in internal combustion engines, are present in exhaust fumes, and could affect cells of the airway. Components from the environment such as biologically derived proteins, carbohydrates, and lipids can form a dynamic layer, commonly referred to as the "protein corona" which alters cellular nanoparticle interactions and internalization. Using confocal reflectance microscopy, we quantified nanoceria uptake by lung-derived cells in the presence and absence of a serum-derived protein corona. Employing mass spectrometry, we identified components of the protein corona, and demonstrated that the interaction between transferrin in the protein corona and the transferrin receptor is involved in mediating the cellular entry of nanoceria via clathrin-mediated endocytosis. Furthermore, under these conditions nanoceria does not affect cell growth, viability, or metabolism, even at high concentration. Alternatively, despite the antioxidant capacity of nanoceria, in serum-free conditions these nanoparticles induce plasma membrane disruption and cause changes in cellular metabolism. Thus, our results identify a specific receptor-mediated mechanism for nanoceria entry, and provide significant insight into the potential for nanoparticle-dependent toxicity.

  15. Computational Model for DNA Organization Mediated by Protein Interaction in Prokaryotes

    Science.gov (United States)

    Garimella, Karthik; Kharel, Savan

    2016-03-01

    In Escherichia Coli, there are several mechanisms that drive chromosomal organization. We know through experiments that the E. Coli chromosome is condensed into highly structured regions known as macrodomains (MDs). One of the regions known as the Terminus undergoes DNA-bridging condensation that form loops between distant DNA sites and it is known to be mediated by a Terminus specific protein, which binds to specific markers within the Terminus region. In the absence of Terminus specific protein, however, the Terminus region is known to not condense nearly as much, which will likely impede several biological processes including DNA replication. In order to understand the molecular basis of protein mediation in vivo several models of Terminus specific segregation have been constructed in silico which model DNA as polymer chains.

  16. Phytochemical-mediated Protein Expression Profiling and the Potential Applications in Therapeutic Drug Target Identifications.

    Science.gov (United States)

    Wong, Fai-Chu; Tan, Siok-Thing; Chai, Tsun-Thai

    2016-07-29

    Many phytochemicals derived from edible medicinal plants have been investigated intensively for their various bioactivities. However, the detailed mechanism and their corresponding molecular targets frequently remain elusive. In this review, we present a summary of the research works done on phytochemical-mediated molecular targets, identified via proteomic approach. Concurrently, we also highlighted some pharmaceutical drugs which could be traced back to their origins in phytochemicals. For ease of presentation, these identified protein targets were categorized into two important healthcare-related fields, namely anti-bacterial and anti-cancer research. Through this review, we hope to highlight the usefulness of comparative proteomic as a powerful tool in phytochemical-mediated protein target identifications. Likewise, we wish to inspire further investigations on some of these protein targets identified over the last few years. With contributions from all researchers, the accumulative efforts could eventually lead to the discovery of some target-specific, low-toxicity therapeutic agents. PMID:26193174

  17. Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes

    Indian Academy of Sciences (India)

    Natarajan Palaniappan; S Anbalagan; Sujatha Narayanan

    2012-03-01

    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are involved in M. tuberculosis–induced CD44 surface expression in monocytic cells are currently unknown. Exposure of THP-1 human monocytes to M. tuberculosis H37Rv and H37Ra induced distinct, time-dependent, phosphorylation of mitogen-activated protein kinase kinase-1, extracellular signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, p38 mitogen-activated protein kinase and c-jun N-terminal kinases. The strains also differed in their usage of CD14 and human leukocyte antigen-DR (HLA-DR) receptors in mediating mitogen-activated protein kinase activation. M. tuberculosis H37Rv strain induced lower CD44 surface expression and tumour necrosis factor-alpha levels, whereas H37Ra the reverse. Using highly specific inhibitors of mitogen-activated protein kinase kinase-1, p38 mitogen-activated protein kinase and c-jun N-terminal kinase, we report that inhibition of extracellular signal regulated kinase 1/2 and c-jun N-terminal kinases increases, but that inhibition of p38 mitogen-activated protein kinase decreases M. tuberculosis–induced CD44 surface expression in THP-1 human monocytes.

  18. Dynamic observation on IgG and its subclasses and IgE in sera of mice by immunization with mixed recombinant of BCG-Em Ⅱ/3 and BCG-Em14-3-3 vaccine of Echinococcus multilocularis%多房棘球绦虫混合重组BCG-Em Ⅱ/3和BCG-Em14-3-3疫苗免疫小鼠后IgG及其亚类和IgE的动态观察

    Institute of Scientific and Technical Information of China (English)

    李文桂; 王鸿; 朱佑明; 杨梅

    2009-01-01

    Objective To dynamically observe changes of IgG, its subclasses and IgE in sera of mice by immunization with mixed recombinant of BCG-Em Ⅱ/3 and BCG-Em14-3-3 vaccine of Echinococcus multilocularis (Era). Methods Forty Balb/c mice of 12-14 week old and 20-25 g weight were intranasally vaccinated by the vaccine, 4 mice were killed randomly by the weight on 0,2,4,6,8,10,12,14,16 and 18 weeks of immunization respectively, sera were gathered from the eyeball to measure IgG, its subclasses and IgE by routine ELISA. Results Levels of IgG, IgG2a and IgG2b in the sera of mice increased obviously on 2-18 weeks, reached the highest level on 10, 4 and 4 weeks respectively, the value was 0.095±0.033,0.022±0.001,0.023±0.003 respectively, as compared with the value on 0 week(0.030±0.013,0.012±0.004,0.013±0.004), the difference being statistically significant(q=2.95,4.87,2.81 respectively, P < 0.01 or P < 0.05); levels of IgG1, IgG3 and IgE in the sera of mice decreased remarkably on 2-18 weeks,came to the lowest level on 4,2,6 weeks respectively, the value was 0.031±0.004,0.136±0.002,0.114±0.002 respectively, as compared with the value on 0 week(0.192±0.007, 0.175±0.013,0.024±0.003), the difference being statistically significant (q =5.16,4.93,5.32 respectively, P < 0.01 or P < 0.05). Conclusion Helper T cell(TH) Ⅰ response is induced in mice by mixed recombinant of BCG-Em Ⅱ/3 and BCG-Em14-3-3 vaccine on early immunization.%目的 动态观察多房棘球绦虫混合重组BCG-Em Ⅱ/3和BCG-Em14-3-3疫苗免疫小鼠后IgG及其业类和IgE的变化.方法 12~14周龄、体质量20~25 g的雌性Balb/c小鼠40只,鼻腔内接种上述疫苗,在0、2、4、6、8、10、12、14、16和18周按体质量随机剖杀4只小鼠,经眼球取血,常规酶联免疫吸附试验法测定血清中IgG及其亚类和IgE水平.结果 Balb/c小鼠的血清IgG、IgG2a和IgG2b水平均在免疫后第2~18周升高,并分别在免疫后第10、4和4周达到

  19. Abrogation of TNF-mediated cytotoxicity by space flight involves protein kinase C

    Science.gov (United States)

    Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Experiments conducted on STS-50 indicated that space flight significantly inhibited tumor necrosis factor (TNF)-mediated killing of LM929 cells compared to ground controls. In ground-based studies, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also inhibited TNF-mediated killing of LM929 cells. Therefore, we used PKC inhibitors to determine if the inhibitory effects of spaceflight on TNF-mediated cytotoxicity involved the activation of PKC. In experiments conducted onboard space shuttle mission STS-54, we saw that in the presence of the protein kinase C inhibitors H7 and H8, TNF-mediated cytotoxicity was restored to levels of those observed in the ground controls. Subsequent experiments done during the STS-57 mission tested the dose response of two protein kinase inhibitors, H7 and HA1004. We again saw that killing was restored in a dose-dependent manner, with inhibitor concentrations known to inhibit PKC being most effective. These data suggest that space flight ameliorates the action of TNF by affecting PKC in target cells.

  20. Protein phosphatase 5 is necessary for ATR-mediated DNA repair

    International Nuclear Information System (INIS)

    Research highlights: → Serine/threonine protein phosphatase 5 (PP5) has been shown to participate in ataxia telangiectasia-mutated (ATM)- and ATR (ATM- and Rad3-related)-mediated checkpoint pathways, which plays an important role in the DNA damage response and maintenance of genomic stability. → However, it is not clear exactly how PP5 participates in this process. → Our results indicate that PP5 is more closely related with ATR-mediated pathway than ATM-mediated pathway in DNA damage repair. -- Abstract: Several recent studies have shown that protein phosphatase 5 (PP5) participates in cell cycle arrest after DNA damage, but its roles in DNA repair have not yet been fully characterized. We investigated the roles of PP5 in the repair of ultraviolet (UV)- and neocarzinostatin (NCS)-induced DNA damage. The results of comet assays revealed different repair patterns in UV- and NCS-exposed U2OS-PS cells. PP5 is only essential for Rad3-related (ATR)-mediated DNA repair. Furthermore, the phosphorylation of 53BP1 and BRCA1, important mediators of DNA damage repair, and substrates of ATR and ATM decreased in U2OS-PS cells exposed to UV radiation. In contrast, the cell cycle arrest proteins p53, CHK1, and CHK2 were normally phosphorylated in U2OS and U2OS-PS cells exposed to UV radiation or treated with NCS. In view of these results, we suggest that PP5 plays a crucial role in ATR-mediated repair of UV-induced DNA damage.

  1. Protein phosphatase 5 is necessary for ATR-mediated DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yoonsung [Department of Pharmacology, DNA Repair Research Center, Chosun University School of Medicine, 375 Seosuk-Dong, Gwangju 501-759 (Korea, Republic of); Cheong, Hyang-Min [Department of Life Science, College of Natural Science, Chung-Ang University, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Lee, Jung-Hee [Department of Pharmacology, DNA Repair Research Center, Chosun University School of Medicine, 375 Seosuk-Dong, Gwangju 501-759 (Korea, Republic of); Song, Peter I. [Department of Dermatology, University of Arkansas for Medical Science, 4301 West Markham, Slot 576, Little Rock, AR 72205 (Korea, Republic of); Lee, Kwang-Ho [Department of Life Science, College of Natural Science, Chung-Ang University, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Kim, Sang-Yong [Division of Endocrinology, Department of Internal Medicine, Chosun University School of Medicine, 375 Seosuk-Dong, Gwangju 501-759 (Korea, Republic of); Jun, Jae Yeoul [Department of Physiology, Chosun University School of Medicine, 375 Seosuk-Dong, Gwangju 501-759 (Korea, Republic of); You, Ho Jin, E-mail: hjyou@chosun.ac.kr [Department of Pharmacology, DNA Repair Research Center, Chosun University School of Medicine, 375 Seosuk-Dong, Gwangju 501-759 (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} Serine/threonine protein phosphatase 5 (PP5) has been shown to participate in ataxia telangiectasia-mutated (ATM)- and ATR (ATM- and Rad3-related)-mediated checkpoint pathways, which plays an important role in the DNA damage response and maintenance of genomic stability. {yields} However, it is not clear exactly how PP5 participates in this process. {yields} Our results indicate that PP5 is more closely related with ATR-mediated pathway than ATM-mediated pathway in DNA damage repair. -- Abstract: Several recent studies have shown that protein phosphatase 5 (PP5) participates in cell cycle arrest after DNA damage, but its roles in DNA repair have not yet been fully characterized. We investigated the roles of PP5 in the repair of ultraviolet (UV)- and neocarzinostatin (NCS)-induced DNA damage. The results of comet assays revealed different repair patterns in UV- and NCS-exposed U2OS-PS cells. PP5 is only essential for Rad3-related (ATR)-mediated DNA repair. Furthermore, the phosphorylation of 53BP1 and BRCA1, important mediators of DNA damage repair, and substrates of ATR and ATM decreased in U2OS-PS cells exposed to UV radiation. In contrast, the cell cycle arrest proteins p53, CHK1, and CHK2 were normally phosphorylated in U2OS and U2OS-PS cells exposed to UV radiation or treated with NCS. In view of these results, we suggest that PP5 plays a crucial role in ATR-mediated repair of UV-induced DNA damage.

  2. Methods for the Analysis of Protein Phosphorylation–Mediated Cellular Signaling Networks

    Science.gov (United States)

    White, Forest M.; Wolf-Yadlin, Alejandro

    2016-06-01

    Protein phosphorylation–mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.

  3. Tau protein

    DEFF Research Database (Denmark)

    Frederiksen, Jette Lautrup Battistini; Kristensen, Kim; Bahl, Jmc;

    2011-01-01

    Background: Tau protein has been proposed as biomarker of axonal damage leading to irreversible neurological impairment in MS. CSF concentrations may be useful when determining risk of progression from ON to MS. Objective: To investigate the association between tau protein concentration and 14......-3-3 protein in the cerebrospinal fluid (CSF) of patients with monosymptomatic optic neuritis (ON) versus patients with monosymptomatic onset who progressed to multiple sclerosis (MS). To evaluate results against data found in a complete literature review. Methods: A total of 66 patients with MS and/or ON from...... the Department of Neurology of Glostrup Hospital, University of Copenhagen, Denmark, were included. CSF samples were analysed for tau protein and 14-3-3 protein, and clinical and paraclinical information was obtained from medical records. Results: The study shows a significantly increased concentration of tau...

  4. Increasing the sensitivity of reverse phase protein arrays by antibody-mediated signal amplification

    Directory of Open Access Journals (Sweden)

    Brase Jan C

    2010-06-01

    Full Text Available Abstract Background Reverse phase protein arrays (RPPA emerged as a useful experimental platform to analyze biological samples in a high-throughput format. Different signal detection methods have been described to generate a quantitative readout on RPPA including the use of fluorescently labeled antibodies. Increasing the sensitivity of RPPA approaches is important since many signaling proteins or posttranslational modifications are present at a low level. Results A new antibody-mediated signal amplification (AMSA strategy relying on sequential incubation steps with fluorescently-labeled secondary antibodies reactive against each other is introduced here. The signal quantification is performed in the near-infrared range. The RPPA-based analysis of 14 endogenous proteins in seven different cell lines demonstrated a strong correlation (r = 0.89 between AMSA and standard NIR detection. Probing serial dilutions of human cancer cell lines with different primary antibodies demonstrated that the new amplification approach improved the limit of detection especially for low abundant target proteins. Conclusions Antibody-mediated signal amplification is a convenient and cost-effective approach for the robust and specific quantification of low abundant proteins on RPPAs. Contrasting other amplification approaches it allows target protein detection over a large linear range.

  5. Comparative mechanisms of protein transduction mediated by cell-penetrating peptides in prokaryotes.

    Science.gov (United States)

    Liu, Betty Revon; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2015-04-01

    Bacterial and archaeal cell envelopes are complex multilayered barriers that serve to protect these microorganisms from their extremely harsh and often hostile environments. Import of exogenous proteins and nanoparticles into cells is important for biotechnological applications in prokaryotes. In this report, we demonstrate that cell-penetrating peptides (CPPs), both bacteria-expressed nona-arginine peptide (R9) and synthetic R9 (SR9), are able to deliver noncovalently associated proteins or quantum dots into four representative species of prokaryotes: cyanobacteria (Synechocystis sp. PCC 6803), bacteria (Escherichia coli DH5α and Arthrobacter ilicis D-50), and archaea (Thermus aquaticus). Although energy-dependent endocytosis is generally accepted as a hallmark that distinguishes eukaryotes from prokaryotes, cellular uptake of uncomplexed green fluorescent protein (GFP) by cyanobacteria was mediated by classical endocytosis. Mechanistic studies revealed that macropinocytosis plays a critical and major role in CPP-mediated protein transduction in all four prokaryotes. Membrane damage was not observed when cyanobacterial cells were treated with R9/GFP complexes, nor was cytotoxicity detected when bacteria or archaea were treated with SR9/QD complexes in the presence of macropinocytic inhibitors. These results indicate that the uptake of protein is not due to a compromise of membrane integrity in cyanobacteria, and that CPP can be an effective and safe carrier for membrane trafficking in prokaryotic cells. Our investigation provides important new insights into the transport of exogenous proteins and nanoparticles across the complex membrane systems of prokaryotes.

  6. Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls

    Institute of Scientific and Technical Information of China (English)

    Qing Wei; Wenbin Zhou; Guangzhen Hu; Jiamian Wei; Hongquan Yang; Jirong Huang

    2008-01-01

    The heterotrimeric guanine nucleotide-binding protein (G-protein) has been demonstrated to mediate various signaling pathways in plants. However,its role in phytochrome A (phyA) signaling remains elusive. In this study,we discover a new phyA-mediated phenotype designated far-red irradiation (FR) preconditioned cell death,which occurs only in the hypocotyls of FR-grown seedlings following exposure to white light (WL). The cell death is mitigated in the Ga mutant gpal but aggravated in the Gβ mutant agbl in comparison with the wild type (WT),indicative of antagonistic roles of GPAI and AGB1 in the phyA-mediated cell-death pathway. Further investigation indicates that FR-induced accumulation of nonphotoconvertible protochlorophyllide (Pchlide633),which generates reactive oxygen species (ROS)on exposure to WL,is required for FR-preconditioned cell death. Moreover,ROS is mainly detected in chloroplasts using the fluorescent probe. Interestingly,the application of H2O2 to dark-grown seedlings results in a phenotype similar to FR-preconditioned cell death. This reveals that ROS is a critical mediator for the cell death. In addition,we observe that agbl is more sensitive to H2O2 than WT seedlings,indicating that the G-protein may also modify the sensitivity of the seedlings to ROS stress. Taking these results together,we infer that the G-protein may be involved in the phyA signaling pathway to regulate FR-preconditioned cell death of Arabidopsis hypocotyls.Apossible mechanism underlying the involvement of the G-protein in phyA signaling is discussed in this study.

  7. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Rui; Siegel, David; Ross, David, E-mail: david.ross@ucdenver.edu

    2014-10-15

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity.

  8. Thioflavin S (NSC71948) interferes with Bcl-2-associated athanogene (BAG-1)-mediated protein-protein interactions.

    Science.gov (United States)

    Sharp, Adam; Crabb, Simon J; Johnson, Peter W M; Hague, Angela; Cutress, Ramsey; Townsend, Paul A; Ganesan, A; Packham, Graham

    2009-11-01

    The C-terminal BAG domain is thought to play a key role in BAG-1-induced survival and proliferation by mediating protein-protein interactions, for example, with heat shock proteins HSC70 and HSP70, and with RAF-1 kinase. Here, we have identified thioflavin S (NSC71948) as a potential small-molecule chemical inhibitor of these interactions. NSC71948 inhibited the interaction of BAG-1 and HSC70 in vitro and decreased BAG-1:HSC70 and BAG-1:HSP70 binding in intact cells. NSC71948 also reduced binding between BAG-1 and RAF-1, but had no effect on the interaction between two unrelated proteins, BIM and MCL-1. NSC71948 functionally reversed the ability of BAG-1 to promote vitamin D3 receptor-mediated transactivation, an activity of BAG-1 that depends on HSC70/HSP70 binding, and reduced phosphorylation of p44/42 mitogen-activate protein kinase. NSC71948 can be used to stain amyloid fibrils; however, structurally related compounds, thioflavin T and BTA-1, had no effect on BAG-1:HSC70 binding, suggesting that structural features important for amyloid fibril binding and inhibition of BAG-1:HSC70 binding may be separable. We demonstrated that NSC71948 inhibited the growth of BAG-1 expressing human ZR-75-1 breast cancer cells and wild-type, but not BAG-1-deficient, mouse embryo fibroblasts. Taken together, these data suggest that NSC71948 may be a useful molecule to investigate the functional significance of BAG-1 C-terminal protein interactions. However, it is important to recognize that NSC71948 may exert additional "off-target" effects. Inhibition of BAG-1 function may be an attractive strategy to inhibit the growth of BAG-1-overexpressing cancers, and further screens of additional compound collections may be warranted.

  9. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases.

    Science.gov (United States)

    Gu, Zezong; Nakamura, Tomohiro; Lipton, Stuart A

    2010-06-01

    Overstimulation of N-methyl-D-aspartate (NMDA)-type glutamate receptors accounts, at least in part, for excitotoxic neuronal damage, potentially contributing to a wide range of acute and chronic neurologic diseases. Neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD), manifest deposits of misfolded or aggregated proteins, and result from synaptic injury and neuronal death. Recent studies have suggested that nitrosative stress due to generation of excessive nitric oxide (NO) can mediate excitotoxicity in part by triggering protein misfolding and aggregation, and mitochondrial fragmentation in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents a convergent signal pathway contributing to NO-induced protein misfolding and aggregation, compromised dynamics of mitochondrial fission-fusion process, thus leading to neurotoxicity. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence suggesting that NO contributes to protein misfolding and aggregation via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin, and mitochondrial fragmentation through beta-amyloid-related S-nitrosylation of dynamin-related protein-1. Moreover, we also discuss that inhibition of excessive NMDA receptor activity by memantine, an uncompetitive/fast off-rate (UFO) drug can ameliorate excessive production of NO, protein misfolding and aggregation, mitochondrial fragmentation, and neurodegeneration. PMID:20333559

  10. HaloTag protein-mediated specific labeling of living cells with quantum dots

    International Nuclear Information System (INIS)

    Quantum dots emerge as an attractive alternative to small molecule fluorophores as fluorescent tags for in vivo cell labeling and imaging. This communication presents a method for specific labeling of live cells using quantum dots. The labeling is mediated by HaloTag protein expressed at the cell surface which forms a stable covalent adduct with its ligand (HaloTag ligand). The labeling can be performed in one single step with quantum dot conjugates that are functionalized with HaloTag ligand, or in two steps with biotinylated HaloTag ligand first and followed by streptavidin coated quantum dots. Live cell fluorescence imaging indicates that the labeling is specific and takes place at the cell surface. This HaloTag protein-mediated cell labeling method should facilitate the application of quantum dots for live cell imaging

  11. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells.

    Science.gov (United States)

    Jackson, Nicole M; Ceresa, Brian P

    2016-08-15

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as a plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway. PMID:27381222

  12. The protein oxidation product 3,4-dihydroxyphenylalanine (DOPA) mediates oxidative DNA damage

    DEFF Research Database (Denmark)

    Morin, B; Davies, Michael Jonathan; Dean, R T

    1998-01-01

    of the present work was to investigate whether DOPA, and especially PB-DOPA, can mediate oxidative damage to DNA. We chose to generate PB-DOPA using mushroom tyrosinase, which catalyses the hydroxylation of tyrosine residues in protein. This permitted us to study the reactions of PB-DOPA in the virtual absence......A major product of hydroxy-radical addition to tyrosine is 3, 4-dihydroxyphenylalanine (DOPA) which has reducing properties. Protein-bound DOPA (PB-DOPA) has been shown to be a major component of the stable reducing species formed during protein oxidation under several conditions. The aim...... on the presence and on the concentration of transition metal ions, with copper being more effective than iron. The yields of 8oxodG and 5OHdC increased with DOPA concentration in proteins. Thus PB-DOPA was able to promote further radical-generating events, which then transferred damage to other biomolecules...

  13. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, K.A.; Toledo, S.P. (Univ. of California-San Diego, La Jolla (USA))

    1989-09-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of (3H)leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of (3H)aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons.

  14. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    International Nuclear Information System (INIS)

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of [3H]leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of [3H]aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons

  15. The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy

    OpenAIRE

    Burchell, Victoria S; Nelson, David E.; Sanchez-Martinez, Alvaro; Delgado-Camprubi, Marta; Ivatt, Rachael M; Pogson, Joe H.; Randle, Suzanne J.; Wray, Selina; Lewis, Patrick A.; Houlden, Henry; Abramov, Andrey Y; Hardy, John; Wood, Nicholas W; Whitworth, Alexander J.; Laman, Heike

    2013-01-01

    Compelling evidence indicates that two autosomal recessive Parkinson’s disease genes, PINK1 (PARK6) and Parkin (PARK2), co-operate to mediate the autophagic clearance of damaged mitochondria (mitophagy). Mutations in the F-box domain containing protein Fbxo7 (PARK15) also cause early onset autosomal recessive Parkinson’s disease by an unknown mechanism. Here we show that Fbxo7 participates in mitochondrial maintenance through direct interaction with PINK1 and Parkin and plays a role in Parkin...

  16. Heat-shock proteins in infection-mediated inflammation-induced tumorigenesis

    OpenAIRE

    Li Zihai; Goldstein Mark G

    2009-01-01

    Abstract Inflammation is a necessary albeit insufficient component of tumorigenesis in some cancers. Infectious agents directly implicated in tumorigenesis have been shown to induce inflammation. This process involves both the innate and adaptive components of the immune system which contribute to tumor angiogenesis, tumor tolerance and metastatic properties of neoplasms. Recently, heat-shock proteins have been identified as mediators of this inflammatory process and thus may provide a link b...

  17. Sortilin-Mediated Endocytosis Determines Levels of the Fronto-Temporal Dementia Protein, Progranulin

    DEFF Research Database (Denmark)

    Hu, Fenghua; Padukkavidana, Thihan; Vægter, Christian Bjerggaard;

    2010-01-01

    The most common inherited form of Fronto-Temporal Lobar Degeneration (FTLD) known stems from Progranulin (GRN) mutation, and exhibits TDP-43 plus ubiquitin protein aggregates in brain. Despite the causative role of GRN haploinsufficiency in FTLD-TDP, the neurobiology of this secreted glycoprotein......, and is fully normalized by Sort1 ablation. Sortilin-mediated PGRN endocytosis is likely to play a central role in FTLD-TDP pathophysiology...

  18. AMP-activated protein kinase (AMPK mediates nutrient regulation of thioredoxin-interacting protein (TXNIP in pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Maayan Shaked

    Full Text Available Thioredoxin-interacting protein (TXNIP regulates critical biological processes including inflammation, stress and apoptosis. TXNIP is upregulated by glucose and is a critical mediator of hyperglycemia-induced beta-cell apoptosis in diabetes. In contrast, the saturated long-chain fatty acid palmitate, although toxic to the beta-cell, inhibits TXNIP expression. The mechanisms involved in the opposing effects of glucose and fatty acids on TXNIP expression are unknown. We found that both palmitate and oleate inhibited TXNIP in a rat beta-cell line and islets. Palmitate inhibition of TXNIP was independent of fatty acid beta-oxidation or esterification. AMP-activated protein kinase (AMPK has an important role in cellular energy sensing and control of metabolic homeostasis; therefore we investigated its involvement in nutrient regulation of TXNIP. As expected, glucose inhibited whereas palmitate stimulated AMPK. Pharmacologic activators of AMPK mimicked fatty acids by inhibiting TXNIP. AMPK knockdown increased TXNIP expression in presence of high glucose with and without palmitate, indicating that nutrient (glucose and fatty acids effects on TXNIP are mediated in part via modulation of AMPK activity. TXNIP is transcriptionally regulated by carbohydrate response element-binding protein (ChREBP. Palmitate inhibited glucose-stimulated ChREBP nuclear entry and recruitment to the Txnip promoter, thereby inhibiting Txnip transcription. We conclude that AMPK is an important regulator of Txnip transcription via modulation of ChREBP activity. The divergent effects of glucose and fatty acids on TXNIP expression result in part from their opposing effects on AMPK activity. In light of the important role of TXNIP in beta-cell apoptosis, its inhibition by fatty acids can be regarded as an adaptive/protective response to glucolipotoxicity. The finding that AMPK mediates nutrient regulation of TXNIP may have important implications for the pathophysiology and treatment

  19. RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis.

    Science.gov (United States)

    Fujii, Shingo; Isogawa, Asako; Fuchs, Robert P

    2006-12-13

    When the replication fork moves through the template DNA containing lesions, daughter-strand gaps are formed opposite lesion sites. These gaps are subsequently filled-in either by translesion synthesis (TLS) or by homologous recombination. RecA filaments formed within these gaps are key intermediates for both of the gap-filling pathways. For instance, Pol V, the major lesion bypass polymerase in Escherichia coli, requires a functional interaction with the tip of the RecA filament. Here, we show that all three recombination mediator proteins RecFOR are needed to build a functionally competent RecA filament that supports efficient Pol V-mediated TLS in the presence of ssDNA-binding protein (SSB). A positive contribution of RecF protein to Pol V lesion bypass is demonstrated. When Pol III and Pol V are both present, Pol III imparts a negative effect on Pol V-mediated lesion bypass that is counteracted by the combined action of RecFOR and SSB. Mutations in recF, recO or recR gene abolish induced mutagenesis in E. coli. PMID:17139245

  20. Vascular endothelin ET(B) receptor-mediated contraction requires phosphorylation of ERK1/2 proteins

    DEFF Research Database (Denmark)

    Luo, Guogang; Jamali, Roya; Cao, Yong-Xiao;

    2006-01-01

    RNA and protein expressions. The endothelin ET(B) receptor-mediated contraction was associated with increase in phosphorylation of extracellular regulation kinase 1 and 2 (ERK1/2) proteins and elevated levels of intracellular calcium. The elevation curve of intracellular calcium consisted of two phases: one rapid...... and one sustained. Inhibition of ERK1/2 phosphorylation by SB386023 or blockage of calcium channels by nifedipine significantly reduced the endothelin ET(B) receptor-mediated contraction (P..., phosphorylation of ERK1/2 proteins and elevation of intracellular calcium level are required for endothelin ET(B) receptor-mediated contraction in rat mesenteric artery....

  1. Negative Regulation of STAT3 Protein-mediated Cellular Respiration by SIRT1 Protein

    DEFF Research Database (Denmark)

    Bernier, Michel; Paul, Rajib K; Martin-Montalvo, Alejandro;

    2011-01-01

    those of wild-type controls. Comparison of profiles of phospho-antibody array data indicated that the deletion of SirT1 was accompanied by constitutive activation of the pro-inflammatory NF-¿B pathway, which is key for STAT3 induction and increased cellular respiration in Sirt1-KO cells. Thus, SIRT1...... cells exhibited higher mitochondrial respiration as compared with wild-type MEFs. Two independent approaches, including ectopic expression of SIRT1 and siRNA-mediated knockdown of STAT3, led to reduction in intracellular ATP levels and increased lactate production in Sirt1-KO cells that were approaching...

  2. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    Science.gov (United States)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  3. Protein Kinase C-δ mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    International Nuclear Information System (INIS)

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta (ΔPKC-δ). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the ΔPKC-δ, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that ΔPKC-δ mediated the down-regulation of hnRNP K protein during apoptosis: PKC-δ inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-δ-deficient apoptotic KG1a cells; conditional induction of ΔPKC-δ in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of ΔPKC-δ. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-δ down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  4. BNIP3 and NIX mediate Mieap-induced accumulation of lysosomal proteins within mitochondria.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Nakamura

    Full Text Available Mieap, a p53-inducible protein, controls mitochondrial quality by repairing unhealthy mitochondria. During repair, Mieap induces the accumulation of intramitochondrial lysosomal proteins (designated MALM for Mieap-induced accumulation of lysosome-like organelles within mitochondria by interacting with NIX, leading to the elimination of oxidized mitochondrial proteins. Here, we report that an additional mitochondrial outer membrane protein, BNIP3, is also involved in MALM. BNIP3 interacts with Mieap in a reactive oxygen species (ROS-dependent manner via the BH3 domain of BNIP3 and the coiled-coil domains of Mieap. The knockdown of endogenous BNIP3 expression severely inhibited MALM. Although the overexpression of either BNIP3 or NIX did not cause a remarkable change in the mitochondrial membrane potential (MMP, the co-expression of all three exogenous proteins, Mieap, BNIP3 and NIX, caused a dramatic reduction in MMP, implying that the physical interaction of Mieap, BNIP3 and NIX at the mitochondrial outer membrane may regulate the opening of a pore in the mitochondrial double membrane. This effect was not related to cell death. These results suggest that two mitochondrial outer membrane proteins, BNIP3 and NIX, mediate MALM in order to maintain mitochondrial integrity. The physical interaction of Mieap, BNIP3 and NIX at the mitochondrial outer membrane may play a critical role in the translocation of lysosomal proteins from the cytoplasm to the mitochondrial matrix.

  5. The nuclear architectural protein HMGA1a triggers receptor-mediated endocytosis.

    Science.gov (United States)

    Wu, Wuwei; Wan, Wei; Li, Alexander D Q

    2009-11-01

    High mobility group proteins A (HMGA), nuclear architectural factors, locate in the cell nuclei and mostly execute gene-regulation function. However, our results reveal that a HMGA member (HMGA1a) has a unique plasma membrane receptor; this receptor specifically binds to HMGA-decorated species, effectively mediates endocytosis, and internalizes extracellular HMGA-functionalized cargoes. Indeed, dyes or nanoparticles labeled with HMGA1a protein readily enter Hela cells. Using a stratagem chemical cross-linker, we covalently bonded the HMGA receptor to the HMGA1a-GFP fusion protein, thus capturing the plasma membrane receptor. Subsequent Western blots and SDS-PAGE gel revealed that the HMGA receptor is a 26-kDa protein. Confocal live-cell microscopic imaging was used to monitor the whole endocytic process, in which the internalized HMGA1a-decorated species are transported by motor proteins on microtubules and eventually arrive at the late endosomes/lysosomes. Cell viability assays also suggested that extracellular HMGA1a protein directly influences the survival ability of Hela cells in a dose-dependent manner, implying versatility of HMGA1a protein and its potent role to suppress cancer cell survivability and to regulate growth. PMID:19739099

  6. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingyan Liu

    2015-10-01

    Full Text Available Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR-type resistance (R protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5, which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1 to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1, RPS4 (Resistance to P. syringae 4 and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1. Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses.

  7. Characterizing alpha helical properties of Ebola viral proteins as potential targets for inhibition of alpha-helix mediated protein-protein interactions.

    Science.gov (United States)

    Chakraborty, Sandeep; Rao, Basuthkar J; Asgeirsson, Bjarni; Dandekar, Abhaya

    2014-01-01

    Ebola, considered till recently as a rare and endemic disease, has dramatically transformed into a potentially global humanitarian crisis. The genome of Ebola, a member of the Filoviridae family, encodes seven proteins. Based on the recently implemented software (PAGAL) for analyzing the hydrophobicity and amphipathicity properties of alpha helices (AH) in proteins, we characterize the helices in the Ebola proteome. We demonstrate that AHs with characteristically unique features are involved in critical interactions with the host proteins. For example, the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain has an AH with a large hydrophobic moment. The neutralizing antibody (KZ52) derived from a human survivor of the 1995 Kikwit outbreak recognizes a protein epitope on this AH, emphasizing the critical nature of this secondary structure in the virulence of the Ebola virus. Our method ensures a comprehensive list of such `hotspots'. These helices probably are or can be the target of molecules designed to inhibit AH mediated protein-protein interactions. Further, by comparing the AHs in proteins of the related Marburg viruses, we are able to elicit subtle changes in the proteins that might render them ineffective to previously successful drugs. Such differences are difficult to identify by a simple sequence or structural alignment. Thus, analyzing AHs in the small Ebola proteome can aid rational design aimed at countering the `largest Ebola epidemic, affecting multiple countries in West Africa' ( http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html). PMID:25717367

  8. Multi-PAS domain-mediated protein oligomerization of PpsR from Rhodobacter sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Udo; Meinhart, Anton; Winkler, Andreas, E-mail: andreas.winkler@mpimf-heidelberg.mpg.de [Max Planck Institute for Medical Research, Heidelberg (Germany)

    2014-03-01

    Crystal structures of two truncated variants of the transcription factor PpsR from R. sphaeroides are presented that enabled the phasing of a triple PAS domain construct. Together, these structures reveal the importance of α-helical PAS extensions for multi-PAS domain-mediated protein oligomerization and function. Per–ARNT–Sim (PAS) domains are essential modules of many multi-domain signalling proteins that mediate protein interaction and/or sense environmental stimuli. Frequently, multiple PAS domains are present within single polypeptide chains, where their interplay is required for protein function. Although many isolated PAS domain structures have been reported over the last decades, only a few structures of multi-PAS proteins are known. Therefore, the molecular mechanism of multi-PAS domain-mediated protein oligomerization and function is poorly understood. The transcription factor PpsR from Rhodobacter sphaeroides is such a multi-PAS domain protein that, in addition to its three PAS domains, contains a glutamine-rich linker and a C-terminal helix–turn–helix DNA-binding motif. Here, crystal structures of two N-terminally and C-terminally truncated PpsR variants that comprise a single (PpsR{sub Q-PAS1}) and two (PpsR{sub N-Q-PAS1}) PAS domains, respectively, are presented and the multi-step strategy required for the phasing of a triple PAS domain construct (PpsR{sub ΔHTH}) is illustrated. While parts of the biologically relevant dimerization interface can already be observed in the two shorter constructs, the PpsR{sub ΔHTH} structure reveals how three PAS domains enable the formation of multiple oligomeric states (dimer, tetramer and octamer), highlighting that not only the PAS cores but also their α-helical extensions are essential for protein oligomerization. The results demonstrate that the long helical glutamine-rich linker of PpsR results from a direct fusion of the N-cap of the PAS1 domain with the C-terminal extension of the N-domain that

  9. Protein kinase C regulates tonic GABAA receptor-mediated inhibition in the hippocampus and thalamus

    Science.gov (United States)

    Bright, Damian P; Smart, Trevor G

    2013-01-01

    Tonic inhibition mediated by extrasynaptic GABAA receptors (GABAARs) is an important regulator of neuronal excitability. Phosphorylation by protein kinase C (PKC) provides a key mode of regulation for synaptic GABAARs underlying phasic inhibition; however, less attention has been focused on the plasticity of tonic inhibition and whether this can also be modulated by receptor phosphorylation. To address this issue, we used whole-cell patch clamp recording in acute murine brain slices at both room and physiological temperatures to examine the effects of PKC-mediated phosphorylation on tonic inhibition. Recordings from dentate gyrus granule cells in the hippocampus and dorsal lateral geniculate relay neurons in the thalamus demonstrated that PKC activation caused downregulation of tonic GABAAR-mediated inhibition. Conversely, inhibition of PKC resulted in an increase in tonic GABAAR activity. These findings were corroborated by experiments on human embryonic kidney 293 cells expressing recombinant α4β2δ GABAARs, which represent a key extrasynaptic GABAAR isoform in the hippocampus and thalamus. Using bath application of low GABA concentrations to mimic activation by ambient neurotransmitter, we demonstrated a similar inhibition of receptor function following PKC activation at physiological temperature. Live cell imaging revealed that this was correlated with a loss of cell surface GABAARs. The inhibitory effects of PKC activation on α4β2δ GABAAR activity appeared to be mediated by direct phosphorylation at a previously identified site on the β2 subunit, serine 410. These results indicate that PKC-mediated phosphorylation can be an important physiological regulator of tonic GABAAR-mediated inhibition. PMID:24102973

  10. Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes.

    Science.gov (United States)

    Lin, Clara S; Uboldi, Alessandro D; Epp, Christian; Bujard, Hermann; Tsuboi, Takafumi; Czabotar, Peter E; Cowman, Alan F

    2016-04-01

    Successful invasion of human erythrocytes byPlasmodium falciparummerozoites is required for infection of the host and parasite survival. The early stages of invasion are mediated via merozoite surface proteins that interact with human erythrocytes. The nature of these interactions are currently not well understood, but it is known that merozoite surface protein 1 (MSP1) is critical for successful erythrocyte invasion. Here we show that the peripheral merozoite surface proteins MSP3, MSP6, MSPDBL1, MSPDBL2, and MSP7 bind directly to MSP1, but independently of each other, to form multiple forms of the MSP1 complex on the parasite surface. These complexes have overlapping functions that interact directly with human erythrocytes. We also show that targeting the p83 fragment of MSP1 using inhibitory antibodies inhibits all forms of MSP1 complexes and disrupts parasite growthin vitro.

  11. The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth.

    Directory of Open Access Journals (Sweden)

    Alexandre Tromas

    Full Text Available BACKGROUND: In plants, the phytohormone auxin is a crucial regulator sustaining growth and development. At the cellular level, auxin is interpreted differentially in a tissue- and dose-dependent manner. Mechanisms of auxin signalling are partially unknown and the contribution of the AUXIN BINDING PROTEIN 1 (ABP1 as an auxin receptor is still a matter of debate. METHODOLOGY/PRINCIPAL FINDINGS: Here we took advantage of the present knowledge of the root biological system to demonstrate that ABP1 is required for auxin response. The use of conditional ABP1 defective plants reveals that the protein is essential for maintenance of the root meristem and acts at least on the D-type CYCLIN/RETINOBLASTOMA pathway to control entry into the cell cycle. ABP1 affects PLETHORA gradients and confers auxin sensitivity to root cells thus defining the competence of the cells to be maintained within the meristem or to elongate. ABP1 is also implicated in the regulation of gene expression in response to auxin. CONCLUSIONS/SIGNIFICANCE: Our data support that ABP1 is a key regulator for root growth and is required for auxin-mediated responses. Differential effects of ABP1 on various auxin responses support a model in which ABP1 is the major regulator for auxin action on the cell cycle and regulates auxin-mediated gene expression and cell elongation in addition to the already well known TIR1-mediated ubiquitination pathway.

  12. Cocaine potentiates astrocyte toxicity mediated by human immunodeficiency virus (HIV-1 protein gp120.

    Directory of Open Access Journals (Sweden)

    Yanjing Yang

    Full Text Available It is becoming widely accepted that psychoactive drugs, often abused by HIV-I infected individuals, can significantly alter the progression of neuropathological changes observed in HIV-associated neurodegenerative diseases (HAND. The underlying mechanisms mediating these effects however, remain poorly understood. In the current study, we explored whether the psychostimulant drug cocaine could exacerbate toxicity mediated by gp120 in rat primary astrocytes. Exposure to both cocaine and gp120 resulted in increased cell toxicity compared to cells treated with either factor alone. The combinatorial toxicity of cocaine and gp120 was accompanied by an increase in caspase-3 activation. In addition, increased apoptosis of astrocytes in the presence of both the agents was associated with a concomitant increase in the production of intracellular reactive oxygen species and loss of mitochondrial membrane potential. Signaling pathways including c-jun N-teminal kinase (JNK, p38, extracellular signal-regulated kinase (ERK/mitogen-activated protein kinases (MAPK, and nuclear factor (NF-κB were identified to be major players in cocaine and gp120-mediated apoptosis of astrocytes. Our results demonstrated that cocaine-mediated potentiation of gp120 toxicity involved regulation of oxidative stress, mitochondrial membrane potential and MAPK signaling pathways.

  13. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro [Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603 (Japan); Imagawa, Masayoshi, E-mail: imagawa@phar.nagoya-cu.ac.jp [Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603 (Japan)

    2009-12-18

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  14. Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex.

    OpenAIRE

    Helmstetter, Fred J.

    2013-01-01

    The cellular mechanisms supporting plasticity during memory consolidation have been a subject of considerable interest. De novo protein and mRNA synthesis in several brain areas are critical, and more recently protein degradation, mediated by the ubiquitin-proteasome system (UPS), has been shown to be important. Previous work clearly establishes a relationship between protein synthesis and protein degradation in the amygdala, but it is unclear whether cortical mechanisms of memory consolidati...

  15. Protein Kinase Cδ mediates the activation of Protein Kinase D2 in Platelets

    OpenAIRE

    Bhavanasi, Dheeraj; Kim, Soochong; Goldfinger, Lawrence E.; Kunapuli, Satya P.

    2011-01-01

    Protein Kinase D (PKD) is a subfamily of serine/threonine specific family of kinases, comprised of PKD1, PKD2 and PKD3 (PKCμ, PKD2 and PKCν in humans). It is known that PKCs activate PKD, but the relative expression of isoforms of PKD or the specific PKC isoform/s responsible for its activation in platelets is not known. This study is aimed at investigating the pathway involved in activation of PKD in platelets. We show that PKD2 is the major isoform of PKD that is expressed in human as well ...

  16. Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. Reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. Reinhardtii.

  17. Efficient expression of green fluorescent protein (GFP) mediated by a chimeric promoter in Chlamydomonas reinhardtii

    Science.gov (United States)

    Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping

    2008-08-01

    To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.

  18. Heat shock protein 90 is involved in IL-17-mediated skin inflammation following thermal stimulation.

    Science.gov (United States)

    Kim, Bo-Kyung; Park, Minhwa; Kim, Ji-Yon; Lee, Kyung-Ho; Woo, So-Youn

    2016-08-01

    The pathogenesis of inflammatory skin diseases involves interactions between immune cells and keratinocytes, including the T helper 17 (Th17)-mediated immune response. Several chemokines [chemokine (C-X-C motif) ligand (CXCL)1, CXCL5 and CXCL8] and antimicrobial peptides [β-defensin 1 (BD1), LL-37, S100A8 and S100A9] were transcriptionally upregulated in the keratinocyte cell line HaCaT upon stimulation with interleukin (IL)-17. Balneotherapy, the treatment of disease by bathing, is an alternative therapy that has frequently been used for the treatment of inflammatory skin diseases. Immersion in pools of thermal mineral water is often considered to have chemical, thermal, mechanical and immunomodulatory benefits. We examined the effect of thermal treatment on IL-17-mediated inflammation in a model of skin disease. As Act1 is required for IL-17 signaling and is a client protein of heat shock protein 90 (HSP90), we evaluated the effect of HSP90 inhibition on IL-17-mediated cytokine and antimicrobial peptide expression in keratinocytes following heat treatment. We found that after thermal stimulation, Act1 binding to HSP90α was significantly increased in the presence of IL-17 (100 ng/ml) and 17-N-allylamino-17-demethoxygeldanamycin (17-AAG, 1 µM). Antimicrobial peptide and chemokine expression generally increased after heat treatment; Act1 knockdown and 17‑AAG reversed this effect. These observations demonstrate the possible immunomodulatory effect of heat on keratinocytes during the progression of IL-17-mediated inflammatory skin diseases. PMID:27279135

  19. Protein phosphatase 2A mediates resensitization of the neurokinin 1 receptor.

    Science.gov (United States)

    Murphy, Jane E; Roosterman, Dirk; Cottrell, Graeme S; Padilla, Benjamin E; Feld, Micha; Brand, Eva; Cedron, Wendy J; Bunnett, Nigel W; Steinhoff, Martin

    2011-10-01

    Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with β-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK(1)R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK(1)R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca(2+) signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK(1)R. SP induced association of β-arrestin1 and PP2A with noninternalized NK(1)R. β-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK(1)R with PP2A, indicating that β-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping β-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK(1)R with PP2A. Resensitization of NK(1)R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK(1)R and mediates resensitization. PP2A interaction with NK(1)R requires β-arrestin1. ECE-1 promotes this process by releasing β-arrestin1 from NK(1)R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs.

  20. Cell-Surface Receptors Transactivation Mediated by G Protein-Coupled Receptors

    Directory of Open Access Journals (Sweden)

    Fabio Cattaneo

    2014-10-01

    Full Text Available G protein-coupled receptors (GPCRs are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors

  1. Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cells.

    Science.gov (United States)

    Bravo-Angel, A M; Gloeckler, V; Hohn, B; Tinland, B

    1999-09-01

    Agrobacterium tumefaciens transfers T-DNA to plant cells, where it integrates into the genome, a property that is ensured by bacterial proteins VirD2 and VirE2. Under natural conditions, the protein MobA mobilizes its encoding plasmid, RSF1010, between different bacteria. A detailed analysis of MobA-mediated DNA mobilization by Agrobacterium to plants was performed. We compared the ability of MobA to transfer DNA and integrate it into the plant genome to that of pilot protein VirD2. MobA was found to be about 100-fold less efficient than VirD2 in conducting the DNA from the pTi plasmid to the plant cell nucleus. However, interestingly, DNAs transferred by the two proteins were integrated into the plant cell genome with similar efficiencies. In contrast, most of the integrated DNA copies transferred from a MobA-containing strain were truncated at the 5' end. Isolation and analysis of the most conserved 5' ends revealed patterns which resulted from the illegitimate integration of one transferred DNA within another. These complex integration patterns indicate a specific deficiency in MobA. The data conform to a model according to which efficiency of T-DNA integration is determined by plant enzymes and integrity is determined by bacterial proteins. PMID:10482518

  2. IgE-mediated soy protein sensitization in children with cow`s milk allergy

    Directory of Open Access Journals (Sweden)

    Agustina Santi

    2012-02-01

    Full Text Available Background Soy-based formula as an alternative to cow’s milk formula is preferable to extensively hydrolyzed protein formula because of the lower cost and more acceptable taste. However, cow’s milk allergy patients can subsequently develop a sensitivity to soy protein. Objective To compare soy protein sensitization in children with and without an allergy to cow’s milk. Methods This study was conducted in Yogyakarta from September 2007 until March 2008. Subjects were children aged below 4 years with an atopic history. Subjects were divided into 2 groups: those with a positive skin prick test to cow’s milk and those with a negative skin prick test to cow’s milk (control group. Both groups were given soy formula and tested at 6 weeks for sensitization to soy. Results There were 45 children in each group. Age, sex, and atopic history were similar in both groups. We found no soy protein sensitization (negative skin prick results in all subjects from both groups. Conclusion Risk of immunoglobulin E-mediated sensitization to soy protein was not proven in children with cow’s milk allergy. [Paediatr Indones. 2012;52:67-71].

  3. Nanodiamond-Mediated Intercellular Transport of Proteins through Membrane Tunneling Nanotubes.

    Science.gov (United States)

    Epperla, Chandra Prakash; Mohan, Nitin; Chang, Che-Wei; Chen, Chia-Chun; Chang, Huan-Cheng

    2015-12-01

    Recently discovered tunneling nanotubes (TNTs) are capable of creating intercellular communication pathways through which transport of proteins and other cytoplasmic components occurs. Intercellular transport is related to many diseases and nanotubes are potentially useful as drug-delivery channels for cancer therapy. Here, we apply fluorescent nanodiamond (FND) as a photostable tracker, as well as a protein carrier, to illustrate the transport events in TNTs of human cells. Proteins, including bovine serum albumin and green fluorescent protein, are first coated on 100-nm FNDs by physical adsorption and then single-particle tracking of the bioconjugates in the transient membrane connections is carried out by fluorescence microscopy. Stop-and-go and to-and-fro motions mediated by molecular motors are found for the active transport of protein-loaded FNDs trapped in the endosomal vehicles of human embryonic kidney cells (HEK293T). Quantitative analysis of the heterotypical transport between HEK293T and SH-SY5Y neuroblastoma cells by flow cytometry confirm the formation of open-ended nanotubes between them, despite that their TNTs differ in structural components. Our results demonstrate the promising applications of this novel carbon-based nanomaterial for intercellular delivery of biomolecular cargo down to the single-particle level.

  4. Poly(A)-binding-protein-mediated regulation of hDcp2 decapping in vitro

    OpenAIRE

    Khanna, Richie; Kiledjian, Megerditch

    2004-01-01

    Regulation of mRNA decapping is a critical determinant for gene expression. We demonstrate that the poly(A) tail-mediated regulation of mRNA decapping observed in humans can be recapitulated in vitro by the cytoplasmic poly(A)-binding protein PABP through a direct and specific binding to the 5′ end of capped mRNA. The specific association of PABP with the cap occurred only within the context of the RNA whereby a cap attached to an RNA moiety served as the high-affinity substrate but not the c...

  5. Modulation of breast cancer resistance protein mediated atypical multidrug resistance using RNA interference delivered by adenovirus

    Institute of Scientific and Technical Information of China (English)

    LI Wen-tong; ZHOU Geng-yin; WANG Chun-ling; GUO Cheng-hao; SONG Xian-rang; CHI Wei-ling

    2005-01-01

    @@ Clinical multidrug resistance (MDR) of malignancies to many antineoplastic agents is the major obstacle in the successful treatment of cancer. The emergence of breast cancer resistance protein (BCRP), a member of the adenosine triphosphate (ATP) binding cassette (ABC) transporter family, has necessitated the development of antagonists. To overcome the BCRP-mediated atypical MDR, RNA interference (RNAi) delivered by adenovirus targeting BCRP mRNA was used to inhibit the atypical MDR expression by infecting MCF-7/MX100 cell lines with constructed RNAi adenovirus.

  6. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Directory of Open Access Journals (Sweden)

    Andreas K Brödel

    Full Text Available Internal ribosome entry site (IRES elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR of the Cricket paralysis virus (CrPV genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established

  7. Nitric oxide-mediated protein modification in cardiovascular physiology and pathology.

    Science.gov (United States)

    Gödecke, Axel; Schrader, Jürgen; Reinartz, Michael

    2008-06-01

    Nitric oxide (NO) is a key regulator of cardiovascular functions including the control of vascular tone, anti-inflammatory properties of the endothelium, cardiac contractility, and thrombocyte activation and aggregation. Numerous experimental data support the view that NO not only acts via cyclic guanosine monophosphate (cGMP)-dependent mechanisms but also modulates protein function by nitrosation, nitrosylation, glutathiolation, and nitration, respectively. To understand how NO regulates all of these diverse biological processes on the molecular level a comprehensive assessment of NO-mediated cGMP-dependent and independent targets is required. Novel proteomic approaches allow the simultaneous identification of large quantities of proteins modified in an NO-dependent manner and thereby will considerably deepen our understanding of the role NO plays in cardiovascular physiology and pathophysiology.

  8. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    Science.gov (United States)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  9. Ret finger protein mediates Pax7-induced ubiquitination of MyoD in skeletal muscle atrophy.

    Science.gov (United States)

    Joung, Hosouk; Eom, Gwang Hyeon; Choe, Nakwon; Lee, Hye Mi; Ko, Jeong-Hyeon; Kwon, Duk-Hwa; Nam, Yoon Seok; Min, Hyunki; Shin, Sera; Kook, Jeewon; Cho, Young Kuk; Kim, Jeong Chul; Seo, Sang Beom; Baik, Yung Hong; Nam, Kwang-Il; Kook, Hyun

    2014-10-01

    Skeletal muscle atrophy results from the net loss of muscular proteins and organelles and is caused by pathologic conditions such as nerve injury, immobilization, cancer, and other metabolic diseases. Recently, ubiquitination-mediated degradation of skeletal-muscle-specific transcription factors was shown to be involved in muscle atrophy, although the mechanisms have yet to be defined. Here we report that ret finger protein (RFP), also known as TRIM27, works as an E3 ligase in Pax7-induced degradation of MyoD. Muscle injury induced by sciatic nerve transection up-regulated RFP and RFP physically interacted with both Pax7 and MyoD. RFP and Pax7 synergistically reduced the protein amounts of MyoD but not the mRNA. RFP-induced reduction of MyoD protein was blocked by proteasome inhibitors. The Pax7-induced reduction MyoD was attenuated by RFP siRNA and by MG132, a proteasome inhibitor. RFPΔR, an RFP construct that lacks the RING domain, failed to reduce MyoD amounts. RFP ubiquitinated MyoD, but RFPΔR failed to do so. Forced expression of RFP, but not RFPΔR, enhanced Pax7-induced ubiquitination of MyoD, whereas RFP siRNA blocked the ubiquitination. Sciatic nerve injury-induced muscle atrophy as well the reduction in MyoD was attenuated in RFP knockout mice. Taken together, our results show that RFP works as a novel E3 ligase in the Pax7-mediated degradation of MyoD in response to skeletal muscle atrophy. PMID:25025573

  10. Cobalt(III)-Mediated Permanent and Stable Immobilization of Histidine-Tagged Proteins on NTA-Functionalized Surfaces.

    Science.gov (United States)

    Wegner, Seraphine V; Schenk, Franziska C; Spatz, Joachim P

    2016-02-24

    We present the cobalt(III)-mediated interaction between polyhistidine (His)-tagged proteins and nitrilotriacetic acid (NTA)-modified surfaces as a general approach for a permanent, oriented, and specific protein immobilization. In this approach, we first form the well-established Co(2+) -mediated interaction between NTA and His-tagged proteins and subsequently oxidize the Co(2+) center in the complex to Co(3+) . Unlike conventionally used Ni(2+) - or Co(2+) -mediated immobilization, the resulting Co(3+) -mediated immobilization is resistant toward strong ligands, such as imidazole and ethylenediaminetetraacetic acid (EDTA), and washing off over time because of the high thermodynamic and kinetic stability of the Co(3+) complex. This immobilization method is compatible with a wide variety of surface coatings, including silane self-assembled monolayers (SAMs) on glass, thiol SAMs on gold surfaces, and supported lipid bilayers. Furthermore, once the cobalt center has been oxidized, it becomes inert toward reducing agents, specific and unspecific interactions, so that it can be used to orthogonally functionalize surfaces with multiple proteins. Overall, the large number of available His-tagged proteins and materials with NTA groups make the Co(3+) -mediated interaction an attractive and widely applicable platform for protein immobilization.

  11. Tau Protein Mediates APP Intracellular Domain (AICD-Induced Alzheimer's-Like Pathological Features in Mice.

    Directory of Open Access Journals (Sweden)

    Kaushik Ghosal

    Full Text Available Amyloid precursor protein (APP is cleaved by gamma-secretase to simultaneously generate amyloid beta (Aβ and APP Intracellular Domain (AICD peptides. Aβ plays a pivotal role in Alzheimer's disease (AD pathogenesis but recent studies suggest that amyloid-independent mechanisms also contribute to the disease. We previously showed that AICD transgenic mice (AICD-Tg exhibit AD-like features such as tau pathology, aberrant neuronal activity, memory deficits and neurodegeneration in an age-dependent manner. Since AD is a tauopathy and tau has been shown to mediate Aβ-induced toxicity, we examined the role of tau in AICD-induced pathological features. We report that ablating endogenous tau protects AICD-Tg mice from deficits in adult neurogenesis, seizure severity, short-term memory deficits and neurodegeneration. Deletion of tau restored abnormal phosphorylation of NMDA receptors, which is likely to underlie hyperexcitability and associated excitotoxicity in AICD-Tg mice. Conversely, overexpression of wild-type human tau aggravated receptor phosphorylation, impaired adult neurogenesis, memory deficits and neurodegeneration. Our findings show that tau is essential for mediating the deleterious effects of AICD. Since tau also mediates Aβ-induced toxic effects, our findings suggest that tau is a common downstream factor in both amyloid-dependent and-independent pathogenic mechanisms and therefore could be a more effective drug target for therapeutic intervention in AD.

  12. FGF21-Mediated Improvements in Glucose Clearance Require Uncoupling Protein 1

    Directory of Open Access Journals (Sweden)

    Michelle M. Kwon

    2015-11-01

    Full Text Available Fibroblast growth factor 21 (FGF21-mediated weight loss and improvements in glucose metabolism correlate with increased uncoupling protein 1 (Ucp1 levels in adipose tissues, suggesting that UCP1-dependent thermogenesis may drive FGF21 action. It was reported that FGF21 is equally effective at reducing body weight and improving glucose homeostasis without UCP1. We find while FGF21 can lower body weight in both wild-type and Ucp1 knockout mice, rapid clearance of glucose by FGF21 is defective in the absence of UCP1. Furthermore, in obese wild-type mice there is a fall in brown adipose tissue (BAT temperature during glucose excursion, and FGF21 improves glucose clearance while preventing the fall in BAT temperature. In Ucp1 knockout mice, the fall in BAT temperature during glucose excursion and FGF21-mediated changes in BAT temperature are lost. We conclude FGF21-mediated improvements in clearance of a glucose challenge require UCP1 and evoke UCP1-dependent thermogenesis as a method to increase glucose disposal.

  13. Environmental stress-mediated changes in transcriptional and translational regulation of protein synthesis in crop plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The research described in this final report focused on the influence of stress agents on protein synthesis in crop plants (primarily soybean). Investigations into the `heat shock` (HS) stress mediated changes in transcriptional and translocational regulation of protein synthesis coupled with studies on anaerobic water deficit and other stress mediated alterations in protein synthesis in plants provided the basis of the research. Understanding of the HS gene expression and function(s) of the HSPs may clarify regulatory mechanisms operative in development. Since the reproductive systems of plants if often very temperature sensitive, it may be that the system could be manipulated to provide greater thermotolerance.

  14. SET9-Mediated Regulation of TGF-β Signaling Links Protein Methylation to Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Maximilianos Elkouris

    2016-06-01

    Full Text Available TGF-β signaling regulates a variety of cellular processes, including proliferation, apoptosis, differentiation, immune responses, and fibrogenesis. Here, we describe a lysine methylation-mediated mechanism that controls the pro-fibrogenic activity of TGF-β. We find that the methyltransferase Set9 potentiates TGF-β signaling by targeting Smad7, an inhibitory downstream effector. Smad7 methylation promotes interaction with the E3 ligase Arkadia and, thus, ubiquitination-dependent degradation. Depletion or pharmacological inhibition of Set9 results in elevated Smad7 protein levels and inhibits TGF-β-dependent expression of genes encoding extracellular matrix components. The inhibitory effect of Set9 on TGF-β-mediated extracellular matrix production is further demonstrated in mouse models of pulmonary fibrosis. Lung fibrosis induced by bleomycin or Ad-TGF-β treatment was highly compromised in Set9-deficient mice. These results uncover a complex regulatory interplay among multiple Smad7 modifications and highlight the possibility that protein methyltransferases may represent promising therapeutic targets for treating lung fibrosis.

  15. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ming V. [Program of Cardiovascular Sciences, Houston, TX 77030 (United States); Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Chen, Weiqin [Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Harmancey, Romain N. [Division of Cardiology, The University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip [Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Taegtmeyer, Heinrich [Division of Cardiology, The University of Texas Health Science Center at Houston, Houston, TX 77030 (United States); Chan, Lawrence, E-mail: lchan@bcm.tmc.edu [Program of Cardiovascular Sciences, Houston, TX 77030 (United States); Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); St. Luke' s Episcopal Hospital, Houston, TX 77030 (United States)

    2010-05-07

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  16. 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase

    Directory of Open Access Journals (Sweden)

    Lin Yu-Hsin

    2010-04-01

    Full Text Available Abstract Photodynamic therapy (PDT has been developed as an anticancer treatment, which is based on the tumor-specific accumulation of a photosensitizer that induces cell death after irradiation of light with a specific wavelength. Depending on the subcellular localization of the photosensitizer, PDT could trigger various signal transduction cascades and induce cell death such as apoptosis, autophagy, and necrosis. In this study, we report that both AMP-activated protein kinase (AMPK and mitogen-activated protein kinase (MAPK signaling cascades are activated following 5-aminolevulinic acid (ALA-mediated PDT in both PC12 and CL1-0 cells. Although the activities of caspase-9 and -3 are elevated, the caspase inhibitor zVAD-fmk did not protect cells against ALA-PDT-induced cell death. Instead, autophagic cell death was found in PC12 and CL1-0 cells treated with ALA-PDT. Most importantly, we report here for the first time that it is the activation of AMPK, but not MAPKs that plays a crucial role in mediating autophagic cell death induced by ALA-PDT. This novel observation indicates that the AMPK pathway play an important role in ALA-PDT-induced autophagy.

  17. Heat shock protein 90β: A novel mediator of vitamin D action

    International Nuclear Information System (INIS)

    We investigated the role of Heat shock protein 90 (Hsp90) in vitamin D action in Caco-2 cells using geldanamycin (GA) to block Hsp90 function and RNA interference to reduce Hsp90β expression. When cells were exposed to GA, vitamin D-mediated gene expression and transcriptional activity were inhibited by 69% and 54%, respectively. Gel shift analysis indicated that GA reduced vitamin D-mediated DNA binding activity of the vitamin D receptor (VDR). We tested the specific role of Hsp90β by knocking down its expression with stably expressed short hairpin RNA. Vitamin D-induced gene expression and transcriptional activity were reduced by 90% and 80%, respectively, in Hsp90β-deficient cells. Nuclear protein for VDR and RXRα, its heterodimer partner, were not reduced in Hsp90β-deficient cells. These findings indicate that Hsp90β is needed for optimal vitamin D responsiveness in the enterocyte and demonstrate a specific role for Hsp90β in VDR signaling

  18. THE SURFACE-MEDIATED UNFOLDING KINETICS OF GLOBULAR PROTEINS IS DEPENDENT ON MOLECULAR WEIGHT AND TEMPERATURE

    Energy Technology Data Exchange (ETDEWEB)

    Patananan, A.N.; Goheen, S.C.

    2008-01-01

    The adsorption and unfolding pathways of proteins on rigid surfaces are essential in numerous complex processes associated with biomedical engineering, nanotechnology, and chromatography. It is now well accepted that the kinetics of unfolding are characterized by chemical and physical interactions dependent on protein deformability and structure, as well as environmental pH, temperature, and surface chemistry. Although this fundamental process has broad implications in medicine and industry, little is known about the mechanism because of the atomic lengths and rapid time scales involved. Therefore, the unfolding kinetics of myoglobin, β-glucosidase, and ovalbumin were investigated by adsorbing the globular proteins to non-porous cationic polymer beads. The protein fractions were adsorbed at different residence times (0, 9, 10, 20, and 30 min) at near-physiological conditions using a gradient elution system similar to that in high-performance liquid chromatography. The elution profi les and retention times were obtained by ultraviolet/visible spectrophotometry. A decrease in recovery was observed with time for almost all proteins and was attributed to irreversible protein unfolding on the non-porous surfaces. These data, and those of previous studies, fi t a positively increasing linear trend between percent unfolding after a fi xed (9 min) residence time (71.8%, 31.1%, and 32.1% of myoglobin, β-glucosidase, and ovalbumin, respectively) and molecular weight. Of all the proteins examined so far, only myoglobin deviated from this trend with higher than predicted unfolding rates. Myoglobin also exhibited an increase in retention time over a wide temperature range (0°C and 55°C, 4.39 min and 5.74 min, respectively) whereas ovalbumin and β-glucosidase did not. Further studies using a larger set of proteins are required to better understand the physiological and physiochemical implications of protein unfolding kinetics. This study confi rms that surface-mediated

  19. PAS domain of the deduced Org35 protein mediates the interaction with NifA

    Institute of Scientific and Technical Information of China (English)

    TU Ran; CUI Yanhua; CHEN Sanfeng; LI Jilun

    2006-01-01

    NifA in Azospirillum brasilense plays a key role in regulating the synthesis of nitrogenase in response to ammonia and oxygen available. Recently,our laboratory has identified four clones, whose gene prodcuts interact with NifA, from A. brasilense Sp7genomic libraries by using the yeast two-hybrid system with NifA as bait. We are interested in clone S35,one of the four clones, because it contains a PAS-domain coding region. The entire open reading frame (ORF) for the PAS domain-containing protein was isolated and designated as org35 here. org35gene is 2211-bp long and encodes a protein of 736aa with a predicted molecular weight of about 78.4 kD.The predicted amino acid sequence of org35 has similarity to some two-component sensor kinase/response regulator hybrids of bacteria. Structural analyses showed that Org35 comprises at least three discrete conserved domains: the N-terminal PAS, the central histidine protein kinase (HPK) and the C-terminal response regulator (RR). The PAS domain of the deduced Org35 protein was found to interact directly with NifA, but the central HPK and the C-terminal RR domains of Org35 were not. These results indicated that interaction between NifA and Org35 was mediated by PAS domain.

  20. Urea-mediated cross-presentation of soluble Epstein-Barr virus BZLF1 protein.

    Directory of Open Access Journals (Sweden)

    Sascha Barabas

    2008-11-01

    Full Text Available Soluble extracellular proteins usually do not enter the endogenous human leukocyte antigen (HLA I-dependent presentation pathway of antigen-presenting cells, strictly impeding their applicability for the re-stimulation of protein-specific CD8(+ cytotoxic T lymphocytes (CTL. Here we present for the Epstein-Barr virus (EBV BZLF1 a novel strategy that facilitates protein translocation into antigen-presenting cells by its solubilisation in high molar urea and subsequent pulsing of cells in presence of low molar urea. Stimulation of PBMC from HLA-matched EBV-seropositive individuals with urea-treated BZLF1 but not untreated BZLF1 induces an efficient reactivation of BZLF1-specific CTL. Urea-treated BZLF1 (uBZLF1 enters antigen-presenting cells in a temperature-dependent manner by clathrin-mediated endocytosis and is processed by the proteasome into peptides that are bound to nascent HLA I molecules. Dendritic cells and monocytes but also B cells can cross-present uBZLF1 in vitro. The strategy described here has potential for use in the development of improved technologies for the monitoring of protein-specific CTL.

  1. Thermodynamics of tryptophan-mediated activation of the trp RNA-binding attenuation protein.

    Science.gov (United States)

    McElroy, Craig A; Manfredo, Amanda; Gollnick, Paul; Foster, Mark P

    2006-06-27

    The trp RNA-binding attenuation protein (TRAP) functions in many bacilli to control the expression of the tryptophan biosynthesis genes. Transcription of the trp operon is controlled by TRAP through an attenuation mechanism, in which competition between two alternative secondary-structural elements in the 5' leader sequence of the nascent mRNA is influenced by tryptophan-dependent binding of TRAP to the RNA. Previously, NMR studies of the undecamer (11-mer) suggested that tryptophan-dependent control of RNA binding by TRAP is accomplished through ligand-induced changes in protein dynamics. We now present further insights into this ligand-coupled event from hydrogen/deuterium (H/D) exchange analysis, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC). Scanning calorimetry showed tryptophan dissociation to be independent of global protein unfolding, while analysis of the temperature dependence of the binding enthalpy by ITC revealed a negative heat capacity change larger than expected from surface burial, a hallmark of binding-coupled processes. Analysis of this excess heat capacity change using parameters derived from protein folding studies corresponds to the ordering of 17-24 residues per monomer of TRAP upon tryptophan binding. This result is in agreement with qualitative analysis of residue-specific broadening observed in TROSY NMR spectra of the 91 kDa oligomer. Implications for the mechanism of ligand-mediated TRAP activation through a shift in a preexisting conformational equilibrium and an induced-fit conformational change are discussed. PMID:16784236

  2. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins

    Science.gov (United States)

    Sung, Min-Kyung; Porras-Yakushi, Tanya R; Reitsma, Justin M; Huber, Ferdinand M; Sweredoski, Michael J; Hoelz, André; Hess, Sonja; Deshaies, Raymond J

    2016-01-01

    Overproduced yeast ribosomal protein (RP) Rpl26 fails to assemble into ribosomes and is degraded in the nucleus/nucleolus by a ubiquitin-proteasome system quality control pathway comprising the E2 enzymes Ubc4/Ubc5 and the ubiquitin ligase Tom1. tom1 cells show reduced ubiquitination of multiple RPs, exceptional accumulation of detergent-insoluble proteins including multiple RPs, and hypersensitivity to imbalances in production of RPs and rRNA, indicative of a profound perturbation to proteostasis. Tom1 directly ubiquitinates unassembled RPs primarily via residues that are concealed in mature ribosomes. Together, these data point to an important role for Tom1 in normal physiology and prompt us to refer to this pathway as ERISQ, for excess ribosomal protein quality control. A similar pathway, mediated by the Tom1 homolog Huwe1, restricts accumulation of overexpressed hRpl26 in human cells. We propose that ERISQ is a key element of the quality control machinery that sustains protein homeostasis and cellular fitness in eukaryotes. DOI: http://dx.doi.org/10.7554/eLife.19105.001 PMID:27552055

  3. Cryptococcus neoformans is resistant to surfactant protein A mediated host defense mechanisms.

    Directory of Open Access Journals (Sweden)

    Steven S Giles

    Full Text Available Initiation of a protective immune response to infection by the pathogenic fungus Cryptococcus neoformans is mediated in part by host factors that promote interactions between immune cells and C. neoformans yeast. Surfactant protein A (SP-A contributes positively to pulmonary host defenses against a variety of bacteria, viruses, and fungi in part by promoting the recognition and phagocytosis of these pathogens by alveolar macrophages. In the present study we investigated the role of SP-A as a mediator of host defense against the pulmonary pathogen, C. neoformans. Previous studies have shown that SP-A binds to acapsular and minimally encapsulated strains of C. neoformans. Using in vitro binding assays we confirmed that SP-A does not directly bind to a fully encapsulated strain of C. neoformans (H99. However, we observed that when C. neoformans was incubated in bronchoalveolar fluid, SP-A binding was detected, suggesting that another alveolar host factor may enable SP-A binding. Indeed, we discovered that SP-A binds encapsulated C. neoformans via a previously unknown IgG dependent mechanism. The consequence of this interaction was the inhibition of IgG-mediated phagocytosis of C. neoformans by alveolar macrophages. Therefore, to assess the contribution of SP-A to the pulmonary host defenses we compared in vivo infections using SP-A null mice (SP-A-/- and wild-type mice in an intranasal infection model. We found that the immune response assessed by cellular counts, TNFalpha cytokine production, and fungal burden in lungs and bronchoalveolar lavage fluids during early stages of infection were equivalent. Furthermore, the survival outcome of C. neoformans infection was equivalent in SP-A-/- and wild-type mice. Our results suggest that unlike a variety of bacteria, viruses, and other fungi, progression of disease with an inhalational challenge of C. neoformans does not appear to be negatively or positively affected by SP-A mediated mechanisms of

  4. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses.

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    Full Text Available Plant autophagy plays an important role in delaying senescence, nutrient recycling, and stress responses. Functional analysis of plant autophagy has almost exclusively focused on the proteins required for the core process of autophagosome assembly, but little is known about the proteins involved in other important processes of autophagy, including autophagy cargo recognition and sequestration. In this study, we report functional genetic analysis of Arabidopsis NBR1, a homolog of mammalian autophagy cargo adaptors P62 and NBR1. We isolated two nbr1 knockout mutants and discovered that they displayed some but not all of the phenotypes of autophagy-deficient atg5 and atg7 mutants. Like ATG5 and ATG7, NBR1 is important for plant tolerance to heat, oxidative, salt, and drought stresses. The role of NBR1 in plant tolerance to these abiotic stresses is dependent on its interaction with ATG8. Unlike ATG5 and ATG7, however, NBR1 is dispensable in age- and darkness-induced senescence and in resistance to a necrotrophic pathogen. A selective role of NBR1 in plant responses to specific abiotic stresses suggest that plant autophagy in diverse biological processes operates through multiple cargo recognition and delivery systems. The compromised heat tolerance of atg5, atg7, and nbr1 mutants was associated with increased accumulation of insoluble, detergent-resistant proteins that were highly ubiquitinated under heat stress. NBR1, which contains an ubiquitin-binding domain, also accumulated to high levels with an increasing enrichment in the insoluble protein fraction in the autophagy-deficient mutants under heat stress. These results suggest that NBR1-mediated autophagy targets ubiquitinated protein aggregates most likely derived from denatured or otherwise damaged nonnative proteins generated under stress conditions.

  5. The second amino acid of alfalfa mosaic virus coat protein is critical for coat protein-mediated protection.

    Science.gov (United States)

    Tumer, N E; Kaniewski, W; Haley, L; Gehrke, L; Lodge, J K; Sanders, P

    1991-01-01

    Transgenic plants expressing the coat protein (CP) of alfalfa mosaic virus (AIMV) are resistant to infection by AIMV. A mutation was introduced into the second amino acid of the cDNA for the CP of AIMV. Three different transgenic tobacco lines expressing the mutant CP and two different transgenic tobacco lines expressing the wild-type CP at similar levels were challenged with AIMV virions and viral RNA. Whereas the lines expressing the wild-type CP were highly resistant to infection by AIMV virions and viral RNA, the lines expressing the mutant CP were susceptible to infection by both. The binding affinity of the mutant and the wild-type CPs for the 3' terminal protein binding site on AIMV RNAs was similar, as determined by electrophoretic mobility shift assay. A mixture of AIMV genomic RNAs 1-3 was infectious on the plants expressing the mutant CP but not on vector control plants or plants expressing the wild-type CP, indicating that the mutant CP can activate the AIMV genomic RNAs for infection. These results demonstrate that the second amino acid of the AIMV CP is critical for protection from AIMV but not for the initial interaction between the AIMV RNA and CP, suggesting that this initial interaction does not play a major role in CP-mediated protection. Images PMID:11607167

  6. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  7. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  8. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    Full Text Available BACKGROUND: Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation. CONCLUSIONS/SIGNIFICANCE: These results

  9. TAT-Mediated Delivery of Tousled Protein to Salivary Glands Protects Against Radiation-Induced Hypofunction

    Energy Technology Data Exchange (ETDEWEB)

    Sunavala-Dossabhoy, Gulshan, E-mail: gsunav@lsuhsc.edu [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Palaniyandi, Senthilnathan; Richardson, Charles; De Benedetti, Arrigo [Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Schrott, Lisa [Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA (United States); Caldito, Gloria [Department of Bioinformatics and Computational Biology, Louisiana State University Health Sciences Center, Shreveport, LA (United States)

    2012-09-01

    Purpose: Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect against IR-induced salivary hypofunction. Methods: The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation. Results: We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D{sub 0} = 4.13 {+-} 1.0 Gy; {alpha}/{beta} = 0 Gy) compared with cells transduced with the TAT peptide (D{sub 0} = 4.91 {+-} 1.0 Gy; {alpha}/{beta} = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01). Conclusions: The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.

  10. Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice.

    Science.gov (United States)

    Liang, Hai Po H; Kerschen, Edward J; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; Jia, Shuang; Hessner, Martin J; Toso, Raffaella; Rezaie, Alireza R; Fernández, José A; Camire, Rodney M; Ruf, Wolfram; Griffin, John H; Weiler, Hartmut

    2015-11-19

    The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage-specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection.

  11. Screening and identification of proteins mediating senna induced gastrointestinal motility enhancement in mouse colon

    Institute of Scientific and Technical Information of China (English)

    Xin Wang; Bo-Rong Pan; Dai-Min Fan; Yue-Xia Zhong; Mei Lan; Zong-You Zhang; Yong-Quan Shi; Ju Lu; Jie Ding; Kai-Cun Wu; Jian-Ping Jin

    2002-01-01

    .CONCLUSION: SE causes diarrhea and enhancesgastrointestinal motility through digestive tractadministration. Long-term gastric administration of SEinduces inflammatory changes and cell damage in the wholegastrointestinal tract. The differential proteins screened fromthe colonic tissues of the model mice might mediate theenhancing effect of SE on gastrointestinal motility.

  12. Proteomic analysis of ERK1/2-mediated human sickle red blood cell membrane protein phosphorylation

    Directory of Open Access Journals (Sweden)

    Soderblom Erik J

    2013-01-01

    Full Text Available Abstract Background In sickle cell disease (SCD, the mitogen-activated protein kinase (MAPK ERK1/2 is constitutively active and can be inducible by agonist-stimulation only in sickle but not in normal human red blood cells (RBCs. ERK1/2 is involved in activation of ICAM-4-mediated sickle RBC adhesion to the endothelium. However, other effects of the ERK1/2 activation in sickle RBCs leading to the complex SCD pathophysiology, such as alteration of RBC hemorheology are unknown. Results To further characterize global ERK1/2-induced changes in membrane protein phosphorylation within human RBCs, a label-free quantitative phosphoproteomic analysis was applied to sickle and normal RBC membrane ghosts pre-treated with U0126, a specific inhibitor of MEK1/2, the upstream kinase of ERK1/2, in the presence or absence of recombinant active ERK2. Across eight unique treatment groups, 375 phosphopeptides from 155 phosphoproteins were quantified with an average technical coefficient of variation in peak intensity of 19.8%. Sickle RBC treatment with U0126 decreased thirty-six phosphopeptides from twenty-one phosphoproteins involved in regulation of not only RBC shape, flexibility, cell morphology maintenance and adhesion, but also glucose and glutamate transport, cAMP production, degradation of misfolded proteins and receptor ubiquitination. Glycophorin A was the most affected protein in sickle RBCs by this ERK1/2 pathway, which contained 12 unique phosphorylated peptides, suggesting that in addition to its effect on sickle RBC adhesion, increased glycophorin A phosphorylation via the ERK1/2 pathway may also affect glycophorin A interactions with band 3, which could result in decreases in both anion transport by band 3 and band 3 trafficking. The abundance of twelve of the thirty-six phosphopeptides were subsequently increased in normal RBCs co-incubated with recombinant ERK2 and therefore represent specific MEK1/2 phospho-inhibitory targets mediated via ERK2

  13. Phospholipase C-related catalytically inactive protein (PRIP controls KIF5B-mediated insulin secretion

    Directory of Open Access Journals (Sweden)

    Satoshi Asano

    2014-05-01

    Full Text Available We previously reported that phospholipase C-related catalytically inactive protein (PRIP-knockout mice exhibited hyperinsulinemia. Here, we investigated the role of PRIP in insulin granule exocytosis using Prip-knockdown mouse insulinoma (MIN6 cells. Insulin release from Prip-knockdown MIN6 cells was higher than that from control cells, and Prip knockdown facilitated movement of GFP-phogrin-labeled insulin secretory vesicles. Double-immunofluorescent staining and density step-gradient analyses showed that the KIF5B motor protein co-localized with insulin vesicles in Prip-knockdown MIN6 cells. Knockdown of GABAA-receptor-associated protein (GABARAP, a microtubule-associated PRIP-binding partner, by Gabarap silencing in MIN6 cells reduced the co-localization of insulin vesicles with KIF5B and the movement of vesicles, resulting in decreased insulin secretion. However, the co-localization of KIF5B with microtubules was not altered in Prip- and Gabarap-knockdown cells. The presence of unbound GABARAP, freed either by an interference peptide or by Prip silencing, in MIN6 cells enhanced the co-localization of insulin vesicles with microtubules and promoted vesicle mobility. Taken together, these data demonstrate that PRIP and GABARAP function in a complex to regulate KIF5B-mediated insulin secretion, providing new insights into insulin exocytic mechanisms.

  14. Influenza C virus NS1 protein counteracts RIG-I-mediated IFN signalling

    Directory of Open Access Journals (Sweden)

    Vlasak Reinhard

    2011-02-01

    Full Text Available Abstract The nonstructural proteins 1 (NS1 from influenza A and B viruses are known as the main viral factors antagonising the cellular interferon (IFN response, inter alia by inhibiting the retinoic acid-inducible gene I (RIG-I signalling. The cytosolic pattern-recognition receptor RIG-I senses double-stranded RNA and 5'-triphosphate RNA produced during RNA virus infections. Binding to these ligands activates RIG-I and in turn the IFN signalling. We now report that the influenza C virus NS1 protein also inhibits the RIG-I-mediated IFN signalling. Employing luciferase-reporter assays, we show that expression of NS1-C proteins of virus strains C/JJ/50 and C/JHB/1/66 considerably reduced the IFN-β promoter activity. Mapping of the regions from NS1-C of both strains involved in IFN-β promoter inhibition showed that the N-terminal 49 amino acids are dispensable, while the C-terminus is required for proper modulation of the IFN response. When a mutant RIG-I, which is constitutively active without ligand binding, was employed, NS1-C still inhibited the downstream signalling, indicating that IFN inhibitory properties of NS1-C are not necessarily linked to an RNA binding mechanism.

  15. Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90.

    Science.gov (United States)

    Cliff, Matthew J; Harris, Richard; Barford, David; Ladbury, John E; Williams, Mark A

    2006-03-01

    Protein phosphatase 5 (Ppp5) is one of several proteins that bind to the Hsp90 chaperone via a tetratricopeptide repeat (TPR) domain. We report the solution structure of a complex of the TPR domain of Ppp5 with the C-terminal pentapeptide of Hsp90. This structure has the "two-carboxylate clamp" mechanism of peptide binding first seen in the Hop-TPR domain complexes with Hsp90 and Hsp70 peptides. However, NMR data reveal that the Ppp5 clamp is highly dynamic, and that there are multiple modes of peptide binding and mobility throughout the complex. Although this interaction is of very high affinity, relatively few persistent contacts are found between the peptide and the Ppp5-TPR domain, thus explaining its promiscuity in binding both Hsp70 and Hsp90 in vivo. We consider the possible implications of this dynamic structure for the mechanism of relief of autoinhibition in Ppp5 and for the mechanisms of TPR-mediated recognition of Hsp90 by other proteins.

  16. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5.

    Science.gov (United States)

    Yang, Jing; Roe, S Mark; Cliff, Matthew J; Williams, Mark A; Ladbury, John E; Cohen, Patricia T W; Barford, David

    2005-01-12

    Protein phosphatase 5 (Ppp5) is a serine/threonine protein phosphatase comprising a regulatory tetratricopeptide repeat (TPR) domain N-terminal to its phosphatase domain. Ppp5 functions in signalling pathways that control cellular responses to stress, glucocorticoids and DNA damage. Its phosphatase activity is suppressed by an autoinhibited conformation maintained by the TPR domain and a C-terminal subdomain. By interacting with the TPR domain, heat shock protein 90 (Hsp90) and fatty acids including arachidonic acid stimulate phosphatase activity. Here, we describe the structure of the autoinhibited state of Ppp5, revealing mechanisms of TPR-mediated phosphatase inhibition and Hsp90- and arachidonic acid-induced stimulation of phosphatase activity. The TPR domain engages with the catalytic channel of the phosphatase domain, restricting access to the catalytic site. This autoinhibited conformation of Ppp5 is stabilised by the C-terminal alphaJ helix that contacts a region of the Hsp90-binding groove on the TPR domain. Hsp90 activates Ppp5 by disrupting TPR-phosphatase domain interactions, permitting substrate access to the constitutively active phosphatase domain, whereas arachidonic acid prompts an alternate conformation of the TPR domain, destabilising the TPR-phosphatase domain interface.

  17. DBC2 resistance is achieved by enhancing 26S proteasome-mediated protein degradation.

    Science.gov (United States)

    Collado, Denise; Yoshihara, Takashi; Hamaguchi, Masaaki

    2007-08-31

    Tumor suppressor gene DBC2 stops growth of tumor cells through regulation of CCND1. Interference of CCND1 down-regulation prevented growth arrest caused by DBC2 [T. Yoshihara, D. Collado, M. Hamaguchi, Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function, Biochemical and biophysical research communications 358 (2007) 1076-1079]. It was also noted that DBC2 resistant cells eventually arose after repeated induction of DBC2 with muristerone A treatment [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. In order to elucidate the mechanism of resistance acquisition, we analyzed DBC2 sensitive and resistant cells derived from the same progenitor cells (T-47D). We discovered that DBC2 protein was abundantly expressed in the sensitive cells when DBC2 was induced. In contrast, it was undetectable by western blot analysis in the resistant cells. We confirmed that the inducible gene expression system was responsive in both cells by detecting induced GFP. Additionally, inhibition of 26S proteasome by MG132 revealed production of DBC2 protein in the resistant cells. These findings indicate that the resistant T-47D cells survive DBC2 induction by rapid destruction of DBC2 through 26S proteasome-mediated protein degradation.

  18. Metal-Mediated Affinity and Orientation Specificity in a Computationally Designed Protein Homodimer

    Energy Technology Data Exchange (ETDEWEB)

    Der, Bryan S.; Machius, Mischa; Miley, Michael J.; Mills, Jeffrey L.; Szyperski, Thomas; Kuhlman, Brian (UNC); (Buffalo)

    2015-10-15

    Computationally designing protein-protein interactions with high affinity and desired orientation is a challenging task. Incorporating metal-binding sites at the target interface may be one approach for increasing affinity and specifying the binding mode, thereby improving robustness of designed interactions for use as tools in basic research as well as in applications from biotechnology to medicine. Here we describe a Rosetta-based approach for the rational design of a protein monomer to form a zinc-mediated, symmetric homodimer. Our metal interface design, named MID1 (NESG target ID OR37), forms a tight dimer in the presence of zinc (MID1-zinc) with a dissociation constant <30 nM. Without zinc the dissociation constant is 4 {micro}M. The crystal structure of MID1-zinc shows good overall agreement with the computational model, but only three out of four designed histidines coordinate zinc. However, a histidine-to-glutamate point mutation resulted in four-coordination of zinc, and the resulting metal binding site and dimer orientation closely matches the computational model (C{alpha} rmsd = 1.4 {angstrom}).

  19. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    Science.gov (United States)

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  20. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C; knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells.

  1. Coat protein-mediated resistance against an Indian isolate of the Cucumber mosaic virus subgroup IB in Nicotiana benthamiana

    Indian Academy of Sciences (India)

    A Srivastava; S K Raj

    2008-06-01

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were tested for resistance against CMV by challenge inoculations. The transgenic lines exhibiting complete resistance remained symptomless throughout life and showed reduced or no virus accumulation in their systemic leaves after virus challenge. These lines also showed virus resistance against two closely related strains of CMV. This is the first report of CP-mediated transgenic resistance against a CMV subgroup IB member isolated from India.

  2. The role of heat shock protein 70 in mediating age-dependent mortality in sepsis.

    Science.gov (United States)

    McConnell, Kevin W; Fox, Amy C; Clark, Andrew T; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A; Farris, Alton B; Buchman, Timothy G; Hunt, Clayton R; Coopersmith, Craig M

    2011-03-15

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70(-/-) and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70(-/-) and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70(-/-) mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70(-/-) mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70(-/-) mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1β compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation. PMID:21296977

  3. Gene expression profiles of human liver cells mediated by hepatitis B virus X protein

    Institute of Scientific and Technical Information of China (English)

    Wei-ying ZHANG; Fu-qing XU; Chang-liang SHAN; Rong XIANG; Li-hong YE; Xiao-dong ZHANG

    2009-01-01

    Aim: To demonstrate the gene expression profiles mediated by hepatitis B virus X protein (HBx), we characterized the molecular features of pathogenesis associated with HBx in a human liver cell model.Methods: We examined gene expression profiles in L-O2-X cells, an engineered L-O2 cell line that constitutively expresses HBx, relative to L-O2 cells using an Agilent 22 K human 70-mer oligonucleotide microarray representing more than 21,329 unique, well-characterized Homo sapiens genes, Western blot analysis and RNA interference (RNAi) targeting HBx mRNA validated the overexpression of proliferating cell nuclear antigen (PCNA) and Bcl-2 in L-O2-X cells. Meanwhile, the BrdU incorporation assay was used to test cell proliferation mediated by upregulated cyclooxygenase-2 (COX-2).Results: The microarray showed that the expression levels of 152 genes were remarkably altered; 82 of the genes were upregulated and 70 genes were downregulated in L-O2-X cells. The altered genes were associated with signal transduction pathways, cell cycle, metastasis, transcriptional regulation, immune response, metabolism, and other processes. PCNA and Bcl-2 were upregulated in L-O2-X cells. Furthermore, we found that COX-2 upregulation in L-O2-X cells enhanced proliferation using the BrdU incorporation assay, whereas indomethacin (an inhibitor of COX-2) abolished the promotion.Conclusion: Our findings provide new evidence that HBx is able to regulate many genes that may be involved in the car-cinogenesis. These regulated genes mediated by HBx may serve as molecular targets for the prevention and treatment of hepatocellular carcinoma.

  4. G-protein mediated signaling pathways in myogenic responsiveness of mouse mesenteric artery

    DEFF Research Database (Denmark)

    Jensen, Lars Jørn; Joseph, Philomeena Daphne; Haanes, Kristian Agmund;

    2015-01-01

    was to explore the role of alternative G protein-coupled receptor (GPCR) pathways. MR of pressurized mouse mesenteric arteries (MA; PLC inhibitors U73122 (0.5 µM), ET-18-OCH3 (10 µM), and the PKC inhibitor BIM-X (1 µM) impaired MR. Inhibitors...... data suggest a reduction of MR in P2Y6-/- mice vs. WT, and that the Rho-kinase (ROCK) inhibitor Y27632 (3 µM) inhibits MR. Thus, Gq/11 and possibly G12 pathways mediate pressure activation in mouse MA through PLC, PKC, and ROCK. MR may be initiated by mechanical activation of P2Y6-R and AT1-R in VSMCs....

  5. Protein kinase D1 signaling in angiogenic gene expression and VEGF-mediated angiogenesis

    Directory of Open Access Journals (Sweden)

    Bin eRen MD, Phd, FAHA

    2016-05-01

    Full Text Available Protein kinase D 1 (PKD-1 is a signaling kinase important in fundamental cell functions including migration, proliferation and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  6. Combinations of SPR and MS for characterization of native and recombinant proteins in cell lysates

    DEFF Research Database (Denmark)

    Borch, Jonas; Roepstorff, Peter

    2006-01-01

    Surface plasmon resonance and mass spectrometry (SPR-MS) has been combined for quality check of recombinant 6xHis-tagged 14-3-3 proteins expressed in Escherichia coli. Lysates were injected over an SPR sensorchip with immobilized Ni2+ for SPR analysis of the specific Ni2+ binding response...... of 14-3-3 proteins in order to test their activity. Specific binding of recombinant and native 14-3-3 proteins in complex mixtures to immobilized phosphopeptides and subsequent elution was also tested by SPR-MS. Ammonium sulfate precipitate fractions from lysates of E. coli expressing 14-3-3 protein...... and of cauliflower were investigated for specific binding to the phosphopeptide ligands immobilized on a sensorchip by SPR. Subsequently, the bound protein was eluted and analyzed by MS for characterization of intact mass and peptide mass mapping....

  7. Possible mechanisms of C-reactive protein mediated acute myocardial infarction.

    Science.gov (United States)

    Fordjour, Patrick Asare; Wang, Yadong; Shi, Yang; Agyemang, Kojo; Akinyi, Mary; Zhang, Qiang; Fan, Guanwei

    2015-08-01

    Myocardial infarction is a relevant cardiovascular event worldwide for morbidity and mortality. It has been theorized that acute myocardial infarctions (AMIs) and other acute coronary events that are precipitated by atherosclerosis are due to arterial blockage from fat deposits. It is now known, however, that atherosclerosis involves more than just lipids. Inflammation has also been studied extensively to play a substantial role in myocardial infarction. There have been debates and conflicting reports over the past few years about the value of assessing levels of C-reactive protein and other biomarkers of inflammation for the prediction of cardiovascular events. Several studies have shown that CRP is not only an inflammatory marker, but also involved in the pathogenesis of myocardial infarction. Studies have linked atherogenesis and rupture of atherosclerotic lesion to endothelial dysfunction. CRP directly inhibits endothelial cell nitric oxide (NO) production via destabilizing endothelial NO synthase (eNOS). Decreased NO release causes CRP mediated inhibition of angiogenesis, stimulating endothelial cell apoptosis. CRP can also activate the complement system through the classical pathway. Complement activation plays an important role in mediating monocyte and neutrophil recruitment in an injured myocardium and may therefore lead to increase in infarct size. This article discusses the possible roles of CRP in complement activation, endothelial dysfunction and its impact on the development of myocardial infarction. We also reviewed the possible therapeutic approaches to myocardial infarction.

  8. Reduced expression of ribosomal proteins relieves microRNA-mediated repression.

    Science.gov (United States)

    Janas, Maja M; Wang, Eric; Love, Tara; Harris, Abigail S; Stevenson, Kristen; Semmelmann, Karlheinz; Shaffer, Jonathan M; Chen, Po-Hao; Doench, John G; Yerramilli, Subrahmanyam V B K; Neuberg, Donna S; Iliopoulos, Dimitrios; Housman, David E; Burge, Christopher B; Novina, Carl D

    2012-04-27

    MicroRNAs (miRNAs) regulate physiological and pathological processes by inducing posttranscriptional repression of target messenger RNAs (mRNAs) via incompletely understood mechanisms. To discover factors required for human miRNA activity, we performed an RNAi screen using a reporter cell line of miRNA-mediated repression of translation initiation. We report that reduced expression of ribosomal protein genes (RPGs) dissociated miRNA complexes from target mRNAs, leading to increased polysome association, translation, and stability of miRNA-targeted mRNAs relative to untargeted mRNAs. RNA sequencing of polysomes indicated substantial overlap in sets of genes exhibiting increased or decreased polysomal association after Argonaute or RPG knockdowns, suggesting similarity in affected pathways. miRNA profiling of monosomes and polysomes demonstrated that miRNAs cosediment with ribosomes. RPG knockdowns decreased miRNAs in monosomes and increased their target mRNAs in polysomes. Our data show that most miRNAs repress translation and that the levels of RPGs modulate miRNA-mediated repression of translation initiation. PMID:22541556

  9. Mediator proteins orchestrate enzyme-ssDNA assembly during T4 recombination-dependent DNA replication and repair

    OpenAIRE

    Bleuit, Jill S.; Xu, Hang; Ma, Yujie; Wang, Tongsheng; Liu, Jie; Morrical, Scott W.

    2001-01-01

    Studies of recombination-dependent replication (RDR) in the T4 system have revealed the critical roles played by mediator proteins in the timely and productive loading of specific enzymes onto single-stranded DNA (ssDNA) during phage RDR processes. The T4 recombination mediator protein, uvsY, is necessary for the proper assembly of the T4 presynaptic filament (uvsX recombinase cooperatively bound to ssDNA), leading to the recombination-primed initiation of leading strand DNA synthesis. In the...

  10. A collapsin response mediator protein 2 isoform controls myosin II-mediated cell migration and matrix assembly by trapping ROCK II

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Morgan-Fisher, Marie; Wait, Robin;

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among...... binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP...

  11. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites.

    Science.gov (United States)

    Kentala, Henriikka; Weber-Boyvat, Marion; Olkkonen, Vesa M

    2016-01-01

    Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes. PMID:26811291

  12. Signal transduction across cellular membranes can be mediated by coupling of the clustering of anchored proteins in both leaflets

    Science.gov (United States)

    Yue, Tongtao; Zhang, Xianren

    2012-01-01

    One key question in signal transduction is how the signal is relayed from the outer leaflet of a cellular membrane to the inner leaflet. Using a simulation model, a mechanism for the mediation of signal transduction is proposed here in which the coupling between membrane proteins in different leaflets can be achieved by the clustering of anchored proteins, without recruiting transmembrane proteins. Depending on the hydrophobic length of the anchored proteins, three coupling patterns, including face-to-face clustering, interdigitated clustering, and weak-coupled clustering, are observed in this work. This observation provides a possible explanation of how a particular downstream signaling pathway is selected.

  13. Surfactant protein-A suppresses eosinophil-mediated killing of Mycoplasma pneumoniae in allergic lungs.

    Directory of Open Access Journals (Sweden)

    Julie G Ledford

    Full Text Available Surfactant protein-A (SP-A has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT and SP-A(-/- allergic mice challenged with the model antigen ovalbumin (Ova that were concurrently infected with Mp (Ova+Mp to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO, which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A(-/- mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation

  14. Humoral and Cell-mediated Autoimmune Reactions to Human Acidic Ribosomal P2 Protein in Individuals Sensitized to Aspergillus fumigatus P2 Protein

    Science.gov (United States)

    Mayer, Christina; Appenzeller, Ulrich; Seelbach, Heike; Achatz, Gernot; Oberkofler, Hannes; Breitenbach, Michael; Blaser, Kurt; Crameri, Reto

    1999-01-01

    A panel of cDNAs encoding allergenic proteins was isolated from an Aspergillus fumigatus cDNA library displayed on the surface of filamentous phage. Solid phase–immobilized serum immunoglobulin E (IgE) from A. fumigatus–allergic individuals was used to enrich phage displaying IgE-binding molecules. One of the cDNAs encoded a 11.1-kD protein that was identified as acidic ribosomal phosphoprotein type 2 (P2 protein). The allergen, formally termed rAsp f 8, shares >62% sequence identity and >84% sequence homology to corresponding eukaryotic P2 proteins, including human P2 protein. The sequences encoding human and fungal P2 protein were subcloned, expressed in Escherichia coli as His6-tagged fusion proteins, and purified by Ni2+–chelate affinity chromatography. Both recombinant P2 proteins were recognized by IgE antibodies from allergic individuals sensitized to the A. fumigatus P2 protein and elicited strong type 1–specific skin reactions in these individuals. Moreover, human and fungal P2 proteins induced proliferative responses in peripheral blood mononuclear cells of A. fumigatus– allergic subjects sensitized to the fungal P2 protein. These data provide strong evidence for in vitro and in vivo humoral and cell-mediated autoreactivity to human P2 protein in patients suffering from chronic A. fumigatus allergy. PMID:10224291

  15. A hormone-responsive C1-domain-containing protein At5g17960 mediates stress response in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ravindran Vijay Bhaskar

    Full Text Available Phytohormones play a critical role in mediating plant stress response. They employ a variety of proteins for coordinating such processes. In Arabidopsis thaliana, some members of a Cys-rich protein family known as C1-clan proteins were involved in stress response, but the actual function of the protein family is largely unknown. We studied At5g17960, a C1-clan protein member that possesses three unique C1 signature domains viz. C1_2, C1_3 and ZZ/PHD type. Additionally, we identified 72 other proteins in A. thaliana that contain all three unique signature domains. Subsequently, the 73 proteins were phylogenetically classified into IX subgroups. Promoter motif analysis of the 73 genes identified the presence of hormone-responsive and stress-responsive putative cis-regulatory elements. Furthermore, we observed that transcript levels of At5g17960 were induced in response to different hormones and stress treatments. At1g35610 and At3g13760, two other members of subgroup IV, also showed upregulation upon GA3, biotic and abiotic stress treatments. Moreover, seedlings of independent transgenic A. thaliana lines ectopically expressing or suppressing At5g17960 also showed differential regulation of several abiotic stress-responsive marker genes. Thus, our data suggest that C1-domain-containing proteins have a role to play in plant hormone-mediated stress responses, thereby assigning a putative function for the C1-clan protein family.

  16. Integrin-mediated targeting of protein polymer nanoparticles carrying a cytostatic macrolide

    Science.gov (United States)

    Shi, Pu

    Cytotoxicity, low water solubility, rapid clearance from circulation, and offtarget side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or nonpolymeric. This chapter summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. This chapter explores an alternative encapsulation strategy based on high-specificity avidity between a small molecule drug and its cognate protein target fused to the corona of protein polymer nanoparticles. With the new strategy, the drug associates tightly to the carrier and releases slowly, which may decrease toxicity and promote tumor accumulation via the enhanced permeability and retention effect. To test this hypothesis, the drug Rapamycin (Rapa) was selected for its potent anti-proliferative properties, which give it immunosuppressant and anti-tumor activity. Despite its potency, Rapa has low solubility, low oral bioavailability, and rapid systemic clearance, which make it an excellent candidate for

  17. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    International Nuclear Information System (INIS)

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrPc), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrPc with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr Pc and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrPc:hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr Pc143-153 beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrPc. Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr Pc143-153 beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr Pc, and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr Pc:hop/STI 1 interaction, consistent with the hypothesis that Pr Pc scaffolds multiprotein signaling complexes at the cell surface. (author)

  18. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression.

    Science.gov (United States)

    Pitzschke, Andrea; Djamei, Armin; Teige, Markus; Hirt, Heribert

    2009-10-27

    The plant pathogen Agrobacterium tumefaciens transforms plant cells by delivering its T-DNA into the plant cell nucleus where it integrates into the plant genome and causes tumor formation. A key role of VirE2-interacting protein 1 (VIP1) in the nuclear import of T-DNA during Agrobacterium-mediated plant transformation has been unravelled and VIP1 was shown to undergo nuclear localization upon phosphorylation by the mitogen-activated protein kinase MPK3. Here, we provide evidence that VIP1 encodes a functional bZIP transcription factor that stimulates stress-dependent gene expression by binding to VIP1 response elements (VREs), a DNA hexamer motif. VREs are overrepresented in promoters responding to activation of the MPK3 pathway such as Trxh8 and MYB44. Accordingly, plants overexpressing VIP1 accumulate high levels of Trxh8 and MYB44 transcripts, whereas stress-induced expression of these genes is impaired in mpk3 mutants. Trxh8 and MYB44 promoters are activated by VIP1 in a VRE-dependent manner. VIP1 strongly enhances expression from a synthetic promoter harboring multiple VRE copies and directly interacts with VREs in vitro and in vivo. Chromatin immunoprecipitation assays of the MYB44 promoter confirm that VIP1 binding to VREs is enhanced under conditions of MPK3 pathway stimulation. These results provide molecular insight into the cellular mechanism of target gene regulation by the MPK3 pathway. PMID:19820165

  19. Differentiation of Th subsets inhibited by nonstructural proteins of respiratory syncytial virus is mediated by ubiquitination.

    Directory of Open Access Journals (Sweden)

    Ling Qin

    Full Text Available Human respiratory syncytial virus (RSV, a major cause of severe respiratory diseases, constitutes an important risk factor for the development of subsequent asthma. However, the mechanism underlying RSV-induced asthma is poorly understood. Viral non-structural proteins NS1 and NS2 are critically required for RSV virulence; they strongly suppress IFN-mediated innate immunity of the host cells. In order to understand the effects of NS1 and NS2 on differentiation of Th subsets, we constructed lentiviral vectors of NS1 or NS2 to infect 16 HBE and analyzed the expression of HLA-DR, CD80 and CD86 and differentiation of Th1, Th2 and Th17 by Flow Cytometric Analysis and real-time PCR. The results showed that NS1 inhibited expression of HLA-DR, CD80 and CD86 and differentiation of Th1, Th2 and Th17 lymphocytes, which could be reversed by deleting elongin C binding domain. NS2 inhibited the differentiation of Th2 and Th17, which was reversed by proteasome inhibitors of PS-341. Our results indicated that NS1 inhibited the differentiation of T lymphocytes through its mono-ubiquitination to interacted proteins, while NS2 inhibited differentiation of Th2 and Th17 through ubiquitin-proteasome pathway, which may be related with the susceptibility to asthma after RSV infection.

  20. Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation

    Science.gov (United States)

    Cheng, Yu Ti; Li, Yingzhong; Huang, Shuai; Huang, Yan; Dong, Xinnian; Zhang, Yuelin; Li, Xin

    2011-01-01

    The nucleotide-binding domain and leucine-rich repeats containing proteins (NLRs) serve as immune receptors in both plants and animals. Overaccumulation of NLRs often leads to autoimmune responses, suggesting that the levels of these immune receptors must be tightly controlled. However, the mechanism by which NLR protein levels are regulated is unknown. Here we report that the F-box protein CPR1 controls the stability of plant NLR resistance proteins. Loss-of-function mutations in CPR1 lead to higher accumulation of the NLR proteins SNC1 and RPS2, as well as autoactivation of immune responses. The autoimmune responses in cpr1 mutant plants can be largely suppressed by knocking out SNC1. Furthermore, CPR1 interacts with SNC1 and RPS2 in vivo, and overexpressing CPR1 results in reduced accumulation of SNC1 and RPS2, as well as suppression of immunity mediated by these two NLR proteins. Our data suggest that SKP1-CULLIN1-F-box (SCF) complex-mediated stability control of plant NLR proteins plays an important role in regulating their protein levels and preventing autoimmunity. PMID:21873230

  1. The protective effects of pomelo extract (Citrus grandis L. Osbeck) against fructose-mediated protein oxidation and glycation

    OpenAIRE

    Caengprasath, Natarin; Ngamukote, Sathaporn; Mäkynen, Kittana; Adisakwattana, Sirichai

    2013-01-01

    Chronic hyperglycemia induces non-enzymatic protein glycation, which plays an important role in the development of diabetic complications. Immense efforts have been made to determine effective antiglycation compounds from natural products. Pomelo has shown beneficial effects for human health. The objective of this study was to determine the antiglycation effect of pomelo extract against fructose-mediated protein oxidation and glycation. Our results showed that the pomelo extract (0.25 - 2.00 ...

  2. Surface Proteins and Pneumolysin of Encapsulated and Nonencapsulated Streptococcus pneumoniae Mediate Virulence in a Chinchilla Model of Otitis Media

    OpenAIRE

    Keller, Lance E.; Bradshaw, Jessica L.; Pipkins, Haley; McDaniel, Larry S.

    2016-01-01

    Streptococcus pneumoniae infections result in a range of human diseases and are responsible for almost one million deaths annually. Pneumococcal disease is mediated in part through surface structures and an anti-phagocytic capsule. Recent studies have shown that nonencapsulated S. pneumoniae (NESp) make up a significant portion of the pneumococcal population and are able to cause disease. NESp lack some common surface proteins expressed by encapsulated pneumococci, but express surface protein...

  3. Protein-mediated protection as the predominant mechanism for defining processed mRNA termini in land plant chloroplasts

    OpenAIRE

    Zhelyazkova, P.; Hammani, K.; M. Rojas; Voelker, R.; Vargas-Suarez, M.; Boerner, T.; Barkan, A

    2011-01-01

    Most chloroplast mRNAs are processed from larger precursors. Several mechanisms have been proposed to mediate these processing events, including site-specific cleavage and the stalling of exonucleases by RNA structures. A protein barrier mechanism was proposed based on analysis of the pentatricopeptide repeat (PPR) protein PPR10: PPR10 binds two intercistronic regions and impedes 5'- and 3'-exonucleases, resulting in processed RNAs with PPR10 bound at the 5'- or 3'-end. In this study, we prov...

  4. Antimicrobial activity of human prion protein is mediated by its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Mukesh Pasupuleti

    Full Text Available BACKGROUND: Cellular prion-related protein (PrP(c is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrP(c, and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypothesize that PrP(c could exert antimicrobial activity. METHODOLOGY AND PRINCIPAL FINDINGS: Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the "classical" human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-alpha in vitro. CONCLUSIONS: The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.

  5. Efficient CPP-mediated Cre protein delivery to developing and adult CNS tissues

    Directory of Open Access Journals (Sweden)

    Levi Giovanni

    2009-04-01

    Full Text Available Abstract Background Understanding and manipulating gene function in physiological conditions is a major objective for both fundamental and applied research. In contrast to other experimental settings, which use either purely genetic or gene delivery (viral or non-viral strategies, we report here a strategy based on direct protein delivery to central nervous system (CNS tissues. We fused Cre recombinase with cell-penetrating peptides and analyzed the intracellular biological activity of the resulting chimerical proteins when delivered into cells endowed with Cre-mediated reporter gene expression. Results We show that active Cre enzymatic conjugates are readily internalized and exert their enzymatic activity in the nucleus of adherent cultured cells. We then evaluated this strategy in organotypic cultures of neural tissue explants derived from reporter mice carrying reporter "floxed" alleles. The efficacy of two protocols was compared on explants, either by direct addition of an overlying drop of protein conjugate or by implantation of conjugate-coated beads. In both cases, delivery of Cre recombinase resulted in genomic recombination that, with the bead protocol, was restricted to discrete areas of embryonic and adult neural tissues. Furthermore, delivery to adult brain tissue resulted in the transduction of mature postmitotic populations of neurons. Conclusion We provide tools for the spatially restricted genetic modification of cells in explant culture. This strategy allows to study lineage, migration, differentiation and death of neural cells. As a proof-of-concept applied to CNS tissue, direct delivery of Cre recombinase enabled the selective elimination of an interneuron subpopulation of the spinal cord, thereby providing a model to study early events of neurodegenerative processes. Thus our work opens new perspectives for both fundamental and applied cell targeting protocols using proteic cargoes which need to retain full bioactivity upon

  6. Assembly of spikes into coronavirus particles is mediated by the carboxy-terminal domain of the spike protein

    NARCIS (Netherlands)

    Godeke, G J; de Haan, C A; Rossen, J W; Vennema, H; Rottier, P J

    2000-01-01

    The type I glycoprotein S of coronavirus, trimers of which constitute the typical viral spikes, is assembled into virions through noncovalent interactions with the M protein. Here we demonstrate that incorporation is mediated by the short carboxy-terminal segment comprising the transmembrane and end

  7. Study on the influence of puerarin injection for the pulmonary surfactant protein and inflammatory mediators of children with severe pneumonia

    Institute of Scientific and Technical Information of China (English)

    Lv-Wei Zhang

    2015-01-01

    Objective: To study and observe the influence situation of puerarin injection for the pulmonary surfactant protein and inflammatory mediators of children with severe pneumonia. Methods: 60 children with severe pneumonia in our hospital from February 2013 to January 2015 were selected as study object,and they were randomly divided into control group (routine treatment group) 30 cases and observation group (routine treatment and puerarin injection group) 30 cases, then the serum pulmonary surfactant protein and inflammatory mediators of two groups before the treatment and at different time after the treatment were respectively detected and compared. Results: The serum ulmonary surfactant protein and inflammatory mediators of observation group at third,fifth and tenth day after the treatment were all obviously lower than those of control group, all P<0.05, the comparison indexes after the treatment all had significant differences. Conclusions: The influence of puerarin injection for the pulmonary surfactant protein and inflammatory mediators of children with severe pneumonia are great, and it can effectively improve the disease state of children with severe pneumonia.

  8. Influence of ulinastatin on pulmonary surfactant protein, anti-inflammatory and pro-inflammatory mediator in patients with severe pneumonia

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Rui Kang; Jia-Li Xie; Ya-Ni Xue

    2016-01-01

    Objective:To observe the influence of ulinastatin on pulmonary surfactant protein and anti-inflammatory and pro-inflammatory mediator in patients with severe pneumonia. Methods:A total of 54 patients with severe pneumonia treated in our hospital from April 2014 to May 2015 were selected as the study object, and they were randomly divided into control group (conventional treatment of severe pneumonia group) and observation group (conventional treatment and ulinastatin group), with 27 cases in each group. Then the serum levels of pulmonary surfactant protein,anti-inflammatory and pro-inflammatory mediators in two groups before and after treatment at 1 day, 3 day and 5 day were compared. Results:The serum level of pulmonary surfactant protein, anti-inflammatory and pro-inflammatory mediators in two groups before treatment had no significant differences, all P>0.05, and those serum indexes in observation group after treatment at 1 day, 3 day and 5 day were all significantly better than those of the control group, all P<0.05. Conclusions:The ulinastatin can effectively improve the pulmonary surfactant protein, anti-inflammatory and pro-inflammatory mediators in patients with severe pneumonia, and its improvement role for various of severe pneumonia are obvious.

  9. Combined 3C-ChIP-Cloning (6C) Assay: A Tool to Unravel Protein-Mediated Genome Architecture

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Vijay K. Tiwari and Stephen B. Baylin Corresponding authors ([](); []()) ### INTRODUCTION Progress in technologies to address long-range chromosomal interactions in vivo has extensively revised concepts about different aspects of transcriptional regulation. These methods allow probing physical proximities between chromatin elements without specifically identifying the protein components that mediate ...

  10. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus.

    Science.gov (United States)

    Rangaswamy, Udaya S; Cotter, Christopher R; Cheng, Xing; Jin, Hong; Chen, Zhongying

    2016-08-01

    Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.

  11. Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    David S Reis

    2013-10-01

    Full Text Available The cellular mechanisms supporting plasticity during memory consolidation have been a subject of considerable interest. De novo protein and mRNA synthesis in several brain areas are critical, and more recently protein degradation, mediated by the ubiquitin-proteasome system (UPS, has been shown to be important. Previous work clearly establishes a relationship between protein synthesis and protein degradation in the amygdala, but it is unclear whether cortical mechanisms of memory consolidation are similar to those in the amygdala. Recent work demonstrating a critical role for prefrontal cortex (PFC in the acquisition and consolidation of fear memory allows us to address this question. Here we use a PFC-dependent fear conditioning protocol to determine whether UPS mediated protein degradation is necessary for memory consolidation in PFC. Groups of rats were trained with auditory delay or trace fear conditioning and sacrificed 60 min after training. PFC tissue was then analyzed to quantify the amount of polyubiquinated protein. Other animals were trained with similar procedures but were infused with either a proteasome inhibitor (clasto-lactacystin β-lactone or a translation inhibitor (anisomycin in the PFC immediately after training. Our results show increased UPS-mediated protein degradation in the PFC following trace but not delay fear conditioning. Additionally, post-training proteasome or translation inhibition significantly impaired trace but not delay fear memory when tested the next day. Our results further support the idea that the PFC is critical for trace but not delay fear conditioning highlight the role of UPS-mediated degradation as critical for synaptic plasticity.

  12. Phase variation mediates reductions in expression of surface proteins during persistent meningococcal carriage.

    Science.gov (United States)

    Alamro, Mohamed; Bidmos, Fadil A; Chan, Hannah; Oldfield, Neil J; Newton, Emma; Bai, Xilian; Aidley, Jack; Care, Rory; Mattick, Claire; Turner, David P J; Neal, Keith R; Ala'aldeen, Dlawer A A; Feavers, Ian; Borrow, Ray; Bayliss, Christopher D

    2014-06-01

    Asymptomatic and persistent colonization of the upper respiratory tract by Neisseria meningitidis occurs despite elicitation of adaptive immune responses against surface antigens. A putative mechanism for facilitating host persistence of this bacterial commensal and pathogen is alterations in expression of surface antigens by simple sequence repeat (SSR)-mediated phase variation. We investigated how often phase variation occurs during persistent carriage by analyzing the SSRs of eight loci in multiple isolates from 21 carriers representative of 1 to 6 months carriage. Alterations in repeat number were detected by a GeneScan analysis and occurred at 0.06 mutations/gene/month of carriage. The expression states were determined by Western blotting and two genes, fetA and nadA, exhibited trends toward low expression states. A critical finding from our unique examination of combinatorial expression states, "phasotypes," was for significant reductions in expression of multiple phase-variable surface proteins during persistent carriage of some strains. The immune responses in these carriers were examined by measuring variant-specific PorA IgG antibodies, capsular group Y IgG antibodies and serum bactericidal activity in concomitant serum samples. Persistent carriage was associated with high levels of specific IgG antibodies and serum bactericidal activity while recent strain acquisition correlated with a significant induction of antibodies. We conclude that phase-variable genes are driven into lower expression states during long-term persistent meningococcal carriage, in part due to continuous exposure to antibody-mediated selection, suggesting localized hypermutation has evolved to facilitate host persistence. PMID:24686058

  13. A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway.

    Directory of Open Access Journals (Sweden)

    Laurence M Wood

    Full Text Available Ataxia Telangiectasia (A-T is an inherited immunodeficiency disorder wherein mutation of the ATM kinase is responsible for the A-T pathogenesis. Although the precise role of ATM in A-T pathogenesis is still unclear, its function in responding to DNA damage has been well established. Here we demonstrate that in addition to its role in DNA repair, ATM also regulates proteasome-mediated protein turnover through suppression of the ISG15 pathway. This conclusion is based on three major pieces of evidence: First, we demonstrate that proteasome-mediated protein degradation is impaired in A-T cells. Second, we show that the reduced protein turnover is causally linked to the elevated expression of the ubiquitin-like protein ISG15 in A-T cells. Third, we show that expression of the ISG15 is elevated in A-T cells derived from various A-T patients, as well as in brain tissues derived from the ATM knockout mice and A-T patients, suggesting that ATM negatively regulates the ISG15 pathway. Our current findings suggest for the first time that proteasome-mediated protein degradation is impaired in A-T cells due to elevated expression of the ISG15 conjugation pathway, which could contribute to progressive neurodegeneration in A-T patients.

  14. Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response

    NARCIS (Netherlands)

    Fros, J.J.; Major, L.D.; Scholte, F.E.; Gardner, J.; Hemert, van M.J.; Suhrbier, A.; Pijlman, G.P.

    2015-01-01

    The unfolded protein response (UPR) is a cellular defence mechanism against high concentrations of misfolded protein in the endoplasmic reticulum (ER). In the presence of misfolded proteins, ER-transmembrane proteins PERK and IRE1a become activated. PERK phosphorylates eIF2a leading to a general inh

  15. Uncovering molecular structural mechanisms of signaling mediated by the prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Sebastian A.; Linden, Rafael [Universidade Federal do Rio de Janeiro (IBCCF/UFRl), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho; Cordeiro, Yraima; Rocha e Lima, Luis M.T. da [Universidade Federal do Rio de Janeiro (FF/UFRl), RJ (Brazil). Fac. de Farmacia; Lopes, Marilene H. [Instituto Ludwig de Pesquisa de Cancer, Sao Paulo, SP (Brazil); Silva, Jerson L.; Foguel, Debora [Universidade Federal do Rio de Janeiro (IBqM/UFRl), RJ (Brazil). Inst. de Bioquimica Medica

    2009-07-01

    The glycosyl phosphatidylinositol (GPI) - anchored prion protein (PrP{sup c}), usually associated with neurodegenerative diseases, modulates various cellular responses and may scaffold multiprotein cell surface signaling complexes. Engagement of PrP{sup c} with the secretable cochaperone hop/STI 1 induces neurotrophic transmembrane signals through unknown molecular mechanisms. We addressed whether interaction of Pr P{sup c} and hop STI 1 entails structural rearrangements relevant for signaling. Circular dichroism and fluorescence spectroscopy showed that PrP{sup c}:hop/STI 1 interaction triggers loss of PrP helical structures, involving at least a perturbation of the Pr P{sup c}{sub 143-153} beta-helix. Novel SAXS models revealed a significant C-terminal compaction of hop/STI 1 when bound to PrP{sup c}. Differing from a recent dimeric model of human hop/STI 1, both size exclusion chromatography and SAXS data support a monomeric form of free murine hop/STI 1. Changes in the Pr P{sup c}{sub 143-153} beta-helix may engage the transmembrane signaling protein laminin receptor precursor and neural cell adhesion molecule, both of which bind that domain of Pr P{sup c}, and further ligands may be engaged by the tertiary structural changes of hop/STI 1. These reciprocal structural modifications indicate a versatile mechanism for signaling mediated by Pr P{sup c}:hop/STI 1 interaction, consistent with the hypothesis that Pr P{sup c} scaffolds multiprotein signaling complexes at the cell surface. (author)

  16. Signal regulatory protein alpha negatively regulates beta2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis.

    Directory of Open Access Journals (Sweden)

    Dan-Qing Liu

    Full Text Available BACKGROUND: Signal regulate protein alpha (SIRPalpha is involved in many functional aspects of monocytes. Here we investigate the role of SIRPalpha in regulating beta(2 integrin-mediated monocyte adhesion, transendothelial migration (TEM and phagocytosis. METHODOLOGY/PRINCIPAL FINDINGS: THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs resulted in a decrease of SIRPalpha expression but an increase of beta(2 integrin cell surface expression and beta(2 integrin-mediated adhesion to tumor necrosis factor-alpha (TNFalpha-stimulated human microvascular endothelial cell (HMEC-1 monolayers. In contrast, SIRPalpha overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1-triggered cell surface expression of beta(2 integrins, in particular CD11b/CD18. SIRPalpha overexpression reduced beta(2 integrin-mediated firm adhesion of THP-1 cells to either TNFalpha-stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1 (ICAM-1. SIRPalpha overexpression also reduced MCP-1-initiated migration of THP-1 cells across TNFalpha-stimulated HMEC-1 monolayers. Furthermore, beta(2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and phagocytosis of bacteria were both inhibited by SIRPalpha overexpression. CONCLUSIONS/SIGNIFICANCE: SIRPalpha negatively regulates beta(2 integrin-mediated monocyte adhesion, transendothelial migration and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes in the arterial wall during early stage of atherosclerosis.

  17. Antibody to collapsin response mediator protein 1 promotes neurite outgrowth from rat hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongsheng Lin; Jing Chen; Wenbin Zhang; Xiaobing Gong; Biao Chen; Guoqing Guo

    2011-01-01

    This study examined the role of collapsin response mediator protein 1 (CRMP-1) on neurite outgrowth from rat hippocampal neurons by blocking its function using an antibody. Hippocampal neurons, cultured in vitro, were treated (blocked) using a polyclonal antibody to CRMP-1, and neurite outgrowth and cytoskeletal changes w ere captured using atomic force microscopy and laser confocal microscopy. Control cells, treated with normal rabbit IgG, established their characteristic morphology and had a large number of processes emerging from the soma, including numerous branches. Microtubules were clearly visible in the soma, formed an elaborate network, and were aligned in parallel arrays to form bundles which projected into neurites. After blocking with CRMP-1 antibody, the number of branches emerging from axons and dendrites significantly increased and were substantially longer, compared with control cells. However, the microtubule network nearly disappeared and only a few remnants were visible. When CRMP-1 antibody-blocked neurons were treated with the Rho inhibitor, Y27632, numerous neurites emerged from the soma, and branches were more abundant than in control neurons. Although the microtubules were not as clearly visible compared with neurons cultured in control medium, the microtubule network recovered in cells treated with Y27632, when compared with cells that were blocked by CRMP-1 antibody (but not treated with Y27632). These results demonstrate that neurite outgrowth from hippocampal neurons can be promoted by blocking CRMP-1 with a polyclonal antibody.

  18. Protein Kinases Possibly Mediate Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    Science.gov (United States)

    Love, Felisha D.; Melhado, Caroline D.; Bosah, Francis N.; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1998-01-01

    Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. These studies indicate that microgravity affects a number of physiological systems and included in this are cell signaling mechanisms. Rijken and coworkers performed growth factor studies that showed PKC signaling and actin microfilament organization appears to be sensitive to microgravity, suggesting that the inhibition of signal transduction by microgravity may be related to alterations in actin microfilament organization. However, similar studies have not been done for vascular cells. Vascular endothelial cells play critical roles in providing nutrients to organ and tissues and in wound repair. The major deterrent to ground-based microgravity studies is that it is impossible to achieved true microgravity for longer than a few minutes on earth. Hence, it has not been possible to conduct prolonged microgravity studies except for two models that simulate certain aspects of microgravity. However, hypergravity is quite easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell lines while decreasing cell motility and slowing liver regeneration following partial hepatectomy, These studies indicate the hypergravity also alters the behavior of most cells. Several investigators have shown that hypergravity affects the activation of several protein kinases (PKs) in cells. In this study, we investigated whether hypergravity alters the expression of f-actin by bovine aortic endothelial cells (BAECs) and the role of PK's (calmodulin 11 dependent, PKA and PKC) as mediators of these effects.

  19. Alpha-latrotoxin modulates the secretory machinery via receptor-mediated activation of protein kinase C.

    Science.gov (United States)

    Liu, Jie; Wan, Qunfang; Lin, Xianguang; Zhu, Hongliang; Volynski, Kirill; Ushkaryov, Yuri; Xu, Tao

    2005-09-01

    The hypothesis whether alpha-latrotoxin (LTX) could directly regulate the secretory machinery was tested in pancreatic beta cells using combined techniques of membrane capacitance (Cm) measurement and Ca2+ uncaging. Employing ramp increase in [Ca2+]i to stimulate exocytosis, we found that LTX lowers the Ca2+ threshold required for exocytosis without affecting the size of the readily releasable pool (RRP). The burst component of exocytosis in response to step-like [Ca2+]i increase generated by flash photolysis of caged Ca2+ was also speeded up by LTX treatment. LTX increased the maximum rate of exocytosis compared with control responses with similar postflash [Ca2+]i and shifted the Ca2+ dependence of the exocytotic machinery toward lower Ca2+ concentrations. LTXN4C, a LTX mutant which cannot form membrane pores or penetrate through the plasma membrane but has similar affinity for the receptors as the wild-type LTX, mimicked the effect of LTX. Moreover, the effects of both LTX and LTXN4C) were independent of intracellular or extracellular Ca2+ but required extracellular Mg2+. Our data propose that LTX, by binding to the membrane receptors, sensitizes the fusion machinery to Ca2+ and, hence, may permit release at low [Ca2+]i level. This sensitization is mediated by activation of protein kinase C. PMID:16101679

  20. Membrane Tension Inhibits Deformation by Coat Proteins in Clathrin-Mediated Endocytosis

    Science.gov (United States)

    Hassinger, Julian; Drubin, David; Oster, George; Rangamani, Padmini

    2016-02-01

    In clathrin-mediated endocytosis (CME), clathrin and various adaptor proteins coat a patch of the plasma membrane, which is reshaped to form a budded vesicle. Experimental studies have demonstrated that elevated membrane tension can inhibit bud formation by a clathrin coat. In this study, we investigate the impact of membrane tension on the mechanics of membrane budding by simulating clathrin coats that either grow in area or progressively induce greater curvature. At low membrane tension, progressively increasing the area of a curvature-generating coat causes the membrane to smoothly evolve from a flat to budded morphology, whereas the membrane remains essentially flat at high membrane tensions. Interestingly, at physiologically relevant, intermediate membrane tensions, the shape evolution of the membrane undergoes a snapthrough instability in which increasing coat area causes the membrane to "snap" from an open, U-shaped bud to a closed, $\\Omega$-shaped bud. This instability is accompanied by a large energy barrier, which could cause a developing endocytic pit to stall if the binding energy of additional coat is insufficient to overcome this barrier. Similar results were found for a coat of constant area in which the spontaneous curvature progressively increases. Additionally, a pulling force on the bud, simulating a force from actin polymerization, is sufficient to drive a transition from an open to closed bud, overcoming the energy barrier opposing this transition.

  1. DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation

    International Nuclear Information System (INIS)

    As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. (paper)

  2. An Intrinsically Disordered Motif Mediates Diverse Actions of Monomeric C-reactive Protein.

    Science.gov (United States)

    Li, Hai-Yun; Wang, Jing; Meng, Fan; Jia, Zhe-Kun; Su, Yang; Bai, Qi-Feng; Lv, Ling-Ling; Ma, Fu-Rong; Potempa, Lawrence A; Yan, Yong-Bin; Ji, Shang-Rong; Wu, Yi

    2016-04-15

    Most proinflammatory actions of C-reactive protein (CRP) are only expressed following dissociation of its native pentameric assembly into monomeric form (mCRP). However, little is known about what underlies the greatly enhanced activities of mCRP. Here we show that a single sequence motif, i.e. cholesterol binding sequence (CBS; a.a. 35-47), is responsible for mediating the interactions of mCRP with diverse ligands. The binding of mCRP to lipoprotein component ApoB, to complement component C1q, to extracellular matrix components fibronectin and collagen, to blood coagulation component fibrinogen, and to membrane lipid component cholesterol, are all found to be markedly inhibited by the synthetic CBS peptide but not by other CRP sequences tested. Likewise, mutating CBS in mCRP also greatly impairs these interactions. Functional experiments further reveal that CBS peptide significantly reduces the effects of mCRP on activation of endothelial cells in vitro and on acute induction of IL-6 in mice. The potency and specificity of CBS are critically determined by the N-terminal residues Cys-36, Leu-37, and His-38; while the versatility of CBS appears to originate from its intrinsically disordered conformation polymorphism. Together, these data unexpectedly identify CBS as the major recognition site of mCRP and suggest that this motif may be exploited to tune the proinflammatory actions of mCRP.

  3. Neutrophil-derived heparin binding protein--a mediator of increased vascular permeability after burns?

    Science.gov (United States)

    Johansson, Joakim; Lindbom, Lennart; Herwald, Heiko; Sjöberg, Folke

    2009-12-01

    Increased vascular permeability and oedema formation constitute a major clinical challenge following burns. Several clinical studies show that leukocytes are systemically activated following burns. Neutrophils have the capability to increase vascular permeability via mechanisms thought to involve the release of heparin binding protein (HBP). We hypothesised that HBP is elevated in plasma after major burns due to a systemic inflammatory response and investigated plasma-HBP concentrations in 10 severely burned patients daily for 1 week following the burn. Five-fold higher levels in plasma-HBP concentration compared to a control group were detected on the first day after injury, followed by a steep reduction in the time-period that corresponds to the last part of the hyperpermeability phase. These data are in accordance with the hypothesis that HBP may function as a mediator of the early burn-induced increase in vascular permeability, and call for further studies to confirm a possible cause-and-effect relationship between HBP and oedema formation following burns.

  4. Brd4-Mediated Nuclear Retention of the Papillomavirus E2 Protein Contributes to Its Stabilization in Host Cells

    Directory of Open Access Journals (Sweden)

    Jing Li

    2014-01-01

    Full Text Available Papillomavirus E2 is a multifunctional viral protein that regulates many aspects of the viral life cycle including viral episome maintenance, transcriptional activation, and repression. E2 is degraded by the ubiquitin-proteasome pathway. Cellular bromodomain protein Brd4 has been implicated in the stabilization of the E2 protein. E2 normally shuttles between the cytoplasm and the nucleus. In this study, we demonstrate that E2 ubiquitylation mostly occurs in the cytoplasm. We also find that the interaction with Brd4 promotes nuclear retention of papillomavirus E2 proteins and contributes to their stabilization in the nucleus. Compared to wild type E2 proteins, nuclear-localization-defective mutants are rapidly degraded by the ubiquitin-proteasome pathway; however, co-expression of Brd4 redirects these mutants into the nucleus and significantly increases their stability. We further demonstrate that tethering E2 proteins to chromatin as either double-bromodomain fusion proteins or histone 2B (H2B fusion proteins significantly stabilizes the E2 proteins. Our studies suggest that chromatin recruitment of the E2 protein via interaction with Brd4 prevents E2 ubiquitylation and proteasomal degradation in the cytoplasm, leading to its stabilization in the nucleus. These studies bring new insights for understanding Brd4-mediated E2 stabilization, and provide an additional mechanism by which the chromatin-associated Brd4 regulates E2 functions.

  5. Brd4-mediated nuclear retention of the papillomavirus E2 protein contributes to its stabilization in host cells.

    Science.gov (United States)

    Li, Jing; Li, Qing; Diaz, Jason; You, Jianxin

    2014-01-01

    Papillomavirus E2 is a multifunctional viral protein that regulates many aspects of the viral life cycle including viral episome maintenance, transcriptional activation, and repression. E2 is degraded by the ubiquitin-proteasome pathway. Cellular bromodomain protein Brd4 has been implicated in the stabilization of the E2 protein. E2 normally shuttles between the cytoplasm and the nucleus. In this study, we demonstrate that E2 ubiquitylation mostly occurs in the cytoplasm. We also find that the interaction with Brd4 promotes nuclear retention of papillomavirus E2 proteins and contributes to their stabilization in the nucleus. Compared to wild type E2 proteins, nuclear-localization-defective mutants are rapidly degraded by the ubiquitin-proteasome pathway; however, co-expression of Brd4 redirects these mutants into the nucleus and significantly increases their stability. We further demonstrate that tethering E2 proteins to chromatin as either double-bromodomain fusion proteins or histone 2B (H2B) fusion proteins significantly stabilizes the E2 proteins. Our studies suggest that chromatin recruitment of the E2 protein via interaction with Brd4 prevents E2 ubiquitylation and proteasomal degradation in the cytoplasm, leading to its stabilization in the nucleus. These studies bring new insights for understanding Brd4-mediated E2 stabilization, and provide an additional mechanism by which the chromatin-associated Brd4 regulates E2 functions. PMID:24448221

  6. Severe acute respiratory syndrome coronavirus protein 6 mediates ubiquitin-dependent proteosomal degradation of N-Myc(and STAT) interactor

    Institute of Scientific and Technical Information of China (English)

    Weijia; Cheng; Shiyou; Chen; Ruiling; Li; Yu; Chen; Min; Wang; Deyin; Guo

    2015-01-01

    Severe acute respiratory syndrome coronavirus(SARS-Co V) encodes eight accessory proteins, the functions of which are not yet fully understood. SARS-Co V protein 6(P6) is one of the previously studied accessory proteins that have been documented to enhance viral replication and suppress host interferon(IFN) signaling pathways. Through yeast two-hybrid screening, we identified eight potential cellular P6-interacting proteins from a human spleen c DNA library. For further investigation, we targeted the IFN signaling pathway-mediating protein, N-Myc(and STAT) interactor(Nmi). Its interaction with P6 was confirmed within cells. The results showed that P6 can promote the ubiquitin-dependent proteosomal degradation of Nmi. This study revealed a new mechanism of SARS-Co V P6 in limiting the IFN signaling to promote SARS-Co V survival in host cells.

  7. A Rab-GAP TBC Domain Protein Binds Hepatitis C Virus NS5A and Mediates Viral Replication▿

    Science.gov (United States)

    Sklan, Ella H.; Staschke, Kirk; Oakes, Tina M.; Elazar, Menashe; Winters, Mark; Aroeti, Benjamin; Danieli, Tsafi; Glenn, Jeffrey S.

    2007-01-01

    Hepatitis C virus (HCV) is an important cause of liver disease worldwide. Current therapies are inadequate for most patients. Using a two-hybrid screen, we isolated a novel cellular binding partner interacting with the N terminus of HCV nonstructural protein NS5A. This partner contains a TBC Rab-GAP (GTPase-activating protein) homology domain found in all known Rab-activating proteins. As the first described interaction between such a Rab-GAP and a viral protein, this finding suggests a new mechanism whereby viruses may subvert host cell machinery for mediating the endocytosis, trafficking, and sorting of their own proteins. Moreover, depleting the expression of this partner severely impairs HCV RNA replication with no obvious effect on cell viability. These results suggest that pharmacologic disruption of this NS5A-interacting partner can be contemplated as a potential new antiviral strategy against a pathogen affecting nearly 3% of the world's population. PMID:17686842

  8. Role of pRb-related proteins in simian virus 40 large-T-antigen-mediated transformation.

    OpenAIRE

    Zalvide, J; DeCaprio, J A

    1995-01-01

    Simian virus 40 large T-antigen (TAg) transformation is thought to be mediated, at least in part, by binding to and modulating the function of certain cellular proteins, including the retinoblastoma tumor suppressor gene product, pRb. TAg can disrupt the inhibitory complexes formed by pRb with the oncogenic transcription factor E2F, and this mechanism has been suggested to be important for TAg-mediated transformation. Residues 102 to 114 of TAg (including the LXCXE motif) are required for bin...

  9. DNA-Mediated Signaling by Proteins with 4Fe−4S Clusters Is Necessary for Genomic Integrity

    OpenAIRE

    Grodick, Michael A.; Segal, Helen M.; Zwang, Theodore J.; Barton, Jacqueline K.

    2014-01-01

    Iron–sulfur clusters have increasingly been found to be associated with enzymes involved in DNA processing. Here we describe a role for these redox clusters in DNA-mediated charge-transport signaling in E. coli between DNA repair proteins from distinct pathways. DNA-modified electrochemistry shows that the 4Fe–4S cluster of DNA-bound DinG, an ATP-dependent helicase that repairs R-loops, is redox-active at cellular potentials and ATP hydrolysis increases DNA-mediated redox signaling. Atomic fo...

  10. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements.

    OpenAIRE

    Kozlov, M M; Chernomordik, L V

    1998-01-01

    Although membrane fusion mediated by influenza virus hemagglutinin (HA) is the best characterized example of ubiquitous protein-mediated fusion, it is still not known how the low-pH-induced refolding of HA trimers causes fusion. This refolding involves 1) repositioning of the hydrophobic N-terminal sequence of the HA2 subunit of HA ("fusion peptide"), and 2) the recruitment of additional residues to the alpha-helical coiled coil of a rigid central rod of the trimer. We propose here a mechanis...

  11. Environment control to improve recombinant protein yields in plants based on Agrobacterium-mediated transient gene expression

    Directory of Open Access Journals (Sweden)

    Naomichi eFujiuchi

    2016-03-01

    Full Text Available Agrobacterium-mediated transient expression systems enable plants to produce a wide range of recombinant proteins on a rapid timescale. To achieve economically feasible upstream production and downstream processing, two yield parameters should be considered: 1 recombinant protein content per unit biomass; and 2 recombinant protein productivity per unit area-time at the end of the upstream production. Because environmental factors in the upstream production have impacts on those parameters, environment control is important to maximize the recombinant protein yield. In this review, we summarize the effects of pre- and post-inoculation environmental factors in the upstream production on the yield parameters and discuss the basic concept of environment control for plant-based transient expression systems. Pre-inoculation environmental factors associated with planting density, light quality and nutrient supply affect plant characteristics such as biomass and morphology, which in turn affect recombinant protein content and productivity. Accordingly, environment control for such plant characteristics has significant implications to achieve a high yield. On the other hand, post-inoculation environmental factors such as temperature, light intensity and humidity have been shown to affect recombinant protein content. Considering that recombinant protein production in Agrobacterium-mediated transient expression systems is a result of a series of complex biological events starting from T-DNA transfer from Agrobacterium tumefaciens to protein biosynthesis and accumulation in leaf tissue, we propose that dynamic environment control during the post-inoculation process, i.e., changing environmental conditions at an appropriate timing for each event, may be a promising approach to obtain a high yield. Detailed descriptions of plant growth conditions and careful examination of environmental effects will significantly contribute to our knowledge to stably obtain

  12. Identification, RNAi knockdown, and functional analysis of an ejaculate protein that mediates a postmating, prezygotic phenotype in a cricket.

    Directory of Open Access Journals (Sweden)

    Jeremy L Marshall

    Full Text Available Postmating, prezygotic phenotypes, especially those that underlie reproductive isolation between closely related species, have been a central focus of evolutionary biologists over the past two decades. Such phenotypes are thought to evolve rapidly and be nearly ubiquitous among sexually reproducing eukaryotes where females mate with multiple partners. Because these phenotypes represent interplay between the male ejaculate and female reproductive tract, they are fertile ground for reproductive senescence--as ejaculate composition and female physiology typically change over an individual's life span. Although these phenotypes and their resulting dynamics are important, we have little understanding of the proteins that mediate these phenotypes, particularly for species groups where postmating, prezygotic traits are the primary mechanism of reproductive isolation. Here, we utilize proteomics, RNAi, mating experiments, and the Allonemobius socius complex of crickets, whose members are primarily isolated from one another by postmating, prezygotic phenotypes (including the ability of a male to induce a female to lay eggs, to demonstrate that one of the most abundant ejaculate proteins (a male accessory gland-biased protein similar to a trypsin-like serine protease decreases in abundance over a male's reproductive lifetime and mediates the induction of egg-laying in females. These findings represent one of the first studies to identify a protein that plays a role in mediating both a postmating, prezygotic isolation pathway and reproductive senescence.

  13. Labelling of endogenous target protein via N-S acyl transfer-mediated activation of N-sulfanylethylanilide.

    Science.gov (United States)

    Denda, Masaya; Morisaki, Takuya; Kohiki, Taiki; Yamamoto, Jun; Sato, Kohei; Sagawa, Ikuko; Inokuma, Tsubasa; Sato, Youichi; Yamauchi, Aiko; Shigenaga, Akira; Otaka, Akira

    2016-07-14

    The ligand-dependent incorporation of a reporter molecule (e.g., fluorescence dye or biotin) onto a endogenous target protein has emerged as an important strategy for elucidating protein function using various affinity-based labelling reagents consisting of reporter, ligand and reactive units. Conventional labelling reagents generally use a weakly activated reactive unit, which can result in the non-specific labelling of proteins in a ligand-independent manner. In this context, the activation of a labelling reagent through a targeted protein-ligand interaction could potentially overcome the problems associated with conventional affinity-based labelling reagents. We hypothesized that this type of protein-ligand-interaction-mediated activation could be accomplished using N-sulfanylethylanilide (SEAlide) as the reactive unit in the labelling reagent. Electrophilically unreactive amide-type SEAlide can be activated by its conversion to the corresponding active thioester in the presence of a phosphate salt, which can act as an acid-base catalyst. It has been suggested that protein surfaces consisting of hydrophilic residues such as amino, carboxyl and imidazole groups could function as acid-base catalysts. We therefore envisioned that a SEAlide-based labelling reagent (SEAL) bearing SEAlide as a reactive unit could be activated through the binding of the SEAL with a target protein. Several SEALs were readily prepared in this study using standard 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase protocols. These SEAL systems were subsequently applied to the ligand-dependent labelling of human carbonic anhydrase (hCA) and cyclooxyganese 1. Although we have not yet obtained any direct evidence for the target protein-mediated activation of the SEAlide unit, our results for the reaction of these SEALs with hCA1 or butylamine indirectly support our hypothesis. The SEALs reported in this study represent valuable new entries to the field of affinity-based labelling reagents

  14. Identification of a novel protein-protein interaction motif mediating interaction of GPCR-associated sorting proteins with G protein-coupled receptors

    DEFF Research Database (Denmark)

    Bornert, Olivier; Møller, Thor Christian; Boeuf, Julien;

    2013-01-01

    GPCR desensitization and down-regulation are considered key molecular events underlying the development of tolerance in vivo. Among the many regulatory proteins that are involved in these complex processes, GASP-1 have been shown to participate to the sorting of several receptors toward the degra......GPCR desensitization and down-regulation are considered key molecular events underlying the development of tolerance in vivo. Among the many regulatory proteins that are involved in these complex processes, GASP-1 have been shown to participate to the sorting of several receptors toward...... the degradation pathway. This protein belongs to the recently identified GPCR-associated sorting proteins (GASPs) family that comprises ten members for which structural and functional details are poorly documented. We present here a detailed structure-function relationship analysis of the molecular interaction...... between GASPs and a panel of GPCRs. In a first step, GST-pull down experiments revealed that all the tested GASPs display significant interactions with a wide range of GPCRs. Importantly, the different GASP members exhibiting the strongest interaction properties were also characterized by the presence...

  15. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction.

    Directory of Open Access Journals (Sweden)

    Jianfei Hu

    Full Text Available Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process.

  16. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions.

    OpenAIRE

    Harder, Thomas

    2003-01-01

    Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, whi...

  17. Stoichiometry of Murine Leukemia Virus Envelope Protein-Mediated Fusion and Its Neutralization▿

    OpenAIRE

    Ou, Wu; Silver, Jonathan

    2006-01-01

    Envelope glycoproteins (Envs) of retroviruses form trimers that mediate fusion between viral and cellular membranes and are the targets for neutralizing antibodies. Understanding in detail how Env trimers mediate membrane fusion, and how antibodies interfere with this process, is a fundamental problem in biology with practical implications for the development of antiviral drugs and vaccines. We investigated the stoichiometry of Env-mediated fusion and its inhibition by antibody by inserting a...

  18. Regulation of Toll-like receptor 4-mediated immune responses through Pasteurella multocida toxin-induced G protein signalling

    Directory of Open Access Journals (Sweden)

    Hildebrand Dagmar

    2012-08-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS-triggered Toll-like receptor (TLR 4-signalling belongs to the key innate defence mechanisms upon infection with Gram-negative bacteria and triggers the subsequent activation of adaptive immunity. There is an active crosstalk between TLR4-mediated and other signalling cascades to secure an effective immune response, but also to prevent excessive inflammation. Many pathogens induce signalling cascades via secreted factors that interfere with TLR signalling to modify and presumably escape the host response. In this context heterotrimeric G proteins and their coupled receptors have been recognized as major cellular targets. Toxigenic strains of Gram-negative Pasteurella multocida produce a toxin (PMT that constitutively activates the heterotrimeric G proteins Gαq, Gα13 and Gαi independently of G protein-coupled receptors through deamidation. PMT is known to induce signalling events involved in cell proliferation, cell survival and cytoskeleton rearrangement. Results Here we show that the activation of heterotrimeric G proteins through PMT suppresses LPS-stimulated IL-12p40 production and eventually impairs the T cell-activating ability of LPS-treated monocytes. This inhibition of TLR4-induced IL-12p40 expression is mediated by Gαi-triggered signalling as well as by Gβγ-dependent activation of PI3kinase and JNK. Taken together we propose the following model: LPS stimulates TLR4-mediated activation of the NFĸB-pathway and thereby the production of TNF-α, IL-6 and IL-12p40. PMT inhibits the production of IL-12p40 by Gαi-mediated inhibition of adenylate cyclase and cAMP accumulation and by Gβγ-mediated activation of PI3kinase and JNK activation. Conclusions On the basis of the experiments with PMT this study gives an example of a pathogen-induced interaction between G protein-mediated and TLR4-triggered signalling and illustrates how a bacterial toxin is able to interfere with the host’s immune

  19. Docosahexaenoic Acid Promotes Axon Outgrowth by Translational Regulation of Tau and Collapsin Response Mediator Protein 2 Expression.

    Science.gov (United States)

    Mita, Toshinari; Mayanagi, Taira; Ichijo, Hiroshi; Fukumoto, Kentaro; Otsuka, Kotaro; Sakai, Akio; Sobue, Kenji

    2016-03-01

    n-3 PUFAs are essential for neuronal development and brain function. However, the molecular mechanisms underlying their biological effects remain unclear. Here we examined the mechanistic action of docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acids in the brain. We found that DHA treatment of cortical neurons resulted in enhanced axon outgrowth that was due to increased axon elongation rates. DHA-mediated axon outgrowth was accompanied by the translational up-regulation of Tau and collapsin response mediator protein 2 (CRMP2), two important axon-related proteins, and the activation of Akt and p70 S6 kinase. Consistent with these findings, rapamycin, a potent inhibitor of mammalian target of rapamycin (mTOR), prevented DHA-mediated axon outgrowth and up-regulation of Tau and CRMP2. In addition, DHA-dependent activation of the Akt-mTOR-S6K pathway enhanced 5'-terminal oligopyrimidine tract-dependent translation of Tau and CRMP2. Therefore, our results revealed an important role for the Akt-mTOR-S6K pathway in DHA-mediated neuronal development.

  20. Dihydrotestosterone regulating apolipoprotein M expression mediates via protein kinase C in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Yi-zhou Ye

    2012-12-01

    Full Text Available Abstract Background Administration of androgens decreases plasma concentrations of high-density lipid cholesterol (HDL-C. However, the mechanisms by which androgens mediate lipid metabolism remain unknown. This present study used HepG2 cell cultures and ovariectomized C57BL/6 J mice to determine whether apolipoprotein M (ApoM, a constituent of HDL, was affected by dihydrotestosterone (DHT. Methods HepG2 cells were cultured in the presence of either DHT, agonist of protein kinase C (PKC, phorbol-12-myristate-13-acetate (PMA, blocker of androgen receptor flutamide together with different concentrations of DHT, or DHT together with staurosporine at different concentrations for 24 hrs. Ovariectomized C57BL/6 J mice were treated with DHT or vehicle for 7d or 14d and the levels of plasma ApoM and livers ApoM mRNA were measured. The mRNA levels of ApoM, ApoAI were determined by real-time RT-PCR. ApoM and ApoAI were determined by western blotting analysis. Results Addition of DHT to cell culture medium selectively down-regulated ApoM mRNA expression and ApoM secretion in a dose-dependent manner. At 10 nM DHT, the ApoM mRNA levels were about 20% lower than in untreated cells and about 40% lower at 1000 nM DHT than in the control cells. The secretion of ApoM into the medium was reduced to a similar extent. The inhibitory effect of DHT on ApoM secretion was not blocked by the classical androgen receptor blocker flutamide but by an antagonist of PKC, Staurosporine. Agonist of PKC, PMA, also reduced ApoM. At 0.5 μM PMA, the ApoM mRNA levels and the secretion of ApoM into the medium were about 30% lower than in the control cells. The mRNA expression levels and secretion of another HDL-associated apolipoprotein AI (ApoAI were not affected by DHT. The levels of plasma ApoM and liver ApoM mRNA of DHT-treated C57BL/6 J mice were lower than those of vehicle-treated mice. Conclusions DHT directly and selectively down-regulated the level of ApoM mRNA and the

  1. Glutaraldehyde mediated conjugation of amino-coated magnetic nanoparticles with albumin protein for nanothermotherapy.

    Science.gov (United States)

    Zhao, Lingyun; Yang, Bing; Dai, Xiaochen; Wang, Xiaowen; Gao, Fuping; Zhang, Xiaodong; Tang, Jintian

    2010-11-01

    A novel bioconjugation of amino saline capped Fe3O4 magnetic nanoparticles (MNPs) with bovine serum albumin (BSA) was developed by applying glutaraldehyde as activator. Briefly, Fe3O4 MNs were synthesized by the chemical co-precipitation method. Surface modification of the prepared MNPs was performed by employing amino saline as the coating agent. Glutaraldehyde was further applied as an activation agent through which BSA was conjugated to the amino-coated MNPs. The structure of the BSA-MNs was confirmed by FTIR analysis. Physico-chemical characterizations of the BSA-MNPs, such as surface morphology, surface charge and magnetic properties were investigated by Transmission Electron Microscopy (TEM), zeta-Potential and Vibrating Sample Magnetometer (VSM), etc. Magnetic inductive heating characteristics of the BSA-MNPs were analyzed by exposing the MNPs suspension (magnetic fluid) under alternative magnetic field (AMF). The results demonstrate that BSA was successfully conjugated with amino-coated MNs mediated through glutaraldehyde activation. The nanoparticles were spherical shaped with approximately 10 nm diameter. Possessing ideal magnetic inductive heating characteristics, which can generate very rapid and efficient heating while upon AMF exposure, BSA-MNPs can be applied as a novel candidature for magnetic nanothermotherapy for cancer treatment. In vitro cytotoxicity study on the human hepatocellular liver carcinoma cells (HepG-2) indicates that BSA-MNP is an efficient agent for cancer nanothermotherapy with satisfied biocompatibility, as rare cytotoxicity was observed in the absence of AMF. Moreover, our investigation provides a methodology for fabrication protein conjugated MNPs, for instance monoclonal antibody conjugated MNPs for targeting cancer nanothermotherapy. PMID:21137877

  2. Spinal activity of interleukin 6 mediates myelin basic protein-induced allodynia.

    Science.gov (United States)

    Ko, Justin S; Eddinger, Kelly A; Angert, Mila; Chernov, Andrei V; Dolkas, Jennifer; Strongin, Alex Y; Yaksh, Tony L; Shubayev, Veronica I

    2016-08-01

    Mechanosensory fibers are enveloped by myelin, a unique multilamellar membrane permitting saltatory neuronal conduction. Damage to myelin is thought to contribute to severe pain evoked by innocuous tactile stimulation (i.e., mechanical allodynia). Our earlier (Liu et al., 2012) and present data demonstrate that a single injection of a myelin basic protein-derived peptide (MBP84-104) into an intact sciatic nerve produces a robust and long-lasting (>30days) mechanical allodynia in female rats. The MBP84-104 peptide represents the immunodominant epitope and requires T cells to maintain allodynia. Surprisingly, only systemic gabapentin (a ligand of voltage-gated calcium channel α2δ1), but not ketorolac (COX inhibitor), lidocaine (sodium channel blocker) or MK801 (NMDA antagonist) reverse allodynia induced by the intrasciatic MBP84-104. The genome-wide transcriptional profiling of the sciatic nerve followed by the bioinformatics analyses of the expression changes identified interleukin (IL)-6 as the major cytokine induced by MBP84-104 in both the control and athymic T cell-deficient nude rats. The intrasciatic MBP84-104 injection resulted in both unilateral allodynia and unilateral IL-6 increase the segmental spinal cord (neurons and astrocytes). An intrathecal delivery of a function-blocking IL-6 antibody reduced the allodynia in part by the transcriptional effects in large-diameter primary afferents in DRG. Our data suggest that MBP regulates IL-6 expression in the nervous system and that the spinal IL-6 activity mediates nociceptive processing stimulated by the MBP epitopes released after damage or disease of the somatosensory nervous system. PMID:26970355

  3. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    Science.gov (United States)

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. PMID:26598443

  4. An integrative model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology.

    Directory of Open Access Journals (Sweden)

    Julia Rausenberger

    Full Text Available BACKGROUND: Plants have evolved various sophisticated mechanisms to respond and adapt to changes of abiotic factors in their natural environment. Light is one of the most important abiotic environmental factors and it regulates plant growth and development throughout their entire life cycle. To monitor the intensity and spectral composition of the ambient light environment, plants have evolved multiple photoreceptors, including the red/far-red light-sensing phytochromes. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an integrative mathematical model that describes how phytochrome B (phyB, an essential receptor in Arabidopsis thaliana, controls growth. Our model is based on a multiscale approach and connects the mesoscopic intracellular phyB protein dynamics to the macroscopic growth phenotype. To establish reliable and relevant parameters for the model phyB regulated growth we measured: accumulation and degradation, dark reversion kinetics and the dynamic behavior of different nuclear phyB pools using in vivo spectroscopy, western blotting and Fluorescence Recovery After Photobleaching (FRAP technique, respectively. CONCLUSIONS/SIGNIFICANCE: The newly developed model predicts that the phyB-containing nuclear bodies (NBs (i serve as storage sites for phyB and (ii control prolonged dark reversion kinetics as well as partial reversibility of phyB Pfr in extended darkness. The predictive power of this mathematical model is further validated by the fact that we are able to formalize a basic photobiological observation, namely that in light-grown seedlings hypocotyl length depends on the total amount of phyB. In addition, we demonstrate that our theoretical predictions are in excellent agreement with quantitative data concerning phyB levels and the corresponding hypocotyl lengths. Hence, we conclude that the integrative model suggested in this study captures the main features of phyB-mediated photomorphogenesis in Arabidopsis.

  5. Nociceptive-induced myocardial remote conditioning is mediated by neuronal gamma protein kinase C.

    Science.gov (United States)

    Gross, Eric R; Hsu, Anna K; Urban, Travis J; Mochly-Rosen, Daria; Gross, Garrett J

    2013-09-01

    Deciphering the remote conditioning molecular mechanism may provide targets to develop therapeutics that can broaden the clinical application. To further investigate this, we tested whether two protein kinase C (PKC) isozymes, the ubiquitously expressed epsilon PKC (εPKC) and the neuronal-specific gamma PKC (γPKC), mediate nociceptive-induced remote myocardial conditioning. Male Sprague-Dawley rats were used for both in vivo and ex vivo myocardial ischemia-reperfusion protocols. For the in vivo studies, using a surgical abdominal incision for comparison, applying only to the abdomen either bradykinin or the εPKC activator (ψεRACK) reduced myocardial infarct size (45 ± 1, 44 ± 2 %, respectively, vs. incision: 43 ± 2 %, and control: 63 ± 2 %, P classical PKC isozyme activator (activating α, β, βII, and γ), reduced myocardial injury. Importantly, the classical PKC isozyme activator given to the abdomen in vivo (with an intact nervous system including γPKC) during myocardial ischemia reduced infarct size as effectively as an abdominal incision or ψεRACK (45 ± 1 vs. 45 ± 2 and 47 ± 1 %, respectively). The classical PKC activator-induced protection was also blocked by spinal cord surgical transection. These findings identified potential remote conditioning mimetics, with these strategies effective even during myocardial ischemia. A novel mechanism of nociceptive-induced remote conditioning, involving γPKC, was also identified.

  6. Lentivirus-Mediated Short-Hairpin RNA Targeting Protein Phosphatase 4 Regulatory Subunit 1 Inhibits Growth in Breast Cancer

    OpenAIRE

    Qi, Yuying; Hu, Tinghui; Li, Kai; Ye, Renqing; Ye, Zuodong

    2015-01-01

    Purpose Protein phosphatase 4 regulatory subunit 1 (PP4R1), as an interaction partner of the catalytic serine/threonine-protein phosphatase 4 catalytic subunit has been shown to involve in cellular processes and nuclear factor κB signaling. However, the functions of PP4R1 in human breast cancers remain unclear. This study is designed to explore the effect of PP4R1 knockdown on the biological characteristics of breast cancer cells. Methods A lentivirus-mediated short hairpin RNA (shRNA) was de...

  7. Evolutionary aspects of plastid proteins involved in transcription: the transcription of a tiny genome is mediated by a complicated machinery.

    Science.gov (United States)

    Yagi, Yusuke; Shiina, Takashi

    2012-01-01

    Chloroplasts in land plants have a small genome consisting of only 100 genes encoding partial sets of proteins for photosynthesis, transcription and translation. Although it has been thought that chloroplast transcription is mediated by a basically cyanobacterium-derived system, due to the endosymbiotic origin of plastids, recent studies suggest the existence of a hybrid transcription machinery containing non-bacterial proteins that have been newly acquired during plant evolution. Here, we highlight chloroplast-specific non-bacterial transcription mechanisms by which land plant chloroplasts have gained novel functions.

  8. SURFACE PROTEINS AND PNEUMOLYSIN OF ENCAPSULATED AND NONENCAPSULATED STREPTOCOCCUS PNEUMONIAE MEDIATE VIRULENCE IN A CHINCHILLA MODEL OF OTITIS MEDIA

    OpenAIRE

    Keller, Lance E.; Bradshaw, Jessica L.; Haley ePipkins; McDaniel, Larry S.

    2016-01-01

    Streptococcus pneumoniae infections result in a range of human diseases and are responsible for almost one million deaths annually. Pneumococcal disease is mediated in part through surface structures and an anti-phagocytic capsule. Recent studies have shown that nonencapsulated Streptococcus pneumoniae (NESp) make up a significant portion of the pneumococcal population and are able to cause disease. NESp lack some common surface proteins expressed by encapsulated pneumococci, but express surf...

  9. HSV-1 nucleocapsid egress mediated by UL31 in association with UL34 is impeded by cellular transmembrane protein 140

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Ying [Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming 650118 (China); Yunnan Academy of Tobacco Science, Kunming, Yunnan 650106 (China); Guo, Lei; Yang, Erxia; Liao, Yun; Liu, Longding; Che, Yanchun; Zhang, Ying; Wang, Lichun; Wang, Jingjing [Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming 650118 (China); Li, Qihan, E-mail: imbcams.lq@gmail.com [Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical College, Kunming 650118 (China)

    2014-09-15

    During HSV-1 infection, the viral UL31 protein forms a complex with the UL34 protein at the cellular nuclear membrane, where both proteins play important roles in the envelopment of viral nucleocapsids and their egress into the cytoplasm. To characterize the mechanism of HSV-1 nucleocapsid egress, we screened host proteins to identify proteins that interacted with UL31 via yeast two-hybrid analysis. Transmembrane protein 140 (TMEM140), was identified and confirmed to bind to and co-localize with UL31 during viral infection. Further studies indicated that TMEM140 inhibits HSV-1 proliferation through selectively blocking viral nucleocapsid egress during the viral assembly process. The blockage function of TMEM140 is mediated by impeding the formation of the UL31–UL34 complex due to competitive binding to UL31. Collectively, these data suggest the essentiality of the UL31–UL34 interaction in the viral nucleocapsid egress process and provide a new anti-HSV-1 strategy in viral assembly process of nucleocapsid egress. - Highlights: • Cellular TMEM140 protein interacts with HSV-1 UL31 protein during viral infection. • Increasing expression of TMEM140 leads to inhibition of HSV-1 proliferation. • Increasing expression of TMEM140 blocks HSV-1 nucleocapsid egress process. • Binding to UL31 of TMEM140 impedes formation of HSV-1 UL31–UL34 complex.

  10. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells.

    Directory of Open Access Journals (Sweden)

    Anantha Koteswararao Kanugula

    Full Text Available Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.

  11. CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells.

    Science.gov (United States)

    Ratz, Michael; Testa, Ilaria; Hell, Stefan W; Jakobs, Stefan

    2015-04-20

    Overexpression is a notorious concern in conventional and especially in super-resolution fluorescence light microscopy studies because it may cause numerous artifacts including ectopic sub-cellular localizations, erroneous formation of protein complexes, and others. Nonetheless, current live cell super-resolution microscopy studies generally rely on the overexpression of a host protein fused to a fluorescent protein. Here, we establish CRISPR/Cas9-mediated generation of heterozygous and homozygous human knockin cell lines expressing fluorescently tagged proteins from their respective native genomic loci at close to endogenous levels. We tagged three different proteins, exhibiting various localizations and expression levels, with the reversibly switchable fluorescent protein rsEGFP2. We demonstrate the benefit of endogenous expression levels compared to overexpression and show that typical overexpression-induced artefacts were avoided in genome-edited cells. Fluorescence activated cell sorting analysis revealed a narrow distribution of fusion protein expression levels in genome-edited cells, compared to a pronounced variability in transiently transfected cells. Using low light intensity RESOLFT (reversible saturable optical fluorescence transitions) nanoscopy we show sub-diffraction resolution imaging of living human knockin cells. Our strategy to generate human cell lines expressing fluorescent fusion proteins at endogenous levels for RESOLFT nanoscopy can be extended to other fluorescent tags and super-resolution approaches.

  12. SGT1 interacts with the Prf resistance protein and is required for Prf accumulation and Prf-mediated defense signaling.

    Science.gov (United States)

    Kud, Joanna; Zhao, Zhulu; Du, Xinran; Liu, Yule; Zhao, Yun; Xiao, Fangming

    2013-02-15

    The highly conserved eukaryotic co-chaperone SGT1 (suppressor of the G2 allele of skp1) is an important signaling component of plant defense responses and positively regulates disease resistance conferred by many resistance (R) proteins. In this study, we investigated the contribution of SGT1 in the Prf-mediated defense responses in both Nicotiana benthamiana and tomato (Solanum lycopersicum). SGT1 was demonstrated to interact with Prf in plant cells by co-immunoprecipitation. The requirement of SGT1 in the accumulation of Prf or autoactive Prf(D1416V) was determined by the degradation of these proteins in N. benthamiana, in which SGT1 was repressed by virus-induced gene silencing (VIGS). Pseudomonas pathogen assay on the SGT1-silenced tomato plants implicates SGT1 is required for the Prf-mediated full resistance to Pseudomonas syringae pv. tomato (Pst). These results suggest that, in both N. benthamiana and tomato, SGT1 contributes to the Prf-mediated defense responses by stabilizing Prf protein via its co-chaperone activity.

  13. Role of the retinoblastoma protein in cell cycle arrest mediated by a novel cell surface proliferation inhibitor

    Science.gov (United States)

    Enebo, D. J.; Fattaey, H. K.; Moos, P. J.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A novel cell regulatory sialoglycopeptide (CeReS-18), purified from the cell surface of bovine cerebral cortex cells has been shown to be a potent and reversible inhibitor of proliferation of a wide array of fibroblasts as well as epithelial-like cells and nontransformed and transformed cells. To investigate the possible mechanisms by which CeReS-18 exerts its inhibitory action, the effect of the inhibitor on the posttranslational regulation of the retinoblastoma susceptibility gene product (RB), a tumor suppressor gene, has been examined. It is shown that CeReS-18 mediated cell cycle arrest of both human diploid fibroblasts (HSBP) and mouse fibroblasts (Swiss 3T3) results in the maintenance of the RB protein in the hypophosphorylated state, consistent with a late G1 arrest site. Although their normal nontransformed counterparts are sensitive to cell cycle arrest mediated by CeReS-18, cell lines lacking a functional RB protein, through either genetic mutation or DNA tumor virus oncoprotein interaction, are less sensitive. The refractory nature of these cells is shown to be independent of specific surface receptors for the inhibitor, and another tumor suppressor gene (p53) does not appear to be involved in the CeReS-18 inhibition of cell proliferation. The requirement for a functional RB protein product, in order for CeReS-18 to mediate cell cycle arrest, is discussed in light of regulatory events associated with density-dependent growth inhibition.

  14. Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer's Disease: Comparison and Contrast with Microtubule-Associated Protein Tau.

    Science.gov (United States)

    Hensley, Kenneth; Kursula, Petri

    2016-04-15

    Alzheimer's disease (AD) has long been viewed as a pathology that must be caused either by aberrant amyloid-β protein precursor (AβPP) processing, dysfunctional tau protein processing, or a combination of these two factors. This is a reasonable assumption because amyloid-β peptide (Aβ) accumulation and tau hyperphosphorylation are the defining histological features in AD, and because AβPP and tau mutations can cause AD in humans or AD-like features in animal models. Nonetheless, other protein players are emerging that one can argue are significant etiological players in subsets of AD and potentially novel, druggable targets. In particular, the microtubule-associated protein CRMP2 (collapsin response mediator protein-2) bears striking analogies to tau and is similarly relevant to AD. Like tau, CRMP2 dynamically regulates microtubule stability; it is acted upon by the same kinases; collects similarly in neurofibrillary tangles (NFTs); and when sequestered in NFTs, complexes with critical synapse-stabilizing factors. Additionally, CRMP2 is becoming recognized as an important adaptor protein involved in vesicle trafficking, amyloidogenesis and autophagy, in ways that tau is not. This review systematically compares the biology of CRMP2 to that of tau in the context of AD and explores the hypothesis that CRMP2 is an etiologically significant protein in AD and participates in pathways that can be rationally engaged for therapeutic benefit.

  15. Decolorization of direct dyes by salt fractionated turnip proteins enhanced in the presence of hydrogen peroxide and redox mediators.

    Science.gov (United States)

    Matto, Mahreen; Husain, Qayyum

    2007-09-01

    The present paper demonstrates the effect of salt fractionated turnip (Brassica rapa) proteins on the decolorization of direct dyes, used in textile industry, in the presence of various redox mediators. The rate and extent of decolorization of dyes was significantly enhanced by the presence of different types of redox mediators. Six out of 10 investigated compounds have shown their potential in enhancing the decolorization of direct dyes. The performance was evaluated at different concentrations of mediator and enzyme. The efficiency of each natural mediator depends on the type of dye treated. The decolorization of all tested direct dyes was maximum in the presence of 0.6mM redox mediator at pH 5.5 and 30 degrees C. Complex mixtures of dyes were also maximally decolorized in the presence of 0.6mM redox mediator (1-hydroxybenzotriazole/violuric acid). In order to examine the operational stability of the enzyme preparation, the enzyme was exploited for the decolorization of mixtures of dyes for different times in a stirred batch process. There was no further change in decolorization of an individual dye or their mixtures after 60 min; the enzyme caused more than 80% decolorization of all dyes in the presence of 1-hydroxybenzotriazole/violuric acid. However, there was no desirable increase in dye decolorization of the mixtures on overnight stay. Total organic carbon analysis of treated dyes or their mixtures showed that these results were quite comparable to the loss of color from solutions. However, the treatment of such polluted water in the presence of redox mediators caused the formation of insoluble precipitate, which could be removed by the process of centrifugation. The results suggested that catalyzed oxidative coupling reactions might be important for natural transformation pathways for dyes and indicate their potential use as an efficient means for removal of dyes color from waters and wastewaters.

  16. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    Science.gov (United States)

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  17. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor

    DEFF Research Database (Denmark)

    Chen, Y; Grall, D; Salcini, A E;

    1996-01-01

    The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have...... kinase activation, gene induction and cell growth. From these data, we conclude that Shc represents a crucial point of convergence between signaling pathways activated by receptor tyrosine kinases and G protein-coupled receptors....

  18. Destabilization of Heterologous Proteins Mediated by the GSK3β Phosphorylation Domain of the β-Catenin Protein

    Directory of Open Access Journals (Sweden)

    Yuhan Kong

    2013-11-01

    Full Text Available Background and Aims: Wnt/β-catenin signaling plays important roles in development and cellular processes. The hallmark of canonical Wnt signaling activation is the stabilization of β-catenin protein in cytoplasm and/or nucleus. The stability of β-catenin is the key to its biological functions and is controlled by the phosphorylation of its amino-terminal degradation domain. Aberrant activation of β-catenin signaling has been implicated in the development of human cancers. It has been recently suggested that GSK3βmay play an essential role in regulating global protein turnover. Here, we investigate if the GSK3β phosphorylation site-containing degradation domain of β-catenin is sufficient to destabilize heterologous proteins. Methods and Results: We engineer chimeric proteins by fusing β-catenin degradation domain at the N- and/or C-termini of the enhanced green fluorescent protein (eGFP. In both transient and stable expression experiments, the chimeric GFP proteins exhibit a significantly decreased stability, which can be effectively antagonized by lithium and Wnt1. An activating mutation in the destruction domain significantly stabilizes the fusion protein. Furthermore, GSK3 inhibitor SB-216763 effectively increases the GFP signal of the fusion protein. Conversely, the inhibition of Wnt signaling with tankyrase inhibitor XAV939 results in a decrease in GFP signal of the fusion proteins, while these small molecules have no significant effects on the mutant destruction domain-GFP fusion protein. Conclusion: Our findings strongly suggest that the β-catenin degradation domain may be sufficient to destabilize heterologous proteins in Wnt signaling-dependent manner. It is conceivable that the chimeric GFP proteins may be used as a functional reporter to measure the dynamic status of β-catenin signaling, and to identify potential anticancer drugs that target β-catenin signaling.

  19. A novel splice variant of calcium and integrin-binding protein 1 mediates protein kinase D2-stimulated tumour growth by regulating angiogenesis.

    Science.gov (United States)

    Armacki, M; Joodi, G; Nimmagadda, S C; de Kimpe, L; Pusapati, G V; Vandoninck, S; Van Lint, J; Illing, A; Seufferlein, T

    2014-02-27

    Protein kinase D2 (PKD2) is a member of the PKD family of serine/threonine kinases, a subfamily of the CAMK super-family. PKDs have a critical role in cell motility, migration and invasion of cancer cells. Expression of PKD isoforms is deregulated in various tumours and PKDs, in particular PKD2, have been implicated in the regulation of tumour angiogenesis. In order to further elucidate the role of PKD2 in tumours, we investigated the signalling context of this kinase by performing an extensive substrate screen by in vitro expression cloning (IVEC). We identified a novel splice variant of calcium and integrin-binding protein 1, termed CIB1a, as a potential substrate of PKD2. CIB1 is a widely expressed protein that has been implicated in angiogenesis, cell migration and proliferation, all important hallmarks of cancer, and CIB1a was found to be highly expressed in various cancer cell lines. We identify Ser(118) as the major PKD2 phosphorylation site in CIB1a and show that PKD2 interacts with CIB1a via its alanine and proline-rich domain. Furthermore, we confirm that CIB1a is indeed a substrate of PKD2 also in intact cells using a phosphorylation-specific antibody against CIB1a-Ser(118). Functional analysis of PKD2-mediated CIB1a phosphorylation revealed that on phosphorylation, CIB1a mediates tumour cell invasion, tumour growth and angiogenesis by mediating PKD-induced vascular endothelial growth factor secretion by the tumour cells. Thus, CIB1a is a novel mediator of PKD2-driven carcinogenesis and a potentially interesting therapeutic target. PMID:23503467

  20. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Tkachuk, Natalia; Tkachuk, Sergey; Patecki, Margret [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany); Kusch, Angelika [Department of Nephrology and Intensive Care Medicine, Charite Campus Virchow-Klinikum, Berlin D-13353 (Germany); Korenbaum, Elena; Haller, Hermann [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany); Dumler, Inna, E-mail: dumler.inna@mh-hannover.de [Department of Nephrology, Hannover Medical School, Hannover D-30625 (Germany)

    2011-07-08

    Highlights: {yields} The tight junction protein ZO-2 associates with Jak1 in vascular smooth muscle cells via ZO-2 N-terminal fragment. {yields} Jak1 mediates ZO-2 tyrosine phosphorylation and ZO-2 localization to the sites of homotypic intercellular contacts. {yields} The urokinase receptor uPAR regulates ZO-2/Jak1 functional association. {yields} The ZO-2/Jak1/uPAR signaling complex is required for vascular smooth muscle cells functional network formation. -- Abstract: Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.

  1. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth.

    Science.gov (United States)

    Martinez-Arca, S; Alberts, P; Zahraoui, A; Louvard, D; Galli, T

    2000-05-15

    How vesicular transport participates in neurite outgrowth is still poorly understood. Neurite outgrowth is not sensitive to tetanus neurotoxin thus does not involve synaptobrevin-mediated vesicular transport to the plasma membrane of neurons. Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) is a vesicle-SNARE (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor), involved in transport to the apical plasma membrane in epithelial cells, a tetanus neurotoxin-resistant pathway. Here we show that TI-VAMP is essential for vesicular transport-mediating neurite outgrowth in staurosporine-differentiated PC12 cells. The NH(2)-terminal domain, which precedes the SNARE motif of TI-VAMP, inhibits the association of TI-VAMP with synaptosome-associated protein of 25 kD (SNAP25). Expression of this domain inhibits neurite outgrowth as potently as Botulinum neurotoxin E, which cleaves SNAP25. In contrast, expression of the NH(2)-terminal deletion mutant of TI-VAMP increases SNARE complex formation and strongly stimulates neurite outgrowth. These results provide the first functional evidence for the role of TI-VAMP in neurite outgrowth and point to its NH(2)-terminal domain as a key regulator in this process.

  2. Cyclic AMP and AKAP-mediated targeting of protein kinase A regulates lactate dehydrogenase subunit A mRNA stability.

    Science.gov (United States)

    Jungmann, Richard A; Kiryukhina, Olga

    2005-07-01

    Expression of the lactate dehydrogenase A subunit (ldh-A) gene is controlled through transcriptional as well as post-transcriptional mechanisms. Both mechanisms involve activation of protein kinase A (PKA) into its subunits and subsequent phosphorylation and activation of several key regulatory factors. In rat C6 glioma cells, post-transcriptional gene regulation occurs through PKA-mediated stabilization of LDH-A mRNA and subsequent increase of intracellular LDH-A mRNA levels. Previous studies have demonstrated a cAMP-stabilizing region (CSR) located in the LDH-A 3'-untranslated region which, in combination with several phosphorylated CSR-binding proteins (CSR-BP), regulates the PKA-mediated stabilization of LDH-A mRNA. However, the mechanistic details of interaction of CSR with proteins as they pertain to mRNA stabilization by PKA are so far largely unknown. In this study we tested the hypothesis that ribosomal protein extracts (RSW) from glioma cells contain PKA regulatory (RII) and catalytic (C) subunits that, in combination with a protein kinase A anchoring protein (AKAP 95) and CSR-BPs participate in forming CSR-protein complexes that are responsible for mRNA stability regulation. To demonstrate the importance of CSR-protein complex formation, the PKA subunits and AKAP 95 were removed from the RSW by immunoprecipitation, and the antigen-deleted RSW were subjected to CSR binding analysis using gel mobility shift and UV cross-linking. It was shown that AKAP 95 as well as RII formed a direct linkage with CSR during CSR-protein complex formation. In contrast, the catalytic subunit formed part of the CSR-protein complex but did not bind to CSR directly in a covalent linkage. To determine whether formation of CSR complexes that included C, RII, and AKAP 95 constituted a functional event and was necessary for mRNA stabilization, cell-free decay reactions were carried out with RSW extracts, and the kinetics of decay of LDH-A mRNA was determined. Depletion of PKA

  3. Phloem Proteomics Reveals New Lipid-Binding Proteins with a Putative Role in Lipid-Mediated Signaling.

    Science.gov (United States)

    Barbaglia, Allison M; Tamot, Banita; Greve, Veronica; Hoffmann-Benning, Susanne

    2016-01-01

    Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three

  4. Phloem proteomics reveals new lipid-binding proteins with a putative role in lipid-mediated signaling

    Directory of Open Access Journals (Sweden)

    Allison Marie Barbaglia

    2016-04-01

    Full Text Available Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho- lipids could act as long-distance developmental signals in response to abiotic stress, and that they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012. Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I a putative GDSL-motif lipase (II a PIG-P-like protein, with a possible receptor-like function; (III and PLAFP (phloem lipid-associated family protein, a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH, which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while

  5. Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells

    Directory of Open Access Journals (Sweden)

    Elina M Sutinen

    2014-08-01

    Full Text Available Chronic inflammation and oxidative stress (OS are present in Alzheimer´s disease (AD brains in addition to neuronal loss, Amyloid-β (Aβ plaques and hyperphosphorylated tau-protein neurofibrillary tangles. Previously we showed that levels of the pro-inflammatory cytokine, interleukin-18 (IL-18, are elevated in post-mortem AD brains. IL-18 can modulate the tau kinases, Cdk5 and GSK3β, as well as Aβ-production. IL-18 levels are also increased in AD risk diseases, including type-2 diabetes and obesity. Here, we explored other IL-18 regulated proteins in neuron-like SH-SY5Y cells. Differentiated SH-SY5Y cells, incubated with IL-18 for 24, 48 or 72h, were analyzed by two-dimensional gel electrophoresis (2D-DIGE. Specific altered protein spots were chosen and identified with mass spectrometry and verified by western immunoblotting. IL-18 had time-dependent effects on the SH-SY5Y proteome, modulating numerous protein levels/modifications. We concentrated on those related to OS (DDAH2, peroxiredoxins 2, 3 and 6, DJ-1, BLVRA, Aβ-degradation (MMP14, TIMP2, Aβ-aggregation (Septin-2 and modifications of axon growth and guidance associated, collapsing response mediator protein 2 (CRMP2. IL-18 significantly increased antioxidative enzymes, indicative of OS, and altered levels of glycolytic α- and γ-enolase and multifunctional 14-3-3γ and -ε, commonly affected in neurodegenerative diseases. MMP14, TIMP2, α-enolase and 14-3-3ε, indirectly involved in Aβ metabolism, as well as Septin-2 showed changes that increase Aβ levels. Increased 14-3-3γ may contribute to GSK3β driven tau hyperphosphorylation and CRMP2 Thr514 and Ser522 phosphorylation with the Thr555-site, a target for Rho kinase, showing time-dependent changes. IL-18 also increased caspase-1 levels and vacuolization of the cells. Although our SH-SY5Y cells were not aged, as neurons in AD, our work suggests that heightened or prolonged IL-18 levels can drive protein changes of known

  6. The insulinogenic effect of whey protein is partially mediated by a direct effect of amino acids and GIP on β-cells

    DEFF Research Database (Denmark)

    Salehi, Albert; Gunnerud, Ulrika; Muhammed, Sarheed J;

    2012-01-01

    Whey protein increases postprandial serum insulin levels. This has been associated with increased serum levels of leucine, isoleucine, valine, lysine, threonine and the incretin hormone glucose-dependent insulinotropic polypeptide (GIP). We have examined the effects of these putative mediators...

  7. Trafficking of Na,K-ATPase fused to enhanced green fluorescent protein is mediated by protein kinase A or C

    DEFF Research Database (Denmark)

    Kristensen, B; Birkelund, Svend; Jørgensen, PL

    2003-01-01

    . Responses of similar magnitude were seen after inhibition of protein phosphatase by okadaic acid. Reduction of the amount of Na,K-ATPase in surface plasma membranes through internalization in recycling endosomes may thus in part explain a decrease in Na,K-pump activity following protein kinase activation......Fusion of enhanced green fluorescent protein (EGFP) to the C-terminal of rat Na,K-ATPase a1-subunit is introduced as a novel procedure for visualizing trafficking of Na,K-pumps in living COS-1 renal cells in response to PKA or PKC stimulation. Stable, functional expression of the fluorescent...... along the plasma membrane of COS cells. In unstimulated COS cells, Na,K-EGFP was also present in lysosomes and in vesicles en route from the endoplasmic reticulum to the plasma membrane, but it was almost absent from recycling endosomes labelled with fluorescent transferrin. After activation of protein...

  8. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    International Nuclear Information System (INIS)

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis

  9. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    Energy Technology Data Exchange (ETDEWEB)

    Mosedale, Merrie [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Wu, Hong [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Kurtz, C. Lisa [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Schmidt, Stephen P. [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Adkins, Karissa, E-mail: Karissa.Adkins@pfizer.com [Drug Safety Research and Development, Pfizer Global Research and Development, Groton, CT06340 (United States); Harrill, Alison H. [Hamner-University of North Carolina Institute for Drug Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); University of Arkansas for Medical Sciences, Little Rock, AR72205 (United States)

    2014-10-01

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response. Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis

  10. Novel redox-sensing modules : Accessory protein- and nucleic acid-mediated signaling

    NARCIS (Netherlands)

    Siedenburg, Gabriele; Groves, Matthew R; Ortiz de Orué Lucana, Darío

    2012-01-01

    SIGNIFICANCE: Organisms have evolved both enzymatic and nonenzymatic pathways to prevent oxidative damage to essential macromolecules, including proteins and nucleic acids. Pathways modulated by different protein-based sensory and regulatory modules ensure a rapid and appropriate response. RECENT AD

  11. Requirement of JIP scaffold proteins for NMDA-mediated signal transduction

    OpenAIRE

    Kennedy, Norman J.; Martin, Gilles; Ehrhardt, Anka G.; Cavanagh-Kyros, Julie; Kuan, Chia-Yi; Rakic, Pasko; Richard A Flavell; Treistman, Steven N.; Davis, Roger J

    2007-01-01

    JIP scaffold proteins are implicated in the regulation of protein kinase signal transduction pathways. To test the physiological role of these scaffold proteins, we examined the phenotype of compound mutant mice that lack expression of JIP proteins. These mice were found to exhibit severe defects in N-methyl-D-aspartic acid (NMDA) receptor function, including decreased NMDA-evoked current amplitude, cytoplasmic Ca++, and gene expression. The decreased NMDA receptor activity in JIP-deficient n...

  12. The novel SH3 domain protein Dlish/CG10933 mediates fat signaling in Drosophila by binding and regulating Dachs

    Science.gov (United States)

    Zhang, Yifei; Wang, Xing; Matakatsu, Hitoshi; Fehon, Richard; Blair, Seth S

    2016-01-01

    Much of the Hippo and planar cell polarity (PCP) signaling mediated by the Drosophila protocadherin Fat depends on its ability to change the subcellular localization, levels and activity of the unconventional myosin Dachs. To better understand this process, we have performed a structure-function analysis of Dachs, and used this to identify a novel and important mediator of Fat and Dachs activities, a Dachs-binding SH3 protein we have named Dlish. We found that Dlish is regulated by Fat and Dachs, that Dlish also binds Fat and the Dachs regulator Approximated, and that Dlish is required for Dachs localization, levels and activity in both wild type and fat mutant tissue. Our evidence supports dual roles for Dlish. Dlish tethers Dachs to the subapical cell cortex, an effect partly mediated by the palmitoyltransferase Approximated under the control of Fat. Conversely, Dlish promotes the Fat-mediated degradation of Dachs. DOI: http://dx.doi.org/10.7554/eLife.16624.001

  13. Cyanide-induced Death of Dopaminergic Cells is Mediated by Uncoupling Protein-2 Up-regulation and Reduced Bcl-2 Expression

    OpenAIRE

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell l...

  14. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection.

    Science.gov (United States)

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-07-01

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. PMID:27226547

  15. ATF6 pathway of unfolded protein response mediates advanced oxidation protein product-induced hypertrophy and epithelial-to-mesenchymal transition in HK-2 cells.

    Science.gov (United States)

    Tang, Xun; Liang, Xiujie; Li, Minhui; Guo, Tingting; Duan, Na; Wang, Yue; Rong, Guang; Yang, Lei; Zhang, Shaojie; Zhang, Jun

    2015-09-01

    Advanced oxidation protein products (AOPPs) accelerate the progression of chronic kidney disease. We previously demonstrated that AOPPs induce hypertrophy and epithelial-to-mesenchymal transition (EMT) in human proximal tubular cells (HK-2 cells) through induction of endoplasmic reticulum (ER) stress. However, which pathway of unfolded protein response (UPR) induced by ER stress plays crucial roles in this process remains unclear. In this study, we investigated the roles of the protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) pathways of UPR in this process in HK-2 cells. AOPP treatment induced the overexpression of cleaved ATF6 and spliced form of X-box binding protein-1, and induced the phosphorylation of PERK, eukaryotic translation initiation factor 2α and IRE1. Furthermore, silencing of ATF6 increased E-cadherin and zonula occludens-1 expression, lowered the expression of vimentin, and downregulated total protein content, whereas knockdown of PERK or IRE1 resulted in no difference compared with the scramble siRNA-transfected cells. AOPP-induced phosphorylation of Src, which was reproduced by thapsigargin, an inducer of ER stress, was partly reversed by salubrinal, an inhibitor of ER stress. Furthermore, the Src inhibitor saracatinib effectively blocked AOPP-induced phosphorylation of Src, activation of ER stress, hypertrophy, and EMT in HK-2 cells. Collectively, our results indicate that AOPPs induce the PERK, ATF6, and IRE1 pathways of UPR, and the ATF6 pathway rather than the other two pathways mediates AOPP-induced HK-2-cell hypertrophy and EMT. We also suggest that the ER stress involved in this process is likely mediated by the activation of Src kinase. PMID:26045172

  16. Fractalkine Mediates Communication between Pathogenic Proteins and Microglia: Implications of Anti-Inflammatory Treatments in Different Stages of Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Nicole M. Desforges

    2012-01-01

    Full Text Available The role of inflammation in neurodegenerative diseases has been widely demonstrated. Intraneuronal protein accumulation may regulate microglial activity via the fractalkine (CX3CL1 signaling pathway that provides a mechanism through which neurons communicate with microglia. CX3CL1 levels fluctuate in different stages of neurodegenerative diseases and in various animal models, warranting further investigation of the mechanisms underlying microglial response to pathogenic proteins, including Tau, β-amyloid (Aβ, and α-synuclein. The temporal relationship between microglial activity and localization of pathogenic proteins (intra- versus extracellular likely determines whether neuroinflammation mitigates or exacerbates disease progression. Evidence in transgenic models suggests a beneficial effect of microglial activity on clearance of proteins like Aβ and a detrimental effect on Tau modification, but the role of CX3CL1 signaling in α-synucleinopathies is less clear. Here we review the nature of fractalkine-mediated neuronmicroglia interaction, which has significant implications for the efficacy of anti-inflammatory treatments during different stages of neurodegenerative pathology. Specifically, it is likely that anti-inflammatory treatment in early stages of disease during intraneuronal accumulation of proteins could be beneficial, while anti-inflammatory treatment in later stages when proteins are secreted to the extracellular space could exacerbate disease progression.

  17. Soy protein isolate protects against ethanol mediated tumor progression in diethylnitrosamine treated male mice

    Science.gov (United States)

    In this study, DEN-treated male mice were assigned to 3 groups: a 35% high fat ethanol liquid diet (EtOH) with casein as the protein source, the same EtOH liquid diet with soy protein isolate as the sole protein source (EtOH/soy) and a chow group. EtOH feeding continued for 16 wks. As expected, E...

  18. Interferon-Induced Transmembrane Protein-Mediated Inhibition of Host Cell Entry of Ebolaviruses.

    Science.gov (United States)

    Wrensch, Florian; Karsten, Christina B; Gnirß, Kerstin; Hoffmann, Markus; Lu, Kai; Takada, Ayato; Winkler, Michael; Simmons, Graham; Pöhlmann, Stefan

    2015-10-01

    Ebolaviruses are highly pathogenic in humans and nonhuman primates and pose a severe threat to public health. The interferon-induced transmembrane (IFITM) proteins can restrict entry of ebolaviruses, influenza A viruses, and other enveloped viruses. However, the breadth and mechanism of the antiviral activity of IFITM proteins are incompletely understood. Here, we employed ebolavirus glycoprotein-pseudotyped vectors and ebolavirus-like particles to address this question. We show that IFITM proteins inhibit the cellular entry of diverse ebolaviruses and demonstrate that type I interferon induces IFITM protein expression in macrophages, major viral targets. Moreover, we show that IFITM proteins block entry of influenza A viruses and ebolaviruses by different mechanisms and provide evidence that antibodies and IFITM proteins can synergistically inhibit cellular entry of ebolaviruses. These results provide insights into the role of IFITM proteins in infection by ebolaviruses and suggest a mechanism by which antibodies, though poorly neutralizing in vitro, might contribute to viral control in vivo. PMID:26034199

  19. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity.

    Science.gov (United States)

    Kehrl, John H

    2016-08-15

    Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling. PMID:27071343

  20. Heterodimer formation between c-Jun and Jun B proteins mediated by Epstein Barr virus encoded latent membrane protein 1

    Institute of Scientific and Technical Information of China (English)

    SONG; Xin; TAO; Yongguang; TAN; Yunnian; Leo; M.; Lee; DENG

    2005-01-01

    Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) may trigger the transcription factor AP-1 including c-Jun and c-fos. In this report, using a Tet-on LMP1 HNE2 cell line which is a dual-stable LMP1 integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 in which could be regulated by the Tet-on system, we show that Jun B can efficiently form a new heterodimeric complex with the c-Jun protein under the regulation of LMP1, phosphorylation of c-Jun (ser 63, ser 73) and Jun B is involved in the process of the new heterodimeric formation. We also find that this heterodimeric form can bind to the AP-1 consensus sequence. Transfection studies suggest that JNK interaction protein (JIP) could inhibit the heterodimer formation of c-Jun and Jun B through blocking the AP-1 signaling pathway triggered by LMP1. The interaction and function between c-Jun protein and Jun B protein increase the repertoire of possible regulatory complexes by LMP1 that could play an important role in the regulation of transcription of specific cellular genes in the process of genesis of nasopharyngeal carcinoma.

  1. A TIR domain protein from E. faecalis attenuates MyD88-mediated signaling and NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Jun Zou

    Full Text Available Toll-like receptor signaling, mediated by functional Toll/interleukin-1 receptor (TIR domains, plays a critical role in activating the innate immune response responsible for controlling and clearing infection. Bacterial protein mimics of components of this signaling pathway have been identified and function through inhibition of interactions between Toll-like receptors (TLRs and their adaptor proteins, mediated by TIR domains. A previously uncharacterized gene, which we have named tcpF (for TIR domain-containing protein in E. faecalis was identified in the genome of Enterococcus faecalis V583, and predicted to encode a protein resembling mammalian and bacterial TIR proteins. We overexpressed and purified TcpF from E. coli and found that the recombinant protein could bind to phosphatidylinositol phosphates in vitro, suggesting a mechanism by which TcpF may be anchored to the plasma membrane in close proximity to TIR domains of TLRs and adaptor proteins. Purified TcpF was also found to interact specifically with the TIR adaptor protein MyD88, and this interaction was dependent on the BB loop domain in the Box 2 region of TcpF. Despite no evidence of TcpF being a secreted protein, recombinant TcpF was effectively able to enter RAW264.7 cells in vitro although the mechanism by which this occurs remains to be determined. Overexpression of TcpF in mammalian cells suppressed the NF-κB activation induced by bacterial lipoteichoic acid. A mutant lacking the tcpF gene was attenuated for survival in macrophages, with increased ability to activate NF-κB compared to the wild type strain. Complementation in trans restored growth, and inhibition of NF-κB, to that of wild type levels. No appreciable difference in bacterial persistence, dissemination or pathogenesis was observed between the wild type and mutant in a mouse peritonitis model however, which suggested either a subtle role for TcpF or functional overlap with other redundant factor(s in this

  2. Human heat shock protein (Hsp) 90 interferes with Neisseria meningitidis adhesin A (NadA)-mediated adhesion and invasion.

    Science.gov (United States)

    Montanari, Paolo; Bozza, Giuseppe; Capecchi, Barbara; Caproni, Elena; Barrile, Riccardo; Norais, Nathalie; Capitani, Mirco; Sallese, Michele; Cecchini, Paola; Ciucchi, Laura; Gao, Zhenai; Rappuoli, Rino; Pizza, Mariagrazia; Aricò, Beatrice; Merola, Marcello

    2012-03-01

    NadA (N eisseria meningitidisadhesin A), a meningococcal surface protein, mediates adhesion to and invasion of human cells, an activity in which host membrane proteins have been implicated. While investigating these host factors in human epithelial cells by affinity chromatography, we discovered an unanticipated interaction of NadA with heat shock protein (Hsp) 90, a molecular chaperone. The specific in vitro interaction of recombinant soluble NadA and Hsp90 was confirmed by co-immunoprecipitations, dot and far-Western blot. Intriguingly, ADP, but not ATP, was required for this association, and the Hsp90 inhibitor 17-AAG promoted complex formation. Hsp90 binding to an Escherichia coli strain used as carrier to express surface exposed NadA confirmed these results in live bacteria. We also examined RNA interference, plasmid-driven overexpression, addition of exogenous rHsp90 and 17-AAG inhibition in human epithelial cells to further elucidate the involvement of Hsp90 in NadA-mediated adhesion and invasion. Together, these data suggest an inverse correlation between the amount of host Hsp90 and the NadA adhesive/invasive phenotype. Confocal microscopy also demonstrated that meningococci interact with cellular Hsp90, a completely novel finding. Altogether our results show that variation of host Hsp90 expression or activity interferes with adhesive and invasive events driven by NadA.

  3. Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity.

    Directory of Open Access Journals (Sweden)

    Chang-Jin Park

    2008-09-01

    Full Text Available Perception of extracellular signals by cell surface receptors is of central importance to eukaryotic development and immunity. Kinases that are associated with the receptors or are part of the receptors themselves modulate signaling through phosphorylation events. The rice (Oryza sativa L. XA21 receptor kinase is a key recognition and signaling determinant in the innate immune response. A yeast two-hybrid screen using the intracellular portion of XA21, including the juxtamembrane (JM and kinase domain as bait, identified a protein phosphatase 2C (PP2C, called XA21 binding protein 15 (XB15. The interaction of XA21 and XB15 was confirmed in vitro and in vivo by glutathione-S-transferase (GST pull-down and co-immunoprecipitation assays, respectively. XB15 fusion proteins purified from Escherichia coli and from transgenic rice carry PP2C activity. Autophosphorylated XA21 can be dephosphorylated by XB15 in a temporal- and dosage-dependent manner. A serine residue in the XA21 JM domain is required for XB15 binding. Xb15 mutants display a severe cell death phenotype, induction of pathogenesis-related genes, and enhanced XA21-mediated resistance. Overexpression of Xb15 in an XA21 rice line compromises resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. These results demonstrate that Xb15 encodes a PP2C that negatively regulates the XA21-mediated innate immune response.

  4. Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein

    Directory of Open Access Journals (Sweden)

    Han Lanlan

    2011-10-01

    Full Text Available Abstract Background Previous studies have revealed that the C-terminal region of the S-layer protein from Lactobacillus is responsible for the cell wall anchoring, which provide an approach for targeting heterologous proteins to the cell wall of lactic acid bacteria (LAB. In this study, we developed a new surface display system in lactic acid bacteria with the C-terminal region of S-layer protein SlpB of Lactobacillus crispatus K2-4-3 isolated from chicken intestine. Results Multiple sequence alignment revealed that the C-terminal region (LcsB of Lb. crispatus K2-4-3 SlpB had a high similarity with the cell wall binding domains SA and CbsA of Lactobacillus acidophilus and Lb. crispatus. To evaluate the potential application as an anchoring protein, the green fluorescent protein (GFP or beta-galactosidase (Gal was fused to the N-terminus of the LcsB region, and the fused proteins were successfully produced in Escherichia coli, respectively. After mixing them with the non-genetically modified lactic acid bacteria cells, the fused GFP-LcsB and Gal-LcsB were functionally associated with the cell surface of various lactic acid bacteria tested. In addition, the binding capacity could be improved by SDS pretreatment. Moreover, both of the fused proteins could simultaneously bind to the surface of a single cell. Furthermore, when the fused DNA fragment of gfp:lcsB was inserted into the Lactococcus lactis expression vector pSec:Leiss:Nuc, the GFP could not be secreted into the medium under the control of the nisA promoter. Western blot, in-gel fluorescence assay, immunofluorescence microscopy and SDS sensitivity analysis confirmed that the GFP was successfully expressed onto the cell surface of L. lactis with the aid of the LcsB anchor. Conclusion The LcsB region can be used as a functional scaffold to target the heterologous proteins to the cell surfaces of lactic acid bacteria in vitro and in vivo, and has also the potential for biotechnological

  5. Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice.

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    Full Text Available Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS. Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3. However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP, mixed lineage kinase domain-like protein (MLKL, total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI staining. Levels of TNF-a, Interleukin (IL-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in

  6. A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors.

    Science.gov (United States)

    Urquhart, Kyle R; Zhao, Yinghong; Baker, Jessica A; Lu, Ye; Yan, Lei; Cook, Melloni N; Jones, Byron C; Hamre, Kristin M; Lu, Lu

    2016-04-01

    Genetic differences mediate individual differences in susceptibility and responses to stress and ethanol, although, the specific molecular pathways that control these responses are not fully understood. Heat shock protein alpha 8 (Hspa8) is a molecular chaperone and member of the heat shock protein family that plays an integral role in the stress response and that has been implicated as an ethanol-responsive gene. Therefore, we assessed its role in mediating responses to stress and ethanol across varying genetic backgrounds. The hippocampus is an important mediator of these responses, and thus, was examined in the BXD family of mice in this study. We conducted bioinformatic analyses to dissect genetic factors modulating Hspa8 expression, identify downstream targets of Hspa8, and examined its role. Hspa8 is trans-regulated by a gene or genes on chromosome 14 and is part of a molecular network that regulates stress- and ethanol-related behaviors. To determine additional components of this network, we identified direct or indirect targets of Hspa8 and show that these genes, as predicted, participate in processes such as protein folding and organic substance metabolic processes. Two phenotypes that map to the Hspa8 locus are anxiety-related and numerous other anxiety- and/or ethanol-related behaviors significantly correlate with Hspa8 expression. To more directly assay this relationship, we examined differences in gene expression following exposure to stress or alcohol and showed treatment-related differential expression of Hspa8 and a subset of the members of its network. Our findings suggest that Hspa8 plays a vital role in genetic differences in responses to stress and ethanol and their interactions. PMID:26780340

  7. Karyopherin α 3 and karyopherin α 4 proteins mediate the nuclear import of methyl-CpG binding protein 2.

    Science.gov (United States)

    Baker, Steven Andrew; Lombardi, Laura Marie; Zoghbi, Huda Yahya

    2015-09-11

    Methyl-CpG binding protein 2 (MeCP2) is a nuclear protein with important roles in regulating chromatin structure and gene expression, and mutations in MECP2 cause Rett syndrome (RTT). Within the MeCP2 protein sequence, the nuclear localization signal (NLS) is reported to reside between amino acids 255-271, and certain RTT-causing mutations overlap with the MeCP2 NLS, suggesting that they may alter nuclear localization. One such mutation, R270X, is predicted to interfere with the localization of MeCP2, but recent in vivo studies have demonstrated that this mutant remains entirely nuclear. To clarify the mechanism of MeCP2 nuclear import, we isolated proteins that interact with the NLS and identified karyopherin α 3 (KPNA3 or Kap-α3) and karyopherin α 4 (KPNA4 or Kap-α4) as key binding partners of MeCP2. MeCP2-R270X did not interact with KPNA4, consistent with a requirement for an intact NLS in this interaction. However, this mutant retains binding to KPNA3, accounting for the normal localization of MeCP2-R270X to the nucleus. These data provide a mechanism for MeCP2 nuclear import and have implications for the design of therapeutics aimed at modulating the function of MeCP2 in RTT patients.

  8. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection.

    Directory of Open Access Journals (Sweden)

    Andreea Popa

    2015-02-01

    Full Text Available Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.

  9. Targeting of p300/CREB Binding Protein Coactivators by Simian Virus 40 Is Mediated through p53

    OpenAIRE

    Borger, Darrell R.; DeCaprio, James A.

    2006-01-01

    The primary transforming functions of simian virus 40 large T antigen (SV40 LT) are conferred primarily through the binding and inactivation of p53 and the retinoblastoma family members. Normal p53 function requires an association with the CREB binding protein (CBP)/p300 coactivators, and a ternary complex containing SV40 LT, p53, and CBP/p300 has been identified previously. In this report, we have evaluated a secondary function of p53 bound to the SV40 LT complex in mediating the binding of ...

  10. Chlamydia trachomatis and chlamydial heat shock protein 60-specific antibody and cell-mediated responses predict tubal factor infertility

    DEFF Research Database (Denmark)

    Tiitinen, A.; Surcel, H.-M.; Halttunen, M.;

    2006-01-01

    BACKGROUND: To evaluate the role of Chlamydia trachomatis-induced humoral and cell-mediated immune (CMI) responses in predicting tubal factor infertility (TFI). METHODS: Blood samples were taken from 88 women with TFI and 163 control women. C. trachomatis and chlamydial heat shock protein 60 (CHSP......60)-specific immunoglobulin G (IgG) antibodies were analysed using enzyme-linked immunosorbent assay (ELISA) kits. Proliferative reactivity of peripheral blood mononuclear cells was studied in vitro against Chlamydia elementary body (EB) and recombinant CHSP60 antigens. RESULTS: C. trachomatis-specific...

  11. Effect of sterol carrier protein-2 gene ablation on HDL-mediated cholesterol efflux from cultured primary mouse hepatocytes

    OpenAIRE

    Storey, Stephen M.; Atshaves, Barbara P.; McIntosh, Avery L.; Kerstin K. Landrock; Martin, Gregory G.; Huang, Huan; Ross Payne, H.; Johnson, Jeffery D.; Macfarlane, Ronald D.; Kier, Ann B.; Schroeder, Friedhelm

    2010-01-01

    Although HDL-mediated cholesterol transport to the liver is well studied, cholesterol efflux from hepatocytes back to HDL is less well understood. Real-time imaging of efflux of 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), which is poorly esterified, and [3H]cholesterol, which is extensively esterified, from cultured primary hepatocytes of wild-type and sterol carrier protein-2 (SCP-2) gene-ablated mice showed that 1) NBD-cholesterol efflux w...

  12. Ubiquitin-Mediated Regulation of Endocytosis by Proteins of the Arrestin Family

    Directory of Open Access Journals (Sweden)

    Michel Becuwe

    2012-01-01

    Full Text Available In metazoans, proteins of the arrestin family are key players of G-protein-coupled receptors (GPCRS signaling and trafficking. Following stimulation, activated receptors are phosphorylated, thus allowing the binding of arrestins and hence an “arrest” of receptor signaling. Arrestins act by uncoupling receptors from G proteins and contribute to the recruitment of endocytic proteins, such as clathrin, to direct receptor trafficking into the endocytic pathway. Arrestins also serve as adaptor proteins by promoting the recruitment of ubiquitin ligases and participate in the agonist-induced ubiquitylation of receptors, known to have impact on their subcellular localization and stability. Recently, the arrestin family has expanded following the discovery of arrestin-related proteins in other eukaryotes such as yeasts or fungi. Surprisingly, most of these proteins are also involved in the ubiquitylation and endocytosis of plasma membrane proteins, thus suggesting that the role of arrestins as ubiquitin ligase adaptors is at the core of these proteins' functions. Importantly, arrestins are themselves ubiquitylated, and this modification is crucial for their function. In this paper, we discuss recent data on the intricate connections between arrestins and the ubiquitin pathway in the control of endocytosis.

  13. Dinitrosopiperazine-Mediated Phosphorylated-Proteins Are Involved in Nasopharyngeal Carcinoma Metastasis

    Directory of Open Access Journals (Sweden)

    Gongjun Tan

    2014-11-01

    Full Text Available N,N'-dinitrosopiperazine (DNP with organ specificity for nasopharyngeal epithelium, is involved in nasopharyngeal carcinoma (NPC metastasis, though its mechanism is unclear. To reveal the pathogenesis of DNP-induced metastasis, immunoprecipitation was used to identify DNP-mediated phosphoproteins. DNP-mediated NPC cell line (6-10B motility and invasion was confirmed. Twenty-six phosphoproteins were increased at least 1.5-fold following DNP exposure. Changes in the expression levels of selected phosphoproteins were verified by Western-blotting analysis. DNP treatment altered the phosphorylation of ezrin (threonine 567, vimentin (serine 55, stathmin (serine 25 and STAT3 (serine 727. Furthermore, it was shown that DNP-dependent metastasis is mediated in part through ezrin at threonine 567, as DNP-mediated metastasis was decreased when threonine 567 of ezrin was mutated. Strikingly, NPC metastatic tumors exhibited a higher expression of phosphorylated-ezrin at threonine 567 than the primary tumors. These findings provide novel insight into DNP-induced NPC metastasis and may contribute to a better understanding of the metastatic mechanisms of NPC tumors.

  14. Protein phosphatase 2A (PP2A) regulates interleukin-4-mediated STAT6 signaling

    DEFF Research Database (Denmark)

    Woetmann, Anders; Brockdorff, Johannes; Lovato, Paola;

    2002-01-01

    Interleukin-4 (IL-4) plays a pivotal role in the induction and maintenance of allergy by promoting Th2 differentiation and B cell isotype switching to IgE. Studies on STAT6-deficient mice have demonstrated the essential role of STAT6 in mediating the biological functions of IL-4. IL-4 induces tyr...

  15. Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in utero electroporation techniques

    Science.gov (United States)

    Uemura, Takeshi; Mori, Takuma; Kurihara, Taiga; Kawase, Shiori; Koike, Rie; Satoga, Michiru; Cao, Xueshan; Li, Xue; Yanagawa, Toru; Sakurai, Takayuki; Shindo, Takayuki; Tabuchi, Katsuhiko

    2016-01-01

    Genome editing is a powerful technique for studying gene functions. CRISPR/Cas9-mediated gene knock-in has recently been applied to various cells and organisms. Here, we successfully knocked in an EGFP coding sequence at the site immediately after the first ATG codon of the β-actin gene in neurons in the brain by the combined use of the CRISPR/Cas9 system and in utero electroporation technique, resulting in the expression of the EGFP-tagged β-actin protein in cortical layer 2/3 pyramidal neurons. We detected EGFP fluorescence signals in the soma and neurites of EGFP knock-in neurons. These signals were particularly abundant in the head of dendritic spines, corresponding to the localization of the endogenous β-actin protein. EGFP knock-in neurons showed no detectable changes in spine density and basic electrophysiological properties. In contrast, exogenously overexpressed EGFP-β-actin showed increased spine density and EPSC frequency, and changed resting membrane potential. Thus, our technique provides a potential tool to elucidate the localization of various endogenous proteins in neurons by epitope tagging without altering neuronal and synaptic functions. This technique can be also useful for introducing a specific mutation into genes to study the function of proteins and genomic elements in brain neurons. PMID:27782168

  16. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis.

    Science.gov (United States)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-06-15

    Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  17. Hepatitis C virus core protein abrogates the DDX3 function that enhances IPS-1-mediated IFN-beta induction.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Oshiumi

    Full Text Available The DEAD box helicase DDX3 assembles IPS-1 (also called Cardif, MAVS, or VISA in non-infected human cells where minimal amounts of the RIG-I-like receptor (RLR protein are expressed. DDX3 C-terminal regions directly bind the IPS-1 CARD-like domain as well as the N-terminal hepatitis C virus (HCV core protein. DDX3 physically binds viral RNA to form IPS-1-containing spots, that are visible by confocal microscopy. HCV polyU/UC induced IPS-1-mediated interferon (IFN-beta promoter activation, which was augmented by co-transfected DDX3. DDX3 spots localized near the lipid droplets (LDs where HCV particles were generated. Here, we report that HCV core protein interferes with DDX3-enhanced IPS-1 signaling in HEK293 cells and in hepatocyte Oc cells. Unlike the DEAD box helicases RIG-I and MDA5, DDX3 was constitutively expressed and colocalized with IPS-1 around mitochondria. In hepatocytes (O cells with the HCV replicon, however, DDX3/IPS-1-enhanced IFN-beta-induction was largely abrogated even when DDX3 was co-expressed. DDX3 spots barely merged with IPS-1, and partly assembled in the HCV core protein located near the LD in O cells, though in some O cells IPS-1 was diminished or disseminated apart from mitochondria. Expression of DDX3 in replicon-negative or core-less replicon-positive cells failed to cause complex formation or LD association. HCV core protein and DDX3 partially colocalized only in replicon-expressing cells. Since the HCV core protein has been reported to promote HCV replication through binding to DDX3, the core protein appears to switch DDX3 from an IFN-inducing mode to an HCV-replication mode. The results enable us to conclude that HCV infection is promoted by modulating the dual function of DDX3.

  18. ADAM12 is expressed in the tumour vasculature and mediates ectodomain shedding of several membrane-anchored endothelial proteins

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Klitgaard, Marie; Noer, Julie B;

    2013-01-01

    ADAM (a disintegrin and metalloproteinase) 12 is a metalloprotease implicated in cancer progression. ADAM12 can activate membrane-anchored proteins, such as sonic hedgehog, Delta-like 1 and certain epidermal growth factor receptor ligands, through a process called ectodomain shedding. We screened...... molecule 1)], of which the latter four are specifically expressed by endothelial cells. We also observed that ADAM12 expression was increased in the tumour vasculature of infiltrating ductal carcinoma of the human breast as compared with little to no expression in normal breast tissue vasculature......, suggesting a role for ADAM12 in tumour vessels. These results prompted us to further evaluate ADAM12-mediated shedding of two endothelial cell proteins, VE-cadherin and Tie-2. Endogenous ADAM12 expression was very low in cultured endothelial cells, but was significantly increased by cytokine stimulation...

  19. Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Afelik, Solomon; Jensen, Jan Nygaard;

    2013-01-01

    Ngn3 is recognized as a regulator of pancreatic endocrine formation, and Notch signaling as an important negative regulator Ngn3 gene expression. By conditionally controlling expression of Ngn3 in the pancreas, we find that these two signaling components are dynamically linked. This connection...... involves transcriptional repression as previously shown, but also incorporates a novel post-translational mechanism. In addition to its ability to promote endocrine fate, we provide evidence of a competing ability of Ngn3 in the patterning of multipotent progenitor cells in turn controlling the formation...... protein stabilization in the normal mouse pancreas explants. We conclude that the mutually exclusive expression pattern of Ngn3/Hes1 proteins in the mammalian pancreas is partially controlled through Notch-mediated post-translational regulation and we demonstrate that the formation of insulin...

  20. The effect of natural antioxidants on haemoglobin-mediated lipid oxidation during enzymatic hydrolysis of cod protein.

    Science.gov (United States)

    Halldorsdottir, Sigrun M; Kristinsson, Hordur G; Sveinsdottir, Holmfridur; Thorkelsson, Gudjon; Hamaguchi, Patricia Y

    2013-11-15

    Heating and changes in pH often practised during fish protein hydrolysis can cause lipid oxidation. The effect of natural antioxidants towards haemoglobin-mediated lipid oxidation during enzymatic hydrolysis of cod proteins was investigated. Different variants of a washed cod model system, containing different combinations of haemoglobin and natural antioxidants (l-ascorbic acid and Fuscus vesiculosus extract), were hydrolysed using Protease P "Amano" 6 at pH 8 and 36°C to achieve 20% degree of hydrolysis. Lipid hydroperoxides and thiobarbituric acid reactive substances (TBARS) were analysed periodically during the hydrolysis process. The in vitro antioxidant activity of the final products was investigated. Results indicate that oxidation can develop rapidly during hydrolysis and antioxidant strategies are preferable to produce good quality products. Oxidation products did not have an impact on the in vitro antioxidant activity of the hydrolysates. The natural antioxidants inhibited oxidation during hydrolysis and contributed to the antioxidant activity of the final product. PMID:23790867

  1. The spindle protein CHICA mediates localization of the chromokinesin Kid to the mitotic spindle

    NARCIS (Netherlands)

    Santamaria, Anna; Nagel, Susanna; Sillje, Herman H W; Nigg, Erich A

    2008-01-01

    Microtubule-based motor proteins provide essential forces for bipolar organization of spindle microtubules and chromosome movement, prerequisites of chromosome segregation during the cell cycle. Here, we describe the functional characterization of a novel spindle protein, termed "CHICA," that was or

  2. A Phosphorylation Tag for Uranyl Mediated Protein Purification and Photo Assisted Tag Removal

    DEFF Research Database (Denmark)

    Zhang, Qiang; Jørgensen, Thomas. J. D.; Nielsen, Peter E;

    2014-01-01

    Most protein purification procedures include an affinity tag fused to either the N or C-terminal end of the protein of interest as well as a procedure for tag removal. Tag removal is not straightforward and especially tag removal from the C-terminal end is a challenge due to the characteristics o...

  3. Identifying the Proteins that Mediate the Ionizing Radiation Resistance of Deinococcus Radiodurans R1

    Energy Technology Data Exchange (ETDEWEB)

    Battista, John R

    2010-02-22

    The primary objectives of this proposal was to define the subset of proteins required for the ionizing radiation (IR) resistance of Deinococcus radiodurans R1, characterize the activities of those proteins, and apply what was learned to problems of interest to the Department of Energy.

  4. S100A6 protein negatively regulates CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation and tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Xiaoxuan Ning

    Full Text Available Calcyclin-binding protein (CacyBP/SIP, identified on the basis of its ability to interact with S100 proteins in a calcium-dependent manner, was previously found to inhibit the proliferation and tumorigenesis of gastric cancer cells in our laboratory. Importantly, the effects of S100 proteins on the biological behavior of CacyBP/SIP in gastric cancer remain unclear. Herein, we report the construction of eukaryotic expression vectors for wild-type CacyBP/SIP and a truncated mutant lacking the S100 protein binding domain (CacyBP/SIPΔS100. The expressions of the wild-type and truncated recombinant proteins were demonstrated by transfection of MKN45 gastric cancer cells. Co-immunoprecipitation assays demonstrated interaction between S100A6 and wild-type CacyBP/SIP in MKN45 cells. Removal of the S100 protein binding domain dramatically reduced the affinity of CacyBP/SIP for S100 proteins as indicated by reduced co-immunoprecipitation of S100A6 by CacyBP/SIPΔS100. The MTT assay, FACS assay, clonogenic assay and tumor xenograft experiment were performed to assess the effect of CacyBP/SIP on cell growth and tumorigenesis in vitro and in vivo. Overexpression of CacyBP/SIP inhibited the proliferation and tumorigenesis of MKN45 gastric cancer cells; the proliferation and tumorigenesis rates were even further reduced by the expression of CacyBP/SIPΔS100. We also showed that S100 proteins negatively regulate CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation, through an effect on β-catenin protein expression and transcriptional activation of Tcf/LEF. Although the underlying mechanism of action requires further investigation, this study provides new insight into the interaction between S100 proteins and CacyBP/SIP, which might enrich our knowledge of S100 proteins and be helpful for our understanding of the development of gastric cancer.

  5. The challenging SO2-mediated chemical build-up of protein aggregates in wines.

    Science.gov (United States)

    Chagas, Ricardo; Ferreira, Luísa M; Laia, César A T; Monteiro, Sara; Ferreira, Ricardo B

    2016-02-01

    Despite the extensive research performed during the last decades, the multifactorial mechanism responsible for white wine protein haze formation is not fully characterized. A model is proposed, which is essentially based on two postulates: the experimental identification of sulfur dioxide as the non-proteinaceous factor, and the inference from reliable data available in the literature of the dynamic chemistry played by wine protein sulfhydryl groups. Unlike other reducing agents, addition of SO2 to must/wine upon heating cleaves intraprotein disulfide bonds, hinders thiol-disulfide exchange during protein interactions, and leads to formation of novel interprotein disulfide bonds. These bonds are ultimately responsible for wine protein aggregation following a nucleation-growth kinetic model, as shown by Dynamic Light Scattering experiments. The model was tested in wine model solution (using total and fractionated wine proteins) and validated under real wine conditions. The results achieved may open the way to develop techniques that will find wide application in the wine industry.

  6. Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling.

    Science.gov (United States)

    Werts, Adam D; Roh-Johnson, Minna; Goldstein, Bob

    2011-10-01

    Cell divisions are sometimes oriented by extrinsic signals, by mechanisms that are poorly understood. Proteins containing TPR and GoLoco-domains (C. elegans GPR-1/2, Drosophila Pins, vertebrate LGN and AGS3) are candidates for mediating mitotic spindle orientation by extrinsic signals, but the mechanisms by which TPR-GoLoco proteins may localize in response to extrinsic cues are not well defined. The C. elegans TPR-GoLoco protein pair GPR-1/2 is enriched at a site of contact between two cells - the endomesodermal precursor EMS and the germline precursor P(2) - and both cells align their divisions toward this shared cell-cell contact. To determine whether GPR-1/2 is enriched at this site within both cells, we generated mosaic embryos with GPR-1/2 bearing a different fluorescent tag in different cells. We were surprised to find that GPR-1/2 distribution is symmetric in EMS, where GPR-1/2 had been proposed to function as an asymmetric cue for spindle orientation. Instead, GPR-1/2 is asymmetrically distributed only in P(2). We demonstrate a role for normal GPR-1/2 localization in P(2) division orientation. We show that MES-1/Src signaling plays an instructive role in P(2) for asymmetric GPR-1/2 localization and normal spindle orientation. We ruled out a model in which signaling localizes GPR-1/2 by locally inhibiting LET-99, a GPR-1/2 antagonist. Instead, asymmetric GPR-1/2 distribution is established by destabilization at one cell contact, diffusion, and trapping at another cell contact. Once the mitotic spindle of P(2) is oriented normally, microtubule-dependent removal of GPR-1/2 prevented excess accumulation, in an apparent negative-feedback loop. These results highlight the role of dynamic TPR-GoLoco protein localization as a key mediator of mitotic spindle alignment in response to instructive, external cues.

  7. Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

    Directory of Open Access Journals (Sweden)

    Sara Landeras-Bueno

    2016-04-01

    Full Text Available Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection.

  8. Erythrocyte-derived microparticles supporting activated protein C-mediated regulation of blood coagulation.

    Directory of Open Access Journals (Sweden)

    Ruzica Livaja Koshiar

    Full Text Available Elevated levels of erythrocyte-derived microparticles are present in the circulation in medical conditions affecting the red blood cells. Erythrocyte-derived microparticles expose phosphatidylserine thus providing a suitable surface for procoagulant reactions leading to thrombin formation via the tenase and prothrombinase complexes. Patients with elevated levels of circulating erythrocyte-derived microparticles have increased thrombin generation in vivo. The aim of the present study was to investigate whether erythrocyte-derived microparticles are able to support the anticoagulant reactions of the protein C system. Erythrocyte-derived microparticles were isolated using ultracentrifugation after incubation of freshly prepared erythrocytes with the ionophore A23187 or from outdated erythrocyte concentrates, the different microparticles preparations yielding similar results. According to flow cytometry analysis, the microparticles exposed phoshatidylserine and bound lactadherin, annexin V, and protein S, which is a cofactor to activated protein C. The microparticles were able to assemble the tenase and prothrombinase complexes and to stimulate the formation of thrombin in plasma-based thrombin generation assay both in presence and absence of added tissue factor. The addition of activated protein C in the thrombin generation assay inhibited thrombin generation in a dose-dependent fashion. The anticoagulant effect of activated protein C in the thrombin generation assay was inhibited by a monoclonal antibody that preven