WorldWideScience

Sample records for 13c chemical shifts

  1. Deuterium isotope effects on 13C chemical shifts of 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Kamounah, Fadhil S.; Gryko, Daniel T.

    2013-01-01

    to be negative, indicating transmission via the hydrogen bond. In addition unusual long-range effects are seen. Structures, NMR chemical shifts and changes in nuclear shieldings upon deuteriation are calculated using DFT methods. Two-bond deuterium isotope effects on 13C chemical shifts are correlated......Deuterium isotope effects on 13C-NMR chemical shifts are investigated in a series of 10-hydroxybenzo[h]quinolines (HBQ’s) The OH proton is deuteriated. The isotope effects on 13C chemical shifts in these hydrogen bonded systems are rather unusual. The formal four-bond effects are found...... with calculated OH stretching frequencies. Isotope effects on chemical shifts are calculated for systems with OH exchanged by OD. Hydrogen bond potentials are discussed. New and more soluble nitro derivatives are synthesized....

  2. Analysis of {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of cysteine and cystine residues in proteins: a quantum chemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Osvaldo A.; Villegas, Myriam E.; Vila, Jorge A. [Universidad Nacional de San Luis, Instituto de Matematica Aplicada San Luis (Argentina); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-03-15

    Cysteines possess a unique property among the 20 naturally occurring amino acids: it can be present in proteins in either the reduced or oxidized form, and can regulate the activity of some proteins. Consequently, to augment our previous treatment of the other types of residues, the {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of 837 cysteines in disulfide-bonded cystine from a set of seven non-redundant proteins, determined by X-ray crystallography and NMR spectroscopy, were computed at the DFT level of theory. Our results indicate that the errors between observed and computed {sup 13}C{sup {alpha}} chemical shifts of such oxidized cysteines can be attributed to several effects such as: (a) the quality of the NMR-determined models, as evaluated by the conformational-average (ca) rmsd value; (b) the existence of high B-factor or crystal-packing effects for the X-ray-determined structures; (c) the dynamics of the disulfide bonds in solution; and (d) the differences in the experimental conditions under which the observed {sup 13}C{sup {alpha}} chemical shifts and the protein models were determined by either X-ray crystallography or NMR-spectroscopy. These quantum-chemical-based calculations indicate the existence of two, almost non-overlapped, basins for the oxidized and reduced -SH {sup 13}C{sup {beta}}, but not for the {sup 13}C{sup {alpha}}, chemical shifts, in good agreement with the observation of 375 {sup 13}C{sup {alpha}} and 337 {sup 13}C{sup {beta}} resonances from 132 proteins by Sharma and Rajarathnam (2000). Overall, our results indicate that explicit consideration of the disulfide bonds is a necessary condition for an accurate prediction of {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts of cysteines in cystines.

  3. Deuterium isotope effects on 13C chemical shifts of negatively charged NH.N systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Pietrzak, Mariusz; Grech, Eugeniusz

    2013-01-01

    Deuterium isotope effects on 13C chemical shifts are investigated in anions of 1,8-bis(4-toluenesulphonamido)naphthalenes together with N,N-(naphthalene-1,8-diyl)bis(2,2,2-trifluoracetamide) all with bis(1,8-dimethylamino)napthaleneH+ as counter ion. These compounds represent both “static......” and equilibrium cases. NMR assignments of the former have been revised. The NH proton is deuteriated. The isotope effects on 13C chemical shifts are rather unusual in these strongly hydrogen bonded systems between a NH and a negatively charged nitrogen atom. The formal four-bond effects are found to be negative...

  4. Skeletal and chlorine effects on 13C-NMR chemical shifts of chlorinated polycyclic systems

    Directory of Open Access Journals (Sweden)

    Costa V.E.U.

    1999-01-01

    Full Text Available In order to establish a comparative analysis of chemical shifts caused by ring compression effects or by the presence of a chlorine atom on strained chlorinated carbons, a series of the chlorinated and dechlorinated polycyclic structures derived from "aldrin" (5 and "isodrin" (14 was studied. Compounds were classified in four different groups, according to their conformation and number of ring such as: endo-exo and endo-endo tetracyclics, pentacyclics and hexacyclics. The 13C chemical shift comparison between the chlorinated and dechlorinated compounds showed that when C-9 and C-10 are olefinic carbons, it occurs a shielding of 0.5-2.4 ppm for endo-endo tetracyclics and of 4.7-7.6 ppm for endo-exo tetracyclic. The chemical shift variation for C-11 reaches 49-53 ppm for endo-exo and endo-endo tetracyclics, 54 ppm for pentacyclic and 56-59 ppm for hexacyclic compounds. From these data, it was possible to observe the influence of ring compression on the chemical shifts.

  5. Substituent effects in the 13C NMR chemical shifts of alpha-mono-substituted acetonitriles.

    Science.gov (United States)

    Reis, Adriana K C A; Rittner, Roberto

    2007-03-01

    13C chemical shifts empirical calculations, through a very simple additivity relationship, for the alpha-methylene carbon of some alpha-mono-substituted acetonitriles, Y-CH(2)-CN (Y=H, F, Cl, Br, I, OMe, OEt, SMe, SEt, NMe(2), NEt(2), Me and Et), lead to similar, or even better, results in comparison to the reported values obtained through Quantum Mechanics methods. The observed deviations, for some substituents, are very similar for both approaches. This divergence between experimental and calculated, either empirically or theoretically, values are smaller than for the corresponding acetones, amides, acetic acids and methyl esters, which had been named non-additivity effects (or intramolecular interaction chemical shifts, ICS) and attributed to some orbital interactions. Here, these orbital interactions do not seem to be the main reason for the non-additivity effects in the empirical calculations, which must be due solely to the magnetic anisotropy of the heavy atom present in the substituent. These deviations, which were also observed in the theoretical calculations, were attributed in that case to the non-inclusion of relativistic effects and spin-orbit coupling in the Hamiltonian. Some divergence is also observed for the cyano carbon chemical shifts, probably due to the same reasons.

  6. Identification of Zinc-ligated Cysteine Residues Based on {sup 13}C{alpha} and {sup 13}C{beta} Chemical Shift Data

    Energy Technology Data Exchange (ETDEWEB)

    Kornhaber, Gregory J.; Snyder, David; Moseley, Hunter N. B.; Montelione, Gaetano T. [Rutgers University, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry (United States)], E-mail: guy@cabm.rutgers.edu

    2006-04-15

    Although a significant number of proteins include bound metals as part of their structure, the identification of amino acid residues coordinated to non-paramagnetic metals by NMR remains a challenge. Metal ligands can stabilize the native structure and/or play critical catalytic roles in the underlying biochemistry. An atom's chemical shift is exquisitely sensitive to its electronic environment. Chemical shift data can provide valuable insights into structural features, including metal ligation. In this study, we demonstrate that overlapped {sup 13}C{beta} chemical shift distributions of Zn-ligated and non-metal-ligated cysteine residues are largely resolved by the inclusion of the corresponding {sup 13}C{alpha} chemical shift information, together with secondary structural information. We demonstrate this with a bivariate distribution plot, and statistically with a multivariate analysis of variance (MANOVA) and hierarchical logistic regression analysis. Using 287 {sup 13}C{alpha}/{sup 13}C{beta} shift pairs from 79 proteins with known three-dimensional structures, including 86 {sup 13}C{alpha} and{sup 13}C{beta} shifts for 43 Zn-ligated cysteine residues, along with corresponding oxidation state and secondary structure information, we have built a logistic regression model that distinguishes between oxidized cystines, reduced (non-metal ligated) cysteines, and Zn-ligated cysteines. Classifying cysteines/cystines with a statisical model incorporating all three phenomena resulted in a predictor of Zn ligation with a recall, precision and F-measure of 83.7%, and an accuracy of 95.1%. This model was applied in the analysis of Bacillus subtilis IscU, a protein involved in iron-sulfur cluster assembly. The model predicts that all three cysteines of IscU are metal ligands. We confirmed these results by (i) examining the effect of metal chelation on the NMR spectrum of IscU, and (ii) inductively coupled plasma mass spectrometry analysis. To gain further insight into

  7. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.

    Science.gov (United States)

    del Rosal, I; Maron, L; Poteau, R; Jolibois, F

    2008-08-14

    Transition metal hydrides are of great interest in chemistry because of their reactivity and their potential use as catalysts for hydrogenation. Among other available techniques, structural properties in transition metal (TM) complexes are often probed by NMR spectroscopy. In this paper we will show that it is possible to establish a viable methodological strategy in the context of density functional theory, that allows the determination of 1H NMR chemical shifts of hydride ligands attached to transition metal atoms in mononuclear systems and clusters with good accuracy with respect to experiment. 13C chemical shifts have also been considered in some cases. We have studied mononuclear ruthenium complexes such as Ru(L)(H)(dppm)2 with L = H or Cl, cationic complex [Ru(H)(H2O)(dppm)2]+ and Ru(H)2(dppm)(PPh3)2, in which hydride ligands are characterized by a negative 1H NMR chemical shift. For these complexes all calculations are in relatively good agreement compared to experimental data with errors not exceeding 20% except for the hydrogen atom in Ru(H)2(dppm)(PPh3)2. For this last complex, the relative error increases to 30%, probably owing to the necessity to take into account dynamical effects of phenyl groups. Carbonyl ligands are often encountered in coordination chemistry. Specific issues arise when calculating 1H or 13C NMR chemical shifts in TM carbonyl complexes. Indeed, while errors of 10 to 20% with respect to experiment are often considered good in the framework of density functional theory, this difference in the case of mononuclear carbonyl complexes culminates to 80%: results obtained with all-electron calculations are overall in very satisfactory agreement with experiment, the error in this case does not exceed 11% contrary to effective core potentials (ECPs) calculations which yield errors always larger than 20%. We conclude that for carbonyl groups the use of ECPs is not recommended, although their use could save time for very large systems, for

  8. Multilinear relations between {sup 13} C NMR chemical shifts of aliphatic halides; Relacoes lineares multiplas entre deslocamentos quimicos em RMN {sup 13} C de haletos alifaticos

    Energy Technology Data Exchange (ETDEWEB)

    Doyama, Julio Toshimi [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Quimica e Bioquimica; Tornero, Maria Teresinha Trovarelli [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias. Dept. de Bioestatistica; Yoshida, Massayoshi [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica

    1999-07-01

    The {sup 13} C NMR chemical shifts of the {alpha}, {beta}, {gamma} and {delta} carbons of 17 sets of aliphatic halides (F, Cl, Br and I), including mono, bi and tricyclic compounds, can be reproduced by a linear equation composed with two constants and two variables: {delta}{sub RX} = A{sup *} {delta}{sub R-X2}, where A and B are constants derived from multilinear regression of {sup 13} C chemical shifts observed; {delta}{sub R-X}, the chemical shifts of aliphatic halide (R-X); and {delta}{sub R-X1}, {delta}{sub R-X2} the chemical shifts of other halides. It was observed a better correlation for aliphatic bromides (R-X) by using data of aliphatic fluorides (R-X 1) and aliphatic iodides (R-X 2), resulting R{sup 2} of 0.9989 and average absolute deviation (AVG) of 0.39 ppm. For the chlorides (R-X), the better correlation was observed by using data of bromides (R-X 1) was observed better correlation with data of bromides (R-X 1) and iodides (R-X 2), R{sup 2} of 0.997 and AVG of 1.10 ppm. For the iodides (R-X) was observed better correlation with data of fluorides (R-X 1) and bromides (R-X 2), R{sup 2} of 0.9972 and AVG of 0.60 ppm. (author)

  9. Measuring {sup 13}C{sup {beta}} chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, Patrik [Linkoeping University, Molecular Biotechnology/IFM (Sweden); Lin Hong [Hospital for Sick Children, Molecular Structure and Function (Canada); Kay, Lewis E. [University of Toronto, Department of Medical Genetics (Canada)], E-mail: kay@pound.med.utoronto.ca

    2009-07-15

    A labeling scheme is introduced that facilitates the measurement of accurate {sup 13}C{sup {beta}} chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of {sup 13}C enrichment (30-40%) at C{sup {beta}} side-chain carbon positions for 15 of the amino acids with little {sup 13}C label at positions one bond removed ({approx}5%). A pair of samples are produced using [1-{sup 13}C]-glucose/NaH{sup 12}CO{sub 3} or [2-{sup 13}C]-glucose as carbon sources with isolated and enriched (>30%) {sup 13}C{sup {beta}} positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of {sup 13}C{sup {beta}} chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein-ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples.

  10. Determination of the Orientation and Dynamics of Ergosterol in Model Membranes Using Uniform 13C Labeling and Dynamically Averaged 13C Chemical Shift Anisotropies as Experimental Restraints

    Science.gov (United States)

    Soubias, O.; Jolibois, F.; Massou, S.; Milon, A.; Réat, V.

    2005-01-01

    A new strategy was established to determine the average orientation and dynamics of ergosterol in dimyristoylphosphatidylcholine model membranes. It is based on the analysis of chemical shift anisotropies (CSAs) averaged by the molecular dynamics. Static 13C CSA tensors were computed by quantum chemistry, using the gauge-including atomic-orbital approach within Hartree-Fock theory. Uniformly 13C-labeled ergosterol was purified from Pichia pastoris cells grown on labeled methanol. After reconstitution into dimyristoylphosphatidylcholine lipids, the complete 1H and 13C assignment of ergosterol's resonances was performed using a combination of magic-angle spinning two-dimensional experiments. Dynamically averaged CSAs were determined by standard side-band intensity analysis for isolated 13C resonances (C3 and ethylenic carbons) and by off-magic-angle spinning experiments for other carbons. A set of 18 constraints was thus obtained, from which the sterol's molecular order parameter and average orientation could be precisely defined. The validity of using computed CSAs in this strategy was verified on cholesterol model systems. This new method allowed us to quantify ergosterol's dynamics at three molar ratios: 16 mol % (Ld phase), 30 mol % (Lo phase), and 23 mol % (mixed phases). Contrary to cholesterol, ergosterol's molecular diffusion axis makes an important angle (14°) with the inertial axis of the rigid four-ring system. PMID:15923221

  11. Effects of side-chain orientation on the {sup 13}C chemical shifts of antiparallel {beta}-sheet model peptides

    Energy Technology Data Exchange (ETDEWEB)

    Villegas, Myriam E.; Vila, Jorge A. [Facultad de Ciencias Fisico Matematicas y Naturales, Instituto de Matematica Aplicada San Luis, Universidad Nacional de San Luis, CONICET (Argentina); Scheraga, Harold A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)], E-mail: has5@cornell.edu

    2007-02-15

    The dependence of the {sup 13}C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel {beta}-sheet model peptide represented by the amino acid sequence Ac-(Ala){sub 3}-X-(Ala){sub 12}-NH{sub 2} where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel {beta}-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the {sup 13}C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel {beta}-sheet, there is (i) good agreement between computed and observed {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts as a function of {chi}{sup 1} for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed {sup 13}C{sup {alpha}} chemical shifts on {chi}{sup {xi}} (with {xi} {>=} 2) compared to {chi}{sup 1} for eleven out of seventeen residues. Our results suggest that predicted {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} chemical shifts, based only on backbone ({phi},{psi}) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into

  12. Quantitative analysis of deuterium using the isotopic effect on quaternary {sup 13}C NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Tamim A., E-mail: tamim.darwish@ansto.gov.au [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); Yepuri, Nageshwar Rao; Holden, Peter J. [National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 21, Kirrawee DC, NSW 2232 (Australia); James, Michael [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2016-07-13

    Quantitative analysis of specifically deuterated compounds can be achieved by a number of conventional methods, such as mass spectroscopy, or by quantifying the residual {sup 1}H NMR signals compared to signals from internal standards. However, site specific quantification using these methods becomes challenging when dealing with non-specifically or randomly deuterated compounds that are produced by metal catalyzed hydrothermal reactions in D{sub 2}O, one of the most convenient deuteration methods. In this study, deuterium-induced NMR isotope shifts of quaternary {sup 13}C resonances neighboring deuterated sites have been utilized to quantify the degree of isotope labeling of molecular sites in non-specifically deuterated molecules. By probing {sup 13}C NMR signals while decoupling both proton and deuterium nuclei, it is possible to resolve {sup 13}C resonances of the different isotopologues based on the isotopic shifts and the degree of deuteration of the carbon atoms. We demonstrate that in different isotopologues, the same quaternary carbon, neighboring partially deuterated carbon atoms, are affected to an equal extent by relaxation. Decoupling both nuclei ({sup 1}H, {sup 2}H) resolves closely separated quaternary {sup 13}C signals of the different isotopologues, and allows their accurate integration and quantification under short relaxation delays (D1 = 1 s) and hence fast accumulative spectral acquisition. We have performed a number of approaches to quantify the deuterium content at different specific sites to demonstrate a convenient and generic analysis method for use in randomly deuterated molecules, or in cases of specifically deuterated molecules where back-exchange processes may take place during work up. - Graphical abstract: The relative intensities of quaternary {sup 13}C {"1H,"2H} resonances are equal despite the different relaxation delays, allowing the relative abundance of the different deuterated isotopologues to be calculated using NMR fast

  13. Solid state 13C NMR of unlabeled phosphatidylcholine bilayers: spectral assignments and measurement of carbon-phosphorus dipolar couplings and 13C chemical shift anisotropies.

    Science.gov (United States)

    Sanders, C R

    1993-01-01

    The direct measurement of 13C chemical shift anisotropies (CSA) and 31P-13C dipolar splitting in random dispersions of unlabeled L alpha-phase phosphatidylcholine (PC) has traditionally been difficult because of extreme spectral boradening due to anisotropy. In this study, mixtures of dimyristoyl phosphatidylcholine (DMPC) with three different detergents known to promote the magnetic orientation of DMPC were employed to eliminate the powder-pattern nature of signals without totally averaging out spectral anisotropy. The detergents utilized were CHAPSO, Triton X-100, and dihexanoylphosphatidylcholine (DHPC). Using such mixtures, many of the individual 13C resonances from DMPC were resolved and a number of 13C-31P dipolar couplings were evident. In addition, differing line widths were observed for the components of some dipolar doublets, suggestive of dipolar/chemical shift anisotropy (CSA) relaxation interference effects. Oriented sample resonance assignments were made by varying the CHAPSO or DHPC to DMPC ratio to systematically scale overall bilayer order towards the isotropic limit. In this manner, peaks could be identified based upon extrapolation to their isotropic positions, for which assignments have previously been made (Lee, C.W.B., and R.G. Griffin. 1989. Biophys. J. 55:355-358; Forbes, J., J. Bowers, X. Shan, L. Moran, E. Oldfield, and M.A. Moscarello. 1988. J. Chem. Soc., Faraday, Trans. 1 84:3821-3849). It was observed that the plots of CSA or dipolar coupling versus overall bilayer order obtained from DHPC and CHAPSO titrations were linear. Estimates of the intrinsic dipolar couplings and chemical shift anisotropies for pure DMPC bilayers were made by extrapolating shifts and couplings from the detergent titrations to zero detergent. Both detergent titrations led to similar "intrinsic" CSAs and dipolar couplings. Results extracted from an oriented Triton-DMPC mixture also led to similar estimates for the detergent-free DMPC shifts and couplings. The

  14. 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases.

    Science.gov (United States)

    Fiala, Radovan; Sklenár, Vladimír

    2007-10-01

    The paper presents a set of two-dimensional experiments that utilize direct (13)C detection to provide proton-carbon, carbon-carbon and carbon-nitrogen correlations in the bases of nucleic acids. The set includes a (13)C-detected proton-carbon correlation experiment for the measurement of (13)C-(13)C couplings, the CaCb experiment for correlating two quaternary carbons, the HCaCb experiment for the (13)C-(13)C correlations in cases where one of the carbons has a proton attached, the HCC-TOCSY experiment for correlating a proton with a network of coupled carbons, and a (13)C-detected (13)C-(15)N correlation experiment for detecting the nitrogen nuclei that cannot be detected via protons. The IPAP procedure is used for extracting the carbon-carbon couplings and/or carbon decoupling in the direct dimension, while the S(3)E procedure is preferred in the indirect dimension of the carbon-nitrogen experiment to obtain the value of the coupling constant. The experiments supply accurate values of (13)C and (15)N chemical shifts and carbon-carbon and carbon-nitrogen coupling constants. These values can help to reveal structural features of nucleic acids either directly or via induced changes when the sample is dissolved in oriented media.

  15. Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds.

    Science.gov (United States)

    Toušek, Jaromír; Straka, Michal; Sklenář, Vladimír; Marek, Radek

    2013-01-24

    The interpretation of nuclear magnetic resonance (NMR) parameters is essential to understanding experimental observations at the molecular and supramolecular levels and to designing new and more efficient molecular probes. In many aromatic natural compounds, unusual (13)C NMR chemical shifts have been reported for out-of-plane methoxy groups bonded to the aromatic ring (~62 ppm as compared to the typical value of ~56 ppm for an aromatic methoxy group). Here, we analyzed this phenomenon for a series of aromatic natural compounds using Density Functional Theory (DFT) calculations. First, we checked the methodology used to optimize the structure and calculate the NMR chemical shifts in aromatic compounds. The conformational effects of the methoxy group on the (13)C NMR chemical shift then were interpreted by the Natural Bond Orbital (NBO) and Natural Chemical Shift (NCS) approaches, and by excitation analysis of the chemical shifts, breaking down the total nuclear shielding tensor into the contributions from the different occupied orbitals and their magnetic interactions with virtual orbitals. We discovered that the atypical (13)C NMR chemical shifts observed are not directly related to a different conjugation of the lone pair of electrons of the methoxy oxygen with the aromatic ring, as has been suggested. Our analysis indicates that rotation of the methoxy group induces changes in the virtual molecular orbital space, which, in turn, correlate with the predominant part of the contribution of the paramagnetic deshielding connected with the magnetic interactions of the BD(CMet-H)→BD*(CMet-OMet) orbitals, resulting in the experimentally observed deshielding of the (13)C NMR resonance of the out-of-plane methoxy group.

  16. Pressure dependence of side chain (13)C chemical shifts in model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Beck Erlach, Markus; Koehler, Joerg; Crusca, Edson; Munte, Claudia E; Kainosho, Masatsune; Kremer, Werner; Kalbitzer, Hans Robert

    2017-09-14

    For evaluating the pressure responses of folded as well as intrinsically unfolded proteins detectable by NMR spectroscopy the availability of data from well-defined model systems is indispensable. In this work we report the pressure dependence of (13)C chemical shifts of the side chain atoms in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx, one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of a number of nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The size of the polynomial pressure coefficients B 1 and B 2 is dependent on the type of atom and amino acid studied. For H(N), N and C(α) the first order pressure coefficient B 1 is also correlated to the chemical shift at atmospheric pressure. The first and second order pressure coefficients of a given type of carbon atom show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure also are weakly correlated. The downfield shifts of the methyl resonances suggest that gauche conformers of the side chains are not preferred with pressure. The valine and leucine methyl groups in the model peptides were assigned using stereospecifically (13)C enriched amino acids with the pro-R carbons downfield shifted relative to the pro-S carbons.

  17. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances

    DEFF Research Database (Denmark)

    Nyrop Albers, Christian; Hansen, Poul Erik

    2010-01-01

    Models for humic and fulvic acids are discussed based on 13C liquid state NMR spectra combined with results from elemental analysis and titration studies. The analysis of NMR spectra is based on a full reconstruction of the NMR spectrum done with help of 13C-NMR data bases by adding up chemical s...

  18. Intermolecular Interactions in Crystalline Theobromine as Reflected in Electron Deformation Density and (13)C NMR Chemical Shift Tensors.

    Science.gov (United States)

    Bouzková, Kateřina; Babinský, Martin; Novosadová, Lucie; Marek, Radek

    2013-06-11

    An understanding of the role of intermolecular interactions in crystal formation is essential to control the generation of diverse crystalline forms which is an important concern for pharmaceutical industry. Very recently, we reported a new approach to interpret the relationships between intermolecular hydrogen bonding, redistribution of electron density in the system, and NMR chemical shifts (Babinský et al. J. Phys. Chem. A, 2013, 117, 497). Here, we employ this approach to characterize a full set of crystal interactions in a sample of anhydrous theobromine as reflected in (13)C NMR chemical shift tensors (CSTs). The important intermolecular contacts are identified by comparing the DFT-calculated NMR CSTs for an isolated theobromine molecule and for clusters composed of several molecules as selected from the available X-ray diffraction data. Furthermore, electron deformation density (EDD) and shielding deformation density (SDD) in the proximity of the nuclei involved in the proposed interactions are calculated and visualized. In addition to the recently reported observations for hydrogen bonding, we focus here particularly on the stacking interactions. Although the principal relations between the EDD and CST for hydrogen bonding (HB) and stacking interactions are similar, the real-space consequences are rather different. Whereas the C-H···X hydrogen bonding influences predominantly and significantly the in-plane principal component of the (13)C CST perpendicular to the HB path and the C═O···H hydrogen bonding modulates both in-plane components of the carbonyl (13)C CST, the stacking modulates the out-of-plane electron density resulting in weak deshielding (2-8 ppm) of both in-plane principal components of the CST and weak shielding (∼ 5 ppm) of the out-of-plane component. The hydrogen-bonding and stacking interactions may add to or subtract from one another to produce total values observed experimentally. On the example of theobromine, we demonstrate

  19. Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively {sup 13}C labeled samples

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, Patrik; Hansen, D. Flemming; Kay, Lewis E. [University of Toronto, Department of Medical Genetics (Canada)], E-mail: kay@pound.med.utoronto.ca

    2008-09-15

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for quantifying chemical shifts of excited protein states. For many applications of the technique that involve the measurement of relaxation rates of carbon magnetization it is necessary to prepare samples with isolated {sup 13}C spins so that experiments do not suffer from magnetization transfer between coupled carbon spins that would otherwise occur during the CPMG pulse train. In the case of {sup 13}CO experiments however the large separation between {sup 13}CO and {sup 13}C{sup {alpha}} chemical shifts offers hope that robust {sup 13}CO dispersion profiles can be recorded on uniformly {sup 13}C labeled samples, leading to the extraction of accurate {sup 13}CO chemical shifts of the invisible, excited state. Here we compare such chemical shifts recorded on samples that are selectively labeled, prepared using [1-{sup 13}C]-pyruvate and NaH{sup 13}CO{sub 3,} or uniformly labeled, generated from {sup 13}C-glucose. Very similar {sup 13}CO chemical shifts are obtained from analysis of CPMG experiments recorded on both samples, and comparison with chemical shifts measured using a second approach establishes that the shifts measured from relaxation dispersion are very accurate.

  20. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.

    Science.gov (United States)

    Roslund, Mattias U; Säwén, Elin; Landström, Jens; Rönnols, Jerk; Jonsson, K Hanna M; Lundborg, Magnus; Svensson, Mona V; Widmalm, Göran

    2011-08-16

    The computer program casper uses (1)H and (13)C NMR chemical shift data of mono- to trisaccharides for the prediction of chemical shifts of oligo- and polysaccharides. In order to improve the quality of these predictions the (1)H and (13)C, as well as (31)P when applicable, NMR chemical shifts of 30 mono-, di-, and trisaccharides were assigned. The reducing sugars gave two distinct sets of NMR resonances due to the α- and β-anomeric forms. In total 35 (1)H and (13)C NMR chemical shift data sets were obtained from the oligosaccharides. One- and two-dimensional NMR experiments were used for the chemical shift assignments and special techniques were employed in some cases such as 2D (1)H,(13)C-HSQC Hadamard Transform methodology which was acquired approximately 45 times faster than a regular t(1) incremented (1)H,(13)C-HSQC experiment and a 1D (1)H,(1)H-CSSF-TOCSY experiment which was able to distinguish spin-systems in which the target protons were only 3.3Hz apart. The (1)H NMR chemical shifts were subsequently refined using total line-shape analysis with the PERCH NMR software. The acquired NMR data were then utilized in the casper program (http://www.casper.organ.su.se/casper/) for NMR chemical shift predictions of the O-antigen polysaccharides from Klebsiella O5, Shigella flexneri serotype X, and Salmonella arizonae O62. The data were compared to experimental data of the polysaccharides from the two former strains and the lipopolysaccharide of the latter strain showing excellent agreement between predicted and experimental (1)H and (13)C NMR chemical shifts.

  1. The effects of librations on the 13C chemical shift and 2H electric field gradient tensors in β-calcium formate

    Science.gov (United States)

    Hallock, Kevin J.; Lee, Dong Kuk; Ramamoorthy, A.

    2000-12-01

    The magnitudes and orientations of the principal elements of the 13C chemical shift anisotropy (CSA) tensor in the molecular frame of the formate ion in β-calcium formate is determined using one-dimensional dipolar-shift spectroscopy. The magnitudes of the principal elements of the 13C CSA tensor are σ11C=104 ppm, σ22C=179 ppm, and σ33C=233 ppm. The least shielding element of the 13C CSA tensor, σ33C, is found to be collinear with the C-H bond. The temperature dependence of the 13C CSA and the 2H quadrupole coupling tensors in β-calcium formate are analyzed for a wide range of temperature (173-373 K). It was found that the span of the 13C CSA and the magnitude of the 2H quadrupole coupling interactions are averaged with the increasing temperature. The experimental results also show that the 2H quadrupole coupling tensor becomes more asymmetric with increasing temperature. A librational motion about the σ22C axis of the 13C CSA tensor is used to model the temperature dependence of the 13C CSA tensor. The temperature dependence of the mean-square amplitude of the librational motion is found to be =2.6×10-4(T) rad2 K-1. The same librational motion also accounts for the temperature-dependence of the 2H quadrupole coupling tensor after the relative orientation of the 13C CSA and 2H electric field gradient tensors are taken into account. Reconsideration of the results of a previous study found that the librational motion, not the vibrational motion, accounts for an asymmetry in the 1H-13C dipolar coupling tensor of α-calcium formate at room temperature.

  2. Stereospecificity of (1) H, (13) C and (15) N shielding constants in the isomers of methylglyoxal bisdimethylhydrazone: problem with configurational assignment based on (1) H chemical shifts.

    Science.gov (United States)

    Afonin, Andrei V; Pavlov, Dmitry V; Ushakov, Igor A; Keiko, Natalia A

    2012-07-01

    In the (13) C NMR spectra of methylglyoxal bisdimethylhydrazone, the (13) C-5 signal is shifted to higher frequencies, while the (13) C-6 signal is shifted to lower frequencies on going from the EE to ZE isomer following the trend found previously. Surprisingly, the (1) H-6 chemical shift and (1) J(C-6,H-6) coupling constant are noticeably larger in the ZE isomer than in the EE isomer, although the configuration around the -CH═N- bond does not change. This paradox can be rationalized by the C-H⋯N intramolecular hydrogen bond in the ZE isomer, which is found from the quantum-chemical calculations including Bader's quantum theory of atoms in molecules analysis. This hydrogen bond results in the increase of δ((1) H-6) and (1) J(C-6,H-6) parameters. The effect of the C-H⋯N hydrogen bond on the (1) H shielding and one-bond (13) C-(1) H coupling complicates the configurational assignment of the considered compound because of these spectral parameters. The (1) H, (13) C and (15) N chemical shifts of the 2- and 8-(CH(3) )(2) N groups attached to the -C(CH(3) )═N- and -CH═N- moieties, respectively, reveal pronounced difference. The ab initio calculations show that the 8-(CH(3) )(2) N group conjugate effectively with the π-framework, and the 2-(CH(3) )(2) N group twisted out from the plane of the backbone and loses conjugation. As a result, the degree of charge transfer from the N-2- and N-8- nitrogen lone pairs to the π-framework varies, which affects the (1) H, (13) C and (15) N shieldings. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Observed and calculated 1H and 13C chemical shifts induced by the in situ oxidation of model sulfides to sulfoxides and sulfones.

    Science.gov (United States)

    Dracínský, Martin; Pohl, Radek; Slavetínská, Lenka; Budesínský, Milos

    2010-09-01

    A series of model sulfides was oxidized in the NMR sample tube to sulfoxides and sulfones by the stepwise addition of meta-chloroperbenzoic acid in deuterochloroform. Various methods of quantum chemical calculations have been tested to reproduce the observed (1)H and (13)C chemical shifts of the starting sulfides and their oxidation products. It has been shown that the determination of the energy-minimized conformation is a very important condition for obtaining realistic data in the subsequent calculation of the NMR chemical shifts. The correlation between calculated and observed chemical shifts is very good for carbon atoms (even for the 'cheap' DFT B3LYP/6-31G* method) and somewhat less satisfactory for hydrogen atoms. The calculated chemical shifts induced by oxidation (the Delta delta values) agree even better with the experimental values and can also be used to determine the oxidation state of the sulfur atom (-S-, -SO-, -SO(2)-).

  4. Other compounds isolated from Simira glaziovii and the {sup 1}H and {sup 13}C NMR chemical shift assignments of new 1-epi-castanopsol

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias Tecnologicas. Lab. de Ciencias Quimicas; Carvalho, Mario G. de, E-mail: mgeraldo@ufrrj.br [Universidade Federal do Rio de Janeiro (NPPN/UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisa em Produtos Naturais

    2012-07-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D {sup 1}H, {sup 13}C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of {sup 1}H and {sup 13}C NMR chemical shift assignments. (author)

  5. Chemical shift tensor determination using magnetically oriented microcrystal array (MOMA): 13C solid-state CP NMR without MAS

    Science.gov (United States)

    Kusumi, R.; Kimura, F.; Song, G.; Kimura, T.

    2012-10-01

    Chemical shift tensors for the carboxyl and methyl carbons of L-alanine crystals were determined using a magnetically oriented microcrystal array (MOMA) prepared from a microcrystalline powder sample of L-alanine. A MOMA is a single-crystal-like composite in which microcrystals are aligned three-dimensionally in a matrix resin. The single-crystal rotation method was applied to the MOMA to determine the principal values and axes of the chemical shift tensors. The result showed good agreement with the literature data for the single crystal of L-alanine. This demonstrates that the present technique is a powerful tool for determining the chemical shift tensor of a crystal from a microcrystal powder sample.

  6. Quantification of the push-pull Effect in disubstituted alkynes - Application of occupation quotients π*/π and 13C chemical shift differences ΔδCtbnd C

    Science.gov (United States)

    Kleinpeter, Erich; Klaumünzer, Ute

    2014-09-01

    Structures, 13C chemical shifts, and the occupation quotients of anti-bonding π* and bonding π orbitals of the Ctbnd C triple bond along a series of push-pull alkynes (p)Xsbnd C6H4sbnd C(O)sbnd Ctbnd Csbnd NHsbnd C6H4sbnd Y(p) (X,Y = H, Me, OMe, NMe2, NO2, COMe, COOMe, F, Cl, Br) were computed at the DFT level (B3LYP/6-311G**) of theory. Both the stereochemistry (cis/trans-isomers) by steric twist and the push-pull character by both 13C chemical shift differences (ΔδCtbnd C) and the occupation quotient (π*Ctbnd C/πCtbnd C) were studied; the latter two parameters can be readily employed to precisely quantify the push-pull effect in alkynes.

  7. 平衡电负性与烷烃核磁共振碳谱位移%EQUILIBRIUM ELECTRONEGATIVITY AND 13C NMR CHEMICAL SHIFTS OF ALKANES

    Institute of Scientific and Technical Information of China (English)

    聂长明; 文松年

    2001-01-01

    In this paper, the atomic equilibrium electronegativity in a molecule has been defined and the model of 13C NMR chemical shifts of alkanes has been studied with the atomic equilibrium electronegativity and the structural information parameters NiH(i=0,α,β,γ) and NjC(j=α,β,γ). The results indicate that the 13C NMR chemical shifts of alkanes can be described as follows: CS=-1736.776+755.118AEE+5.2539N0H+1.8837NβH-0.2066NγH By the use of the formula the chemical shifts of 99 carbon atoms are predicated, and the standard error is only 0.9861ppm. The average absolute error is 0.78ppm, The calculated values conform very much to the observed values.%定义了烷烃分子中碳原子的平衡电负性(AEE),用平衡电负性和NiH(i=0,α,β,γ)和NjC(j=α,β,γ)结构信息参数研究了烷烃的13C NMR化学位移模型.结果表明,烷烃13C NMR化学位移(CS)可用下式来定量描述: CS=-1736.776+755.118AEE+5.2539N0H+1.8837NβH-0.2066NγH   用上式估算了99个碳原子的化学位移,标准差为0.9861ppm,平均绝对误差0.78ppm,预测值与实验值十分吻合.

  8. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    Science.gov (United States)

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites.

  9. 1H, 13C and 15N backbone and side-chain chemical shift assignment of the Fyn SH2 domain and its complex with a phosphotyrosine peptide.

    Science.gov (United States)

    Huculeci, Radu; Buts, Lieven; Lenaerts, Tom; van Nuland, Nico A J

    2011-10-01

    SH2 domains are interaction modules uniquely dedicated to recognize phosphotyrosine sites, playing a central role in for instance the activation of tyrosine kinases or phosphatases. Here we report the (1)H, (15)N and (13)C backbone and side-chain chemical shift assignments of the SH2 domain of the human protein tyrosine kinase Fyn, both in its free state and bound to a high-affinity phosphotyrosine peptide corresponding to a specific sequence in the hamster middle-T antigen. The BMRB accession numbers are 17,368 and 17,369, respectively.

  10. Determining hydrogen-bond interactions in spider silk with 1H-13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations.

    Science.gov (United States)

    Holland, Gregory P; Mou, Qiushi; Yarger, Jeffery L

    2013-07-28

    Two-dimensional (2D) (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra collected with fast magic angle spinning (MAS) are used in conjunction with density functional theory (DFT) proton chemical shift calculations to determine the hydrogen-bonding strength for ordered β-sheet and disordered 310-helical structures in spider dragline silk. The hydrogen-bond strength is determined to be identical for both structures in spider silk with a 1.83-1.84 Å NH···OC hydrogen-bond distance.

  11. Fractional enrichment of proteins using [2-{sup 13}C]-glycerol as the carbon source facilitates measurement of excited state {sup 13}Cα chemical shifts with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ahlner, Alexandra; Andresen, Cecilia; Khan, Shahid N. [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden); Kay, Lewis E. [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry, One King’s College Circle (Canada); Lundström, Patrik, E-mail: patlu@ifm.liu.se [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden)

    2015-07-15

    A selective isotope labeling scheme based on the utilization of [2-{sup 13}C]-glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state {sup 13}Cα chemical shifts using Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold relative to labeling schemes based on [2-{sup 13}C]-glucose, effectively doubling the sensitivity of NMR experiments. Applications to a binding reaction involving an SH3 domain from the protein Abp1p and a peptide from the protein Ark1p establish that accurate excited state {sup 13}Cα chemical shifts can be obtained from RD experiments, with errors on the order of 0.06 ppm for exchange rates ranging from 100 to 1000 s{sup −1}, despite the small fraction of {sup 13}Cα–{sup 13}Cβ spin-pairs that are present for many residue types. The labeling approach described here should thus be attractive for studies of exchanging systems using {sup 13}Cα spin probes.

  12. CPMG relaxation dispersion NMR experiments measuring glycine {sup 1}H{sup {alpha}} and {sup 13}C{sup {alpha}} chemical shifts in the 'invisible' excited states of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Vallurupalli, Pramodh; Hansen, D. Flemming; Lundstroem, Patrik; Kay, Lewis E. [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)], E-mail: kay@pound.med.utoronto.ca

    2009-09-15

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments are extremely powerful for characterizing millisecond time-scale conformational exchange processes in biomolecules. A large number of such CPMG experiments have now emerged for measuring protein backbone chemical shifts of sparsely populated (>0.5%), excited state conformers that cannot be directly detected in NMR spectra and that are invisible to most other biophysical methods as well. A notable deficiency is, however, the absence of CPMG experiments for measurement of {sup 1}H{sup {alpha}} and {sup 13}C{sup {alpha}} chemical shifts of glycine residues in the excited state that reflects the fact that in this case the {sup 1}H{sup {alpha}}, {sup 13}C{sup {alpha}} spins form a three-spin system that is more complex than the AX {sup 1}H{sup {alpha}}-{sup 13}C{sup {alpha}} spin systems in the other amino acids. Here pulse sequences for recording {sup 1}H{sup {alpha}} and {sup 13}C{sup {alpha}} CPMG relaxation dispersion profiles derived from glycine residues are presented that provide information from which {sup 1}H{sup {alpha}}, {sup 13}C{sup {alpha}} chemical shifts can be obtained. The utility of these experiments is demonstrated by an application to a mutant of T4 lysozyme that undergoes a millisecond time-scale exchange process facilitating the binding of hydrophobic ligands to an internal cavity in the protein.

  13. Determination of the Tautomeric Equilibria of Pyridoyl Benzoyl -Diketones in the Liquid and Solid State through the use of Deuterium Isotope Effects on 1H and 13C NMR Chemical Shifts and Spin Coupling Constants

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Borisov, Eugeny V.; Lindon, John C.

    2015-01-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on 1H and 13C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in th...

  14. The impact of the pi-electron conjugation on (15)N, (13)C and (1)H NMR chemical shifts in push-pull benzothiazolium salts. Experimental and theoretical study.

    Science.gov (United States)

    Hrobárik, Peter; Horváth, Branislav; Sigmundová, Ivica; Zahradník, Pavol; Malkina, Olga L

    2007-11-01

    The (15)N as well as (13)C and (1)H chemical shifts of eight push-pull benzothiazolium iodides with various pi-conjugated chains between dimethylamino group and benzothiazolium moiety have been determined by NMR spectroscopy at the natural-abundance level of all nuclei in DMSO-d(6) solution. In general, the quaternary benzothiazolium nitrogen is more shielded [delta((15)N-3) vary between - 241.3 and - 201.9 ppm] with respect to parent 3-methylbenzothiazolium iodide [delta((15)N-3) = - 183.8 ppm], depending on the length and constitution of the pi-conjugated bridge. A larger variation in (15)N chemical shifts is observed on dimethylamino nitrogen, which covers the range of - 323.3 to - 257.2 ppm. The effect of pi-conjugation degree has a less pronounced influence on (13)C and (1)H chemical shifts. Experimental data are interpreted by means of density functional theory (DFT) calculations. Reasonable agreement between theoretical and experimental (15)N NMR chemical shifts was found, particularly when performing calculations with hybrid exchange-correlation functionals. A better accord with experiment is achieved by utilizing a polarizable continuum model (PCM) along with an explicit treatment of hydrogen-bonding between the solute and the water present in dimethylsulfoxide (DMSO). Finally, (13)C and (1)H NMR spectra were computed and analysed in order to compare them with available experimental data. (c) 2007 John Wiley & Sons, Ltd.

  15. Synthesis, NMR spectroscopic characterization and structure of a divinyldisilazane-(triphenylphosphine)platinum(0) complex: observation of isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt).

    Science.gov (United States)

    Wrackmeyer, Bernd; Klimkina, Elena V; Schmalz, Thomas; Milius, Wolfgang

    2013-05-01

    Tetramethyldivinyldisilazane-(triphenylphosphine)platinum(0) was prepared, characterized in solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy ((1)H, (13)C, (15)N, (29)Si, (31)P and (195)Pt NMR). Numerous signs of spin-spin coupling constants were determined by two-dimensional heteronuclear shift correlations (HETCOR) and two-dimensional (1)H/(1)H COSY experiments. Isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt) were measured from (195)Pt NMR spectra of the title compound as well as of other Pt(0), Pt(II) and Pt(IV) compounds for comparison. In contrast to other heavy nuclei such as (199)Hg or (207)Pb, the "normal" shifts of the heavy isotopomers to low frequencies are found, covering a range of >500 ppb.

  16. Development of a (13)C NMR Chemical Shift Prediction Procedure Using B3LYP/cc-pVDZ and Empirically Derived Systematic Error Correction Terms: A Computational Small Molecule Structure Elucidation Method.

    Science.gov (United States)

    Xin, Dongyue; Sader, C Avery; Chaudhary, Om; Jones, Paul-James; Wagner, Klaus; Tautermann, Christofer S; Yang, Zheng; Busacca, Carl A; Saraceno, Reginaldo A; Fandrick, Keith R; Gonnella, Nina C; Horspool, Keith; Hansen, Gordon; Senanayake, Chris H

    2017-05-19

    An accurate and efficient procedure was developed for performing (13)C NMR chemical shift calculations employing density functional theory with the gauge invariant atomic orbitals (DFT-GIAO). Benchmarking analysis was carried out, incorporating several density functionals and basis sets commonly used for prediction of (13)C NMR chemical shifts, from which the B3LYP/cc-pVDZ level of theory was found to provide accurate results at low computational cost. Statistical analyses from a large data set of (13)C NMR chemical shifts in DMSO are presented with TMS as the calculated reference and with empirical scaling parameters obtained from a linear regression analysis. Systematic errors were observed locally for key functional groups and carbon types, and correction factors were determined. The application of this process and associated correction factors enabled assignment of the correct structures of therapeutically relevant compounds in cases where experimental data yielded inconclusive or ambiguous results. Overall, the use of B3LYP/cc-pVDZ with linear scaling and correction terms affords a powerful and efficient tool for structure elucidation.

  17. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts

    Directory of Open Access Journals (Sweden)

    Simone Di Micco

    2013-12-01

    Full Text Available In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of 13C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of 13C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides.

  18. Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: {sup 1}H and {sup 13}C chemical shift assignments; Constituintes quimicos de Ottonia corcovadensis Miq. da floresta Amazonica - atribuicao dos deslocamentos quimicos dos atomos de hidrogenio e carbono

    Energy Technology Data Exchange (ETDEWEB)

    Facundo, Valdir A. [Rondonia Univ., Porto Velho, RO (Brazil). Dept. de Quimica; Morais, Selene M. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica e Fisica; Braz Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Ciencias Quimicas. Setor de Quimica de Produtos Naturais]. E-mail: braz@uenf.br

    2004-02-01

    In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae) were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-penta methoxyflavone (1), 3',4',5,7-tetra methoxyflavone (2) and 5-hydroxy-3',4',5',7-tetra methoxyflavone (3) and cafeic acid (4). Two amides (5 and 6) were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D) and mass spectra. Extensive NMR analysis was also used to complete {sup 1}H and {sup 13}C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra. (author)

  19. Cross correlations between {sup 13}C-{sup 1}H dipolar interactions and {sup 15}N chemical shift anisotropy in nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranathan, Sapna [Institut de Chimie Moleculaire et Biologique, Ecole Polytechnique Federale de Lausanne, BCH (Switzerland); Kim, Chul-Hyun [University of California, Department of Chemistry (United States); Bodenhausen, Geoffrey [Institut de Chimie Moleculaire et Biologique, Ecole Polytechnique Federale de Lausanne, BCH (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2003-12-15

    Two sets of cross-correlated relaxation rates involving chemical shift anisotropy and dipolar interactions have been measured in an RNA kissing complex. In one case, both the CSA and dipolar interaction tensors are located on the same nucleotide base and are rigidly fixed with respect to each other. In the other case, the CSA tensor is located on the nucleotide base whereas the dipolar interaction is located on the adjoining ribose unit. Analysis of the measured rates in terms of isotropic or anisotropic rotational diffusion has been carried out for both cases. A marked difference between the two models is observed for the cross-correlation rates involving rigidly fixed spin interactions. The influence of internal motions about the glycosidic linkage between the nucleotide base and the ribose unit on cross-correlated relaxation rates has been estimated by applying a model of restricted rotational diffusion. Local motions seem to have a more pronounced effect on cross-correlated relaxation rates when the two spin interactions are not rigidly fixed with respect to each other.

  20. Measurement of the signs of methyl {sup 13}C chemical shift differences between interconverting ground and excited protein states by R{sub 1{rho}}: an application to {alpha}B-crystallin

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Andrew J.; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2012-05-15

    Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG RD) NMR spectroscopy has emerged as a powerful tool for quantifying the kinetics and thermodynamics of millisecond time-scale exchange processes involving the interconversion between a visible ground state and one or more minor, sparsely populated invisible 'excited' conformational states. Recently it has also become possible to determine atomic resolution structural models of excited states using a wide array of CPMG RD approaches. Analysis of CPMG RD datasets provides the magnitudes of the chemical shift differences between the ground and excited states, {Delta}{omega}, but not the sign. In order to obtain detailed structural insights from, for example, excited state chemical shifts and residual dipolar coupling measurements, these signs are required. Here we present an NMR experiment for obtaining signs of {sup 13}C chemical shift differences of {sup 13}CH{sub 3} methyl groups using weak field off-resonance R{sub 1{rho}} relaxation measurements. The accuracy of the method is established by using an exchanging system where the invisible, excited state can be converted to the visible, ground state by altering sample conditions so that the signs of {Delta}{omega} values obtained from the spin-lock approach can be validated against those measured directly. Further, the spin-lock experiments are compared with the established H(S/M)QC approach for measuring signs of chemical shift differences and the relative strengths of each method are discussed. In the case of the 650 kDa human {alpha}B-crystallin complex where there are large transverse relaxation differences between ground and excited state spins the R{sub 1{rho}} method is shown to be superior to more 'traditional' experiments for sign determination.

  1. E-2-Benzylidenebenzocycloalkanones. IV. Studies on transmission of substituent effects on 13C NMR chemical shifts of E-2-(X-benzylidene)-1-tetralones, and -benzosuberones. Comparison with the 13C NMR data of chalcones and E-2-(X-benzylidene)-1-indanones

    Science.gov (United States)

    Perjési, Pál; Linnanto, Juha; Kolehmainen, Erkki; Ősz, Erzsébet; Virtanen, Elina

    2005-04-01

    Single substituent parameter (SSP) and dual substituent parameter (DSP) analyses were applied to study the transmission of substituent effects on selected 13C NMR chemical shifts of the cyclic chalcone analogues, E-2-(4'-X-benzylidene)-1-tetralones ( 2) and E-2-(4'-X-benzylidene)-1-benzosuberones ( 3). In order to study how the geometry of the cyclic chalcone analogues affects the transmission of substituent effects similar investigations with the respective chalcones ( 4) were also performed. The results obtained earlier with the five-membered analogue E-2-(4'-X-benzylidene)-1-indanones ( 1) were also involved in the comparisons. Geometry optimization of the unsubstituted 1a, 2a, 3a and 4a as well as the substituted 2 and 3 was performed by ab initio quantum chemical calculations. Both SSP and DSP analyses reflected that resonance effects contribute more to the chemical shift of C-α (C2), while inductive effects primarily affect that of C-β (C10) of the enone moiety of all the four series. This latter effect, however, is far not as pronounced as that of the former one. It was found that DSP analysis data ( ρF and ρR values) of transmission of substituent effects on the δC2 data can serve as a measure of choice to study the conformation (planarity) of the investigated enones in the four series.

  2. Iboga alkaloids from Peschiera affinis (Apocynaceae) - unequivocal {sup 1}H and {sup 13}C chemical shift assignments: antioxidant activity; Alcaloides iboga de Peschiera affinis (Apocynaceae) - atribuicao inequivoca dos deslocamentos quimicos dos atomos de hidrogenio e carbono: atividade antioxidante

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Allana Kellen L.; Magalhaes, Ticiane S.; Monte, Francisco Jose Q.; Mattos, Marcos Carlos de; Oliveira, Maria Conceicao F. de; Almeida, Maria Mozarina B.; Lemos, Telma L.G.; Braz-Filho, Raimundo [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica], e-mail: tlemos@dqoi.ufc.br

    2009-07-01

    Six known alkaloids iboga type and the triterpene {alpha}- and {beta}-amyrin acetate were isolated from the roots and stems of Peschiera affinis. Their structures were characterized on the basis of spectral data mainly NMR and mass spectra. 1D and 2D NMR spectra were also used to unequivocal {sup 1}H and {sup 13}C chemical shift assignments of alkaloids. The ethanolic extract of roots, alkaloidic and no-alkaloidic fractions and iso-voacristine hydroxyindolenine and voacangine were evaluated for their antioxidative properties using an autographic assay based on {beta}-carotene bleaching on TLC plates, and also spectrophotometric detection by reduction of the stable DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical. (author)

  3. Structure-based predictions of 13C-NMR chemical shifts for a series of 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indoles derivatives using GA-based MLR method

    Science.gov (United States)

    Ghavami, Raouf; Sadeghi, Faridoon; Rasouli, Zolikha; Djannati, Farhad

    2012-12-01

    Experimental values for the 13C NMR chemical shifts (ppm, TMS = 0) at 300 K ranging from 96.28 ppm (C4' of indole derivative 17) to 159.93 ppm (C4' of indole derivative 23) relative to deuteride chloroform (CDCl3, 77.0 ppm) or dimethylsulfoxide (DMSO, 39.50 ppm) as internal reference in CDCl3 or DMSO-d6 solutions have been collected from literature for thirty 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indole derivatives containing different substituted groups. An effective quantitative structure-property relationship (QSPR) models were built using hybrid method combining genetic algorithm (GA) based on stepwise selection multiple linear regression (SWS-MLR) as feature-selection tools and correlation models between each carbon atom of indole derivative and calculated descriptors. Each compound was depicted by molecular structural descriptors that encode constitutional, topological, geometrical, electrostatic, and quantum chemical features. The accuracy of all developed models were confirmed using different types of internal and external procedures and various statistical tests. Furthermore, the domain of applicability for each model which indicates the area of reliable predictions was defined.

  4. β-Sheet 13C Structuring Shifts Appear only at the H-bonded Sites of Hairpins

    Science.gov (United States)

    Shu, Irene; Stewart, James M.; Scian, Michele; Kier, Brandon L.

    2011-01-01

    The 13C chemical shifts measured for designed β hairpins indicate that the structuring shifts (upfield for Cα and C′, downfield for Cβ) previously reported as diagnostic for β structuring in protein appear only at the H-bonded strand residues. The resulting periodicity of structuring shift magnitudes is not, however, a consequence of H-bonding status; rather, it reflects a previously unrecognized alternation in the backbone torsion angles of β strands. This feature of hairpins is also likely to be present in proteins. The study provides reference values for the expectation shifts for 13C sites in β structures that should prove useful in the characterization of the folding equilibria of β sheet models. PMID:21214243

  5. Constituintes químicos de Ottonia corcovadensis Miq. da floresta Amazônica: atribuição dos deslocamentos químicos dos átomos de hidrogênio e carbono Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: ¹h and 13c chemical shift assignments

    Directory of Open Access Journals (Sweden)

    Valdir A. Facundo

    2004-02-01

    Full Text Available In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-pentamethoxyflavone (1, 3',4',5,7-tetramethoxyflavone (2 and 5-hydroxy-3',4',5',7-tetramethoxyflavone (3 and cafeic acid (4. Two amides (5 and 6 were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D and mass spectra. Extensive NMR analysis was also used to complete ¹H and 13C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra.

  6. Relationship between 13C NMR Chemical Shifts of Alkanes and Ionicity Index and Polarizability Effect Index%离子性指数、极化效应指数与烷烃13C NMR化学位移的关系研究

    Institute of Scientific and Technical Information of China (English)

    聂长明; 李忠海; 文松年

    2002-01-01

    定义了烷烃分子中碳原子的离子性指数(INI),用离子性指数(INI)、极化效应指数(PEI)及NiH(i=α,β,γ)结构信息参数研究了烷烃的13C NMR化学位移模型.结果表明,烷烃13C NMR化学位移(CS)可用下式来定量描述:CS=194.6156-37.7394(INI)+98.6505(ΣPEI)+27.1630(INI/ΣPEI)-652.910(ΣPEI/INI)+0.7735NαH+2.2468NβH-0.1742NγH用上式估算了304个碳原子的化学位移,平均绝对误差仅为0.77 δ,标准差0.9860δ,预测值与实验值非常吻合.

  7. Computer-Aided (13)C NMR Chemical Profiling of Crude Natural Extracts without Fractionation.

    Science.gov (United States)

    Bakiri, Ali; Hubert, Jane; Reynaud, Romain; Lanthony, Sylvie; Harakat, Dominique; Renault, Jean-Hugues; Nuzillard, Jean-Marc

    2017-05-26

    A computer-aided, (13)C NMR-based dereplication method is presented for the chemical profiling of natural extracts without any fractionation. An algorithm was developed in order to compare the (13)C NMR chemical shifts obtained from a single routine spectrum with a set of predicted NMR data stored in a natural metabolite database. The algorithm evaluates the quality of the matching between experimental and predicted data by calculating a score function and returns the list of metabolites that are most likely to be present in the studied extract. The proof of principle of the method is demonstrated on a crude alkaloid extract obtained from the leaves of Peumus boldus, resulting in the identification of eight alkaloids, including isocorydine, rogersine, boldine, reticuline, coclaurine, laurotetanine, N-methylcoclaurine, and norisocorydine, as well as three monoterpenes, namely, p-cymene, eucalyptol, and α-terpinene. The results were compared to those obtained with other methods, either involving a fractionation step before the chemical profiling process or using mass spectrometry detection in the infusion mode or coupled to gas chromatography.

  8. Alcaloides iboga de Peschiera affinis (Apocynaceae - Atribuição inequívoca dos deslocamentos químicos dos átomos de hidrogênio e carbono: atividade antioxidante Iboga alkaloids from Peschiera affinis (Apocynaceae - unequivocal 1H and 13C chemical shift assignments: antioxidant activity

    Directory of Open Access Journals (Sweden)

    Allana Kellen L. Santos

    2009-01-01

    Full Text Available Six known alkaloids iboga type and the triterpen α- and β-amyrin acetate were isolated from the roots and stems of Peschiera affinis. Their structures were characterized on the basis of spectral data mainly NMR and mass spectra. 1D and 2D NMR spectra were also used to unequivocal ¹H and 13C chemical shift assignments of alkaloids. The ethanolic extract of roots, alkaloidic and no-alkaloidic fractions and iso-voacristine hydroxyindolenine and voacangine were evaluated for their antioxidative properties using an autographic assay based on β-carotene bleaching on TLC plates, and also spectrophotometric detection by reduction of the stable DPPH (2,2-diphenyl-1-picrylhydrazyl free radical.

  9. Simultaneous Multiagent Hyperpolarized 13C Perfusion Imaging

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Bok, Robert A.; Reed, Galen D.

    2014-01-01

    Purpose: To demonstrate simultaneous hyperpolarization and imaging of three 13C-labeled perfusion MRI contrast agents with dissimilar molecular structures ([13C]urea, [13C]hydroxymethyl cyclopropane, and [13C]t-butanol) and correspondingly variable chemical shifts and physiological characteristic...

  10. Protein Chemical Shift Prediction

    CERN Document Server

    Larsen, Anders S

    2014-01-01

    The protein chemical shifts holds a large amount of information about the 3-dimensional structure of the protein. A number of chemical shift predictors based on the relationship between structures resolved with X-ray crystallography and the corresponding experimental chemical shifts have been developed. These empirical predictors are very accurate on X-ray structures but tends to be insensitive to small structural changes. To overcome this limitation it has been suggested to make chemical shift predictors based on quantum mechanical(QM) calculations. In this thesis the development of the QM derived chemical shift predictor Procs14 is presented. Procs14 is based on 2.35 million density functional theory(DFT) calculations on tripeptides and contains corrections for hydrogen bonding, ring current and the effect of the previous and following residue. Procs14 is capable at performing predictions for the 13CA, 13CB, 13CO, 15NH, 1HN and 1HA backbone atoms. In order to benchmark Procs14, a number of QM NMR calculatio...

  11. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  12. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    Science.gov (United States)

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic δ13C and δ15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes—resident and transient—collected across ~25° of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in δ15N values of ~2.5‰ through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable δ15N and δ13C values throughout the remainder of their lives, whereas δ15N values of most (n = 11) increased by ~1.5‰, suggestive of an ontogenetic increase in trophic level. Significant differences in mean δ13C and δ15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean

  13. Application of 13C NMR spectroscopy to characterize organic chemical components of decomposing coarse woody debris from different climatic regions

    Directory of Open Access Journals (Sweden)

    Takuya Hishinuma

    2015-04-01

    Full Text Available Solid-state 13C nuclear magnetic resonance (NMR spectroscopy was applied to coarse woody debris (CWD in different stages of decomposition and collected from forest floor of a subtropical, a cool temperate, and a subalpine forest in Japan. The purpose was to test its applicability to characterize organic chemical composition of CWD of broad-leaved and coniferous trees from different climatic conditions. O-alkyl-C, mainly representing carbohydrates, was the predominant component of CWD at the three sites, accounting for 43.5-58.1% of the NMR spectra. Generally, the relative area under the signals for aromatic-C and phenolic-C, mainly representing lignin, increased, whereas the relative area for O-alkyl-C decreased, as the decay class advanced. The relative area under NMR chemical shift regions was significantly correlated with the chemical properties examined with proximate analyses. That is, O-alkyl-C and di-O-alkyl-C NMR signal areas were positively correlated with the volumetric density of CWD and the content of total carbohydrates. Methoxyl-C, aromatic-C, phenolic-C, carboxyl-C, and carbonyl-C were positively correlated with the contents of acid-unhydrolyzable residues (lignin, tannins, and cutin and nitrogen. Lignin-C calculated from NMR signals increased, and polysaccharide-C decreased, with the decay class of CWD at the three study sites. A review of previous studies on 13C NMR spectroscopy for decomposing CWD suggested further needs of its application to broad-leaved trees from tropical and subtropical regions.

  14. Cigarette butt decomposition and associated chemical changes assessed by 13C CPMAS NMR.

    Science.gov (United States)

    Bonanomi, Giuliano; Incerti, Guido; Cesarano, Gaspare; Gaglione, Salvatore A; Lanzotti, Virginia

    2015-01-01

    Cigarette butts (CBs) are the most common type of litter on earth, with an estimated 4.5 trillion discarded annually. Apart from being unsightly, CBs pose a serious threat to living organisms and ecosystem health when discarded in the environment because they are toxic to microbes, insects, fish and mammals. In spite of the CB toxic hazard, no studies have addressed the effects of environmental conditions on CB decomposition rate. In this study we investigate the interactive effects of substrate fertility and N transfer dynamics on CB decomposition rate and carbon quality changes. We carried out an experiment using smoked CBs and wood sticks, used as a slow decomposing standard organic substrate, incubated in both laboratory and field conditions for two years. CB carbon quality changes during decomposition was assessed by 13C CPMAS NMR. Our experiment confirmed the low degradation rate of CBs which, on average, lost only 37.8% of their initial mass after two years of decomposition. Although a net N transfer occurred from soil to CBs, contrary to our hypothesis, mass loss in the medium-term (two years) was unaffected by N availability in the surrounding substrate. The opposite held for wood sticks, in agreement with the model that N-rich substrates promote the decomposition of other N-poor natural organic materials with a high C/N ratio. As regards CB chemical quality, after two years of decomposition 13C NMR spectroscopy highlighted very small changes in C quality that are likely to reflect a limited microbial attack.

  15. Cigarette butt decomposition and associated chemical changes assessed by 13C CPMAS NMR.

    Directory of Open Access Journals (Sweden)

    Giuliano Bonanomi

    Full Text Available Cigarette butts (CBs are the most common type of litter on earth, with an estimated 4.5 trillion discarded annually. Apart from being unsightly, CBs pose a serious threat to living organisms and ecosystem health when discarded in the environment because they are toxic to microbes, insects, fish and mammals. In spite of the CB toxic hazard, no studies have addressed the effects of environmental conditions on CB decomposition rate. In this study we investigate the interactive effects of substrate fertility and N transfer dynamics on CB decomposition rate and carbon quality changes. We carried out an experiment using smoked CBs and wood sticks, used as a slow decomposing standard organic substrate, incubated in both laboratory and field conditions for two years. CB carbon quality changes during decomposition was assessed by 13C CPMAS NMR. Our experiment confirmed the low degradation rate of CBs which, on average, lost only 37.8% of their initial mass after two years of decomposition. Although a net N transfer occurred from soil to CBs, contrary to our hypothesis, mass loss in the medium-term (two years was unaffected by N availability in the surrounding substrate. The opposite held for wood sticks, in agreement with the model that N-rich substrates promote the decomposition of other N-poor natural organic materials with a high C/N ratio. As regards CB chemical quality, after two years of decomposition 13C NMR spectroscopy highlighted very small changes in C quality that are likely to reflect a limited microbial attack.

  16. Empirical isotropic chemical shift surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Czinki, Eszter; Csaszar, Attila G. [Eoetvoes University, Laboratory of Molecular Spectroscopy, Institute of Chemistry (Hungary)], E-mail: csaszar@chem.elte.hu

    2007-08-15

    A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles {phi} and {psi} characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS({phi},{psi}) surfaces obtained for the model peptides For-(l-Ala){sub n}-NH{sub 2}, with n = 1, 3, and 5, resulted in so-called empirical ICS({phi},{psi}) surfaces for all major nuclei of the 20 naturally occurring {alpha}-amino acids. Out of the many empirical surfaces determined, it is the 13C{sup {alpha}} ICS({phi},{psi}) surface which seems to be most promising for identifying major secondary structure types, {alpha}-helix, {beta}-strand, left-handed helix ({alpha}{sub D}), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring {alpha}-amino acids. Two-dimensional empirical 13C{sup {alpha}}-{sup 1}H{sup {alpha}} ICS({phi},{psi}) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins.

  17. Effects of bis homoallylic and homoallylic hydroxyl substitution on the olefinic 13C resonance shifts in fatty acid methyl esters.

    Science.gov (United States)

    Pfeffer, P E; Sonnet, P E; Schwartz, D P; Osman, S F; Weisleder, D

    1992-04-01

    Substitution of a hydroxyl group at the bis homoallylic position (OH group located three carbons away from the olefinic carbon) in C18 unsaturated fatty acid esters (FAE) induces a 0.73 +/- 0.05 ppm upfield and a 0.73 +/- 0.06 ppm downfield shift on the delta and epsilon olefinic 13C resonances relative to the unsubstituted FAE, respectively. If the hydroxyl group is located on the carboxyl side of the double bond of the bis homoallylic hydroxy fatty acid esters (BHAHFA), the olefinic resonances are uniformly shifted apart by [formula: see text] where delta delta dbu represents the absolute value of the double bond resonance separation in the unsubstituted FAE and 1.46 ppm is the sum of the absolute values of the delta and epsilon shift parameters. With hydroxyl substitution on the terminal methyl side of the double bond, the olefinic shift separation is equal to [formula: see text] In homoallylic (OH group located two carbons away from the olefinic carbon) substituted FAE the gamma and delta induced hydroxyl shifts for the cis double bond resonances are +3.08 and -4.63 ppm, respectively while the trans double bond parameters are +4.06 and -4.18 ppm, respectively. The double bond resonance separation in homoallylic hydroxy fatty acid esters (HAHFA) can be calculated from the formula [formula: see text] for cis and [formula: see text] for the trans case when the OH substitution is on the carboxyl side of the double bond. Conversely, when the OH resides on the terminal methyl side, the double bond shift separations for cis and trans isomers are [formula: see text] and [formula: see text] respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. The 12C/13C Ratio in Sgr B2(N): Constraints for Galactic Chemical Evolution and Isotopic Chemistry

    Science.gov (United States)

    Halfen, D. T.; Woolf, N. J.; Ziurys, L. M.

    2017-08-01

    A study has been conducted of 12C/13C ratios in five complex molecules in the Galactic center. H2CS, CH3CCH, NH2CHO, CH2CHCN, and CH3CH2CN and their 13C-substituted species have been observed in numerous transitions at 1, 2, and 3 mm, acquired in a spectral-line survey of Sgr B2(N), conducted with the telescopes of the Arizona Radio Observatory (ARO). Between 22 and 54 individual, unblended lines for the 12C species and 2-54 for 13C-substituted analogs were modeled in a global radiative transfer analysis. All five molecules were found to consistently exhibit two velocity components near V LSR ˜ 64 and 73 km s-1, with column densities ranging from N tot ˜ 3 × 1014 - 4 × 1017 cm-2 and ˜2 × 1013 - 1 × 1017 cm-2 for the 12C and 13C species, respectively. Based on 14 different isotopic combinations, ratios were obtained in the range 12C/13C = 15 ± 5 to 33 ± 13, with an average value of 24 ± 7, based on comparison of column densities. These measurements better anchor the 12C/13C ratio at the Galactic center, and suggest a slightly revised isotope gradient of 12C/13C = 5.21(0.52) D GC + 22.6(3.3). As indicated by the column densities, no preferential 13C enrichment was found on the differing carbon sites of CH3CCH, CH2CHCN, and CH3CH2CN. Because of the elevated temperatures in Sgr B2(N), 13C isotopic substitution is effectively “scrambled,” diminishing chemical fractionation effects. The resulting ratios thus reflect stellar nucleosynthesis and Galactic chemical evolution, as is likely the case for most warm clouds.

  19. Supra-molecular structure and chemical reactivity of cellulose I studied using CP/MAS (sup)13 C-NMR

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2013-08-01

    Full Text Available medium, provided the original work is properly cited. Supra-Molecular Structure and Chemical Reactivity of Cellulose I Studied Using CP/MAS 13C-NMR Viren Chunilall, Tamara Bush and Per Tomas Larsson Additional information is available at the end... of Cellulose I Studied Using CP/MAS 13C-NMR 71 1.1.2. Dissolving pulp The unbleached pulp that results after acid bi-sulphite pulping is used as raw material for dissolving pulp production. Lignin and hemicelluloses in the unbleached pulp are considered...

  20. {sup 13}C structuring shifts for the analysis of model {beta}-hairpins and {beta}-sheets in proteins: diagnostic shifts appear only at the cross-strand H-bonded residues

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Irene; Scian, Michele; Stewart, James M.; Kier, Brandon L.; Andersen, Niels H., E-mail: andersen@chem.washington.edu [University of Washington, Department of Chemistry (United States)

    2013-08-15

    The present studies have shown that {sup 13}C=O, {sup 13}C{sup {alpha}} and {sup 13}C{sup {beta}} of H-bonded strand residues in {beta}-hairpins provide additional probes for quantitating the extent of folding in {beta}-hairpins and other {beta}-sheet models. Large differences in the structuring shifts (CSDs) of these {sup 13}C sites in H-bonded versus non-H-bonded sites are observed: the differences between H-bonded and non-H-bonded sites are greater than 1.2 ppm for all three {sup 13}C probes. This prompts us to suggest that efforts to determine the extent of hairpin folding from {sup 13}C shifts should be based exclusively on the observation at the cross-strand H-bonded sites. Furthermore, the statistics suggest the {sup 13}C Prime and {sup 13}C{sup {beta}}CSDs will provide the best differentiation with 100 %-folded CSD values approaching -2.6 and +3 ppm, respectively, for the H-bonded sites. These conclusions can be extended to edge-strands of protein {beta}-sheets. Our survey of reported {sup 13}C shifts in {beta}-proteins indicates that some of the currently employed random coil values need to be adjusted, particularly for ionization-induced effects.

  1. Different response of bulk and n-alkane δ13C signatures to seasonal shifts in environmental conditions in a temperate coastal ecosystem

    Science.gov (United States)

    Eley, Yvette; Pedentchouk, Nikolai; Dawson, Lorna

    2014-05-01

    The carbon isotope signal recorded in land plants represents an important reservoir of information for reconstructing climatically driven shifts in plant ecophysiology and biochemistry. Analytical advances have led to widespread usage of compound-specific (CS) carbon isotope analysis of leaf wax biomarkers, such as n-alkanes, in addition to traditional bulk isotope methods, to identify shifts in the relative percentage of C3 and C4 vegetation contributing to the sedimentary record. Recent studies, however, have extended the application of leaf wax biomarkers, using bulk and n-alkane δ13C values interchangeably to derive information about plant-environment relations, both in modern ecosystems and throughout the geological past. Even though previous work on C3 plants has shown a clear link between climatically influenced plant physiology and bulk δ13C values, further research is needed to establish whether the same link can be seen in leaf wax biomarkers. To address this question, we collected bulk and n-alkane δ13C data from plants growing at Stiffkey marsh on the north Norfolk coast, UK over a period of 15 months. Maximum interspecies variation in weighted average (WA) n-alkane δ13C among C3 species was typically 2-3o greater than in bulk. We observed a close correlation in the bulk and WA n-alkane δ13C seasonal trends from C3 grasses and reeds (R2=0.9, P

  2. δ13C and δ15N changes after dietary shift in veliger larvae of the slipper limpet Crepidula fornicata: an experimental evidence

    Science.gov (United States)

    Comtet, T.; Riera, P.

    2006-12-01

    δ13C and δ15N measurements are still poorly conducted in benthic invertebrate larvae. To assess the δ13C and δ15N changes occurring after a dietary shift, experiments were conducted on veliger larvae of Crepidula fornicata fed with two cultured microalgae ( Isochrysis galbana and Pavlova lutheri) of known isotopic composition, 13C-enriched and 15N-depleted compared to the initial values of the larvae. Rapid changes in larval δ13C and δ15N were observed after the dietary shift, with an increase in δ13C and a decrease in δ15N. After 19 days of feeding, isotopic equilibrium was still not reached, a period which is close to the duration of the pelagic life of the larvae. This implies that the isotopic composition measured in field-collected larvae might only partly reflect actual larval feeding but also the parental isotopic signature, especially during the early developmental stages. Isotopic measurements in marine invertebrate larvae should thus be interpreted cautiously. In planktonic food web investigations, the study of field-collected larvae of different size/developmental stage may reduce potential misinterpretations.

  3. Aqueous-phase quantitative NMR determination of amino acid enantiomer ratio by 13C-NMR using chiral neodymium shift reagent.

    Science.gov (United States)

    Florini, Nicola; Faglioni, Francesco; Zucchi, Claudia; Caglioti, Luciano; Pályi, Gyula

    2010-05-01

    A neodymium-(S)-PDTA (PDTA = N,N,N',N'-tetrakis[(hydroxycarbonyl)methyl]-1,2-diaminopropane) complex was found exceptionally useful in the quantitative determination of enantiomer ratios of water-soluble natural amino acids by (13)C-NMR. The method is demonstrated on mixtures of L- and D-enantiomers of various amino acids. The interactions of the chiral shift reagent with the amino acid molecules were rationalized by molecular orbital calculations.

  4. {sup 13}C-{sup 13}C NOESY spectra of a 480 kDa protein: solution NMR of ferritin

    Energy Technology Data Exchange (ETDEWEB)

    Matzapetakis, Manolis; Turano, Paola [University of Florence, Department of Chemistry, CERM (Italy); Theil, Elizabeth C. [Children' s Hospital Oakland Research Institute, CeBIC (Council for BioIron at CHORI) (United States); Bertini, Ivano [University of Florence, Department of Chemistry, CERM (Italy)], E-mail: ivanobertini@cerm.unifi.it

    2007-07-15

    Molecular size has limited solution NMR analyses of proteins. We report {sup 13}C-{sup 13}C NOESY experiments on a 480 kDa protein, the multi-subunit ferritin nanocage with gated pores. By exploiting {sup 13}C-resonance-specific chemical shifts and spin diffusion effects, we identified 75% of the amino acids, with intraresidue C-C connectivities between nuclei separated by 1-4 bonds. These results show the potential of {sup 13}C-{sup 13}C NOESY for solution studies of molecular assemblies >100 kDa.

  5. Primidone--an antiepileptic drug--characterisation by quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR and UV-Visible) investigations.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Subramanian, S; Mohan, S

    2013-05-15

    The solid phase FTIR and FT-Raman spectra of primidone were recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The vibrational spectra were analysed and the observed fundamentals were assigned and analysed. The experimental wavenumbers were compared with the theoretical scaled vibrational wavenumbers determined by DFT methods. The Raman intensities were also determined with B3LYP/6-31G(d,p) method. The total electron density and molecular electrostatic potential surface of the molecule were constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution. The HOMO and LUMO energies were measured. Natural bond orbital analysis of primidone has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR spectra were recorded and the chemical shifts of the molecule were calculated. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. 1H and 13C NMR study of perdeuterated pyrazoles

    OpenAIRE

    Jimeno, María Luisa; Jagerovic, Nadine; Elguero, José; Junk, Thomas; Catallo, W. James

    1997-01-01

    The 1H and 13C chemical shifts as well as the 1H–2H and 2H–13C coupling constants of perdeuterated 3,5-dimethylpyrazole and 3,5-diphenylpyrazole have been measured and the values compared with those of the unlabelled compounds.

  7. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    OpenAIRE

    2015-01-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ([superscript 13]C–[superscript 13]C, [superscript 15]N–[superscript 13]C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 [superscript 13]C chemical shifts and >3 million chemical...

  8. Random-coil chemical shifts of phosphorylated amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Bienkiewicz, Ewa A.; Lumb, Kevin J. [Colorado State University, Department of Biochemistry and Molecular Biology (United States)

    1999-11-15

    The {sup 1}H, {sup 13}C, {sup 15}N and {sup 31} P random-coil chemical shifts and phosphate pK{sub a} values of the phosphorylated amino acids pSer, pThr and pTyr in the protected peptide Ac-Gly-Gly-X-Gly-Gly-NH{sub 2} have been obtained in water at 25 deg. C over the pH range 2 to 9. Analysis of ROESY spectra indicates that the peptides are unstructured. Phosphorylation induces changes in random-coil chemical shifts, some of which are comparable to those caused by secondary structure formation, and are therefore significant in structural analyses based on the chemical shift.

  9. 2D 1H -13C Heteronuclear Shift Correlation Of 2a - Hydroxy Aiantolactone From Pulicaria Undulata C.A. Mey

    Directory of Open Access Journals (Sweden)

    A. Rustaiyan

    1992-07-01

    Full Text Available We have reported recently the isolation and characterization of several sesquiterpene lactones from Pulicaria undulata (1."nThe lactones were isolated from an Et20 - Petrol (1:3 fraction by different chromatographic techniques including HPLC (RP 8, MeOH - H2O, 13:7."nIn this way three eudesmanolides 1 - 3, a guaianolide 4, a nor -guaianolide 5, as well as the pseudoguaianolide 6 and the xanthanolide 7 were isolated. One of the eudesmanolides (2a - hydroxy aiantolactone, 1, was present as the main component."nSuch lactones being known as biologically active substances, we have decided to describe for the first time a detailed interpretation of proton, 1H -NMR, 13C - NMR and 2D lH -13C - heteronuclear shift correlation spectra of 2a - hydroxy aiantolactone. The stereochemistry of C - 2 , C - 7 and C - 8 was determined by the NOESY experiments, H - 7 and H - 8 are in the a configuration and H - 2 is in the b configuration.

  10. Soil organic degradation: bridging the gap between Rock-Eval pyrolysis and chemical characterization (CPMAS 13C NMR)

    Science.gov (United States)

    Albrecht, Remy; Sebag, David; Verrecchia, Eric

    2013-04-01

    Being a source of mineral nutrients, organic matter contributes to soil chemical fertility and acts on soil physical fertility through its role in soil structure. Soil organic matter (SOM) is a key component of soils. Despite the paramount importance of SOM, information on its chemistry and behaviour in soils is incomplete. Numerous methods are used to characterize and monitor OM dynamics in soils using different approaches (Kogel-Knabner, 2000). Two of the main approaches are evaluated and compared in this study. Rock-Eval pyrolysis (RE pyrolysis) provides a description of a SOM's general evolution using its thermal resistance. The second tool (13C CPMAS NMR) aims to give precise and accurate chemical information on OM characterization. The RE pyrolysis technique was designed for petroleum exploration (Lafargue et al., 1998) and because of its simplicity, it has been applied to a variety of other materials such as soils or Recent sediments (Disnar et al., 2000; Sebag, 2006). Recently, RE pyrolysis became a conventional tool to study OM dynamics in soils. In RE pyrolysis, a peak deconvolution is applied to the pyrolysis signal in order to get four main components related to major classes of organic constituents. These components differ in origin and resistance to pyrolysis: labile biological constituents (F1), resistant biological constituents (F2), immature non-biotic constituents (F3) and a mature refractory fraction (F4) (Sebag, 2006; Coppard, 2006). Main advantages of the technique are its repeatability, and rapidity to provide an overview of OM properties and stocks. However, do the four major classes used in the literature reflect a pertinent chemical counterpart? To answer this question, we used 13C Nuclear Magnetic Resonance Spectroscopy in the solid state (13C CPMAS NMR) to collect direct information on structural and conformational characteristics of OM. NMR resonances were assigned to chemical structures according to five dominant forms: alkyl C, O

  11. Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-(13)C-acetate probing coupled with pyrosequencing.

    Science.gov (United States)

    Ding, Long-Jun; Su, Jian-Qiang; Xu, Hui-Juan; Jia, Zhong-Jun; Zhu, Yong-Guan

    2015-03-01

    Iron reduction is an important biogeochemical process in paddy soils, yet little is known about the microbial coupling between nitrogen and iron reduction. Here, we investigated the shift of acetate-metabolizing iron-reducers under long-term nitrogen fertilization using (13)C-acetate-based ribosomal RNA (rRNA)-stable isotope probing (SIP) and pyrosequencing in an incubation experiment, and the shift of putative iron-reducers in original field samples were investigated by 16S rRNA gene-based pyrosequencing. During SIP incubations, in the presence of iron(III) oxyhydroxides, more iron(II) formation and less methane production were detected in nitrogen-fertilized (N) compared with non-fertilized (NF) soil. In (13)C-rRNA from microcosms amended with ferrihydrite (FER), Geobacter spp. were the important active iron-reducers in both soils, and labeled to a greater extent in N (31% of the bacterial classified sequences) than NF soils (11%). Pyrosequencing of the total 16S rRNA transcripts from microcosms at the whole community level further revealed hitherto unknown metabolisms of potential FER reduction by microorganisms including Pseudomonas and Solibacillus spp. in N soil, Dechloromonas, Clostridium, Bacillus and Solibacillus spp. in NF soil. Goethite (GOE) amendment stimulated Geobacter spp. to a lesser extent in both soils compared with FER treatment. Pseudomonas spp. in the N soil and Clostridium spp. in the NF soil may also be involved in GOE reduction. Pyrosequencing results from field samples showed that Geobacter spp. were the most abundant putative iron-reducers in both soils, and significantly stimulated by long-term nitrogen fertilization. Overall, for the first time, we demonstrate that long-term nitrogen fertilization promotes iron(III) reduction and modulates iron-reducing bacterial community in paddy soils.

  12. Counterion influence on chemical shifts in strychnine salts

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, Athena E.; Cort, John R.

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here we characterize the relative influence of different counterions on 1H and 13C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD) and chloroform-d (CDCl3) solvents. In organic solvents, but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. The observed effects are much greater in organic solvents than in water. Slight concentration-dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared to the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts.

  13. Counterion influence on chemical shifts in strychnine salts.

    Science.gov (United States)

    Metaxas, Athena E; Cort, John R

    2013-05-01

    The highly toxic plant alkaloid strychnine is often isolated in the form of the anion salt of its protonated tertiary amine. Here, we characterize the relative influence of different counterions on (1)H and (13)C chemical shifts in several strychnine salts in D2O, methanol-d4 (CD3OD), and chloroform-d (CDCl3) solvents. In organic solvents but not in water, substantial variation in chemical shifts of protons near the tertiary amine was observed among different salts. These secondary shifts reveal differences in the way each anion influences electronic structure within the protonated amine. The distributions of secondary shifts allow salts to be easily distinguished from each other as well as from the free base form. Slight concentration dependence in chemical shifts of some protons near the amine was observed for two salts in CDCl3, but this effect is small compared with the influence of the counterion. Distinct chemical shifts in different salt forms of the same compound may be useful as chemical forensic signatures for source attribution and sample matching of alkaloids such as strychnine and possibly other organic acid and base salts. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Chemical Synthesis of Deoxynivalenol-3-β-d-[13C6]-glucoside and Application in Stable Isotope Dilution Assays

    Directory of Open Access Journals (Sweden)

    Katharina Habler

    2016-06-01

    Full Text Available Modified mycotoxins have been gaining importance in recent years and present a certain challenge in LC-MS/MS analysis. Due to the previous lack of a labeled isotopologue of the modified mycotoxin deoxynivalenol-3-glucoside, in our study we synthesized the first 13C-labeled internal standard. Therefore, we used the Königs-Knorr method to synthesize deoxynivalenol-3-β-d-[13C6]-glucoside originated from unlabeled deoxynivalenol and [13C6]-labeled glucose. Using the synthesized isotopically-labeled standard deoxynivalenol-3-β-d-[13C6]-glucoside and the purchased labeled standard [13C15]-deoxynivalenol, a stable isotope dilution LC-MS/MS method was firstly developed for deoxynivalenol-3-glucoside and deoxynivalenol in beer. The preparation and purification of beer samples was based on a solid phase extraction. The validation data of the newly developed method gave satisfying results. Intra- and interday precision studies revealed relative standard deviations below 0.5% and 7%, respectively. The recoveries ranged for both analytes between 97% and 112%. The stable isotope dilution assay was applied to various beer samples from four different countries. In summary, deoxynivalenol-3-glucoside and deoxynivalenol mostly appeared together in varying molar ratios but were quantified in rather low contents in the investigated beers.

  15. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol - An analgesic drug

    Science.gov (United States)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2014-03-01

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G** and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecule have been anlysed.

  16. Applications of Chemical Shift Imaging to Marine Sciences

    Directory of Open Access Journals (Sweden)

    Haakil Lee

    2010-08-01

    Full Text Available The successful applications of magnetic resonance imaging (MRI in medicine are mostly due to the non-invasive and non-destructive nature of MRI techniques. Longitudinal studies of humans and animals are easily accomplished, taking advantage of the fact that MRI does not use harmful radiation that would be needed for plain film radiographic, computerized tomography (CT or positron emission (PET scans. Routine anatomic and functional studies using the strong signal from the most abundant magnetic nucleus, the proton, can also provide metabolic information when combined with in vivo magnetic resonance spectroscopy (MRS. MRS can be performed using either protons or hetero-nuclei (meaning any magnetic nuclei other than protons or 1H including carbon (13C or phosphorus (31P. In vivo MR spectra can be obtained from single region ofinterest (ROI or voxel or multiple ROIs simultaneously using the technique typically called chemical shift imaging (CSI. Here we report applications of CSI to marine samples and describe a technique to study in vivo glycine metabolism in oysters using 13C MRS 12 h after immersion in a sea water chamber dosed with [2-13C]-glycine. This is the first report of 13C CSI in a marine organism.

  17. Prediction of hydrogen and carbon chemical shifts from RNA using database mining and support vector regression

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joshua D.; Summers, Michael F. [University of Maryland Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce.johnson@asrc.cuny.edu [University of Maryland Baltimore County, Department of Chemistry and Biochemistry (United States)

    2015-09-15

    The Biological Magnetic Resonance Data Bank (BMRB) contains NMR chemical shift depositions for over 200 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR and {sup 13}C chemical shifts reported for non-exchangeable protons of 187 of these RNAs. Software was developed that downloads BMRB datasets and corresponding PDB structure files, and then generates residue-specific attributes based on the calculated secondary structure. Attributes represent properties present in each sequential stretch of five adjacent residues and include variables such as nucleotide type, base-pair presence and type, and tetraloop types. Attributes and {sup 1}H and {sup 13}C NMR chemical shifts of the central nucleotide are then used as input to train a predictive model using support vector regression. These models can then be used to predict shifts for new sequences. The new software tools, available as stand-alone scripts or integrated into the NMR visualization and analysis program NMRViewJ, should facilitate NMR assignment and/or validation of RNA {sup 1}H and {sup 13}C chemical shifts. In addition, our findings enabled the re-calibration a ring-current shift model using published NMR chemical shifts and high-resolution X-ray structural data as guides.

  18. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1-13C]pyruvate and 13C magnetic resonance spectroscopic imaging

    OpenAIRE

    Day, Sam E.; Kettunen, Mikko I.; Cherkuri, Murali Krishna; James B Mitchell; Lizak, Martin J.; Morris, H. Douglas; Koretsky, Alan P.; Brindle, Kevin M.

    2010-01-01

    13C chemical shift images acquired following intravenous injection of hyperpolarized [1-13C]pyruvate into rats with implanted C6 gliomas showed significant labeling of lactate within the tumors but not in surrounding brain tissue. Signal from pyruvate was observed in blood vessels above the brain and from other major vessels elsewhere in the rat head. Pyruvate was largely undetectable within the tumor or surrounding normal brain tissue. The ratio of hyperpolarized 13C label in the injected py...

  19. Determination of refractory organic matter in marine sediments by chemical oxidation, analytical pyrolysis and solid-state 13C nuclear magnetic resonance spectroscopy

    OpenAIRE

    Rosa Arranz, José M. de la; González-Pérez, José Antonio; Hatcher, Patrick G.; Knicker, Heike; González-Vila, Francisco Javier

    2008-01-01

    Seeking to quantify the amount of refractory organic matter (ROM), which includes black carbon-like material (BC), in marine sediments, we have applied a two-step procedure that consists of a chemical oxidation with sodium chlorite of the demineralized sediments followed by integration of the aromatic C region in the remaining residues by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The efficacy for lignin removal was tested by analytical pyrolysis in the presence of tetrame...

  20. Structure elucidation of the designer drug N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-3-(4-fluorophenyl)-pyrazole-5-carboxamide and the relevance of predicted (13) C NMR shifts - a case study.

    Science.gov (United States)

    Girreser, Ulrich; Rösner, Peter; Vasilev, Andrej

    2016-07-01

    The detailed structure elucidation process of the new cannabimimetic designer drug, N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-3-(4-fluorophenyl)-pyrazole-5-carboxamide, with a highly substituted pyrazole skeleton, using nuclear magnetic resonance (NMR) spectroscopic and mass spectrometric (MS) techniques is described. After a first analysis of the NMR spectra and comparison with 48 possible pyrazole and imidazole structures, a subset of six positional isomeric pyrazoles and six imidazoles remained conceivable. Four substituents of the heterocyclic skeleton were identified: a proton bound to a pyrazole ring carbon atom; a 5-fluoropentyl group; a 4-fluorophenyl substituent; and a carbamoyl group, which is N-substituted with a methyl residue carrying a tert.-butyl and a carbamoyl substituent. The 5-fluoropentyl residue is situated at the nitrogen ring atom. Additional NMR experiments like the (1) H,(13) C HMBC were performed, but due to the small number of signals based on long-range couplings, the comparison of predicted and observed (13) C chemical shifts became necessary. The open access Internet shift prediction programs NMRDB, NMRSHIFTDB2, and CSEARCH were employed for the prediction of (13) C shift values which allowed an efficient and unambiguous structure determination. For the identified N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-(5-fluoropentyl)-3-(4-fluorophenyl)-pyrazole-5-carboxamide, the best agreement between predicted (13) C shifts and the observed chemical shifts and long-range couplings for the pyrazole ring carbon atoms, with a standard error of about 2 ppm, was found with each of the predictions. For the comparison of measured and predicted chemical shifts model compounds with simple substituents proved helpful. The identified compound is a homologue of AZ-037 which is offered by Internet suppliers. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    Science.gov (United States)

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  2. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    Science.gov (United States)

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  3. (13C-(13c homonuclear recoupling in solid-state nuclear magnetic resonance at a moderately high magic-angle-spinning frequency.

    Directory of Open Access Journals (Sweden)

    Venus Singh Mithu

    Full Text Available Two-dimensional (13C-(13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13C-(13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.

  4. 13C-13C Homonuclear Recoupling in Solid-State Nuclear Magnetic Resonance at a Moderately High Magic-Angle-Spinning Frequency

    Science.gov (United States)

    Mithu, Venus Singh; Bakthavatsalam, Subha; Madhu, Perunthiruthy K.

    2013-01-01

    Two-dimensional 13C-13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of 13C-13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on 1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail. PMID:23326308

  5. (13)C-(13)c homonuclear recoupling in solid-state nuclear magnetic resonance at a moderately high magic-angle-spinning frequency.

    Science.gov (United States)

    Mithu, Venus Singh; Bakthavatsalam, Subha; Madhu, Perunthiruthy K

    2013-01-01

    Two-dimensional (13)C-(13)C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13)C-(13)C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1)H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.

  6. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes...... chemical shifts. The method is benchmarked on folding simulations of five small proteins. In four cases the resulting structures are in excellent agreement with experimental data, the fifth case fail likely due to inaccuracies in the energy function. For the Chymotrypsin Inhibitor protein, a structure...... is determined using only chemical shifts recorded and assigned through automated processes. The CARMSD to the experimental X-ray for this structure is 1.1. Å. Additionally, the method is combined with very sparse NOE-restraints and evolutionary distance restraints and tested on several protein structures >100...

  7. Protein Structure Determination Using Chemical Shifts

    DEFF Research Database (Denmark)

    Christensen, Anders Steen

    In this thesis, a protein structure determination using chemical shifts is presented. The method is implemented in the open source PHAISTOS protein simulation framework. The method combines sampling from a generative model with a coarse-grained force field and an energy function that includes...... chemical shifts. The method is benchmarked on folding simulations of five small proteins. In four cases the resulting structures are in excellent agreement with experimental data, the fifth case fail likely due to inaccuracies in the energy function. For the Chymotrypsin Inhibitor protein, a structure...

  8. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria.

    Science.gov (United States)

    Fritzsching, Keith J; Hong, Mei; Schmidt-Rohr, Klaus

    2016-02-01

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ((13)C-(13)C, (15)N-(13)C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 (13)C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited "hand-picked" data sets, we show that ~94% of the (13)C NMR data and almost all (15)N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6% of the (13)C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. -2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided

  9. Hyperfine structure in the J = 1-0 transitions of DCO^+, DNC, and HN13C: astronomical observations and quantum-chemical calculations

    Science.gov (United States)

    van der Tak, F. F. S.; Müller, H. S. P.; Harding, M. E.; Gauss, J.

    2009-11-01

    Context: Knowledge of the hyperfine structure of molecular lines is useful for estimating reliable column densities from observed emission, and essential for the derivation of kinematic information from line profiles. Aims: Deuterium bearing molecules are especially useful in this regard, because they are good probes of the physical and chemical structure of molecular cloud cores on the verge of star formation. However, the necessary spectroscopic data are often missing, especially for molecules which are too unstable for laboratory study. Methods: We have observed the ground-state (J = 1{-}0) rotational transitions of DCO^+, HN13C and DNC with the IRAM 30 m telescope toward the dark cloud LDN 1512 which has exceptionally narrow lines permitting hyperfine splitting to be resolved in part. The measured splittings of 50-300 kHz are used to derive nuclear quadrupole and spin-rotation parameters for these species. The measurements are supplemented by high-level quantum-chemical calculations using coupled-cluster techniques and large atomic-orbital basis sets. Results: We find eQq = + 151.12 (400) kHz and CI = -1.12 (43) kHz for DCO^+, eQq = 272.5 (51) kHz for HN13C, and eQq(D) =265.9 (83) kHz and eQq(N) = 288.2 (71) kHz for DNC. The numbers for DNC are consistent with previous laboratory data, while our constants for DCO+ are somewhat smaller than previous results based on astronomical data. For both DCO+ and DNC, our results are more accurate than previous determinations. Our results are in good agreement with the corresponding best theoretical estimates, which amount to eQq = 156.0 kHz and CI = -0.69 kHz for DCO^+, eQq = 279.5 kHz for HN13C, and eQq(D) = 257.6 kHz and eQq(N) = 309.6 kHz for DNC. We also derive updated rotational constants for HN13C: B = 43 545.6000 (47) MHz and D = 93.7 (20) kHz. Conclusions: The hyperfine splittings of the DCO^+, DNC and HN13C J = 1{-}0 lines range over 0.47-1.28 km s-1, which is comparable to typical line widths in pre

  10. Chemical shift prediction for denatured proteins

    Energy Technology Data Exchange (ETDEWEB)

    Prestegard, James H., E-mail: jpresteg@ccrc.uga.edu; Sahu, Sarata C.; Nkari, Wendy K.; Morris, Laura C.; Live, David; Gruta, Christian

    2013-02-15

    While chemical shift prediction has played an important role in aspects of protein NMR that include identification of secondary structure, generation of torsion angle constraints for structure determination, and assignment of resonances in spectra of intrinsically disordered proteins, interest has arisen more recently in using it in alternate assignment strategies for crosspeaks in {sup 1}H-{sup 15}N HSQC spectra of sparsely labeled proteins. One such approach involves correlation of crosspeaks in the spectrum of the native protein with those observed in the spectrum of the denatured protein, followed by assignment of the peaks in the latter spectrum. As in the case of disordered proteins, predicted chemical shifts can aid in these assignments. Some previously developed empirical formulas for chemical shift prediction have depended on basis data sets of 20 pentapeptides. In each case the central residue was varied among the 20 amino common acids, with the flanking residues held constant throughout the given series. However, previous choices of solvent conditions and flanking residues make the parameters in these formulas less than ideal for general application to denatured proteins. Here, we report {sup 1}H and {sup 15}N shifts for a set of alanine based pentapeptides under the low pH urea denaturing conditions that are more appropriate for sparse label assignments. New parameters have been derived and a Perl script was created to facilitate comparison with other parameter sets. A small, but significant, improvement in shift predictions for denatured ubiquitin is demonstrated.

  11. Conformational analysis of MBBA fluorinated analogues by 1H and 13C - NMR

    Science.gov (United States)

    Pivovarova, N. S.; Boldeskul, I. E.; Shelyagenko, S. V.; Fialkov, Yu. A.

    1988-05-01

    1H- 13C -chemical shifts correlation analysis for MBBA and a series of its fluorinated analogues have been carried out. The azomethine proton chemical shift is shown to be sensitive to the aniline ring torsion angle and can be used for its approximate estimation.

  12. {sup 37}Cl, {sup 15}N, {sup 13}C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Annable, W.K. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)]. E-mail: wkannabl@uwaterloo.ca; Frape, S.K. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shouakar-Stash, O. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shanoff, T. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Drimmie, R.J. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Harvey, F.E. [School of Natural Resources, University of Nebraska, Lincoln, NE 68588-0517 (United States)

    2007-07-15

    The isotopic compositions of commercially available herbicides were analyzed to determine their respective {sup 15}N, {sup 13}C and {sup 37}Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between {delta}{sup 37}Cl = -4.55 per mille and +3.40 per mille , whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between -2.00 per mille and +1.00 per mille . Nitrogen stable isotope values varied widely from {delta}{sup 15}N = -10.86 per mille to +1.44 per mille and carbon stable isotope analysis gave an observed range between {delta}{sup 13}C = -37.13 per mille and -21.35 per mille for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.

  13. Hyperfine structure in the J = 1-0 transitions of DCO+, DNC, and HN13C: astronomical observations and quantum-chemical calculations

    CERN Document Server

    van der Tak, Floris; Harding, Michael; Gauss, Jürgen

    2009-01-01

    We have observed the rotational ground-state (J = 1-0) transitions of DCO+, HN13C and DNC with the IRAM 30m telescope toward the dark cloud LDN 1512 which has exceptionally narrow lines permitting hyperfine splitting to be resolved in part. The measured splittings of 50-300 kHz are used to derive nuclear quadrupole and spin-rotation parameters for these species. The measurements are supplemented by high-level quantum-chemical calculations using coupled-cluster techniques and large atomic-orbital basis sets. We find eQq = +151.12 (400) kHz and C_I = -1.12 (43) kHz for DCO+, eQq = 272.5 (51) kHz for HN13C, and eQq(D) = 265.9 (83) kHz and eQq(N) = 288.2 (71) kHz for DNC. The numbers for DNC are consistent with previous laboratory data, while our constants for DCO+ are somewhat smaller than previous results based on astronomical data. For both DCO+ and DNC, our results are more accurate than previous determinations. Our results are in good agreement with the corresponding best theoretical estimates. We also deriv...

  14. Substituent Effects in the 13C-NMR Spectra of Six-Membered Nitrogen Heteroaromatic Compounds

    Directory of Open Access Journals (Sweden)

    Janusz Oszczapowicz

    2005-01-01

    Full Text Available Abstract: It is shown that the 13C-NMR chemical shifts of carbon atoms in substituted sixmembered heteroaromatic compounds correlate with the correponding "additivity parameters" for substituted benzene derivatives. Thus, for precalculation of chemical shifts in such compounds, just one set of parameters can be used. The differences between experimental chemical shifts and those calculated from correlation with the common set may provide insights into intramolecular interactions not reported in the literature.

  15. NMR structure analysis of uniformly 13C-labeled carbohydrates.

    Science.gov (United States)

    Fontana, Carolina; Kovacs, Helena; Widmalm, Göran

    2014-06-01

    In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight [(UL-(13)C)-sucrose, 342 Da] and one compound of medium molecular weight ((13)C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10 kDa). The first step in this approach involves the assignment of the carbon resonances in each monosaccharide spin system using the anomeric carbon signal as the starting point. The (13)C resonances are traced using (13)C-(13)C correlations from homonuclear experiments, such as (H)CC-CT-COSY, (H)CC-NOESY, CC-CT-TOCSY and/or virtually decoupled (H)CC-TOCSY. Based on the assignment of the (13)C resonances, the (1)H chemical shifts are derived in a straightforward manner using one-bond (1)H-(13)C correlations from heteronuclear experiments (HC-CT-HSQC). In order to avoid the (1) J CC splitting of the (13)C resonances and to improve the resolution, either constant-time (CT) in the indirect dimension or virtual decoupling in the direct dimension were used. The monosaccharide sequence and linkage positions in oligosaccharides were determined using either (13)C or (1)H detected experiments, namely CC-CT-COSY, band-selective (H)CC-TOCSY, HC-CT-HSQC-NOESY or long-range HC-CT-HSQC. However, due to the short T2 relaxation time associated with larger polysaccharides, the sequential information in the O-antigen polysaccharide from E. coli O142 could only be elucidated using the (1)H-detected experiments. Exchanging protons of hydroxyl groups and N-acetyl amides in the (13)C-enriched polysaccharide were assigned by using HC-H2BC spectra. The assignment of the N-acetyl groups with (15)N at natural abundance was completed by using HN-SOFAST-HMQC, HNCA, HNCO and (13)C-detected (H)CACO spectra.

  16. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsching, Keith J., E-mail: kfritzsc@brandeis.edu [Brandeis University, Department of Chemistry (United States); Hong, Mei [Massachusetts Institute of Technology, Department of Chemistry (United States); Schmidt-Rohr, Klaus, E-mail: srohr@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2016-02-15

    We have determined refined multidimensional chemical shift ranges for intra-residue correlations ({sup 13}C–{sup 13}C, {sup 15}N–{sup 13}C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 {sup 13}C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited “hand-picked” data sets, we show that ∼94 % of the {sup 13}C NMR data and almost all {sup 15}N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6 % of the {sup 13}C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. −2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra

  17. Accessible surface area from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hafsa, Noor E.; Arndt, David; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-07-15

    Accessible surface area (ASA) is the surface area of an atom, amino acid or biomolecule that is exposed to solvent. The calculation of a molecule’s ASA requires three-dimensional coordinate data and the use of a “rolling ball” algorithm to both define and calculate the ASA. For polymers such as proteins, the ASA for individual amino acids is closely related to the hydrophobicity of the amino acid as well as its local secondary and tertiary structure. For proteins, ASA is a structural descriptor that can often be as informative as secondary structure. Consequently there has been considerable effort over the past two decades to try to predict ASA from protein sequence data and to use ASA information (derived from chemical modification studies) as a structure constraint. Recently it has become evident that protein chemical shifts are also sensitive to ASA. Given the potential utility of ASA estimates as structural constraints for NMR we decided to explore this relationship further. Using machine learning techniques (specifically a boosted tree regression model) we developed an algorithm called “ShiftASA” that combines chemical-shift and sequence derived features to accurately estimate per-residue fractional ASA values of water-soluble proteins. This method showed a correlation coefficient between predicted and experimental values of 0.79 when evaluated on a set of 65 independent test proteins, which was an 8.2 % improvement over the next best performing (sequence-only) method. On a separate test set of 92 proteins, ShiftASA reported a mean correlation coefficient of 0.82, which was 12.3 % better than the next best performing method. ShiftASA is available as a web server ( http://shiftasa.wishartlab.com http://shiftasa.wishartlab.com ) for submitting input queries for fractional ASA calculation.

  18. The interplay between transient a-helix formation and side chain rotamer distributions in disordered proteins probed by methyl chemical shifts

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Iesmantavicius, Vytautas; Poulsen, Flemming M

    2011-01-01

    and retinoid receptors (ACTR). We find that small differences in the methyl carbon chemical shifts due to the ¿-gauche effect may provide information about the side chain rotamer distributions. However, the effects of neighboring residues on the methyl group chemical shifts obscure the direct observation...... of ¿-gauche effect. To overcome this, we reference the chemical shifts to those in a more disordered state resulting in residue specific random coil chemical shifts. The (13)C secondary chemical shifts of the methyl groups of valine, leucine, and isoleucine show sequence specific effects, which allow...

  19. Effects of structural differences on the NMR chemical shifts in isostructural dipeptides.

    Science.gov (United States)

    Altheimer, Benjamin D; Mehta, Manish A

    2014-04-10

    Porous crystalline dipeptides have gained recent attention for their potential as gas-storage materials. Within this large class is a group of dipeptides containing alanine, valine, and isoleucine with very similar crystal structures. We report the (13)C (carbonyl and Cα) and (15)N (amine and amide) solid-state NMR isotropic chemical shifts in a series of seven such isostructural porous dipeptides as well as shift tensor data for the carbonyl and amide sites. Using their known crystal structures and aided by ab initio quantum chemical calculations for the resonance assignments, we elucidate trends relating local structure, hydrogen-bonding patterns, and chemical shift. We find good correlation between the backbone dihedral angles and the Cα1 and Cα2 shifts. For the C1 shift tensor, the δ11 value shifts downfield as the hydrogen-bond distance increases, δ22 shifts upfield, and δ33 shows little variation. The C2 shift tensor shows no appreciable correlation with structural parameters. For the N2 tensor, δ11 shows little dependence on the hydrogen-bond length, whereas δ22 and δ33 both show a decrease in shielding as the hydrogen bond shortens. Our analysis teases apart some, but not all, structural contributors to the observed differences the solid-state NMR chemical shifts.

  20. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses

    Science.gov (United States)

    Benner, R.; Hatcher, P.G.; Hedges, J.I.

    1990-01-01

    Changes in the chemical composition of mangrove (Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed. ?? 1990.

  1. Synthesis of Gemcitabine-13C, 15N2 and Gemcitabine-13C, 15N2 Metabolites

    Directory of Open Access Journals (Sweden)

    ZHU Cheng-gu;YANG Shao-zu;YAN Sheng-wang;FANG Ning-jing;CAI Ding-long;LI Gang

    2014-02-01

    Full Text Available Homemade urea-13C, 15N2 was used to react with 3-methyl acrylonitrile closure to form cytosine-13C, 15N2 (2,which was protected by trimethylsilylation with BSA and condensed with 2-deoxy-2,2-difluoro-D-erythro-pentofuranose-3,5-dibenzoate-1-methanesulfonate at 120 ℃ to afford blocked gemcitabine-13C, 15N2. Hydrolytic removal of the blocking groups of gemcitabine-13C, 15N2 with NaOH gave gemcitabine-13C, 15N2, and its metabolite was obtained by further hydrolytic deamination of gemcitabine-13C, 15N2. The final products were characterized and detected by HPLC, LC-MS and NMR, and confirmed that the chemical purities were higher than 98%, isotopic abundances were 99% 13C, 98% 15N, and they were suitable for drug metabolism studies.

  2. Late Holocene Plankton Domain Shifts in the North Pacific Subtropical Gyre Revealed by Amino Acid Specific δ13C and δ15N Records from Proteinaceous Deep-Sea Corals

    Science.gov (United States)

    Sherwood, O.; McMahon, K.; Guilderson, T. P.; Mccarthy, M. D.

    2014-12-01

    Recent observations from station ALOHA have framed a new paradigm about the dynamic nature of subtropical ocean gyres. These vast regions are now known to vary physically and biologically, over a range of timescales, with important implications for the export of carbon to the deep ocean. In the largest of these gyres, the North Pacific subtropical gyre (NPSG), primary production has increased in recent decades despite a reduction in nutrient supply to surface waters. This is thought to be the result of a shift in plankton community structure from mostly eukaryotes to mostly dinitrogen-fixing prokaryotes. It remains uncertain, however, whether the recent plankton community domain shift can be linked to cyclical climate variability or a long-term global warming trend. To establish historical trends, we analyzed nitrogen (δ15N) and carbon (δ13C) isotopic records preserved in the skeletons of extraordinarily long-lived, proteinaceous deep-sea corals, which feed on, and therefore serve as a proxy for, exported productivity. Specimens of Hawaiian gold coral (Kulamanamana haumeaae) were collected from the Hawaiian archipelago and sampled across the skeletal growth rings to generate high-resolution (5 yr), millennial-length records of "bulk" δ15N and δ13C. After a millennium of relatively minor fluctuation, δ15N decreased by up to 2 per mil between 1850 and the present. Analysis of amino-acid-specific δ15N on a subset of the samples, combined with isotopic mass balance between nitrate and nitrogen fixation, implied a 17 to 27 % increase in nitrogen fixation as the underlying cause for the observed trends. This interpretation is supported by analysis of the δ13C of essential amino acids, which serve as isotopic fingerprints of primary producer origin. Together, these independent lines of evidence describe a domain shift from a dominantly eukaryotic to dinitrogen-fixing prokaryotic plankton community. This shift has been ongoing since the end of the Little Ice Age

  3. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.

    Science.gov (United States)

    Shen, Yang; Bax, Ad

    2015-01-01

    Chemical shifts are obtained at the first stage of any protein structural study by NMR spectroscopy. Chemical shifts are known to be impacted by a wide range of structural factors, and the artificial neural network based TALOS-N program has been trained to extract backbone and side-chain torsion angles from (1)H, (15)N, and (13)C shifts. The program is quite robust and typically yields backbone torsion angles for more than 90 % of the residues and side-chain χ 1 rotamer information for about half of these, in addition to reliably predicting secondary structure. The use of TALOS-N is illustrated for the protein DinI, and torsion angles obtained by TALOS-N analysis from the measured chemical shifts of its backbone and (13)C(β) nuclei are compared to those seen in a prior, experimentally determined structure. The program is also particularly useful for generating torsion angle restraints, which then can be used during standard NMR protein structure calculations.

  4. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cao, X.; Mastalerz, Maria; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J.

    2011-01-01

    Four lithotypes (vitrain, bright clarain, clarain, and fusain) of a high volatile bituminous Springfield Coal from the Illinois Basin were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR techniques included quantitative direct polarization/magic angle spinning (DP/MAS), cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CHn selection, and recoupled C-H long-range dipolar dephasing techniques. The lithotypes that experienced high-pressure CO2 adsorption isotherm analysis were also analyzed to determine possible changes in coal structure as a result of CO2 saturation at high pressure and subsequent evacuation. The main carbon functionalities present in original vitrain, bright clarain, clarain and fusain were aromatic carbons (65.9%-86.1%), nonpolar alkyl groups (9.0%-28.9%), and aromatic C-O carbons (4.1%-9.5%). Among these lithotypes, aromaticity increased in the order of clarain, bright clarain, vitrain, and fusain, whereas the fraction of alkyl carbons decreased in the same order. Fusain was distinct from other three lithotypes in respect to its highest aromatic composition (86.1%) and remarkably small fraction of alkyl carbons (11.0%). The aromatic cluster size in fusain was larger than that in bright clarain. The lithotypes studied responded differently to high pressure CO2 saturation. After exposure to high pressure CO2, vitrain and fusain showed a decrease in aromaticity but an increase in the fraction of alkyl carbons, whereas bright clarain and clarain displayed an increase in aromaticity but a decrease in the fraction of alkyl carbons. Aromatic fused-rings were larger for bright clarain but smaller for fusain in the post-CO2 adsorption samples compared to the original lithotypes. These observations suggested chemical CO2-coal interactions at high pressure and the selectivity of lithotypes in response to CO2 adsorption. ?? 2011 Elsevier B.V.

  5. Reductive dechlorination of TCE by chemical model systems in comparison to dehalogenating bacteria: insights from dual element isotope analysis (13C/12C, 37Cl/35Cl).

    Science.gov (United States)

    Cretnik, Stefan; Thoreson, Kristen A; Bernstein, Anat; Ebert, Karin; Buchner, Daniel; Laskov, Christine; Haderlein, Stefan; Shouakar-Stash, Orfan; Kliegman, Sarah; McNeill, Kristopher; Elsner, Martin

    2013-07-02

    Chloroethenes like trichloroethene (TCE) are prevalent environmental contaminants, which may be degraded through reductive dechlorination. Chemical models such as cobalamine (vitamin B12) and its simplified analogue cobaloxime have served to mimic microbial reductive dechlorination. To test whether in vitro and in vivo mechanisms agree, we combined carbon and chlorine isotope measurements of TCE. Degradation-associated enrichment factors ε(carbon) and ε(chlorine) (i.e., molecular-average isotope effects) were -12.2‰ ± 0.5‰ and -3.6‰ ± 0.1‰ with Geobacter lovleyi strain SZ; -9.1‰ ± 0.6‰ and -2.7‰ ± 0.6‰ with Desulfitobacterium hafniense Y51; -16.1‰ ± 0.9‰ and -4.0‰ ± 0.2‰ with the enzymatic cofactor cobalamin; -21.3‰ ± 0.5‰ and -3.5‰ ± 0.1‰ with cobaloxime. Dual element isotope slopes m = Δδ(13)C/ Δδ(37)Cl ≈ ε(carbon)/ε(chlorine) of TCE showed strong agreement between biotransformations (3.4 to 3.8) and cobalamin (3.9), but differed markedly for cobaloxime (6.1). These results (i) suggest a similar biodegradation mechanism despite different microbial strains, (ii) indicate that transformation with isolated cobalamin resembles in vivo transformation and (iii) suggest a different mechanism with cobaloxime. This model reactant should therefore be used with caution. Our results demonstrate the power of two-dimensional isotope analyses to characterize and distinguish between reaction mechanisms in whole cell experiments and in vitro model systems.

  6. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.K. [University of Durham, Durham (United Kingdom). Dept. of Chemistry; Becker, E.D. [National Institutes of Health, Bethesda, MD (United States); Menezes, S.M. Cabral de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Granger, P. [University Louis Pasteur, Strasbourg (France). Inst. of Chemistry; Hoffman, R.E. [The Hebrew University of Jerusalem, Safra Campus, Jerusalem (Israel). Dept. of Organic Chemistry; Zilm, K.W., E-mail: r.k.harris@durham.ac.uk [Yale University, New Haven, CT (United States). Dept. of Chemistry

    2008-07-01

    IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the {sup 1}H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3- (trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a part per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating {sup 13}C NMR chemical shifts in solids to the scales used for high resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids are reviewed in some detail, and recommendations are given for best practice. (author)

  7. 13C-n.m.r. spectra of acrylophenone (1-phenylprop-2-en-1-one) and ring-substituted acrylophenones

    NARCIS (Netherlands)

    Visser, R.; Dahmen, E.A.M.F.

    1978-01-01

    13C-n.m.r. chemical shifts of 10 acrylophenones (1-substituted phenylprop-2-en-1-ones) are reported. The additivity parameters for the substituent effect of the acryloyl group in the aromatic ring and of the benzoyl group in ethylene were calculated. Comparison of ethene chemical shifts in chalcones

  8. Chemical shift assignments of two oleanane triterpenes from Euonymus hederaceus

    Institute of Scientific and Technical Information of China (English)

    HU He-jiao; WANG Kui-wu; WU Bin; SUN Cui-rong; PAN Yuan-jiang

    2005-01-01

    1H-NMR and 13C-NMR assignments of 12-oleanene-3,11-dione (compound 1) were completely described for the first time through conventional 1D NMR and 2D shift-correlated NMR experiments using 1H-1HCOSY, HMQC, HMBC techniques.Based on its NMR data, the assignments of 28-hydroxyolean-12-ene-3,11-dione (compound 2) were partially revised.

  9. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane

    Science.gov (United States)

    Arjunan, V.; Anitha, R.; Devi, L.; Mohan, S.; Yang, Haifeng

    2015-01-01

    Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. The structure of the compound has been optimised with B3LYP method using 6-311++G** and cc-pVTZ basis sets. The IR and Raman intensities are determined. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of the compounds has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecules have been analysed.

  10. 13C NMR studies of porphobilinogen synthase: observation of intermediates bound to a 280,000-dalton protein.

    Science.gov (United States)

    Jaffe, E K; Markham, G D

    1987-07-14

    13C NMR has been used to observe the equilibrium complex of [4-13C]-5-aminolevulinate ([4-13C]ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. [4-13C]ALA (chemical shift = 205.9 ppm) forms [3,5-13C]PBG (chemical shifts = 121.0 and 123.0 ppm). PBG prepared from a mixture of [4-13C]ALA and [15N]ALA was used to assign the 121.0 and 123.0 ppm resonances to C5 and C3, respectively. For the enzyme-bound equilibrium complex formed from holoenzyme and [4-13C]ALA, two peaks of equal area with chemical shifts of 121.5 and 127.2 ppm are observed (line widths approximately 50 Hz), indicating that the predominant species is probably a distorted form of PBG. When excess free PBG is present, it is in slow exchange with bound PBG, indicating an exchange rate of less than 10 s-1, which is consistent with the turnover rate of the enzyme. For the complex formed from [4-13C]ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation, the predominant species is a Schiff base adduct (chemical shift = 166.5 ppm, line width approximately 50 Hz). Free ALA is in slow exchange with the Schiff base. Activation of the MMTS-modified enzyme-Schiff base complex with 113Cd and 2-mercaptoethanol results in the loss of the Schiff base signal and the appearance of bound PBG with the same chemical shifts as for the bound equilibrium complex with Zn(II) enzyme. Neither splitting nor broadening from 113Cd-13C coupling was observed.

  11. Chemical composition of the essential oil from Corsican Mentha aquatica--combined analysis by GC(RI), GC-MS and 13C NMR spectroscopy.

    Science.gov (United States)

    Sutour, Sylvain; Tomi, Félix; Bradesi, Pascale; Casanova, Joseph

    2011-10-01

    The essential oil (EO) of M. aquatica L. growing wild in Corsica was isolated by dry vapor distillation and submitted to combined analysis by column chromatography over silica gel, GC(RI), GC-MS and 13C NMR spectroscopy. The composition was dominated byoxygenated monoterpenes and characterized by the occurrence of menthofuran (50.7%) as the major component. In parallel, seven laboratory-distilled oil samples isolated from individual plants collected in Corsica were analyzed by GC(RI) and 13C NMR spectroscopy. Onlyquantitative differences were observed between the samples. Beside the usual terpenes, various p-menthane lactones (mintlactone, isomintlactone, hydroxymintlactone, menthofurolactone and epimenthofurolactone) have been identified in all the oil samples.

  12. Histidine side-chain dynamics and protonation monitored by {sup 13}C CPMG NMR relaxation dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Hass, Mathias A. S. [Leiden University, Institute of Chemistry (Netherlands); Yilmaz, Ali [University of Copenhagen, Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences (Denmark); Christensen, Hans E. M. [Technical University of Denmark, Department of Chemistry (Denmark); Led, Jens J. [University of Copenhagen, Department of Chemistry (Denmark)], E-mail: led@kiku.dk

    2009-08-15

    The use of {sup 13}C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically {sup 13}C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for {sup 13}C{sup {epsilon}}{sup 1} nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from {sup 15}N backbone relaxation measurements. Compared to measurements of backbone nuclei, {sup 13}C{sup {epsilon}}{sup 1} dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the {sup 13}C{sup {epsilon}}{sup 1} dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed.

  13. Conditions to obtain precise and true measurements of the intramolecular {sup 13}C distribution in organic molecules by isotopic {sup 13}C nuclear magnetic resonance spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, Kevin [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Gilbert, Alexis [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Julien, Maxime [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Silvestre, Virginie; Robins, Richard J.; Akoka, Serge [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth–Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI Team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 Rue de la Houssinière, BP 92208, F-44322, Nantes Cedex 3 (France)

    2014-10-10

    Highlights: • Evaluation of the trueness and precision criteria of isotopic {sup 13}C NMR spectrometry. • Use of bi-labelled [1,2-{sup 13}C{sub 2}]acetic acid to determine the performance of the instrumental response. • Inter-calibration of the {sup 13}C intramolecular composition of acetic acid using the technique GC-Py–irm-MS. - Abstract: Intramolecular {sup 13}C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic {sup 13}C NMR spectrometry provides a general tool for measuring the position-specific {sup 13}C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal {sup 13}C distribution, and (ii) an approach to determining the “absolute” position-specific {sup 13}C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the {sup 13}C frequency range of the studied molecule, i.e. the chemical shift range. The “absolute value” and, therefore, the trueness of the {sup 13}C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH{sub 3} by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py–irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py–irm-MS (thus, the “true” value) while the other showed a bias, which was

  14. The influence of sulfur configuration in (1) H NMR chemical shifts of diasteromeric five-membered cyclic sulfites.

    Science.gov (United States)

    Obregón-Mendoza, Marco A; Sánchez-Castellanos, Mariano; Cuevas, Gabriel; Gnecco, Dino; Cassani, Julia; Poveda-Jaramillo, Juan C; Reynolds, William F; Enríquez, Raúl G

    2017-03-01

    The effect of the stereochemistry of the sulfur atom on (1) H chemical shifts of the diasteromeric pair of cyclic sulfites of 4-[methoxy(4-nitrophenyl)methyl]-5-phenyl-1,3,2-dioxathiolan-2-oxide was investigated. The complete (1) H and (13) C NMR spectral assignment was achieved by the use of one-dimensional and two-dimensional NMR techniques in combination with X-ray data. A correlation of experimental data with theoretical calculations of chemical shift tensors using density functional theory and topological theory of atoms in molecules was made. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kjaergaard, Magnus; Poulsen, Flemming M., E-mail: fmpoulsen@bio.ku.dk [University of Copenhagen, Department of Biology (Denmark)

    2011-06-15

    Random coil chemical shifts are necessary for secondary chemical shift analysis, which is the main NMR method for identification of secondary structure in proteins. One of the largest challenges in the determination of random coil chemical shifts is accounting for the effect of neighboring residues. The contributions from the neighboring residues are typically removed by using neighbor correction factors determined based on each residue's effect on glycine chemical shifts. Due to its unusual conformational freedom, glycine may be particularly unrepresentative for the remaining residue types. In this study, we use random coil peptides containing glutamine instead of glycine to determine the random coil chemical shifts and the neighbor correction factors. The resulting correction factors correlate to changes in the populations of the major wells in the Ramachandran plot, which demonstrates that changes in the conformational ensemble are an important source of neighbor effects in disordered proteins. Glutamine derived random coil chemical shifts and correction factors modestly improve our ability to predict {sup 13}C chemical shifts of intrinsically disordered proteins compared to existing datasets, and may thus improve the identification of small populations of transient structure in disordered proteins.

  16. A polymer-based magnetic resonance tracer for visualization of solid tumors by 13C spectroscopic imaging.

    Directory of Open Access Journals (Sweden)

    Yoshikazu Suzuki

    Full Text Available Morphological imaging precedes lesion-specific visualization in magnetic resonance imaging (MRI because of the superior ability of this technique to depict tissue morphology with excellent spatial and temporal resolutions. To achieve lesion-specific visualization of tumors by MRI, we investigated the availability of a novel polymer-based tracer. Although the 13C nucleus is a candidate for a detection nucleus because of its low background signal in the body, the low magnetic resonance sensitivity of the nucleus needs to be resolved before developing a 13C-based tracer. In order to overcome this problem, we enriched polyethylene glycol (PEG, a biocompatible polymer, with 13C atoms. 13C-PEG40,000 (13C-PEG with an average molecular weight of 40 kDa emitted a single 13C signal with a high signal-to-noise ratio due to its ability to maintain signal sharpness, as was confirmed by in vivo investigation, and displayed a chemical shift sufficiently distinct from that of endogenous fat. 13C-PEG40,000 intravenously injected into mice showed long retention in circulation, leading to its effective accumulation in tumors reflecting the well-known phenomenon that macromolecules accumulate in tumors because of leaky tumor capillaries. These properties of 13C-PEG40,000 allowed visualization of tumors in mice by 13C spectroscopic imaging. These findings suggest that a technique based on 13C-PEG is a promising strategy for tumor detection.

  17. Predicting the redox state and secondary structure of cysteine residues using multi-dimensional classification analysis of NMR chemical shifts.

    Science.gov (United States)

    Wang, Ching-Cheng; Lai, Wen-Chung; Chuang, Woei-Jer

    2016-09-01

    A tool for predicting the redox state and secondary structure of cysteine residues using multi-dimensional analyses of different combinations of nuclear magnetic resonance (NMR) chemical shifts has been developed. A data set of cysteine [Formula: see text], (13)C(α), (13)C(β), (1)H(α), (1)H(N), and (15)N(H) chemical shifts was created, classified according to redox state and secondary structure, using a library of 540 re-referenced BioMagResBank (BMRB) entries. Multi-dimensional analyses of three, four, five, and six chemical shifts were used to derive rules for predicting the structural states of cysteine residues. The results from 60 BMRB entries containing 122 cysteines showed that four-dimensional analysis of the C(α), C(β), H(α), and N(H) chemical shifts had the highest prediction accuracy of 100 and 95.9 % for the redox state and secondary structure, respectively. The prediction of secondary structure using 3D, 5D, and 6D analyses had the accuracy of ~90 %, suggesting that H(N) and [Formula: see text] chemical shifts may be noisy and made the discrimination worse. A web server (6DCSi) was established to enable users to submit NMR chemical shifts, either in BMRB or key-in formats, for prediction. 6DCSi displays predictions using sets of 3, 4, 5, and 6 chemical shifts, which shows their consistency and allows users to draw their own conclusions. This web-based tool can be used to rapidly obtain structural information regarding cysteine residues directly from experimental NMR data.

  18. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy

    Science.gov (United States)

    Mao, J.; Fang, X.; Lan, Y.; Schimmelmann, A.; Mastalerz, Maria; Xu, L.; Schmidt-Rohr, K.

    2010-01-01

    We have used advanced and quantitative solid-state nuclear magnetic resonance (NMR) techniques to investigate structural changes in a series of type II kerogen samples from the New Albany Shale across a range of maturity (vitrinite reflectance R0 from 0.29% to 1.27%). Specific functional groups such as CH3, CH2, alkyl CH, aromatic CH, aromatic C-O, and other nonprotonated aromatics, as well as "oil prone" and "gas prone" carbons, have been quantified by 13C NMR; atomic H/C and O/C ratios calculated from the NMR data agree with elemental analysis. Relationships between NMR structural parameters and vitrinite reflectance, a proxy for thermal maturity, were evaluated. The aromatic cluster size is probed in terms of the fraction of aromatic carbons that are protonated (???30%) and the average distance of aromatic C from the nearest protons in long-range H-C dephasing, both of which do not increase much with maturation, in spite of a great increase in aromaticity. The aromatic clusters in the most mature sample consist of ???30 carbons, and of ???20 carbons in the least mature samples. Proof of many links between alkyl chains and aromatic rings is provided by short-range and long-range 1H-13C correlation NMR. The alkyl segments provide most H in the samples; even at a carbon aromaticity of 83%, the fraction of aromatic H is only 38%. While aromaticity increases with thermal maturity, most other NMR structural parameters, including the aromatic C-O fractions, decrease. Aromaticity is confirmed as an excellent NMR structural parameter for assessing thermal maturity. In this series of samples, thermal maturation mostly increases aromaticity by reducing the length of the alkyl chains attached to the aromatic cores, not by pronounced growth of the size of the fused aromatic ring clusters. ?? 2010 Elsevier Ltd. All rights reserved.

  19. 13C CP/MAS NMR and DFT studies of thiazides

    Science.gov (United States)

    Latosińska, J. N.

    2003-02-01

    The 13C MAS solid state NMR spectra of four sulphonamide derivatives of 1,2,4-benzothiadiazine-1,1-dioxides, commonly known as thiazides, were recorded and the chemical shifts and chemical shift anisotropy (CSA) were measured. Analysis of the experimental 13C shielding parameters was supported by DFT theoretical calculations carried out within the gauge-including atomic orbital (GIAO), semiempirical Typed Neglect of Differential Overlap (TNDO/2) approach and by the spectra estimations performed by ChemNMR Pro 6.0, ACD-I/LAB, SpecInfo and gNMR. It was found that the chemical shifts obtained with ChemNMR Pro 6.0, ACD-I/LAB, SpecInfo and gNMR were insensitive to the substitution effects, whereas the semiempirical TNDO/2 and density functional theory (DFT) B3LYP/6-311+G(2d,p) methods allowed estimation of the influence of substituents on the chemical shielding and consequently, the chemical shift. The influence of the substituents at C3 position of the ring on the chemical shifts was analysed on the basis of the experimental data and results of the DFT calculations. The values of the chemical shifts and the low values of the anisotropy parameter for the C3 atom in HCTZ, TCTZ and ATZ, strongly indicated that three thiazides HCTZ, TCTZ and ATZ occurred in the form of HCTZ type with the C3 carbon atom participating in a single bond. The following ordering of the substituents according to the increasing electron accepting properties was found: -H<-CH 2SCH 2CHCH 2<-CHCl 2. A detailed analysis of the inductive and coupling effects was made on the basis of 13C chemical shifts and chemical shielding tensor asymmetry parameters on the C3 and C6 carbon atoms.

  20. Is the Lamb shift chemically significant?

    Science.gov (United States)

    Dyall, Kenneth G.; Bauschlicher, Charles W., Jr.; Schwenke, David W.; Pyykko, Pekka; Arnold, James (Technical Monitor)

    2001-01-01

    The contribution of the Lamb shift to the atomization energies of some prototype molecules, BF3, AlF3, and GaF3, is estimated by a perturbation procedure. It is found to be in the range of 3-5% of the one-electron scalar relativistic contribution to the atomization energy. The maximum absolute value is 0.2 kcal/mol for GaF3. These sample calculations indicate that the Lamb shift is probably small enough to be neglected for energetics of molecules containing light atoms if the target accuracy is 1 kcal/mol, but for higher accuracy calculations and for molecules containing heavy elements it must be considered.

  1. Improved chemical shift prediction by Rosetta conformational sampling

    Energy Technology Data Exchange (ETDEWEB)

    Tian Ye [Sanford Burnham Medical Research Institute (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford Burnham Medical Research Institute (United States)

    2012-11-15

    Chemical shift frequencies represent a time-average of all the conformational states populated by a protein. Thus, chemical shift prediction programs based on sequence and database analysis yield higher accuracy for rigid rather than flexible protein segments. Here we show that the prediction accuracy can be significantly improved by averaging over an ensemble of structures, predicted solely from amino acid sequence with the Rosetta program. This approach to chemical shift and structure prediction has the potential to be useful for guiding resonance assignments, especially in solid-state NMR structural studies of membrane proteins in proteoliposomes.

  2. Uncovering symmetry-breaking vector and reliability order for assigning secondary structures of proteins from atomic NMR chemical shifts in amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wookyung [Pusan National University, Department of Physics, Center for Proteome Biophysics (Korea, Republic of); Lee, Woonghee; Lee, Weontae [Yonsei University, Department of Biochemistry, Structural Biochemistry and Molecular Biophysics Laboratory (Korea, Republic of); Kim, Suhkmann [Pusan National University, Department of Chemistry, Biochemistry and Bio-NMR Laboratory (Korea, Republic of); Chang, Iksoo, E-mail: iksoochang@pusan.ac.kr [Pusan National University, Department of Physics, Center for Proteome Biophysics (Korea, Republic of)

    2011-12-15

    Unravelling the complex correlation between chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms in amino acids of proteins from NMR experiment and local structural environments of amino acids facilitates the assignment of secondary structures of proteins. This is an important impetus for both determining the three-dimensional structure and understanding the biological function of proteins. The previous empirical correlation scores which relate chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms to secondary structures resulted in progresses toward assigning secondary structures of proteins. However, the physical-mathematical framework for these was elusive partly due to both the limited and orthogonal exploration of higher-dimensional chemical shifts of hetero-nucleus and the lack of physical-mathematical understanding underlying those correlation scores. Here we present a simple multi-dimensional hetero-nuclear chemical shift score function (MDHN-CSSF) which captures systematically the salient feature of such complex correlations without any references to a random coil state of proteins. We uncover the symmetry-breaking vector and its reliability order not only for distinguishing different secondary structures of proteins but also for capturing the delicate sensitivity interplayed among chemical shifts of {sup 13}C{sup {alpha}}, {sup 13}C{sup {beta}}, {sup 13}C Prime , {sup 1}H{sup {alpha}}, {sup 15}N, {sup 1}H{sup N} atoms simultaneously, which then provides a straightforward framework toward assigning secondary structures of proteins. MDHN-CSSF could correctly assign secondary structures of training (validating) proteins with the favourable (comparable) Q3 scores in comparison with those from the previous correlation scores. MDHN-CSSF provides a simple and robust strategy for the

  3. Studies on the structure of the complex of the boron neutron capture therapy drug, L-p-boronophenylalanine, with fructose and related carbohydrates: chemical and 13C NMR evidence for the beta-D-fructofuranose 2,3,6-(p-phenylalanylorthoboronate) structure.

    Science.gov (United States)

    Shull, B K; Spielvogel, D E; Head, G; Gopalaswamy, R; Sankar, S; Devito, K

    2000-02-01

    The complex of L-L-boronophenylalanine (L-p-BPA) with fructose has been used for the past 5 years in clinical trials of boron neutron capture therapy to treat both melanoma and glioblastoma multiforme. However, the structure of this complex in water buffered at physiologic pH has not been established. In the (1)H NMR spectra (D(2)O buffered at pD 7.4) of the complex of L-p-BPA with various carbohydrates, the upfield chemical shifts of the aromatic protons of L-p-BPA confirm that the boron atom is negatively charged and tetrahedral. In the (13)C NMR spectrum of the complex of L-p-BPA with U-(13)C labeled fructose, the chemical shifts and (1)J(CC) coupling constants are consistent with fructose adopting the beta-D-fructofuranose form. In addition, the (1)J(CC) coupling constants along with the binding constants measured for L-p-BPA with a series of monosaccharides and disaccharides seem to suggest that the beta-D-fructofuranose 2,3,6-(p-phenylalanylorthoboronate) structure strongly predominates, with free L-p-BPA and fructose the only other species detected. Copyright 2000 Wiley-Liss, Inc.

  4. Calculations of proton chemical shifts in olefins and aromatics

    CERN Document Server

    Escrihuela, M C

    2000-01-01

    induced reagents on alpha,beta unsaturated ketones has also been investigated in order to deduce molecular structures and to obtain the assignment of the spectra of these molecules. A semi-empirical calculation of the partial atomic charges in organic compounds based on molecular dipole moments (CHARGE3) was developed into a model capable of predicting proton chemical shifts in a wide variety of organic compounds to a reasonable degree of accuracy. The model has been modified to include condensed aromatic hydrocarbons and substituted benzenes, alkenes, halo-monosubstituted benzenes and halo-alkenes. Within the aromatic compounds the influence of the pi electron densities and the ring current have been investigated, along with the alpha, beta and gamma effects. The model gives the first accurate calculation of the proton chemical shifts of condensed aromatic compounds and the proton substituent chemical shifts (SCS) in the benzene ring. For the data set of 55 proton chemical shifts spanning 3 ppm the rms error...

  5. Bayesian inference of protein structure from chemical shift data

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim

    2015-01-01

    content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain......, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however......Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model...

  6. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1.

    Science.gov (United States)

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly (13)C/(15)N-labeled phycocyanobilin (PCB) chromophore. 2D (13)C-(13)C correlation experiments allowed a complete assignment of (13)C responses of the chromophore. Upon precipitation, (13)C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS (13)C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely

  7. Unraveling the meaning of chemical shifts in protein NMR.

    Science.gov (United States)

    Berjanskii, Mark V; Wishart, David S

    2017-07-15

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017. Published by Elsevier B.V.

  8. Complete assignments of 1H and 13C NMR data for seven arylnaphthalide lignans from Justicia procumbens.

    Science.gov (United States)

    Yang, Meihua; Wu, Jun; Cheng, Fan; Zhou, Yuan

    2006-07-01

    Three new arylnaphthalide lignans named 6'-hydroxy justicidin A (1), 6'-hydroxy justicidin B (2) and 6'-hydroxy justicidin C (3) have been isolated from the whole plant of Justicia procumbens, together with four known ones, neojusticin A (4), chinensinaphthol methyl ester (5), isodiphyllin (6) and taiwanin C (7). The complete assignments of 1H and 13C NMR chemical shifts for the new lignans and the 13C NMR chemical shifts for the known lignans were obtained for the first time by means of 2D NMR techniques, including HSQC and HMBC.

  9. Styrylpyrylium Salts: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D

    Directory of Open Access Journals (Sweden)

    Jean Claude W. Ouédraogo

    2010-01-01

    Full Text Available 1H and 13C NMR high-resolution spectroscopy (1D and 2D (1H, 1H-COSY, HSQC, HMBC for four styrylpyrylium perchlorates were carried out and signal attributions are reported. Chemical shifts observed on 13C NMR spectra for the styrylpyrylium salts were compared with net atomic charge for carbon obtained by AM1 semiempirical calculations. The position of the styryl group present low effect on chemical shifts for carbon atoms, while the presence of methyl group led to the unshielding of the substituted carbon.

  10. 1H and 13C resonance designation of antimycin A1 by two-dimensional NMR spectroscopy

    Science.gov (United States)

    Abidi, S.L.; Adams, B.R.

    1987-01-01

    Complete 1H and 13C resonance assignments of antimycin A1 were accomplished by two-dimensional NMR techniques, viz. 1H homonuclear COSY correlation, heteronuclear 13C-1H chemical shift correlation and long-range heteronuclear 13C-1H COLOC correlation. Antimycin A1 was found to consist of two isomeric components in a 2:1 ratio based on NMR spectroscopic evidence. The structure of the major component was newly assigned as the 8-isopentanoic acid ester. The spectra of the minor component were consistent with the known structure of antimycin A1.

  11. Bayesian inference of protein structure from chemical shift data

    Science.gov (United States)

    Bratholm, Lars A.; Christensen, Anders S.; Hamelryck, Thomas

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model, and a bias is introduced which might result in incorrect structures. In the inferential structure determination framework, both the unknown structure and the disagreement between experimental and back-calculated data are formulated as a joint probability distribution, thus utilizing the full information content of the data. Here, we present the formulation of such a probability distribution where the error in chemical shift prediction is described by either a Gaussian or Cauchy distribution. The methodology is demonstrated and compared to a set of empirically weighted potentials through Markov chain Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term, the simulations suggests that sampling both the structure and the uncertainties in chemical shift prediction leads more accurate structures compared to conventional methods using empirical determined weights. The Cauchy distribution, using either sampled uncertainties or predetermined weights, did, however, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction. PMID:25825683

  12. Bayesian inference of protein structure from chemical shift data

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen; Christensen, Anders Steen; Hamelryck, Thomas Wim;

    2015-01-01

    Protein chemical shifts are routinely used to augment molecular mechanics force fields in protein structure simulations, with weights of the chemical shift restraints determined empirically. These weights, however, might not be an optimal descriptor of a given protein structure and predictive model...... Monte Carlo simulations of three small proteins (ENHD, Protein G and the SMN Tudor Domain) using the PROFASI force field and the chemical shift predictor CamShift. Using a clustering-criterion for identifying the best structure, together with the addition of a solvent exposure scoring term......, result in overall better convergence to the native fold, suggesting that both types of distribution might be useful in different aspects of the protein structure prediction....

  13. Synthesis of (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolic acid, methyl (1'-/sup 13/C)olivetolate and (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolic acid

    Energy Technology Data Exchange (ETDEWEB)

    Porwoll, J.P.; Leete, E. (Minnesota Univ., Minneapolis (USA). Dept. of Chemistry)

    1985-03-01

    Potential advanced intermediates in the biosynthesis of delta/sup 9/-tetrahydrocannabinol, the major psychoactive principle of marijuana, have been synthesized labeled with two contiguous /sup 13/C atoms and /sup 14/C. Methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)olivetolate was prepared from lithium (/sup 13/C/sub 2/)acetylide and dimethyl (2-/sup 14/C)malonate. Reaction with geranyl bromide afforded methyl (5,6-/sup 13/C/sub 2/, 1-/sup 14/C)cannabigerolate, and hydrolysis of these methyl esters with lithium propyl mercaptide yielded the corresponding labeled acids. The /sup 13/C-/sup 13/C couplings observable in the /sup 13/C NMR spectra of these /sup 13/C-enriched compounds and their synthetic precursors are recorded. Methyl (1'-/sup 14/C)olivetolate was prepared from /sup 13/CO/sub 2/ to confirm assignments of the /sup 13/C chemical shifts in the pentyl side chain of these compounds.

  14. Chemical composition of organic matter in a deep soil changed with a positive priming effect due to glucose addition as investigated by 13C NMR spectroscopy

    Science.gov (United States)

    Fresh organic carbon becomes more accessible to subsoil following losses of surface soil or deep incorporation of crop residues, which can cause the priming effect and influence the quality and quantity of soil organic C (SOC) in subsoil. Chemical compositions of SOC in subsoil (1.0-1.2 m) without ...

  15. An unprecedented up-field shift in the 13C NMR spectrum of the carboxyl carbons of the lantern-type dinuclear complex TBA[Ru2(O2CCH3)4Cl2] (TBA+ = tetra(n-butyl)ammonium cation).

    Science.gov (United States)

    Hiraoka, Yuya; Ikeue, Takahisa; Sakiyama, Hiroshi; Guégan, Frédéric; Luneau, Dominique; Gillon, Béatrice; Hiromitsu, Ichiro; Yoshioka, Daisuke; Mikuriya, Masahiro; Kataoka, Yusuke; Handa, Makoto

    2015-08-14

    A large up-field shift (-763 ppm) has been observed for the carboxyl carbons of the dichlorido complex TBA[Ru(2)(O(2)CCH(3))(4)Cl(2)] (TBA(+) = tetra(n-butyl)ammonium cation) in the (13)C NMR spectrum (CD(2)Cl(2) at 25 °C). The DFT calculations showed spin delocalization from the paramagnetic Ru(2)(5+) core to the ligands, in agreement with the large up-field shift.

  16. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1

    Directory of Open Access Journals (Sweden)

    Chen eSong

    2015-07-01

    Full Text Available Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2, photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS was expected to allow us to produce samples for solid-state magic-angle spinning (MAS NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly 13C/15N-labeled phycocyanobilin (PCB chromophore. 2D 13C–13C correlation experiments allowed a complete assignment of 13C responses of the chromophore. Upon precipitation, 13C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS 13C spectrum reflect primarily the extensive homogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that dehydration indeed leads to motional and electronic structural changes of the bilin chromophore and its binding pocket and is not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely used in previous MAS NMR and

  17. MNDO/GIAO perturbation calculation of 13C and 19F magnetic shielding constants

    Institute of Scientific and Technical Information of China (English)

    游效曾; 吴伟雄; 方维海

    1995-01-01

    The basic approximation of the MNDO method is applied to the SCF-MO theory of nu-clear magnetic shielding constants.Gauge-invariant atomic orbitais(GIAO)and derived equations are used to cal-culate NMR chemical shifts.A more simple and effective calculation of integration for operators 1/rM,LM andLM/rM described in our previous paper is used.By proper selection of MNDO parameters together with thetwo-center approximation,a satisfactory agreement between computational and experimental 13C and 19F chemi-cal shifts is obtained for a representative set of fluorides.

  18. Increasing 13C CP-MAS NMR resolution using single crystals: application to model octaethyl porphyrins.

    Science.gov (United States)

    Dugar, Sneha; Fu, Riqiang; Dalal, Naresh S

    2012-08-02

    Octaethyl porphyrin (OEP) and its Ni and Zn derivatives are considered as model compounds in biochemical, photophysical, and fossil fuel chemistry. They have thus been investigated by high-resolution solid-state (13)C NMR using powders, but peak assignment has been difficult because of large line widths. Arguing that a significant cause of broadening might be the anisotropic bulk magnetic susceptibility, we utilized single crystals in our (13)C cross-polarization magic angle spinning (CP-MAS) measurements and observed a nearly 2-fold line narrowing. This enhanced resolution enabled us to assign chemical shifts to each carbon for all the three compounds. The new assignments are now in agreement with X-ray structural data and allowed us to probe the motional dynamics of the methyl and methylene carbons of the OEP side chains. It is apparent that the use of single crystals in (13)C CP-MAS measurements has a significantly wider impact than previously thought.

  19. Phenyl galactopyranosides – {sup 13}C CPMAS NMR and conformational analysis using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wałejko, Piotr, E-mail: pwalejko@uwb.edu.pl [University of Bialystok, Institute of Chemistry, Pilsudskiego 11/4, 15-443 Bialystok (Poland); Paradowska, Katarzyna, E-mail: katarzyna.paradowska@wum.edu.pl [Medical University of Warsaw, Faculty of Pharmacy, Department of Physical Chemistry, Banacha 1, 02-097 Warsaw (Poland); Bukowicki, Jarosław [Medical University of Warsaw, Faculty of Pharmacy, Department of Physical Chemistry, Banacha 1, 02-097 Warsaw (Poland); Witkowski, Stanisław [University of Bialystok, Institute of Chemistry, Pilsudskiego 11/4, 15-443 Bialystok (Poland); Wawer, Iwona [Medical University of Warsaw, Faculty of Pharmacy, Department of Physical Chemistry, Banacha 1, 02-097 Warsaw (Poland)

    2015-08-18

    Highlights: • The structures of phenyl galactosides were studied by {sup 13}C CPMAS NMR. • The GAAGS method was used in conformational analysis of phenyl galactosides. • The rotation of the aglycone was investigated. • {sup 13}C CPMAS NMR supported by GIAO DFT calculations was used as a verification method. - Abstract: Structural analyses of four compounds (phenyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside (1), phenyl β-D-galactopyranoside (2), phenyl 2,3,4,6-tetra-O-acetyl-α-D-galactopyranoside (3) and phenyl α-D-galactopyranoside (4)) have been performed using solid-state {sup 13}C MAS NMR spectroscopy and theoretical methods. Conformational analysis involved grid search and genetic algorithm (GAAGS). Low-energy conformers found by GAAGS were further optimized by DFT and chemical shifts were calculated using GIAO/DFT approach. {sup 13}C CPMAS NMR chemical shift of carbon C2 is indicative of the glycoside torsional angle. Separated or merged resonances of C2 and C6 suggest free rotation of phenyl ring in the solid phase.

  20. Theoretical and experimental studies of chemically induced dynamic nuclear polarization kinetics in recombination of radical pairs by the method of switched external magnetic field. II. 13C CIDNP of micellized radical pairs

    Science.gov (United States)

    Fedin, M. V.; Bagryanskaya, E. G.; Purtov, P. A.

    1999-09-01

    The method of 13C chemically induced dynamic nuclear polarization in a switched external magnetic field (SEMF CIDNP) has been applied for the first time in an experimental investigation of micellized radical pairs (RP). Using the examples of three photochemical reactions it has been shown, that SEMF CIDNP allows the investigation of the kinetics of short-lived micellized RPs with high time-resolution in low and intermediate magnetic fields. The experimental kinetics have been analyzed and simulated on the basis of a previously developed theory [Parnachev et al., J. Chem. Phys. 107, 9942 (1997)]. It has been demonstrated that such an analysis provides information on the rates of radical escape from the micelle, on electron relaxation and on the rate of S-T- transitions. The analysis of the estimated rates of S-T- transitions showed that the exchange interaction is essentially anisotropic in the RPs studied.

  1. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins.

    Science.gov (United States)

    Tugarinov, Vitali; Venditti, Vincenzo; Marius Clore, G

    2014-01-01

    A methyl-detected 'out-and-back' NMR experiment for obtaining simultaneous correlations of methyl resonances of valine and isoleucine/leucine residues with backbone carbonyl chemical shifts, SIM-HMCM(CGCBCA)CO, is described. The developed pulse-scheme serves the purpose of convenience in recording a single data set for all Ile(δ1), Leu(δ) and Val(γ) (ILV) methyl positions instead of acquiring two separate spectra selective for valine or leucine/isoleucine residues. The SIM-HMCM(CGCBCA)CO experiment can be used for ILV methyl assignments in moderately sized protein systems (up to ~100 kDa) where the backbone chemical shifts of (13)C(α), (13)Cβ and (13)CO are known from prior NMR studies and where some losses in sensitivity can be tolerated for the sake of an overall reduction in NMR acquisition time.

  2. Near-silence of isothiocyanate carbon in (13)C NMR spectra: a case study of allyl isothiocyanate.

    Science.gov (United States)

    Glaser, Rainer; Hillebrand, Roman; Wycoff, Wei; Camasta, Cory; Gates, Kent S

    2015-05-01

    (1)H and (13)C NMR spectra of allyl isothiocyanate (AITC) were measured, and the exchange dynamics were studied to explain the near-silence of the ITC carbon in (13)C NMR spectra. The dihedral angles α = ∠(C1-C2-C3-N4) and β = ∠(C2-C3-N4-C5) describe the conformational dynamics (conformation change), and the bond angles γ = ∠(C3-N4-C5) and ε = ∠(N4-C5-S6) dominate the molecular dynamics (conformer flexibility). The conformation space of AITC contains three minima, Cs-M1 and enantiomers M2 and M2'; the exchange between conformers is very fast, and conformational effects on (13)C chemical shifts are small (νM1 - νM2 silence of the ITC carbon in (13)C NMR spectra of organic isothiocyanates.

  3. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    Science.gov (United States)

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  4. Molecular structure, spectral investigation (1H NMR, 13C NMR, UV-Visible, FT-IR, FT-Raman), NBO, intramolecular hydrogen bonding, chemical reactivity and first hyperpolarizability analysis of formononetin [7-hydroxy-3(4-methoxyphenyl)chromone]: A quantum chemical study

    Science.gov (United States)

    Srivastava, Anubha; Mishra, Rashmi; Kumar, Sudhir; Dev, Kapil; Tandon, Poonam; Maurya, Rakesh

    2015-03-01

    Formononetin [7-hydroxy-3(4-methoxyphenyl)chromone or 4‧-methoxy daidzein] is a soy isoflavonoid that is found abundantly in traditional Chinese medicine Astragalus mongholicus (Bunge) and Trifolium pretense L. (red clover), and in an Indian medicinal plant, Butea (B.) monosperma. Crude extract of B.monosperma is used for rapid healing of fracture in Indian traditional medicine. In this study, a combined theoretical and experimental approach is used to study the properties of formononetin. The optimized geometry was calculated by B3LYP method using 6-311++G(d,p) as a large basis set. The FT-Raman and FT-IR spectra were recorded in the solid phase, and interpreted in terms of potential energy distribution (PED) analysis. Density functional theory (DFT) is applied to explore the nonlinear optical properties of the molecule. Good consistency is found between the calculated results and observed data for the electronic absorption, IR and Raman spectra. The solvent effects have been calculated using time-dependent density functional theory in combination with the integral equation formalism polarized continuum model, and the results are in good agreement with observed measurements. The double well potential energy curve of the molecule about the respective bonds, have been plotted, as obtained from DFT/6-31G basis set. The computational results diagnose the most stable conformer of formononetin. The HOMO-LUMO energy gap of possible conformers has been calculated for comparing their chemical activity. Chemical reactivity has been measured by reactivity descriptors and molecular electrostatic potential surface (MEP). The 1H and 13C NMR chemical shifts of the molecule were calculated by the Gauge including atomic orbital (GIAO) method. Furthermore, the role of CHsbnd O intramolecular hydrogen bond in the stability of molecule is investigated on the basis of the results of topological properties of AIM theory and NBO analysis. The calculated first hyperpolarizability shows

  5. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  6. Estimation of optical chemical shift in nuclear spin optical rotation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fang [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yao, Guo-hua [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); He, Tian-jing [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chen, Dong-ming, E-mail: dmchen@ustc.edu.cn [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Fan-chen, E-mail: fcliu@ustc.edu.cn [Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-05-19

    Highlights: • Analytical theory of nuclear spin optical rotation (NSOR) is further developed. • Derive formula of NSOR ratio R between different nuclei in a same molecule. • Calculated results of R agree with the experiments. • Analyze influence factors on R and chemical distinction by NSOR. - Abstract: A recently proposed optical chemical shift in nuclear spin optical rotation (NSOR) is studied by theoretical comparison of NSOR magnitude between chemically non-equivalent or different element nuclei in the same molecule. Theoretical expressions of the ratio R between their NSOR magnitudes are derived by using a known semi-empirical formula of NSOR. Taking methanol, tri-ethyl-phosphite and 2-methyl-benzothiazole as examples, the ratios R are calculated and the results approximately agree with the experiments. Based on those, the important influence factors on R and chemical distinction by NSOR are discussed.

  7. Protein secondary structure prediction using NMR chemical shift data.

    Science.gov (United States)

    Zhao, Yuzhong; Alipanahi, Babak; Li, Shuai Cheng; Li, Ming

    2010-10-01

    Accurate determination of protein secondary structure from the chemical shift information is a key step for NMR tertiary structure determination. Relatively few work has been done on this subject. There needs to be a systematic investigation of algorithms that are (a) robust for large datasets; (b) easily extendable to (the dynamic) new databases; and (c) approaching to the limit of accuracy. We introduce new approaches using k-nearest neighbor algorithm to do the basic prediction and use the BCJR algorithm to smooth the predictions and combine different predictions from chemical shifts and based on sequence information only. Our new system, SUCCES, improves the accuracy of all existing methods on a large dataset of 805 proteins (at 86% Q(3) accuracy and at 92.6% accuracy when the boundary residues are ignored), and it is easily extendable to any new dataset without requiring any new training. The software is publicly available at http://monod.uwaterloo.ca/nmr/succes.

  8. Magnetic shift of the chemical freezeout and electric charge fluctuations

    CERN Document Server

    Fukushima, Kenji

    2016-01-01

    We discuss the effect of a strong magnetic field on the chemical freezeout points in the ultra-relativistic heavy-ion collision. As a result of the inverse magnetic catalysis or the magnetic inhibition, the crossover onset to hot and dense matter out of quarks and gluons should be shifted to a lower temperature. To quantify this shift we employ the hadron resonance gas model and an empirical condition for the chemical freezeout. We point out that the charged particle abundances are significantly affected by the magnetic field so that the electric charge fluctuation is largely enhanced especially at high baryon density. The charge conservation partially cancels the enhancement but our calculation shows that the electric charge fluctuation could serve as a magnetometer.

  9. Improving 3D structure prediction from chemical shift data

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Zhang, Zaiyong [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany); Vernon, Robert [University of Washington, Department of Biochemistry (United States); Shen, Yang [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Vranken, Wim F. [VIB, Department of Structural Biology (Belgium); Baker, David [University of Washington, Department of Biochemistry (United States); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Computational Structural Biology, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands); Lange, Oliver F., E-mail: oliver.lange@tum.de [Technische Universitaet Muenchen, Biomolecular NMR and Munich Center for Integrated Protein Science, Department Chemie (Germany)

    2013-09-15

    We report advances in the calculation of protein structures from chemical shift nuclear magnetic resonance data alone. Our previously developed method, CS-Rosetta, assembles structures from a library of short protein fragments picked from a large library of protein structures using chemical shifts and sequence information. Here we demonstrate that combination of a new and improved fragment picker and the iterative sampling algorithm RASREC yield significant improvements in convergence and accuracy. Moreover, we introduce improved criteria for assessing the accuracy of the models produced by the method. The method was tested on 39 proteins in the 50-100 residue size range and yields reliable structures in 70 % of the cases. All structures that passed the reliability filter were accurate (<2 A RMSD from the reference)

  10. Increased resolution of aromatic cross peaks using alternate {sup 13}C labeling and TROSY

    Energy Technology Data Exchange (ETDEWEB)

    Milbradt, Alexander G. [AstraZeneca Discovery Sciences, Structure and Biophysics UK (United Kingdom); Arthanari, Haribabu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States); Takeuchi, Koh [National Institute of Advanced Industrial Science and Technology, Biomedicinal Information Research Center and Molecular Profiling Research Center for Drug Discovery (Japan); Boeszoermenyi, Andras; Hagn, Franz; Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2015-07-15

    For typical globular proteins, contacts involving aromatic side chains would constitute the largest number of distance constraints that could be used to define the structure of proteins and protein complexes based on NOE contacts. However, the {sup 1}H NMR signals of aromatic side chains are often heavily overlapped, which hampers extensive use of aromatic NOE cross peaks. Some of this overlap can be overcome by recording {sup 13}C-dispersed NOESY spectra. However, the resolution in the carbon dimension is rather low due to the narrow dispersion of the carbon signals, large one-bond carbon–carbon (C–C) couplings, and line broadening due to chemical shift anisotropy (CSA). Although it has been noted that the CSA of aromatic carbons could be used in TROSY experiments for enhancing resolution, this has not been used much in practice because of complications arising from large aromatic one-bond C–C couplings, and 3D or 4D carbon dispersed NOESY are typically recorded at low resolution hampering straightforward peak assignments. Here we show that the aromatic TROSY effect can optimally be used when employing alternate {sup 13}C labeling using 2-{sup 13}C glycerol, 2-{sup 13}C pyruvate, or 3-{sup 13}C pyruvate as the carbon source. With the elimination of the strong one-bond C–C coupling, the TROSY effect can easily be exploited. We show that {sup 1}H–{sup 13}C TROSY spectra of alternately {sup 13}C labeled samples can be recorded at high resolution, and we employ 3D NOESY aromatic-TROSY spectra to obtain valuable intramolecular and intermolecular cross peaks on a protein complex.

  11. Metabolism of (1-(13)C) glucose and (2-(13)C, 2-(2)H(3)) acetate in the neuronal and glial compartments of the adult rat brain as detected by [(13)C, (2)H] NMR spectroscopy.

    Science.gov (United States)

    Chapa, F; Cruz, F; García-Martín, M L; García-Espinosa, M A; Cerdán, S

    2000-01-01

    Ex vivo ¿(13)C, (2)H¿ NMR spectroscopy allowed to estimate the relative sizes of neuronal and glial glutamate pools and the relative contributions of (1-(13)C) glucose and (2-(13)C, 2-(2)H(3)) acetate to the neuronal and glial tricarboxylic acid cycles of the adult rat brain. Rats were infused during 60 min in the right jugular vein with solutions containing (2-(13)C, 2-(2)H(3)) acetate and (1-(13)C) glucose or (2-(13)C, 2-(2)H(3)) acetate only. At the end of the infusion the brains were frozen in situ and perchloric acid extracts were prepared and analyzed by high resolution (13)C NMR spectroscopy (90.5 MHz). The relative sizes of the neuronal and glial glutamate pools and the contributions of acetyl-CoA molecules derived from (2-(13)C, (2)H(3)) acetate or (1-(13)C) glucose entering the tricarboxylic acid cycles of both compartments, could be determined by the analysis of (2)H-(13)C multiplets and (2)H induced isotopic shifts observed in the C4 carbon resonances of glutamate and glutamine. During the infusions with (2-(13)C, 2-(2)H(3)) acetate and (1-(13)C) glucose, the glial glutamate pool contributed 9% of total cerebral glutamate being derived from (2-(13)C, 2-(2)H(3)) acetyl-CoA (4%), (2-(13)C) acetyl-CoA (3%) and recycled (2-(13)C, 2-(2)H) acetyl-CoA (2%). The neuronal glutamate pool accounted for 91% of the total cerebral glutamate being mainly originated from (2-(13)C) acetyl-CoA (86%) and (2-(13)C, 2-(2)H) acetyl-CoA (5%). During the infusions of (2-(13)C, 2-(2)H(3)) acetate only, the glial glutamate pool contributed 73% of the cerebral glutamate, being derived from (2-(13)C, 2-(2)H(3)) acetyl-CoA (36%), (2-(13)C, 2-(2)H) acetyl-CoA (27%) and (2-(13)C) acetyl-CoA (10%). The neuronal pool contributed 27% of cerebral glutamate being formed from (2-(13)C) acetyl-CoA (11%) and recycled (2-(13)C, 2-(2)H) acetyl-CoA (16%). These results illustrate the potential of ¿(13)C, (2)H¿ NMR spectroscopy as a novel approach to investigate substrate selection and

  12. 13C and 15N spectral editing inside histidine imidazole ring through solid-state NMR spectroscopy.

    Science.gov (United States)

    Li, Shenhui; Zhou, Lei; Su, Yongchao; Han, Bin; Deng, Feng

    2013-01-01

    Histidine usually exists in three different forms (including biprotonated species, neutral τ and π tautomers) at physiological pH in biological systems. The different protonation and tautomerization states of histidine can be characteristically determined by (13)C and (15)N chemical shifts of imidazole ring. In this work, solid-state NMR techniques were developed for spectral editing of (13)C and (15)N sites in histidine imidazole ring, which provides a benchmark to distinguish the existing forms of histidine. The selections of (13)Cγ, (13)Cδ2, (15)Nδ1, and (15)Nε2 sites were successfully achieved based on one-bond homo- and hetero-nuclear dipole interactions. Moreover, it was demonstrated that (1)H, (13)C, and (15) chemical shifts were roughly linearly correlated with the corresponding atomic charge in histidine imidazole ring by theoretical calculations. Accordingly, the (1)H, (13)C and (15)N chemical shifts variation in different protonation and tautomerization states could be ascribed to the atomic charge change due to proton transfer in biological process.

  13. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this...

  14. Synthesis of exemestane labelled with (13)C.

    Science.gov (United States)

    Fontana, Erminia; Pignatti, Alberto; Giribone, Danilo; Di Salle, Enrico

    2008-08-01

    The synthesis of exemestane Aromasin, an irreversible steroidal aromatase inhibitor, specifically labelled with (13)C is reported. The preparation of [(13)C(3)]exemestane was achieved according to an eight-step procedure starting from the commercially available testosterone.

  15. Chemical shift as a probe of molecular interfaces: NMR studies of DNA binding by the three amino-terminal zinc finger domains from transcription factor IIIA

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Mark P.; Wuttke, Deborah S.; Clemens, Karen R.; Jahnke, Wolfgang; Radhakrishnan, Ishwar; Tennant, Linda; Reymond, Martine; Chung, John; Wright, Peter E. [Scripps Research Institute, Department of Molecular Biology and Skaggs Institute for Chemical Biology (United States)

    1998-07-15

    We report the NMR resonance assignments for a macromolecular protein/DNA complex containing the three amino-terminal zinc fingers (92 amino acid residues) of Xenopus laevis TFIIIA (termed zf1-3) bound to the physiological DNA target (15 base pairs), and for the free DNA. Comparisons are made of the chemical shifts of protein backbone{sup 1} H{sup N}, {sup 15}N,{sup 13} C{sup {alpha}} and{sup 13} C{sup {beta}} and DNA base and sugar protons of the free and bound species. Chemical shift changes are analyzed in the context of the structures of the zf1-3/DNA complex to assess the utility of chemical shift change as a probe of molecular interfaces. Chemical shift perturbations that occur upon binding in the zf1-3/DNA complex do not correspond directly to the structural interface, but rather arise from a number of direct and indirect structural and dynamic effects.

  16. 13C NMR studies of methylene and methine carbons of substrate bound to a 280,000-dalton protein, porphobilinogen synthase.

    Science.gov (United States)

    Jaffe, E K; Markham, G D

    1988-06-14

    13C NMR has been used to observe the equilibrium complex of [5,5-2H,5-13C]-5-aminolevulinate [( 5,5-2H,5-13C]ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. [5,5-2H,5-13C]ALA (chemical shift 46.9 ppm in D2O) was prepared from [5-13C]ALA through enolization in deuteriated neutral potassium phosphate buffer. In the PBG synthase reaction [5,5-2H,5-13C]ALA forms [2,11,11-2H,2,11-13C]PBG (chemical shifts 116.2 ppm for C2 and 34.2 ppm for C11 in D2O). For the complex formed between [5,5-2H,5-13C]ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation but can form a Schiff base adduct, the chemical shift of 44.2 ppm (line width 92 Hz) identifies an imine structure as the predominant tautomeric form of the Schiff base. By comparison to model compounds, the stereochemistry of the imine has been deduced; however, the protonation state of the imine nitrogen remains unresolved. Reconstitution of the MMTS-modified enzyme-Schiff base complex with Zn(II) and 2-mercaptoethanol results in the holoenzyme-bound equilibrium complex; this complex contains predominantly enzyme-bound PBG, and spectra reveal two peaks from bound PBG and two from free PBG. For bound PBG, C2 is -2.8 ppm from the free signal and C11 is +2.6 ppm from the free signal; the line widths of the bound signals are 55 and 75 Hz, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    Science.gov (United States)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2014-03-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.

  18. Probing slowly exchanging protein systems via {sup 13}C{sup {alpha}}-CEST: monitoring folding of the Im7 protein

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Alexandar L.; Bouvignies, Guillaume; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2013-03-15

    A {sup 13}C{sup {alpha}} chemical exchange saturation transfer based experiment is presented for the study of protein systems undergoing slow interconversion between an 'observable' ground state and one or more 'invisible' excited states. Here a labeling strategy whereby [2-{sup 13}C]-glucose is the sole carbon source is exploited, producing proteins with {sup 13}C at the C{sup {alpha}} position, while the majority of residues remain unlabeled at CO or C{sup {beta}}. The new experiment is demonstrated with an application to the folding reaction of the Im7 protein that involves an on-pathway excited state. The obtained excited state {sup 13}C{sup {alpha}} chemical shifts are cross validated by comparison to values extracted from analysis of CPMG relaxation dispersion profiles, establishing the utility of the methodology.

  19. Synthesis of /sup 13/C-labelled medroxyprogesterone acetate with three /sup 13/C isotopes (1)

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P.N.; Damodaran, K.M. (Southwest Foundation for Research and Education, San Antonio, TX (USA))

    1982-03-01

    17..cap alpha..-hydroxyprogesterone was condensed with phenyl acetate /sup 13/C/sub 2/ in the presence of sodium hydride. Treatment with acetic and hydrochloric acids and acetylation gave 17..cap alpha..-acetoxyprogesterone /sup 13/C/sub 2/. Treatment with tetrabromomethane /sup 13/C and hydrogenation yielded medroxyprogesterone acetate with three /sup 13/C isotopes.

  20. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.

    Science.gov (United States)

    Jose, K V Jovan; Raghavachari, Krishnan

    2017-03-14

    We present an efficient implementation of the molecules-in-molecules (MIM) fragment-based quantum chemical method for the evaluation of NMR chemical shifts of large biomolecules. Density functional techniques have been employed in conjunction with large basis sets and including the effects of the solvent environment in these calculations. The MIM-NMR method is initially benchmarked on a set of (alanine)10 conformers containing strong intramolecular interactions. The incorporation of a second low level of theory to recover the missing long-range interactions in the primary fragmentation scheme is critical to yield reliable chemical shifts, with a mean absolute deviation (MAD) from direct unfragmented calculations of 0.01 ppm for (1)H chemical shifts and 0.07 ppm for (13)C chemical shifts. In addition, the performance of MIM-NMR has been assessed on two large peptides: the helical portion of ubiquitin ( 1UBQ ) containing 12 residues where the X-ray structure is known, and E6-binding protein of papilloma virus ( 1RIJ ) containing 23 residues where the structure has been derived from solution-phase NMR analysis. The solvation environment is incorporated in these MIM-NMR calculations, either through an explicit, implicit, or a combination of both solvation models. Using an explicit treatment of the solvent molecules within the first solvation sphere (3 Å) and an implicit solvation model for the rest of the interactions, the (1)H and (13)C chemical shifts of ubiquitin show excellent agreement with experiment (mean absolute deviation of 0.31 ppm for (1)H and 1.72 ppm for (13)C), while the larger E6-binding protein yields a mean absolute deviation of 0.34 ppm for (1)H chemical shifts. The proposed MIM-NMR method is computationally cost-effective and provides a substantial speedup relative to conventional full calculations, the largest density functional NMR calculation included in this work involving more than 600 atoms and over 10,000 basis functions. The MIM

  1. Design of a quadrature surface coil for hyperpolarized 13C MRS cardiac metabolism studies in pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Frijia, F.; Hartwig, V.;

    2013-01-01

    This work describes the design of a quadrature surface coil constituted by a circular loop and a butterfly coil, employed in transmit/receive (TX/RX) mode for hyperpolarized 13C studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model...... for coil performance evaluation in terms of coil resistance, sample-induced resistance and magnetic field pattern. Experimental SNR-vs.-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), showed good agreement with the theoretical SNR-vs.-depth profiles. Moreover......, the performance of the quadrature coil was compared with the single TX/RX circular and TX/RX butterfly coil, in order to verify the advantage of the proposed configuration over the single coils throughout the volume of interest for cardiac imaging in pig. Finally, the quadrature surface coil was tested...

  2. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS

    Science.gov (United States)

    Li, Shenhui; Trébosc, Julien; Lafon, Olivier; Zhou, Lei; Shen, Ming; Pourpoint, Frédérique; Amoureux, Jean-Paul; Deng, Feng

    2015-02-01

    The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of 1H and 13C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) 1H-13C correlations with 1H detection and (ii) 1H-1H double-quantum ↔ single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of L-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to 13C detection, we show that 1H detection leads to a 3-fold enhancement in sensitivity for 1H-13C 2D correlation experiments. By combining 1H-13C and 1H-1H 2D correlation experiments with the analysis of 13C longitudinal relaxation times, we have been able to assign the 1H and 13C signals of each L-alanine ligand.

  3. Correlations of the chemical shift on fasly rotating biological solids by means of NMR spectroscopy; Korrelationen der chemischen Verschiebung an schnell rotierenden biologischen Festkoerpern mittels NMR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, Christian

    2010-04-27

    The basic aim of the thesis was the development and improvement of homo- and heteronuclear feedback sequences for the generation of correlation spectra of the chemical shift. In a first step the possibility of the acquisition of {sup 13}C-{sup 13} correlation spectra of the chemical shift by means of inversion pulses with low RF power factor was studied. Furthermore it was shown that broad-band phase-modulated inversion and universal rotational pulses can be constructed by means of global optimization procedures like the genetic algorithms under regardment of the available RF field strength. By inversion, universal rotational, and 360 pulses as starting values of the optimization efficient homonuclear CN{sub n}{sup {nu}} and RN{sub n}{sup {nu}} mixing sequences as well as heteronuclear RN{sub n}{sup {nu}{sub s},{nu}{sub k}} feedback sequences were generated. The satisfactory power of the numerically optimized sequences was shown by means of the simulation as well by means of correlation experiments of the chemical shift of L-histidine, L-arginine, and the (CUG){sub 97}-RNA. This thesis deals furthermore with the possibility to acquire simultaneously different signals with several receivers. By means of numerically optimized RN{sub n}{sup {nu}{sub s},{nu}{sub k}} pulse sequences both {sup 15}N-{sup 13}C and {sup 13}C-{sup 15}N correlation spectra were simultaneously generated. Furthermore it could be shown that the simultaneous acquisition of 3D-{sup 15}N-{sup 13}C-{sup 13}C and {sup 13}C-{sup 15}N-({sup 1}H)-{sup 1}H correlation spectra is possible. By this in only one measurement process resonance assignments can be met and studies of the global folding performed. A further application of several receivers is the simultaneous acquisition of CHHC, NHHN, NHHC, as well as CHHN spectra. By such experiments it is possible to characterize the hydrogen-bonding pattern and the glycosidic torsion angle {sup {chi}} in RNA. This was demonstrated by means of the (CUG){sub 97

  4. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    Science.gov (United States)

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  5. Theoretical Modeling of 99 Tc NMR Chemical Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Gabriel B.; Andersen, Amity; Washton, Nancy M.; Chatterjee, Sayandev; Levitskaia, Tatiana G.

    2016-09-06

    Technetium (Tc) displays a rich chemistry due to the wide range of oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and 99Tc NMR spec-troscopy is widely used to probe chemical environments of Tc in odd oxidation states. However interpretation of the 99Tc NMR data is hindered by the lack of reference compounds. DFT computations can help fill this gap, but to date few com-putational studies have focused on 99Tc NMR of compounds and complexes. This work systematically evaluates the inclu-sion small percentages of Hartree-Fock exchange correlation and relativistic effects in DFT computations to support in-terpretation of the 99Tc NMR spectra. Hybrid functionals are found to perform better than their pure GGA counterparts, and non-relativistic calculations have been found to generally show a lower mean absolute deviation from experiment. Overall non-relativistic PBE0 and B3PW91 calculations are found to most accurately predict 99Tc NMR chemical shifts.

  6. Revisiting the metathesis of 13C-monolabeled ethane

    KAUST Repository

    Maury, Olivier

    2010-12-13

    The metathesis of 13C-monolabeled ethane leads to the parallel occurrence of degenerate and productive reactions, affording the statistical distribution of the various product isotopomers, which can be rationalized in terms of a mechanistic reaction scheme combining both processes. © 2010 American Chemical Society.

  7. Homonuclear chemical shift correlation in rotating solids via RN{sup {nu}}{sub n} symmetry-based adiabatic RF pulse schemes

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Kerstin; Leppert, Joerg; Haefner, Sabine; Ohlenschlaeger, Oliver; Goerlach, Matthias; Ramachandran, Ramadurai [Institut fuer Molekulare Biotechnologie, Abteilung Molekulare Biophysik/NMR-Spektroskopie (Germany)], E-mail: raman@imb-jena.de

    2004-12-15

    The efficacy of RN{sup {nu}}{sub n} symmetry-based adiabatic Zero-Quantum (ZQ) dipolar recoupling schemes for obtaining chemical shift correlation data at moderate magic angle spinning frequencies has been evaluated. RN{sub n}{sup {nu}} sequences generally employ basic inversion elements that correspond to a net 180 deg. rotation about the rotating frame x-axis. It is shown here via numerical simulations and experimental measurements that it is also possible to achieve efficient ZQ dipolar recoupling via RN{sub n}{sup {nu}} schemes employing adiabatic pulses. Such an approach was successfully used for obtaining {sup 1}3C chemical shift correlation spectra of a uniformly labelled sample of (CUG){sub 9}7- a triplet repeat expansion RNA that has been implicated in the neuromuscular disease myotonic dystrophy. An analysis of the {sup 1}3C sugar carbon chemical shifts suggests, in agreement with our recent {sup 1}5N MAS-NMR studies, that this RNA adopts an A-helical conformation.

  8. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    Science.gov (United States)

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations.

  9. 1H, 13C, 15N and 195Pt NMR studies of Au(III) and Pt(II) chloride organometallics with 2-phenylpyridine.

    Science.gov (United States)

    Pazderski, Leszek; Pawlak, Tomasz; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2009-11-01

    (1)H, (13)C, (15)N and (195)Pt NMR studies of gold(III) and platinum(II) chloride organometallics with N(1),C(2')-chelated, deprotonated 2-phenylpyridine (2ppy*) of the formulae [Au(2ppy*)Cl(2)], trans(N,N)-[Pt(2ppy*)(2ppy)Cl] and trans(S,N)-[Pt(2ppy*)(DMSO-d(6))Cl] (formed in situ upon dissolving [Pt(2ppy*)(micro-Cl)](2) in DMSO-d(6)) were performed. All signals were unambiguously assigned by HMBC/HSQC methods and the respective (1)H, (13)C and (15)N coordination shifts (i.e. differences between chemical shifts of the same atom in the complex and ligand molecules: Delta(1H)(coord) = delta(1H)(complex) - delta(1H)(ligand), Delta(13C)(coord) = delta(13C)(complex) - delta(13C)(ligand), Delta(15N)(coord) = delta(15N)(complex) - delta(15N)(ligand)), as well as (195)Pt chemical shifts and (1)H-(195)Pt coupling constants discussed in relation to the known molecular structures. Characteristic deshielding of nitrogen-adjacent H(6) protons and metallated C(2') atoms as well as significant shielding of coordinated N(1) nitrogens is discussed in respect to a large set of literature NMR data available for related cyclometallated compounds.

  10. Structure and Metabolic-Flow Analysis of Molecular Complexity in a (13) C-Labeled Tree by 2D and 3D NMR.

    Science.gov (United States)

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Kikuchi, Jun

    2016-05-10

    Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from (13) C-enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing (13) C-labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved. 42 BSMs, including eight that were unlisted in the spectral databases, were identified. Comparisons between the experimental values and the (13) C chemical shift values calculated by density functional theory supported the identifications of unlisted BSMs. Tracing the (13) C/(12) C ratio by multidimensional NMR spectra revealed faster and slower turnover ratios of BSMs involved in central metabolism and those categorized as secondary metabolites, respectively. The identification of BSMs and subsequent flow analysis provided insight into the metabolic systems of the plant.

  11. Relationship between chemical shift value and accessible surface area for all amino acid atoms

    Directory of Open Access Journals (Sweden)

    Rieping Wolfgang

    2009-04-01

    Full Text Available Abstract Background Chemical shifts obtained from NMR experiments are an important tool in determining secondary, even tertiary, protein structure. The main repository for chemical shift data is the BioMagResBank, which provides NMR-STAR files with this type of information. However, it is not trivial to link this information to available coordinate data from the PDB for non-backbone atoms due to atom and chain naming differences, as well as sequence numbering changes. Results We here describe the analysis of a consistent set of chemical shift and coordinate data, in which we focus on the relationship between the per-atom solvent accessible surface area (ASA in the reported coordinates and their reported chemical shift value. The data is available online on http://www.ebi.ac.uk/pdbe/docs/NMR/shiftAnalysis/index.html. Conclusion Atoms with zero per-atom ASA have a significantly larger chemical shift dispersion and often have a different chemical shift distribution compared to those that are solvent accessible. With higher per-atom ASA, the chemical shift values also tend towards random coil values. The per-atom ASA, although not the determinant of the chemical shift, thus provides a way to directly correlate chemical shift information to the atomic coordinates.

  12. Diagnostic value of chemical shift artifact in distinguishing benign lymphadenopathy

    Energy Technology Data Exchange (ETDEWEB)

    Farshchian, Nazanin, E-mail: farshchian.n@gmail.com [Department of Radiology, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Tamari, Saghar; Farshchian, Negin [Department of Radiology, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Madani, Hamid [Department of Pathology, Imam-Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Rezaie, Mansour [Department of Biostatistics, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Mohammadi-Motlagh, Hamid-Reza, E-mail: mohammadimotlagh@gmail.com [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2011-11-15

    Purpose: Today, distinguishing metastatic lymph nodes from secondary benign inflammatory ones via using non-invasive methods is increasingly favorable. In this study, the diagnostic value of chemical shift artifact (CSA) in magnetic resonance imaging (MRI) was evaluated to distinguish benign lymphadenopathy. Subjects and methods: A prospective intraindividual internal review board-approved study was carried out on 15 men and 15 women having lymphadenopathic lesions in different locations of the body who underwent contrast-enhanced dynamic MR imaging at 1.5 T. Then, the imaging findings were compared with pathology reports, using the statistics analyses. Results: Due to the findings of the CSA existence in MRI, a total of 56.7% of the studied lesions (17 of 30) were identified as benign lesions and the rest were malignant, whereas the pathology reports distinguished twelve malignant and eighteen benign cases. Furthermore, the CSA findings comparing the pathology reports indicated that CSA, with confidence of 79.5%, has a significant diagnostic value to differentiate benign lesions from malignant ones. Conclusion: Our study demonstrated that CSA in MR imaging has a suitable diagnostic potential nearing readiness for clinical trials. Furthermore, CSA seems to be a feasible tool to differentiate benign lymph nodes from malignant ones; however, further studies including larger numbers of patients are required to confirm our results.

  13. Elucidating connectivity and metal-binding structures of unlabeled paramagnetic complexes by 13C and 1H solid-state NMR under fast magic angle spinning.

    Science.gov (United States)

    Wickramasinghe, Nalinda P; Shaibat, Medhat A; Ishii, Yoshitaka

    2007-08-23

    Characterizing paramagnetic complexes in solids is an essential step toward understanding their molecular functions. However, methodologies to characterize chemical and electronic structures of paramagnetic systems at the molecular level have been notably limited, particularly for noncrystalline solids. We present an approach to obtain connectivities of chemical groups and metal-binding structures for unlabeled paramagnetic complexes by 13C and 1H high-resolution solid-state NMR (SSNMR) using very fast magic angle spinning (VFMAS, spinning speed >or=20 kHz). It is experimentally shown for unlabeled Cu(II)(Ala-Thr) that 2D 13C/1H correlation SSNMR under VFMAS provides the connectivity of chemical groups and assignments for the characterization of unlabeled paramagnetic systems in solids. We demonstrate that on the basis of the assignments provided by the VFMAS approach multiple 13C-metal distances can be simultaneously elucidated by a combination of measurements of 13C anisotropic hyperfine shifts and 13C T1 relaxation due to hyperfine interactions for this peptide-Cu(II) complex. It is also shown that an analysis of 1H anisotropic hyperfine shifts allows for the determination of electron-spin states in Fe(III)-chloroprotoporphyin-IX in solid states.

  14. Synthesis and applications of {sup 13}C glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  15. High-resolution hyperpolarized in vivo metabolic 13C spectroscopy at low magnetic field (48.7 mT) following murine tail-vein injection

    Science.gov (United States)

    Coffey, Aaron M.; Feldman, Matthew A.; Shchepin, Roman V.; Barskiy, Danila A.; Truong, Milton L.; Pham, Wellington; Chekmenev, Eduard Y.

    2017-08-01

    High-resolution 13C NMR spectroscopy of hyperpolarized succinate-1-13C-2,3-d2 is reported in vitro and in vivo using a clinical-scale, biplanar (80 cm-gap) 48.7 mT permanent magnet with a high homogeneity magnetic field. Non-localized 13C NMR spectra were recorded at 0.52 MHz resonance frequency over the torso of a tumor-bearing mouse every 2 s. Hyperpolarized 13C NMR signals with linewidths of ∼3 Hz (corresponding to ∼6 ppm) were recorded in vitro (2 mL in a syringe) and in vivo (over a mouse torso). Comparison of the full width at half maximum (FWHM) for 13C NMR spectra acquired at 48.7 mT and at 4.7 T in a small-animal MRI scanner demonstrates a factor of ∼12 improvement for the 13C resonance linewidth attainable at 48.7 mT compared to that at 4.7 T in vitro. 13C hyperpolarized succinate-1-13C resonance linewidths in vivo are at least one order of magnitude narrower at 48.7 mT compared to those observed in high-field (≥3 T) studies employing HP contrast agents. The demonstrated high-resolution 13C in vivo spectroscopy could be useful for high-sensitivity spectroscopic studies involving monitoring HP agent uptake or detecting metabolism using HP contrast agents with sufficiently large 13C chemical shift differences.

  16. Neutron halo state of 13C

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Angular distributions for the 12C(d, p)13C transfer reactionshave been measured at Ed = 11.8 MeV, and compared with those of the DWBA calculations. By means of this comparison, density distributions of the last neutron in the ground state and the first 1/2+ state of 13C are extracted. The properties of these states in 13C have also been studied in the framework of the nonlinear relativistic mean-field theory with NL-SH parameters. It is found that the first 1/2+ state in 13C is a neutron halo state shown by both the experimental and theoretical density distributions of the last neutron.

  17. Unambiguous assigning of the signals of the nuclear magnetic resonance spectra of {sup 1} H and {sup 13} C of monoterpenes using computational methods; Asignacion inequivoca de las senales del espectro de resonancia magnetica nuclear de {sup 1} H y {sup 13} C de monoterpenos empleando metodos computacionales

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, F.; Cuevas, G.; Tenorio, J.; Rochin, A.L. [Universidad Nacional Autonoma de Mexico, Instituto de Quimica, A.P. 70213, 04510 Mexico D.F. (Mexico)

    2000-07-01

    Ab initio calculations, within the frame of Density Functional Theory were carried out on camphene and {alpha}-pinene. The {sup 1} H and {sup 13} C shifts were estimated according to the recently developed Sum-Over-States Density Functional Perturbation Theory (SOS-DFPT) as implemented in a modified deMon-KS program. The calculations not only reproduced the observed NMR chemical shifts, quantitatively in the case of {sup 1} H nuclei and qualitatively in the case of {sup 13} C nuclei, but also allow assigning unambiguously the signal on these spectra. (Author)

  18. Proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H correlation experiment for structural analysis in rigid solids under ultrafast-MAS above 60 kHz

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States); Nishiyama, Yusuke [JEOL RESONANCE Inc., Musashino, Akishima, Tokyo 196-8558 (Japan); RIKEN CLST-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045 (Japan)

    2015-10-28

    A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.

  19. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    Science.gov (United States)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  20. Halogen effect on structure and 13C NMR chemical shift of 3,6-disubstituted-N-alkyl carbazoles

    DEFF Research Database (Denmark)

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof

    2013-01-01

    Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory and their 13C NMR isotropic nuclear shieldings were predicted using density functional theory (DFT). The model compounds contained 9H-, N-methyl and N-ethyl derivatives......). The decreasing electronegativity of the halogen substituent (F, Cl, Br and I) was reflected in both nonrelativistic and relativistic NMR results as decreased values of chemical shifts of carbon atoms attached to halogen (C3 and C6) leading to a strong sensitivity to halogen atom type at 3 and 6 positions...

  1. Global ocean climatology of the 13C Suess effect and preindustrial δ13C

    Science.gov (United States)

    Eide, Marie; Olsen, Are; Ninnemann, Ulysses; Eldevik, Tor; Johannessen, Truls

    2017-04-01

    We present the first observationally based estimate of the full global ocean 13C Suess effect since preindustrial times. This was constructed by using Olsen and Ninnemann's [2010] back-calculation method to calculate the 13C Suess effect with data from 29 cruises spanning the world ocean. We find a strong 13C Suess effect in the upper 1000 m of all basins, with strongest decrease in the Subtropical Gyres of the Northern Hemisphere, where δ13C has decreased by more than 0.8‰ since the industrial revolution. At greater depths, a significant 13C Suess effect can only be detected in the northern parts of the North Atlantic Ocean. The magnitude of the 13C Suess effect is correlated with the concentration of anthropogenic carbon, but their relationship varying strongly between water masses, reflecting the degree to which source waters are equilibrated with the atmospheric 13C Suess effect before sinking. From the 13C Suess effect estimates, we have estimated the preindustrial δ13C (δ13CPI) along the 29 sections. Further, we developed regional multilinear regression equations, which were applied on the World Ocean Atlas data to construct the δ13CPI climatology, which reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values, and we find that in some regions in the high northern latitudes, the gradient in modern ocean δ13C is completely reversed compared to the preindustrial. Maximum δ13CPI, of up to 1.8‰, are found in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and Apparent Oxygen Utilization (AOU) than between δ13C and phosphate that

  2. Molecular structure of crude beeswax studied by solid-state 13C NMR.

    Science.gov (United States)

    Kameda, Tsunenori

    2004-01-01

    13C solid-state NMR experiments were performed to investigate the structure of beeswax in the native state (crude beeswax) for the first time. From quantitative direct polarization 13C MAS NMR spectrum, it was found that the fraction of internal-chain methylene (int-(CH2)) component compared to other components of crude beeswax was over 95%. The line shape of the int-(CH2) carbon resonance region was comprehensively analyzed in terms of NMR chemical shift. The 13C broad peak component covering from 31 to 35 ppm corresponds to int-(CH2) carbons with trans conformation in crystalline domains, whereas the sharp signal at 30.3 ppm corresponds to gauche conformation in the non-crystalline domain. From peak deconvolution of the aliphatic region, it was found that over 85% of the int-(CH2) has a crystal structure and several kinds of molecular packing for int-(CH2), at least three, exist in the crystalline domain.

  3. Variable-temperature 13C solid-state NMR study of the molecular structure of honeybee wax and silk.

    Science.gov (United States)

    Kameda, Tsunenori; Tamada, Yasushi

    2009-01-01

    To elucidate the native-state crystal structure of beeswax from the Japanese bee, Apis cerana japonica, we determined the relationship between temperature and the 13C solid-state nuclear magnetic resonance (NMR) chemical shift of methylene carbon of beeswax, with comparison to n-alkanes and polyethylene in the orthorhombic, monoclinic, or triclinic crystal form. Variable-temperature 13C solid-state NMR observations of n-alkanes and polyethylene revealed that the chemical shifts of methylene carbon in the orthorhombic crystal form increased linearly with increasing temperature, that of the triclinic form decreased, and that of the monoclinic form was unaltered. These relations were compared with results of variable-temperature 13C solid-state NMR observation of beeswax. Results clarified that the two crystal forms comprising the beeswax in the native state are orthorhombic and monoclinic. The variable-temperature 13C solid-state NMR observations were also applied to interpret the differential scanning calorimetry (DSC) curve of beeswax. They were used to clarify the structural changes of beeswax for widely various temperatures. For beeswax secreted by the Japanese bee, the transition from the orthorhombic form to the rotator phase occurred at 36 degrees C, that is from the crystalline to the intermediate state at 45 degrees C. Moreover, the variable-temperature 13C solid-state NMR spectrum of honeybee silk in the native state was observed. Results demonstrated that the secondary structures of honeybee silk proteins in the native state comprised coexisting alpha-helix and beta-sheet conformations and that the amount of alpha-helices was greater. The alpha-helix content of honeybee silk was compared with that of hornet silk produced by Vespa larvae.

  4. Electric dipole moment of 13C

    Science.gov (United States)

    Yamanaka, Nodoka; Yamada, Taiichi; Hiyama, Emiko; Funaki, Yasuro

    2017-06-01

    We calculate for the first time the electric dipole moment (EDM) of 13C generated by the isovector charge conjugation-parity (CP)-odd pion exchange nuclear force in the α -cluster model, which describes well the structures of low-lying states of the 13C nucleus. The linear dependence of the EDM of 13C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be d13C=-0.33 dn-0.0020 G¯π(1 ) . The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the 1 /21- state and the opposite-parity (1 /2+ ) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of 13C in determining the new physics beyond the standard model.

  5. Dereplication of depsides from the lichen Pseudevernia furfuracea by centrifugal partition chromatography combined to {sup 13}C nuclear magnetic resonance pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Oettl, Sarah K. [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria); Hubert, Jane, E-mail: jane.hubert@univ-reims.fr [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Nuzillard, Jean-Marc [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Stuppner, Hermann [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria); Renault, Jean-Hugues [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Rollinger, Judith M. [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria)

    2014-10-10

    Highlights: • The major depsides of a lichen extract were directly identified within mixtures. • The initial extract was rapidly fractionated by CPC in the pH-zone refining mode. • Hierarchical clustering of {sup 13}C NMR signals resulted in the identification of depside molecular skeletons. • {sup 13}C chemical shift clusters were assigned to structures using a {sup 13}C NMR database. • Six depsides were unambiguously identified by this approach. - Abstract: Lichens produce a diversity of secondary metabolites, among them depsides comprised of two or more hydroxybenzoic acid units linked by ester, ether, or C-C-bonds. During classic solid support-based purification processes, depsides are often hydrolyzed and in many cases time, consuming procedures result only in the isolation of decomposition products. In an attempt to avoid extensive purification steps while maintaining metabolite structure integrity, we propose an alternative method to identify the major depsides of a lichen crude extract (Pseudevernia furfuracea var. ceratea (Ach.) D. Hawksw., Parmeliaceae) directly within mixtures. Exploiting the acidic character of depsides and differences in polarity, the extract was fractionated by centrifugal partition chromatography in the pH-zone refining mode resulting in twelve simplified mixtures of depsides. After {sup 13}C nuclear magnetic resonance analysis of the produced fractions, the major molecular structures were directly identified within the fraction series by using a recently developed pattern recognition method, which combines spectral data alignment and hierarchical clustering analysis. The obtained clusters of {sup 13}C chemical shifts were assigned to their corresponding molecular structures with the help of an in-house {sup 13}C NMR chemical shift database, resulting in six unambiguously identified compounds, namely methyl β-orcinolcarboxylate (1), atranorin (2), 5-chloroatranorin (3), olivetol carboxylic acid (4), olivetoric acid (5

  6. A probabilistic model for secondary structure prediction from protein chemical shifts.

    Science.gov (United States)

    Mechelke, Martin; Habeck, Michael

    2013-06-01

    Protein chemical shifts encode detailed structural information that is difficult and computationally costly to describe at a fundamental level. Statistical and machine learning approaches have been used to infer correlations between chemical shifts and secondary structure from experimental chemical shifts. These methods range from simple statistics such as the chemical shift index to complex methods using neural networks. Notwithstanding their higher accuracy, more complex approaches tend to obscure the relationship between secondary structure and chemical shift and often involve many parameters that need to be trained. We present hidden Markov models (HMMs) with Gaussian emission probabilities to model the dependence between protein chemical shifts and secondary structure. The continuous emission probabilities are modeled as conditional probabilities for a given amino acid and secondary structure type. Using these distributions as outputs of first- and second-order HMMs, we achieve a prediction accuracy of 82.3%, which is competitive with existing methods for predicting secondary structure from protein chemical shifts. Incorporation of sequence-based secondary structure prediction into our HMM improves the prediction accuracy to 84.0%. Our findings suggest that an HMM with correlated Gaussian distributions conditioned on the secondary structure provides an adequate generative model of chemical shifts.

  7. Analysing Groundwater Using the 13C Isotope

    Science.gov (United States)

    Awad, Sadek

    The stable isotope of the carbon atom (13C) give information about the type of the mineralisation of the groundwater existing during the water seepage and about the recharge conditions of the groundwater. The concentration of the CO2(aq.) dissolved during the infiltration of the water through the soil's layers has an effect on the mineralisation of this water. The type of the photosynthesis's cycle (C-3 or C-4 carbon cycle) can have a very important role to determine the conditions (closed or open system) of the mineralisation of groundwater. The isotope 13C of the dissolved CO2 in water give us a certain information about the origin and the area of pollution of water. The proportion of the biogenic carbon and its percentage in the mineralisation of groundwater is determined by using the isotope 13C.

  8. States of 13C with abnormal radii

    Directory of Open Access Journals (Sweden)

    Demyanova A.S.

    2016-01-01

    Full Text Available Differential cross-sections of the elastic and inelastic 13C + α scattering were measured at E(α = 90 MeV. The root mean-square radii( of 13C nucleus in the states: 8.86 (1/2−, 3.09 (1/2+ and 9.90 (3/2− MeV were determined by the Modified diffraction model (MDM. The radii of the first two levels are enhanced compared to that of the ground state of 13C, confirming the suggestion that the 8.86 MeV state is an analogue of the Hoyle state in 12C and the 3.09 MeV state has a neutron halo. Some indications to the abnormally small size of the 9.90 MeV state were obtained.

  9. Synthesis, XRD crystal structure, spectroscopic characterization (FT-IR, 1H and 13C NMR), DFT studies, chemical reactivity and bond dissociation energy studies using molecular dynamics simulations and evaluation of antimicrobial and antioxidant activities of a novel chalcone derivative, (E)-1-(4-bromophenyl)-3-(4-iodophenyl)prop-2-en-1-one

    Science.gov (United States)

    Zainuri, D. Alwani; Arshad, Suhana; Khalib, N. Che; Razak, I. Abdul; Pillai, Renjith Raveendran; Sulaiman, S. Fariza; Hashim, N. Shafiqah; Ooi, K. Leong; Armaković, Stevan; Armaković, Sanja J.; Panicker, C. Yohannan; Van Alsenoy, C.

    2017-01-01

    In the present study, the title compound named as (E)-1-(4-bromophenyl)-3-(4-iodophenyl)prop-2-en-1-one was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system with P21/c space group with the unit cell parameters of a = 16.147 (2) Å, b = 14.270 (2) Å, c = 5.9058 (9) Å, β = 92.577 (3)° and Z = 4. The molecular geometry obtained from X-Ray structure determination was optimized by Density Functional Theory (DFT) using B3LYP/6-31G+(d, p)/Lanl2dz(f) method in the ground state. The IR spectrum was recorded and interpreted in details with the aid of Density Functional Theory (DFT) calculations and Potential Energy Distribution (PED) analysis. In order to investigate local reactivity properties of the title molecule, we have conducted DFT calculations of average local ionization energy surface and Fukui functions which were mapped to the electron density surface. In order to predict the open air stability and possible degradation properties, within DFT approach, we have also calculated bond dissociation energies. 1H and 13C NMR spectra were recorded and chemical shifts were calculated theoretically and compared with the experimental values. In addition, in vitro antimicrobial results show that the title compound has great potential of antibacterial activity against Staphylococcus aureus, Staphylococcus epidermidis and Micrococcus luteus bacteria and antifungal activity against Candida albicans in comparison to some reported chalcone derivatives. Antioxidant studies revealed the highest metal chelating activity of this compound.

  10. Short-term d13C changes in cultivated soils from Mexico

    Science.gov (United States)

    Lounejeva, E.; Etchevers, J.; Morales Puente, P.; Cienfuegos Alvarado, E.; Sedov, S.; Solleiro, E.; Hidalgo, C.

    2007-05-01

    The soils of the Mexican Volcanic Belt are part of ecosystems subjected to strong human impact during the last six centuries. One measurable characteristic of the soil is the stable carbon isotopic relation of the soil organic matter (SOM) or d13C. The d13C SOM parameter is a genetic characteristic of soil reflecting the relative proportion of C3 and C4 that comes from colonizing plants having different photosynthetic C pathway and is used as a high-spatial resolution tool to infer paleoenvironmental changes.The d13C mean signatures of C3 and C4 plants are -27 and -13 %o, respectively. This work focuses on short-term changes in d13C on soils subjected to controlled agricultural practices during 2002-2005 in two sites of Mexico with similar annual precipitation and temperature. The tepetate was broken up 20y ago and ameliorated with fertilizers and organic matter. In both sites three experimental treatments consisting of traditional soil management and two variations of this one were evaluated. Traditional treatment implies low fertilizer and any chemical input, sowing annual crops during the rainy season and, in general, using low energy input. The crops planted were: legumes C3, oat C3, and a mixture of maizeC4 and beanC3, and wheatC3. The Improved and Organic treatments, had higher input of N and P as chemical fertilizers, and of organic manure (manure or compost), respectively. Soil samples were collected from the plow layer in Tlaxcala and in Michoacán, before C4 maize was planted. An Andisol from a pine-oak (C3 species) forest close to the Atecuaro site was also sampled up to 40 cm. This soil was considered a reference site not recently influenced by human activity. To analyze the d13C ratios of the SOM carbonate free samples, a routine combustion method and mass spectrometry (Finnigan MAT250) were used. In both agricultural sites a general excess of C3 species over C4 was evidenced through a mass balance equation derived from experimental d13C values

  11. A 1H, 13C and 15N NMR study in solution and in the solid state of six N-substituted pyrazoles and indazoles.

    Science.gov (United States)

    Claramunt, Rosa M; Santa María, M Dolores; Sanz, Dionisia; Alkorta, Ibon; Elguero, José

    2006-05-01

    Three N-substituted pyrazoles and three N-substituted indazoles [1-(4-nitrophenyl)-3,5-dimethylpyrazole (1), 1-(2,4-dinitrophenyl)-3,5-dimethylpyrazole (2), 1-tosyl-pyrazole (3), 1-p-chlorobenzoylindazole (4), 1-tosylinda-zole (5) and 2-(2-hydroxy-2-phenylethyl)-indazole (6)] have been studied by NMR spectroscopy in solution (1H, 13C, 15N) and in the solid state (13C, 15N). The chemical shifts have been compared with GIAO/DFT calculated absolute shieldings. Some discrepancies have been analyzed.

  12. High resolution 4D HPCH experiment for sequential assignment of {sup 13}C-labeled RNAs via phosphodiester backbone

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Saurabh; Stanek, Jan [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre (Poland); Cevec, Mirko; Plavec, Janez [National Institute of Chemistry, Slovenian NMR Centre (Slovenia); Koźmiński, Wiktor, E-mail: kozmin@chem.uw.edu.pl [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre (Poland)

    2015-11-15

    The three-dimensional structure determination of RNAs by NMR spectroscopy requires sequential resonance assignment, often hampered by assignment ambiguities and limited dispersion of {sup 1}H and {sup 13}C chemical shifts, especially of C4′/H4′. Here we present a novel through-bond 4D HPCH NMR experiment involving phosphate backbone where C4′–H4′ correlations are resolved along the {sup 1}H3′–{sup 31}P spectral planes. The experiment provides high peak resolution and effectively removes ambiguities encountered during assignments. Enhanced peak dispersion is provided by the inclusion of additional {sup 31}P and {sup 1}H3′ dimensions and constant-time evolution of chemical shifts. High spectral resolution is obtained by using non-uniform sampling in three indirect dimensions. The experiment fully utilizes the isotopic {sup 13}C-labeling with evolution of C4′ carbons. Band selective {sup 13}C inversion pulses are used to achieve selectivity and prevent signal dephasing due to the C4′–C3′ and C4′–C5′ homonuclear couplings. Multiple quantum line narrowing is employed to minimize sensitivity loses. The 4D HPCH experiment is verified and successfully applied to a non-coding 34-nt RNA consisting typical structure elements and a 14-nt RNA hairpin capped by cUUCGg tetraloop.

  13. The electric dipole moment of $^{13}$C

    CERN Document Server

    Yamanaka, Nodoka; Hiyama, Emiko; Funaki, Yasuro

    2016-01-01

    We calculate for the first time the electric dipole moment (EDM) of $^{13}$C generated by the isovector CP-odd pion exchange nuclear force in the $\\alpha$-cluster model, which describes well the structures of low lying states of the $^{13}$C nucleus. The linear dependence of the EDM of $^{13}$C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be $d_{^{13}{\\rm C}} = -0.33 d_n - 0.0012 \\bar G_\\pi^{(1)}$. The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the $1/2^-_1$ state and the opposite parity ($1/2^+$) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of $^{13}$C in determining the new physics beyond the standard model.

  14. Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions

    CERN Document Server

    Christensen, Anders S

    2015-01-01

    This report covers the development of a new, fast method for calculating the backbone amide proton chemical shifts in proteins. Through quantum chemical calculations, structure-based forudsiglese the chemical shift for amidprotonen in protein has been parameterized. The parameters are then implemented in a computer program called Padawan. The program has since been implemented in protein folding program Phaistos, wherein the method andvendes to de novo folding of the protein structures and to refine the existing protein structures.

  15. RMN 13C de chalcones protonées: Factorisation des interactions intramoléculaires

    Science.gov (United States)

    Membrey, François; Doucet, Jean-Pierre

    13C study of protonated para, para' disubstituted chalcones XC 6H 4CHCHC(OH) +C 6H 4Y, shows for the chemical shift of the carbenium center important deviations from a strict additivity of Substituent Induced Shifts observed in the corresponding monosubstituted ions. By collecting the experimental data into sub-populations where only one substituent (X or Y) varies—the other remaining fixed—a network of linear homogeneous correlations (δ/δ) is obtained. Their largely variable slopes indicate that the susceptibility of the carbenium site to the perturbations induced by one of the substituent groups depends on the nature of the other substituent group. The definition of 'Intrinsic Substituent Parameters' (derived from the SCS observed, in these ions, on the aromatic para positions) allows to separate the action of a substituent group on the electronic interaction mechanism and the global perturbation detected on the observation site. For a quantitative evaluation of these interactions, a Factorization Model is proposed, where deviations to additivity of the SCS are expressed as a product of the intrinsic parameters of X and Y groups. This model is successfully applied to 13C spectra of protonated chalcones and benzophenones. The parallelism between these intrinsic group effects and the SCS observed in monosubstituted benzenes points out the prime importance in these cationic systems, of π polarisation effects modulating the electron transfer toward the carbenium center within a concerted π-inductive mesomeric action.

  16. Ab Initio Calculation of Nuclear Magnetic Resonance Chemical Shift Anisotropy Tensors 1. Influence of Basis Set on the Calculation of 31P Chemical Shifts

    Energy Technology Data Exchange (ETDEWEB)

    Alam, T.M.

    1998-09-01

    The influence of changes in the contracted Gaussian basis set used for ab initio calculations of nuclear magnetic resonance (NMR) phosphorous chemical shift anisotropy (CSA) tensors was investigated. The isotropic chemical shitl and chemical shift anisotropy were found to converge with increasing complexity of the basis set at the Hartree-Fock @IF) level. The addition of d polarization function on the phosphorous nucIei was found to have a major impact of the calculated chemical shi~ but diminished with increasing number of polarization fimctions. At least 2 d polarization fimctions are required for accurate calculations of the isotropic phosphorous chemical shift. The introduction of density fictional theory (DFT) techniques through tie use of hybrid B3LYP methods for the calculation of the phosphorous chemical shift tensor resulted in a poorer estimation of the NMR values, even though DFT techniques result in improved energy and force constant calculations. The convergence of the W parametem with increasing basis set complexity was also observed for the DFT calculations, but produced results with consistent large deviations from experiment. The use of a HF 6-31 l++G(242p) basis set represents a good compromise between accuracy of the simulation and the complexity of the calculation for future ab initio calculations of 31P NMR parameters in larger complexes.

  17. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Jerome M.; Erylimaz, Ertan; Cowburn, David, E-mail: cowburn@cowburnlab.org, E-mail: David.cowburn@einstein.yu.edu [Albert Einstein College of Medicine of Yeshiva University, Department of Biochemistry (United States)

    2015-01-15

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  18. Propionate metabolism in the rat heart by 13C n.m.r. spectroscopy.

    Science.gov (United States)

    Sherry, A D; Malloy, C R; Roby, R E; Rajagopal, A; Jeffrey, F M

    1988-01-01

    High-resolution 13C n.m.r. spectroscopy has been used to examine propionate metabolism in the perfused rat heart. A number of tricarboxylic acid (TCA) cycle intermediates are observable by 13C n.m.r. in hearts perfused with mixtures of pyruvate and propionate. When the enriched 13C-labelled nucleus originates with pyruvate, the resonances of the intermediates appear as multiplets due to formation of multiply-enriched 13C-labelled isotopomers, whereas when the 13C-labelled nucleus originates with propionate, these same intermediates appear as singlets in the 13C spectrum since entry of propionate into the TCA cycle occurs via succinyl-CoA. An analysis of the isotopomer populations in hearts perfused with [3-13C]pyruvate plus unlabelled propionate indicates that about 27% of the total pyruvate pool available to the heart is derived directly from unlabelled propionate. This was substantiated by perfusing a heart for 2 h with [3-13C]propionate as the only available exogenous substrate. Under these conditions, all of the propionate consumed by the heart, as measured by conventional chemical analysis, ultimately entered the oxidative pathway as [2-13C] or [3-13C]pyruvate. This is consistent with entry of propionate into the TCA cycle intermediate pools as succinyl-CoA and concomitant disposal of malate to pyruvate via the malic enzyme. 13C resonances arising from enriched methylmalonate and propionylcarnitine are also detected in hearts perfused with [3-13C] or [1-13C]propionate which suggests that 13C n.m.r. may be useful as a non-invasive probe in vivo of metabolic abnormalities involving the propionate pathway, such as methylmalonic aciduria or propionic acidaemia. PMID:3178775

  19. Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.

    Science.gov (United States)

    Fritzsching, Keith J; Kim, Jihyun; Holland, Gregory P

    2013-08-01

    The interaction between cholesterol (Chol) and phospholipids in bilayers was investigated for the ternary model lipid rafts, DOPC/eSM/Chol and DOPC/DPPC/Chol, with differential scanning calorimetry (DSC) and (13)C cross polarization magic angle spinning (CP-MAS) solid-state NMR. The enthalpy and transition temperature (Tm) of the Lα liquid crystalline phase transition from DSC was used to probe the thermodynamics of the different lipids in the two systems as a function of Chol content. The main chain (13)C (CH2)n resonance is resolved in the (13)C CP-MAS NMR spectra for the unsaturated (DOPC) and saturated (eSM or DPPC) chain lipid in the ternary lipid raft mixtures. The (13)C chemical shift of this resonance can be used to detect differences in chain ordering and overall interactions with Chol for the different lipid constituents in the ternary systems. The combination of DSC and (13)C CP-MAS NMR results indicate that there is a preferential interaction between SM and Chol below Tm for the DOPC/eSM/Chol system when the Chol content is ≤20mol%. In contrast, no preferential interaction between Chol and DPPC is observed in the DOPC/DPPC/Chol system above or below Tm. Finally, (13)C CP-MAS NMR resolves two Chol environments in the DOPC/eSM/Chol system below Tm at Chol contents >20mol% while, a single Chol environment is observed for DOPC/DPPC/Chol at all compositions.

  20. A robust algorithm for optimizing protein structures with NMR chemical shifts.

    Science.gov (United States)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S

    2015-11-01

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and "PDB worthy". The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca.

  1. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  2. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    Science.gov (United States)

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm.

  3. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...... QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift...

  4. Spectroscopy of exotic states of 13C

    Directory of Open Access Journals (Sweden)

    Demyanova A.S.

    2014-03-01

    Full Text Available The differential cross-sections of the elastic and inelastic 13C + α scattering were measured at E(α = 65 MeV. The radii of the states: 8.86 (1/2−, 3.09 (1/2+ and 9.90 (3/2− MeV were determined by the Modified diffraction model (MDM. The radii of the first two levels are enhanced relatively that of the ground state of 13C, confirming the suggestion that the 8.86 MeV state could be an analogue of the Hoyle state in 12C and the 3.09 MeV state has a neutron halo. No enhancement of the radius of the 9.90 MeV state was observed.

  5. Stereospecific assignment of the asparagine and glutamine sidechain amide protons in proteins from chemical shift analysis.

    Science.gov (United States)

    Harsch, Tobias; Schneider, Philipp; Kieninger, Bärbel; Donaubauer, Harald; Kalbitzer, Hans Robert

    2017-02-01

    Side chain amide protons of asparagine and glutamine residues in random-coil peptides are characterized by large chemical shift differences and can be stereospecifically assigned on the basis of their chemical shift values only. The bimodal chemical shift distributions stored in the biological magnetic resonance data bank (BMRB) do not allow such an assignment. However, an analysis of the BMRB shows, that a substantial part of all stored stereospecific assignments is not correct. We show here that in most cases stereospecific assignment can also be done for folded proteins using an unbiased artificial chemical shift data base (UACSB). For a separation of the chemical shifts of the two amide resonance lines with differences ≥0.40 ppm for asparagine and differences ≥0.42 ppm for glutamine, the downfield shifted resonance lines can be assigned to H(δ21) and H(ε21), respectively, at a confidence level >95%. A classifier derived from UASCB can also be used to correct the BMRB data. The program tool AssignmentChecker implemented in AUREMOL calculates the Bayesian probability for a given stereospecific assignment and automatically corrects the assignments for a given list of chemical shifts.

  6. Absence of hyperfine effects in 13C-graphene spin-valve devices

    NARCIS (Netherlands)

    Wojtaszek, M.; Vera-Marun, I.J.; Whiteway, E.; Hilke, M.; Wees, B.J. van

    2014-01-01

    The carbon isotope 13C, in contrast to 12C, possesses a nuclear magnetic moment and can induce electron spin dephasing in graphene. This effect is usually neglected due to the low abundance of 13C in natural carbon allotropes (~1%). Chemical vapor deposition (CVD) allows for artificial synthesis of

  7. Absence of hyperfine effects in 13C-graphene spin-valve devices

    NARCIS (Netherlands)

    Wojtaszek, M.; Vera-Marun, I.J.; Whiteway, E.; Hilke, M.; Wees, B.J. van

    2014-01-01

    The carbon isotope 13C, in contrast to 12C, possesses a nuclear magnetic moment and can induce electron spin dephasing in graphene. This effect is usually neglected due to the low abundance of 13C in natural carbon allotropes (~1%). Chemical vapor deposition (CVD) allows for artificial synthesis of

  8. /sup 14/C isotope effects in /sup 1/H and /sup 13/C N. M. R. spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Funke, C.W.; Kaspersen, F.M.; Sperling, E.M.G.; Wagenaars, G.N.

    1986-03-15

    Replacement of /sup 12/C by /sup 14/C induces small upfield shifts of the directly bonded /sup 1/H and /sup 13/C nuclei; these shift differences can be used to measure the extent of /sup 14/C labelling.

  9. Hepatic UDP-glucose 13C isotopomers from [U-13C]glucose: a simple analysis by 13C NMR of urinary menthol glucuronide.

    Science.gov (United States)

    Mendes, Ana C; Caldeira, M Madalena; Silva, Claudia; Burgess, Shawn C; Merritt, Matthew E; Gomes, Filipe; Barosa, Cristina; Delgado, Teresa C; Franco, Fatima; Monteiro, Pedro; Providencia, Luis; Jones, John G

    2006-11-01

    Menthol glucuronide was isolated from the urine of a healthy 70-kg female subject following ingestion of 400 mg of peppermint oil and 6 g of 99% [U-(13)C]glucose. Glucuronide (13)C-excess enrichment levels were 4-6% and thus provided high signal-to-noise ratios (SNRs) for confident assignment of (13)C-(13)C spin-coupled multiplet components within each (13)C resonance by (13)C NMR. The [U-(13)C]glucuronide isotopomer derived via direct pathway conversion of [U-(13)C]glucose to [U-(13)C]UDP-glucose was resolved from [1,2,3-(13)C(3)]- and [1,2-(13)C(2)]glucuronide isotopomers derived via Cori cycle or indirect pathway metabolism of [U-(13)C]glucose. In a second study, a group of four overnight-fasted patients (63 +/- 10 kg) with severe heart failure were given peppermint oil and infused with [U-(13)C]glucose for 4 hr (14 mg/kg prime, 0.12 mg/kg/min constant infusion) resulting in a steady-state plasma [U-(13)C]glucose enrichment of 4.6% +/- 0.6%. Menthol glucuronide was harvested and glucuronide (13)C-isotopomers were analyzed by (13)C NMR. [U-(13)C]glucuronide enrichment was 0.6% +/- 0.1%, and the sum of [1,2,3-(13)C(3)] and [1,2-(13)C(2)]glucuronide enrichments was 0.9% +/- 0.2%. From these data, flux of plasma glucose to hepatic UDPG was estimated to be 15% +/- 4% that of endogenous glucose production (EGP), and the Cori cycle accounted for at least 32% +/- 10% of GP. (c) 2006 Wiley-Liss, Inc.

  10. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    Science.gov (United States)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  11. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates.

    Science.gov (United States)

    Azurmendi, Hugo F; Freedberg, Darón I

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for (1)D(CC) determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a (13)C-(13)C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield (1)J(CC) and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for J(HH) determinations, but adapted and extended to applications where, like in sugars, large one-bond (13)C-(13)C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and

  12. PPM-One: a static protein structure based chemical shift predictor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dawei; Brüschweiler, Rafael, E-mail: bruschweiler.1@osu.edu [The Ohio State University, Campus Chemical Instrument Center (United States)

    2015-07-15

    We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM-One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs.

  13. Supramolecular chemical shift reagents inducing conformational transitions: NMR analysis of carbohydrate homooligomer mixtures

    DEFF Research Database (Denmark)

    Beeren, Sophie; Meier, Sebastian

    2015-01-01

    We introduce the concept of supramolecular chemical shift reagents as a tool to improve signal resolution for the NMR analysis of homooligomers. Non-covalent interactions with the shift reagent can constrain otherwise flexible analytes inducing a conformational transition that results in signal s...

  14. Complete {sup 1}H and {sup 13}C NMR assignments and anti fungal activity of two 8-hydroxy flavonoids in mixture

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Susana; Smania Junior, Artur [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Microbiologia e Parasitologia. Lab. de Antibioticos; Pizzolatti, Moacir G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica; Schripsema, Jan; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Quimica e Funcao de Proteinas e Peptideos (LQFPP); Branco, Alexsandro [Universidade Estadual de Feira de Santana, BA (Brazil). Dept. de Saude. Lab. de Fitoquimica]. E-mail: branco@uefs.br

    2007-06-15

    A mixture of the two new flavonols 8-hydroxy-3, 4', 5, 6, 7-pentamethoxyflavone (1) and 8-hydroxy-3, 3', 4', 5, 6, 7-hexamethoxyflavone (2) was isolated from a commercial sample of Citrus aurantifolia. An array of one- ({sup 1}H NMR, {l_brace}{sup 1}H{r_brace} {sup -13}C NMR, and APT{sup -13}C NMR) and two-dimensional NMR techniques (COSY, NOESY, HMQC and HMBC) was used to achieve the structural elucidation and the complete {sup 1}H and {sup 13}C chemical shift assignments of these natural compounds. In addition, the antifungal activity of these compounds against phytopathogenic and human pathogenic fungi was investigated. (author)

  15. MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters.

    Science.gov (United States)

    Karlo, Christoph A; Donati, Olivio F; Burger, Irene A; Zheng, Junting; Moskowitz, Chaya S; Hricak, Hedvig; Akin, Oguz

    2013-06-01

    To assess qualitative and quantitative chemical shift MRI parameters of renal cortical tumours. A total of 251 consecutive patients underwent 1.5-T MRI before nephrectomy. Two readers (R1, R2) independently evaluated all tumours visually for a decrease in signal intensity (SI) on opposed- compared with in-phase chemical shift images. In addition, SI was measured on in- and opposed-phase images (SI(IP), SI(OP)) and the chemical shift index was calculated as a measure of percentage SI change. Histopathology served as the standard of reference. A visual decrease in SI was identified significantly more often in clear cell renal cell carcinoma (RCCs) (R1, 73 %; R2, 64 %) and angiomyolipomas (both, 80 %) than in oncocytomas (29 %, 12 %), papillary (29 %, 17 %) and chromophobe RCCs (13 %, 9 %; all, P chemical shift index was significantly greater in clear cell RCC and angiomyolipoma than in the other histological subtypes (both, P analysis (concordance correlation coefficient, 0.80). A decrease in SI on opposed-phase chemical shift images is not an identifying feature of clear cell RCCs or angiomyolipomas, but can also be observed in oncocytomas, papillary and chromophobe RCCs. After excluding angiomyolipomas, a decrease in SI of more than 25 % was diagnostic for clear cell RCCs. • Chemical shift MRI offers new information about fat within renal tumours. • Opposed-phase signal decrease can be observed in all renal cortical tumours. • A greater than 25 % decrease in signal appears to be diagnostic for clear cell RCCs.

  16. Chemical shift MRI can aid in the diagnosis of indeterminate skeletal lesions of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Douis, H. [University Hospital Birmingham, Department of Radiology, Birmingham (United Kingdom); Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Davies, A.M. [Royal Orthopaedic Hospital, Department of Radiology, Birmingham (United Kingdom); Jeys, L. [Royal Orthopaedic Hospital, Department of Orthopaedic Oncology, Birmingham (United Kingdom); Sian, P. [Royal Orthopaedic Hospital, Department of Spinal Surgery and Spinal Oncology, Birmingham (United Kingdom)

    2016-04-15

    To evaluate the role of chemical shift MRI in the characterisation of indeterminate skeletal lesions of the spine as benign or malignant. Fifty-five patients (mean age 54.7 years) with 57 indeterminate skeletal lesions of the spine were included in this retrospective study. In addition to conventional MRI at 3 T which included at least sagittal T1WI and T2WI/STIR sequences, patients underwent chemical shift MRI. A cut-off value with a signal drop-out of 20 % was used to differentiate benign lesions from malignant lesions (signal drop-out <20 % being malignant). There were 45 benign lesions and 12 malignant lesions. Chemical shift imaging correctly diagnosed 33 of 45 lesions as benign and 11 of 12 lesions as malignant. In contrast, there were 12 false positive cases and 1 false negative case based on chemical shift MRI. This yielded a sensitivity of 91.7 %, a specificity of 73.3 %, a negative predictive value of 97.1 %, a positive predictive value of 47.8 % and a diagnostic accuracy of 82.5 %. Chemical shift MRI can aid in the characterisation of indeterminate skeletal lesions of the spine in view of its high sensitivity in diagnosing malignant lesions. Chemical shift MRI can potentially avoid biopsy in a considerable percentage of patients with benign skeletal lesions of the spine. (orig.)

  17. Measurement of the principal values of the chemical-shift tensors of overlapping protonated and unprotonated carbons with the 2D-SUPER technique and dipolar dephasing (DD-SUPER)

    Science.gov (United States)

    Liu, Wei; Wang, Wei D.; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2010-09-01

    A modified 2D-SUPER technique is demonstrated to allow independent measurement of the principal values of the chemical-shift tensors of overlapping protonated and unprotonated carbons. The insertion of a dipolar-dephasing period into the sequence causes loss of signal from protonated carbons. The spectrum obtained with this modification allows one to determine the principal values of the unprotonated carbons with high precision. Subsequent fitting of the usual 2D-SUPER spectrum, with the chemical-shift parameters of the unprotonated carbons fixed, gives the parameters of the overlapped resonances of the protonated carbons. As an example, we report the determination of the 13C chemical-shift parameters of the carbons of form II of piroxicam. The experimental results are compared with those obtained from calculations using the DFT/GIAO method. Potential applications of this method are discussed.

  18. Correlation analysis of the /sup 13/C NMR spectra of some para-substituted benzaldehyde oximes and their anions

    Energy Technology Data Exchange (ETDEWEB)

    Rutkovskii, G.V.; Zmeikov, V.P.

    1987-06-20

    For the case of the /sup 13/C NMR spectra of a series of para-substituted benzaldehyde oximes and their anions it was shown that to describe the chemical shifts of all the carbon atoms of the benzene ring and the exocyclic CH group it is necessary to use three-parameter equations with the parameters F and R (which characterize the inductive and resonance effects respectively of the substituents), and Q (which corresponds to the paramagnetic interaction between the substituents and the carbon atoms).

  19. Data of 1H/13C NMR spectra and degree of substitution for chitosan alkyl urea

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2016-06-01

    Full Text Available The data shown in this article are related to the subject of an article in Carbohydrate Polymers, entitled “Synthesis and characterization of chitosan alkyl urea” [1]. 1H NMR and 13C NMR spectra of chitosan n-octyl urea, chitosan n-dodecyl urea and chitosan cyclohexyl urea are displayed. The chemical shifts of proton and carbon of glucose skeleton in these chitosan derivatives are designated in detail. Besides, 1H NMR spectra of chitosan cyclopropyl urea, chitosan tert-butyl urea, chitosan phenyl urea and chitosan N,N-diethyl urea and the estimation of the degree of substitution are also presented. The corresponding explanations can be found in the above-mentioned article.

  20. Total assignment of 1H and 13C NMR data for the sesquiterpene lactone 15-deoxygoyazensolide.

    Science.gov (United States)

    Heleno, Vladimir Constantino Gomes; Crotti, Antônio Eduardo Miller; Constantino, Mauricio Gomes; Lopes, Norberto Peporine; Lopes, João Luis Callegari

    2004-03-01

    We describe a complete analysis of the 1H and 13C spectra of the anti-inflamatory, schistossomicidal and trypanosomicidal sesquiterpene lactone 15-deoxygoyazensolide. This lactone, with a structure similar to other important ones, was studied by NMR techniques such as COSY, HMQC, HMBC, Jres and NOE experiments. The comparison of the data with some computational results led to an unequivocal assignment of all hydrogen and carbon chemical shifts, even eliminating some previous ambiguities. We were able to determine all hydrogen coupling constants (J) and signal multiplicities and to confirm the stereochemistry. A new method for the determination of the relative position of the lactonization and the position of the ester group on a medium-sized ring by NMR was developed.

  1. Multiple-quantum HCN-CCH-TOCSY experiment for 13C/15N labeled RNA oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weidong; Jiang Licong [Memorial Sloan-Kettering Cancer Center (United States)

    1999-12-15

    A multiple-quantum 3D HCN-CCH-TOCSY experiment is presented for the assignment of RNA ribose resonances. The experiment makes use of the chemical shift dispersion of N1 of pyrimidine and N9 of purine to distinguish the ribose spin systems. It provides an alternative approach for the assignment of ribose resonances to the currently used COSY- and TOCSY-type experiments in which either {sup 13}C or {sup 1}H is utilized to distinguish the different spin systems. Compared to the single-quantum version, the sensitivity of the multiple-quantum HCN-CCH-TOCSY experiment is enhanced on average by a factor of 2 for a 23-mer RNA aptamer complexed with neomycin.

  2. Interactions of calcium nitrate with pyranosides in water: A 13C NMR study

    Science.gov (United States)

    Zhuo, Kelei; Wang, Yaping; Zhao, Yang; Liu, Qian; Wang, Jianji

    2008-11-01

    The 13C NMR spectra of methyl α- and β- D-galactopyranosides, and methyl α- and β- D-glucopyranosides were recorded and show that the Δ( δC-4) values for methyl α- and β- D-galactopyranosides increase most rapidly, whereas those for methyl α- and β- D-glucopyranosides vary hardly with increasing molality of calcium nitrate. It can be concluded that ax-OH-4 interacts more strongly with Ca 2+ than eq-OH-4 group, namely, the Ca 2+ ion interaction with ax-OH-4 leads to a stronger deshielding of the C-4 atom. Compared with other C atoms, the chemical shifts of both C-1 and C-5 atoms in these two types of glycosides decrease relatively rapidly as molality of calcium nitrate increases, indicating that the nitrate ion attractions for these glycosides cause a relatively strong enhancing shielding effect of C-1 and C-5 atoms.

  3. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  4. Optoacoustic 13C-breath test analyzer

    Science.gov (United States)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  5. Magnetic couplings in the chemical shift of paramagnetic NMR.

    Science.gov (United States)

    Vaara, Juha; Rouf, Syed Awais; Mareš, Jiří

    2015-10-13

    We apply the Kurland-McGarvey (J. Magn. Reson. 1970, 2, 286) theory for the NMR shielding of paramagnetic molecules, particularly its special case limited to the ground-state multiplet characterized by zero-field splitting (ZFS) interaction of the form S·D·S. The correct formulation for this problem was recently presented by Soncini and Van den Heuvel (J. Chem. Phys. 2013, 138, 054113). With the effective electron spin quantum number S, the theory involves 2S+1 states, of which all but one are low-lying excited states, between which magnetic couplings take place by Zeeman and hyperfine interactions. We investigate these couplings as a function of temperature, focusing on both the high- and low-temperature behaviors. As has been seen in work by others, the full treatment of magnetic couplings is crucial for a realistic description of the temperature behavior of NMR shielding up to normal measurement temperatures. At high temperatures, depending on the magnitude of ZFS, the effect of magnetic couplings diminishes, and the Zeeman and hyperfine interactions become effectively averaged in the thermally occupied states of the multiplet. At still higher temperatures, the ZFS may be omitted altogether, and the shielding properties may be evaluated using a doublet-like formula, with all the 2S+1 states becoming effectively degenerate at the limit of vanishing magnetic field. We demonstrate these features using first-principles calculations of Ni(II), Co(II), Cr(II), and Cr(III) complexes, which have ZFS of different sizes and signs. A non-monotonic inverse temperature dependence of the hyperfine shift is predicted for axially symmetric integer-spin systems with a positive D parameter of ZFS. This is due to the magnetic coupling terms that are proportional to kT at low temperatures, canceling the Curie-type 1/kT prefactor of the hyperfine shielding in this case.

  6. Chemical shifts assignments of the archaeal MC1 protein and a strongly bent 15 base pairs DNA duplex in complex.

    Science.gov (United States)

    Loth, Karine; Landon, Céline; Paquet, Françoise

    2015-04-01

    MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55 in laboratory growth conditions and is structurally unrelated to other DNA-binding proteins. MC1 functions are to shape and to protect DNA against thermal denaturation by binding to it. Therefore, MC1 has a strong affinity for any double-stranded DNA. However, it recognizes and preferentially binds to bent DNA, such as four-way junctions and negatively supercoiled DNA minicircles. Combining NMR data, electron microscopy data, biochemistry, molecular modelisation and docking approaches, we proposed recently a new type of DNA/protein complex, in which the monomeric protein MC1 binds on the concave side of a strongly bent 15 base pairs DNA. We present here the NMR chemical shifts assignments of each partner in the complex, (1)H (15)N MC1 protein and (1)H (13)C (15)N bent duplex DNA, as first step towards the first experimental 3D structure of this new type of DNA/protein complex.

  7. Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    Directory of Open Access Journals (Sweden)

    Pedro A. Gómez Damián

    2014-01-01

    Full Text Available Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues.

  8. Effect of shifting cultivation on soil physical and chemical properties in Bandarban hill district, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Khandakar Showkat Osman; M. Jashimuddin; S. M. Sirajul Haque; Sohag Miah

    2013-01-01

    This study reports the effects of shifting cultivation at slashing stage on soil physicochemical properties at Bandarban Sadar Upazila in Chittagong Hill Tracts of Bangladesh. At this initial stage of shifting cultivation no general trend was found for moisture content, maximum water holding capacity, field capacity, dry and moist bulk density, parti-cle density for some chemical properties between shifting cultivated land and forest having similar soil texture. Organic matter was significantly (p≤0.05) lower in 1-year and 3-year shifting cultivated lands and higher in 2-year shifting cultivation than in adjacent natural forest. Significant differences were also found for total N, exchangeable Ca, Mg and K and in CEC as well as for available P. Slashed area showed higher soil pH. Deterioration in land quality starts from burning of slashing materials and continues through subsequent stages of shifting cultivation.

  9. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...... mechanics / molecular mechanics (QM/MM) computations of chemical shieldings. Several improvements to the predictor is ongoing, where among other things, kernel based machine learning techniques have successfully been used to improve the quantum mechanical level of theory used in the predictions....... experimental data in the form of chemical shifts, as well as distance restraints obtained either experimentally or from sequence co-evolution. Of notable results, One of the determined structures, aKMT, was not solved experimentally at the time, but was found to match the recently published X-ray structure...

  10. A 2D {sup 13}C-CEST experiment for studying slowly exchanging protein systems using methyl probes: an application to protein folding

    Energy Technology Data Exchange (ETDEWEB)

    Bouvignies, Guillaume; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2012-08-15

    A 2D {sup 13}C Chemical Exchange Saturation Transfer (CEST) experiment is presented for studying slowly exchanging protein systems using methyl groups as probes. The utility of the method is first established through studies of protein L, a small protein, for which chemical exchange on the millisecond time-scale is not observed. Subsequently the approach is applied to a folding exchange reaction of a G48M mutant Fyn SH3 domain, for which only cross-peaks derived from the folded ('ground') state are present in spectra. Fits of {sup 15}N and methyl {sup 13}C CEST profiles of the Fyn SH3 domain establish that the exchange reaction involves an interchange between folded and unfolded conformers, although elevated methyl {sup 13}C transverse relaxation rates for some of the residues of the unfolded ('invisible, excited') state indicate that it likely exchanges with a third conformation as well. In addition to the kinetics of the exchange reaction, methyl carbon chemical shifts of the excited state are also obtained from analysis of the {sup 13}C CEST data.

  11. Prediction algorithm for amino acid types with their secondary structure in proteins (PLATON) using chemical shifts.

    Science.gov (United States)

    Labudde, D; Leitner, D; Krüger, M; Oschkinat, H

    2003-01-01

    The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the alpha-spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely alpha-helix, beta-sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.

  12. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    CERN Document Server

    Christensen, Anders S; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to refine protein structures to this...

  13. Porcine cytosolic aspartate aminotransferase reconstituted with (4 prime - sup 13 C)pyridoxal phosphate. pH- and ligand-induced changes of the coenzyme observed by sup 13 C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tsuyoshi (Kumamoto Univ. College of Medical Science (Japan) Kumamoto Univ. Medical School (Japan)); Tanase, Sumio; Nagashima, Fujio; Morino, Yoshimasa (Kumamoto Univ. Medical School (Japan)); Scott, A.I.; Williams, H.J.; Stolowich, N.J. (Texas A and M Univ., College Station (United States))

    1991-03-05

    Apoenzyme samples of aspartate aminotransferase (AspAT) purified from the cytosolic fraction of pig heart were reconstituted with (4{prime}-{sup 13}C)pyridoxal 5{prime}-phosphate (pyridoxal-P). The {sup 13}C NMR spectra of AspAT samples thus generated established the chemical shift of 165.3 ppm for C4{prime} of the coenzyme bound as an internal aldimine with lysine 258 of the enzyme at pH 5. In the absence of ligands the chemical shift of C4{prime} was shown to be pH dependent, shifting 5 ppm upfield to a constant value of 160.2 ppm above pH 8, the resulting pK{sub a} of 6.3 in agreement with spectrophotometric titrations. The addition of the competitive inhibitor succinate to the internal aldimine raises the pK{sub a} of the imine to 7.8, consistent with the theory of charge neutralization in the active site. In the presence of saturating concentrations of 2-methylaspartic acid the C4{prime} signal of the coenzyme was shown to be invariant with pH and located at 162.7 ppm, midway between the observed chemical shifts of the protonated and unprotonated forms of the internal aldimine. Finally, the line widths of the C4{prime} resonance under the various conditions were measured and qualitatively compared. The results are discussed in terms of the current mechanism and molecular models of the active site of AspAT.

  14. Mapping protein-protein interaction by {sup 13}C'-detected heteronuclear NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bertini, Ivano, E-mail: ivanobertini@cerm.unifi.it; Felli, Isabella C. [University of Florence, Department of Chemistry (Italy); Gonnelli, Leonardo [University of Florence, Magnetic Resonance Center (CERM) (Italy); Pierattelli, Roberta [University of Florence, Department of Chemistry (Italy); Spyranti, Zinovia; Spyroulias, Georgios A. [University of Patras, Department of Pharmacy (Greece)

    2006-10-15

    The copper-mediated protein-protein interaction between yeast Atx1 and Ccc2 has been examined by protonless heteronuclear NMR and compared with the already available {sup 1}H-{sup 15}N HSQC information. The observed chemical shift variations are analyzed with respect to the actual solution structure, available through intermolecular NOEs. The advantage of using the CON-IPAP spectrum with respect to the {sup 1}H-{sup 15}N HSQC resides in the increased number of signals observed, including those of prolines. CBCACO-IPAP experiments allow us to focus on the interaction region and on side-chain carbonyls, while a newly designed CEN-IPAP experiment on side-chains of lysines. An attempt is made to rationalize the chemical shift variations on the basis of the structural data involving the interface between the proteins and the nearby regions. It is here proposed that protonless{sup 13}C direct-detection NMR is a useful complement to {sup 1}H based NMR spectroscopy for monitoring protein-protein and protein-ligand interactions.

  15. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds

    DEFF Research Database (Denmark)

    Hansen, Poul Erik

    2015-01-01

    The paper deals with the use of isotope effects on chemical shifts in characterizing intramolecular hydrogen bonds. Both so-called resonance-assisted (RAHB) and non-RAHB systems are treated. The importance of RAHB will be discussed. Another very important issue is the borderline between “static......” and tautomeric systems. Isotope effects on chemical shifts are particularly useful in such studies. All kinds of intramolecular hydrogen bonded systems will be treated, typical hydrogen bond donors: OH, NH, SH and NH+, typical acceptors C=O, C=N, C=S C=N−. The paper will be deal with both secondary and primary...... isotope effects on chemical shifts. These two types of isotope effects monitor the same hydrogen bond, but from different angles...

  16. Neutron orbital radii in {sup 13} C; Radios orbitales neutronicos en {sup 13} C

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Murillo, G.; Ramirez, J.J.; Avila, O.L. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1988-01-15

    In this work its were carried out experimental measurements of the reaction {sup 12}C(d,p) {sup 13}C at low energy. Preliminary results of a DWBA analysis of the data are presented, and the possibility of using this reaction to obtain the orbital radius of the transferred neutron is investigated. (Author)

  17. From NMR chemical shifts to amino acid types: Investigation of the predictive power carried by nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Antoine; Malliavin, Therese E. [Institut de Biologie Physico-Chimique, Laboratoire de Biochimie Theorique, CNRS UPR 9080 (France)], E-mail: therese.malliavin@ibpc.fr; Nicolas, Pierre; Delsuc, Marc-Andre [INRA - Domaine de Vilvert, Unite Mathematique Informatique et Genome (France)

    2004-09-15

    An approach to automatic prediction of the amino acid type from NMR chemical shift values of its nuclei is presented here, in the frame of a model to calculate the probability of an amino acid type given the set of chemical shifts. The method relies on systematic use of all chemical shift values contained in the BioMagResBank (BMRB). Two programs were designed, one (BMRB stats) for extracting statistical chemical shift parameters from the BMRB and another one (RESCUE2) for computing the probabilities of each amino acid type, given a set of chemical shifts. The Bayesian prediction scheme presented here is compared to other methods already proposed: PROTYP (Grzesiek and Bax, J. Biomol. NMR, 3, 185-204, 1993) RESCUE (Pons and Delsuc, J. Biomol. NMR, 15, 15-26, 1999) and PLATON (Labudde et al., J. Biomol. NMR, 25, 41-53, 2003) and is found to be more sensitive and more specific. Using this scheme, we tested various sets of nuclei. The two nuclei carrying the most information are C{sub {beta}} and H{sub {beta}}, in agreement with observations made in Grzesiek and Bax, 1993. Based on four nuclei: H{sub {beta}}, C{sub {beta}}, C{sub {alpha}} and C', it is possible to increase correct predictions to a rate of more than 75%. Taking into account the correlations between the nuclei chemical shifts has only a slight impact on the percentage of correct predictions: indeed, the largest correlation coefficients display similar features on all amino acids.

  18. Conformational exchange of aromatic side chains characterized by L-optimized TROSY-selected {sup 13}C CPMG relaxation dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Weininger, Ulrich; Respondek, Michal; Akke, Mikael, E-mail: mikael.akke@bpc.lu.se [Center for Molecular Protein Science, Lund University, Department of Biophysical Chemistry (Sweden)

    2012-09-15

    Protein dynamics on the millisecond time scale commonly reflect conformational transitions between distinct functional states. NMR relaxation dispersion experiments have provided important insights into biologically relevant dynamics with site-specific resolution, primarily targeting the protein backbone and methyl-bearing side chains. Aromatic side chains represent attractive probes of protein dynamics because they are over-represented in protein binding interfaces, play critical roles in enzyme catalysis, and form an important part of the core. Here we introduce a method to characterize millisecond conformational exchange of aromatic side chains in selectively {sup 13}C labeled proteins by means of longitudinal- and transverse-relaxation optimized CPMG relaxation dispersion. By monitoring {sup 13}C relaxation in a spin-state selective manner, significant sensitivity enhancement can be achieved in terms of both signal intensity and the relative exchange contribution to transverse relaxation. Further signal enhancement results from optimizing the longitudinal relaxation recovery of the covalently attached {sup 1}H spins. We validated the L-TROSY-CPMG experiment by measuring fast folding-unfolding kinetics of the small protein CspB under native conditions. The determined unfolding rate matches perfectly with previous results from stopped-flow kinetics. The CPMG-derived chemical shift differences between the folded and unfolded states are in excellent agreement with those obtained by urea-dependent chemical shift analysis. The present method enables characterization of conformational exchange involving aromatic side chains and should serve as a valuable complement to methods developed for other types of protein side chains.

  19. Protein Structure Validation and Refinement Using Chemical Shifts Derived from Quantum Mechanics

    DEFF Research Database (Denmark)

    Bratholm, Lars Andersen

    In this thesis, my work involving dierent aspects of protein structure determination by computer modeling is presented. Determination of several protein's native fold were carried out with Markov chain Monte Carlo simulations in the PHAISTOS protein structure simulation framework, utilizing...... to within 3 A. Furthermore, a fast quantum mechanics based chemical shift predictor was developed together with methodology for using chemical shifts in structure simulations. The developed predictor was used for renement of several protein structures and for reducing the computational cost of quantum...

  20. 13C isotope effects on infrared bands of quenched carbonaceous composite (QCC)

    CERN Document Server

    Wada, S; Yamamura, I; Murata, Y; Tokunaga, A T

    2003-01-01

    We investigate carbon isotope effects on the infrared bands of a laboratory analogue of carbonaceous dust, the quenched carbonaceous composite (QCC), synthesized from a plasma gas of methane with various 12C/13C ratios. Peak shifts to longer wavelengths due to the substitution of 12C by 13C are clearly observed in several absorption bands. The shifts are almost linearly proportional to the 13C fraction. New features associated with 13C are not seen, indicating that the infrared bands in the QCC are not very localized vibration modes but come from vibrations associated with rather large carbon structures. An appreciable peak shift is detected in the 6.2 micron band, which is attributed to a carbon-carbon vibration. A peak shift in an out-of-plane bending mode of aromatic C--H at 11.4 micron is also observed, while only a small shift is detected in the 3.3 micron band, which arises from a C--H stretching mode. The present experiment suggests that peak shifts in the unidentified infrared (UIR) bands, particularl...

  1. Stereochemistry of Complex Marine Natural Products by Quantum Mechanical Calculations of NMR Chemical Shifts: Solvent and Conformational Effects on Okadaic Acid

    Directory of Open Access Journals (Sweden)

    Humberto J. Domínguez

    2014-01-01

    Full Text Available Marine organisms are an increasingly important source of novel metabolites, some of which have already inspired or become new drugs. In addition, many of these molecules show a high degree of novelty from a structural and/or pharmacological point of view. Structure determination is generally achieved by the use of a variety of spectroscopic methods, among which NMR (nuclear magnetic resonance plays a major role and determination of the stereochemical relationships within every new molecule is generally the most challenging part in structural determination. In this communication, we have chosen okadaic acid as a model compound to perform a computational chemistry study to predict 1H and 13C NMR chemical shifts. The effect of two different solvents and conformation on the ability of DFT (density functional theory calculations to predict the correct stereoisomer has been studied.

  2. Differential protonation and dynamic structure of doxylamine succinate in solution using 1H and 13C NMR.

    Science.gov (United States)

    Somashekar, B S; Nagana Gowda, G A; Ramesha, A R; Khetrapal, C L

    2004-07-01

    A protonation and dynamic structural study of doxylamine succinate, a 1:1 salt of succinic acid with dimethyl-[2-(1-phenyl-1-pyridin-2-yl-ethoxy)ethyl]amine, in solution using one- and two-dimensional 1H and 13C NMR experiments at variable temperature and concentration is presented. The two acidic protons of the salt doxylamine succinate are in 'intermediate' exchange at room temperature, as evidenced by the appearance of a broad signal. This signal evolves into two distinct signals below about -30 degrees C. A two-dimensional 1H-1H double quantum filtered correlation experiment carried out at -55 degrees C shows protonation of one of the acidic protons to the dimethylamine nitrogen. A two-dimensional rotating frame 1H-1H NOE experiment at the same temperature reveals that the other proton remains with the succinate moiety. Comparison of the 1H and 13C chemical shifts and the 13C T1 relaxation times of the salt with those of the free base further substantiate the findings.

  3. Complete ¹H and 13C NMR assignments and anti fungal activity of two 8-hydroxy flavonoids in mixture

    Directory of Open Access Journals (Sweden)

    Susana Johann

    2007-06-01

    Full Text Available A mixture of the two new flavonols 8-hydroxy-3, 4', 5, 6, 7-pentamethoxyflavone (1 and 8-hydroxy-3, 3', 4', 5, 6, 7-hexamethoxyflavone (2 was isolated from a commercial sample of Citrus aurantifolia. An array of one- (¹HNMR, {¹H}-13C NMR, and APT-13C NMR and two-dimensional NMR techniques (COSY, NOESY, HMQC and HMBC was used to achieve the structural elucidation and the complete ¹H and 13C chemical shift assignments of these natural compounds. In addition, the antifungal activity of these compounds against phytopathogenic and human pathogenic fungi was investigated.Os flavonóis 8-hidroxi-3, 4', 5, 6, 7-pentametoxiflavona (1 e 8-hidroxi-3, 3', 4', 5, 6, 7-hexametoxiflavona (2 foram isolados em mistura a partir de uma amostra comercial de Citrus aurantifolia. A determinação estrutural e a inequívoca atribuição dos sinais de deslocamento químico dos átomos de hidrogênio e carbono destes compostos naturais foram realizadas através da análise dos espectros de RMN 1D e 2D, incluindo COSY, NOESY, HMQC e HMBC. Em adição, a atividade antifúngica destes compostos contra fungos patogênicos também foiinvestigada.

  4. Ontogenetic shift in response to prey-derived chemical cues in prairie rattlesnakes Crotalus viridis viridis

    Institute of Scientific and Technical Information of China (English)

    Anthony J.SAVIOLA; David CHISZAR; Stephen P.MACKESSY

    2012-01-01

    Snakes often have specialized diets that undergo a shift from one prey type to another depending on the life stage of the snake.Crotalus viridis viridis (prairie rattlesnake) takes different prey at different life stages,and neonates typically prey on ectotherms,while adults feed almost entirely on small endotherms.We hypothesized that elevated rates of tongue flicking to chemical stimuli should correlate with particular prey consumed,and that this response shifts from one prey type to another as individuals age.To examine if an ontogenetic shift in response to chemical cues occurred,we recorded the rate of tongue flicking for 25 neonate,20 subadult,and 20 adult (average SVL=280.9,552,789.5 mm,respectively) wild-caught C.v.viridis to chemical stimuli presented on a cotton-tipped applicator; water-soluble cues from two ectotherms (prairie lizard,Sceloporus undulatus,and house gecko,Hemidactylusfrenatus),two endotherms (deer mouse,Peromyscus maniculatus and lab mouse,Mus musculus),and water controls were used.Neonates tongue flicked significantly more to chemical cues of their common prey,S.undulatus,than to all other chemical cues; however,the response to this lizard's chemical cues decreased in adult rattlesnakes.Subadults tongue flicked with a higher rate of tongue flicking to both S.undulatus and P.maniculatus than to all other treatments,and adults tongue flicked significantly more to P.maniculatus than to all other chemical cues.In addition,all three sub-classes demonstrated a greater response for natural prey chemical cues over chemical stimuli of prey not encountered in the wild (M.musculus and H.frenatus).This shift in chemosensory response correlated with the previously described ontogenetic shifts in C.v.viridis diet.Because many vipers show a similar ontogenetic shift in diet and venom composition,we suggest that this shift in prey cue discrimination is likely a general phenomenon among viperid snakes.

  5. Energy gap in tunneling spectroscopy: effect of the chemical potential shift

    Science.gov (United States)

    Fedotov, N. I.; Zaitsev-Zotov, S. V.

    2016-12-01

    We study the effect of a shift of the chemical potential level on the tunneling conductance spectra. In the systems with gapped energy spectra, significant chemical-potential dependent distortions of the differential tunneling conductance curves, dI/dV, arise in the gap region. An expression is derived for the correction of the dI/dV, which in a number of cases was found to be large. The sign of the correction depends on the chemical potential level position with respect to the gap. The correction of the dI/dV associated with the chemical potential shift has a nearly linear dependence on the tip-sample separation z and vanishes at z → 0.

  6. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C [University of Illinois, Urbana-Champaign; Nesbitt, Anna E [University of Illinois, Urbana-Champaign; Hallock, Michael J [University of Illinois, Urbana-Champaign; Rupasinghe, Sanjeewa [University of Illinois, Urbana-Champaign; Tang, Ming [University of Illinois, Urbana-Champaign; Harris, Jason B [ORNL; Baudry, Jerome Y [ORNL; Schuler, Mary A [University of Illinois, Urbana-Champaign; Rienstra, Chad M [University of Illinois, Urbana-Champaign

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  7. VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, Michael C.; Nesbitt, Anna E.; Hallock, Michael J. [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Rupasinghe, Sanjeewa G. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Tang Ming [University of Illinois at Urbana-Champaign, Department of Chemistry (United States); Harris, Jason; Baudry, Jerome [University of Tennessee, Department of Biochemistry, Cellular and Molecular Biology (United States); Schuler, Mary A. [University of Illinois at Urbana-Champaign, Department of Cell and Developmental Biology (United States); Rienstra, Chad M., E-mail: rienstra@illinois.edu [University of Illinois at Urbana-Champaign, Department of Chemistry (United States)

    2012-01-15

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., {sup 13}C-{sup 13}C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library of 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.

  8. hNCOcanH pulse sequence and a robust protocol for rapid and unambiguous assignment of backbone ((1)H(N), (15)N and (13)C') resonances in (15)N/(13)C-labeled proteins.

    Science.gov (United States)

    Kumar, Dinesh; Hosur, Ramakrishna V

    2011-09-01

    A three-dimensional nuclear magnetic resonance (NMR) pulse sequence named as hNCOcanH has been described to aid rapid sequential assignment of backbone resonances in (15)N/(13)C-labeled proteins. The experiment has been derived by a simple modification of the previously described HN(C)N pulse sequence [Panchal et al., J. Biomol. NMR 20 (2001) 135-147]; t2 evolution is used to frequency label (13)C' rather than (15)N (similar trick has also been used in the design of hNCAnH pulse sequence from hNcaNH [Frueh et al., JACS, 131 (2009) 12880-12881]). The modification results in a spectrum equivalent to HNCO, but in addition to inter-residue correlation peaks (i.e. Hi , Ci-1), the spectrum also contains additional intra-residue correlation peaks (i.e. Hi-1 , Ci-1) in the direct proton dimension which has maximum resolution. This is the main strength of the experiment and thus, even a small difference in amide (1) H chemical shifts (5-6 Hz) can be used for establishing a sequential connectivity. This experiment in combination with the HNN experiment described previously [Panchal et al., J. Biomol. NMR 20 (2001) 135-147] leads to a more robust assignment protocol for backbone resonances ((1) H(N) , (15)N) than could be derived from the combination of HNN and HN(C)N experiments [Bhavesh et al., Biochemistry, 40 (2001) 14727-14735]. Further, this new protocol enables assignment of (13)C' resonances as well. We believe that the experiment and the protocol presented here will be of immense value for structural-and functional-proteomics research by NMR. Performance of this experiment has been demonstrated using (13)C/(15)N labeled ubiquitin.

  9. Synthesis and structural analysis of 13C-fatty acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 13C-labeled fatty acids octanoic-1-13C acid and palmitic-l-13C acid were synthetically prepared from Ba 13CO3. The yield of the former was more than 90% and that of the latter was above 85%. MS, IR, 1H-NMR and 13NMR were performed to analyze the structures of the two 13C-fatty acids, compared with their unlabeled fatty acids.

  10. Database proton NMR chemical shifts for RNA signal assignment and validation

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Shawn; Heng Xiao [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States); Johnson, Bruce A., E-mail: bruce@onemoonscientific.com [University of Maryland, Baltimore County, Department of Chemistry and Biochemistry (United States); Summers, Michael F., E-mail: summers@hhmi.umbc.edu [University of Maryland, Baltimore County, Howard Hughes Medical Institute (United States)

    2013-01-15

    The Biological Magnetic Resonance Data Bank contains NMR chemical shift depositions for 132 RNAs and RNA-containing complexes. We have analyzed the {sup 1}H NMR chemical shifts reported for non-exchangeable protons of residues that reside within A-form helical regions of these RNAs. The analysis focused on the central base pair within a stretch of three adjacent base pairs (BP triplets), and included both Watson-Crick (WC; G:C, A:U) and G:U wobble pairs. Chemical shift values were included for all 4{sup 3} possible WC-BP triplets, as well as 137 additional triplets that contain one or more G:U wobbles. Sequence-dependent chemical shift correlations were identified, including correlations involving terminating base pairs within the triplets and canonical and non-canonical structures adjacent to the BP triplets (i.e. bulges, loops, WC and non-WC BPs), despite the fact that the NMR data were obtained under different conditions of pH, buffer, ionic strength, and temperature. A computer program (RNAShifts) was developed that enables convenient comparison of RNA {sup 1}H NMR assignments with database predictions, which should facilitate future signal assignment/validation efforts and enable rapid identification of non-canonical RNA structures and RNA-ligand/protein interaction sites.

  11. Can the current density map topology be extracted from the nucleus independent chemical shifts?

    NARCIS (Netherlands)

    Van Damme, Sofie; Acke, Guillaume; Havenith, Remco W. A.; Bultinck, Patrick

    2016-01-01

    Aromatic compounds are characterised by the presence of a ring current when in a magnetic field. As a consequence, current density maps are used to assess (the degree of) aromaticity of a compound. However, often a more discrete set of so-called Nucleus Independent Chemical Shift (NICS) values is us

  12. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts.

    Science.gov (United States)

    YongE, Feng; GaoShan, Kou

    2015-01-01

    Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew's correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.

  13. H-1 chemical shift imaging characterization of human brain tumor and edema

    NARCIS (Netherlands)

    Sijens, PE; Oudkerk, M

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) H-1 chemical shift imaging results at different repetition times (TR = 1500 and 5000 ms; T1: n = 19) and

  14. Using NMR chemical shifts to calculate the propensity for structural order and disorder in proteins

    NARCIS (Netherlands)

    Tamiola, Kamil; Mulder, Frans A. A.

    2012-01-01

    NMR spectroscopy offers the unique possibility to relate the structural propensities of disordered proteins and loop segments of folded peptides to biological function and aggregation behaviour. Backbone chemical shifts are ideally suited for this task, provided that appropriate reference data are a

  15. The statistical shift of the chemical potential causing anomalous conductivity in hydrogenated microcrystalline silicon

    NARCIS (Netherlands)

    Lof, R.W.; Schropp, R.E.I.

    2010-01-01

    The behavior of the electrical conductivity in hydrogenated microcrystalline silicon (μ c-Si:H) that is frequently observed is explained by considering the statistical shift in the chemical potential as a function of the crystalline fraction (Xc), the dangling bond density (N db), and the doping den

  16. Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics

    DEFF Research Database (Denmark)

    Christensen, Anders Steen; Linnet, Troels Emtekær; Borg, Mikael;

    2013-01-01

    We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level...

  17. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.

    Science.gov (United States)

    Halbert, Stéphanie; Copéret, Christophe; Raynaud, Christophe; Eisenstein, Odile

    2016-02-24

    The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δ(iso)) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δ(iso). This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σ(MC) and π*(MC) orbitals under the action of the magnetic field, is analogous to that resulting from coupling σ(CC) and π*(CC) in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δ(iso) in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σ(MC) and π*(MC) vs this between σ(CC) and π*(CC) in ethylene. This effect also explains why the highest value of δ(iso) is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to π(MX)) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δ(iso).

  18. Magnetic Shift of the Chemical Freeze-out and Electric Charge Fluctuations

    Science.gov (United States)

    Fukushima, Kenji; Hidaka, Yoshimasa

    2016-09-01

    We discuss the effect of a strong magnetic field on the chemical freeze-out points in ultrarelativistic heavy-ion collisions. As a result of inverse magnetic catalysis or magnetic inhibition, the crossover onset to hot and dense matter out of quarks and gluons should be shifted to a lower temperature. To quantify this shift we employ the hadron resonance gas model and an empirical condition for the chemical freeze-out. We point out that the charged particle abundances are significantly affected by the magnetic field so that the electric charge fluctuation is largely enhanced, especially at high baryon density. The charge conservation partially cancels the enhancement, but our calculation shows that the electric charge fluctuation could serve as a magnetometer. We find that the fluctuation exhibits a crossover behavior rapidly increased for e B ≳(0.4 GeV )2, while the charge chemical potential has smoother behavior with an increasing magnetic field.

  19. Combining ambiguous chemical shift mapping with structure-based backbone and NOE assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2011-01-01

    Chemical shift mapping is an important technique in NMRbased drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically. However, automated methods are necessary for high-throughput drug screening. We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C- labeling, to resolve the ambiguities for a one-toone mapping. On the three proteins, it achieves an average accuracy of 94% or better. Copyright © 2011 ACM.

  20. Stereoelectronic effects on 1H nuclear magnetic resonance chemical shifts in methoxybenzenes

    DEFF Research Database (Denmark)

    Lambert, Maja; Olsen, Lars; Jaroszewski, Jerzy W

    2006-01-01

    the Ar-OCH3 torsion out of the ring plane, resulting in large stereoelectronic effects on the chemical shift of Hpara. Conformational searches and geometry optimizations for 3-16 at the B3LYP/6-31G** level, followed by B3LYP/6-311++G(2d,2p) calculations for all low-energy conformers, gave excellent......Investigation of all O-methyl ethers of 1,2,3-benzenetriol and 4-methyl-1,2,3-benzenetriol (3-16) by 1H NMR spectroscopy and density-functional calculations disclosed practically useful conformational effects on 1H NMR chemical shifts in the aromatic ring. While the conversion of phenol (2......) to anisole (1) causes only small positive changes of 1H NMR chemical shifts (Delta delta Hmeta > Hpara, the experimental O-methylation induced shifts in ortho-disubstituted phenols are largest for Hpara, Delta delta equals; 0.19 +/- 0.02 ppm (n = 11...

  1. Stereochemical investigation of selegiline HCl with /sup 1/H and /sup 13/C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Podanyi, B. (CHINOIN Gyogyszer- es Vegyeszeti Termekek Gyara, Budapest (Hungary))

    1982-12-01

    Selegiline HCl, the bioactive substance of the antiparkinsonic medicine, JUMEX was investigated by NMR spectroscopy. The dominant conformer was determined. Optically active shift-reagent was used for the determination of optical purity. The /sup 13/C spectrum was analyzed, and molecular dynamics was investigated at different temperatures.

  2. PACSY, a relational database management system for protein structure and chemical shift analysis.

    Science.gov (United States)

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L

    2012-10-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.

  3. Modeling proteins using a super-secondary structure library and NMR chemical shift information.

    Science.gov (United States)

    Menon, Vilas; Vallat, Brinda K; Dybas, Joseph M; Fiser, Andras

    2013-06-04

    A remaining challenge in protein modeling is to predict structures for sequences with no sequence similarity to any experimentally solved structure. Based on earlier observations, the library of protein backbone supersecondary structure motifs (Smotifs) saturated about a decade ago. Therefore, it should be possible to build any structure from a combination of existing Smotifs with the help of limited experimental data that are sufficient to relate the backbone conformations of Smotifs between target proteins and known structures. Here, we present a hybrid modeling algorithm that relies on an exhaustive Smotif library and on nuclear magnetic resonance chemical shift patterns without any input of primary sequence information. In a test of 102 proteins, the algorithm delivered 90 homology-model-quality models, among them 24 high-quality ones, and a topologically correct solution for almost all cases. The current approach opens a venue to address the modeling of larger protein structures for which chemical shifts are available.

  4. Two-Dimensional Proton Chemical-Shift Imaging of Human Muscle Metabolites

    Science.gov (United States)

    Hu, Jiani; Willcott, M. Robert; Moore, Gregory J.

    1997-06-01

    Large lipid signals and strong susceptibility gradients introduced by muscle-bone interfaces represent major technical challenges forin vivoproton MRS of human muscle. Here, the demonstration of two-dimensional proton chemical-shift imaging of human muscle metabolites is presented. This technique utilizes a chemical-shift-selective method for water and lipid suppression and automatic shimming for optimal homogeneity of the magnetic field. The 2D1H CSI technique described facilitates the acquisition of high-spatial-resolution spectra, and allows one to acquire data from multiple muscle groups in a single experiment. A preliminary investigation utilizing this technique in healthy adult males (n= 4) revealed a highly significant difference in the ratio of the creatine to trimethylamine resonance between the fast and slow twitch muscle groups examined. The technique is robust, can be implemented on a commercial scanner with relative ease, and should prove to be a useful tool for both clinical and basic investigators.

  5. Chemical shift selective magnetic resonance imaging of the optic nerve in patients with acute optic neuritis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J

    1988-01-01

    of the 16 patients, abnormalities were seen. In one patient with bilateral symptoms, signal hyperintensity and swelling of the right side of the chiasm were found. In another patient the optic nerve was found diffusely enlarged with only a marginally increased signal in the second echo. In the third patient......Optic neuritis is often the first manifestation of multiple sclerosis (MS). Sixteen patients with acute optic neuritis and one patient with benign intracranial hypertension (BIH) were investigated by magnetic resonance imaging, using a chemical shift selective double spin echo sequence. In 3...... an area of signal hyperintensity and swelling was seen in the left optic nerve. In the patient with BIH the subarachnoid space which surrounds the optic nerves was enlarged. Even using this refined pulse sequence, avoiding the major artefact in imaging the optic nerve, the chemical shift artefact, lesions...

  6. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  7. An extrapolation scheme for solid-state NMR chemical shift calculations

    Science.gov (United States)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  8. First-principles calculation of core-level binding energy shift in surface chemical processes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Combined with third generation synchrotron radiation light sources, X-ray photoelectron spectroscopy (XPS) with higher energy resolution, brilliance, enhanced surface sensitivity and photoemission cross section in real time found extensive applications in solid-gas interface chemistry. This paper reports the calculation of the core-level binding energy shifts (CLS) using the first-principles density functional theory. The interplay between the CLS calculations and XPS measurements to uncover the structures, adsorption sites and chemical reactions in complex surface chemical processes are highlight. Its application on clean low index (111) and vicinal transition metal surfaces, molecular adsorption in terms of sites and configuration, and reaction kinetics are domonstrated.

  9. Relationship between electrophilicity index, Hammett constant and nucleus-independent chemical shift

    Indian Academy of Sciences (India)

    M Elango; R Parthasarathi; G Karthik Narayanan; A Md Sabeelullah; U Sarkar; N S Venkatasubramaniyan; V Subramanian; P K Chattaraj

    2005-01-01

    Inter-relationships between the electrophilicity index (), Hammett constant (ó) and nucleusindependent chemical shift (NICS (1) - NICS value one å ngstrom above the ring centre) have been investigated for a series of meta- and para-substituted benzoic acids. Good linear relationships between Hammett constant vs electrophilicity and Hammett constant vs NICS (1) values have been observed. However, the variation of NICS (1) against shows only a low correlation coefficient.

  10. Crime Scene Investigation: Clinical Application of Chemical Shift Imaging as a Problem Solving Tool

    Science.gov (United States)

    2016-02-26

    MDW/SGVU SUBJECT: Professional Presentation Approva l 26 FEB 2016 1. Your paper, entitled Crime Scene Investigation: Clinical Aoolication of...or technical information as a publication/presentation, a new 59 MDW Form 3039 must be submitted for review and approval.] Crime Scene Investiga...tion: Clinical Application of Chemical Shift Imaging as a Problem Solving Tool 1. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED Crime Scene

  11. Monitoring Cancer Response to Treatment with Hyperpolarized 13C MRS

    DEFF Research Database (Denmark)

    Eldirdiri, Abubakr

    Monitoring the cancer response to treatment, non-invasively, by medical imaging is a key element in the management of cancer. For patients undergoing treatment, it is crucial to determine responders from non-responders in order to guide treatment decisions. Currently, PET is the most widely used......, and the patient is exposed to ionizing radiation. The introduction of hyperpolarized 13C MRS has opened completely new possibilities to study the biochemical changes in disease processes. Numerous 13C-labeled compounds were proposed to interrogate various aspects of cancer cell metabolism. The aim of this study...... is to investigate the relevance of [1-13C]pyruvate and [1,4-13C2]fumarate in monitoring the changes in cellular metabolism and necrosis that may occur as a result of cancer therapy. This project also aims to improve existing 13C MRSI methods to efficiently utilize the signal from hyperpolarized 13C substrates...

  12. 13C CP MAS NMR and GIAO-CHF/DFT calculations of flavonoids: Morin, kaempferol, tricin, genistein, formononetin and 3,7-dihydroxyflavone

    Science.gov (United States)

    Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona

    2008-02-01

    13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.

  13. Effects of Protein-pheromone Complexation on Correlated Chemical Shift Modulations

    Energy Technology Data Exchange (ETDEWEB)

    Perazzolo, Chiara; Wist, Julien [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland); Loth, Karine; Poggi, Luisa [Ecole Normale Superieure, Departement de chimie, associe au CNRS (France); Homans, Steve [University of Leeds, School of Biochemistry and Microbiology (United Kingdom); Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne, Institut des Sciences et Ingenierie Chimiques (Switzerland)], E-mail: Geoffrey.Bodenhausen@ens.fr

    2005-12-15

    Major urinary protein (MUP) is a pheromone-carrying protein of the lipocalin family. Previous studies by isothermal titration calorimetry (ITC) show that the affinity of MUP for the pheromone 2-methoxy-3-isobutylpyrazine (IBMP) is mainly driven by enthalpy, with a small unfavourable entropic contribution. Entropic terms can be attributed in part to changes in internal motions of the protein upon binding. Slow internal motions can lead to correlated or anti-correlated modulations of the isotropic chemical shifts of carbonyl C' and amide N nuclei. Correlated chemical shift modulations (CSM/CSM) in MUP have been determined by measuring differences of the transverse relaxation rates of zero- and double-quantum coherences ZQC{l_brace}C'N{r_brace} and DQC{l_brace}C'N{r_brace}, and by accounting for the effects of correlated fluctuations of dipole-dipole couplings (DD/DD) and chemical shift anisotropies (CSA/CSA). The latter can be predicted from tensor parameters of C' and N nuclei that have been determined in earlier work. The effects of complexation on slow time-scale protein dynamics can be determined by comparing the temperature dependence of the relaxation rates of APO-MUP (i.e., without ligand) and HOLO-MUP (i.e., with IBMP as a ligand)

  14. Chemical shift selective magnetic resonance imaging of the optic nerve in patients with acute optic neuritis

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, H.B.W.; Thomsen, C.; Frederiksen, J.; Henriksen, O.; Olesen, J.

    Optic neuritis is often the first manifestion of multiple sclerosis (MS). Sixteen patients with acute optic neuritis and one patient with benign intracranial hypertension (BIH) were investigated by magnetic resonance imaging, using a chemical shift selective double spin echo sequence. In 3 of the 16 patients, abnormalities were seen. In one patient with bilateral symptoms, signal hyperintensity and swelling of the right side of the chiasm were found. In another patient the optic nerve was found diffusely enlarged with only a marginally increased signal in the second echo. In the third patient an area of signal hyperintensity and swelling was seen in the left optic nerve. In the patient with BIH the subarachnoid space which surrounds the optic nerves was enlarged. Even using this refined pulse sequence, avoiding the major artefact in imaging the optic nerve, the chemical shift artefact, lesions were only shown in 3/16 (19%) of the patients with optic neuritis. Nevertheless, the presented chemical shift selective double spin echo sequence may be of great value for detection of retrobulbar lesions.

  15. 脂肪胺类化合物的13C核磁共振波谱模拟%Prediction of 13C-Nuclear Magnetic Resonance Chemical Shifts for Aliphatic Amines

    Institute of Scientific and Technical Information of China (English)

    许禄; 胡建强

    2001-01-01

    对脂肪胺类化合物的13C核磁共振波谱进行了模拟,所用方法为数学模型法.为此,提取了共振碳原子所处化学环境的拓扑特征、几何特征及电子特征.运用变量最优子集回归法对变量进行了选择,用多元回归法构造了数学模型,得到了比较满意的预测结果.

  16. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    Directory of Open Access Journals (Sweden)

    Weihua Guo

    2015-12-01

    Full Text Available Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms

  17. Synergizing (13)C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production.

    Science.gov (United States)

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    2017-04-20

    Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, (13)C Metabolic Flux Analysis ((13)C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, (13)C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of (13)C-MFA and illustrate how (13)C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.

  18. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules.

    Science.gov (United States)

    Martin, Bob; Autschbach, Jochen

    2015-02-07

    Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T(2), which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ≥ 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (Δg = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of Δg = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When Δg is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/T(n) with n = 2 and higher.

  19. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  20. Non-stationary (13)C-metabolic flux ratio analysis.

    Science.gov (United States)

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media.

  1. The thermal desorption of CO2 from amine carbamate solutions for the 13C isotope enrichment

    Science.gov (United States)

    Dronca, S.; Varodi, C.; Gligan, M.; Stoia, V.; Baldea, A.; Hodor, I.

    2012-02-01

    The CO2 desorption from amine carbamate in non-aqueous solvents is of major importance for isotopic enrichment of 13C. A series of experiments were carried out in order to set up the conditions for the CO2 desorption. For this purpose, a laboratory- scale plant for 13C isotope separation by chemical exchange between CO2 and amine carbamate was designed and used. The decomposition of the carbamate solution was mostly produced in the desorber and completed in the boiler. Two different-length desorbers were used, at different temperatures and liquid flow rates of the amine-non-aqueous solvent solutions. The residual CO2 was determined by using volumetric and gaschromatographic methods. These results can be used for enrichment of 13C by chemical exchange between CO2 and amine carbamate in nonaqueous solvents.

  2. Anthropogenic and solar forcing in δ13C time pattern of coralline sponges.

    Science.gov (United States)

    Madonia, Paolo; Reitner, Joachim

    2014-01-01

    We present the results of a re-analysis of a previously published carbon isotope data-set related to coralline sponges in the Caribbean Sea. The original interpretation led to the discrimination between a pre-industrial period, with a signal controlled by solar-induced climatic variations, followed by the industrial era, characterized by a progressive δ(13)C negative shift due to the massive anthropogenic carbon emissions. Our re-analysis allowed to extract from the raw isotopic data evidence of a solar forcing still visible during the industrial era, with a particular reference to the 88-year Gleissberg periods. These signals are related to slope changes in both the δ(13)C versus time and the δ(13)C versus carbon emission curves.

  3. GFT projection NMR for efficient (1)H/ (13)C sugar spin system identification in nucleic acids.

    Science.gov (United States)

    Atreya, Hanudatta S; Sathyamoorthy, Bharathwaj; Jaipuria, Garima; Beaumont, Victor; Varani, Gabriele; Szyperski, Thomas

    2012-12-01

    A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify (1)H/(13)C sugar spin systems in (13)C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of (13)C-(1)H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.

  4. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Science.gov (United States)

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  5. Functional groups identified by solid state 13C NMR spectroscopy

    Science.gov (United States)

    Animal manure is generally high in organic matter intensity so it is well suitable for 13C nuclear magnetic resonance (NMR) analysis. Solid-state 13C NMR techniques used in characterizing organic matter and its components include, but are not limited to, cross-polarization /magic angle spinning (CP...

  6. Analysis of the Electronic Structure of the Special Pair of a Bacterial Photosynthetic Reaction Center by (13) C Photochemically Induced Dynamic Nuclear Polarization Magic-Angle Spinning NMR Using a Double-Quantum Axis.

    Science.gov (United States)

    Najdanova, Marija; Gräsing, Daniel; Alia, A; Matysik, Jörg

    2017-07-26

    The origin of the functional symmetry break in bacterial photosynthesis challenges since several decades. Although structurally very similar, the two branches of cofactors in the reaction center (RC) protein complex act very differently. Upon photochemical excitation, an electron is transported along one branch, while the other remains inactive. Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) (13) C NMR revealed that the two bacteriochlorophyll cofactors forming the "Special Pair" donor dimer are already well distinguished in the electronic ground state. These previous studies are relying solely on (13) C-(13) C correlation experiments as radio-frequency-driven recoupling (RFDR) and dipolar-assisted rotational resonance (DARR). Obviously, the chemical-shift assignment is difficult in a dimer of tetrapyrrole macrocycles, having eight pyrrole rings of similar chemical shifts. To overcome this problem, an INADEQUATE type of experiment using a POST C7 symmetry-based approach is applied to selectively isotope-labeled bacterial RC of Rhodobacter (R.) sphaeroides wild type (WT). We, therefore, were able to distinguish unresolved sites of the macromolecular dimer. The obtained chemical-shift pattern is in-line with a concentric assembly of negative charge within the common center of the Special Pair supermolecule in the electronic ground state. © 2017 The American Society of Photobiology.

  7. Tautomeric ratio and prototropic equilibrium constants of tenoxicam, a 1H and 13C NMR theoretical and experimental study.

    Science.gov (United States)

    Franco-Pérez, Marco; Moya-Hernández, Rosario; Rojas-Hernández, Alberto; Gutiérrez, Atilano; Gómez-Balderas, Rodolfo

    2011-11-24

    The determination of the micro-equilibrium prototropic constants is often a tough task when the tautomeric ratio favors one of the species or when the chemical exchange is not slow enough to allow the quantitative detection of the tautomeric species. There are just few experimental methods available to reveal the constants of the tautomeric micro-equilibriums; its applicability depends on the nature of the tautomeric system. A combination of experimental and quantum chemistry calculated (1)H and (13)C NMR chemical shifts is presented here to estimate the population of the species participating in the tautomeric equilibriums of the tenoxicam, an important anti-inflammatory drug. A multivariate fitting of a fraction-mol-weighted contribution model, for the NMR chemical shifts of the species in solution, was used to find the populations of the tautomers of tenoxicam. To consider and evaluate the effect of the solvent polarity on the tautomers' populations, experimental determinations were carried out in DMSO-d(6), in an equimolar DMSO-H(2)O mixture of deuterated solvents and in D(2)O. Additionally, by employing HYPNMR, it has been possible to refine the acid-base macroscopic constants of tenoxicam.

  8. A Critical Evaluation of the Quality of Published (13)C NMR Data in Natural Product Chemistry.

    Science.gov (United States)

    Robien, Wolfgang

    2017-01-01

    Nuclear Magnetic Resonance spectroscopy contributes very efficiently to the structure elucidation process in organic chemistry. Carbon-13 NMR spectroscopy allows direct insight into the skeleton of organic compounds and therefore plays a central role in the structural assignment of natural products. Despite this important contribution, there is no established and well-accepted workflow protocol utilized during the first steps of interpreting spectroscopic data and converting them into structural fragments and then combining them, by considering the given spectroscopic constraints, into a final proposal of structure. The so-called "combinatorial explosion" in the process of structure generation allows in many cases the generation of reasonable alternatives, which are usually ignored during manual interpretation of the measured data leading ultimately to a large number of structural revisions. Furthermore, even when the determined structure is correct, problems may exist such as assignment errors, ignoring chemical shift values, or assigning lines of impurities to the compound under consideration. An extremely large heterogeneity in the presentation of carbon NMR data can be observed, but, as a result of the efficiency and precision of spectrum prediction, the published data can be analyzed in substantial detail.This contribution presents a comprehensive analysis of frequently occurring errors with respect to (13)C NMR spectroscopic data and proposes a straightforward protocol to eliminate a high percentage of the most obvious errors. The procedure discussed can be integrated readily into the processes of submission and peer-reviewing of manuscripts.

  9. A broad deglacial δ13C minimum event in planktonic foraminiferal records in the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The equatorial Pacific upwelling zone has been suspected of playing an important role in the global atmospheric CO2 changes associated with glacial-interglacial cycles.In order to assess the influencing scope of the surface water deglacial δ13C minimum in the tropical Iow-latitude Pacific,the core DGKS9603, collected from the middle Okinawa Trough, was examined for δ13C records of planktonic foraminifera N. dutertrei and G. ruber. The planktonic foraminiferal δ13C records show a clear decreasing event from 20 to 6 cal. kaBP., which is characterized by long duration of about 14 ka and amplitude shift of 0.4 × 10-3. Its minimum value occurred at 15.7 cai kaBP. The event shows fairly synchrony with the surface water deglacial δ13C minimum identiffed in the tropical Pacific and its marginal seas. Because there is no evidence in planktonic foraminiferal fauna and δ18O records for upwelling and river runoff enhancement,the broad deglacial δ13C minimum event in planktonic foraminiferal records revealed in core DGKS9603 might have been the direct influencing result of the deglacial surface water of the tropical Pacific. The identification for the event in the Okinawa Trough provides new evidence that the water evolution in the tropical low-latitude Pacific plays a key role in large regional, even global carbon cycle.

  10. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies.

    Science.gov (United States)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively (13)C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  11. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies

    Science.gov (United States)

    Fasshuber, Hannes Klaus; Demers, Jean-Philippe; Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2015-03-01

    Here we present an isotopic labeling strategy to easily obtain unambiguous long-range distance restraints in protein solid-state NMR studies. The method is based on the inclusion of two biosynthetic precursors in the bacterial growth medium, α-ketoisovalerate and α-ketobutyrate, leading to the production of leucine, valine and isoleucine residues that are exclusively 13C labeled on methyl groups. The resulting spectral simplification facilitates the collection of distance restraints, the verification of carbon chemical shift assignments and the measurement of methyl group dynamics. This approach is demonstrated on the type-three secretion system needle of Shigella flexneri, where 49 methyl-methyl and methyl-nitrogen distance restraints including 10 unambiguous long-range distance restraints could be collected. By combining this labeling scheme with ultra-fast MAS and proton detection, the assignment of methyl proton chemical shifts was achieved.

  12. Oil stability prediction by high-resolution (13)C nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Hidalgo, Francisco J; Gómez, Gemma; Navarro, José L; Zamora, Rosario

    2002-10-09

    (13)C NMR spectra of oil fractions obtained chromatographically from 66 vegetable oils were obtained and analyzed to evaluate the potential use of those fractions in predicting oil stabilities and to compare those results with oil stability prediction by using chemical determinations. The oils included the following: virgin olive oils from different cultivars and regions of Europe and north Africa; "lampante" olive, refined olive, refined olive pomace, low-erucic rapeseed, high-oleic sunflower, corn, grapeseed, soybean, and sunflower oils. Oils were analyzed for fatty acid and triacylglycerol composition, as well as for phenol and tocopherol contents. By using stepwise linear regression analysis (SLRA), the chemical determinations and the (13)C NMR data that better explained the oil stability determined by the Rancimat were selected. These selected variables were related to both the susceptibility of the oil to be oxidized and the content of minor components that most contributed to oil stability. Because (13)C NMR considered many more variables than those determined by chemical analysis, the predicted stabilities calculated by using NMR data were always better than those obtained by using chemical determinations. All these results suggest that (13)C NMR may be a powerful tool to predict oil stabilities when applied to chromatographically enriched oil fractions.

  13. Transmit-Only/Receive-Only Radiofrequency System for Hyperpolarized 13C MRS Cardiac Metabolism Studies in Pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Frijia, F.; Hartwig, V.;

    2013-01-01

    Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables metabolic activity mapping, providing a powerful tool for the study of the heart physiology, but requires the development of dedicated radiofrequency coils, capable of providing large field of view with high signal-to-noise ......Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables metabolic activity mapping, providing a powerful tool for the study of the heart physiology, but requires the development of dedicated radiofrequency coils, capable of providing large field of view with high signal......-to-noise ratio (SNR) data. This work describes the simulations and the tests of a transmit-only (TX) volume coil/receive-only (RX) surface coil both designed for hyperpolarized studies of pig heart with a clinical 3T scanner. The coil characterization is performed by developing an SNR model for coil performance...... chemical shift image, showed good agreement with the theoretical SNR-vs-depth profiles and highlighted the advantage of the novel configuration over the single transmit–receive coils throughout the volume of interest for cardiac imaging in pig. Finally, the TX-birdcage/RX-circular configuration was tested...

  14. Experimental 25Mg and 13C NMR and Computational Modeling Studies of Amorphous Mg-Ca Carbonates

    Science.gov (United States)

    Singer, J. W.; Yazaydin, A. O.; Kirkpatrick, R. J.; Saharay, M.; Bowers, G. M.

    2012-12-01

    Nuclear magnetic resonance (NMR) spectroscopy of synthetic Mg-Ca amorphous carbonates (AMC-ACC) provides direct, element specific structural information about these complicated phases. The 13C, 25Mg, and 43Ca resonances are typically broad and span the chemical shift ranges of all the crystalline polymorphs in the Ca-Mg-CO3-H2O system. In a fashion similar to our previous analysis of 43Ca NMR results for ACC,1 here we integrate new experimental 13C and 25Mg spectra obtained at 20T for samples with Mg/(Ca+Mg) ratios from x=0 to x=1 with quantum chemical calculations of the NMR parameters of the crystalline phases using CASTEP calculations, simulations of the spectra using the SIMPSON software, and classical molecular dynamics calculations. XRD and 13C NMR results are in general agreement with the one-phase/two-phase model of ACC-AMC derived from thermochemical work by others.2 13C-NMR spectra of amorphous materials having intermediate compositions can not be completely fit by mechanical mixing of ACC and AMC end members—requiring a degree of Ca/Mg solid solution. Amorphous samples in two-phase region crystallize to assemblages of dolomite-like (x~0.5) and hydromagnesite-like (x~1) defective structures, but we also observe aragonite co-nucleation in the presence of excess water, indicative of a more complex evolution. While 43Ca NMR of X-ray amorphous materials shows featureless, symmetric, Gaussian line shapes, the large quadrupole moment of 25Mg gives rise to superposition of several quadrupolar line shapes representing different local structural environments. Singularities of static Mg spectra are best explained by local environments similar to nequehonite, hydromagnesite, and landsfordite. The spectra can not exclude minor contributions from anhydrous phases dolomite, huntite, and magnesite. Additional sites having very large quadrupolar coupling and/or site asymmetry are not explained by any known reference phases. CITATIONS (1) Singer, J. W.; Yazaydin, A. O

  15. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents

    Directory of Open Access Journals (Sweden)

    Benjamin Görling

    2016-09-01

    Full Text Available Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored.

  16. Three model space experiments on chemical reactions. [Gibbs adsorption, equilibrium shift and electrodeposition

    Science.gov (United States)

    Grodzka, P.; Facemire, B.

    1977-01-01

    Three investigations conducted aboard Skylab IV and Apollo-Soyuz involved phenomena that are of interest to the biochemistry community. The formaldehyde clock reaction and the equilibrium shift reaction experiments conducted aboard Apollo Soyuz demonstrate the effect of low-g foams or air/liquid dispersions on reaction rate and chemical equilibrium. The electrodeposition reaction experiment conducted aboard Skylab IV demonstrate the effect of a low-g environment on an electrochemical displacement reaction. The implications of the three space experiments for various applications are considered.

  17. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents

    Science.gov (United States)

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  18. Parameter-free calculation of K alpha chemical shifts for Al, Si, and Ge oxides

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2001-01-01

    The chemical shifts of the K alpha radiation line from Al, Si, and Ge ions between their elemental and oxide forms are calculated within the framework of density functional theory using ultrasoft pseudopotentials. It is demonstrated that this theoretical approach yields quantitatively accurate...... results fur the systems investigated, provided that relaxations of the valence electrons upon the core-hole transition are properly accounted for. Therefore, such calculations provide a powerful tool for identification of impurity states based on x-ray fluorescence data. Results for an Al impurity...

  19. Analyzing temperature-induced transitions in disordered proteins by NMR spectroscopy and secondary chemical shift analyses

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. This chapter discusses practical...... aspects of NMR studies of temperature-induced structural changes in disordered proteins using chemical shifts....

  20. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner.

    Science.gov (United States)

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and (18)F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq (18)F-FDG. (13)C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized (13)C-pyruvate. Peak heights of (13)C-pyruvate and (13)C-lactate were quantified using a general linear model. Anatomic (1)H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased (13)C-lactate production, which also corresponded to high (18)F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high (18)F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high (13)C-lactate production. Accordingly, this clearly

  1. Study of Urban environmental quality through Isotopes δ13C

    Science.gov (United States)

    González-Sosa, E.; Mastachi-Loza, C.; Becerril-Piña, R.; Ramos-Salinas, N. M.

    2012-04-01

    Usually, trees with similar pH values on their bark develop epiphytes of similar species, the acidity to be a factor for growth. The aim of the study was evaluate the air quality through isotope δ13C in order to define the levels of environmental quality in the city of Queretaro, Mexico. In this work were collected at least 4 epiphytes positioned in trees of the species Prosopis Laevigata at 25 sites of Queretaro City. The samples were analyzed for trace elements with an inductively coupled plasma atomic emission spectroscopy (ICP). The collecting took place during dry period, in May and early rain June 2011 period, and on four sectors to identify the spatial distribution of pollution, using isotopic analysis of concentration of δ 13C. According with the results there are significant differences among the species in each of the sampled areas. The 5 February Avenue presented greater diversity and richness of δ13C, followed by those who were surveyed in the proximity of the UAQ and finally in the middle-east area. An average value of δ13C-17.92%, followed by those surveyed in the vicinity of the UAQ that correspond to sector I and II with an concentration of δ13C-17.55% and δ13C-17.22%, and finally the samples collected in trees scattered in the East-Sector II and IV with a value of δ13C-17.02% and δ13C-15.62%, respectively. Also were observed differences between the dry and wet period. It is likely that these results of δ 13C in moist period reflect the drag of the isotopes due to rain events that could mark a trend in the dilution of this element, however there is a trend in terms of abundance and composition of finding more impact in those species sampled in dry period, in May and early June 2011.

  2. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A

    2000-01-01

    Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations...

  3. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    Science.gov (United States)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  4. Physical and biogeochemical correlates of spatio-temporal variation in the δ13C of marine macroalgae

    Science.gov (United States)

    Mackey, Andrew P.; Hyndes, Glenn A.; Carvalho, Matheus C.; Eyre, Bradley D.

    2015-05-01

    Carbon isotope ratios (13C/12C) can be used to trace sources of production supporting food chains, as δ13C undergoes relatively small and predictable increases (∼0.5‰) through each trophic level. However, for this technique to be precise, variation in δ13C signatures of different sources of production (baseline sources) must be clearly defined and distinct from each other. Despite this, δ13C in the primary producers of marine systems are highly variable over space and time, due to the complexity of physical and biogeochemical processes that drive δ13C variation at the base of these foodwebs. We measured spatial and temporal variation in the δ13C of two species of macroalgae that are important dietary components of grazers over temperate reefs: the small kelp Ecklonia radiata, and the red alga Plocamium preissianum, and related any variation to a suite of physical and biogeochemical variables. Patterns in δ13C variation, over different spatial (10 s m to 100 km) and temporal scales (weeks to seasons), differed greatly between taxa, but these were partly explained by the δ13C of dissolved inorganic carbon (DIC) and light. However, while the δ13C in E. radiata was not related to water temperature, a highly significant proportion of the spatio-temporal variation in δ13C of P. preissianum was explained by temperature alone. Accordingly, we applied this relationship to project (across temperate Australasia) and forecast (in time, south-western Australia) patterns in P. preissianum δ13C. The mean projected δ13C for P. preissianum in the study region varied by only ∼1‰ over a 12-month period, compared to ∼3‰ over 2000 km. This illustrates the potential scale in the shift of δ13C in baseline food sources over broad scales, and its implications to food web studies. While we show that those relationships differ across taxonomic groups, we recommend developing models to explain variability in δ13C of other baseline sources to facilitate the

  5. Predicting Pt-195 NMR chemical shift using new relativistic all-electron basis set.

    Science.gov (United States)

    Paschoal, D; Guerra, C Fonseca; de Oliveira, M A L; Ramalho, T C; Dos Santos, H F

    2016-10-01

    Predicting NMR properties is a valuable tool to assist the experimentalists in the characterization of molecular structure. For heavy metals, such as Pt-195, only a few computational protocols are available. In the present contribution, all-electron Gaussian basis sets, suitable to calculate the Pt-195 NMR chemical shift, are presented for Pt and all elements commonly found as Pt-ligands. The new basis sets identified as NMR-DKH were partially contracted as a triple-zeta doubly polarized scheme with all coefficients obtained from a Douglas-Kroll-Hess (DKH) second-order scalar relativistic calculation. The Pt-195 chemical shift was predicted through empirical models fitted to reproduce experimental data for a set of 183 Pt(II) complexes which NMR sign ranges from -1000 to -6000 ppm. Furthermore, the models were validated using a new set of 75 Pt(II) complexes, not included in the descriptive set. The models were constructed using non-relativistic Hamiltonian at density functional theory (DFT-PBEPBE) level with NMR-DKH basis set for all atoms. For the best model, the mean absolute deviation (MAD) and the mean relative deviation (MRD) were 150 ppm and 6%, respectively, for the validation set (75 Pt-complexes) and 168 ppm (MAD) and 5% (MRD) for all 258 Pt(II) complexes. These results were comparable with relativistic DFT calculation, 200 ppm (MAD) and 6% (MRD). © 2016 Wiley Periodicals, Inc.

  6. Nonuniform backbone conformation of deoxyribonucleic acid indicated by phosphorus-31 nuclear magnetic resonance chemical shift anisotropy.

    Science.gov (United States)

    Shindo, H; Wooten, J B; Pheiffer, B H; Zimmerman, S B

    1980-02-05

    31P nuclear magnetic resonance of highly oriented DNA fibers has been observed for three different conformations, namely, the A, B, and C forms of DNA. At a parallel orientation of the fiber axis with respect to the magnetic field, DNA fibers in both the A and B forms exhibit a single, abnormally broad resonance; in contrast, fibers in the C form show almost the full span of the chemical shift anisotropy (170 ppm). The spectra of the fibers oriented perpendicular indicate that the DNA molecules undergo a considerable rotational motion about the helical axis, with a rate of greater than 2 x 10(3) s-1 for the B-form DNA. Theoretical considerations indicate that the 31P chemical shift data for the B-form DNA fibers are consistent with the atomic coordinates of the phosphodiester group proposed by Langridge et al. [Langridge, R., Wilson, H. R. Hooper, C. W., Wilkins, M. H. F., & Hamilton, L. D. (1960) J. Mol. Biol. 2, 19--37] but not with the corresponding coordinates proposed by Arnott and Hukins [Arnott, S., & Hukins, D. W. L. (1972) Biochem. Biophys. Res. Coomun. 47, 1504--1509], and also lead to the conclusion that the phosphodiester orientation must vary significantly along the DNA molecule. The latter result suggests that DNA has significant variations in its backbone conformation along the molecule.

  7. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    OpenAIRE

    Weihua Guo; Jiayuan Sheng; Xueyang Feng

    2015-01-01

    Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (1...

  8. A Method to Constrain Genome-Scale Models with 13C Labeling Data.

    Directory of Open Access Journals (Sweden)

    Héctor García Martín

    2015-09-01

    Full Text Available Current limitations in quantitatively predicting biological behavior hinder our efforts to engineer biological systems to produce biofuels and other desired chemicals. Here, we present a new method for calculating metabolic fluxes, key targets in metabolic engineering, that incorporates data from 13C labeling experiments and genome-scale models. The data from 13C labeling experiments provide strong flux constraints that eliminate the need to assume an evolutionary optimization principle such as the growth rate optimization assumption used in Flux Balance Analysis (FBA. This effective constraining is achieved by making the simple but biologically relevant assumption that flux flows from core to peripheral metabolism and does not flow back. The new method is significantly more robust than FBA with respect to errors in genome-scale model reconstruction. Furthermore, it can provide a comprehensive picture of metabolite balancing and predictions for unmeasured extracellular fluxes as constrained by 13C labeling data. A comparison shows that the results of this new method are similar to those found through 13C Metabolic Flux Analysis (13C MFA for central carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism. The extra validation gained by matching 48 relative labeling measurements is used to identify where and why several existing COnstraint Based Reconstruction and Analysis (COBRA flux prediction algorithms fail. We demonstrate how to use this knowledge to refine these methods and improve their predictive capabilities. This method provides a reliable base upon which to improve the design of biological systems.

  9. (13)C metabolic flux analysis of recombinant expression hosts.

    Science.gov (United States)

    Young, Jamey D

    2014-12-01

    Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. (13)C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying isotope tracers to map the flow of carbon through intracellular metabolic pathways. Recent advances in tracer theory and measurements are enabling more information to be extracted from (13)C labeling experiments. Sustained development of publicly available software tools and standardization of experimental workflows is simultaneously encouraging increased adoption of (13)C MFA within the biotech research community. A number of recent (13)C MFA studies have identified increased citric acid cycle and pentose phosphate pathway fluxes as consistent markers of high recombinant protein expression, both in mammalian and microbial hosts. Further work is needed to determine whether redirecting flux into these pathways can effectively enhance protein titers while maintaining acceptable glycan profiles.

  10. Dihydroflavanonols from Cedrus deodara, A (13)C NMR study.

    Science.gov (United States)

    Agrawal, P K; Agarwal, S K; Rastogi, R P; Osterdahal, B G

    1981-09-01

    High resolution (13)C NMR study of taxifolin, cedeodarin, cedrin and their methyl ethers allowed unambiguous placement of the Me in 5,7-dihydroxyflavanonol nucleus, besides providing other valuable information on the substitution pattern in the molecule.

  11. Pulsed polarization transfer for 13C NMR in solids

    Science.gov (United States)

    Bax, Ad; Szeverenyi, Nikolaus M.; Maciel, Gary E.

    A new pulsed polarization transfer experiment method is described for the polarization of 13C spins in a solid by magnetization transfer from protons. The method is directly analogous to the INEPT sequence for liquids introduced by Freeman and Morris. As polarization is transferred in PPT between individual 1H 13C pairs, rather than between spin reservoirs, different opportunities exist for structurally selective experiments. Results on p-diethoxybenzene and coronene are presented.

  12. 1D 13C-NMR Data as Molecular Descriptors in Spectra — Structure Relationship Analysis of Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Florbela Pereira

    2012-03-01

    Full Text Available Spectra-structure relationships were investigated for estimating the anomeric configuration, residues and type of linkages of linear and branched trisaccharides using 13C-NMR chemical shifts. For this study, 119 pyranosyl trisaccharides were used that are trimers of the α or β anomers of D-glucose, D-galactose, D-mannose, L-fucose or L-rhamnose residues bonded through a or b glycosidic linkages of types 1→2, 1→3, 1→4, or 1→6, as well as methoxylated and/or N-acetylated amino trisaccharides. Machine learning experiments were performed for: (1 classification of the anomeric configuration of the first unit, second unit and reducing end; (2 classification of the type of first and second linkages; (3 classification of the three residues: reducing end, middle and first residue; and (4 classification of the chain type. Our previously model for predicting the structure of disaccharides was incorporated in this new model with an improvement of the predictive power. The best results were achieved using Random Forests with 204 di- and trisaccharides for the training set—it could correctly classify 83%, 90%, 88%, 85%, 85%, 75%, 79%, 68% and 94% of the test set (69 compounds for the nine tasks, respectively, on the basis of unassigned chemical shifts.

  13. Saturation-recovery metabolic-exchange rate imaging with hyperpolarized [1-13C] pyruvate using spectral-spatial excitation.

    Science.gov (United States)

    Schulte, Rolf F; Sperl, Jonathan I; Weidl, Eliane; Menzel, Marion I; Janich, Martin A; Khegai, Oleksandr; Durst, Markus; Ardenkjaer-Larsen, Jan Henrik; Glaser, Steffen J; Haase, Axel; Schwaiger, Markus; Wiesinger, Florian

    2013-05-01

    Within the last decade hyperpolarized [1-13C] pyruvate chemical-shift imaging has demonstrated impressive potential for metabolic MR imaging for a wide range of applications in oncology, cardiology, and neurology. In this work, a highly efficient pulse sequence is described for time-resolved, multislice chemical shift imaging of the injected substrate and obtained downstream metabolites. Using spectral-spatial excitation in combination with single-shot spiral data acquisition, the overall encoding is evenly distributed between excitation and signal reception, allowing the encoding of one full two-dimensional metabolite image per excitation. The signal-to-noise ratio can be flexibly adjusted and optimized using lower flip angles for the pyruvate substrate and larger ones for the downstream metabolites. Selectively adjusting the excitation of the down-stream metabolites to 90° leads to a so-called "saturation-recovery" scheme with the detected signal content being determined by forward conversion of the available pyruvate. In case of repetitive excitations, the polarization is preserved using smaller flip angles for pyruvate. Metabolic exchange rates are determined spatially resolved from the metabolite images using a simplified two-site exchange model. This novel contrast is an important step toward more quantitative metabolic imaging. Goal of this work was to derive, analyze, and implement this "saturation-recovery metabolic exchange rate imaging" and demonstrate its capabilities in four rats bearing subcutaneous tumors.

  14. 125Te NMR chemical-shift trends in PbTe–GeTe and PbTe–SnTe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Njegic, Bosiljka [Ames Laboratory; Levin, Evgenii M. [Ames Laboratory; Schmidt-Rohr, Klaus [Ames Laboratory

    2013-10-08

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in 125Te NMR chemical shift due to bonding to dopant or “solute” atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the 125Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS 125Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the 125Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  15. 125Te NMR chemical-shift trends in PbTe-GeTe and PbTe-SnTe alloys.

    Science.gov (United States)

    Njegic, B; Levin, E M; Schmidt-Rohr, K

    2013-01-01

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in (125)Te NMR chemical shift due to bonding to dopant or "solute" atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the (125)Te NMR chemical shifts in PbTe-based alloys, Pb1-xGexTe and Pb1-xSnxTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS (125)Te NMR spectra. A simple linear trend in chemical shifts with the number of Pb neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the (125)Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.

  16. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  17. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    Science.gov (United States)

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  18. A simplified 13C-Urea breath test (13C-UBT) in the diagnosis of Helicobacter pylori (HP) infection

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, T.; Bartholomeusz, F.D. L.; Bellon, M.S.; Chatterton, B.E. [Royal Adelaide Hospital, Adelaide. SA (Australia). Department of Nuclear Medicine

    1998-06-01

    Full text: The Urea Breath Test (UBT) is an accurate, noninvasive means of assessing the presence of Helicobacter pylori in the stomach. Two tests are currently available, using 13C- and 14C-labelled urea, respectively. 13C is a nonradioactive isotope, unlike 14C, but the 13C-UBT is technically more challenging. The aim of this study was to determine the accuracy of a simplified 13C-UBT with no test meal, using the 14C-UBT as the previously validated standard. 76 studies were performed on 72 patients; 4 patients performed the test twice. 28 patients were female, 44 male. The mean age was 51.1 years (range 23-86 years). 42 patients presented for post-eradication follow up, and 30 for initial diagnosis. All subjects underwent a 14C-UBT with a 15 minute sample. The 13C-UBT was then performed without a test meal and the breath samples obtained at baseline and 20 minutes. Of the 14C-UBT studies, 27 were positive, ranging from 1372 to 10,987 DPM (Normal <1000 DPM), and 49 were negative, range 177-946 DPM. 26 of the 13C-UBT studies were positive, with a Delta value ranging from 4.29-47.89 (Normal: Delta <3.5), and 50 were negative, range -0.20-2.80. There were 1 false-positive and 2 false-negative 13-UBT studies. This yielded a sensitivity of 92.6% and specificity of 98.0% for the simplified 13C-UBT. From these results we conclude that the simplified 13C-UBT is an accurate means of detecting the presence of Helicobacter pylori within the stomach

  19. Strength and limits using 13C phospholipid fatty acid analysis in soil ecology

    Science.gov (United States)

    Watzinger, Andrea

    2016-04-01

    This presentation on microbial phospholipid biomarkers, their isotope analysis and their ability to reveal soil functions summarizes experiences gained by the author for more than 10 years. The amount and composition of phospholipid fatty acids (PLFAs) measured in environmental samples strongly depend on the methodology. To achieve comparable results the extraction, separation and methylation method must be kept constant. PLFAs patterns are sensitive to microbial community shifts even though the taxonomic resolution of PLFAs is low. The possibility to easily link lipid biomarkers with stable isotope techniques is identified as a major advantage when addressing soil functions. Measurement of PLFA isotopic ratios is sensitive and enables detecting isotopic fractionation. The difference between the carbon isotopic ratio of single PLFAs and their substrate (δ13C) can vary between -6 and +11‰. This difference derives from the fractionation during biosynthesis and from substrate inhomogeneity. Consequently, natural abundance studies are restricted to quantifying substrate uptake of the total microbial biomass. In contrast, artificial labelling enables quantifying carbon uptake into single PLFAs, but labelling success depends on homogeneous and undisturbed label application. Current developments in microbial ecology (e.g. 13C and 15N proteomics) and isotope techniques (online monitoring of CO2 isotope ratios) will likely improve soil functional interpretations in the future. 13C PLFA analysis will continue to contribute because it is affordable, sensitive and allows frequent sampling combined with the use of small amounts of 13C label.

  20. Sequential acquisition of multi-dimensional heteronuclear chemical shift correlation spectra with 1H detection

    Science.gov (United States)

    Bellstedt, Peter; Ihle, Yvonne; Wiedemann, Christoph; Kirschstein, Anika; Herbst, Christian; Görlach, Matthias; Ramachandran, Ramadurai

    2014-03-01

    RF pulse schemes for the simultaneous acquisition of heteronuclear multi-dimensional chemical shift correlation spectra, such as {HA(CA)NH & HA(CACO)NH}, {HA(CA)NH & H(N)CAHA} and {H(N)CAHA & H(CC)NH}, that are commonly employed in the study of moderately-sized protein molecules, have been implemented using dual sequential 1H acquisitions in the direct dimension. Such an approach is not only beneficial in terms of the reduction of experimental time as compared to data collection via two separate experiments but also facilitates the unambiguous sequential linking of the backbone amino acid residues. The potential of sequential 1H data acquisition procedure in the study of RNA is also demonstrated here.

  1. Fully automatic assignment of small molecules' NMR spectra without relying on chemical shift predictions.

    Science.gov (United States)

    Castillo, Andrés M; Bernal, Andrés; Patiny, Luc; Wist, Julien

    2015-08-01

    We present a method for the automatic assignment of small molecules' NMR spectra. The method includes an automatic and novel self-consistent peak-picking routine that validates NMR peaks in each spectrum against peaks in the same or other spectra that are due to the same resonances. The auto-assignment routine used is based on branch-and-bound optimization and relies predominantly on integration and correlation data; chemical shift information may be included when available to fasten the search and shorten the list of viable assignments, but in most cases tested, it is not required in order to find the correct assignment. This automatic assignment method is implemented as a web-based tool that runs without any user input other than the acquired spectra. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    DEFF Research Database (Denmark)

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation....... This method enables the determination of both the electronic and the protonic (deuteronic) wave functions simultaneously and can directly calculate the geometrical difference induced by H/D isotope effects. The calculations show that the one-bond deuterium isotope effects on 15N nuclear shielding, 1Δ15N......(D), in ammonium and amines decrease as a counterion or water molecule moves closer to the nitrogen. 1Δ15N(D) and 2Δ1H(D) of the NH3+ groups of lysine residues in the B1 domain of protein G have been calculated using truncated side chains and also determined experimentally by NMR. Comparisons show...

  3. High resolution {sup 13}C NMR spectra on oriented lipid bilayers: From quantifying the various sources of line broadening to performing 2D experiments with 0.2-0.3 ppm resolution in the carbon dimension

    Energy Technology Data Exchange (ETDEWEB)

    Soubias, O.; Saurel, O.; Reat, V.; Milon, A. [Institut de Pharmacologie et de Biologie Structurale (France)], E-mail: alain.milon@ipbs.fr

    2002-09-15

    {sup 13}C NMR spectra routinely performed on oriented lipid bilayers display linewidth of 1-2 ppm, although T{sub 2} measurements indicate that 0.1-0.2 ppm could be obtained. We have prepared a DMPC - {sup 13}C{sub 4}-cholesterol (7/3) sample, and oriented the lipid bilayers between glass plates so that the bilayer normal makes an angle of 90 deg. (or of the magic angle) with B{sub 0}. We have measured T{sub 2}s, CSAs, and linewidths for the choline {sup 13}C-{gamma}-methyl, the cholesterol-C{sub 4} carbons and the lipid head group phosphorus, at both angles and 313 K. The magnetic field distribution within the sample was calculated using the surface current formalism. The line shapes were simulated as a function of B{sub 0} field inhomogeneities and sample mosaic spread. Both effects contribute to the experimental linewidth. Using three signals of different CSA, we have quantified both contributions and measured the mosaic spread accurately. Direct shimming on a sample signal is essential to obtain sharp resonances and {sup 13}C labelled choline methyl resonance of DMPC is a good candidate for this task. After optimisation of the important parameters (shimming on the choline resonance, mosaic spread of {+-} 0.30 deg.), {sup 13}C linewidth of 0.2-0.3 ppm have been obtained. This newly achieved resolution on bilayers oriented at 90 deg., has allowed to perform two 2D experiments, with a good sensitivity: 2D PELF (correlation of carbon chemical shifts and C-H dipolar couplings) and 2D D-resolved experiment (correlation of carbon chemical shifts and C-C dipolar couplings). A C-C dipolar coupling of 35 {+-} 2 Hz between the choline methyl carbons was determined.

  4. Study of wavelength-shifting chemicals for use in large-scale water Cherenkov detectors

    CERN Document Server

    Sweany, M; Dazeley, S; Dunmore, J; Felde, J; Svoboda, R; Tripathi, M

    2011-01-01

    Cherenkov detectors employ various methods to maximize light collection at the photomultiplier tubes (PMTs). These generally involve the use of highly reflective materials lining the interior of the detector, reflective materials around the PMTs, or wavelength-shifting sheets around the PMTs. Recently, the use of water-soluble wavelength-shifters has been explored to increase the measurable light yield of Cherenkov radiation in water. These wave-shifting chemicals are capable of absorbing light in the ultravoilet and re-emitting the light in a range detectable by PMTs. Using a 250 L water Cherenkov detector, we have characterized the increase in light yield from three compounds in water: 4-Methylumbelliferone, Carbostyril-124, and Amino-G Salt. We report the gain in PMT response at a concentration of 1 ppm as: 1.88 $\\pm$ 0.02 for 4-Methylumbelliferone, stable to within 0.5% over 50 days, 1.37 $\\pm$ 0.03 for Carbostyril-124, and 1.20 $\\pm$ 0.02 for Amino-G Salt. The response of 4-Methylumbelliferone was modele...

  5. Testing compound-specific δ13C of amino acids in mussels as a new approach to determine the average 13C values of primary production in littoral ecosystems

    Science.gov (United States)

    Vokhshoori, N. L.; Larsen, T.; McCarthy, M.

    2012-12-01

    Compound-specific isotope analysis of amino acids (CSI-AA) is a technique used to decouple trophic enrichment patterns from source changes at the base of the food web. With this new emerging tool, it is possible to precisely determine both trophic position and δ15N or δ13C source values in higher feeding organisms. While most work to date has focused on nitrogen (N) isotopic values, early work has suggested that δ13C CSI-AA has great potential as a new tracer both to a record δ13C values of primary production (unaltered by trophic transfers), and also to "fingerprint" specific carbon source organisms. Since essential amino acids (EAA) cannot be made de novo in metazoans but must be obtained from diet, the δ13C value of the primary producer is preserved through the food web. Therefore, the δ13C values of EAAs act as a unique signature of different primary producers and can be used to fingerprint the dominant carbon (C) source driving primary production at the base of the food web. In littoral ecosystems, such as the California Upwelling System (CUS), the likely dominant C sources of suspended particulate organic matter (POM) pool are kelp, upwelling phytoplankton or estuarine phytoplankton. While bulk isotopes of C and N are used extensively to resolve relative consumer hierarchy or shifting diet in a food web, we found that the δ13C bulk values in mussels cannot distinguish exact source in littoral ecosystems. Here we show 15 sites within the CUS, between Cape Blanco, OR and La Jolla, CA where mussels were sampled and analyzed for both bulk δ13C and CSI-AA. We found no latitudinal trends, but rather average bulk δ13C values for the entire coastal record were highly consistent (-15.7 ± 0.9‰). The bulk record would suggest either nutrient provisioning from kelp or upwelled phytoplankton, but 13C-AA fingerprinting confines these two sources to upwelling. This suggests that mussels are recording integrated coastal phytoplankton values, with the enriched

  6. A scientific workflow framework for (13)C metabolic flux analysis.

    Science.gov (United States)

    Dalman, Tolga; Wiechert, Wolfgang; Nöh, Katharina

    2016-08-20

    Metabolic flux analysis (MFA) with (13)C labeling data is a high-precision technique to quantify intracellular reaction rates (fluxes). One of the major challenges of (13)C MFA is the interactivity of the computational workflow according to which the fluxes are determined from the input data (metabolic network model, labeling data, and physiological rates). Here, the workflow assembly is inevitably determined by the scientist who has to consider interacting biological, experimental, and computational aspects. Decision-making is context dependent and requires expertise, rendering an automated evaluation process hardly possible. Here, we present a scientific workflow framework (SWF) for creating, executing, and controlling on demand (13)C MFA workflows. (13)C MFA-specific tools and libraries, such as the high-performance simulation toolbox 13CFLUX2, are wrapped as web services and thereby integrated into a service-oriented architecture. Besides workflow steering, the SWF features transparent provenance collection and enables full flexibility for ad hoc scripting solutions. To handle compute-intensive tasks, cloud computing is supported. We demonstrate how the challenges posed by (13)C MFA workflows can be solved with our approach on the basis of two proof-of-concept use cases.

  7. 13C-based metabolic flux analysis: fundamentals and practice.

    Science.gov (United States)

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

  8. 1H and 13C NMR Spectral Studies on N-(Aryl)-Substituted Acetamides, C6H5NHCOCH3-iXi and 2/4-XC6H4NHCOCH3-iXi (where X = Cl or CH3 and i = 0, 1, 2 or 3)

    Science.gov (United States)

    Gowda, B. Thimme; Usha, K. M.; Jayalakshmi, K. L.

    2003-12-01

    35 N-(Phenyl)-, N-(2/4-chlorophenyl)- and N-(2/4-methylphenyl)-substituted acetamides are prepared, characterised and their NMR spectra studied in solution state. The variation of the chemical shifts of the aromatic protons in these compounds follow more or less the same trend with changes in the side chain. The chemical shifts remain almost the same on introduction of Cl substituent to the benzene ring, while that of methyl group lowers the chemical shifts of the aromatic protons. But only 13C-1 and 13C-4 chemical shifts in these compounds are sensitive to variations of the side chain. The incremental shifts in the chemical shifts of the aromatic protons and carbons due to -COCH3-iXi or NHCOCH3-iXi groups in all the N-(phenyl)-substituted acetamides, C6H5NHCOCH3-iXi (where X = Cl or CH3 and i = 0, 1, 2 or 3) are calculated. These incremental chemical shifts are used to calculate the chemical shifts of the aromatic protons and carbons in all the N-(2/4-chlorophenyl)- and N-(2/4-methylphenyl)-substituted acetamides, in two ways. In the first way, the chemical shifts of aromatic protons or carbons are computed by adding the incremental shifts due to -COCH3-iXi groups and the substituents at the 2nd or 4th position in the benzene ring to the chemical shifts of the corresponding aromatic protons or carbons of the parent aniline. In the second way, the chemical shifts are calculated by adding the incremental shifts due to -NHCOCH3-iXi groups and the substituents at the 2nd or 4th position in the benzene ring to the chemical shift of a benzene proton or carbon, respectively. Comparison of the two sets of calculated chemical shifts of the aromatic protons or carbons of all the compounds revealed that the two procedures of calculation lead to almost the same values in most cases and agree well with the experimental chemical shifts.

  9. (13)C and (15)N NMR characterization of amine reactivity and solvent effects in CO2 capture.

    Science.gov (United States)

    Perinu, Cristina; Arstad, Bjørnar; Bouzga, Aud M; Jens, Klaus-J

    2014-08-28

    Factors influencing the reactivity of selected amine absorbents for carbon dioxide (CO2) capture, in terms of the tendency to form amine carbamate, have been studied. Four linear primary alkanolamines at varying chain lengths (MEA, 3A1P, 4A1B , and 5A1P ), two primary amines with different substituents in the β-position to the nitrogen (1A2P and ISOB), a secondary alkanolamine (DEA), and a sterically hindered primary amine (AMP) were investigated. The relationship between the (15)N NMR data of aqueous amines and their ability to form carbamate, as determined at equilibrium by quantitative (13)C NMR experiments, was analyzed, taking into account structural-chemical properties. For all the amines, the (15)N chemical shifts fairly reflected the observed reactivity for carbamate formation. In addition to being a useful tool for the investigation of amine reactivity, (15)N NMR data clearly provided evidence of the importance of solvent effects for the understanding of chemical dynamics in CO2 capture by aqueous amine absorbents.

  10. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR

    Science.gov (United States)

    Basse, Kristoffer; Shankar, Ravi; Bjerring, Morten; Vosegaard, Thomas; Nielsen, Niels Chr.; Nielsen, Anders B.

    2016-09-01

    We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization (RESPIRATIONCP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the RESPIRATIONCP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous 15N → 13CO and 15N → 13Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.

  11. 50 years anniversary of the discovery of the core level chemical shifts. The early years of photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mårtensson, Nils [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Sokolowski, Evelyn [Tvär-Ramsdal 1, 611 99 Tystberga (Sweden); Svensson, Svante, E-mail: Svante.Svensson@fysik.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2014-03-01

    Highlights: • 50 years since the discovery of t the core level chemical shift. • The pioneering years of ESCA. • A critical review of the first core electron chemical shift results. - Abstract: The pioneering years of photoelectron spectroscopy in Uppsala are discussed, especially the work leading to the discovery of the core level chemical shifts. At a very early stage of the project, the pioneering group observed what they described as evidence for chemical shifts in the core level binding energies. However, it can now be seen that the initial observations to a large extent was due to charging of the samples. It is interesting to note that the decisive experiment was realized, not as a result of a systematic study, but was obtained with a large element of serendipity. Only when a chemical binding energy shift was observed between two S2p electron lines in the same molecule, the results were accepted internationally, and the fascinating expansion of modern core level photoelectron spectroscopy could start.

  12. {sup 13}C relaxation in an RNA hairpin

    Energy Technology Data Exchange (ETDEWEB)

    King, G.C. [Univ. of South Wales, Kensington (Australia)]|[Rice Univ., Houston, TX (United States); Akratos, C. [Univ. of South Wales, Kensington (Australia); Xi, Z.; Michnica, M.J. [Rice Univ., Houston, TX (United States)

    1994-12-01

    This initial survey of {sup 13}C relaxation in the {triangle}TAR RNA element has generated a number of interesting results that should prove generally useful for future studies. The most readily comparable study in the literature monitored {sup 13}C relaxation of the methyl groups from unusual bases in tRNA{sup Phe}. The study, which used T{sub 1} and NOE data only, reported order parameters for the methyl group axis that ranged between 0.51 and 0.97-a range similar to that observed here. However, they reported a breakdown of the standard order parameter analysis at higher (118-MHz {sup 13}C) frequencies, which should serve to emphasize the need for a thorough exploration of suitable motional models.

  13. Study of molecular interactions with 13C DNP-NMR.

    Science.gov (United States)

    Lerche, Mathilde H; Meier, Sebastian; Jensen, Pernille R; Baumann, Herbert; Petersen, Bent O; Karlsson, Magnus; Duus, Jens Ø; Ardenkjaer-Larsen, Jan H

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct (13)C NMR ligand binding studies at natural isotopic abundance of (13)C gets feasible in this way. Resultant screens are easy to interpret and can be performed at (13)C concentrations below muM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  14. Direct 13C NMR Detection in HPLC Hyphenation Mode

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Johansen, Kenneth; Nyberg, Nils

    2012-01-01

    Solid phase extraction (SPE) was introduced as a crucial step in the HPLC-SPE-NMR technique to enable online analyte enrichment from which proton-detected NMR experiments on submicrogram amounts from complex mixtures were possible. However, the significance of direct-detected (13)C NMR experiments...... application of HPLC-SPE-NMR analysis using direct-detected (13)C NMR spectra. HPLC column loading, accumulative SPE trappings, and the effect of different elution solvents were evaluated and optimized. A column loading of approximately 600 mug of a prefractionated triterpenoid mixture, six trappings...

  15. Microbial metabolism in soil at low temperatures: Mechanisms unraveled by position-specific 13C labeling

    Science.gov (United States)

    Bore, Ezekiel

    2016-04-01

    Microbial transformation of organic substances in soil is the most important process of the C cycle. Most of the current studies base their information about transformation of organic substances on incubation studies under laboratory conditions and thus, we have a profound knowledge on SOM transformations at ambient temperatures. However, metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5, -5 -20 oC. Soils were sampled after 1, 3 and 10 days and additionally after 30 days for samples at -20 °C. The 13C from individual molecule position was quantifed in respired CO2, bulk soil, extractable organic C and extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of microbial communities classified by 13C phospholipid fatty acid (PLFA) analysis. 13CO2 released showed a dominance of the flux from C-1 position at 5 °C. Consequently, at 5 °C, pentose phosphate pathway activity is a dominant metabolic pathway of glucose metabolization. In contrast to -5 °C and -20 oC, metabolic behaviors completely switched towards a preferential respiration of the glucose C-4 position. With decreasing temperature, microorganism strongly shifted towards metabolization of glucose via glycolysis which indicates a switch to cellular maintenance. High recoveries of 13C in extractable microbial biomass at -5 °C indicates optimal growth condition for the microorganisms. PLFA analysis showed high incorporation of 13C into Gram negative bacteria at 5 °C but decreased with temperature. Gram positive bacteria out-competed Gram negatives with decreasing temperature. This study revealed a remarkable microbial activity at temperatures below 0 °C, differing significantly from that at ambient

  16. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR.

    Science.gov (United States)

    Yang, Mingying; Nakazawa, Yasumoto; Yamauchi, Kazuo; Knight, David; Asakura, Tetsuo

    2005-01-01

    To obtain detailed structural information for spider dragline spidroin (MaSp1), we prepared three versions of the consensus peptide GGLGGQGAGAAAAAAGGAGQGGYGGLGSQGAGR labeled with 13C at six different sites. The 13C CP/MAS NMR spectra were observed after treating the peptides with different reagents known to alter silk protein conformations. The conformation-dependent 13C NMR chemical shifts and peak deconvolution were used to determine the local structure and the fractional compositions of the conformations, respectively. After trifluoroacetic acid (solvent)/diethyl ether (coagulant) treatment, the N-terminal region of poly-Ala (PLA) sequence, Ala8 and Ala10, adopted predominantly the alpha-helix with a substantial amount of beta-sheet. The central region, Ala15, Ala18, and Leu26, and C-terminal region, Ala31, of the peptide were dominated by either 3(1)-helix or alpha-helix. There was no indication of beta-sheet, although peak broadening indicates that the torsion angle distribution is relatively large. After 9 M LiBr/dialysis treatment, three kinds of conformation, beta-sheet, random coil, and 3(1)-helix, appeared, in almost equal amounts of beta-sheet and random coil conformations for Ala8 and Ala10 residues and distorted 3(1)-helix at the central region of the peptide. In contrast, after formic acid/methanol and 8 M urea/acetonitrile treatments, all of the local structure tends to beta-sheet, although small amounts of random coil are also observed. The peak pattern of the Ala Cbeta carbon after 8 M urea/acetonitrile treatment is similar to the corresponding patterns of silk fiber from Bombyx mori and Samia cynthia ricini. We also synthesized a longer 13C-labeled peptide containing two PLA blocks and three Gly-rich blocks. After 8 M urea/acetonitrile treatment, the conformation pattern was closely similar to that of the shorter peptide.

  17. Attainable entanglement of unitary transformed thermal states in liquid-state nuclear magnetic resonance with the chemical shift

    CERN Document Server

    Ota, Y; Ohba, I; Yoshida, N; Mikami, Shuji; Ohba, Ichiro; Ota, Yukihiro; Yoshida, Noriyuki

    2006-01-01

    Recently, Yu, Brown, and Chuang [Phys. Rev. A {\\bf 71}, 032341 (2005)] investigated the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance (NMR). Their research gave an insight into the role of the entanglement in a liquid-state NMR quantum computer. Moreover, they attempted to reveal the role of mixed-state entanglement in quantum computing. However, they assumed that the Zeeman energy of each nuclear spin which corresponds to a qubit takes a common value for all; there is no chemical shift. In this paper, we research a model with the chemical shifts and analytically derive the physical parameter region where unitary transformed thermal states are entangled, by the positive partial transposition (PPT) criterion with respect to any bipartition. We examine the effect of the chemical shifts on the boundary between the separability and the nonseparability, and find it is negligible.

  18. Chemical shift assignments of zinc finger domain of methionine aminopeptidase 1 (MetAP1) from Homo sapiens.

    Science.gov (United States)

    Rachineni, Kavitha; Arya, Tarun; Singarapu, Kiran Kumar; Addlagatta, Anthony; Bharatam, Jagadeesh

    2015-10-01

    Methionine aminopeptidase Type I (MetAP1) cleaves the initiator methionine from about 70 % of all newly synthesized proteins in almost every living cell. Human MetAP1 is a two domain protein with a zinc finger on the N-terminus and a catalytic domain on the C-terminus. Here, we report the chemical shift assignments of the amino terminal zinc binding domain (ZBD) (1-83 residues) of the human MetAP1 derived by using advanced NMR spectroscopic methods. We were able to assign the chemical shifts of ZBD of MetAP1 nearly complete, which reveal two helical fragments involving residues P44-L49 (α1) and Q59-K82 (α2). The protein structure unfolds upon complex formation with the addition of 2 M excess EDTA, indicated by the appearance of amide resonances in the random coil chemical shift region of (15)NHSQC spectrum.

  19. 13C high resolution solid state NMR spectra of Chinese coals

    Institute of Scientific and Technical Information of China (English)

    陈德玉; 胡建治; 叶朝辉

    1997-01-01

    Several typical exinites in China including alginite, cultinite, suberinite and bituminite are analysed by means of 13C high solution solid state CP MAS TOSS NMR spectra to determine their chemical structures and hydrocarbon potential. Thermal simulation solid products (TSSP) of hydrogen-rich coals arc studied to discuss the generation and expulsion mechanism of coal-generating hydrocarbon. The preliminary results are quite encouraging, containing useful information about genesis of coal-generating oil and gases.

  20. 1H-13C NMR-based profiling of biotechnological starch utilization

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik K.; Meier, Sebastian

    2016-01-01

    Starch is used in food-and non-food applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail......-resolution 1H-13C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnologi-cal starch utilization....

  1. Carbon isotope ratio (delta13C) values of urinary steroids for doping control in sport.

    Science.gov (United States)

    Cawley, Adam T; Trout, Graham J; Kazlauskas, Rymantas; Howe, Christopher J; George, Adrian V

    2009-03-01

    The detection of steroids originating from synthetic precursors in relation to their chemically identical natural analogues has proven to be a significant challenge for doping control laboratories accredited by the World Anti-Doping Agency (WADA). Endogenous steroid abuse may be confirmed by utilising the atomic specificity of gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) that enables the precise measurement of differences in stable isotope ratios that arise as a result of fractionation patterns inherent in the source of steroids. A comprehensive carbon isotope ratio (delta(13)C) profiling study (n=1262) of urinary ketosteroids is reported that demonstrates the inter-individual variation that can be expected from factors such as diet, ethnicity, gender and age within and between different populations (13 countries). This delta(13)C distribution is shown by principal component analysis (PCA) to provide a statistical comparison to delta(13)C values observed following administration of testosterone enanthate. A limited collection of steroid diol data (n=100; consisting of three countries) is also presented with comparison to delta(13)C values of excreted testosterone to validate criteria for WADA accredited laboratories to prove doping offences.

  2. Glucose isotope, carbon recycling, and gluconeogenesis using [U-13C]glucose and mass isotopomer analysis.

    Science.gov (United States)

    Lee, W N; Sorou, S; Bergner, E A

    1991-06-01

    Experimental determinations of glucose carbon recycling using 14C or 13C glucose tracer often underestimate true Cori cycle activity because of dilution and exchange of isotope tracer through the tricarboxylic acid (TCA) cycle. The term glucose isotope recycling therefore is used to distinguish recycling of isotope from recycling of glucose carbon, the actual quantity of circulating glucose recycled. Recently, per-labeled glucose ([U-13C6]glucose) has been used to estimate glucose appearance rate and glucose isotope recycling. Chemical structural information determined by mass isotopomer analysis has been used to correct for dilution of isotope through the TCA cycle. In this report, we present experiments in the study of glucose turnover and recycling using [U-13C6]glucose. Methods of single injection and continuous infusion of [U-13C6]glucose are compared. A formula for the calculation of a dilution factor using TCA cycle parameters is derived. In this study of six rabbits, glucose turnover rate ranged from 3.4 to 8.8 mg/kg/min, and glucose m + 3 mass isotopomer recycling from 7 to 12%. The rate of pyruvate carboxylation (Y) was comparable to that of citrate synthetase, having an average relative flux of 0.89. Applying the correction factor for tracer dilution to the observed mass isotopomer recycling, we determined glucose carbon recycling (or Cori cycle activity) to be 22-35% of hepatic glucose output.

  3. Metabolic flux analysis using 13C peptide label measurements

    Science.gov (United States)

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  4. δ13C-CH4 in ice core samples

    DEFF Research Database (Denmark)

    Sperlich, Peter

    Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2) measure......Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2......) measurements of δ13C-CH4 in ice core samples as is required when δ13C-CH4 records that are measured in several laboratories are merged for analysis. Both the referencing and measurement techniques have been compared to further laboratories which proofed the accuracy of the analytical systems. The second part...

  5. δ13C-CH4 in ice core samples

    DEFF Research Database (Denmark)

    Sperlich, Peter

    Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2) measure......Ice core records of δ13C-CH4 reflect the variability of CH4 biogeochemistry in response to climate change and show this system is far more complex than expected. The first part of this work is concerned with the development of analytical techniques that allow 1) precise referencing and 2......) measurements of δ13C-CH4 in ice core samples as is required when δ13C-CH4 records that are measured in several laboratories are merged for analysis. Both the referencing and measurement techniques have been compared to further laboratories which proofed the accuracy of the analytical systems. The second part...

  6. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    Science.gov (United States)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  7. Recent insights into intramolecular 13C isotope composition of biomolecules

    Science.gov (United States)

    Gilbert, A.; Yamada, K.; Julien, M.; Yoshida, N.; Remaud, G.; Robins, R.

    2016-12-01

    In 1961 Abelson & Hoering shown that the intramolecular 13C distribution in amino acids was not homogeneous, namely the carboxylic acid positions were 13C-enriched compared with the mean of the remaining C-atoms in the molecule [1]. Nearly 20 years later, Monson & Hayes were able to demonstrate that even and odd positions in acetogenic fatty acids also showed non-statistical 13C isotope distributions, and that the pattern varied depending on the organism [2]. It took a further decade for the intramolecular 13C distribution in the key metabolite, glucose, to be defined [3]. Although informative, much of this work was incomplete, a number of positions having to be deduced by difference. This limitation arose mainly due to the lack of techniques enabling the separation and quantification of 13C isotopomers of the target molecule. In the past decade, quantitative 13C NMR has been developed for the determination of the intramolecular isotope composition of a given molecule with a precision of 1‰ or better [4]. This breakthrough has made possible a comprehensive view of the determinants governing intramolecular isotope composition of biological molecules. In particular, it can be shown that intramolecular pattern in sugars is influenced by the C-assimilation pathway and by post-photosynthetic fractionation associated with carbohydrate metabolism [5]. In addition, analysis by NMR of the alkyl chain of acetogenic lipids (fatty acids, n-alkanes) shows an alternation between odd and even C-atom positions, as observed by Monson& Hayes [2], throughout the molecule [6]. Overall, it is becoming apparent that this pattern is influenced by two principal metabolic factors: (i) the 13C pattern extant in the starting compounds; (ii) isotope fractionation associated with the enzymes involved in the biosynthetic pathway. On the whole, the determination of intramolecular isotope patterns in biomolecules allows better insights into the conditions and pathways by which they are formed

  8. 1H, 13C, and 15N NMR Studies of Au(III and Pd(II Chloride Complexes and Organometallics with 2-Acetylpyridine and 2-Benzoylpyridine

    Directory of Open Access Journals (Sweden)

    Daria Niedzielska

    2013-01-01

    Full Text Available Au(III and Pd(II chloride complexes with N(1,O-chelating 2-acetylpyridine (2apy and N(1- monodentately binding 2-benzoylpyridine (2bz′py-[Pd(2apyCl2], [Au(2bz′pyCl3], trans-[Pd(2bz′py2Cl2], as well as Au(III chloride organometallics with monoanionic forms of 2apy or 2bz′py, deprotonated at the acetyl or benzyl side groups (2apy*, 2bz′py*-[Au(2apy*Cl2], [Au(2bz′py*Cl2], were studied by 1H, 13C, and 15N NMR. 1H, 13C, and 15N coordination shifts (i.e., differences between the respective , , and chemical shifts of the same atom in the complex and ligand molecules: , , were discussed in relation to the molecular structures and coordination modes, as well as to the factors potentially influencing nuclear shielding. Analogous NMR measurements were performed for the new (2bz′pyH[AuCl4] salt.

  9. Regional Differences in Muscle Energy Metabolism in Human Muscle by 31P-Chemical Shift Imaging.

    Science.gov (United States)

    Kime, Ryotaro; Kaneko, Yasuhisa; Hongo, Yoshinori; Ohno, Yusuke; Sakamoto, Ayumi; Katsumura, Toshihito

    2016-01-01

    Previous studies have reported significant region-dependent differences in the fiber-type composition of human skeletal muscle. It is therefore hypothesized that there is a difference between the deep and superficial parts of muscle energy metabolism during exercise. We hypothesized that the inorganic phosphate (Pi)/phosphocreatine (PCr) ratio of the superficial parts would be higher, compared with the deep parts, as the work rate increases, because the muscle fiber-type composition of the fast-type may be greater in the superficial parts compared with the deep parts. This study used two-dimensional 31Phosphorus Chemical Shift Imaging (31P-CSI) to detect differences between the deep and superficial parts of the human leg muscles during dynamic knee extension exercise. Six healthy men participated in this study (age 27±1 year, height 169.4±4.1 cm, weight 65.9±8.4 kg). The experiments were carried out with a 1.5-T superconducting magnet with a 5-in. diameter circular surface coil. The subjects performed dynamic one-legged knee extension exercise in the prone position, with the transmit-receive coil placed under the right quadriceps muscles in the magnet. The subjects pulled down an elastic rubber band attached to the ankle at a frequency of 0.25, 0.5 and 1 Hz for 320 s each. The intracellular pH (pHi) was calculated from the median chemical shift of the Pi peak relative to PCr. No significant difference in Pi/PCr was observed between the deep and the superficial parts of the quadriceps muscles at rest. The Pi/PCr of the superficial parts was not significantly increased with increasing work rate. Compared with the superficial areas, the Pi/PCr of the deep parts was significantly higher (p<0.05) at 1 Hz. The pHi showed no significant difference between the two parts. These results suggest that muscle oxidative metabolism is different between deep and superficial parts of quadriceps muscles during dynamic exercise.

  10. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  11. Phosphorus-31, sup 15 N, and sup 13 C NMR of glyphosate: Comparison of pH titrations to the herbicidal dead-end complex with 5-enolpyruvoylshikimate-3-phosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Castellino, S.; Leo, G.C.; Sammons, R.D.; Sikorski, J.A. (Monsanto Agricultural Company, St. Louis, MO (USA))

    1989-05-02

    The herbicidal dead-end ternary complex (E{sup S3P}{sub Glyph}) of glyphosate (N-(phosphonomethyl)glycine) with 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) and the substrate shikimate 3-phosphate (S3P) has been characterized by {sup 31}P, {sup 15}N, and {sup 13}C NMR. The NMR spectra of EPSPS-bound glyphosate show unique chemical shifts ({delta}) for each of the three nuclei. By {sup 31}P NMR, glyphosate in the dead-end complex is a distinct species 3.5 ppm downfield from free glyphosate. The {sup 13}C signal of glyphosate in the dead-end complex is shifted 4 ppm downfield from that of free glyphosate. The {sup 15}N signal for glyphosate (99%) in the dead-end complex is 5 ppm further downfield than that of any free zwitterionic species and 10 ppm downfield from that of the average free species at pH 10.1. The structures of each ionic state of glyphosate are modeled with force field calculations by using MacroModel. A correlation is made for the {sup 31}P {delta} and the C-P-O bond angle, and the {sup 13}C and {sup 15}N {delta} values are postulated to be related to C-C-O and C-N-C bond angles, respectively. The downfield {sup 31}P chemical shift perturbation for S3P in the EPSPS binary complex is consistent with ionization of the 3-phosphate of S3P upon binding. Comparison with the S3P {sup 31}P {delta} vs pH titration curve specifies predominantly the dianion of the 3-phosphate in the E{sup S3P} binary complex, while the E{sup S3P}{sub Glyph} complex indicates net protonation at the 3-phosphate. Chemical shift perturbations of this latter type may be explained by changes in the O-P-O bond angle.

  12. Afforestation impacts microbial biomass and its natural (13)C and (15)N abundance in soil aggregates in central China.

    Science.gov (United States)

    Wu, Junjun; Zhang, Qian; Yang, Fan; Lei, Yao; Zhang, Quanfa; Cheng, Xiaoli

    2016-10-15

    We investigated soil microbial biomass and its natural abundance of δ(13)C and δ(15)N in aggregates (>2000μm, 250-2000μm, 53-250μm and plantations) soils, adjacent croplands and open area (i.e., control) in the Danjiangkou Reservoir area of central China. The afforested soils averaged higher microbial biomass carbon (MBC) and nitrogen (MBN) levels in all aggregates than in open area and cropland, with higher microbial biomass in micro-aggregates (2000μm). The δ(13)C of soil microbial biomass was more enriched in woodland soils than in other land use types, while δ(15)N of soil microbial biomass was more enriched compared with that of organic soil in all land use types. The δ(13)C and δ(15)N of microbial biomass were positively correlated with the δ(13)C and δ(15)N of organic soil across aggregates and land use types, whereas the (13)C and (15)N enrichment of microbial biomass exhibited linear decreases with the corresponding C:N ratio of organic soil. Our results suggest that shifts in the natural (13)C and (15)N abundance of microbial biomass reflect changes in the stabilization and turnover of soil organic matter (SOM) and thereby imply that afforestation can greatly impact SOM accumulation over the long-term. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated "Safe Sites"?

    Science.gov (United States)

    2011-07-26

    Effects of Irritant Chemicals on Aedes aegypti Resting Behavior: Is There a Simple Shift to Untreated ‘‘Safe Sites’’? Hortance Manda*, Luana M. Arce... aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant...overall impact. Methods: Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU) were evaluated

  14. SUBSTITUENT CHEMICAL SHIFT (SCS) AND THE SEQUENCE STRUCTURE OF ETHYLENE-VINYL ALCOHOL COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zinan; TIAN Wenjing; WU Shengrong; DAI Yingkun; FENG Zhiliu; SHEN Lianfang; YUAN Hanzhen

    1992-01-01

    Three ethylene-vinyl alcohol copolymers were studied by means of the substituent chemical shift(SCS) method. The SCS parameters of hydroxy (-OH)in two different solvents were obtained: in deuterium oxide/phenol (20/80 W/W ) the parameters are S1 = 42.77 ± 0.08ppm, S2 = 7.15 ±0.06 ppm,S3(s )=-4.08±0.02ppm, S3(t)=-3.09±0.20ppm,S4=0.48±0.03ppm, S5 =0.26±0.05ppm. In o-dichlorobenzen-d4 S1(s)=44.79±0.61ppm, S2=7.40±0.00ppm, S3 (s)=-4.51±0.17ppm, S3 (t)= -3.13± 0.00 ppm, S4 =0 . 63±0.04ppm, S5=0.36±0.00ppm. Simultaneously the 13CNMR spectra of EVA copolymers were assigned by using the SCS parameters obtained.

  15. Chemical shift imaging and localised magnetic resonance spectroscopy in full-term asphyxiated neonates

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Olivier [Children' s Hospital, Paediatric Intensive Care Unit, Bordeaux (France); Chateil, Jean-Francois; Bordessoules, Martine; Brun, Muriel [Children' s Hospital, Radiology Unit, Bordeaux (France)

    2005-10-01

    Diagnosis of brain lesions after birth anoxia-ischemia is essential for appropriate management. Clinical evaluation is not sufficient. MRI has been proven to provide useful information. To compare abnormalities observed with MRI, including diffusion-weighted imaging (DWI), localised magnetic resonance spectroscopy (MRS) and chemical shift imaging (CSI) and correlate these findings with the clinical outcome. Fourteen full-term neonates with birth asphyxia were studied. MRI, MRS and CSI were performed within the first 4 days of life. Lesions observed with DWI were correlated with outcome, but the apparent diffusion coefficient (ADC) did improve diagnostic confidence. The mean value of Lac/Cr for the neonates with a favourable outcome was statically lower than for those who died (0.22 vs 1.04; P = 0.01). The same results were observed for the Lac/NAA ratio (0.21 vs 1.23; P = 0.01). Data obtained with localised MRS and CSI were correlated for the ratio N-acetyl-aspartate/choline, but not for the other metabolites. No correlation was found between the ADC values and the metabolite ratios. Combination of these techniques could be helpful in our understanding of the physiopathological events occurring in neonates with asphyxia. (orig.)

  16. Control of Mercury Accumulation And Mobility in a Forest Soil as Indicated by δ13C

    Science.gov (United States)

    Bajracharya, U.; Jackson, B.; Feng, X.

    2015-12-01

    partitioned into effects of of both soil horizon and particle size. This work demonstrates that soil δ13C is a useful tool for studying coupled Hg and C cycles in soils. Linking other methods characterizing bonding characteristics of Hg may bring additional insights to accumulation and mobility of Hg in association with changing chemical and physical properties of OM.

  17. Quantifying two-bond 1HN-13CO and one-bond 1H(alpha)-13C(alpha) dipolar couplings of invisible protein states by spin-state selective relaxation dispersion NMR spectroscopy.

    Science.gov (United States)

    Hansen, D Flemming; Vallurupalli, Pramodh; Kay, Lewis E

    2008-07-02

    Relaxation dispersion NMR spectroscopy has become a valuable probe of millisecond dynamic processes in biomolecules that exchange between a ground (observable) state and one or more excited (invisible) conformers, in part because chemical shifts of the excited state(s) can be obtained that provide insight into the conformations that are sampled. Here we present a pair of experiments that provide additional structural information in the form of residual dipolar couplings of the excited state. The new experiments record (1)H spin-state selective (13)CO and (13)C(alpha) dispersion profiles under conditions of partial alignment in a magnetic field from which two-bond (1)HN-(13)CO and one-bond (1)H(alpha)-(13)C(alpha) residual dipolar couplings of the invisible conformer can be extracted. These new dipolar couplings complement orientational restraints that are provided through measurement of (1)HN-(15)N residual dipolar couplings and changes in (13)CO chemical shifts upon alignment that have been measured previously for the excited-state since the interactions probed here are not collinear with those previously investigated. An application to a protein-ligand binding reaction is presented, and the accuracies of the extracted excited-state dipolar couplings are established. A combination of residual dipolar couplings and chemical shifts as measured by relaxation dispersion will facilitate a quantitative description of excited protein states.

  18. The local order of supercooled water in solution with LiCl studied by NMR proton chemical shift

    Science.gov (United States)

    Corsaro, C.; Mallamace, D.; Vasi, S.; Cicero, N.; Dugo, G.; Mallamace, F.

    2016-05-01

    We study by means of Nuclear Magnetic Resonance (NMR) spectroscopy the local order of water molecules in solution with lithium chloride at eutectic concentration. In particular, by measuring the proton chemical shift as a function of the temperature in the interval 203{ K}Widom line for water supporting the liquid-liquid transition hypothesis.

  19. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin

    2011-01-01

    use random coil peptides containing glutamine instead of glycine to determine the random coil chemical shifts and the neighbor correction factors. The resulting correction factors correlate to changes in the populations of the major wells in the Ramachandran plot, which demonstrates that changes...

  20. Elucidation of the substitution pattern of 9,10-anthraquinones through the chemical shifts of peri-hydroxyl protons

    DEFF Research Database (Denmark)

    Schripsema, Jan; Danigno, Denise

    1996-01-01

    In 9,10-anthraquinones the chemical shift of a peri-hydroxyl proton is affected by the substituents in the other benzenoid ring. These effects are additive. They are useful for the determination of substitution patterns and have been used to revise the structures of six previously reported anthra...

  1. Analysis of the contributions of ring current and electric field effects to the chemical shifts of RNA bases.

    Science.gov (United States)

    Sahakyan, Aleksandr B; Vendruscolo, Michele

    2013-02-21

    Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.

  2. Correlation of 1H NMR Chemical Shift for Aqueous Solutions by Statistical Associating Fluid Theory Association Model

    Institute of Scientific and Technical Information of China (English)

    许波; 李浩然; 王从敏; 许映杰; 韩世钧

    2005-01-01

    1H NMR chemical shifts of binary aqueous mixtures of acylamide, alcohol, dimethyl sulphoxide (DMSO), and acetone are correlated by statistical associating fluid theory (SAFT) association model. The comparison between SAFT association model and Wilson equation shows that the former is better for dealing with aqueous solutions. Finally, the specialties of both models are discussed.

  3. Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI

    DEFF Research Database (Denmark)

    Golman, K.; Petersson, J.S.; Magnusson, P.

    2008-01-01

    Pyruvate is included in the energy production of the heart muscle and is metabolized into lactate, alanine, and CO(2) in equilibrium with HCO(3) (-). The aim of this study was to evaluate the feasibility of using (13)C hyperpolarization enhanced MRI to monitor pyruvate metabolism in the heart...... was almost absent (0.2-11%) and the alanine signal was reduced (27-51%). Due to image-folding artifacts the data obtained for lactate were inconclusive. These studies demonstrate that cardiac metabolic imaging with hyperpolarized 1-(13)C-pyruvate is feasible. The changes in concentrations of the metabolites...... within a minute after injection can be detected and metabolic maps constructed Udgivelsesdato: 2008/5...

  4. Methyl [13C]glucopyranosiduronic acids: effect of COOH ionization and exocyclic structure on NMR spin-couplings.

    Science.gov (United States)

    Zhang, Wenhui; Hu, Xiaosong; Carmichael, Ian; Serianni, Anthony S

    2012-11-02

    Methyl α- and β-D-glucopyranuronides singly labeled with (13)C at C1-C6 were prepared from the corresponding (13)C-labeled methyl D-glucopyranosides, and multiple NMR J-couplings (J(HH), J(CH), and J(CC)) were measured in their protonated and ionized forms in aqueous ((2)H(2)O) solution. Solvated density functional theory (DFT) calculations of J-couplings in structurally related model compounds were performed to determine how well the calculated J-couplings matched the experimental values in saccharides bearing an ionizable substituent. Intraring J(HH) values in both uronide anomers, including (3)J(H4,H5), are unaffected by solution pD, and COOH ionization exerts little effect on J(CH) and J(CC) except for (1)J(C1,H1), (1)J(C4,H4), (1)J(C5,H5), (1)J(C5,C6), and (2)J(C3,C5), where changes of up to 5 Hz were observed. Some of these changes are associated with changes in bond lengths upon ionization; in general, better agreement between theory and experiment was observed for couplings less sensitive to exocyclic C-O bond conformation. Titration of (1)H and (13)C chemical shifts, and some J-couplings, yielded a COOH pK(a) of 3.0 ± 0.1 in both anomers. DFT calculations suggest that substituents proximal to the exocyclic COOH group (i.e., the C4-O4 bond) influence the activation barrier to C5-C6 bond rotation due to transient intramolecular H-bonding. A comparison of J-couplings in the glucopyranuronides to corresponding J-couplings in the glucopyranosides showed that more pervasive changes occur upon conversion from a COOH to a CH(2)OH substituent at C6 than from COOH ionization within the uronides. Twelve J-couplings are affected, with the largest being (1)J(C5,C6) (∼18 Hz larger in the uronides), followed by (2)J(C6,H5) (∼2.5 Hz more negative in the uronides).

  5. Direct 13C NMR Detection in HPLC Hyphenation Mode

    DEFF Research Database (Denmark)

    Wubshet, Sileshi Gizachew; Johansen, Kenneth; Nyberg, Nils

    2012-01-01

    Solid phase extraction (SPE) was introduced as a crucial step in the HPLC-SPE-NMR technique to enable online analyte enrichment from which proton-detected NMR experiments on submicrogram amounts from complex mixtures were possible. However, the significance of direct-detected (13)C NMR experiments......, and an acquisition time of 13 h resulted in spectra with adequate signal-to-noise ratios to detect all C-13 signals....

  6. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    Science.gov (United States)

    2015-12-01

    detection of HP citrate and glutamate allows a measurement of flux through the citric acid cycle , and following cardiac ischemia, the TCA cycle ...biomedical research potential. For instance, the directionality of reactions within the citric acid cycle has become an area of increased interest as...incorporated into tricarboxylic acid (TCA) cycle intermediates rather than being released as 13CO2. This makes [2- 13C]pyruvate an attractive

  7. (1)H-(13)C NMR-Based Profiling of Biotechnological Starch Utilization.

    Science.gov (United States)

    Sundekilde, Ulrik K; Meier, Sebastian

    2016-10-04

    Starch is used in food- and nonfood applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized (1)H-(13)C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for downstream process output such as ethanol production from starch. Thus, high-resolution (1)H-(13)C NMR spectroscopic profiles of homooligomeric fragment mixtures in conjunction with chemometric methods provide a useful addition to the analytical chemistry toolbox of biotechnological starch utilization.

  8. High resolution 13C DOSY: The DEPTSE experiment

    Science.gov (United States)

    Botana, Adolfo; Howe, Peter W. A.; Caër, Valérie; Morris, Gareth A.; Nilsson, Mathias

    2011-07-01

    High Resolution Diffusion-ordered Spectroscopy (HR-DOSY) is a valuable tool for mixture analysis by NMR. It separates the signals from different components according to their diffusion behavior, and can provide exquisite diffusion resolution when there is no signal overlap. In HR-DOSY experiments on 1H (by far the most common nucleus used for DOSY) there is frequent signal overlap that confuses interpretation. In contrast, a 13C spectrum usually has little overlap, and is in this respect a much better option for a DOSY experiment. The low signal-to-noise ratio is a critical limiting factor, but with recent technical advances such as cryogenic probes this problem is now less acute. The most widely-used pulse sequences for 13C DOSY perform diffusion encoding with 1H, using a stimulated echo in which half of the signal is lost. This signal loss can be avoided by encoding diffusion with 13C in a spin echo experiment such as the DEPTSE pulse sequence described here.

  9. PEDOGENIC CARBONATE δ13C AND ENVIRONMENTAL PRECIPITATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Marcella Catoni

    2011-12-01

    Full Text Available Carbon isotopic analysis is a useful tool for investigating paleoenvironments, as the pedogenic carbonate δ13C is related to δ13CSOM and to the proportions of C3/C4 plants. In this work we interpreted the paleoenvironmental conditions at the time of carbonate precipitation in soils formed under different climates and during different geological ages. Samples were taken from a Bk (PR1, Holocene and from two Bkm horizons (PR2 and PR3, Pleistocene. When the mean δ13C plant values and the most plausible paleotemperatures were used in the evaluation, PR1 showed a lower percentage of C4 plants (48% than Pleistocene soils (~53%, in agreement with paleoclimate changes. When instead the δ13C values of current plants were used for PR1, C4 plants ranged from 59 (12°C to 66% (18°C, suggesting two possible interpretations: either plant species changed during the Holocene, or the plant mean values normally used in the literature are not suitable for Pleistocene reconstructions

  10. Synthesis and 1H and 13C NMR spectral study of some r(2),c(4)-bis(isopropylcarbonyl)-c(5)-hydroxy-t(5)-methyl-t(3)-substituted phenyl, cyclohexanones and their oximes

    Science.gov (United States)

    Balachander, R.; Sameera, S. A.; Mohan, R. T. Sabapathy

    2016-07-01

    All the synthesized compounds have been characterized by 1H, 13C, 2D NMR and mass spectral studies. The spectral data suggest that compounds 2, 3, 5 and 6 exist in chair conformation with axial orientation of the hydroxyl group and equatorial orientations of all the other substituent. Long-range coupling is observed between OH proton to H-6a proton should be in a W arrangement. Compounds 1 and 4 diamagnetic anisotropic effect of the furyl group is not pronounced and absence of long-rang coupling between OH proton to H-6a proton. The oximation effects were discussed to all synthesized compounds using 1H and 13C chemical shifts.

  11. Synthesis, structural, spectral (FT-IR, 1H and 13C NMR and UV-Vis), NBO and first order hyperpolarizability analysis of N-(4-nitrophenyl)-2, 2-dibenzoylacetamide by density functional theory

    Science.gov (United States)

    Yalçın, Şerife Pınar; Ceylan, Ümit; Sarıoğlu, Ahmet Oral; Sönmez, Mehmet; Aygün, Muhittin

    2015-10-01

    The title compound, C22H16N2O5, was synthesized and characterized by experimental techniques (FT-IR, 1H NMR, 13C NMR, UV-Vis and X-Ray single crystal determination) and theoretical calculations. The molecular geometry, vibrational frequencies, molecular electrostatic potential (MEP), thermodynamic properties, the dipole moments, HOMO-LUMO energy has been calculated by using the Density Functional Theory (DFT) method with 6-311G(d,p) and 6-311++G(d,p) basis sets. 1H and 13C NMR chemical shifts show good agreement with experimental values. According to calculated results, the 6-311G(d,p) and 6-311++G(d,p) basis sets have showed similar results. The optimized geometry can well reproduce the crystal structure parameters.

  12. A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in {sup 19}F NMR studies of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Libin; Larda, Sacha Thierry; Frank Li, Yi Feng [University of Toronto, UTM, Department of Chemistry (Canada); Manglik, Aashish [Stanford University School of Medicine, Department of Molecular and Cellular Physiology (United States); Prosser, R. Scott, E-mail: scott.prosser@utoronto.ca [University of Toronto, UTM, Department of Chemistry (Canada)

    2015-05-15

    The elucidation of distinct protein conformers or states by fluorine ({sup 19}F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the {sup 19}F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H{sub 2}O = 4) to polar (MeOH:H{sub 2}O = 0.25). {sup 19}F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl] -2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.

  13. Changes of brain metabolite concentrations during maturation in different brain regions measured by chemical shift imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bueltmann, Eva; Lanfermann, Heinrich [Hannover Medical School, Institute of Diagnostic and Interventional Neuroradiology, Hannover (Germany); Naegele, Thomas [University of Tuebingen, Department of Diagnostic and Interventional Neuroradiology, Radiological University Hospital, Tuebingen (Germany); Klose, Uwe [University of Tuebingen, Section of Experimental MR of the CNS, Department of Neuroradiology, Radiological University Hospital, Tuebingen (Germany)

    2017-01-15

    We examined the effect of maturation on the regional distribution of brain metabolite concentrations using multivoxel chemical shift imaging. From our pool of pediatric MRI examinations, we retrospectively selected patients showing a normal cerebral MRI scan or no pathologic signal abnormalities at the level of the two-dimensional 1H MRS-CSI sequence and an age-appropriate global neurological development, except for focal neurological deficits. Seventy-one patients (4.5 months-20 years) were identified. Using LC Model, spectra were evaluated from voxels in the white matter, caudate head, and corpus callosum. The concentration of total N-acetylaspartate increased in all regions during infancy and childhood except in the right caudate head where it remained constant. The concentration of total creatine decreased in the caudate nucleus and splenium and minimally in the frontal white matter and genu. It remained largely constant in the parietal white matter. The concentration of choline-containing compounds had the tendency to decrease in all regions except in the parietal white matter where it remained constant. The concentration of myoinositol decreased slightly in the splenium and right frontal white matter, remained constant on the left side and in the caudate nucleus, and rose slightly in the parietal white matter and genu. CSI determined metabolite concentrations in multiple cerebral regions during routine MRI. The obtained data will be helpful in future pediatric CSI measurements deciding whether the ratios of the main metabolites are within the range of normal values or have to be considered as probably pathologic. (orig.)

  14. Female sea lamprey shift orientation toward a conspecific chemical cue to escape a sensory trap

    Science.gov (United States)

    Brant, Cory O.; Johnson, Nicholas; Li, Ke; Buchinger, Tyler J.; Li, Weiming

    2016-01-01

    The sensory trap model of signal evolution hypothesizes that signalers adapt to exploit a cue used by the receiver in another context. Although exploitation of receiver biases can result in conflict between the sexes, deceptive signaling systems that are mutually beneficial drive the evolution of stable communication systems. However, female responses in the nonsexual and sexual contexts may become uncoupled if costs are associated with exhibiting a similar response to a trait in both contexts. Male sea lamprey (Petromyzon marinus) signal with a mating pheromone, 3-keto petromyzonol sulfate (3kPZS), which may be a match to a juvenile cue used by females during migration. Upstream movement of migratory lampreys is partially guided by 3kPZS, but females only move toward 3kPZS with proximal accuracy during spawning. Here, we use in-stream behavioral assays paired with gonad histology to document the transition of female preference for juvenile- and male-released 3kPZS that coincides with the functional shift of 3kPZS as a migratory cue to a mating pheromone. Females became increasingly biased toward the source of synthesized 3kPZS as their maturation progressed into the reproductive phase, at which point, a preference for juvenile odor (also containing 3kPZS naturally) ceased to exist. Uncoupling of female responses during migration and spawning makes the 3kPZS communication system a reliable means of synchronizing mate search. The present study offers a rare example of a transition in female responses to a chemical cue between nonsexual and sexual contexts, provides insights into the origins of stable communication signaling systems.

  15. Utilization of chemical shift MRI in the diagnosis of disorders affecting pediatric bone marrow.

    Science.gov (United States)

    Winfeld, Matthew; Ahlawat, Shivani; Safdar, Nabile

    2016-09-01

    MRI signal intensity of pediatric bone marrow can be difficult to interpret using conventional methods. Chemical shift imaging (CSI), which can quantitatively assess relative fat content, may improve the ability to accurately diagnose bone marrow abnormalities in children. Consecutive pelvis and extremity MRI at a children's hospital over three months were retrospectively reviewed for inclusion of CSI. Medical records were reviewed for final pathological and/or clinical diagnosis. Cases were classified as normal or abnormal, and if abnormal, subclassified as marrow-replacing or non-marrow-replacing entities. Regions of interest (ROI) were then drawn on corresponding in and out-of-phase sequences over the marrow abnormality or over a metaphysis and epiphysis in normal studies. Relative signal intensity ratio for each case was then calculated to determine the degree of fat content in the ROI. In all, 241 MRI were reviewed and 105 met inclusion criteria. Of these, 61 had normal marrow, 37 had non-marrow-replacing entities (osteomyelitis without abscess n = 17, trauma n = 9, bone infarction n = 8, inflammatory arthropathy n = 3), and 7 had marrow-replacing entities (malignant neoplasm n = 4, bone cyst n = 1, fibrous dysplasia n = 1, and Langerhans cell histiocytosis n = 1). RSIR averages were: normal metaphyseal marrow 0.442 (0.352-0.533), normal epiphyseal marrow 0.632 (0.566-698), non-marrow-replacing diagnoses 0.715 (0.630-0.799), and marrow-replacing diagnoses 1.06 (0.867-1.26). RSIR for marrow-replacing entities proved significantly different from all other groups (p < 0.05). ROC analysis demonstrated an AUC of 0.89 for RSIR in distinguishing marrow-replacing entities. CSI techniques can help to differentiate pathologic processes that replace marrow in children from those that do not.

  16. 4D Non-uniformly sampled HCBCACON and {sup 1}J(NC{sup {alpha}})-selective HCBCANCO experiments for the sequential assignment and chemical shift analysis of intrinsically disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Novacek, Jiri [Masaryk University, Faculty of Science, NCBR, and CEITEC (Czech Republic); Haba, Noam Y.; Chill, Jordan H. [Bar Ilan University, Department of Chemistry (Israel); Zidek, Lukas, E-mail: lzidek@chemi.muni.cz; Sklenar, Vladimir [Masaryk University, Faculty of Science, NCBR, and CEITEC (Czech Republic)

    2012-06-15

    A pair of 4D NMR experiments for the backbone assignment of disordered proteins is presented. The experiments exploit {sup 13}C direct detection and non-uniform sampling of the indirectly detected dimensions, and provide correlations of the aliphatic proton (H{sup {alpha}}, and H{sup {beta}}) and carbon (C{sup {alpha}}, C{sup {beta}}) resonance frequencies to the protein backbone. Thus, all the chemical shifts regularly used to map the transient secondary structure motifs in the intrinsically disordered proteins (H{sup {alpha}}, C{sup {alpha}}, C{sup {beta}}, C Prime , and N) can be extracted from each spectrum. Compared to the commonly used assignment strategy based on matching the C{sup {alpha}} and C{sup {beta}} chemical shifts, inclusion of the H{sup {alpha}} and H{sup {beta}} provides up to three extra resonance frequencies that decrease the chance of ambiguous assignment. The experiments were successfully applied to the original assignment of a 12.8 kDa intrinsically disordered protein having a high content of proline residues (26 %) in the sequence.

  17. Vibrational (FT-IR and FT-Raman), electronic (UV-Vis), NMR (1H and 13C) spectra and reactivity analyses of 4,5-dimethyl-o-phenylenediamine.

    Science.gov (United States)

    Atac, Ahmet; Karaca, Caglar; Gunnaz, Salih; Karabacak, Mehmet

    2014-09-15

    The structure of 4,5-dimethyl-o-phenylenediamine (C8H12N2, DMPDA) was investigated on the basis of spectroscopic data and theoretical calculations. The sterochemical structure was determined by FT-IR, FT-Raman, UV, 1H and 13C NMR spectra. An experimental study and a theoretical analysis were associated by using the B3LYP method with Gaussian09 package program. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm(-1) and 4000-10 cm(-1), respectively. The vibrational spectra were calculated by DFT method and the fundamental vibrations were assigned on the basis of the total energy distribution (TED), calculated with scaled quantum mechanics (SQM) method with Parallel Quantum Solutions (PQS) program. The UV absorption spectrum of the compound that dissolved in ethanol solution were recorded in the range of 190-400 nm. Total density of state (TDOS) and partial density of state (PDOS) of the DMPDA in terms of HOMOs and LUMOs were calculated and analyzed. Chemical shifts were reported in ppm relative to tetramethylsilane (TMS) for 1H and 13C NMR spectra. The compound was dissolved in dimethyl sulfoxide (DMSO). Also, 1H and 13C chemical shifts calculated using the gauge independent atomic orbital (GIAO) method. Mullikan atomic charges and other thermo-dynamical parameters were investigated with the help of B3LYP (DFT) method using 6-311++G** basis set. On the basis of the thermodynamic properties of the title compound at different temperatures have been carried out, revealing the correlations between heat capacity (C), entropy (S), enthalpy changes (H) and temperatures. The optimized bond lengths, bond angles, chemical shifts and vibrational wavenumbers showed the best agreement with the experimental results. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. In Situ 13C NMR at Elevated-Pressures and -Temperatures Investigating the Conversion of CO2 to Magnesium and Calcium Carbonate Minerals

    Science.gov (United States)

    Surface, J. A.; Conradi, M. S.; Skemer, P. A.; Hayes, S. E.

    2013-12-01

    We have constructed specialized NMR hardware to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies of unmixed heterogeneous mixtures of solids, liquids, gases, and supercritical fluids. Specifically, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine efficacy of carbonate formation in various geological reservoirs. Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals. When CO2 reacts with the calcium or magnesium in a mineral or rock sample, the 13C chemical shift, linewidth, lineshape, and relaxation times change dramatically. This change can be monitored in situ and provide instantaneous and continuous characterization that maps the chemistry that is taking place. For example, on the pathway to MgCO3 formation, there are a number of phases of Mg(OH)x(H2O)y(CO3)z that are apparent via NMR spectroscopy. We will demonstrate that NMR can be used for quantitative characterization of multiple metastable mineral phases in pure forms and in mixtures. Results are confirmed via powder XRD and Raman spectroscopy of aquo- hydro- carbonato- magnesium species and calcium carbonate species. We also have monitored the 13C spectroscopy to analyze the phase of CO2 (liquid, supercritical, or gas) and its conversion into other forms, such as bicarbonate and carbonate species, providing a "window" into the in situ pH of the reacting system. Reference: 'In Situ

  19. Conformational dependence of {sup 13}C shielding and coupling constants for methionine methyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Butterfoss, Glenn L. [New York University, Courant Institute of Mathematical Sciences and the Center for Genomics and Systems Biology (United States); DeRose, Eugene F.; Gabel, Scott A.; Perera, Lalith; Krahn, Joseph M.; Mueller, Geoffrey A.; Zheng Xunhai; London, Robert E., E-mail: London@niehs.nih.go [National Institute of Environmental Health Sciences (NIEHS), NIH, Laboratory of Structural Biology (United States)

    2010-09-15

    Methionine residues fulfill a broad range of roles in protein function related to conformational plasticity, ligand binding, and sensing/mediating the effects of oxidative stress. A high degree of internal mobility, intrinsic detection sensitivity of the methyl group, and low copy number have made methionine labeling a popular approach for NMR investigation of selectively labeled protein macromolecules. However, selective labeling approaches are subject to more limited information content. In order to optimize the information available from such studies, we have performed DFT calculations on model systems to evaluate the conformational dependence of {sup 3}J{sub CSCC}, {sup 3}J{sub CSCH}, and the isotropic shielding, {sigma}{sub iso}. Results have been compared with experimental data reported in the literature, as well as data obtained on [methyl-{sup 13}C]methionine and on model compounds. These studies indicate that relative to oxygen, the presence of the sulfur atom in the coupling pathway results in a significantly smaller coupling constant, {sup 3}J{sub CSCC}/{sup 3}J{sub COCC} {approx} 0.7. It is further demonstrated that the {sup 3}J{sub CSCH} coupling constant depends primarily on the subtended CSCH dihedral angle, and secondarily on the CSCC dihedral angle. Comparison of theoretical shielding calculations with the experimental shift range of the methyl group for methionine residues in proteins supports the conclusion that the intra-residue conformationally-dependent shift perturbation is the dominant determinant of {delta}{sup 13}C{epsilon}. Analysis of calmodulin data based on these calculations indicates that several residues adopt non-standard rotamers characterized by very large {approx}100{sup o} {chi}{sup 3} values. The utility of the {delta}{sup 13}C{epsilon} as a basis for estimating the gauche/trans ratio for {chi}{sup 3} is evaluated, and physical and technical factors that limit the accuracy of both the NMR and crystallographic analyses are

  20. GFT projection NMR for efficient {sup 1}H/{sup 13}C sugar spin system identification in nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Atreya, Hanudatta S. [Indian Institute of Science, NMR Research Centre (India); Sathyamoorthy, Bharathwaj [State University of New York at Buffalo, Department of Chemistry (United States); Jaipuria, Garima [Indian Institute of Science, NMR Research Centre (India); Beaumont, Victor [State University of New York at Buffalo, Department of Chemistry (United States); Varani, Gabriele [University of Washington, Department of Chemistry (United States); Szyperski, Thomas, E-mail: szypersk@buffalo.edu [State University of New York at Buffalo, Department of Chemistry (United States)

    2012-12-15

    A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify {sup 1}H/{sup 13}C sugar spin systems in {sup 13}C labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of {sup 13}C-{sup 1}H groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1 Prime - and 3 Prime -CH signal dispersion for complete spin system identification including 5 Prime -CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3 Prime -untranslated region of the pre-mRNA of human U1A protein.

  1. 1H and 13C NMR assignments of dihydropipataline, the main of four long-chain 1-(3,4-methylenedioxyphenyl)-alkanes from Piper darienence D.C.

    OpenAIRE

    2000-01-01

    Four 1-(3,4-methylenedioxyphenyl)-alkanes having linear ten, eleven, twelve and fourteen carbon atom chains, found in the roots of Piper darienence D.C., were separated by HPLC and their structures determined by mass spectrometry and NMR spectroscopy. Conventional 1D NMR methods were used for 1H chemical shifts assignment of the main compound dihydropipataline (3) [1-(3,4-methylenedioxyphenyl)‒dodecane]. The 13C NMR assignment was carried out using conventional considerations and 2D NMR techn...

  2. Galactose oxidation using 13C in healthy and galactosemic children

    Directory of Open Access Journals (Sweden)

    D.R. Resende-Campanholi

    2015-03-01

    Full Text Available Galactosemia is an inborn error of galactose metabolism that occurs mainly as the outcome of galactose-1-phosphate uridyltransferase (GALT deficiency. The ability to assess galactose oxidation following administration of a galactose-labeled isotope (1-13C-galactose allows the determination of galactose metabolism in a practical manner. We aimed to assess the level of galactose oxidation in both healthy and galactosemic Brazilian children. Twenty-one healthy children and seven children with galactosemia ranging from 1 to 7 years of age were studied. A breath test was used to quantitate 13CO2 enrichment in exhaled air before and at 30, 60, and 120 min after the oral administration of 7 mg/kg of an aqueous solution of 1-13C-galactose to all children. The molar ratios of 13CO2 and 12CO2 were quantified by the mass/charge ratio (m/z of stable isotopes in each air sample by gas-isotope-ratio mass spectrometry. In sick children, the cumulative percentage of 13C from labeled galactose (CUMPCD in the exhaled air ranged from 0.03% at 30 min to 1.67% at 120 min. In contrast, healthy subjects showed a much broader range in CUMPCD, with values from 0.4% at 30 min to 5.58% at 120 min. The study found a significant difference in galactose oxidation between children with and without galactosemia, demonstrating that the breath test is useful in discriminating children with GALT deficiencies.

  3. The Late Devonian Frasnian-Famennian (F/F) biotic crisis: Insights from δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics

    Science.gov (United States)

    Chen, Daizhao; Qing, Hairuo; Li, Renwei

    2005-06-01

    A severe biotic crisis occurred during the Late Devonian Frasnian-Famennian (F/F) transition (± 367 Myr). Here we present δ13C carb, δ13C org and 87Sr / 86Sr isotopic systematics, from identical samples of two sections across F/F boundary in South China, which directly demonstrate large and frequent climatic fluctuations (˜200 kyr) from warming to cooling during the F/F transition. These climate fluctuations are interpreted to have been induced initially by increased volcanic outgassing, and subsequent enhanced chemical weathering linked to the rapid expansion of vascular plants on land, which would have increased riverine delivery to oceans and primary bioproductivity, and subsequent burial of organic matter, thereby resulting in climate cooling. Such large and frequent climatic fluctuations, together with volcanic-induced increases in nutrient (e.g., biolimiting Fe), toxin (sulfide) and anoxic water supply, and subsequent enhanced riverine fluxes and microbial bloom, were likely responsible for the stepwise faunal demise of F/F biotic crisis.

  4. Detection of a covalent intermediate in the mechanism of action of porcine pancreatic alpha-amylase by using 13C nuclear magnetic resonance.

    Science.gov (United States)

    Tao, B Y; Reilly, P J; Robyt, J F

    1989-05-01

    The catalytic mechanism of porcine pancreatic alpha-amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) has been examined by nuclear magnetic resonance (NMR) at subzero temperatures by using [1-13C]maltotetraose as substrate. Spectral summation and difference techniques revealed a broad resonance peak, whose chemical shift, relative signal intensity and time-course appearance corresponded to a beta-carboxyl-acetal ester covalent enzyme-glycosyl intermediate. This evidence supports a double-displacement covalent mechanism for porcine pancreatic alpha-amylase-catalyzed hydrolysis of glycosidic linkages, based on the presence of catalytic aspartic acid residues within the active site of this enzyme.

  5. ({sup 1} H, {sup 13} C and {sup 31} P) NMR of phosphonic acid derivatives; Ressonancia magnetica nuclear ({sup 1} H, {sup 13} C, {sup 31} P) de derivados do acido fosfonico

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Valdevino; Costa, Valentim E. Uberti [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Quimica

    1991-12-31

    In the last years the development of phosphates analogues in the medical and agricultural pesticides has being very expressive. {sup 1} H, {sup 13} C and mainly {sup 31} P NMR are used for stereochemical and conformational analysis, and reactivity studies on the compounds resulting from those chemical processes 2 refs., 4 figs., 1 tab.

  6. Evaluation of vertebral bone marrow fat content by chemical-shift MRI in osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Gokalp, Gokhan; Mutlu, Fatma Senturk; Yazici, Zeynep; Yildirim, Nalan [Uludag University Medical Faculty, Department of Radiology, Gorukle, Bursa (Turkey)

    2011-05-15

    To quantitatively evaluate vertebral bone marrow fat content and investigate its association with osteoporosis with chemical-shift magnetic resonance imaging (CS-MRI). Fifty-six female patients (age range 50-65 years) with varying bone mineral densities as documented with dual x-ray absorptiometry (DXA) were prospectively included in the study. According to the DXA results, the patients were grouped as normal bone density, osteopenic, or osteoporotic. In order to calculate fat content, the lumbar region was visualized in the sagittal plane by CS-MRI sequence. ''Region of interest'' (ROI)s were placed within L3 vertebral bodies and air (our reference point) at different time points by different radiologists. Fat content was calculated through ''signal intensity (SI) suppression rate'' and ''SI Index''. The quantitative values were compared statistically with those obtained from DXA examinations. Kruskal-Wallis, and Mann-Whitney U tests were used for comparisons between groups. The reliability of the measurements performed by two radiologists was evaluated with the ''intraclass correlation coefficient''. This study was approved by an institutional review board and all participants provided informed consent to participate in the study. Eighteen subjects with normal bone density (mean T score, 0.39 {+-} 1.3 [standard deviation]), 20 subjects with osteopenia (mean T score, -1.79 {+-} 0.38), and 18 subjects with osteoporosis (mean T score, -3 {+-} 0.5) were determined according to DXA results. The median age was 55.9 (age range 50-64 years) in the normal group, 55.5 (age range 50-64 years) in the osteopenic group, and 55.1 (age range 50-65 years) in the osteoporotic group (p = 0.872). In the CS-MRI examination, the values of ''SI suppression ratio'' and ''SI Index'' (median [min:max]) were calculated by the first and second reader, independently. There

  7. Proton Chemical Shift Imaging of the Brain in Pediatric and Adult Developmental Stuttering.

    Science.gov (United States)

    O'Neill, Joseph; Dong, Zhengchao; Bansal, Ravi; Ivanov, Iliyan; Hao, Xuejun; Desai, Jay; Pozzi, Elena; Peterson, Bradley S

    2017-01-01

    Developmental stuttering is a neuropsychiatric condition of incompletely understood brain origin. Our recent functional magnetic resonance imaging study indicates a possible partial basis of stuttering in circuits enacting self-regulation of motor activity, attention, and emotion. To further characterize the neurophysiology of stuttering through in vivo assay of neurometabolites in suspect brain regions. Proton chemical shift imaging of the brain was performed in a case-control study of children and adults with and without stuttering. Recruitment, assessment, and magnetic resonance imaging were performed in an academic research setting. Ratios of N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (NAA) to creatine (Cr) and choline compounds (Cho) to Cr in widespread cerebral cortical, white matter, and subcortical regions were analyzed using region of interest and data-driven voxel-based approaches. Forty-seven children and adolescents aged 5 to 17 years (22 with stuttering and 25 without) and 47 adults aged 21 to 51 years (20 with stuttering and 27 without) were recruited between June 2008 and March 2013. The mean (SD) ages of those in the stuttering and control groups were 12.2 (4.2) years and 13.4 (3.2) years, respectively, for the pediatric cohort and 31.4 (7.5) years and 30.5 (9.9) years, respectively, for the adult cohort. Region of interest-based findings included lower group mean NAA:Cr ratio in stuttering than nonstuttering participants in the right inferior frontal cortex (-7.3%; P = .02), inferior frontal white matter (-11.4%; P stuttering sample included higher NAA:Cr and Cho:Cr ratios (regression coefficient, 197.4-275; P stuttering severity (r = 0.40-0.52; P = .001-.02). This spectroscopy study of stuttering demonstrates brainwide neurometabolite alterations, including several regions implicated by other neuroimaging modalities. Prior ascription of a role in stuttering to inferior frontal and superior temporal gyri, caudate, and other

  8. Reflections on the application of 13C-MRS to research on brain metabolism.

    Science.gov (United States)

    Morris, Peter; Bachelard, Herman

    2003-01-01

    The power of (13)C-MRS lies in its unique chemical specificity, enabling detection and quantification of metabolic intermediates which would not be so readily monitored using conventional radiochemical techniques. Examples from animal studies, by examination of tissue extracts from the whole brain, brain slices and cultured cells, include observation of intermediates such as citrate and triose phosphates which have yielded novel information on neuronal/glial relationships. The use of (13)C-labelled acetate as a specific precursor for glial metabolism provided evidence in support of the view that some of the GABA produced in the brain is derived from glial glutamine. Such studies have also provided direct evidence on the contribution of anaplerotic pathways to intermediary metabolism. Analogous studies are now being performed on the human brain, where (13)C-acetate is used to quantitate the overall contribution of glial cells to intermediary metabolism, and use of (13)C-glucose enables direct calculation of rates of flux through the TCA (F(TCA)) and of the glutamate-glutamine cycle (F(CYC)), leading to the conclusion that the rate of glial recycling of glutamate accounts for some 50% of F(TCA). The rate of 0.74 micromol min(-1) g(-1) for F(TCA) is compatible with PET rates of CMRglc of 0.3-0.4 micromol min(-1) g(-1) (since each glucose molecule yields two molecules of pyruvate entering the TCA). Our brain activation studies showed a 60% increase in F(TCA), which is very similar to the increases in CBF and in CMRglc observed in PET activation studies.

  9. Cuticular hydrocarbon divergence in the jewel wasp Nasonia : evolutionary shifts in chemical communication channels?

    NARCIS (Netherlands)

    Buellesbach, J.; Gadau, J.; Beukeboom, L. W.; Echinger, F.; Raychoudhury, R.; Werren, J. H.; Schmitt, T.

    2013-01-01

    The evolution and maintenance of intraspecific communication channels constitute a key feature of chemical signalling and sexual communication. However, how divergent chemical communication channels evolve while maintaining their integrity for both sender and receiver is poorly understood. In this s

  10. Solid-state 13C NMR study of banana liquid crystals - 3: Alkyl-tail-group packing environments of an acute-angle bent-core molecule in the hexagonal columnar and cubic phases

    Science.gov (United States)

    Kurosu, Hiromichi; Endo, Yumi; Kimura, Saori; Hashimoto, Tomoko; Harada, Motoi; Lee, Eun-Woo; Sone, Masato; Watanabe, Junji; Kang, Sungmin

    2016-02-01

    Solid-state 13C nuclear magnetic resonance (NMR) measurements were performed on the hexagonal columnar and cubic phases of an acute-angle banana-shaped molecule, N(1,7)-S30. In the hexagonal columnar phase, three peaks appear at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that the two alkyl tails have different packing structures, and one of the tails has two different conformations within a single molecule. Combined cross-polarization/magic-angle spinning and pulse saturation transfer/magic-angle spinning measurements show that one of the alkyl chains is located inside and the other is located outside the columnar structure. In the cubic phase, pulse saturation transfer/magic-angle spinning measurement shows that only one peak appears at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that both of the alkyl chains are located outside the cubic structure.

  11. Computer programming for nucleic acid studies. II. Total chemical shifts calculation of all protons of double-stranded helices.

    Science.gov (United States)

    Giessner-Prettre, C; Ribas Prado, F; Pullman, B; Kan, L; Kast, J R; Ts'o, P O

    1981-01-01

    A FORTRAN computer program called SHIFTS is described. Through SHIFTS, one can calculate the NMR chemical shifts of the proton resonances of single and double-stranded nucleic acids of known sequences and of predetermined conformations. The program can handle RNA and DNA for an arbitrary sequence of a set of 4 out of the 6 base types A,U,G,C,I and T. Data files for the geometrical parameters are available for A-, A'-, B-, D- and S-conformations. The positions of all the atoms are calculated using a modified version of the SEQ program [1]. Then, based on this defined geometry three chemical shift effects exerted by the atoms of the neighboring nucleotides on the protons of each monomeric unit are calculated separately: the ring current shielding effect: the local atomic magnetic susceptibility effect (including both diamagnetic and paramagnetic terms); and the polarization or electric field effect. Results of the program are compared with experimental results for a gamma (ApApGpCpUpU) 2 helical duplex and with calculated results on this same helix based on model building of A'-form and B-form and on graphical procedure for evaluating the ring current effects.

  12. Towards the versatile DFT and MP2 computational schemes for 31P NMR chemical shifts taking into account relativistic corrections.

    Science.gov (United States)

    Fedorov, Sergey V; Rusakov, Yury Yu; Krivdin, Leonid B

    2014-11-01

    The main factors affecting the accuracy and computational cost of the calculation of (31)P NMR chemical shifts in the representative series of organophosphorous compounds are examined at the density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2) levels. At the DFT level, the best functionals for the calculation of (31)P NMR chemical shifts are those of Keal and Tozer, KT2 and KT3. Both at the DFT and MP2 levels, the most reliable basis sets are those of Jensen, pcS-2 or larger, and those of Pople, 6-311G(d,p) or larger. The reliable basis sets of Dunning's family are those of at least penta-zeta quality that precludes their practical consideration. An encouraging finding is that basically, the locally dense basis set approach resulting in a dramatic decrease in computational cost is justified in the calculation of (31)P NMR chemical shifts within the 1-2-ppm error. Relativistic corrections to (31)P NMR absolute shielding constants are of major importance reaching about 20-30 ppm (ca 7%) improving (not worsening!) the agreement of calculation with experiment. Further better agreement with the experiment by 1-2 ppm can be obtained by taking into account solvent effects within the integral equation formalism polarizable continuum model solvation scheme. We recommend the GIAO-DFT-KT2/pcS-3//pcS-2 scheme with relativistic corrections and solvent effects taken into account as the most versatile computational scheme for the calculation of (31)P NMR chemical shifts characterized by a mean absolute error of ca 9 ppm in the range of 550 ppm.

  13. Experimental (FT-IR, FT-Raman, UV-Vis, 1H and 13C NMR) and computational (density functional theory) studies on 3-bromophenylboronic acid

    Science.gov (United States)

    Karabacak, M.; Kose, E.; Atac, A.; Sas, E. B.; Asiri, A. M.; Kurt, M.

    2014-11-01

    Structurally, boronic acids are trivalent boron-containing organic compounds that possess one alkyl substituent (i.e., C-Br bond) and two hydroxyl groups to fill the remaining valences on the boron atom. We studied 3-bromophenylboronic acid (3BrPBA); a derivative of boronic acid. This study includes the experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV-Vis) techniques and theoretical (DFT-density functional theory) calculations. The experimental data are recorded, FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-10 cm-1) in the solid phase. 1H and 13C NMR spectra are recorded in DMSO solution. UV-Vis spectrum is recorded in the range of 200-400 nm for each solution (in ethanol and water). The theoretical calculations are computed DFT/B3LYP/6-311++G(d,p) basis set. The optimum geometry is also obtained from inside for possible four conformers using according to position of hydrogen atoms after the scan coordinate of these structures. The fundamental vibrations are assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and parallel quantum solutions (PQS) program. 1H and 13C NMR chemical shifts are racked on by using the gauge-invariant atomic orbital (GIAO) method. The time-dependent density functional theory (TD-DFT) is used to find HOMO and LUMO energies, excitation energies, oscillator strengths. The density of state of the studied molecule is investigated as total and partial density of state (TDOS and PDOS) and overlap population density of state (OPDOS or COOP) diagrams have been presented. Besides, frontier molecular orbitals (FMOs), molecular electrostatic potential surface (MEPs) and thermodynamic properties are performed. At the end of this work, the results are ensured beneficial for the literature contribution.

  14. Titanium carbide, nitride and carbonitrides: a 13C, 14N, 15N and 47,49Ti solid-state nuclear magnetic resonance study.

    Science.gov (United States)

    MacKenzie, K J; Meinhold, R H; McGavin, D G; Ripmeester, J A; Moudrakovski, I

    1995-05-01

    The first 47,49Ti, 13C, 14N and 15N solid-state nuclear magnetic resonance (NMR) spectra of titanium carbide, nitride and a series of cubic carbonitrides have been obtained under both static and magic-angle spinning (MAS) conditions. The 15N samples were isotopically enriched by gas-solid exchange at 1000 degrees C in a closed system. The Ti spectra of the carbide and nitride are sharp, reflecting the well defined cubic symmetry of these compounds, but become considerably broadened in the carbonitride series, with the spectra being approximately the sum of TiC and TiN together with some small electric field gradient (EFG) effects. The resonance positions and widths of all the NMR spectra change as carbon is progressively replaced by nitrogen. A relationship is observed between the 13C chemical shift and the nitrogen content of the carbonitrides, suggesting a possible NMR method for estimating the composition of these compounds. Although electron paramagnetic resonance (EPR) spectra of all these compounds show typically metallic behaviour, the NMR spectra show few effects attributable to conduction electrons, probably due to the lack of s-orbital contributions to the conduction band.

  15. Profiling sulfation/epimerization pattern of full-length heparan sulfate by NMR following cell culture 13C-glucose metabolic labeling.

    Science.gov (United States)

    Pegeot, Mathieu; Sadir, Rabia; Eriksson, Inger; Kjellen, Lena; Simorre, Jean-Pierre; Gans, Pierre; Lortat-Jacob, Hugues

    2015-02-01

    Through its ability to interact with proteins, heparan sulfate (HS) fulfills a large variety of functions. Protein binding depends on the level of HS sulfation and epimerization which are cell specific and dynamically regulated. Characterization of this molecule, however, has been restricted to oligosaccharide fragments available in large amount for structural investigation or to sulfate distribution through compositional analysis. Here we developed a (1)H-(13)C 2D NMR-based approach, directly performed on HS isolated from (13)C-labeled cells. By integrating the peak volumes measured at different chemical shifts, this non-destructive analysis allows us to determine both the sulfation and the iduronic/glucuronic profiles of the polysaccharide. Applied to wild-type and N-deacetylase/N-sulfotransferase-deficient fibroblasts as well as to epithelial cells differentiation, it also gives insights into the functional relationships existing between HS biosynthetic enzymes. This approach should be of significant interest to better understand HS changes that occur through physiologic regulations or during pathological development.

  16. (13)C and (15)N solid-state NMR studies on albendazole and cyclodextrin albendazole complexes.

    Science.gov (United States)

    Ferreira, M João G; García, A; Leonardi, D; Salomon, Claudio J; Lamas, M Celina; Nunes, Teresa G

    2015-06-05

    (13)C and (15)N solid-state nuclear magnetic resonance (NMR) spectra were recorded from albendazole (ABZ) and from ABZ:β-cyclodextrin, ABZ:methyl-β-cyclodextrin, ABZ:hydroxypropyl-β-cyclodextrin and ABZ:citrate-β-cyclodextrin, which were prepared by the spray-drying technique. ABZ signals were typical of a crystalline solid for the pure drug and of an amorphous compound obtained from ABZ:cyclodextrin samples. Relevant spectral differences were correlated with chemical interaction between ABZ and cyclodextrins. The number and type of complexes revealed a strong dependence on the cyclodextrin group substituent. Solid-state NMR data were consistent with the presence of stable inclusion complexes.

  17. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation

    Indian Academy of Sciences (India)

    D Joseph; A K Yadav; S N Jha; D Bhattacharyya

    2013-11-01

    Mn and Cr K X-ray absorption edges were measured in various compounds containing Mn in Mn2+, Mn3+ and Mn4+ oxidation states and Cr in Cr3+ and Cr6+ oxidation states. Few compounds possess tetrahedral coordination in the 1st shell surrounding the cation while others possess octahedral coordination. Measurements have been carried out at the energy dispersive EXAFS beamline at INDUS-2 Synchrotron Radiation Source at Raja Ramanna Centre for Advanced Technology, Indore. Energy shifts of ∼8–16 eV were observed for Mn K edge in the Mn-compounds while a shift of 13–20 eV was observed for Cr K edge in Cr-compounds compared to values in elementalMn and Cr, respectively. The different chemical shifts observed for compounds having the same oxidation state of the cation but different anions or ligands show the effect of different chemical environments surrounding the cations in determining their X-ray absorption edges in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Mn and Cr cations in the above compounds.

  18. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Directory of Open Access Journals (Sweden)

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  19. Design of a sup 13 C (1H) RF probe for monitoring the in vivo metabolism of (1- sup 13 C)glucose in primate brain

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, B.E.; Sacks, W.; Bigler, R.E.; Hennessy, M.J.; Sacks, S.; Fleischer, A.; Zanzonico, P.B. (Intermagnetics General Corporation, Guilderland, NY (USA))

    1990-01-01

    The design of an RF probe suitable for obtaining proton-decoupled {sup 13}C spectra from a subhuman primate brain is described. Two orthogonal saddle coils, one tuned to the resonant frequency of {sup 13}C and the other to the resonant frequency of 1H, were used to monitor the in vivo metabolism of (1-{sup 13}C)glucose in rhesus monkey brain at 2.1 T. Difference spectra showed the appearance of {sup 13}C-enriched glutamate and glutamine 30 to 40 min after a bolus injection of (1-{sup 13}C)glucose.

  20. Glucogenesis in an insect, Manduca sexta L., estimated from the 13C isotopomer distribution in trehalose synthesized from [1,3-13C2]glycerol.

    Science.gov (United States)

    Thompson, S N

    1997-07-19

    Glucogenesis from [3-13C]alanine and [1,3-13C2]glycerol was demonstrated in the insect Manduca sexta by examining the 13C enrichment of trehalose, a non-reducing disaccharide of glucose synthesized in the insect fat body and released into the blood or hemolymph. In insects maintained on a low carbohydrate diet, trehalose synthesized from [3-13C]alanine was selectively enriched at C1 and C6, and C2 and C5. The 13C-labelling pattern indicated the carboxylation of [3-13C]pyruvate, formed by transamination of the [3-13C]alanine followed by randomization of the label at the fumarate step of the tricarboxylic acid cycle and glucose synthesis via the gluconeogenic pathway. 13C enrichment of trehalose was absent in similarly maintained insect larvae administered 3-mercaptopicolinic acid, an inhibitor of hepatic phosphoenolpyruvate carboxykinase. Insects on the low carbohydrate diet also synthesized trehalose from [1,3-13C2]glycerol. 13C multiplets were observed in trehalose C3 and C4 demonstrating the synthesis of three 13C enriched glucose isotopomers from the 13C-labelled glycerol. The relative contributions of 13C-labelled glycerol and unlabelled 3 carbon substrates to the synthesis of the 13C enriched trehalose isotopomers were determined from the multiplet structure at C3, and calculation of minimal rates of glucogenesis were based on the 13C enrichment of C4. The C4/C3 13C enrichment ratio in trehalose synthesized from [1,3-13C2]glycerol was close to unity, and total glucogenesis was calculated after estimation of the expected contribution of unlabelled trehalose synthesis from 3 carbon substrates by comparison of the ratio of unlabelled and labelled contributions to the 13C enriched trehalose isotopomers with the 13C enrichment of [1,3-13C2]glycerol-3-phosphate. The estimated total rates of glucogenesis varied from 0.33 to 2.80 micromol glucose/g fresh weight/h. The blood sugar level of M. sexta was also highly variable. Although the potential importance of

  1. Structural Expression of Chemical Environment and C-13 NMR Chemical Shift for Carbons in Alcohols%脂肪醇分子碳环境结构表征与碳谱化学位移

    Institute of Scientific and Technical Information of China (English)

    刘树深; 徐红

    2000-01-01

    A novel atomic electronegative distance vector (AEDV) has been developed to express the chemical environment of various equivalent carbon in alcohols and four 4-parameter linear relationship between chemical shift and AEDV are created by using multiple linear regression.

  2. Identification of zinc-ligated cysteine residues based on 13Calpha and 13Cbeta chemical shift data.

    Science.gov (United States)

    Kornhaber, Gregory J; Snyder, David; Moseley, Hunter N B; Montelione, Gaetano T

    2006-04-01

    Although a significant number of proteins include bound metals as part of their structure, the identification of amino acid residues coordinated to non-paramagnetic metals by NMR remains a challenge. Metal ligands can stabilize the native structure and/or play critical catalytic roles in the underlying biochemistry. An atom's chemical shift is exquisitely sensitive to its electronic environment. Chemical shift data can provide valuable insights into structural features, including metal ligation. In this study, we demonstrate that overlapped 13Cbeta chemical shift distributions of Zn-ligated and non-metal-ligated cysteine residues are largely resolved by the inclusion of the corresponding 13Calpha chemical shift information, together with secondary structural information. We demonstrate this with a bivariate distribution plot, and statistically with a multivariate analysis of variance (MANOVA) and hierarchical logistic regression analysis. Using 287 13Calpha/13Cbeta shift pairs from 79 proteins with known three-dimensional structures, including 86 13Calpha and 13Cbeta shifts for 43 Zn-ligated cysteine residues, along with corresponding oxidation state and secondary structure information, we have built a logistic regression model that distinguishes between oxidized cystines, reduced (non-metal ligated) cysteines, and Zn-ligated cysteines. Classifying cysteines/cystines with a statistical model incorporating all three phenomena resulted in a predictor of Zn ligation with a recall, precision and F-measure of 83.7%, and an accuracy of 95.1%. This model was applied in the analysis of Bacillus subtilis IscU, a protein involved in iron-sulfur cluster assembly. The model predicts that all three cysteines of IscU are metal ligands. We confirmed these results by (i) examining the effect of metal chelation on the NMR spectrum of IscU, and (ii) inductively coupled plasma mass spectrometry analysis. To gain further insight into the frequency of occurrence of non-cysteine Zn

  3. Enzymatic 13C Labeling and Multidimensional NMR Analysis of Miltiradiene Synthesized by Bifunctional Diterpene Cyclase in Selaginella moellendorffii*

    Science.gov (United States)

    Sugai, Yoshinori; Ueno, Yohei; Hayashi, Ken-ichiro; Oogami, Shingo; Toyomasu, Tomonobu; Matsumoto, Sadamu; Natsume, Masahiro; Nozaki, Hiroshi; Kawaide, Hiroshi

    2011-01-01

    Diterpenes show diverse chemical structures and various physiological roles. The diversity of diterpene is primarily established by diterpene cyclases that catalyze a cyclization reaction to form the carbon skeleton of cyclic diterpene. Diterpene cyclases are divided into two types, monofunctional and bifunctional cyclases. Bifunctional diterpene cyclases (BDTCs) are involved in hormone and defense compound biosyntheses in bryophytes and gymnosperms, respectively. The BDTCs catalyze the successive two-step type-B (protonation-initiated cyclization) and type-A (ionization-initiated cyclization) reactions of geranylgeranyl diphosphate (GGDP). We found that the genome of a lycophyte, Selaginella moellendorffii, contains six BDTC genes with the majority being uncharacterized. The cDNA from S. moellendorffii encoding a BDTC-like enzyme, miltiradiene synthase (SmMDS), was cloned. The recombinant SmMDS converted GGDP to a diterpene hydrocarbon product with a molecular mass of 272 Da. Mutation in the type-B active motif of SmMDS abolished the cyclase activity, whereas (+)-copalyl diphosphate, the reaction intermediate from the conversion of GGDP to the hydrocarbon product, rescued the cyclase activity of the mutant to form a diterpene hydrocarbon. Another mutant lacking type-A activity accumulated copalyl diphosphate as the reaction intermediate. When the diterpene hydrocarbon was enzymatically synthesized from [U-13C6]mevalonate, all carbons were labeled with 13C stable isotope (>99%). The fully 13C-labeled product was subjected to 13C-13C COSY NMR spectroscopic analyses. The direct carbon-carbon connectivities observed in the multidimensional NMR spectra demonstrated that the hydrocarbon product by SmMDS is miltiradiene, a putative biosynthetic precursor of tanshinone identified from the Chinese medicinal herb Salvia miltiorrhiza. Hence, SmMDS functions as a bifunctional miltiradiene synthase in S. moellendorffii. In this study, we demonstrate that one-dimensional and

  4. Purity analysis of hydrogen cyanide, cyanogen chloride and phosgene by quantitative (13)C NMR spectroscopy.

    Science.gov (United States)

    Henderson, Terry J; Cullinan, David B

    2007-11-01

    Hydrogen cyanide, cyanogen chloride and phosgene are produced in tremendously large quantities today by the chemical industry. The compounds are also particularly attractive to foreign states and terrorists seeking an inexpensive mass-destruction capability. Along with contemporary warfare agents, therefore, the US Army evaluates protective equipment used by warfighters and domestic emergency responders against the compounds, and requires their certification at > or = 95 carbon atom % before use. We have investigated the (13)C spin-lattice relaxation behavior of the compounds to develop a quantitative NMR method for characterizing chemical lots supplied to the Army. Behavior was assessed at 75 and 126 MHz for temperatures between 5 and 15 degrees C to hold the compounds in their liquid states, dramatically improving detection sensitivity. T(1) values for cyanogen chloride and phosgene were somewhat comparable, ranging between 20 and 31 s. Hydrogen cyanide values were significantly shorter at 10-18 s, most likely because of a (1)H--(13)C dipolar contribution to relaxation not possible for the other compounds. The T(1) measurements were used to derive relaxation delays for collecting the quantitative (13)C data sets. At 126 MHz, only a single data acquisition with a cryogenic probehead gave a signal-to-noise ratio exceeding that necessary for certifying the compounds at > or = 95 carbon atom % and 99% confidence. Data acquired at 75 MHz with a conventional probehead, however, required > or = 5 acquisitions to reach this certifying signal-to-noise ratio for phosgene, and >/= 12 acquisitions were required for the other compounds under these same conditions. In terms of accuracy and execution time, the NMR method rivals typical chromatographic methods.

  5. Metabolic Response of Soil Microorganisms to Frost: A New Perspective from Position-specific 13C Labeling

    Science.gov (United States)

    Bore, E. K.; Apostel, C.; Halicki, S.; Dippold, M. A.; Kuzyakov, Y.

    2016-12-01

    Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen

  6. How Energy Metabolism Supports Cerebral Function: Insights from (13)C Magnetic Resonance Studies In vivo.

    Science.gov (United States)

    Sonnay, Sarah; Gruetter, Rolf; Duarte, João M N

    2017-01-01

    Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS), several groups have worked on assessing cerebral metabolism in vivo. In this context, (1)H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. (1)H-[(13)C] MRS, i.e., indirect detection of signals from (13)C-coupled (1)H, together with infusion of (13)C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of (13)C isotopomers), the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct (13)C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  7. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

    Directory of Open Access Journals (Sweden)

    Sarah Sonnay

    2017-05-01

    Full Text Available Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS, several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers, the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  8. Measurement of signs of chemical shift differences between ground and excited protein states: a comparison between H(S/M)QC and R{sub 1{rho}}methods

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Renate [University of Vienna, Department of Structural and Computational Biology, Max F. Perutz Laboratories (Austria); Hansen, D. Flemming; Neudecker, Philipp; Korzhnev, Dmitry M.; Muhandiram, D. Ranjith [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada); Konrat, Robert [University of Vienna, Department of Structural and Computational Biology, Max F. Perutz Laboratories (Austria); Kay, Lewis E., E-mail: kay@pound.med.utoronto.c [University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2010-03-15

    Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR spectroscopy has emerged as a powerful tool for quantifying the kinetics and thermodynamics of millisecond exchange processes between a major, populated ground state and one or more minor, low populated and often invisible 'excited' conformers. Analysis of CPMG data-sets also provides the magnitudes of the chemical shift difference(s) between exchanging states (|{Delta}{omega}|), that inform on the structural properties of the excited state(s). The sign of {Delta}{omega} is, however, not available from CPMG data. Here we present one-dimensional NMR experiments for measuring the signs of {sup 1}H{sup N} and {sup 13}C{sup {alpha} {Delta}{omega}} values using weak off-resonance R{sub 1{rho}} relaxation measurements, extending the spin-lock approach beyond previous applications focusing on the signs of {sup 15}N and {sup 1}H{sup {alpha}}shift differences. The accuracy of the method is established by using an exchanging system where the invisible, excited state can be converted to the visible, ground state by altering conditions so that the signs of {Delta}{omega} values obtained from the spin-lock approach can be validated with those measured directly. Further, the spin-lock experiments are compared with the established H(S/M)QC approach for measuring the signs of chemical shift differences. For the Abp1p and Fyn SH3 domains considered here it is found that while H(S/M)QC measurements provide signs for more residues than the spin-lock data, the two different methodologies are complementary, so that combining both approaches frequently produces signs for more residues than when the H(S/M)QC method is used alone.

  9. An atomic electronegative distance vector and carbon-13 nuclear magnetic resonance chemical shifts of alcohols and alkanes

    Institute of Scientific and Technical Information of China (English)

    LIU, Shu-Shea; XIA, Zhi-Ning; CAI, Shao-Xi; LIU, Yan

    2000-01-01

    A novel atomic electronegative distance vector (AEDV) has been developed to express the chemical environment of various chemically equivalent carbon atoms in alcohols and alkanes.Combining AEDV and γ parameter, four five-parameter Iinear relationship equations of chemical shift for four types of carbon atoms are created by using multiple linear regression.Correlation coefficients are R = 0.9887, 0.9972, 0.9978 and 0.9968 and roots of mean square error are RMS = 0.906, 0.821, 1.091and 1.091of four types of carbons, i.e., type1,2, 3, and 4 for primary, secondary, tertiary, and quaternary carbons, respectively. The stability and prediction capacity for external samples of four models have been tested by cross- validation.

  10. Bonding and chemical shifts in aluminosilicate glasses: importance of Madelung effects

    CERN Document Server

    Cruguel, H; Kerjan, O; Bart, F; Gautier-Soyer, M

    2003-01-01

    A detailed study of the XPS binding energy shifts of Si 2p, O 1s and Zr 3d in a series of aluminosilicate glasses (a three oxide glass: SiO sub 2 -Al sub 2 O sub 3 -CaO, three four-oxide glasses: SiO sub 2 -Al sub 2 O sub 3 -CaO-TiO sub 2 , ZrO sub 2 or CeO sub 2 , along with a six-oxide glass SiO sub 2 -Al sub 2 O sub 3 -CaO-TiO sub 2 -ZrO sub 2 -CeO sub 2) is presented. Their composition is such that these glasses have the same mean electronegativity, so that no changes in the atomic charges is expected. The binding energy shifts are interpreted in terms of initial and final state effects, and the balance of charge transfer contribution and electrostatic effects is discussed. Referred to the ternary glass, the binding energy shifts of the Si 2p, O 1s and Zr 3d lines in the complex glasses are due to an initial state effect, as the extraatomic relaxation is similar along the glass series. These shifts originate from electrostatic Madelung effects, likely coming from a structural change induced by the presenc...

  11. Solid-, Solution-, and Gas-state NMR Monitoring of 13C-Cellulose Degradation in an Anaerobic Microbial Ecosystem

    Directory of Open Access Journals (Sweden)

    Yasuhiro Date

    2013-07-01

    Full Text Available Anaerobic digestion of biomacromolecules in various microbial ecosystems is influenced by the variations in types, qualities, and quantities of chemical components. Nuclear magnetic resonance (NMR spectroscopy is a powerful tool for characterizing the degradation of solids to gases in anaerobic digestion processes. Here we describe a characterization strategy using NMR spectroscopy for targeting the input solid insoluble biomass, catabolized soluble metabolites, and produced gases. 13C-labeled cellulose produced by Gluconacetobacter xylinus was added as a substrate to stirred tank reactors and gradually degraded for 120 h. The time-course variations in structural heterogeneity of cellulose catabolism were determined using solid-state NMR, and soluble metabolites produced by cellulose degradation were monitored using solution-state NMR. In particular, cooperative changes between the solid NMR signal and 13C-13C/13C-12C isotopomers in the microbial degradation of 13C-cellulose were revealed by a correlation heat map. The triple phase NMR measurements demonstrated that cellulose was anaerobically degraded, fermented, and converted to methane gas from organic acids such as acetic acid and butyric acid.

  12. (13)C and (19)F solid-state NMR and X-ray crystallographic study of halogen-bonded frameworks featuring nitrogen-containing heterocycles.

    Science.gov (United States)

    Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L

    2017-03-01

    Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P21/c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C13H9N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C12H8N2, and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C6F3I3·C8H12N2. (13)C and (19)F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from (19)F to (13)C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional (1)H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental (13)C and (19)F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.

  13. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean.

    Science.gov (United States)

    Chappell, P Dreux; Whitney, Leeann P; Haddock, Traci L; Menden-Deuer, Susanne; Roy, Eric G; Wells, Mark L; Jenkins, Bethany D

    2013-01-01

    Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a 3-month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response.

  14. Thalassiosira spp. community composition shifts in response to chemical and physical forcing in the northeast Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Phoebe Dreux Chappell

    2013-09-01

    Full Text Available Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a three-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a three-month-old Haida eddy remained largely (>80% similar over a two-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response.

  15. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    Science.gov (United States)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  16. δ13C values of soil organic matter in semiarid grassland with mesquite (Prosopis) encroachment in southeastern Arizona

    Science.gov (United States)

    Biggs, Thomas H.; Quade, Jay; Webb, Robert H.

    2002-01-01

    Over the past century, C3 woody plants and trees have increased in abundance in many semiarid ecosystems, displacing native C4 grasses. Livestock grazing, climatic fluctuations, and fire suppression are several reasons proposed for this shift. Soil carbon isotopic signatures are an ideal technique to evaluate carbon turnover rates in such ecosystems. On the gunnery ranges of Fort Huachuca in southeastern Arizona, study sites were established on homogeneous granitic alluvium to investigate the effects of fire frequency on δ13C values in surface soil organic matter (SOM). These ranges have had no livestock grazing for 50 years and a well-documented history of fires. Prosopis velutina Woot. (mesquite) trees have altered SOM δ13C pools by the concentration of plant nutrients and the addition of isotopically light litter. These soil carbon changes do not extend beyond canopy margins. Elevated total organic carbon (TOC), plant nutrient (N and P) concentrations, and depleted SOM δ13C values are associated with C3Prosopis on an unburned plot, which enables recognition of former Prosopis-occupied sites on plots with recent fire histories. Elevated nutrient concentrations associated with former Prosopis are retained in SOM for many decades. Surface SOM δ13C values indicate the estimated minimum turnover time of C4-derived carbon beneath large mature Prosopis is about 100–300 years. In contrast, complete turnover of original C3 carbon to C4 carbon under grasslands is estimated to take a minimum of 150–500 years. Our study confirms that C4 grass cover has declined over the past 100 years, although isolated C3 trees or shrubs were not uncommon on the historic C4-dominated grasslands. We find evidence in surface soil layers for a modern C3 plant expansion reflected in the substantial shift of SOM δ13C values from C4 grasses to C3 shrublands.

  17. Approaches to studies on neuronal/glial relationships by 13C-MRS analysis.

    Science.gov (United States)

    Taylor, A; McLean, M; Morris, P; Bachelard, H

    1996-01-01

    The use of different 13C-labelled precursors alone or in combination ([1-13C]glucose, [2-13C]glucose, [1-13C]acetate, [2-13C]acetate and [1,2-13C2]acetate) to study neuronal/glial metabolic relationships by MRS is discussed. Glutamine and citrate resonances represent glial metabolism if a combination of [1-13C]glucose + [2-13C]acetate is used, but only for short time periods. A combination of [2-13C]glucose + [2-13C]acetate will label -COO- groups from glucose and -CH2 groups from acetate, respectively, which distinguish well in theory. However, this approach is severely limited by the long T1S of -COO- groups and low S/N. Contributions of the anaplerotic pathway can be assessed using [2-13C]glucose, but again can be limited by the long T1S of -COO- groups. Labelling of glycerol-3-phosphate (believed to be produced in glia) from [1-13C]glucose is difficult to see under normal conditions but has proved useful in, e.g., hypoxia. We believe the most promising approach is the use of [1-13C] glucose with [1,2-13C2]acetate, by analysis of the multiplets ('isotopomers') of the amino acid resonances.

  18. A refined model of the chlorosomal antennae of the green bacterium chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy

    NARCIS (Netherlands)

    Rossum, van B.E.J.; Steengaard, D.B.; Boender, G.J.; Schaffner, K.; Holzwarth, A.R.; Groot, de H.J.M.

    2001-01-01

    Heteronuclear 2-D and 3-D magic-angle spinning NMR dipolar correlation spectroscopy was applied to determine solid-state 1H shifts for aggregated bacteriochlorophyll c (BChl c) in uniformly 13C-enriched light harvesting chlorosomes of the green photosynthetic bacterium Chlorobium tepidum. A complete

  19. A refined model of the chlorosomal antennae of the green bacterium chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy

    NARCIS (Netherlands)

    Rossum, van B.E.J.; Steengaard, D.B.; Boender, G.J.; Schaffner, K.; Holzwarth, A.R.; Groot, de H.J.M.

    2001-01-01

    Heteronuclear 2-D and 3-D magic-angle spinning NMR dipolar correlation spectroscopy was applied to determine solid-state 1H shifts for aggregated bacteriochlorophyll c (BChl c) in uniformly 13C-enriched light harvesting chlorosomes of the green photosynthetic bacterium Chlorobium tepidum. A complete

  20. The First in Vivo Observation of 13C- 15N Coupling in Mammalian Brain

    Science.gov (United States)

    Kanamori, Keiko; Ross, Brian D.

    2001-12-01

    [5-13C,15N]Glutamine, with 1J(13C-15N) of 16 Hz, was observed in vivo in the brain of spontaneously breathing rats by 13C MRS at 4.7 T. The brain [5-13C]glutamine peak consisted of the doublet from [5-13C,15N]glutamine and the center [5-13C,14N]glutamine peak, resulting in an apparent triplet with a separation of 8 Hz. The time course of formation of brain [5-13C,15N]glutamine was monitored in vivo with a time resolution of 20-35 min. This [5-13C,15N]glutamine was formed by glial uptake of released neurotransmitter [5-13C]glutamate and its reaction with 15NH3 catalyzed by the glia-specific glutamine synthetase. The neurotransmitter glutamate C5 was selectively13C-enriched by intravenous [2,5-13C]glucose infusion to 13C-label whole-brain glutamate C5, followed by [12C]glucose infusion to chase 13C from the small and rapidly turning-over glial glutamate pool, leaving 13C mainly in the neurotransmitter [5-13C]glutamate pool, which is sequestered in vesicles until release. Hence, the observed [5-13C,15N]glutamine arises from a coupling between 13C of neuronal origin and 15N of glial origin. Measurement of the rate of brain [5-13C,15N]glutamine formation provides a novel noninvasive method of studying the kinetics of neurotransmitter uptake into glia in vivo, a process that is crucial for protecting the brain from glutamate excitotoxicity.

  1. Microwave spectra for the three 13C1 isotopologues of propene and new rotational constants for propene and its 13C1 isotopologues

    Science.gov (United States)

    Craig, Norman C.; Groner, Peter; Conrad, Andrew R.; Gurusinghe, Ranil; Tubergen, Michael J.

    2016-10-01

    New measurements of microwave lines (A and E) of propene and its three 13C1 isotopologues have been made in the 10-22 GHz region with FT accuracy. The revised lines for propene along with many hundreds from the literature were fitted with the ERHAM program for internal rotors to give improved rotational constants. The new constants are A0 = 46280.2904(16), B0 = 9305.24260(30), and C0 = 8134.22685(28) MHz. Lines for the 3-13C1 species were observed in a pure sample; lines for the 1-13C1 and 2-13C1 species were observed in natural abundance. In fitting the limited sets of lines for the 13C1 species, many of the centrifugal distortion constants and most of the tunneling parameters were transferred from the fit of propene itself with 27 parameters. Improved rotational constants for the 13C1 species are reported.

  2. Predicting paramagnetic 1H NMR chemical shifts and state-energy separations in spin-crossover host-guest systems.

    Science.gov (United States)

    Isley, William C; Zarra, Salvatore; Carlson, Rebecca K; Bilbeisi, Rana A; Ronson, Tanya K; Nitschke, Jonathan R; Gagliardi, Laura; Cramer, Christopher J

    2014-06-14

    The behaviour of metal-organic cages upon guest encapsulation can be difficult to elucidate in solution. Paramagnetic metal centres introduce additional dispersion of signals that is useful for characterisation of host-guest complexes in solution using nuclear magnetic resonance (NMR). However, paramagnetic centres also complicate spectral assignment due to line broadening, signal integration error, and large changes in chemical shifts, which can be difficult to assign even for known compounds. Quantum chemical predictions can provide information that greatly facilitates the assignment of NMR signals and identification of species present. Here we explore how the prediction of paramagnetic NMR spectra may be used to gain insight into the spin crossover (SCO) properties of iron(II)-based metal organic coordination cages, specifically examining how the structure of the local metal coordination environment affects SCO. To represent the tetrahedral metal-organic cage, a model system is generated by considering an isolated metal-ion vertex: fac-ML3(2+) (M = Fe(II), Co(II); L = N-phenyl-2-pyridinaldimine). The sensitivity of the (1)H paramagnetic chemical shifts to local coordination environments is assessed and utilised to shed light on spin crossover behaviour in iron complexes. Our data indicate that expansion of the metal coordination sphere must precede any thermal SCO. An attempt to correlate experimental enthalpies of SCO with static properties of bound guests shows that no simple relationship exists, and that effects are likely due to nuanced dynamic response to encapsulation.

  3. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons

    DEFF Research Database (Denmark)

    Brekke, Eva Marie; Walls, Anne Byriel; Schousboe, Arne

    2012-01-01

    is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism...

  4. A simple mathematical model and practical approach for evaluating citric acid cycle fluxes in perfused rat hearts by 13C-NMR and 1H-NMR spectroscopy.

    Science.gov (United States)

    Tran-Dinh, S; Hoerter, J A; Mateo, P; Bouet, F; Herve, M

    1997-04-15

    We propose a simple mathematical model and a practical approach for evaluating the flux constant and the absolute value of flux in the citric acid cycle in perfused organs by 13C-NMR and 1H-NMR spectroscopy. We demonstrate that 13C-NMR glutamate spectra are independent of the relative sizes of the mitochondrial and cytosolic compartments and the exchange rates of glutamates, unless there is a difference in 13C chemical shifts of glutamate carbons between the two compartments. Wistar rat hearts (five beating and four KCl-arrested hearts) were aerobically perfused with 100% enriched [2-(13)C]acetate and the kinetics of glutamate carbon labeling from perchloric acid extracts were studied at various perfusion times. Under our experimental conditions, the citric acid cycle flux constant, which represents the fraction of glutamate in exchange with the citric acid cycle per unit time, is about 0.350 +/- 0.003 min(-1) for beating hearts and 0.0741 +/- 0.004 min(-1) for KCl-arrested hearts. The absolute values of the citric acid flux for beating hearts and for KCl-arrested hearts are 1.06 +/- 0.06 micromol x min(-1) x mg(-1) and 0.21 +/- 0.02 micromol x min(-1) x g(-1), respectively. The fraction of unlabeled acetate determined from the proton signal of the methyl group is small and essentially the same in beating and arrested hearts (7.4 +/- 1.7% and 8.8 +/- 2.1%, respectively). Thus, the large difference in the Glu C2/C4 between beating and arrested hearts is not due to the important contribution from anaplerotic sources in arrested hearts but simply to a substantial difference in citric acid cycle fluxes. Our model fits the experimental data well, indicating a fast exchange between 2-oxoglutarate and glutamate in the mitochondria of rat hearts. Analysis of the flux constant, calculated from the half-time of glutamate C4 labeling given in the literature, allows for a comparison of the citric acid flux for various working conditions in different animal species.

  5. 13C NMR DETERMINATION OF EIGHT BENZO[h]QUINOLINES%8种苯并[h]喹啉的13C NMR归属

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    报道了8种新的苯并[h]喹啉的13C NMR谱.应用13C NMR等谱确定了这8种新化合物的分子结构,并对全部谱峰进行了归属,初步探讨了分子结构对13C NMR化学位移的影响.

  6. A high resolution δ13C record in a modern Porites lobata coral: Insights into controls on skeletal δ13C

    Science.gov (United States)

    Allison, Nicola; Finch, Adrian A.; EIMF

    2012-05-01

    δ13C was determined at a high spatial resolution by secondary ion mass spectrometry (SIMS) across a 1 year section of a modern Porites lobata coral skeleton from Hawaii. Skeletal δ13C is dominated by large oscillations of 5-7‰ that typically cover skeletal distances equivalent to periods of ˜14-40 days. These variations do not reflect seawater temperature and it is unlikely that they reflect variations in the δ13C of local seawater. We observe no correlation between skeletal δ13C and the pH of the calcification fluid (estimated from previous measurements of skeletal δ11B). We conclude that either the proportion of skeletal carbon derived from metabolic CO2 is not reflected by estimated ECF pH (as the [CO2] in the overlying coral tissue varies) and/or the δ13C composition of the metabolic CO2 is highly variable. We also observe no correlation between skeletal δ13C and previous δ18O SIMS measurements. Variations in skeletal δ13C and δ18O do not have a common timing, providing no evidence that skeletal δ13C and δ18O vary in response to a single factor. This suggests that skeletal δ13C is principally driven by variations in the δ13C composition of metabolic CO2 rather than by the abundance of metabolic CO2, which would also affect skeletal δ18O. The δ13C composition of metabolic CO2 reflects the processes of photosynthesis, heterotrophic feeding and respiration in the overlying coral tissue. Corals catabolise stored lipid reserves to meet energetic demands when photosynthesis conditions are sub-optimal. Variations in the amounts and types of reserves utilised could induce changes in the δ13C composition of metabolic CO2 and the resultant skeleton which are temporally offset from skeletal δ18O records.

  7. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    OpenAIRE

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media fo...

  8. IRMS detection of testosterone manipulated with {sup 13}C labeled standards in human urine by removing the labeled {sup 13}C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingzhu, E-mail: wangjingzhu@chinada.cn [National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing (China); Yang, Rui [Sport Science College, Beijing Sport University Beijing, Beijing (China); Yang, Wenning [School of Pharmacy, Beijing University of Chinese Medicine, Beijing (China); Liu, Xin; Xing, Yanyi; Xu, Youxuan [National Anti-Doping Laboratory, China Anti-Doping Agency, Beijing (China)

    2014-12-10

    Highlights: • {sup 13}C labeled testosterone can be used to adjust the isotope ratio of testosterone. • The novel testosterone cannot be detected by the regular IRMS method in doping test. • A method was explored to remove the labeled {sup 13}C. • The established method can be used to detect the manipulated testosterone. - Abstract: Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ{sup 13}C value). However, {sup 13}C labeled standards can be used to control the δ{sup 13}C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the {sup 13}C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ{sup 13}C values between Andro and ANAD (Δδ{sup 13}C{sub Andro–ANAD}, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different {sup 13}C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ{sup 13}C{sub Andro–ANAD} post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ{sup 13}C{sub Andro–ANAD} for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-{sup 13}C labeled standards.

  9. Deuterium isotope shifts for backbone ¹H, ¹⁵N and ¹³C nuclei in intrinsically disordered protein α-synuclein.

    Science.gov (United States)

    Maltsev, Alexander S; Ying, Jinfa; Bax, Ad

    2012-10-01

    Intrinsically disordered proteins (IDPs) are abundant in nature and characterization of their potential structural propensities remains a widely pursued but challenging task. Analysis of NMR secondary chemical shifts plays an important role in such studies, but the output of such analyses depends on the accuracy of reference random coil chemical shifts. Although uniform perdeuteration of IDPs can dramatically increase spectral resolution, a feature particularly important for the poorly dispersed IDP spectra, the impact of deuterium isotope shifts on random coil values has not yet been fully characterized. Very precise (2)H isotope shift measurements for (13)C(α), (13)C(β), (13)C', (15)N, and (1)H(N) have been obtained by using a mixed sample of protonated and uniformly perdeuterated α-synuclein, a protein with chemical shifts exceptionally close to random coil values. Decomposition of these isotope shifts into one-bond, two-bond and three-bond effects as well as intra- and sequential residue contributions shows that such an analysis, which ignores conformational dependence, is meaningful but does not fully describe the total isotope shift to within the precision of the measurements. Random coil (2)H isotope shifts provide an important starting point for analysis of such shifts in structural terms in folded proteins, where they are known to depend strongly on local geometry.

  10. 13C NMR relaxation studies on cartilage and cartilage components.

    Science.gov (United States)

    Naji, L; Kaufmann, J; Huster, D; Schiller, J; Arnold, K

    2000-08-07

    We have investigated the molecular motions of polysaccharides of bovine nasal and pig articular cartilage by measuring the 13C NMR relaxation times (T1 and T2). Both types of cartilage differ significantly towards their collagen/glycosaminoglycan ratio, leading to different NMR spectra. As chondroitin sulfate is the main constituent of cartilage, aqueous solutions of related poly- and monosaccharides (N-acetylglucosamine and glucuronic acid) were also investigated. Although there are only slight differences in T1 relaxation of the mono- and the polysaccharides, T2 decreases about one order of magnitude, when glucuronic acid or N-acetylglucosamine and chondroitin sulfate are compared. It is concluded that the ring carbons are motion-restricted primarily by the embedment in the rigid pyranose structure and, thus, additional limitations of mobility do not more show a major effect. Significant differences were observed between bovine nasal and pig articular cartilage, resulting in a considerable line-broadening and a lower signal to noise ratio in the spectra of pig articular cartilage. This is most likely caused by the higher collagen content of articular cartilage in comparison to the polysaccharide-rich bovine nasal cartilage.

  11. Inelastic pion scattering by /sup 13/C at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  12. Halodemetallation of (Z)-1-[2-(Triarylstannyl)vinyl]-cyclooctanol and Correlation of Proton Chemical Shift with Electronegativity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Introduction Organotin compounds have attracted attention as an optimal model for antitumour agents due to the function of the interesting intramolecular O→Sn coordination[1,2]. Our recent concern has been focused on the preparation of (Z)-1-[2-(triarylstannyl)vinyl]-cyclooctanol[3]. In order to find more appropriate compounds used as anticancer agents and explore the effect of the coordinate O→Sn interaction to the antitumor activity, the new compounds were halodemetallated and characterized. During the course of the process, some linear correlations between proton chemical shifts and the sum of the electronegativities of the tin substituents of halogens were found for the first time.

  13. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    OpenAIRE

    Ricardo Infante-Castillo; Samuel P. Hernández-Rivera

    2012-01-01

    This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO) charge and 15N NMR chemical shifts of the nitro groups (15NNitro) as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation re...

  14. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    Science.gov (United States)

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.

  15. Aspects regarding at 13C isotope separation column control using Petri nets system

    Science.gov (United States)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  16. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Gaspare Cesarano

    Full Text Available Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.

  17. Paramagnetic NMR chemical shift in a spin state subject to zero-field splitting

    CERN Document Server

    Soncini, Alessandro

    2012-01-01

    We derive a general formula for the paramagnetic NMR nuclear shielding tensor of an open-shell molecule in a pure spin state, subject to a zero-field splitting (ZFS). Our findings are in contradiction with a previous proposal. We present a simple application of the newly derived formula to the case of a triplet ground state split by an easy-plane ZFS spin Hamiltonian. When $kT$ is much smaller than the ZFS gap, thus a single non-degenerate level is thermally populated, our approach correctly predicts a temperature-independent paramagnetic shift, while the previous theory leads to a Curie temperature dependence.

  18. 13 C solid-state NMR study of the 13 C-labeled peptide, (E)8 GGLGGQGAG(A)6 GGAGQGGYGG as a model for the local structure of Nephila clavipes dragline silk (MaSp1) before and after spinning.

    Science.gov (United States)

    Yazawa, Koji; Yamaguchi, Erika; Knight, David; Asakura, Tetsuo

    2012-06-01

    We prepared the water soluble model peptide, (E)(8) GGLGGQGAG(A)(6) GGAGQGGYGG, to throw light on the local structure of spidroin 1 (MaSpl) protein in spider dragline silk of Nephila clavipes before and after spinning. Solution (13) C NMR showed that the conformation of the peptide in aqueous solution was essentially random coil. Solid-state NMR was used to follow conformation-dependent (13) C chemical shifts in (13) C selectively labeled versions of the peptide. The peptide lyophilized from an aqueous solution at neutral pH (hereafter referred to as "without acid treatment)"was used to mimic the state of the spidroin stored in the spider's silk gland while the peptide precipitated from the acidic solution ("with acid treatment") was used to simulate the role of acid treatment in inducing conformation change in the natural spinning process. In without acid treatment, the fraction of random coil conformation was lowest in the N-terminal region (residues 15-18) when compared with the C-terminus. The conformational change produced by the acid treatment occurred in the sequence, G(15) AG(A)(6) GGAG(27), interposed between pairs of Gly residues pairs, Gly(12,13), and Gly(29,30). The acid treated peptide showed a remarkable decrease in the fraction of random coil conformation from A(20) to A(23) in the poly-Ala region when compared with the peptide without acid treatment. These observations taken together suggest that the peptide can be used as a model for studying the localization of the conformation change in spider silk fibroin in the natural spinning and the role of acid treatment in this process.

  19. Effect of pH, urea, peptide length, and neighboring amino acids on alanine alpha-proton random coil chemical shifts.

    Science.gov (United States)

    Carlisle, Elizabeth A; Holder, Jessica L; Maranda, Abby M; de Alwis, Adamberage R; Selkie, Ellen L; McKay, Sonya L

    2007-01-01

    Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding.

  20. Modeling the chemical shift of lanthanide 4f electron binding energies

    NARCIS (Netherlands)

    Dorenbos, P.

    2012-01-01

    Lanthanides in compounds can adopt the tetravalent [Xe]4fn−1 (like Ce4+, Pr4+, Tb4+), the trivalent [Xe]4fn (all lanthanides), or the divalent [Xe]4f n+1 configuration (like Eu2+, Yb2+, Sm2+, Tm2+). The 4f-electron binding energy depends on the charge Q of the lanthanide ion and its chemical environ

  1. NMR chemical shift as analytical derivative of the Helmholtz free energy.

    Science.gov (United States)

    Van den Heuvel, Willem; Soncini, Alessandro

    2013-02-07

    We present a theory for the temperature-dependent nuclear magnetic shielding tensor of molecules with arbitrary electronic structure. The theory is a generalization of Ramsey's theory for closed-shell molecules. The shielding tensor is defined as a second derivative of the Helmholtz free energy of the electron system in equilibrium with the applied magnetic field and the nuclear magnetic moments. This derivative is analytically evaluated and expressed as a sum over states formula. Special consideration is given to a system with an isolated degenerate ground state for which the size of the degeneracy and the composition of the wave functions are arbitrary. In this case, the paramagnetic part of the shielding tensor is expressed in terms of the g and A tensors of the electron paramagnetic resonance spin Hamiltonian of the degenerate state. As an illustration of the proposed theory, we provide an explicit formula for the paramagnetic shift of the central lanthanide ion in endofullerenes Ln@C(60), with Ln = Ce(3+), Nd(3+), Sm(3+), Dy(3+), Er(3+), and Yb(3+), where the ground state can be a strongly spin-orbit coupled icosahedral sextet for which the paramagnetic shift cannot be described by previous theories.

  2. The use of dynamic nuclear polarization 13C-pyruvate MRS in cancer

    DEFF Research Database (Denmark)

    Borgwardt, Henrik Gutte; Espe Hansen, Adam; Hjort Johannesen, Helle

    2015-01-01

    -pyruvate due to favoring technicalities. Intravenous injection of the hyperpolarized 13C-pyruvate results in appearance of 13C-lactate, 13C-alanine and 13C-bicarbonate resonance peaks depending on the tissue, disease and the metabolic state probed. In cancer, the lactate level is increased due to increased...... of hyperpolarized 13C-pyruvate in healthy subjects and prostate cancer patients. The study showed an elevated 13C-lactate/13C-pyruvate ratio in regions of biopsy-proven prostate cancer compared to noncancerous tissue. However, more studies are needed in order to establish use of hyperpolarized 13C MRS imaging......In recent years there has been an immense development of new targeted anti-cancer drugs. For practicing precision medicine, a sensitive method imaging for non-invasive, assessment of early treatment response and for assisting in developing new drugs is warranted. Magnetic Resonance Spectroscopy...

  3. Fractional {sup 13}C enrichment of isolated carbons using [1-{sup 13}C]- or [2-{sup 13}C]-glucose facilitates the accurate measurement of dynamics at backbone C{sup {alpha}} and side-chain methyl positions in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lundstroem, Patrik [University of Toronto, Departments of Medical Genetics and Chemistry (Canada); Teilum, Kaare; Carstensen, Tommy [Lund University, Department of Biophysical Chemistry (Sweden); Bezsonova, Irina [University of Toronto, Department of Chemistry (Canada); Wiesner, Silke [University of Toronto, Department of Biochemistry (Canada); Hansen, D. Flemming [University of Toronto, Departments of Medical Genetics and Chemistry (Canada); Religa, Tomasz L. [Medical Research Council Centre for Protein Engineering (United Kingdom); Akke, Mikael [Lund University, Department of Biophysical Chemistry (Sweden); Kay, Lewis E. [University of Toronto, Departments of Medical Genetics and Chemistry (Canada)], E-mail: kay@pound.med.utoronto.ca

    2007-07-15

    A simple labeling approach is presented based on protein expression in [1-{sup 13}C]- or [2-{sup 13}C]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone C{sup {alpha}} sites, respectively. All of the methyl groups, with the exception of Thr and Ile({delta}1) are produced with isolated {sup 13}C spins (i.e., no {sup 13}C-{sup 13}C one bond couplings), facilitating studies of dynamics through the use of spin-spin relaxation experiments without artifacts introduced by evolution due to large homonuclear scalar couplings. Carbon-{alpha} sites are labeled without concomitant labeling at C{sup {beta}} positions for 17 of the common 20 amino acids and there are no cases for which {sup 13}C{sup {alpha}}-{sup 13}CO spin pairs are observed. A large number of probes are thus available for the study of protein dynamics with the results obtained complimenting those from more traditional backbone {sup 15}N studies. The utility of the labeling is established by recording {sup 13}C R{sub 1{rho}} and CPMG-based experiments on a number of different protein systems.

  4. Fluxomers: a new approach for 13C metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Young Jamey D

    2011-08-01

    Full Text Available Abstract Background The ability to perform quantitative studies using isotope tracers and metabolic flux analysis (MFA is critical for detecting pathway bottlenecks and elucidating network regulation in biological systems, especially those that have been engineered to alter their native metabolic capacities. Mathematically, MFA models are traditionally formulated using separate state variables for reaction fluxes and isotopomer abundances. Analysis of isotope labeling experiments using this set of variables results in a non-convex optimization problem that suffers from both implementation complexity and convergence problems. Results This article addresses the mathematical and computational formulation of 13C MFA models using a new set of variables referred to as fluxomers. These composite variables combine both fluxes and isotopomer abundances, which results in a simply-posed formulation and an improved error model that is insensitive to isotopomer measurement normalization. A powerful fluxomer iterative algorithm (FIA is developed and applied to solve the MFA optimization problem. For moderate-sized networks, the algorithm is shown to outperform the commonly used 13CFLUX cumomer-based algorithm and the more recently introduced OpenFLUX software that relies upon an elementary metabolite unit (EMU network decomposition, both in terms of convergence time and output variability. Conclusions Substantial improvements in convergence time and statistical quality of results can be achieved by applying fluxomer variables and the FIA algorithm to compute best-fit solutions to MFA models. We expect that the fluxomer formulation will provide a more suitable basis for future algorithms that analyze very large scale networks and design optimal isotope labeling experiments.

  5. Composite δ13C and petrographic 195-355 ka record from Frasassi cave (central Italy) stalagmites: investigating drivers of speleothem calcite carbon isotope signals.

    Science.gov (United States)

    Vanghi, V.; Borsato, A.; Frisia, S.; Drysdale, R.; Hellstrom, J. C.; Bajo, P.; Montanari, A.

    2016-12-01

    Carbon isotope ratio of speleothem calcite is known to be a proxy for climate-dependent soil CO2 production. One of the paradigms is that, ideally, C stable isotope incorporation occurred in equilibrium. Yet, the process of degassing in the cave commonly results in δ13C values more positive than theoretically expected for speleothems formed in temperate-humid settings. Fabrics then provide the benchmark to unravel local, regional and global significance of speleothem δ13C. The δ13C time-series from two precisely U-Th dated Frasassi stalagmites covering the interval from 195 ka to 355 ka (Marine Isotope Stages 7 - 10) were interpreted on the basis of the sequence of fabrics. Columnar fabrics indicated deposition under constant kinetic fractionation, whereby δ13C shifts through time reflected a combination of atmospheric CO2 concentration changes and soil efficiency variability, controlled by regional mean annual temperature. Given that the δ13C values are constantly more-positive-than-expected because of the effect of degassing, shifts to more positive δ13C values above a baseline of -7 permil during glacials are here interpreted as driven by low soil efficiency and higher contribution of atmospheric CO2 (Breecker et al. 2012, Borsato et al. 2015). The comparison of high resolution δ13C curves with atmospheric pCO2 and benthic δ18O records further suggests that hemispheric temperature changes driven by insolation modulated the δ13C shifts above or below the baseline. Thus, a -3‰ shift from glacial to interglacial at terminations IV and III is here ascribed to changes in atmospheric pCO2 (Schubert and Jahren 2012). More open fabrics mark warmer conditions and increased soil productivity and are associated with more negative δ13C. In conclusion, only by coupling petrography and geochemical properties the global and local drivers of δ13C anomalies in stalagmites from this deep cave could be distinguished. Borsato et al. (2015), Earth Surface Processes and

  6. Imaging of branched chain amino acid metabolism in tumors with hyperpolarized 13C ketoisocaproate.

    Science.gov (United States)

    Karlsson, Magnus; Jensen, Pernille R; in 't Zandt, René; Gisselsson, Anna; Hansson, Georg; Duus, Jens Ø; Meier, Sebastian; Lerche, Mathilde H

    2010-08-01

    Powerful analytical tools are vital for characterizing the complex molecular changes underlying oncogenesis and cancer treatment. This is particularly true, if information is to be collected in vivo by noninvasive approaches. In the recent past, hyperpolarized (13)C magnetic resonance (MR) spectroscopy has been employed to quickly collect detailed spectral information on the chemical fate of tracer molecules in different tissues at high sensitivity. Here, we report a preclinical study showing that alpha-ketoisocaproic acid (KIC) can be used to assess molecular signatures of tumors with hyperpolarized MR spectroscopy. KIC is metabolized to leucine by the enzyme branched chain amino acid transferase (BCAT), which is found upregulated in some tumors. BCAT is a putative marker for metastasis and a target of the proto-oncogene c-myc. Very different fluxes through the BCAT-catalyzed reaction can be detected for murine lymphoma (EL4) and rat mammary adenocarcinoma (R3230AC) tumors in vivo. EL4 tumors show a more than 7-fold higher hyperpolarized (13)C leucine signal relative to the surrounding healthy tissue. In R3230AC tumor on the other hand branched chain amino acid metabolism is not enhanced relative to surrounding tissues. The distinct molecular signatures of branched chain amino acid metabolism in EL4 and R3230AC tumors correlate well with ex vivo assays of BCAT activity.

  7. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  8. Acid-base interactions and secondary structures of poly-L-lysine probed by 15N and 13C solid state NMR and Ab initio model calculations.

    Science.gov (United States)

    Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich

    2008-12-11

    The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.

  9. Theory of NMR chemical shift in an electronic state with arbitrary degeneracy

    CERN Document Server

    Heuvel, Willem Van den

    2012-01-01

    We present a theory of nuclear magnetic resonance (NMR) shielding tensors for electronic states with arbitrary degeneracy. The shieldings are here expressed in terms of generalized Zeeman ($g^{(k)}$) and hyperfine ($A^{(k)}$) tensors, of all ranks $k$ allowed by the size of degeneracy. Contrary to recent proposals [T. O. Pennanen and J. Vaara, Phys. Rev. Lett. 100, 133002 (2008)], our theory is valid in the strong spin-orbit coupling limit. Ab initio calculations for the 4-fold degenerate $\\Gamma_8$ ground state of lanthanide-doped fluorite crystals CaF$_2$:Ln (Ln = Pr$^{2+}$, Nd$^{3+}$, Sm$^{3+}$, and Dy$^{3+}$) show that previously neglected contributions can account for more than 50% of the paramagnetic shift.

  10. The 'Nuts and Bolts' of 13C NMR Spectroscopy at Elevated-Pressures and -Temperatures for Monitoring In Situ CO2 Conversion to Metal Carbonates

    Science.gov (United States)

    Moore, J. K.; Surface, J. A.; Skemer, P. A.; Conradi, M. S.; Hayes, S. E.

    2013-12-01

    We will present details of newly-constructed specialized NMR designed to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies on unmixed slurries of minerals in the presence of CO2 or other gases. This static probe is capable of achieving 300 bar, 300C conditions, and it is designed to spectroscopically examine 13C signals in mixtures of solids, liquids, gases, and supercritical fluids. Ultimately, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. We will give details of the hardware setup, and we will show a variety of static in situ NMR, as well as ex situ 'magic-angle spinning' NMR to show the analyses that are possible of minerals in pure form and in mixtures. In addition, specific NMR pulse sequences, techniques, and modeling will be described in detail. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine conditions that affect the efficacy of carbonate formation in various targeted geological reservoirs (i.e., peroditite, or others). Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals, including metastable intermediates (such as hydromagnesite, or dypingite in the case of magnesium carbonate species, or vaterite in the case of calcium carbonate species). Such species are distinguishable from a combination of the 13C isotropic chemical shift, the static 13C lineshape, and changes in spin-lattice (T1) relaxation times. We will demonstrate that NMR can be used for quantitative

  11. Synthesis and Physicochemical Properties of [19,20-13C]-17α-Ethinylestradiol

    NARCIS (Netherlands)

    Kraan, G.P.B.; Drayer, N.M.; Kruizinga, W.H.; Vaalburg, W.; Hummelen, J.C.

    1989-01-01

    13C2-17α-ethinylestradiol (13C2-EE2) was synthesized from estrone and 13C2-C2H2-gas to measure the metabolic clearance rate and the plasma concentration of 17α-ethinylestradiol (EE2) in tall girls, who are treated with high dosages of this estrogen. Interesting characteristics determined by (i) MS:

  12. Espiritu Santo, Vanuatu Stable Isotope (delta 18O, delta 13C) Data for 1806 to 1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site: Espiritu Santo Island, Vanuatu, 15S, 167E. 173 year record of d18O and d13C. Variable names: QSR Age, QSR 13C, QSR 18O, GRL Age, GRL Qtrly 13C, GRL Qtrly 18O,...

  13. High-field dissolution dynamic nuclear polarization of [1-13C]pyruvic acid

    DEFF Research Database (Denmark)

    Yoshihara, Hikari A. I.; Can, Emine; Karlsson, Magnus

    2016-01-01

    [1-13C]pyruvate is the most widely used hyperpolarized metabolic magnetic resonance imaging agent. Using a custom-built 7.0 T polarizer operating at 1.0 K and trityl radical-doped [1-13C]pyruvic acid, unextrapolated solution-state 13C polarization greater than 60% was measured after dissolution a...

  14. Landmarks in the application of 13C-magnetic resonance spectroscopy to studies of neuronal/glial relationships.

    Science.gov (United States)

    Bachelard, H

    1998-01-01

    The development of the use of carbon isotopes as metabolic tracers is briefly described. 13C-labelled precursors (13CO2, 13CH4) first became available in 1940 and were studied in microorganisms, but their use was limited by very low enrichments and lack of suitable analytical equipment. More success was achieved with 11C and especially 14C, as these radioactive tracers did not need to be highly enriched. Although the stable 13C isotope can be used at a low percentage enrichment in mass spectrometry, its application to magnetic resonance spectroscopy (MRS) requires very highly enriched precursors, due to its low natural abundance and low sensitivity. Despite such limitations, however, the great advantage of 13C-MRS lies in its exquisite chemical specificity, in that labelling of different carbon atoms can be distinguished within the same molecule. Effective exploitation became feasible in the early 1970s with the advent of stable instruments, Fourier transform 13C-MRS, and the availability of highly enriched precursors. Reports of its use in brain research began to appear in the mid-1980s. The applications of 13C isotopomer analysis to research on neuronal/glial relationships are reviewed. The presence of neighbouring 13C-labelled atoms affects the appearance of the resonances (splitting due to C-C coupling), and so allows for unique quantification of rates through different and possibly competing pathways. Isotopomer patterns in resonances labelled from a combination of [1-13C]glucose and [1, 2-13C2]acetate have revealed aspects of neuronal/glial metabolic trafficking on depolarization and under hypoxic conditions in vitro. This approach has now been applied to in vivo studies on inhibition of glial metabolism using fluoroacetate. The results confirm the glial specificity of the toxin and demonstrate that it does not affect entry of acetate. When the glial TCA cycle is inhibited, the ability of the glia to participate in the glutamate/glutamine cycle remains

  15. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ(13) C.

    Science.gov (United States)

    Guillaume, Thomas; Damris, Muhammad; Kuzyakov, Yakov

    2015-09-01

    Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha(-1) after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ(13) C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ(13) C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The (13) C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ(13) C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ(13) C values with depth. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  16. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A sup 13 C NMR study using (U- sup 13 C)fructose

    Energy Technology Data Exchange (ETDEWEB)

    Gopher, A.; Lapidot, A. (Weizmann Institute of Science, Rehovot (Israel)); Vaisman, N. (Kaplan Hospital, Rehovot (Israel)); Mandel, H. (Rambam Hospital, Haifa (Israel))

    1990-07-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-(U-{sup 13}C)fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of {sup 13}C NMR spectra of plasma glucose. Significantly lower values ({approx}3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from {sup 13}C NMR measurement of plasma ({sup 13}C)glucose isotopomer populations. The finding of isotopomer populations of three adjacent {sup 13}C atoms at glucose C-4 ({sup 13}C{sub 3}-{sup 13}C{sub 4}-{sup 13}C{sub 5}) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only {approx}50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of ({sup 13}C)glucose formation from a trace amount of (U-{sup 13}C)fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism.

  17. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. NMR chemical shift as analytical derivative of the Helmholtz free energy

    CERN Document Server

    Heuvel, Willem Van den

    2012-01-01

    We present a theory for the temperature-dependent nuclear magnetic shielding tensor of molecules with arbitrary electronic structure. The theory is a generalization of Ramsey's theory for closed-shell molecules. The shielding tensor is defined as a second derivative of the Helmholtz free energy of the electron system in equilibrium with the applied magnetic field and the nuclear magnetic moments. This derivative is analytically evaluated and expressed as a sum over states formula. Special consideration is given to a system with an isolated degenerate ground state for which the size of the degeneracy and the composition of the wave functions are arbitrary. In this case the paramagnetic part of the shielding tensor is expressed in terms of the $g$ and $A$ tensors of the EPR spin Hamiltonian of the degenerate state. As an illustration of the proposed theory, we provide an explicit formula for the paramagnetic shift of the central lanthanide ion in endofullerenes Ln@C$_{60}$, with Ln=Ce$^{3+}$, Nd$^{3+}$, Sm$^{3+...

  19. Assessment of Hepatic Mitochondrial Oxidation and Pyruvate Cycling in NAFLD by (13)C Magnetic Resonance Spectroscopy

    DEFF Research Database (Denmark)

    Petersen, Kitt Mia Falck; Befroy, Douglas E; Dufour, Sylvie

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and there is great interest in understanding the potential role of alterations in mitochondrial metabolism in its pathogenesis. To address this question, we assessed rates of hepatic mitochondrial oxidation...... in subjects with and without NAFLD by monitoring the rate of (13)C labeling in hepatic [5-(13)C]glutamate and [1-(13)C]glutamate by (13)C MRS during an infusion of [1-(13)C]acetate. We found that rates of hepatic mitochondrial oxidation were similar between NAFLD and control subjects. We also assessed rates...

  20. Solid-State Selective 13C Excitation and Spin Diffusion NMR to Resolve Spatial Dimensions in Plant Cell Walls

    Energy Technology Data Exchange (ETDEWEB)

    Foston, M.; Katahira, R.; Gjersing, E.; Davis, M. F.; Ragauskas, A. J.

    2012-02-15

    The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a {sup 13}C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. {sup 13}C spin diffusion time constants (T{sub SD}) were extracted using a two-site spin diffusion theory developed for {sup 13}C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated {sup 13}C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances {approx}0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

  1. Computational Platform for Flux Analysis Using 13C-Label Tracing- Phase I SBIR Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Van Dien, Stephen J.

    2005-04-12

    Isotopic label tracing is a powerful experimental technique that can be combined with metabolic models to quantify metabolic fluxes in an organism under a particular set of growth conditions. In this work we constructed a genome-scale metabolic model of Methylobacterium extorquens, a facultative methylotroph with potential application in the production of useful chemicals from methanol. A series of labeling experiments were performed using 13C-methanol, and the resulting distribution of labeled carbon in the proteinogenic amino acids was determined by mass spectrometry. Algorithms were developed to analyze this data in context of the metabolic model, yielding flux distributions for wild-type and several engineered strains of M. extorquens. These fluxes were compared to those predicted by model simulation alone, and also integrated with microarray data to give an improved understanding of the metabolic physiology of this organism.

  2. Synthesis and quality control of {sup 13}C-enriched urea for Helicobacter pylori (HP) diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Sant Ana Filho, Carlos R.; Tavares, Claudineia R.O.; Ferreira, Andre V.; Prestes, Cleber V.; Bendassolli, Jose A., E-mail: jab@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-08-01

    The aim of the study was to synthesize the urea ({sup 13}CO(NH{sub 2}){sub 2}), with 99% {sup 13}C atoms, and to perform a quality analysis for the diagnosis (breath test) of Helicobacter pylori. Furthermore, the process was submitted to economic analysis. The reaction was performed in a stainless steel reactor, lined with polytetrafluoroethylene, under low pressure and temperature. The synthesis method was shown to be appropriate (2.35 g; 81.9% yield), evidenced by physico-chemical and microbiological results, according to Brazilian legislation. The production and diagnosis costs were competitive compared with national and international market values, rendering this a valuable tool in clinical medicine. (author)

  3. The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer

    DEFF Research Database (Denmark)

    Gutte Borgwardt, Henrik; Hansen, Adam Espe; Johannesen, Helle Hjorth

    2015-01-01

    -pyruvate due to favoring technicalities. Intravenous injection of the hyperpolarized (13)C-pyruvate results in appearance of (13)C-lactate, (13)C-alanine and (13)C-bicarbonate resonance peaks depending on the tissue, disease and the metabolic state probed. In cancer, the lactate level is increased due...... the safety of hyperpolarized (13)C-pyruvate in healthy subjects and prostate cancer patients. The study showed an elevated (13)C-lactate/(13)C-pyruvate ratio in regions of biopsy-proven prostate cancer compared to noncancerous tissue. However, more studies are needed in order to establish use......In recent years there has been an immense development of new targeted anti-cancer drugs. For practicing precision medicine, a sensitive method imaging for non-invasive, assessment of early treatment response and for assisting in developing new drugs is warranted. Magnetic Resonance Spectroscopy...

  4. Determination of 13C/ 12C ratios with (d, p) nuclear reactions

    Science.gov (United States)

    Wang, Y. Q.; Zhang, J.; Tesmer, J. R.; Li, Y. H.; Greco, R.; Grim, G. P.; Obst, A. W.; Rundberg, R. S.; Wilhelmy, J. B.

    2010-06-01

    Stable isotope ratios such as 13C/ 12C play an important role in many applications including environment and energy research. Since many surface analysis techniques are plagued with unavoidable hydrocarbon contamination issues during analysis