WorldWideScience

Sample records for 13-cis retinoic acid

  1. PHARMACOKINETICS OF PARENTERAL 13-CIS-RETINOIC ACID FORMULATIONS IN RATS

    NARCIS (Netherlands)

    GUCHELAAR, HJ; BEUKEVELD, GJJ; MULDER, NH; OOSTERHUIS, JW; Wouda, S.

    1992-01-01

    The pharmacokinetics of three 13-cis-retinoic acid formulations were studied after intraperitoneal (ip) administration to rats. Rats were given ip injections of 2.5 mg of 13-cis-retinoic acid per 360 g of body weight; the drug was administered as an alkaline solution, suspended in corn oil, or as a

  2. Low plasma levels of cholecalciferol and 13-cis-retinoic acid in tuberculosis

    DEFF Research Database (Denmark)

    Srinivasan, Anand; Syal, Kirtimaan; Banerjee, Dibyajyoti

    2013-01-01

    Objective: The aim of this study was to estimate the concentration of cholecalciferol and 13-. cis-retinoic acid (RA) in the plasma and pleural fluid of patients with tuberculosis (TB) against controls. Methods: Plasma levels of cholecalciferol and 13-. cis-RA were measured in 22 patients with TB...... with active ingredients of vitamins A and D, we feel that there is a combined deficiency of these vitamins in patients with TB. There is an evidence that concomitant vitamin A and D supplementation can kill intracellular Mycobacterium tuberculosis invitro. Therefore, the observations made in this study can...

  3. Predicting, Monitoring, and Managing Hypercalcemia Secondary to 13-Cis-Retinoic Acid Therapy in Children With High-risk Neuroblastoma.

    Science.gov (United States)

    Chen, Suet Ching; Murphy, Dermot; Sastry, Jairam; Shaikh, Mohamad G

    2015-08-01

    13-cis-retinoic acid is an established component of treatment for children with high-risk neuroblastoma. However, significant hypercalcemia is increasingly recognized as a potentially life-threatening dosage-related side effect. We present 2 patients with significant hypercalcemia secondary to 13-cis-retinoic acid and their management, and identified the predictive factors for susceptibility to hypercalcemia. Assessing glomerular filtration rate and concomitant medication help predict individual susceptibility to hypercalcemia. Calcium levels should be monitored at days 1, 7, and 14 of each course of retinoic acid. An algorithm for the management of hypercalcemia during the affected and subsequent cycles of retinoid therapy is proposed.

  4. [Acne conglobata: personality and psychological sequelae in 13-cis-retinoic acid therapy. Initial results].

    Science.gov (United States)

    Studt, H H; Riehl, A; Gollnick, H

    1986-05-15

    16 patients suffering from acne conglobata were prospectively examined by means of analytical interviews and 5 psychometric procedures before and 6 months after oral treatment with 13-cis retinoic acid (isotretinoin). In comparison with a control group of psychosomatic patients, acne conglobata patients are more frequently affected by childhood influences leading to a neurotic personality structure already before the outbreak of acne; the patients more often complain of disturbed social contact, depressive moods, or general disorders. After successful treatment with isotretinoin, we observed augmented self-confidence and positive aggressiveness, on one hand, and increase of anxiety depressive moods, and general complaints, on the other. These effects are not drug related in a pharmacological way. These observations suggest the influence of psychic factors in the pathogenesis of acne conglobata. Regarding the medical management of these patients, it should be considered that psychic and psychosomatic disorders might be intensified after successful drug therapy.

  5. Chronic oral treatment with 13-cis-retinoic acid (isotretinoin) or all-trans-retinoic acid does not alter depression-like behaviors in rats.

    Science.gov (United States)

    Ferguson, Sherry A; Cisneros, F Javier; Gough, B; Hanig, Joseph P; Berry, Kimberly J

    2005-10-01

    Oral treatment with the anti-acne drug Accutane (isotretinoin, 13-cis-retinoic acid) has been associated with suicide ideation and depression. Here, depression-like behaviors (i.e., behavioral despair and anhedonia) were quantified in adult Sprague-Dawley rats gavaged daily beginning at postnatal day (PND) 82 with 13-cis-RA (7.5 or 22.5 mg/kg) or all-trans-retinoic acid (10 or 15 mg/kg ). Tested at PND 130-131 in the Forced Swim Test, 7.5 mg/kg 13-cis-RA marginally decreased immobility and slightly increased climb/struggle durations whereas neither all-trans-retinoic acid group differed from controls. Voluntary saccharin solution (0.03%) intake at PND 102-104 and PND 151-153 was not different from controls in any treated group, although all RA-treated groups had lower intakes. Swim speed in a water maze at PND 180 was similar across groups, indicating no RA-induced differences in physical ability. Open field activity was mildly decreased at PND 91 in 7.5 mg/kg-treated males only, but it was within the control range at PND 119, 147, and 175. Thus, at serum levels similar to those in humans receiving the drug, chronic 13-cis-RA treatment did not severely affect depression-like behaviors in rats. These data do not substantiate the hypothesis of 13-cis-RA-induced depression.

  6. High albumin levels restrict the kinetics of 13-cis retinoic acid uptake and intracellular isomerization to all-trans retinoic acid and inhibit its anti-proliferative effect on SZ95 sebocytes.

    Science.gov (United States)

    Tsukada, Miki; Schröder, Mandy; Seltmann, Holger; Orfanos, Constantin E; Zouboulis, Christos C

    2002-07-01

    13-cis Retinoic acid is rapidly absorbed into cells and exerts its anti-proliferative effect on human sebocytes by specific isomerization to high levels of all-trans retinoic acid and binding the retinoic acid receptors. In this study, we have shown that bovine serum albumin, an extracellular binding protein for 13-cis retinoic acid, plays an important part in the uptake of 13-cis retinoic acid in human sebocytes, its intracellular isomerization to all-trans retinoic acid, and the induction of its anti-proliferative effect. The addition of highly concentrated bovine serum albumin (20 mg per ml) to the serum-free maintenance medium resulted in a rather controlled uptake of constant levels of 13-cis and all-trans retinoic acid into the cells over the 72 h of treatment. As a consequence, significantly reduced and delayed isomerization of 13-cis retinoic acid to all-trans retinoic acid was detected. In parallel experiments, the anti-proliferative activity of 13-cis retinoic acid on SZ95 sebocytes was abrogated by adding 20 mg bovine serum albumin per ml into the serum-free medium. These results indicate a critical function of serum albumin as retinoid-binding protein in reducing the concentration of active retinoids and restricting their biologic effects on human sebocytes.

  7. Response of preclinical medulloblastoma models to combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA).

    Science.gov (United States)

    Spiller, Susan E; Ditzler, Sally H; Pullar, Barbara J; Olson, James M

    2008-04-01

    Current medulloblastoma therapy, surgery, radiation, and chemotherapy, is unacceptably toxic. However, 13-cis retinoic acid (RA) and SAHA, a histone deacetylase inhibitor, have each been shown to induce apoptosis in medulloblastoma cultures and mouse models. Both drugs cross the blood brain barrier, have been given safely to children, and achieve brain concentrations that are at or near therapeutic levels. Retinoic acid acts by transcriptionally activating bone morphogenetic protein-2 (BMP-2) and SAHA facilitates transcriptional activity through chromatin accessibility. We tested the hypothesis that these drugs additively induce BMP-2 transcription and apoptosis. RA + SAHA induction of BMP-2 transcription and apoptosis in medulloblastoma cultures was evaluated. Subsequently the response of mouse medulloblastomas to these two agents in the presence and absence of cisplatin was evaluated. BMP-2 transcription multiplied 3-fold with addition of RA to culture, and 7-fold with both agents. The IC50 of SAHA was reduced by 40% when low dose RA was added. Interestingly, a p38 MAP kinase inhibitor that partially blocks RA-induced apoptosis did not inhibit the activity of RA + SAHA. Flank D283 tumors in athymic mice had slower growth in the RA + SAHA arm than single drug or control arms. Intracranial tumors in ND2:SmoA1 mice treated with RA + SAHA + cisplatin showed a 4-fold increase in apoptosis over controls, and a 2-fold increase over animals receiving only SAHA or RA + SAHA. RA + SAHA additively induce BMP-2 transcription and medulloblastoma apoptosis. The combination may act through a p38 MAPK independent mechanism. Efficacy increased with cisplatin, which has implications for clinical trial design.

  8. Short term 13-cis-retinoic acid treatment at therapeutic doses elevates expression of leptin, GLUT4, PPARgamma and aP2 in rat adipose tissue.

    Science.gov (United States)

    Krskova-Tybitanclova, K; Macejova, D; Brtko, J; Baculikova, M; Krizanova, O; Zorad, S

    2008-12-01

    Temporary defects in the plasma lipid and glucose homeostasis are frequent complication accompanying chronic treatment with 13-cis-retinoic acid (13cRA). White adipose tissue acts as an endocrine organ producing a variety of hormones (adipocytokines) including leptin, adiponectin, tumor-necrosis factor alpha (TNFalpha) and angiotensin II (Ang II), which influence lipid metabolism, systemic insulin sensitivity and inflammation. To study the effect of a short-term 13cRA administration on metabolism of epididymal fat tissue, we treated Wistar rats with five identical therapeutic doses of 13cRA (0.8 mg/kg b.w.) by gavage during a period of 10 days. Expression of adiponectin, leptin, TNFalpha and selected proteins such as adipocyte fatty acid binding protein (aP2), insulin-dependent glucose transporter GLUT4, peroxisome proliferator-activated receptor gamma (PPARgamma) and retinoid X receptors (RXRs) was investigated using RT-PCR. Short-term treatment with therapeutic doses of 13cRA caused significant increase of the aP2, PPARgamma and moderately RXRalpha gene expression. Similarly, the relative amount of mRNA for leptin and GLUT4 was increased, while the TNFa transcript was decreased after treatment with 13cRA. The gene expression and plasma concentration of adiponectin were without any significant changes. Since local adipose renin-angiotensin system (RAS) has been presumed to be involved in the regulation of fat tissue metabolism, we also investigated the gene expression of RAS components in epididymal fat depot. Our data has shown that 13cRA elevated Ang II receptor type 1 (AT(1) receptor)--at both, mRNA and protein level. Thus, our results demonstrate that short-term 13cRA treatment is inducing alterations in fat tissue metabolism in relation to stimulated adipogenesis.

  9. Adaptive dosing approaches to the individualization of 13-cis-retinoic acid (isotretinoin) treatment for children with high-risk neuroblastoma

    Science.gov (United States)

    Veal, Gareth J.; Errington, Julie; Rowbotham, Sophie E.; Illingworth, Nicola A.; Malik, Ghada; Cole, Michael; Daly, Ann K.; Pearson, Andrew D.J.; Boddy, Alan V.

    2012-01-01

    Purpose To investigate the feasibility of adaptive dosing and the impact of pharmacogenetic variation on 13-cisRA disposition in high-risk neuroblastoma patients. Experimental Design 13cisRA (160mg/m2 or 5.33mg/kg/day) was administered to 103 patients ≤21 years and plasma concentrations of 13-cisRA and 4-oxo-13-cisRA quantitated on day 14 of treatment. 71 patients were recruited to a dose adjustment group, targeting a 13-cisRA Cmax of 2μM, with dose increases of 25-50% implemented for patients with Cmax values 2μM. Dose increases carried out in 20 patients in the dose adjustment study group led to concentrations >2μM in 18 patients (90%). 8/11 (73%) patients <12kg, receiving a dose of 5.33mg/kg, failed to achieve a Cmax ≥2μM. Significantly lower Cmax values were observed for patients treated with 5.33mg/kg versus 160mg/m2 (1.9±1.2 versus 3.1±2.0μM; mean±SD; P=0.023). Cmax was higher in patients who swallowed 13-cisRA capsules as compared to receiving the drug extracted from capsules (4.0±2.2 versus 2.6±1.8μM; P=0.0012). The target Cmax was achieved by 93% (25/27) versus 55% (42/76) of patients in these two groups respectively. No clear relationships were found between genetic variants and 13-cisRA pharmacokinetic parameters. Conclusions Dosing regimen and method of administration have a marked influence on 13-cisRA plasma concentrations. Body weight-based dosing should not be implemented for children <12kg and pharmacological data support higher doses for children unable to swallow 13-cisRA capsules. PMID:23087409

  10. Altered expression of retinoic acid (RA) receptor mRNAs in the fetal mouse secondary palate by all-trans and 13-cis RAs: implications for RA-induced teratogenesis.

    Science.gov (United States)

    Naitoh, H; Mori, C; Nishimura, Y; Shiota, K

    1998-01-01

    Retinoic acid (RA) is mandatory for various biological processes and normal embryonic development but is teratogenic at high concentrations. In rodents, one of the major malformations induced by RA is cleft palate (CP). RA mediates its effects by RA receptors (RARs), but the expression patterns of RARs in the developing palate are still unclear. We investigated the normal expression of RAR alpha, beta, and gamma messenger RNAs (mRNAs) in the fetal mouse secondary palate and the effects of all-trans and 13-cis RAs on the expression of RAR mRNAs by Northern blot analysis. RAR alpha (2.8, 3.8 kb), RAR beta (3.3 kb), and RAR gamma (3.7 kb) mRNAs were detected in the fetal palate on gestational days (GD) 12.5-14.5. The expression of RAR alpha and gamma mRNAs did not show apparent sequential changes, but that of RAR beta mRNA increased at GD 13.5. Treatment of pregnant mice with 100 mg/kg all-trans RA induced CP in 94% of the fetuses and elevated the levels of RAR beta and gamma mRNAs in the fetal palate. The up-regulation of RAR beta mRNA by all-trans RA was more marked than that of RAR gamma mRNA. Treatment with 100 mg/kg 13-cis RA induced CP in only 19% of the fetuses. Although 13-cis RA elevated the RAR beta and gamma mRNA levels in fetal palates, its up-regulation was slower and less marked than that induced by all-trans RA. These findings indicate that the induction of RAR beta mRNA in the fetal palate correlates well with the tissue concentration of all-trans RA after RA treatment, and RAR beta may be one of the most influential candidate molecules for RA-induced teratogenesis.

  11. Tamoxifen vs Tamoxifen plus 13-cis-retinoic acid vs Tamoxifen plus Interferon alpha-2a as first-line endocrine treatments in advanced breast cancer: updated results of a phase II, prospective, randomised multicentre trial.

    Science.gov (United States)

    Chiesa, Matteo Dalla; Passalacqua, Rodolfo; Michiara, Maria; Franciosi, Vittorio; Di Costanzo, Francesco; Bisagni, Giancarlo; Camisa, Roberta; Buti, Sebastiano; Tomasello, Gianluca; Cocconi, Giorgio

    2007-12-01

    To demonstrate the efficacy of 13-cis-retinoic acid (RA) or Interferon alpha-2a (IFN alpha-2a) with Tamoxifen (TAM) in the treatment of advanced breast cancer. Ninety-nine postmenopausal patients with advanced breast cancer, and a positive or unknown estrogen (ER) or progesterone (PgR) receptor status, were randomised to receive TAM 20 mg/m2/day orally (arm A), or TAM plus RA 1 mg/kg/day orally (arm B), or TAM plus IFN alpha-2a 3 MU thrice a week intramuscular (arm C). The three treatment groups were well balanced in terms of the main prognostic factors. Response was evaluable in 32 of the patients in arm A, 32 in arm B, and 30 in arm C. Intention-to-treat analysis showed no significant difference of response rate in the three arms (44% vs 38% vs 42%). After an eight years median follow-up, there was no significant between-group difference in median overall survival: 47.4 vs 38.2 vs 45.1 months. Side effects were negligible in arm A, but cutaneous (39%) and mucosal (62%) toxicities were frequent in arm B, and flu-like syndrome and/or myalgia (46%) in arm C. The administration of RA or IFN alpha-2a does not add anything to the therapeutic effects of TAM.

  12. Efficacy of a combination of human recombinant erythropoietin + 13-cis-retinoic acid and dihydroxylated vitamin D3 to improve moderate to severe anaemia in low/intermediate risk myelodysplastic syndromes.

    Science.gov (United States)

    Ferrero, Dario; Darbesio, Antonella; Giai, Valentina; Genuardi, Mariella; Dellacasa, Chiara Maria; Sorasio, Roberto; Bertini, Marilena; Boccadoro, Mario

    2009-02-01

    The efficacy of human recombinant erythropoietin (rEPO) in myelodysplastic syndromes (MDS) has generally been best in untransfused patients with 'refractory anaemia' according to the World Health Organization (WHO). We treated 63 MDS patients [excluding refractory anaemia with excess blasts, type 2 (RAEB2)] with a previously tested combination of 13-cis-retinoic acid and dihydroxylated vitamin D3 +/- 6-thioguanine in addition to rEPO. Most patients were categorized as refractory cytopenia with multilineage dysplasia and RAEB1, with intermediate 1 International Prognostic Scoring System (IPSS) score; all had Hb <95 g/l, and 70% required regular erythrocyte transfusions. Treatment was well tolerated, and erythroid response rate according to new International Working Group criteria was 60%: 50% in RAEB1 and 64% in non-RAEB patients (P = 0.383). Response rate was not affected by transfusion requirement (63%; 58% in untransfused), IPSS and WHO Prognostic Scoring System scores, and weekly rEPO dosage (30-50 000 U vs. 80 000 U). Median response duration was 16 months. Median survival reached 14 months for RAEB1 and 55 months for non-RAEB patients, with a significant difference in the latter between responders and non-responders (median 82 months vs. 44 months; P = 0.036). Our combined therapy, independent of rEPO dosage, achieved in patients with unfavourable response predictors, a rate of anaemia improvement comparable to the best obtained in lower risk patients by high-dose rEPO.

  13. Long-term follow-up of myelodysplastic syndrome patients with moderate/severe anaemia receiving human recombinant erythropoietin + 13-cis-retinoic acid and dihydroxylated vitamin D3: independent positive impact of erythroid response on survival.

    Science.gov (United States)

    Crisà, Elena; Foli, Cristina; Passera, Roberto; Darbesio, Antonella; Garvey, Kimberly B; Boccadoro, Mario; Ferrero, Dario

    2012-07-01

    We previously reported a 60% erythroid response rate with recombinant erythropoietin + 13-cis retinoic acid + dihydroxylated vitamin D3 in 63 elderly myelodysplastic patients (median age 75 years) with unfavourable features for response to erythropoietin alone [70% transfusion-dependent, 35% refractory anaemia with ring sideroblasts/refractory anaemia with excess of blasts type 1 (RAEB1), 70% with International Prognostic Scoring System (IPSS) Intermediate-1 or -2]. This report updates that case study at a 7-year follow-up, and compared the impact on overall survival of erythroid response to known prognostic factors. The erythroid response duration (median 17 months; 22 in non-RAEB patients, with 20% patients in response after 6 years of therapy) was longer than in most studies with erythropoietin alone. Overall survival (median 55 months in non-RAEB, 15 in RAEB1 patients) was negatively affected by RAEB1 diagnosis, IPSS and WPSS intermediate scores and transfusion-dependence. In the multivariate analysis, erythroid response maintained an independent positive impact on survival, particularly in non-RAEB patients in the first 3 years from diagnosis (90% survival compared to 50% of non-responders). In conclusion, the long-term follow-up confirmed the achievement, by our combined treatment, of fairly long-lasting erythroid response in the majority of MDS patients with unfavourable prognostic features for response to erythropoietin: this translated in a survival benefit that was independent from other prognostic features.

  14. Retinoic acid and iron metabolism

    DEFF Research Database (Denmark)

    Chakraborty, Surajit; Bhattacharyya, Rajasri; Sayal, Kirtimaan

    2014-01-01

    tuberculosis controlling molecules in the days to come. Iron has proven to be essential for pathogenesis of tuberculosis and retinoic acid is known to influence the iron metabolism pathway. Retenoic acid is also known to exhibit antitubercular effect in in vivo system. Therefore there is every possibility...... that retinoic acid by affecting the iron metabolism pathway exhibits its antimycobacterial effect. These aspects are reviewed in the present manuscript for understanding the antimycobacterial role of retinoic acid in the context of iron metabolism and other immunological aspects....

  15. Neutrophils are immune cells preferentially targeted by retinoic acid in elderly subjects

    Directory of Open Access Journals (Sweden)

    Minet-Quinard Régine

    2010-08-01

    Full Text Available Abstract Background The immune system gradually deteriorates with age and nutritional status is a major factor in immunosenescence. Of the many nutritional factors implicated in age-related immune dysfunction, vitamin A may be a good candidate, since vitamin A concentrations classically decrease during aging whereas it may possess important immunomodulatory properties via its active metabolites, the retinoic acids. This prompted us to investigate the immune response induced by retinoids in adults and elderly healthy subjects. Before and after oral supplementation with 13cis retinoic acid (0.5 mg/kg/day during 28 days, whole blood cells were phenotyped, and functions of peripheral blood mononuclear cells (PBMC and polymorphonuclear cells (PMN were investigated by flow cytometry and ELISA tests. Results In both young adults (n = 20, 25 ± 4 years and older subjects (n = 20, 65 ± 4 years, retinoic acid supplementation had no effect on the distribution of leukocyte subpopulations or on the functions of PBMC (Il-2 and sIl-2R production, membrane expression of CD25. Concerning PMN, retinoic acid induced an increase in both spontaneous migration and cell surface expression of CD11b in the two different age populations, whereas bactericidal activity and phagocytosis remained unchanged. Conclusions We demonstrated that retinoic acid induces the same intensity of immune response between adult and older subjects, and more specifically affects PMN functions, i.e. adhesion and migration, than PBMC functions.

  16. The Retinoic Acid Receptor-α mediates human T-cell activation and Th2 cytokine and chemokine production

    Directory of Open Access Journals (Sweden)

    Key Michael

    2008-04-01

    Full Text Available Abstract Background We have recently demonstrated that all-trans-retinoic acid (ATRA and 9-cis-retinoic acid (9-cis RA promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-γ and TNF-α expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA, and the retinoic acid receptor-α (RAR-α-selective agonist, AM580 but not with the RAR-β/γ ligand, 4-hydroxyphenylretinamide (4-HPR. Results The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-α-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-α-selective antagonist, RO 41–5253, inhibited these effects. Conclusion These results strongly support a role for RAR-α engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production.

  17. Integrating Retinoic Acid Signaling with Brain Function

    Science.gov (United States)

    Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

    2009-01-01

    The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…

  18. Retinoic Acid Signaling during Early Spinal Cord Development

    Directory of Open Access Journals (Sweden)

    Ruth Diez del Corral

    2014-06-01

    Full Text Available Retinoic acid signaling is required at several steps during the development of the spinal cord, from the specification of generic properties to the final acquisition of neuronal subtype identities, including its role in trunk neural crest development. These functions are associated with the production of retinoic acid in specific tissues and are highly dependent on context. Here, we review the defects associated with retinoic acid signaling manipulations, mostly in chick and mouse models, trying to separate the different processes where retinoic acid signaling is involved and to highlight common features, such as its ability to promote transitions along the neuronal differentiation cascade.

  19. Retinoic acid-mediated gene expression in transgenic reporter zebrafish.

    Science.gov (United States)

    Perz-Edwards, A; Hardison, N L; Linney, E

    2001-01-01

    Retinoic acid-mediated gene activation is important for normal vertebrate development. The size and nature of retinoic acid make it difficult to identify the precise cellular location of this signaling molecule throughout an embryo. Additionally, retinoic acid (RA) signaling is regulated by a complex combination of receptors, coactivators, and antagonizing proteins. Thus, in order to integrate these signals and identify regions within a whole developing embryo where cells can respond transcriptionally to retinoic acid, we have used a reporter transgenic approach. We have generated several stable lines of transgenic zebrafish which use retinoic acid response elements to drive fluorescent protein expression. In these zebrafish lines, transgene expression is localized to regions of the neural tube, retina, notochord, somites, heart, pronephric ducts, branchial arches, and jaw muscles in embryos and larvae. Transgene expression can be induced in additional regions of the neural tube and retina as well as the immature notochord, hatching gland, enveloping cell layer, and fin by exposing embryos to retinoic acid. Treatment with retinoic acid synthase inhibitors, citral and diethylaminobenzaldehyde (DEAB), during neurulation, greatly reduces transgene expression. DEAB treatment of embryos at gastrulation phenocopies the embryonic effects of vitamin A deprivation or targeted disruption of the RA synthase retinaldehyde dehydrogenase-2 in other vertebrates. Together these data suggest that the reporter expression we see in zebrafish is dependent upon conserved vertebrate pathways of RA synthesis.

  20. Initiating meiosis: the case for retinoic acid.

    Science.gov (United States)

    Griswold, Michael D; Hogarth, Cathryn A; Bowles, Josephine; Koopman, Peter

    2012-02-01

    The requirement for vitamin A in reproduction and development was first determined from studies of nutritional deficiencies. Subsequent research has shown that embryonic development and both male and female reproduction are modulated by retinoic acid (RA), the active form of vitamin A. Because RA is active in multiple developmental systems, its synthesis, transport, and degradation are tightly regulated in different tissues. A growing body of evidence implicates RA as a requirement for the initiation of meiosis in both male and female mammals, resulting in a mechanistic model involving the interplay of RA, RA synthesis enzymes, RA receptors, and degradative cytochrome P450 enzymes in this system. Recently, that model has been challenged, prompting a review of the established paradigm. While it remains possible that additional molecules may be involved in regulating entry into meiosis, the weight of evidence supporting a key role for RA is incontrovertible.

  1. Retinoic acid synthesis and functions in early embryonic development

    Directory of Open Access Journals (Sweden)

    Kam Richard Kin Ting

    2012-03-01

    Full Text Available Abstract Retinoic acid (RA is a morphogen derived from retinol (vitamin A that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR and retinoic acid X receptor (RXR which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.

  2. The effect pathway of retinoic acid through regulation of retinoic acid receptor in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Su Liu; Qiao Wu; Zheng-Ming Chen; Wen-Jin Su

    2001-01-01

    AIM To evaluate the role of RARa gene in mediating the growth inhibitory effect of ail-trans retinoic acid (ATRA)on gastric cancer cells.``METHODS The expression levels of retinoic acid receptors (RARs) in gastric cancer cells were detected by Northern blot. Transient transfection and chlorophenicol acetyl transferase (CAT) assay were used to show the transcriptional activity of β retinoic acid response element (βRARE) and AP-l activity. Cell growth inhibition was determined by MTT assay and anchorage-independent growth assay, respectively. Stable transfection was performed by the method of Lipofectamine, and the cells were screened by G418.``RESULTS ATRA could induce expression level of RARα in MGC80-3, BGCC8823 and SGC-7901 cells obviously,resulting in growth inhibition of these cell lines. After sense RARa gene was transfected into MKN-45 cells that expressed rather Iow level of RARα and could not be induced by ATRA, the cell growth was inhibited by ATRA markedly. In contrast, when antisense RARα gene was transfected into BGC-825 cells, a little inhibitory effect by ATRA was seen, compared with the parallel BGC-823cells. In transient transfection assay, ATRA effectively induced transcriptional activity of βRARE in MGC80-3,BGC.823, SGC-7902 and MKN/RARa cell lines, but not in MKN-45 and BGC/aRARa cell lines. Similar results were observed in measuring anti-AP-l activity by ATRA in these cancer cell lines.``CONCLUSION ATRA inhibits the growth of gastric cancer cells by up-regulating the level of RARa; RARa is the major mediator of ATRA action in gastric cancer cells; and adequate level of RAPa is required for ATRA effect on gastric cancer cells.``

  3. Retinoic acid signaling in axonal regeneration

    Directory of Open Access Journals (Sweden)

    Radhika ePuttagunta

    2012-01-01

    Full Text Available Following an acute central nervous system injury, axonal regeneration and functional recovery are extremely limited. This is due to an extrinsic inhibitory growth environment and the lack of intrinsic growth competence. Retinoic acid (RA signaling, essential in developmental dorsoventral patterning and specification of spinal motor neurons, has been shown through its receptor, the transcription factor RA receptor β2 (RARß2, to induce axonal regeneration following spinal cord injury (SCI. Recently, it has been shown that in dorsal root ganglia neurons, cAMP levels were greatly increased by lentiviral RARβ2 expression and contributed to neurite outgrowth. Moreover, RARβ agonists, in cerebellar granule neurons and in the brain in vivo, induced phosphoinositide 3-kinase dependent phosphorylation of AKT that was involved in RARβ-dependent neurite outgrowth. More recently, RA-RARß pathways were shown to directly transcriptionally repress a member of the inhibitory Nogo receptor complex, Lingo-1, under an axonal growth inhibitory environment in vitro as well as following spinal injury in vivo. This perspective focuses on these newly discovered molecular mechanisms and future directions in the field.

  4. New discovery of cryptorchidism: Decreased retinoic acid in testicle

    Directory of Open Access Journals (Sweden)

    Jinpu Peng

    2016-05-01

    Full Text Available This study focuses on investigation of cryptorchidism induced by flutamide (Flu and its histopathological damage, and detects retinoic acid concentration in testicle tissue, in order to find a new method for clinical treatment to infertility caused by cryptorchidism. Twenty SD (Sprague Dawley pregnant rats were randomly divided into Flu cryptorchidism group (n = 10 and normal control group (n = 10. HE stained for observing morphological difference. Transmission electron microscope (TEM was used for observing the tight junction structure between Sertoli cells. Epididymal caudal sperms were counted and observed in morphology. The expression of stimulated by retinoic acid gene 8 (Stra8 was detected using immunohistochemistry, western blot, and Q-PCR. High performance liquid chromatography (HPLC analysis was made on retinoic acid content. Sperm count and morphology observation confirmed cryptorchidism group was lower than normal group in sperm quantity and quality. The observation by TEM showed a loose structure of tight junctions between Sertoli cells. Immunohistochemistry, western blot, and Q-PCR showed that cryptorchidism group was significantly lower than normal group in the expression of Stra8. HPLC showed that retinoic acid content was significantly lower in cryptorchid testis than in normal testis. In the cryptorchidism model, retinoic acid content in testicular tissue has a significant reduction; testicles have significant pathological changes; damage exists in the structure of tight junctions between Sertoli cells; Stra8 expression has a significant reduction, perhaps mainly contributing to spermatogenesis disorder.

  5. Cyanobacteria blooms produce teratogenic retinoic acids.

    Science.gov (United States)

    Wu, Xiaoqin; Jiang, Jieqiong; Wan, Yi; Giesy, John P; Hu, Jianying

    2012-06-12

    Deformed amphibians have been observed in eutrophic habitats, and some clues point to the retinoic acids (RAs) or RA mimics. However, RAs are generally thought of as vertebrate-specific hormones, and there was no evidence that RAs exist in cyanobacteria or algae blooms. By analyzing RAs and their analogs 4-oxo-RAs in natural cyanobacteria blooms and cultures of cyanobacteria and algae, we showed that cyanobacteria blooms could produce RAs, which were powerful animal teratogens. Intracellular RAs and 4-oxo-RAs with concentrations between 0.4 and 4.2 × 10(2) ng/L were detected in all bloom materials, and extracellular concentrations measured in water from Taihu Lake, China, were as great as 2.0 × 10 ng/L, which might pose a risk to wildlife through chronic exposure. Further examination of 39 cyanobacteria and algae species revealed that 32 species could produce RAs and 4-oxo-RAs (1.6-1.4 × 10(3) ng/g dry weight), and the dominant cyanobacteria species in Taihu Lake, Microcystis flos-aquae and Microcystis aeruginosa, produced high amounts of RAs and 4-oxo-RAs with concentrations of 1.4 × 10(3) and 3.7 × 10(2) ng/g dry weight, respectively. Most genera of cyanobacteria that could produce RAs and 4-oxo-RAs, such as Microcystis, Anabaena, and Aphanizomenon, often occur dominantly in blooms. Production of RAs and 4-oxo-RAs by cyanobacteria was associated with species, origin location, and growth stage. These results represent a conclusive demonstration of endogenous production of RAs in freshwater cyanobacteria blooms. The observation of teratogenic RAs in cyanobacteria is evolutionarily and ecologically significant because RAs are vertebrate-specific hormones, and cyanobacteria form extensive and highly visible blooms in many aquatic ecosystems.

  6. Retinoic acid isomers up-regulate ATP binding cassette A1 and G1 and cholesterol efflux in rat astrocytes: implications for their therapeutic and teratogenic effects.

    Science.gov (United States)

    Chen, Jing; Costa, Lucio G; Guizzetti, Marina

    2011-09-01

    Recent studies suggest that retinoids may be effective in the treatment of Alzheimer's disease, although exposure to an excess of retinoids during gestation causes teratogenesis. Cholesterol is essential for brain development, but high levels of cholesterol have been associated with Alzheimer's disease. We hypothesized that retinoic acid may affect cholesterol homeostasis in rat astrocytes, which regulate cholesterol distribution in the brain, through the up-regulation of cholesterol transporters ATP binding cassette (Abc)a1 and Abcg1. Tretinoin, 13-cis retinoic acid (13-cis-RA), 9-cis-RA, and the selective retinoid X receptor (RXR) agonist methoprene significantly increased cholesterol efflux induced by cholesterol acceptors and protein levels of Abca1 by 2.3- (± 0.25), 3.6- (± 0.42), 4.1- (± 0.5), and 1.75- (± 0.43) fold, respectively, and Abcg1 by 2.1- (± 0.26), 2.2- (± 0.33), 2.5- (± 0.23), and 2.2- (± 0.21) fold, respectively. 13-cis-RA and 9-cis-RA also significantly increased mRNA levels of Abca1 (maximal induction 7.3 ± 0.42 and 2.7 ± 0.17, respectively) and Abcg1 (maximal induction 2.0 ± 0.18 and 1.8 ± 0.09, respectively), and the levels of membrane-bound Abca1 (2.5 ± 0.3 and 2.5 ± 0.40-fold increase, respectively), whereas they significantly decreased intracellular cholesterol content without affecting cholesterol synthesis. The effect of 9-cis-RA on cholesterol homeostasis in astrocytes can be ascribed to the activation of RXR, whereas the effects of 13-cis-RA and tretinoin were independent of either RXRs or retinoic acid receptors. These findings suggest that retinoids affect cholesterol homeostasis in astrocytes and that this effect may be involved in both their therapeutic and teratogenic actions.

  7. High affinity retinoic acid receptor antagonists: analogs of AGN 193109.

    Science.gov (United States)

    Johnson, A T; Wang, L; Gillett, S J; Chandraratna, R A

    1999-02-22

    A series of high affinity retinoic acid receptor (RAR) antagonists were prepared based upon the known antagonist AGN 193109 (2). Introduction of various phenyl groups revealed a preference for substitution at the para-position relative to the meta-site. Antagonists with the highest affinities for the RARs possessed hydrophobic groups, however, the presence of polar functionality was also well tolerated.

  8. The Effect of Opsteoporotic Model Rats Induced by Retinoic Acid

    Institute of Scientific and Technical Information of China (English)

    Xu Peng; Yao Jianfeng; Jin Weizhang; Cai Qiankun; Guo Xiong

    2005-01-01

    Objective: To study the effect of retinoic acid on inducing osteoporosis in female rat. Methods: 48SD female rats were divided randomly into experiment group and control group. Retinoic acid was administered orally to experiment group with 80mg.kg-1d-1 for 15 days. Then the rats were sacrificed on the 0th, 30th, 60th days after last administration. The serum concentration of Ca, P, BGP, E2, AKP and TRAP were detected. Components of collagen and proteoglycan in the bones and BMD were also assayed .The femoral morphometric change and epiphyseal plate cartilage histological changes were observed. Results: After a 15-day period treatment with retinoic acid, charateristics of experiment group were compared with control, it is shown that the concentration of serum E2 and BGP declined, the activity of AKP and TRAP increased while BMP decreased, the bone mass of both spongy bone and cortical bone reduced, the number of spongy bone osteoclasts and their activity increased, number of epiphyseal plate chondrocyte reduced, cartilage hypertrophic zone displayed dyscalcification, and no difference of other markers was found in the two groups. On the 30th day after the last administration, the experiment group appeared a declined number of cancellous bone osteoclast and level of serum AKP yet they were still higher than control. Number of epiphyseal chondrocyte, serum BGP and tibial BMD, though higher than before, were still lower than control. Other markers were no difference. On the 60th day after treatment, although the femoral cancellous bone mass was still less and cancellous osteoblast was more than control, the cortical bone mass, cancellous osteoclast number and level of serum Ca and P were all remained no different between two groups.Conclusion: Retinoic acid possessed a better short-term effect than long-term effect. Cancellous bone loss lasted much longer than cortical bone and more obviously; the bone matrix in this osteoporosis model was able to repair itself

  9. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    Science.gov (United States)

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  10. Retinoic acid signalling in thymocytes regulates T cell development

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut

    precursor entry and/or survival. Furthermore, CD4Cre-dnRAR mice showed a 4-fold reduction in CD4+/CD8+ SP ratio that was mainly due to enhanced accumulation of mature CD8+ SP cells, indicating that RA signaling may be directly involved in regulating thymic retention and/or post-selection expansion......The Vitamin A derivative retinoic acid (RA) has emerged as an important regulator of peripheral T cell responses. However, whether there is endogenous retinoic acid receptor (RAR) signaling in developing thymocytes and the potential impact of such signals in thymocyte development remains unclear....... Here, using a RA sensitive reporter mouse model, we demonstrate that endogenous RAR responses are induced in CD69+CD4+CD8lo and CD69+CD4+CD8+ thymocytes undergoing positive selection and lineage commitment, and continue to be present in both CD4+ and CD8+ single positive (SP) cells, with RA signaling...

  11. Retinoic Acid Regulates Embryonic Development of Mammalian Submandibular Salivary Glands

    OpenAIRE

    Wright, Diana M.; Buenger, Deanna E.; Abashev, Timur M.; Lindeman, Robert P.; Ding, Jixiang; Sandell, Lisa L.

    2015-01-01

    Organogenesis is orchestrated by cell and tissue interactions mediated by molecular signals. Identification of relevant signals, and the tissues that generate and receive them, are important goals of developmental research. Here, we demonstrate that Retinoic Acid (RA) is a critical signaling molecule important for morphogenesis of mammalian submandibular salivary glands (SMG). By examining late stage RA deficient embryos of Rdh10 mutant mice we show that SMG development requires RA in a dose-...

  12. Oral Administration of a Retinoic Acid Receptor Antagonist Reversibly Inhibits Spermatogenesis in Mice

    OpenAIRE

    Chung, Sanny S. W.; Wang, Xiangyuan; Roberts, Shelby S.; Stephen M Griffey; Reczek, Peter R.; Wolgemuth, Debra J.

    2011-01-01

    Meeting men's contraceptive needs, orally administered retinoic acid receptor antagonists represent new lead molecules in developing non-hormonal, reversible male contraceptives without adverse side effects.

  13. Role of JWA in acute promyelocytic leukemia cell differentiation and apoptosis triggered by retinoic acid, 12-tetradecanoylphorbol-13-acetate and arsenic trioxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    JWA, a cytoskeleton associated gene, was primarily found to be regulated by all trans-retinoic acid (ATRA), 13 cis-retinoic acid (13 cis-RA) and 12-tetradecano- ylphorbol-13-acetate (TPA). Our previous data showed that JWA might be involved in both cellular differentiation and apoptosis induced by several chemicals. In this study, we addressed the possible mechanism of JWA in the regulation of cell differentiation and apoptosis in NB4, a human acute promyelocytic leukemia cell line. CD11b/CD33 expression and cell cycle were analyzed for detecting of cell differentiation and apoptosis. Both reverse-transcription polymerase chain reaction (RT-PCR) and Western blot assays were used for understanding the expressions of JWA. The results showed that under the indicated concentrations ATRA (10?6 mol/L) and As2O3 (10?6 mol/L) induced cell differentiation and apoptosis separately; while both 4HPR (10?6 mol/L) and TPA (10?7 mol/L) showed dual-directional effects on NB4 cells, they not only trigger cells' differentiation but also induce cells apoptosis at the same time. All chemicals up-regulated JWA expression whatever they trigger cells either differentiation or apoptosis; however, it seems that the chemicals have no effect on PML/RAR? in the treated NB4 cells. Anti-sense JWA oligonucleotide could partially block the ability of TPA in inducing cell differentiation and apoptosis via direct signal pathway. Interestingly, a high molecular weight JWA protein (JWAF) was identified only in de novo primary APL cells and it was also responsible for ATRA treatment. It raises questions of whether the JWAF is a novel APL specific marker and, how it was involved in the known mechanism of APL.

  14. Retinoic acid is a potential dorsalising signal in the late embryonic chick hindbrain

    Directory of Open Access Journals (Sweden)

    Maden Malcolm

    2007-12-01

    Full Text Available Abstract Background Human retinoic acid teratogenesis results in malformations of dorsally derived hindbrain structures such as the cerebellum, noradrenergic hindbrain neurons and the precerebellar system. These structures originate from the rhombic lip and adjacent dorsal precursor pools that border the fourth ventricle roofplate. While retinoic acid synthesis is known to occur in the meninges that blanket the hindbrain, the particular sensitivity of only dorsal structures to disruptions in retinoid signalling is puzzling. We therefore looked for evidence within the neural tube for more spatiotemporally specific signalling pathways using an in situ hybridisation screen of known retinoic acid pathway transcripts. Results We find that there are highly restricted domains of retinoic acid synthesis and breakdown within specific hindbrain nuclei as well as the ventricular layer and roofplate. Intriguingly, transcripts of cellular retinoic acid binding protein 1 are always found at the interface between dividing and post-mitotic cells. By contrast to earlier stages of development, domains of synthesis and breakdown in post-mitotic neurons are co-localised. At the rhombic lip, expression of the mRNA for retinoic acid synthesising and catabolising enzymes is spatially highly organised with respect to the Cath1-positive precursors of migratory precerebellar neurons. Conclusion The late developing hindbrain shows patterns of retinoic acid synthesis and use that are distinct from the well characterised phase of rostrocaudal patterning. Selected post-mitotic populations, such as the locus coeruleus, appear to both make and break down retinoic acid suggesting that a requirement for an autocrine, or at least a highly localised paracrine signalling network, might explain its acute sensitivity to retinoic acid disruption. At the rhombic lip, retinoic acid is likely to act as a dorsalising factor in parallel with other roofplate signalling pathways. While its

  15. Retinoic acid, meiosis and germ cell fate in mammals.

    Science.gov (United States)

    Bowles, Josephine; Koopman, Peter

    2007-10-01

    Although mammalian sex is determined genetically, the sex-specific development of germ cells as sperm or oocytes is initiated by cues provided by the gonadal environment. During embryogenesis, germ cells in an ovary enter meiosis, thereby committing to oogenesis. By contrast, germ cells in a testicular environment do not enter meiosis until puberty. Recent findings indicate that the key to this sex-specific timing of meiosis entry is the presence or absence of the signaling molecule retinoic acid. Although this knowledge clarifies a long-standing mystery in reproductive biology, it also poses many new questions, which we discuss in this review.

  16. Retinoic acid binding protein in normal and neopolastic rat prostate.

    Science.gov (United States)

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation.

  17. All-trans-retinoic acid-induced pseudotumor cerebri in acute promyelocytic leukemia

    Directory of Open Access Journals (Sweden)

    T. M. Anoop

    2014-01-01

    Full Text Available All-trans-retinoic acid is an integral part in the treatment strategy of acute promyelocytic leukemia (APL. Here we describe a case of pseudotumor cerebri associated with all-trans-retinoic acid (ATRA during the induction therapy in an adult with acute promyelocytic leukemia (APL.

  18. Direct visualization of retinoic acid in the rat hypothalamus: an immunohistochemical study.

    Science.gov (United States)

    Mangas, A; Bodet, D; Duleu, S; Yajeya, J; Geffard, M; Coveñas, R

    2012-02-10

    In order to increase our knowledge about the distribution of vitamins in the mammalian brain, we have developed a highly specific antiserum directed against retinoic acid with good affinity (10(-8) M), as evaluated by ELISA tests. In the rat brain, no immunoreactive fibers containing retinoic acid were detected. Cell bodies containing retinoic acid were only found in the hypothalamus. This work reports the first visualization and the morphological characteristics of cell bodies containing retinoic acid in the mammalian paraventricular hypothalamic nucleus and in the dorsal perifornical region, using an indirect immunoperoxidase technique. The restricted distribution of retinoic acid in the rat brain suggests that this vitamin could be involved in very specific physiological mechanisms. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Retinoic Acid-Induced Epidermal Transdifferentiation in Skin

    Directory of Open Access Journals (Sweden)

    Yoshihiro Akimoto

    2014-06-01

    Full Text Available Retinoids function as important regulatory signaling molecules during development, acting in cellular growth and differentiation both during embryogenesis and in the adult animal. In 1953, Fell and Mellanby first found that excess vitamin A can induce transdifferentiation of chick embryonic epidermis to a mucous epithelium (Fell, H.B.; Mellanby, E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. 1953, 119, 470–488. However, the molecular mechanism of this transdifferentiation process was unknown for a long time. Recent studies demonstrated that Gbx1, a divergent homeobox gene, is one of the target genes of all-trans retinoic acid (ATRA for this transdifferentiation. Furthermore, it was found that ATRA can induce the epidermal transdifferentiation into a mucosal epithelium in mammalian embryonic skin, as well as in chick embryonic skin. In the mammalian embryonic skin, the co-expression of Tgm2 and Gbx1 in the epidermis and an increase in TGF-β2 expression elicited by ATRA in the dermis are required for the mucosal transdifferentiation, which occurs through epithelial-mesenchymal interaction. Not only does retinoic acid (RA play an important role in mucosal transdifferentiation, periderm desquamation, and barrier formation in the developing mammalian skin, but it is also involved in hair follicle downgrowth and bending by its effect on the Wnt/β-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families.

  20. Role of the retinoic acid receptor-α in HIV-associated nephropathy.

    Science.gov (United States)

    Ratnam, Krishna K; Feng, Xiaobei; Chuang, Peter Y; Verma, Vikram; Lu, Ting-Chi; Wang, Jinshan; Jin, Yuanmeng; Farias, Eduardo F; Napoli, Joseph L; Chen, Nan; Kaufman, Lewis; Takano, Tomoko; D'Agati, Vivette D; Klotman, Paul E; He, John C

    2011-03-01

    All-trans retinoic acid protects against the development of HIV-associated nephropathy (HIVAN) in HIV-1 transgenic mice (Tg26). In vitro, all-trans retinoic acid inhibits HIV-induced podocyte proliferation and restores podocyte differentiation markers by activating its receptor-α (RARα). Here, we report that Am580, a water-soluble RARα-specific agonist, attenuated proteinuria, glomerosclerosis, and podocyte proliferation, and restored podocyte differentiation markers in kidneys of Tg26 mice. Furthermore, RARα-/- Tg26 mice developed more severe kidney and podocyte injury than did RARα+/- Tg26 mice. Am580 failed to ameliorate kidney injury in RARα-/- Tg26 mice, confirming our hypothesis that Am580 acts through RARα. Although the expression of RARα-target genes was suppressed in the kidneys of Tg26 mice and of patients with HIVAN, the expression of RARα in the kidney was not different between patients with HIVAN and minimal change disease. However, the tissue levels of retinoic acid were reduced in the kidney cortex and isolated glomeruli of Tg26 mice. Consistent with this, the expression of two key enzymes in the retinoic acid synthetic pathway, retinol dehydrogenase type 1 and 9, and the overall enzymatic activity for retinoic acid synthesis were significantly reduced in the glomeruli of Tg26 mice. Thus, a defect in the endogenous synthesis of retinoic acid contributes to loss of the protection by retinoic acid in HIVAN. Hence, RARα agonists may be potential agents for the treatment of HIVAN.

  1. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.

    Science.gov (United States)

    Silva, Elton Luiz; Carneiro, Guilherme; De Araújo, Lidiane Advíncula; Trindade, Mariana de Jesus Vaz; Yoshida, Maria Irene; Oréfice, Rodrigo Lambert; Farias, Luis de Macêdo; De Carvalho, Maria Auxiliadora Roque; Dos Santos, Simone Gonçalves; Goulart, Gisele Assis Castro; Alves, Ricardo José; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris.

  2. In silico discovery of novel Retinoic Acid Receptor agonist structures

    Directory of Open Access Journals (Sweden)

    Samuels Herbert H

    2001-06-01

    Full Text Available Abstract Background Several Retinoic Acid Receptors (RAR agonists have therapeutic activity against a variety of cancer types; however, unacceptable toxicity profiles have hindered the development of drugs. RAR agonists presenting novel structural and chemical features could therefore open new avenues for the discovery of leads against breast, lung and prostate cancer or leukemia. Results We have analysed the induced fit of the active site residues upon binding of a known ligand. The derived binding site models were used to dock over 150,000 molecules in silico (or virtually to the structure of the receptor with the Internal Coordinates Mechanics (ICM program. Thirty ligand candidates were tested in vitro. Conclusions Two novel agonists resulting from the predicted receptor model were active at 50 nM. One of them displays novel structural features which may translate into the development of new ligands for cancer therapy.

  3. Retinoic acid from the meninges regulates cortical neuron generation.

    Science.gov (United States)

    Siegenthaler, Julie A; Ashique, Amir M; Zarbalis, Konstantinos; Patterson, Katelin P; Hecht, Jonathan H; Kane, Maureen A; Folias, Alexandra E; Choe, Youngshik; May, Scott R; Kume, Tsutomu; Napoli, Joseph L; Peterson, Andrew S; Pleasure, Samuel J

    2009-10-30

    Extrinsic signals controlling generation of neocortical neurons during embryonic life have been difficult to identify. In this study we demonstrate that the dorsal forebrain meninges communicate with the adjacent radial glial endfeet and influence cortical development. We took advantage of Foxc1 mutant mice with defects in forebrain meningeal formation. Foxc1 dosage and loss of meninges correlated with a dramatic reduction in both neuron and intermediate progenitor production and elongation of the neuroepithelium. Several types of experiments demonstrate that retinoic acid (RA) is the key component of this secreted activity. In addition, Rdh10- and Raldh2-expressing cells in the dorsal meninges were either reduced or absent in the Foxc1 mutants, and Rdh10 mutants had a cortical phenotype similar to the Foxc1 null mutants. Lastly, in utero RA treatment rescued the cortical phenotype in Foxc1 mutants. These results establish RA as a potent, meningeal-derived cue required for successful corticogenesis.

  4. Signaling by Retinoic Acid in Embryonic and Adult Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Elena Cano

    2014-03-01

    Full Text Available Embryonic and adult hematopoiesis are both finely regulated by a number of signaling mechanisms. In the mammalian embryo, short-term and long-term hematopoietic stem cells (HSC arise from a subset of endothelial cells which constitute the hemogenic endothelium. These HSC expand and give rise to all the lineages of blood cells in the fetal liver, first, and in the bone marrow from the end of the gestation and throughout the adult life. The retinoic acid (RA signaling system, acting through the family of nuclear retinoic acid receptors (RARs and RXRs, is involved in multiple steps of the hematopoietic development, and also in the regulation of the differentiation of some myeloid lineages in adults. In humans, the importance of this RA-mediated control is dramatically illustrated by the pathogeny of acute promyelocytic leukemia, a disease produced by a chromosomal rearrangement fusing the RARa gene with other genes. The aberrant fusion protein is able to bind to RARα target gene promoters to actively suppress gene transcription. Lack of function of RARα leads to a failure in the differentiation of promyelocytic progenitors. In this review we have collected the available information about all the phases of the hematopoietic process in which RA signaling is involved, being essential for steps such as the emergence of HSC from the hemogenic endothelium, or modulating processes such as the adult granulopoiesis. A better knowledge of the RA-mediated signaling mechanisms can contribute to the knowledge of the origin of many pathologies of the hematopoietic system and can provide new clinical avenues for their treatment.

  5. Expression of retinoic acid receptors in human endometrial carcinoma.

    Science.gov (United States)

    Tanabe, Kojiro; Utsunomiya, Hiroki; Tamura, Mitsutoshi; Niikura, Hitoshi; Takano, Tadao; Yoshinaga, Kohsuke; Nagase, Satoru; Suzuki, Takashi; Ito, Kiyoshi; Matsumoto, Mitsuyo; Hayashi, Shin-ichi; Yaegashi, Nobuo

    2008-02-01

    The retinoids (vitamin A and its biologically active derivatives) are essential for the health and survival of the individual. Several studies have reported a strong rationale for the use of retinoids in cancer treatment and chemoprevention. It has been discovered that expression of retinoic acid receptor (RAR) beta is frequently silenced in epithelial carcinogenesis, which has led to the hypothesis that RAR beta could act as a tumor suppressor. However, the status of RAR beta in human endometrial carcinoma has not been examined. In the present study, we initially studied the effects of retinoic acid on cell proliferation and the expression of RAR alpha, RAR beta, and RAR gamma using AM580 (a RAR-specific agonist) in the Ishikawa endometrial cancer cell line. We also examined the expression of RAR in human eutopic endometrium (30 cases), endometrial hyperplasia (28 cases), and endometrial carcinoma (103 cases) using immunohistochemistry. Finally, we correlated these findings with the clinicopathological parameters. In vitro, cell growth was inhibited and RAR beta and RAR gamma mRNA was significantly induced by AM580, compared with vehicle controls, whereas RAR alpha mRNA was significantly attenuated by AM580, compared with vehicle. RAR beta was detected predominantly in endometrial hyperplasia, compared with endometrial carcinoma. No statistically significant correlation was obtained between the expression of any other RAR subtypes and clinicopathological parameters in human endometrial carcinoma. The results of our study demonstrate that AM580 inhibits cell growth and induces RAR beta mRNA expression in the Ishikawa cell line, and the expression level of RAR beta in endometrial carcinoma is significantly lower than that in endometrial hyperplasia. AM580 might therefore be considered as a potential treatment for endometrial carcinoma.

  6. Unbinding of Retinoic Acid from its Receptor Studied by Steered Molecular Dynamics

    CERN Document Server

    Kosztin, D; Schulten, K; Kosztin, Dorina; Izrailev, Sergei; Schulten, Klaus

    1999-01-01

    Retinoic acid receptor (RAR) is a ligand-dependent transcription factor that regulates the expression of genes involved in cell growth, differentiation, and development. Binding of the retinoic acid hormone to RAR is accompanied by conformational changes in the protein which induce transactivation or transrepression of the target genes. In this paper we present a study of the hormone binding/unbinding process in order to clarify the role of some of the amino acid contacts and identify possible pathways of the all-trans retinoic acid binding/unbinding to/from human retinoic acid receptor (hRAR)-g. Three possible pathways were explored using steered molecular dynamics simulations. Unbinding was induced on a time scale of 1 ns by applying external forces to the hormone. The simulations suggest that the hormone may employ one pathway for binding and an alternative "back door" pathway for unbinding.

  7. All-trans retinoic acid potentiates cisplatin-induced kidney injury in rats: impact of retinoic acid signaling pathway.

    Science.gov (United States)

    Elsayed, Abdelrahman M; Abdelghany, Tamer M; Akool, El-Sayed; Abdel-Aziz, Abdel-Aziz H; Abdel-Bakky, Mohamed S

    2016-03-01

    Cisplatin (cis-diammine dichloroplatinum (II), CDDP) is a widely used drug for treatment of various types of cancers. However, CDDP-induced nephrotoxicity remains the main dose-limiting side effect. Retinoids are a group of vitamin A-related compounds that exert their effects through retinoid receptors activation. In this study, we investigated the effect of CDDP treatment on retinoic acid receptor-α (RAR-α) and retinoid X receptor-α (RXR-α) expression. In addition, we investigated the possible modulatory effects of RAR agonist, all-trans retinoic acid (ATRA), on CDDP-induced nephrotoxicity. Rats were treated with saline, DMSO, CDDP, ATRA, or CDDP/ATRA. Twenty-four hours after the last ATRA injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CDDP treatment significantly increased serum levels of creatinine and urea, with concomitant decrease in serum albumin. Moreover, reduced glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities were significantly reduced with concurrent increase in kidney malondialdehyde (MDA) content following CDDP treatment. Furthermore, CDDP markedly upregulated tubular RAR-α, RXR-α, fibrin, and inducible nitric oxide synthase (iNOS) protein expression. Although administration of ATRA to control rats did not produce marked alterations in kidney function parameters, administration of ATRA to CDDP-treated rats significantly exacerbated CDDP-induced nephrotoxicity. In addition, CDDP/ATRA co-treatment significantly increased RAR-α, RXR-α, fibrin, and iNOS protein expression compared to CDDP alone. In conclusion, we report, for the first time, the crucial role of retinoid receptors in CDDP-induced nephrotoxicity. Moreover, our findings indicate that co-administration of ATRA with CDDP, although beneficial on the therapeutic effects, their deleterious effects on

  8. Retinoic acid for treatment of systemic sclerosis and morphea: A literature review.

    Science.gov (United States)

    Thomas, Renee M; Worswick, Scott; Aleshin, Maria

    2017-03-01

    Systemic sclerosis and morphea are connective tissue diseases characterized by tightening, thickening, and hardening of the skin, leading to significant morbidity. Unfortunately, current treatment options have limited efficacy for many patients. Cutaneous manifestations of these diseases arise from excess collagen deposition and fibrosis in the skin, through pathogenic mechanisms which have yet to be extensively detailed at the causal immune and cellular levels. Research elucidating the mechanism of action of retinoic acid on collagen production in the skin and case series highlighting the success of retinoic acid on the skin manifestations of systemic sclerosis and on morphea demonstrate its promise as a treatment. Herein they will briefly review the treatment options for both systemic sclerosis and morphea, and will discuss the potential of retinoic acid as a therapy and the supporting evidence from the literature, highlighting the previously published basic science and clinical studies investigating the role of retinoic acid in the treatment of sclerotic skin diseases.

  9. Role of retinoic acid receptors in squamous-cell carcinoma in human esophagus

    DEFF Research Database (Denmark)

    Bergheim, I.; Wolfgarten, E.; Bollschweiler, E.

    2005-01-01

    BACKGROUND: Worldwide, cancer in the esophagus ranks among the 10 most common cancers. Alterations of retinoic acid receptors (e.g. RARalpha, beta, gamma, and RXRalpha, beta, gamma) expression is considered to play an important role in development of squamous-cell carcinoma (SCC), which is the most...... common esophageal cancer. Alcohol consumption and smoking, which can alter retinoic acid receptor levels, have been identified as key risk factors in the development of carcinoma in the aero-digestive tract. Therefore, the aim of the present study was to evaluate protein levels of retinoic acid receptors...... were found for RARalpha, beta, and RXRbeta protein levels between normal esophageal tissue of patients and that of controls. CONCLUSION: In conclusion, results of the present study suggest that alterations of retinoic acid receptors protein may contribute in the development of SCC in esophagus...

  10. Retinoic acid amide inhibits JAK/STAT pathway in lung cancer which leads to apoptosis.

    Science.gov (United States)

    Li, Hong-Xing; Zhao, Wei; Shi, Yan; Li, Ya-Na; Zhang, Lian-Shuang; Zhang, Hong-Qin; Wang, Dong

    2015-11-01

    Small cell lung cancer (SCLC) accounts for 12 to 16% of lung neoplasms and has a high rate of metastasis. The present study demonstrates the antiproliferative effect of retinoic acid amide in vitro and in vivo against human lung cancer cells. The results from MTT assay showed a significant growth inhibition of six tested lung cancer cell lines and inhibition of clonogenic growth at 30 μM. Retinoic acid amide also leads to G2/M-phase cell cycle arrest and apoptosis of lung cancer cells. It caused inhibition of JAK2, STAT3, and STAT5, increased the level of p21WAF1, and decreased cyclin A, cyclin B1, and Bcl-XL expression. Retinoic acid amide exhibited a synergistic effect on antiproliferative effects of methotrexate in lung cancer cells. In lung tumor xenografts, the tumor volume was decreased by 82.4% compared to controls. The retinoic acid amide-treated tumors showed inhibition of JAK2/STAT3 activation and Bcl-XL expression. There was also increase in expression of caspase-3 and caspase-9 in tumors on treatment with retinoic acid amide. Thus, retinoic acid amide exhibits promising antiproliferative effects against human lung cancer cells in vitro and in vivo and enhances the antiproliferative effect of methotrexate.

  11. Early retinoic acid deprivation in developing zebrafish results in microphthalmia.

    Science.gov (United States)

    Le, Hong-Gam T; Dowling, John E; Cameron, D Joshua

    2012-09-01

    Vitamin A deficiency causes impaired vision and blindness in millions of children around the world. Previous studies in zebrafish have demonstrated that retinoic acid (RA), the acid form of vitamin A, plays a vital role in early eye development. The objective of this study was to describe the effects of early RA deficiency by treating zebrafish with diethylaminobenzaldehyde (DEAB), a potent inhibitor of the enzyme retinaldehyde dehydrogenase (RALDH) that converts retinal to RA. Zebrafish embryos were treated for 2 h beginning at 9 h postfertilization. Gross morphology and retinal development were examined at regular intervals for 5 days after treatment. The optokinetic reflex (OKR) test, visual background adaptation (VBA) test, and the electroretinogram (ERG) were performed to assess visual function and behavior. Early treatment of zebrafish embryos with 100 μM DEAB (9 h) resulted in reduced eye size, and this microphthalmia persisted through larval development. Retinal histology revealed that DEAB eyes had significant developmental abnormalities but had relatively normal retinal lamination by 5.5 days postfertilization. However, the fish showed neither an OKR nor a VBA response. Further, the retina did not respond to light as measured by the ERG. We conclude that early deficiency of RA during eye development causes microphthalmia as well as other visual defects, and that timing of the RA deficiency is critical to the developmental outcome.

  12. Direct inhibition of retinoic acid catabolism by fluoxetine.

    Science.gov (United States)

    Hellmann-Regen, Julian; Uhlemann, Ria; Regen, Francesca; Heuser, Isabella; Otte, Christian; Endres, Matthias; Gertz, Karen; Kronenberg, Golo

    2015-09-01

    Recent evidence from animal and human studies suggests neuroprotective effects of the SSRI fluoxetine, e.g., in the aftermath of stroke. The underlying molecular mechanisms remain to be fully defined. Because of its effects on the cytochrome P450 system (CYP450), we hypothesized that neuroprotection by fluoxetine is related to altered metabolism of retinoic acid (RA), whose CYP450-mediated degradation in brain tissue constitutes an important step in the regulation of its site-specific auto- and paracrine actions. Using traditional pharmacological in vitro assays, the effects of fluoxetine on RA degradation were probed in crude synaptosomes from rat brain and human-derived SH-SY5Y cells, and in cultures of neuron-like SH-SY5Y cells. Furthermore, retinoid-dependent effects of fluoxetine on neuronal survival following glutamate exposure were investigated in rat primary neurons cells using specific retinoid receptor antagonists. Experiments revealed dose-dependent inhibition of synaptosomal RA degradation by fluoxetine along with dose-dependent increases in RA levels in cell cultures. Furthermore, fluoxetine's neuroprotective effects against glutamate excitotoxicity in rat primary neurons were demonstrated to partially depend on RA signaling. Taken together, these findings demonstrate for the first time that the potent, pleiotropic antidepressant fluoxetine directly interacts with RA homeostasis in brain tissue, thereby exerting its neuroprotective effects.

  13. Retinoic acid regulates embryonic development of mammalian submandibular salivary glands.

    Science.gov (United States)

    Wright, Diana M; Buenger, Deanna E; Abashev, Timur M; Lindeman, Robert P; Ding, Jixiang; Sandell, Lisa L

    2015-11-01

    Organogenesis is orchestrated by cell and tissue interactions mediated by molecular signals. Identification of relevant signals, and the tissues that generate and receive them, are important goals of developmental research. Here, we demonstrate that Retinoic Acid (RA) is a critical signaling molecule important for morphogenesis of mammalian submandibular salivary glands (SMG). By examining late stage RA deficient embryos of Rdh10 mutant mice we show that SMG development requires RA in a dose-dependent manner. Additionally, we find that active RA signaling occurs in SMG tissues, arising earlier than any other known marker of SMG development and persisting throughout gland morphogenesis. At the initial bud stage of development, we find RA production occurs in SMG mesenchyme, while RA signaling occurs in epithelium. We also demonstrate active RA signaling occurs in glands cultured ex vivo, and treatment with an inhibitor of RA signaling blocks growth and branching. Together these data identify RA signaling as a direct regulator of SMG organogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    Science.gov (United States)

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  15. Retinoic acid signaling and the evolution of chordates

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available In chordates, which comprise urochordates, cephalochordates and vertebrates, the vitamin A-derived morphogen retinoic acid (RA has a pivotal role during development. Altering levels of endogenous RA signaling during early embryology leads to severe malformations, mainly due to incorrect positional codes specifying the embryonic anteroposterior body axis. In this review, we present our current understanding of the RA signaling pathway and its roles during chordate development. In particular, we focus on the conserved roles of RA and its downstream mediators, the Hox genes, in conveying positional patterning information to different embryonic tissues, such as the endoderm and the central nervous system. We find that some of the control mechanisms governing RA-mediated patterning are well conserved between vertebrates and invertebrate chordates, such as the cephalochordate amphioxus. In contrast, outside the chordates, evidence for roles of RA signaling is scarce and the evolutionary origin of the RA pathway itself thus remains elusive. In sum, to fully understand the evolutionary history of the RA pathway, future research should focus on identification and study of components of the RA signaling cascade in non-chordate deuterostomes (such as hemichordates and echinoderms and other invertebrates, such as insects, mollusks and cnidarians.

  16. Retinoic acid regulates the expression of photoreceptor transcription factor NRL.

    Science.gov (United States)

    Khanna, Hemant; Akimoto, Masayuki; Siffroi-Fernandez, Sandrine; Friedman, James S; Hicks, David; Swaroop, Anand

    2006-09-15

    NRL (neural retina leucine zipper) is a key basic motif-leucine zipper (bZIP) transcription factor, which orchestrates rod photoreceptor differentiation by activating the expression of rod-specific genes. The deletion of Nrl in mice results in functional cones that are derived from rod precursors. However, signaling pathways modulating the expression or activity of NRL have not been elucidated. Here, we show that retinoic acid (RA), a diffusible factor implicated in rod development, activates the expression of NRL in serum-deprived Y79 human retinoblastoma cells and in primary cultures of rat and porcine photoreceptors. The effect of RA is mimicked by TTNPB, a RA receptor agonist, and requires new protein synthesis. DNaseI footprinting and electrophoretic mobility shift assays (EMSA) using bovine retinal nuclear extract demonstrate that RA response elements (RAREs) identified within the Nrl promoter bind to RA receptors. Furthermore, in transiently transfected Y79 and HEK293 cells the activity of Nrl-promoter driving a luciferase reporter gene is induced by RA, and this activation is mediated by RAREs. Our data suggest that signaling by RA via RA receptors regulates the expression of NRL, providing a framework for delineating early steps in photoreceptor cell fate determination.

  17. Retinoic acid activates two pathways required for meiosis in mice.

    Directory of Open Access Journals (Sweden)

    Jana Koubova

    2014-08-01

    Full Text Available In all sexually reproducing organisms, cells of the germ line must transition from mitosis to meiosis. In mice, retinoic acid (RA, the extrinsic signal for meiotic initiation, activates transcription of Stra8, which is required for meiotic DNA replication and the subsequent processes of meiotic prophase. Here we report that RA also activates transcription of Rec8, which encodes a component of the cohesin complex that accumulates during meiotic S phase, and which is essential for chromosome synapsis and segregation. This RA induction of Rec8 occurs in parallel with the induction of Stra8, and independently of Stra8 function, and it is conserved between the sexes. Further, RA induction of Rec8, like that of Stra8, requires the germ-cell-intrinsic competence factor Dazl. Our findings strengthen the importance of RA and Dazl in the meiotic transition, provide important details about the Stra8 pathway, and open avenues to investigate early meiosis through analysis of Rec8 induction and function.

  18. Retinoic acid activates two pathways required for meiosis in mice.

    Directory of Open Access Journals (Sweden)

    Jana Koubova

    2014-08-01

    Full Text Available In all sexually reproducing organisms, cells of the germ line must transition from mitosis to meiosis. In mice, retinoic acid (RA, the extrinsic signal for meiotic initiation, activates transcription of Stra8, which is required for meiotic DNA replication and the subsequent processes of meiotic prophase. Here we report that RA also activates transcription of Rec8, which encodes a component of the cohesin complex that accumulates during meiotic S phase, and which is essential for chromosome synapsis and segregation. This RA induction of Rec8 occurs in parallel with the induction of Stra8, and independently of Stra8 function, and it is conserved between the sexes. Further, RA induction of Rec8, like that of Stra8, requires the germ-cell-intrinsic competence factor Dazl. Our findings strengthen the importance of RA and Dazl in the meiotic transition, provide important details about the Stra8 pathway, and open avenues to investigate early meiosis through analysis of Rec8 induction and function.

  19. Inhibition by all-trans retinoic acid of collagen degradation mediated by corneal fibroblasts.

    Science.gov (United States)

    Kimura, Kazuhiro; Zhou, Hongyan; Orita, Tomoko; Kobayashi, Shinya; Wada, Tomoyuki; Nakamura, Yoshikuni; Nishida, Teruo; Sonoda, Koh-Hei

    2016-08-01

    We examined the effect of all-trans retinoic acid on collagen degradation mediated by corneal fibroblasts. Rabbit corneal fibroblasts were cultured with or without all-trans retinoic acid in a three-dimensional collagen gel, and the extent of collagen degradation was determined by measurement of hydroxyproline in acid hydrolysates of culture supernatants. Matrix metalloproteinase expression was examined by immunoblot analysis and gelatin zymography. The abundance and phosphorylation state of the endogenous nuclear factor-kappaB inhibitor IκB-α were examined by immunoblot analysis. Corneal ulceration was induced by injection of lipopolysaccharide into the central corneal stroma of rabbits and was assessed by observation with a slitlamp microscope. All-trans retinoic acid inhibited interleukin-1β-induced collagen degradation by corneal fibroblasts in a concentration- and time-dependent manner. It also attenuated the release and activation of matrix metalloproteinases as well as the phosphorylation and degradation of IκB-α induced by interleukin-1β in these cells. Topical application of all-trans retinoic acid suppressed corneal ulceration induced by injection of lipopolysaccharide into the corneal stroma. All-trans retinoic acid inhibited collagen degradation mediated by corneal fibroblasts exposed to interleukin-1β, with this effect being accompanied by suppression of nuclear factor-kappaB signalling as well as of matrix metalloproteinase release and activation in these cells. All-trans retinoic acid also attenuated lipopolysaccharide-induced corneal ulceration in vivo. Our results therefore suggest that all-trans retinoic acid might prove effective for the treatment of patients with corneal ulceration. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  20. In vitro interaction study of retinoic acid isomers with telmisartan and amlodipine by equilibrium dialysis method using UV spectroscopy

    Science.gov (United States)

    Varghese, Susheel John; Johny, Sojimol K.; Paul, David; Ravi, Thengungal Kochupappy

    2011-07-01

    The in vitro protein binding of retinoic acid isomers (isotretinoin and tretinoin) and the antihypertensive drugs (amlodipine and telmisartan) was studied by equilibrium dialysis method. In this study, free fraction of drugs and the % of binding of drugs in the mixture to bovine serum albumin (BSA) were calculated. The influence of retinoic acid isomers on the % of protein binding of telmisartan and amlodipine at physiological pH (7.4) and temperature (37 ± 0.5 °C) was also evaluated. The in vitro displacement interaction study of drugs telmisartan and amlodipine on retinoic acid isomers and also interaction of retinoic acid isomers on telmisartan and amlodipine were carried out.

  1. Depletion of retinoic acid receptors initiates a novel positive feedback mechanism that promotes teratogenic increases in retinoic acid.

    Directory of Open Access Journals (Sweden)

    Enrico D'Aniello

    Full Text Available Normal embryonic development and tissue homeostasis require precise levels of retinoic acid (RA signaling. Despite the importance of appropriate embryonic RA signaling levels, the mechanisms underlying congenital defects due to perturbations of RA signaling are not completely understood. Here, we report that zebrafish embryos deficient for RA receptor αb1 (RARαb1, a conserved RAR splice variant, have enlarged hearts with increased cardiomyocyte (CM specification, which are surprisingly the consequence of increased RA signaling. Importantly, depletion of RARαb2 or concurrent depletion of RARαb1 and RARαb2 also results in increased RA signaling, suggesting this effect is a broader consequence of RAR depletion. Concurrent depletion of RARαb1 and Cyp26a1, an enzyme that facilitates degradation of RA, and employment of a novel transgenic RA sensor line support the hypothesis that the increases in RA signaling in RAR deficient embryos are the result of increased embryonic RA coupled with compensatory RAR expression. Our results support an intriguing novel mechanism by which depletion of RARs elicits a previously unrecognized positive feedback loop that can result in developmental defects due to teratogenic increases in embryonic RA.

  2. AXIAL SKELETAL AND HOX EXPRESSION DOMAIN ALTERATIONS INDUCED BY RETINOIC ACID, VALPROIC ACID AND BROMOXYNIL DURING MURINE DEVELOPMENT

    Science.gov (United States)

    ABSTRACT Retinoic acid (RA) alters the developmental fate of the axial skeletal anlage. "Anteriorizations" or "posteriorizations", the assumption of characteristics of embryonic areas normally anterior or posterior to the affected tissues, are correlated with altered emb...

  3. Promise of Retinoic Acid-Triazolyl Derivatives in Promoting Differentiation of Neuroblastoma Cells.

    Science.gov (United States)

    Lone, Ali Mohd; Dar, Nawab John; Hamid, Abid; Shah, Wajaht Amin; Ahmad, Muzamil; Bhat, Bilal A

    2016-01-20

    Retinoic acid induces differentiation in various types of cells including skeletal myoblasts and neuroblasts and maintains differentiation of epithelial cells. The present study demonstrates synthesis and screening of a library of retinoic acid-triazolyl derivatives for their differentiation potential on neuroblastoma cells. Click chemistry approach using copper(I)-catalyzed azide-alkyne cycloaddition was adopted for the preparation of these derivatives. The neurite outgrowth promoting potential of retinoic acid-triazolyl derivatives was studied on neuroblastoma cells. Morphological examination revealed that compounds 8a, 8e, 8f, and 8k, among the various derivatives screened, exhibited promising neurite-outgrowth inducing activity at a concentration of 10 μM compared to undifferentiated and retinoic acid treated cells. Further on, to confirm this differentiation potential of these compounds, neuroblastoma cells were probed for expression of neuronal markers such as NF-H and NeuN. The results revealed a marked increase in the NF-H and NeuN protein expression when treated with 8a, 8e, 8f, and 8k compared to undifferentiated and retinoic acid treated cells. Thus, these compounds could act as potential leads in inducing neuronal differentiation for future studies.

  4. Retinoic acid deficiency alters second heart field formation

    Science.gov (United States)

    Ryckebusch, Lucile; Wang, Zengxin; Bertrand, Nicolas; Lin, Song-Chang; Chi, Xuan; Schwartz, Robert; Zaffran, Stéphane; Niederreither, Karen

    2008-01-01

    Retinoic acid (RA), the active derivative of vitamin A, has been implicated in various steps of cardiovascular development. The retinaldehyde dehydrogenase 2 (RALDH2) enzyme catalyzes the second oxidative step in RA biosynthesis and its loss of function creates a severe embryonic RA deficiency. Raldh2−/− knockout embryos fail to undergo heart looping and have impaired atrial and sinus venosus development. To understand the mechanism(s) producing these changes, we examined the contribution of the second heart field (SHF) to pharyngeal mesoderm, atria, and outflow tract in Raldh2−/− embryos. RA deficiency alters SHF gene expression in two ways. First, Raldh2−/− embryos exhibited a posterior expansion of anterior markers of the SHF, including Tbx1, Fgf8, and the Mlc1v-nlacZ-24/Fgf10 reporter transgene as well as of Islet1. This occurred at early somite stages, when cardiac defects became irreversible in an avian vitamin A-deficiency model, indicating that endogenous RA is required to restrict the SHF posteriorly. Explant studies showed that this expanded progenitor population cannot differentiate properly. Second, RA up-regulated cardiac Bmp expression levels at the looping stage. The contribution of the SHF to both inflow and outflow poles was perturbed under RA deficiency, creating a disorganization of the heart tube. We also investigated genetic cross-talk between Nkx2.5 and RA signaling by generating double mutant mice. Strikingly, Nkx2.5 deficiency was able to rescue molecular defects in the posterior region of the Raldh2−/− mutant heart, in a gene dosage-dependent manner. PMID:18287057

  5. Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects

    Science.gov (United States)

    Morkmued, Supawich; Laugel-Haushalter, Virginie; Mathieu, Eric; Schuhbaur, Brigitte; Hemmerlé, Joseph; Dollé, Pascal; Bloch-Zupan, Agnès; Niederreither, Karen

    2017-01-01

    Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations. PMID:28111553

  6. Complete remission of t(11;17) positive acute promyelocytic leukemia induced by all-trans retinoic acid and granulocyte colony-stimulating factor

    NARCIS (Netherlands)

    J.H. Jansen (Joop); M.C. de Breems-de Ridder (Marleen); W.M. Geertsma; C.A.J. Erpelinck (Claudia); K. van Lom (Kirsten); R. Slater (Rosalyn); B.A. van der Reijden (Bert); G.E. de Greef (Georgine); P. Sonneveld (Pieter); B. Löwenberg (Bob); E.M.E. Smit (Elisabeth)

    1999-01-01

    textabstractThe combined use of retinoic acid and chemotherapy has led to an important improvement of cure rates in acute promyelocytic leukemia. Retinoic acid forces terminal maturation of the malignant cells and this application represents the first generally accepted

  7. Placental transfer and fetal distribution of /sup 3/H-retinoic acid in rats

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, R.R.; Kumar, V.; Banerjee, R.; Misra, U.K.

    1986-01-01

    The placental transfer of /sup 3/H-retinoic acid in vitamin A deprived and vitamin A supplemented pregnant female rats was studied on 20th day of gestation and compared with /sup 3/H-retinyl acetate. Radiolabelled compounds were administered to pregnant mothers orally in groundnut oil six hours before sacrifice. The distribution of radioactivity of the two compounds was studied in maternal intestine, liver and plasma and fetal brain, heart liver lung and placenta. The transfer of /sup 3/H-retinoic acid across placenta was restricted as compared to that of /sup 3/H-retinyl acetate which may explain the reason why retinoic acid does not support fetal growth.

  8. Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo.

    Science.gov (United States)

    Vermot, Julien; Gallego Llamas, Jabier; Fraulob, Valérie; Niederreither, Karen; Chambon, Pierre; Dollé, Pascal

    2005-04-22

    A striking characteristic of vertebrate embryos is their bilaterally symmetric body plan, which is particularly obvious at the level of the somites and their derivatives such as the vertebral column. Segmentation of the presomitic mesoderm must therefore be tightly coordinated along the left and right embryonic sides. We show that mutant mice defective for retinoic acid synthesis exhibit delayed somite formation on the right side. Asymmetric somite formation correlates with a left-right desynchronization of the segmentation clock oscillations. These data implicate retinoic acid as an endogenous signal that maintains the bilateral synchrony of mesoderm segmentation, and therefore controls bilateral symmetry, in vertebrate embryos.

  9. Comparative effects of retinoic acid or glycolic acid vehiculated in different topical formulations.

    Science.gov (United States)

    Maia Campos, Patrícia Maria Berardo Gonçalves; Gaspar, Lorena Rigo; Gonçalves, Gisele Mara Silva; Pereira, Lúcia Helena Terenciane Rodrigues; Semprini, Marisa; Lopes, Ruberval Armando

    2015-01-01

    Retinoids and hydroxy acids have been widely used due to their effects in the regulation of growth and in the differentiation of epithelial cells. However, besides their similar indication, they have different mechanisms of action and thus they may have different effects on the skin; in addition, since the topical formulation efficiency depends on vehicle characteristics, the ingredients of the formulation could alter their effects. Thus the objective of this study was to compare the effects of retinoic acid (RA) and glycolic acid (GA) treatment on the hairless mouse epidermis thickness and horny layer renewal when added in gel, gel cream, or cream formulations. For this, gel, gel cream, and cream formulations (with or without 6% GA or 0.05% RA) were applied in the dorsum of hairless mice, once a day for seven days. After that, the skin was analyzed by histopathologic, morphometric, and stereologic techniques. It was observed that the effects of RA occurred independently from the vehicle, while GA had better results when added in the gel cream and cream. Retinoic acid was more effective when compared to glycolic acid, mainly in the cell renewal and the exfoliation process because it decreased the horny layer thickness.

  10. Comparative Effects of Retinoic Acid or Glycolic Acid Vehiculated in Different Topical Formulations

    Directory of Open Access Journals (Sweden)

    Patrícia Maria Berardo Gonçalves Maia Campos

    2015-01-01

    Full Text Available Retinoids and hydroxy acids have been widely used due to their effects in the regulation of growth and in the differentiation of epithelial cells. However, besides their similar indication, they have different mechanisms of action and thus they may have different effects on the skin; in addition, since the topical formulation efficiency depends on vehicle characteristics, the ingredients of the formulation could alter their effects. Thus the objective of this study was to compare the effects of retinoic acid (RA and glycolic acid (GA treatment on the hairless mouse epidermis thickness and horny layer renewal when added in gel, gel cream, or cream formulations. For this, gel, gel cream, and cream formulations (with or without 6% GA or 0.05% RA were applied in the dorsum of hairless mice, once a day for seven days. After that, the skin was analyzed by histopathologic, morphometric, and stereologic techniques. It was observed that the effects of RA occurred independently from the vehicle, while GA had better results when added in the gel cream and cream. Retinoic acid was more effective when compared to glycolic acid, mainly in the cell renewal and the exfoliation process because it decreased the horny layer thickness.

  11. Establishment of a GM-CSF-dependent megakaryoblastic cell line with the potential to differentiate into an eosinophilic lineage in response to retinoic acids.

    Science.gov (United States)

    Ma, F; Koike, K; Higuchi, T; Kinoshita, T; Takeuchi, K; Mwamtemi, H H; Sawai, N; Kamijo, T; Shiohara, M; Horie, S; Kawa, S; Sasaki, Y; Hidaka, E; Yamagami, O; Yamashita, T; Koike, T; Ishii, E; Komiyama, A

    1998-02-01

    We recently established a human granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent cell line (HML) from colony-constituent cells grown by peripheral blood cells of a patient with acute megakaryoblastic leukaemia. The HML cells possessed megakaryocytic features, as determined by cytochemical, electron microscopic and flow cytometric analysis. In the present study we examined the effects of retinoic acid (RA) on the development of HML cells. All-trans-RA, 13-cis-RA and 9-cis-RA at 10(-8) mol/l to 10(-5) mol/l inhibited the GM-CSF-dependent cell growth. Some of the RA-treated cells contained prominent azurophilic granules and were positive for peroxidase. They also reacted with Biebrich scarlet, Luxol fast blue and a monoclonal antibody against eosinophil peroxidase. In addition, exposure to RA increased the frequency and the intensity of major basic protein-positive cells. However, eosinophil-derived neurotoxin and eosinophil cationic protein were not detected or were only detected at a low level in the lysates of the HML cells treated with RA. Although IL-5 alone could not stimulate cell growth, the addition of IL-5 to the cultures containing stem cell factor + all-trans-RA was required for the expression of the eosinophilic phenotype. These results suggest that the HML cell line is a megakaryoblastic cell line with the potential to differentiate into the eosinophilic lineage. HML cells may be a useful model for elucidating the eosinophilic differentiation programme.

  12. 吸入异维甲酸用于预防肺癌的疗效观察%Efficacy of inhaling isotretinoin (13-cis retinoic acid) for chemopreventing lung cancer

    Institute of Scientific and Technical Information of China (English)

    王大力; 赫捷; 陈志高

    2006-01-01

    目的探讨吸入异维甲酸能够针对靶细胞发挥足够药效的方法,同时避免全身性中毒.方法给白鼠腹腔注射一次性剂量的氨基钾酸脂或二苯骈(a)芘(BaP)或特异亚硝胺类化合物4-甲基亚硝胺-1(3-吡啶基)-1-丁酮(NNK).从第2天开始,将白鼠分别置于浓度为1.3,20.7,481 mg/L的异维甲酸气雾剂中45 min.置于低浓度异维甲酸中的白鼠每日1次,中等浓度的异维甲酸剂量1周3次,置于高浓度异维甲酸中的白鼠1周2次.结果测到的总沉积剂量分别为0.24,1.6,24.9 mg/kg,据估算,其中16%沉积在肺部.肺部药物剂量的每周沉积量的计算结果分别为以前给接受过氨基钾酸脂的白鼠进行治疗而未能发生作用的口服剂量的0.01%,0.07%和1.1%.10~16周以后,解剖白鼠,统计肺部增生和肿瘤的数量.对于所有的致癌物质,接受高剂量异维甲酸的白鼠,肿瘤的多样性出现了56%~80%(P<0.005)的降低;接受中等剂量异维甲酸的白鼠,肿瘤的多样性出现了67%~88%(P<0.005)的降低;接受小剂量治疗的经过BaP和NNK处理的白鼠,多样化的降低程度分别为30%(P<0.13)和16% (P<0.30),差异无显著性.在接受BaP和NNK的白鼠中,增生区域的数量与剂量呈正相关,而与肿瘤数量成反比,表明有抑制作用.相对于接受乙醇吸入的白鼠,吸入中等剂量异维甲酸可以引起肺组织的维甲酸受体(RAR)的变化,具体表现为RARα(3.9倍于乙醇组)、RARβ(3.3倍)和RARγ(3.7倍).结论维甲酸受体是该系统内的类维生素A活性的有效生物标志,吸入异维甲酸有利于有肺癌高发危险的人群预防肺癌.

  13. Retinoic acid and glycolic acid combination in the treatment of acne scars.

    Science.gov (United States)

    Chandrashekar, B S; Ashwini, K R; Vasanth, Vani; Navale, Shreya

    2015-01-01

    Acne is a prevalent condition in society affecting nearly 80-90% of adolescents often resulting in secondary damage in the form of scarring. Retinoic acid (RA) is said to improve acne scars and reduce postinflammatory hyperpigmentation while glycolic acid (GA) is known for its keratolytic properties and its ability to reduce atrophic acne scars. There are studies exploring the combined effect of retinaldehyde and GA combination with positive results while the efficacy of retinoic acid and GA (RAGA) combination remains unexplored. The aim of this study remains to retrospectively assess the efficacy of RAGA combination on acne scars in patients previously treated for active acne. A retrospective assessment of 35 patients using topical RAGA combination on acne scars was done. The subjects were 17-34 years old and previously treated for active acne. Case records and photographs of each patient were assessed and the acne scars were graded as per Goodman and Baron's global scarring grading system (GSGS), before the start and after 12 weeks of RAGA treatment. The differences in the scar grades were noted to assess the improvement. At the end of 12 weeks, significant improvement in acne scars was noticed in 91.4% of the patients. The RAGA combination shows efficacy in treating acne scars in the majority of patients, minimizing the need of procedural treatment for acne scars.

  14. Retinoic acid and glycolic acid combination in the treatment of acne scars

    Directory of Open Access Journals (Sweden)

    B S Chandrashekar

    2015-01-01

    Full Text Available Introduction: Acne is a prevalent condition in society affecting nearly 80-90% of adolescents often resulting in secondary damage in the form of scarring. Retinoic acid (RA is said to improve acne scars and reduce postinflammatory hyperpigmentation while glycolic acid (GA is known for its keratolytic properties and its ability to reduce atrophic acne scars. There are studies exploring the combined effect of retinaldehyde and GA combination with positive results while the efficacy of retinoic acid and GA (RAGA combination remains unexplored. Aim: The aim of this study remains to retrospectively assess the efficacy of RAGA combination on acne scars in patients previously treated for active acne. Materials and Methods: A retrospective assessment of 35 patients using topical RAGA combination on acne scars was done. The subjects were 17-34 years old and previously treated for active acne. Case records and photographs of each patient were assessed and the acne scars were graded as per Goodman and Baron′s global scarring grading system (GSGS, before the start and after 12 weeks of RAGA treatment. The differences in the scar grades were noted to assess the improvement. Results: At the end of 12 weeks, significant improvement in acne scars was noticed in 91.4% of the patients. Conclusion: The RAGA combination shows efficacy in treating acne scars in the majority of patients, minimizing the need of procedural treatment for acne scars.

  15. The Expression of Bone Morphogenetic Protein 2 and Matrix Metalloproteinase 2 through Retinoic Acid Receptor Beta Induced by All-Trans Retinoic Acid in Cultured ARPE-19 Cells.

    Directory of Open Access Journals (Sweden)

    Zhenya Gao

    Full Text Available All-trans retinoic acid (ATRA plays an important role in ocular development. Previous studies found that retinoic acid could influence the metabolism of scleral remodeling by promoting retinal pigment epithelium (RPE cells to secrete secondary signaling factors. The purpose of this study was to investigate whether retinoic acid affected secretion of bone morphogenetic protein 2 (BMP-2 and matrix metalloproteinase 2 (MMP-2 and to explore the signaling pathway of retinoic acid in cultured acute retinal pigment epithelial 19 (ARPE-19 cells.The effects of ATRA (concentrations from 10-9 to 10-5 mol/l on the expression of retinoic acid receptors (RARs in ARPE-19 cells were examined at the mRNA and protein levels using reverse transcription-polymerase chain reaction (RT-PCR and western blot assay, respectively. The effects of treating ARPE-19 cells with ATRA concentrations ranging from 10-9 to 10-5 mol/l for 24 h and 48 h or with 10-6mol/l ATRA at different times ranging from 6h to 72h were assessed using real-time quantitative PCR (qPCR and enzyme-linked immunosorbent assay (ELISA. The contribution of RARβ-induced activation of ARPE-19 cells was confirmed using LE135, an antagonist of RARβ.RARβ mRNA levels significantly increased in the ARPE-19 cells treated with ATRA for 24h and 48h. These increases in RARβ mRNA levels were dose dependent (at concentrations of 10-9 to 10-5 mol/l with a maximum effect observed at 10-6 mol/l. There were no significant changes in the mRNA levels of RARα and RARγ. Western blot assay revealed that RARβ protein levels were increased significantly in a time-dependent manner in ARPE-19 cells treated with 10-6 mol/l ATRA from 12 h to 72 h, with a marked increase observed at 24 h and 48 h. The upregulation of RARβ and the ATRA-induced secretion in ARPE-19 cells could be inhibited by the RARβ antagonist LE135.ATRA induced upregulation of RARβ in ARPE-19 cells and stimulated these cells to secrete BMP-2 and MMP-2.

  16. Study on the Structure of Supramolecular Inclusion Complex of b-Cyclodextrin with Retinoic Acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Inclusion compound of retinoic acid with b-cyclodextrin was prepared by coprecipitating method, the structure of resulting product was studied by elemental analysis, differential scanning caloriemetry(DSC) analysis, FT-IR spectroscopy and X-ray diffractometry, and the formed supramolecule self-assembles in aqueous solution according to molar ratio 2:1 of host-guest.

  17. The histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia

    DEFF Research Database (Denmark)

    Arteaga, Maria Francisca; Mikesch, Jan-Henrik; Qiu, Jihui

    2013-01-01

    While all-trans retinoic acid (ATRA) treatment in acute promyelocytic leukemia (APL) has been the paradigm of targeted therapy for oncogenic transcription factors, the underlying mechanisms remain largely unknown, and a significant number of patients still relapse and become ATRA resistant. We id...

  18. Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior

    NARCIS (Netherlands)

    Hu, Pu; Wang, Yu; Liu, Ji; Meng, Fan-Tao; Qi, Xin-Rui; Chen, Lin; van Dam, Anne-Marie; Joëls, Marian; Lucassen, Paul J; Zhou, Jiang-Ning

    2016-01-01

    Clinical studies have highlighted an association between retinoid treatment and depressive symptoms. As we had shown before that chronic application of all-trans retinoic acid (RA) potently activated the hypothalamus-pituitary-adrenal (HPA) stress axis, we here questioned whether RA also induced cha

  19. NF1 Is a Tumor Suppressor in Neuroblastoma that Determines Retinoic Acid Response and Disease Outcome

    NARCIS (Netherlands)

    M. Hölzel; S. Huang; J. Koster; I. Ora; A. Lakeman; H. Caron; W. Nijkamp; J. Xie; T. Callens; S. Asgharzadeh; R.C. Seeger; L. Messiaen; R. Versteeg; R. Bernards

    2010-01-01

    Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-s

  20. ISOLATION AND CHARACTERIZATION OF AXOLOTL NPDC-1 AND ITS EFFECTS ON RETINOIC ACID RECEPTOR SIGNALING

    Science.gov (United States)

    Theodosiou, Maria; Monaghan, James R; Spencer, Michael L; Voss, S Randal; Noonan, Daniel J

    2009-01-01

    Retinoic acid, a key morphogen in early vertebrate development and tissue regeneration, mediates its effects through the binding of receptors that act as ligand-induced transcription factors. These binding events function to recruit an array of transcription co-regulatory proteins to specific gene promoters. One such co-regulatory protein, neuronal proliferation and differentiation control-1 (NPDC-1), is broadly expressed during mammalian development and functions as an in vitro repressor of retinoic acid receptor (RAR)-mediated transcription. To obtain comparative and developmental insights about NPDC-1 function, we cloned the axolotl (Ambystoma mexicanum) orthologue and measured transcript abundances among tissues sampled during the embryonic and juvenile phases of development, and also during spinal cord regeneration. Structurally, the axolotl orthologue of NPDC-1 retained sequence identity to mammalian sequences in all functional domains. Functionally, we observed that axolotl NPDC-1 mRNA expression peaked late in embryogenesis, with highest levels of expression occurring during the time of limb development, a process regulated by retinoic acid signaling. Also similar to what has been observed in mammals, axolotl NPDC-1 directly interacts with axolotl RAR, modulates axolotl RAR DNA binding, and represses cell proliferation and axolotl RAR-mediated gene transcription. These data justify axolotl as a model to further investigate NPDC-1 and its role in regulating retinoic acid signaling. PMID:17331771

  1. Novel retinoic acid receptor alpha agonists for treatment of kidney disease.

    Directory of Open Access Journals (Sweden)

    Yifei Zhong

    Full Text Available Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs: RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1 in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN. Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN.

  2. Novel retinoic acid receptor alpha agonists for treatment of kidney disease.

    Science.gov (United States)

    Zhong, Yifei; Wu, Yingwei; Liu, Ruijie; Li, Zhengzhe; Chen, Yibang; Evans, Todd; Chuang, Peter; Das, Bhaskar; He, John Cijiang

    2011-01-01

    Development of pharmacologic agents that protect podocytes from injury is a critical strategy for the treatment of kidney glomerular diseases. Retinoic acid reduces proteinuria and glomerulosclerosis in multiple animal models of kidney diseases. However, clinical studies are limited because of significant side effects of retinoic acid. Animal studies suggest that all trans retinoic acid (ATRA) attenuates proteinuria by protecting podocytes from injury. The physiological actions of ATRA are mediated by binding to all three isoforms of the nuclear retinoic acid receptors (RARs): RARα, RARβ, and RARγ. We have previously shown that ATRA exerts its renal protective effects mainly through the agonism of RARα. Here, we designed and synthesized a novel boron-containing derivative of the RARα-specific agonist Am580. This new derivative, BD4, binds to RARα receptor specifically and is predicted to have less toxicity based on its structure. We confirmed experimentally that BD4 binds to RARα with a higher affinity and exhibits less cellular toxicity than Am580 and ATRA. BD4 induces the expression of podocyte differentiation markers (synaptopodin, nephrin, and WT-1) in cultured podocytes. Finally, we confirmed that BD4 reduces proteinuria and improves kidney injury in HIV-1 transgenic mice, a model for HIV-associated nephropathy (HIVAN). Mice treated with BD4 did not develop any obvious toxicity or side effect. Our data suggest that BD4 is a novel RARα agonist, which could be used as a potential therapy for patients with kidney disease such as HIVAN.

  3. All-trans retinoic acid and rapamycin normalize Hutchinson Gilford progeria fibroblast phenotype.

    Science.gov (United States)

    Pellegrini, Camilla; Columbaro, Marta; Capanni, Cristina; D'Apice, Maria Rosaria; Cavallo, Carola; Murdocca, Michela; Lattanzi, Giovanna; Squarzoni, Stefano

    2015-10-06

    Hutchinson Gilford progeria syndrome is a fatal disorder characterized by accelerated aging, bone resorption and atherosclerosis, caused by a LMNA mutation which produces progerin, a mutant lamin A precursor. Progeria cells display progerin and prelamin A nuclear accumulation, altered histone methylation pattern, heterochromatin loss, increased DNA damage and cell cycle alterations. Since the LMNA promoter contains a retinoic acid responsive element, we investigated if all-trans retinoic acid administration could lower progerin levels in cultured fibroblasts. We also evaluated the effect of associating rapamycin, which induces autophagic degradation of progerin and prelamin A. We demonstrate that all-trans retinoic acid acts synergistically with low-dosage rapamycin reducing progerin and prelamin A, via transcriptional downregulation associated with protein degradation, and increasing the lamin A to progerin ratio. These effects rescue cell dynamics and cellular proliferation through recovery of DNA damage response factor PARP1 and chromatin-associated nuclear envelope proteins LAP2α and BAF. The combined all-trans retinoic acid-rapamycin treatment is dramatically efficient, highly reproducible, represents a promising new approach in Hutchinson-Gilford Progeria therapy and deserves investigation in ageing-associated disorders.

  4. All-trans retinoic acid in acute promyelocytic leukemia in late pregnancy.

    Science.gov (United States)

    Stentoft, J; Nielsen, J L; Hvidman, L E

    1994-09-01

    All-trans retinoic acid (ATRA) was used in a case of acute promyelocytic leukemia (APL) in late pregnancy. A very prompt maternal risk reduction was achieved with subsequent complete remission and spontaneous delivery of two live children in whom no fetal damage seems to have occurred.

  5. Conformational Analysis of Retinoic Acids: Effects of Steric Interactions on Nonplanar Conjugated Polyenes.

    Science.gov (United States)

    Cox, Bryan D; Muccio, Donald D; Hamilton, Tracy P

    2013-05-01

    Retinoic acids and other vitamin A analogs contain a trimethylcyclohexenyl ring in conjugation with a polyene chain joined at carbon-6 (C6) and carbon-7 (C7). A MP2-SCS/cc-pVDZ// B3LYP/6-31G(d) 2-D potential energy surface was computed for all-trans retinoic acid, which had 6 minima (3 enantiomeric pairs). The global minima were distorted s-gauche enantiomers (6-7 = 53°) with half-chair conformations of the ring. Distorted s-gauche enantiomers (6-7 = 55°) with inverted half-chair ring conformations were 1.7 kJ/mol above the global minima. The s-trans enantiomers (6-7 = 164°) were 11.3 kJ/mol above the global minima. Steric energies were computed by the method of Guo and Karplus to identify key structural elements in retinoic acids which determines their conformation. Small molecule crystal structures in the CCDC database with trimethylcyclohexenyl ring and exocyclic double bonds have ring-chain geometries near to one of the 6 energy minima of retinoic acids, except for retinaldehyde iminium cations.

  6. Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton

    NARCIS (Netherlands)

    Spoorendonk, K.M.; Peterson-Maduro, J.; Renn, J.; Trowe, T.; Kranenbarg, S.; Winkler, C.; Schulte-Merker, S.

    2008-01-01

    Retinoic acid (RA) plays important roles in diverse biological processes ranging from germ cell specification to limb patterning. RA ultimately exerts its effect in the nucleus, but how RA levels are being generated and maintained locally is less clear. Here, we have analyzed the zebrafish stockstei

  7. Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton.

    NARCIS (Netherlands)

    Spoorendonk, K.M.; Peterson-Maduro, J.; Renn, J.; Trowe, T.; Kranenbarg, S.; Winkler, C.; Schulte-Merker, S.

    2008-01-01

    Retinoic acid (RA) plays important roles in diverse biological processes ranging from germ cell specification to limb patterning. RA ultimately exerts its effect in the nucleus, but how RA levels are being generated and maintained locally is less clear. Here, we have analyzed the zebrafish stockstei

  8. Onset of meiosis in the chicken embryo; evidence of a role for retinoic acid

    Directory of Open Access Journals (Sweden)

    Koopman Peter

    2008-09-01

    Full Text Available Abstract Background Meiosis in higher vertebrates shows a dramatic sexual dimorphism: germ cells enter meiosis and arrest at prophase I during embryogenesis in females, whereas in males they enter mitotic arrest during embryogenesis and enter meiosis only after birth. Here we report the molecular analysis of meiosis onset in the chicken model and provide evidence for conserved regulation by retinoic acid. Results Meiosis in the chicken embryo is initiated late in embryogenesis (day 15.5, relative to gonadal sex differentiation (from day 6. Meiotic germ cells are first detectable only in female gonads from day 15.5, correlating with the expression of the meiosis marker, SCP3. Gonads isolated from day 10.5 female embryos and grown in serum-free medium could still initiate meiosis at day 16.5, suggesting that this process is controlled by an endogenous clock in the germ cells themselves, and/or that germ cells are already committed to meiosis at the time of explantation. Early commitment is supported by the analysis of chicken STRA8, a pre-meiotic marker shown to be essential for meiosis in mouse. Chicken STRA8 is expressed female-specifically from embryonic day 12.5, preceding morphological evidence of meiosis at day 15.5. Previous studies have shown that, in the mouse embryo, female-specific induction of STRA8 and meiosis are triggered by retinoic acid. A comprehensive analysis of genes regulating retinoic acid metabolism in chicken embryos reveals dynamic expression in the gonads. In particular, the retinoic acid-synthesising enzyme, RALDH2, is expressed in the left ovarian cortex at the time of STRA8 up-regulation, prior to meiosis. Conclusion This study presents the first molecular analysis of meiosis onset in an avian embryo. Although aspects of avian meiosis differ from that of mammals, a role for retinoic acid may be conserved.

  9. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein.

    OpenAIRE

    Shubeita, H E; Sambrook, J F; McCormick, A M

    1987-01-01

    A recombinant cDNA clone, pCRABP-HS1, encoding cellular retinoic acid-binding protein was isolated from a bovine adrenal cDNA library. COS-7 cells transfected with pCRABP-HS1 produced a biologically active retinoic acid-binding protein molecule of the expected molecular mass (15.5 kDa). RNA blot hybridization analysis using pCRABP-HS1 as a probe revealed a single 1050-nucleotide mRNA species in bovine adrenal, uterus, and testis, tissues that contain the highest levels of retinoic acid-bindin...

  10. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D. [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States); Chen, Albert; Stapleton, Heather M. [Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC (United States); Volz, David C., E-mail: volz@mailbox.sc.edu [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States)

    2015-04-15

    Highlights: • Triphenyl phosphate-induced toxicity in zebrafish embryos is enhanced in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate uptake or metabolism within zebrafish embryos is not altered in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate decreases expression of cytochrome P450 26a1 in zebrafish embryos. • Triphenyl phosphate inhibits retinoic acid-induced activation of human retinoic acid receptors. - Abstract: Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5–72 h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite – were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may

  11. Reversible effect of all-trans-retinoic acid on AML12 hepatocyte proliferation and cell cycle progression

    Science.gov (United States)

    The role of all-trans-retinoic acid (atRA) in the regulation of cellular proliferation and differentiation is well documented. Numerous studies have established the cancer preventive propertiesofatRAwhichfunctionstoregulate levels ofcellcycleproteinsessentialfortheGliS transition...

  12. CHARACTERIZATION OF CYPS IN THE METABOLISM OF ALL TRANS RETINOIC ACID BY LIVER MICROSOMES FROM MICE TREATED WITH CONAZOLES

    Science.gov (United States)

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may involve in conazole-...

  13. A phosphorylation defective retinoic acid receptor mutant mimics the effects of retinoic acid on EGFR mediated AP-1 expression and cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    Kim Randie

    2002-10-01

    Full Text Available Abstract Background The effects of the vitamin A metabolite retinoic acid (RA are mediated at the transcriptional level by retinoic acid receptors (RAR. These proteins are part of a superfamily of transcription factors which activate target gene expression when bound to their respective ligands. In addition to ligand binding, heterodimerization with transcriptional cofactors and posttranslational modification such as phosphorylation are also critical for transactivation function. Previous studies have shown that phosphorylation of a serine residue at amino acid 77 in the RARα amino terminus was required for basal activation function of the transcription factor. Results We have determined that RA inhibits cyclin H and cdk7 expression thereby decreasing levels of phosphorylated RARα in human cancer cell lines. To determine the effects of decreased RARα phosphorylation in human cancer cells, we stably transfected a phosphorylation defective mutant RARα expression construct into SCC25 cultures. Cells expressing the mutant RARα proliferated more slowly than control clones. This decreased proliferation was associated with increased cyclin dependent kinase inhibitor expression and decreased S phase entry. In the absence of ligand, the RARα mutant inhibited AP-1 activity to an extent similar to that of RA treated control clones. Levels of some AP-1 proteins were inhibited due to decreased EGFR expression upstream in the signaling pathway. Conclusions These results indicate that hypophosphorylated RARα can mimic the anti-AP-1 effects of RA in the absence of ligand.

  14. Retinoic acid prevents virus-induced airway hyperreactivity and M2 receptor dysfunction via anti-inflammatory and antiviral effects

    OpenAIRE

    Moreno-Vinasco, Liliana; Verbout, Norah G.; Fryer, Allison D.; Jacoby, David B.

    2009-01-01

    Inhibitory M2 muscarinic receptors on airway parasympathetic nerves normally limit acetylcholine release. Viral infections decrease M2 receptor function, increasing vagally mediated bronchoconstriction. Since retinoic acid deficiency causes M2 receptor dysfunction, we tested whether retinoic acid would prevent virus-induced airway hyperreactivity and prevent M2 receptor dysfunction. Guinea pigs infected with parainfluenza virus were hyperreactive to electrical stimulation of the vagus nerves,...

  15. Retinoic acid is a key regulatory switch determining the difference between lung and thyroid fates in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Wang Jean H

    2011-12-01

    Full Text Available Abstract Background The lung and thyroid are derived from the anterior endoderm. Retinoic acid and Fgf signalling are known to be essential for development of the lung in mouse but little is known on how the lung and thyroid are specified in Xenopus. Results If either retinoic acid or Fgf signalling is inhibited, there is no differentiation of the lung as assayed by expression of sftpb. There is no change in expression of thyroid gland markers when retinoic acid signalling is blocked after gastrulation and when Fgf signalling is inhibited there is a short window of time where pax2 expression is inhibited but expression of other markers is unaffected. If exogenous retinoic acid is given to the embryo between embryonic stages 20 and 26, the presumptive thyroid expresses sftpb and sftpc, specific markers of lung differentiation and expression of key thyroid transcription factors is lost. When the presumptive thyroid is transplanted into the posterior embryo, it also expresses sftpb, although pax2 expression is not blocked. Conclusions After gastrulation, retinoic acid is required for lung but not thyroid differentiation in Xenopus while Fgf signalling is needed for lung but only for early expression of pax2 in the thyroid. Exposure to retinoic acid can cause the presumptive thyroid to switch to a lung developmental program.

  16. Comparative evaluation of retinoic acid, benzoyl peroxide and erythromycin lotion in acne vulgarils

    Directory of Open Access Journals (Sweden)

    Dogra A

    1993-01-01

    Full Text Available Ninety three patients suffering from acne vulgaris were treated with 0.05% retinoic acid (23 patients, 10% benzyoyl peroxide (24 patients, 2% erythromycin lotin (25 patients and 50% glycerine in methylated spirit (21 patients used as a control, for a period of 6 weeks. The patients were evaluated at 2 weeks and 6 weeks by spot counting of the lesions and diagrammatic representations. Good to excellent results were obtained in 69.6% of patients of erythromycin lotion. Retinoic acid was more effective in reducing noninflammatory lesions (75.2% whereas inflammatory lesions showed better response (73.6% with erythromycin lotion and benzoyl peroxide was almost equally effective in both types of lesions.

  17. Development of novel silicon-containing inverse agonists of retinoic acid receptor-related orphan receptors.

    Science.gov (United States)

    Toyama, Hirozumi; Nakamura, Masaharu; Nakamura, Masahiko; Matsumoto, Yotaro; Nakagomi, Madoka; Hashimoto, Yuichi

    2014-03-15

    Retinoic acid receptor (RAR)-related orphan receptors (RORs) regulate a variety of physiological processes, including hepatic gluconeogenesis, lipid metabolism, circadian rhythm and immune function. The RAR agonist: all-trans retinoic acid was reported to be an RORβ inverse agonist, but no information is available regarding ROR activity of its synthetic analogue Am580. Therefore, we screened Am580 and some related tetramethyltetrahydronaphthalene derivatives and carried out structural development studies, including substitution of carbon atoms with silicon, with the aim of creating a potent ROR transcriptional inhibitor. The phenyl amide disila compound 22 showed the most potent ROR-inhibitory activity among the compounds examined. Its activity towards RORα, RORβ and RORγ was increased compared to that of Am580. The IC₅₀ values for RORα, RORβ and RORγ are 1.3, >10 and 4.5 μM, respectively.

  18. Effect of Tanshitone on prevention and treatment of retinoic acid-induced osteoporosis in mice

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan-meng; LIU Yu-bo; GAO Yun-sheng

    2008-01-01

    Objective To observe the prevention and therapeutic effects of tanshitone (TAN) on retinoic acid induced osteoporosis in mice. Methods The mice osteoporosis was induced by given retinoic acid intragasttrically for two weeks. The histomorphological features of bone were observed and biochemical indexes in serum (Ca, P, ALP, TRAP, E2, BGP) were determined after mice were given TAN at the dose of 40, 80, 160 mg·kg-1 respectively. Results Tanshitone can induce high conversion of osteoporosis. The levels of P, ALP, TRAP and BGP in the TAN groups were lower than the model group, while the E2 level was higher than the model group. Conclusions Tanshitone can prevent the loss bone in the experimental mice. The mechanism may be that it improves the level of estrogenic hormone and inhibits the high bone turnover.

  19. Gene expression in retinoic acid-induced neural tube defects A cDNA mieroarray analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Long; Zhong Yang; Yi Zeng; Hongli Li; Yangyun Han; Chao You

    2009-01-01

    BACKGROUND: Neural tube defects can be induced by abnormal factors in vivo or in vitro during development. However, the molecular mechanisms of neural tube defect induction, and the related gene expression and regulation are still unknown.OBJECTIVE: To compare the differences in gene expression between normal embryos and those with neural tube defects.DESIGN, TIME AND SETTING: A neural development study was performed at the Department of Neurobiology, Third Military Medical University of Chinese PLA between January 2006 and October 2007.MATERIALS: Among 120 adult Kunming mice, 60 pregnant mice were randomly and evenly divided into a retinoic acid group (n = 30) and a normal control group (n =30). The retinoic acid was produced by Sigma, USA, the gene microarray by the Amersham Pharmacia Company, Hong Kong, and the gene sequence was provided by the Incyte database, USA.METHODS: Retinoic acid was administered to prepare models of neural tube defects, and corn oil was similady administered to the normal control group. Total RNA was extracted from embryonic tissue of the two groups using a Trizol kit, and a cDNA microarray containing 1 100 known genes was used to compare differences in gene expression between the normal control group and the retinoic acid group on embryonic (E) clay 10.5 and 11.5. Several differentially expressed genes were randomly selected from the two groups for Northern blotting, to verify the results of the cDNA microarray.MAIN OUTCOME MEASURES: Morphological changes and differential gene expression between the normal control group and the retinoic acid group.RESULTS: Anatomical microscopy demonstrated that an intact closure of the brain was formed in the normal mouse embryos by days E10.5 and E11.5. The cerebral appearance was full and smooth, and the surface of the spine was intact. However, in the retinoic acid group on days E10.5 and E11.5, there were more dead embryos. Morphological malformations typically included non-closure at the top of

  20. Human Gastric Epithelial Cells Contribute to Gastric Immune Regulation by Providing Retinoic Acid to Dendritic Cells

    OpenAIRE

    Bimczok, Diane; John Y. Kao; Zhang, Min; Cochrun, Steven; Mannon, Peter; Peter, Shajan; Wilcox, Charles M.; Mönkemüller, Klaus E; Harris, Paul R.; Grams, Jayleen M.; Stahl, Richard D.; Smith, Phillip D.; Smythies, Lesley E.

    2014-01-01

    Despite the high prevalence of chronic gastritis caused by H. pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule, retinol, and that gastric epithelial cells express both RA biosynthesis genes and RA res...

  1. Retinoic acid is enriched in Hensen's node and is developmentally regulated in the early chicken embryo.

    OpenAIRE

    Chen, Y; Huang, L; Russo, A F; Solursh, M

    1992-01-01

    Retinoic acid (RA) has been considered as a potential morphogen in the chicken limb and has also been suggested to be involved in early embryonic development. On the basis of biological activity, previous reports suggest that Hensen's node, the anatomical equivalent in the chicken of the Spemann's organizer, may contain RA. Here, by using a molecular assay system, we demonstrate that Hensen's node contains retinoids in a concentration approximately 20 times more than that in the neighboring t...

  2. ISOLATION AND CHARACTERIZATION OF AXOLOTL NPDC-1 AND ITS EFFECTS ON RETINOIC ACID RECEPTOR SIGNALING

    OpenAIRE

    Theodosiou, Maria; Monaghan, James R; Spencer, Michael L; Voss, S. Randal; Noonan, Daniel J.

    2007-01-01

    Retinoic acid, a key morphogen in early vertebrate development and tissue regeneration, mediates its effects through the binding of receptors that act as ligand-induced transcription factors. These binding events function to recruit an array of transcription co-regulatory proteins to specific gene promoters. One such co-regulatory protein, neuronal proliferation and differentiation control-1 (NPDC-1), is broadly expressed during mammalian development and functions as an in vitro repressor of ...

  3. Antagonism between Retinoic Acid and Fibroblast Growth Factor Signaling during Limb Development

    OpenAIRE

    Thomas J. Cunningham; Xianling Zhao; Lisa L. Sandell; Sylvia M. Evans; Paul A. Trainor; Gregg Duester

    2013-01-01

    The vitamin A metabolite retinoic acid (RA) provides patterning information during vertebrate embryogenesis, but the mechanism through which RA influences limb development is unclear. During patterning of the limb proximodistal axis (upper limb to digits), avian studies suggest that a proximal RA signal generated in the trunk antagonizes a distal fibroblast growth factor (FGF) signal. However, mouse and zebrafish genetic studies suggest that loss of RA suppresses forelimb initiation. Here, us...

  4. Retinoic Acid Controls the Bilateral Symmetry of Somite Formation in the Mouse Embryo

    OpenAIRE

    Vermot, Julien; Llamas, Jabier Gallego; Fraulob, Valérie; Niederreither, Karen; Chambon, Pierre; Dollé, Pascal

    2005-01-01

    A striking characteristic of vertebrate embryos is their bilaterally symmetric body plan, which is particularly obvious at the level of the somites and their derivatives such as the vertebral column. Segmentation of the presomitic mesoderm must therefore be tightly coordinated along the left and right embryonic sides. We show that mutant mice defective for retinoic acid synthesis exhibit delayed somite formation on the right side. Asymmetric somite formation correlates with a left-right desyn...

  5. Myeloid differentiation and retinoblastoma phosphorylation changes in HL-60 cells induced by retinoic acid receptor- and retinoid X receptor-selective retinoic acid analogs.

    Science.gov (United States)

    Brooks, S C; Kazmer, S; Levin, A A; Yen, A

    1996-01-01

    The ability of subtypes of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) singly and in combination to elicit myeloid differentiation, G1/0-specific growth arrest, and retinoblastoma (RB) tumor suppressor protein dephosphorylation was determined in the human myeloblastic leukemia cell line HL-60 using subtype-selective retinoic acid (RA) analogs. RA analogs that selectively bind only to RARs (Am580 and/or TTNPB) or to RXRs (Ro 25-6603, SR11237, and/or SR11234) did not elicit the above-mentioned three cellular responses. In contrast, simultaneous treatment with both an RAR-selective ligand (Am580 or TTNPB) and an RXR-selective ligand (Ro 25-6603, SR11237, or SR11234) induced all three cellular processes. An RAR alpha-selective ligand used with an RXR-selective ligand generated the same responses as did all-trans RA or 9-cis RA, which affect both families of receptors, suggesting an important role for RAR alpha among RAR subtypes in eliciting cellular response. Consistent with this finding, the RAR alpha antagonist, Ro 41-5253, reduced the level of the cellular responses elicited by treatment with an RAR alpha-selective ligand plus RXR-selective ligand. The coupling of the shift of RB to its hypophosphorylated form with G1/0 arrest and differentiation in response to ligands is consistent with a possible role of RB as a downstream target or effector of RAR alpha and RXR in combination.

  6. ATRA (all-trans-retinoic acid) syndrome in acute promyelocytic leukemia: clinical and radiologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keon Ha; Goo, Jin Mo; Im, Jung Gi; Chung, Myung Jin; Do, Kyung Hyun; Park, Seon Yang [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of); Seo, Joon Beom [Gachon Univ. Medical School, Gil Medical Center, Seoul (Korea, Republic of)

    2001-03-01

    To describe the clinical and radiologic findings of all-trans-retinoic acid (ATRA) syndrome in acute promyelocytic leukemia. Among 21 patients with acute promyelocytic leukemia who were treated with all-trans-retinoic acid between 1995 and 1998, we retrospectively evaluated the cases of four with ATRA syndrome. Two were male and two were female, and their mean age was 58 years. The clinical and radiologic findings of chest radiography (n=4) and HRCT (n=1) were analyzed. Between seven and 13 days after ATRA treatment, dry cough, dyspnea and high fever developed in all patients. The WBC count in peripheral blood was significantly higher [2.9-25.3(mean, 10.8)-fold] than before ATRA treatment, and in all patients, chest radiography revealed ill-defined consolidation and pleural effusion. Kerley's B line (n=3) and hilar enlargement (n=3) were also seen, and in one patient, HRCT demonstrated septal line thickening. Among four patients treated with prednisolone and Ara-C, three recovered and one died. In acute promyelocytic patients treated with all-trans-retinoic acid, radiologic findings of ill-de-fined consolidation, pleural effusion, hilar prominence and Kerley's B line may suggest ATRA syndrome. The early diagnosis of this will improve the patients' prognosis.

  7. Evidence of increased reactive species formation by retinol, but not retinoic acid, in PC12 cells.

    Science.gov (United States)

    Gelain, Daniel Pens; Moreira, José Claudio Fonseca

    2008-04-01

    The biological effects of vitamin A (retinol) are generally ascribed to the activation of nuclear retinoid receptors by retinoic acid (RA), considered the most biologically active retinoid. However, it is not established whether the cytotoxic effects of vitamin A are due to retinoid receptors activation by RA. Vitamin A-related toxicity is associated with cellular redox modifications, often leading to severe oxidative damage, but the role of RA in this effect is also uncertain. We therefore studied the formation of intracellular reactive species induced by retinol and retinoic acid in PC12 cells, using an in vitro dichlorofluorescein (DCFH) fluorescence real-time assay. We observed that retinol, but not retinoic acid, induced a steady increase in DCF-based fluorescence over 60 min of incubation, and this increase was reversed by antioxidant (N-acetyl-cysteine and alpha-tocopherol) pre-treatment. This effect was also inhibited by the iron chelator 1,10-phenantroline and the impermeable calcium chelator EGTA. These results suggest that vitamin A-associated cytotoxicity is probably related to an oxidant mechanism dependent on iron and calcium, and the formation of intracellular reactive species is related to retinol, but not to RA.

  8. Mechanisms of all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia cells

    Indian Academy of Sciences (India)

    Ji-Wang Zhang; Jian Gu; Zhen-Yi Wang; Sai-Juan Chen; Zhu Chen

    2000-09-01

    Retinoic acids (RA) play a key role in myeloid differentiation through their agonistic nuclear receptors (RAR/RXR) to modulate the expression of target genes. In acute promyelocytic leukemia (APL) cells with rearrangement of retinoic acid receptor (RAR) (including: PML-RAR, PLZF-RAR, NPM-RAR, NuMA-RAR or STAT5b-RAR) as a result of chromosomal translocations, the RA signal pathway is disrupted and myeloid differentiation is arrested at the promyelocytic stage. Pharmacologic dosage of all-trans retinoic acid (ATRA) directly modulates PML-RAR and its interaction with the nuclear receptor co-repressor complex, which restores the wild-type RAR/RXR regulatory pathway and induces the transcriptional expression of downstream genes. Analysing gene expression profiles in APL cells before and after ATRA treatment represents a useful approach to identify genes whose functions are involved in this new cancer treatment. A chronologically well coordinated modulation of ATRA-regulated genes has thus been revealed which seems to constitute a balanced functional network underlying decreased cellular proliferation, initiation and progression of maturation, and maintenance of cell survival before terminal differentiation.

  9. Arginine of retinoic acid receptor beta which coordinates with the carboxyl group of retinoic acid functions independent of the amino acid residues responsible for retinoic acid receptor subtype ligand specificity.

    Science.gov (United States)

    Zhang, Zeng Ping; Hutcheson, Juliet M; Poynton, Helen C; Gabriel, Jerome L; Soprano, Kenneth J; Soprano, Dianne Robert

    2003-01-15

    The biological actions of retinoic acid (RA) are mediated by retinoic acid receptors (RARalpha, RARbeta, and RARgamma) and retinoid X receptors (RXRalpha, RXRbeta, and RXRgamma). Consistent with the X-ray crystal structures of RARalpha and RARgamma, site-directed mutagenesis studies have demonstrated the importance of a conserved Arg residue (alphaArg(276), betaArg(269), and gammaArg(278)) for coordination with the carboxyl group of RA. However, mutation of Arg(269) to Ala in RARbeta causes only a 3- to 6-fold increase in the K(d) for RA and EC(50) in RA-dependent transcriptional transactivation assays while the homologous mutation in either RARalpha or RARgamma causes a 110-fold and a 45-fold increase in EC(50) value, respectively. To further investigate the nature of this difference, we prepared mutant RARs to determine the effect of conversion of betaR269A to a mutant which mimics either RARalpha ligand selectivity (betaA225S/R269A) or RARgamma ligand selectivity (betaI263M/R269A/V338A). Our results demonstrate that in RARbeta mutants that acquire either RARalpha or RARgamma ligand specificity the Arg(269) position responsible for coordination with the carboxyl group of retinoids continued to function like that of RARbeta. Furthermore, three mutant receptors (betaA225S/R269A, betaA225S/F279, and alphaF286A) were found to have a greater than wild-type affinity for the RARalpha-selective ligand Am580. Finally, a homology-based computer model of the ligand binding domain (LBD) of RARbeta and the X-ray crystal structures of the LBD of both RARalpha and RARgamma are used to describe potential mechanisms responsible for the increased affinity of some mutants for Am580 and for the difference in the effect of mutation of Arg(269) in RARbeta compared to its homologous Arg in RARalpha and RARgamma.

  10. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid......), and to an increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  11. Modulation of human stratum corneum properties by salicylic acid and all-trans-retinoic acid.

    Science.gov (United States)

    Piérard-Franchimont, C; Goffin, V; Piérard, G E

    1998-01-01

    Topical all-trans-retinoic acid (RA) has been reported to decrease the in vivo skin response to sodium lauryl sulfate (SLS). The converse was also shown with a synergistic effect of RA following prior applications of SLS. The reason for such effects is not clear. We employed measures of transepidermal water loss (TEWL), squamometry and sequential corneosurfametry to explore the protective activity of a 0.05% RA cream at the level of the stratum corneum. Nonionic oil-in-water emulsions with or without 5% salicylic acid (SA) served as test product references. Data indicated that the RA formulation was responsible for a stochastic impairment in the TEWL and for an increased intercorneocyte cohesion. SA and the unmedicated emulsion did not lead to similar TEWL changes. The squamometry test proved to be very sensitive to disclose the effects of SA and RA without, however, allowing to distinguish the difference in the physiological processes involved. The corneosurfametry bioassay did not show any protection or synergistic effect between RA or SA and SLS challenge on the stratum corneum. This is in contrast to a previous work showing a positive protective effect afforded by retinol against SLS. The combined effects of irritant compounds affecting the stratum corneum are complex. The precise reason for some of their biological consequences remains a conundrum. On balance, products such as SA and RA do not appear to afford protection or impairment to a surfactant challenge at the level of the stratum corneum.

  12. Experimental effect of retinoic acids on apoptosis during the development of diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Nami Nishikiori

    2008-03-01

    Full Text Available Nami Nishikiori1,2, Makoto Osanai2, Hideki Chiba2, Takashi Kojima2, Shuichiro Inatomi1,2, Hiroshi Ohguro1, Norimasa Sawada2Departments of 1Ophthalmology and 2Pathology, Sapporo Medical University School of MedicinePurpose: This study was conducted to investigate whether retinoic acids (RAs had any effect on apoptosis during the development of diabetic retinopathy.Methods: To investigate whether RAs had any effect on apoptosis during the development of diabetic retinopathy, we housed 32 C57BL/6 male mice and induced diabetes in 24 by intra peritoneal injections of streptozotocin (STZ; Sigma, St Louis, MO and treated 16 of the diabetic mice with the RAs, all-trans-retinoic acid (ATRA (seven mice and 4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenylcarboxamido] benzoic acid (Am580 (nine mice. The other eight mice were used as diabetic controls. We then measured apoptosis in the retina by TdT-dUTP terminal nick-end labeling assay.Results: RAs inhibited the apoptosis of retinal cells in diabetic retinopathy. Many apoptotic cells were observed in retinas of the eight diabetic control mice (mean value and SD: 37.8 ± 6.9, whereas when diabetic mice were treated with RAs, the number of apoptotic cells significantly decreased (mean value and SD: 9.9 ± 6.4 for the seven ATRA-treated diabetic mice and 9.8 ± 5.9 for the nine Am580-treated diabetic mice (p < 0.05.Conclusion: Treatment with RAs decreases apoptosis during the development of diabetic retinopathy.Keywords: retinoic acids, apoptosis, diabetic retinopathy, glial cell line-derived neurotrophic factor

  13. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein.

    Science.gov (United States)

    Shubeita, H E; Sambrook, J F; McCormick, A M

    1987-08-01

    A recombinant cDNA clone, pCRABP-HS1, encoding cellular retinoic acid-binding protein was isolated from a bovine adrenal cDNA library. COS-7 cells transfected with pCRABP-HS1 produced a biologically active retinoic acid-binding protein molecule of the expected molecular mass (15.5 kDa). RNA blot hybridization analysis using pCRABP-HS1 as a probe revealed a single 1050-nucleotide mRNA species in bovine adrenal, uterus, and testis, tissues that contain the highest levels of retinoic acid-binding activity. No hybridization was detected in RNA extracted from ovary, spleen, kidney, or liver, which contain relatively low levels of cellular retinoic acid-binding protein activity. Analysis of genomic clones isolated from an EcoRI bovine genomic library demonstrated that the bovine cellular retinoic acid-binding protein gene is composed of four exons and three introns. Two putative promoter sequences were identified in the cloned 5' sequence of the gene.

  14. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorγ

    Science.gov (United States)

    Amal, Ismail; Lutzing, Régis; Stote, Roland H.; Rochette-Egly, Cécile; Rochel, Natacha; Dejaegere, Annick

    2017-01-01

    Retinoic acid (RA) plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs), which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD) is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD), and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E), which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340) are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K) affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity. PMID:28125680

  15. Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and diaphragmatic hernia.

    Science.gov (United States)

    Srour, Myriam; Chitayat, David; Caron, Véronique; Chassaing, Nicolas; Bitoun, Pierre; Patry, Lysanne; Cordier, Marie-Pierre; Capo-Chichi, José-Mario; Francannet, Christine; Calvas, Patrick; Ragge, Nicola; Dobrzeniecka, Sylvia; Hamdan, Fadi F; Rouleau, Guy A; Tremblay, André; Michaud, Jacques L

    2013-10-01

    Anophthalmia and/or microphthalmia, pulmonary hypoplasia, diaphragmatic hernia, and cardiac defects are the main features of PDAC syndrome. Recessive mutations in STRA6, encoding a membrane receptor for the retinol-binding protein, have been identified in some cases with PDAC syndrome, although many cases have remained unexplained. Using whole-exome sequencing, we found that two PDAC-syndrome-affected siblings, but not their unaffected sibling, were compound heterozygous for nonsense (c.355C>T [p.Arg119(∗)]) and frameshift (c.1201_1202insCT [p.Ile403Serfs(∗)15]) mutations in retinoic acid receptor beta (RARB). Transfection studies showed that p.Arg119(∗) and p.Ile403Serfs(∗)15 altered RARB had no transcriptional activity in response to ligands, confirming that the mutations induced a loss of function. We then sequenced RARB in 15 subjects with anophthalmia and/or microphthalmia and at least one other feature of PDAC syndrome. Surprisingly, three unrelated subjects with microphthalmia and diaphragmatic hernia showed de novo missense mutations affecting the same codon; two of the subjects had the c.1159C>T (Arg387Cys) mutation, whereas the other one carried the c.1159C>A (p.Arg387Ser) mutation. We found that compared to the wild-type receptor, p.Arg387Ser and p.Arg387Cys altered RARB induced a 2- to 3-fold increase in transcriptional activity in response to retinoic acid ligands, suggesting a gain-of-function mechanism. Our study thus suggests that both recessive and dominant mutations in RARB cause anophthalmia and/or microphthalmia and diaphragmatic hernia, providing further evidence of the crucial role of the retinoic acid pathway during eye development and organogenesis.

  16. Scrotal ulceration following all-trans retinoic acid therapy for acute promyelocytic leukemia

    Directory of Open Access Journals (Sweden)

    Illias Tazi

    2011-01-01

    Full Text Available All-trans retinoic acid (ATRA induces complete remission in most cases of acute promyelocytic leukemia. Toxicity of ATRA has been shown to be mild, consisting of headache, dry skin, dermatitis, and gastrointestinal disorders. We describe a case of scrotal ulceration with ATRA use in a Moroccan patient, an occurrence that has been rarely reported in the medical literature. The pathogenesis of scrotal ulceration remains unknown. Our experience indicates the importance of recognizing genital ulcers associated with ATRA in order that appropriate countermeasures can be taken.

  17. Are Gene Expression Microarray Analyses Reliable? A Review of Studies of Retinoic Acid Responsive Genes

    Institute of Scientific and Technical Information of China (English)

    PeterJ.vanderSpek; AndreasKremer; LynnMurry; MichaelG.Walker

    2003-01-01

    Microarray analyses of gene expression are widely used,but reports of the same analyses by different groups give widely divergent results,and raise questions regarding reproducibility and reliability.We take as an example recent published reports on microarray experiments that were designed to identify retinoic acid responsive genes.These reports show substantial differences in their results.In this article,we review the methodology,results,and potential causes of differences in these applications of microarrays.Finally,we suggest practices to improve the reliability and reproducibility of microarray experiments.

  18. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco;

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid...... preceded by an early RA-induced phosphorylation of p38 mitogen-activated protein kinase. UCP1 expression was not induced. CONCLUSION: The results indicate that RA directly favors remodeling of mature 3T3-L1 adipocytes in culture toward increased oxidative metabolism....

  19. Are Gene Expression Microarray Analyses Reliable? A Review of Studies of Retinoic Acid Responsive Genes

    Institute of Scientific and Technical Information of China (English)

    Peter J. van der Spek; Andreas Kremer; Lynn Murry; Michael G. Walker

    2003-01-01

    Microarray analyses of gene expression are widely used, but reports of the same analyses by different groups give widely divergent results, and raise questions regarding reproducibility and reliability. We take as an example recent published reports on microarray experiments that were designed to identify retinoic acid responsive genes. These reports show substantial differences in their results. In this article, we review the methodology, results, and potential causes of differences in these applications of microarrays. Finally, we suggest practices to improve the reliability and reproducibility of microarray experiments.

  20. Retinoic Acid-Related Orphan Receptors (RORs: Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    Directory of Open Access Journals (Sweden)

    Donald N. Cook

    2015-12-01

    Full Text Available In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs. We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.

  1. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    Science.gov (United States)

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  2. Retinoic acid signalling is activated in the postischemic heart and may influence remodelling.

    Directory of Open Access Journals (Sweden)

    Dusan Bilbija

    Full Text Available BACKGROUND: All-trans retinoic acid (atRA, an active derivative of vitamin A, regulates cell differentiation, proliferation and cardiac morphogenesis via transcriptional activation of retinoic acid receptors (RARs acting on retinoic acid response elements (RARE. We hypothesized that the retinoic acid (RA signalling pathway is activated in myocardial ischemia and postischemic remodelling. METHODS AND FINDINGS: Myocardial infarction was induced through ligating the left coronary artery in mice. In vivo cardiac activation of the RARs was measured by imaging RARE-luciferase reporter mice, and analysing expression of RAR target genes and proteins by real time RT-PCR and western blot. Endogenous retinoids in postinfarcted hearts were analysed by triple-stage liquid chromatography/tandem mass spectrometry. Cardiomyocytes (CM and cardiofibroblasts (CF were isolated from infarcted and sham operated RARE luciferase reporter hearts and monitored for RAR activity and expression of target genes. The effect of atRA on CF proliferation was evaluated by EdU incorporation. Myocardial infarction increased thoracic RAR activity in vivo (p<0.001, which was ascribed to the heart through ex vivo imaging (p = 0.002 with the largest signal 1 week postinfarct. This was accompanied by increased cardiac gene and protein expression of the RAR target genes retinol binding protein 1 (p = 0.01 for RNA, p = 0,006 for protein and aldehyde dehydrogenase 1A2 (p = 0.04 for RNA, p = 0,014 for protein, while gene expression of cytochrome P450 26B1 was downregulated (p = 0.007. Concomitantly, retinol accumulated in the infarcted zone (p = 0.02. CM and CF isolated from infarcted hearts had higher luminescence than those from sham operated hearts (p = 0.02 and p = 0.008. AtRA inhibited CF proliferation in vitro (p = 0.02. CONCLUSION: The RA signalling pathway is activated in postischemic hearts and may play a role in regulation of damage and

  3. Potential role of nuclear receptor ligand all-trans retinoic acids in the treatment of fungal keratitis

    Institute of Scientific and Technical Information of China (English)

    Hong-Yan; Zhou; Wei; Zhong; Hong; Zhang; Miao-Miao; Bi; Shuang; Wang; Wen-Song; Zhang

    2015-01-01

    ·Fungal keratitis(FK) is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids(ATRA)have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors.Retinoic acid receptor α(RAR α), retinoic acid receptor γ(RAR γ), and retinoid X receptor α(RXR α) are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK.

  4. Potential role of nuclear receptor ligand all-trans retinoic acids in the treatment of fungal keratitis

    Directory of Open Access Journals (Sweden)

    Hong-Yan Zhou

    2015-08-01

    Full Text Available Fungal keratitis (FK is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids (ATRA have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors. Retinoic acid receptor α (RAR α, retinoic acid receptor γ (RAR γ, and retinoid X receptor α (RXR α are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK.

  5. Caesium fluoride-promoted Stille coupling reaction: an efficient synthesis of 9Z-retinoic acid and its analogues using a practical building block.

    Science.gov (United States)

    Okitsu, Takashi; Iwatsuka, Kinya; Wada, Akimori

    2008-12-21

    A highly efficient and rapid total synthesis of 9Z-retinoic acid was accomplished by caesium fluoride-promoted Stille coupling reaction; using a common building block, 9Z-retinoic acid analogues were also prepared by the same method without isomerisation of the Z-double bond.

  6. All-trans retinoic acid stealth liposomes prevent the relapse of breast cancer arising from the cancer stem cells.

    Science.gov (United States)

    Li, Ruo-Jing; Ying, Xue; Zhang, Yan; Ju, Rui-Jun; Wang, Xiao-Xing; Yao, Hong-Juan; Men, Ying; Tian, Wei; Yu, Yang; Zhang, Liang; Huang, Ren-Jie; Lu, Wan-Liang

    2011-02-10

    The relapse of cancer is mostly due to the proliferation of cancer stem cells which could not be eliminated by a standard chemotherapy. A new kind of all-trans retinoic acid stealth liposomes was developed for preventing the relapse of breast cancer and for treating the cancer in combination with a cytotoxic agent, vinorelbine stealth liposomes. In vitro studies were performed on the human breast cancer MCF-7 and MDA-MB-231 cells. In vivo evaluations were performed on the newly established relapse model with breast cancer stem cells. Results showed that the particle size of all-trans retinoic acid stealth liposomes was approximately 80nm, and the encapsulation efficiency was >90%. Breast cancer stem cells were identified with the CD44(+)/CD24(-) phenotype and characterized with properties: resistant to cytotoxic agent, stronger capability of proliferation, and stronger capability of differentiation. Inhibitory effect of all-trans retinoic acid stealth liposomes was more potent in cancer stem cells than in cancer cells. The mechanisms were defined to be two aspects: arresting breast cancer stem cells at the G(0)/G(1) phase in mitosis, and inducing the differentiation of breast cancer stem cells. The cancer relapse model was successfully established by xenografting breast cancer stem cells into NOD/SCID mice, and the formation and growth of the xenografted tumors were significantly inhibited by all-trans retinoic acid stealth liposomes. The combination therapy of all-trans retinoic acid stealth liposomes with vinorelbine stealth liposomes produced the strongest inhibitory effect to the relapse tumor model. It could be concluded that all-trans retinoic acid stealth liposomes could be used for preventing the relapse of breast cancer by differentiating cancer stem cells and arresting the cell-cycle, and for treating breast cancer as a co-therapy, thus providing a novel strategy for treating breast cancer and preventing relapse derived from breast cancer stem cells.

  7. Regulation of retinoic acid receptor beta expression by peroxisome proliferator-activated receptor gamma ligands in cancer cells.

    Science.gov (United States)

    James, Sharon Y; Lin, Feng; Kolluri, Siva Kumar; Dawson, Marcia I; Zhang, Xiao-kun

    2003-07-01

    The peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor family member that can form a heterodimeric complex with retinoid X receptor (RXR) and initiate transcription of target genes. In this study, we have examined the effects of the PPAR gamma ligand ciglitazone and the RXR ligand SR11237 on growth and induction of retinoic acid receptor (RAR) beta expression in breast and lung cancer cells. Our results demonstrated that ciglitazone and SR11237 cooperatively inhibited the growth of ZR-75-1 and T-47D breast cancer and Calu-6 lung cancer cells. Gel shift analysis indicated that PPAR gamma, in the presence of RXR, formed a strong complex with a retinoic acid response element (beta retinoic acid response element) in the RAR beta promoter. In reporter gene assays, RXR ligands and ciglitazone, but not the PPAR gamma ligand 15d-PGJ(2), cooperatively promoted the transcriptional activity of the beta retinoic acid response element. Ciglitazone, but not 15d-PGJ(2), strongly induced RAR beta expression in human breast and lung cancer cell lines when used together with SR11237. The induction of RAR beta expression by the ciglitazone and SR11237 combination was diminished by a PPAR gamma-selective antagonist, bisphenol A diglycidyl ether. All-trans-retinoic acid or the combination of ciglitazone and SR11237 was able to induce RAR beta in all-trans-retinoic acid-resistant MDA-MB-231 breast cancer cells only when the orphan receptor chick ovalbumin upstream promoter transcription factor was expressed, or in the presence of the histone deacetylase inhibitor trichostatin A. These studies indicate the existence of a novel RAR beta-mediated signaling pathway of PPAR gamma action, which may provide a molecular basis for developing novel therapies involving RXR and PPAR gamma ligands in potentiating antitumor responses.

  8. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    DEFF Research Database (Denmark)

    Mercader, Josep; Madsen, Lise; Felipe, Francisco;

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid...... metabolism and related gene expression were analyzed in differentiated 3T3-L1 adipocytes after exposure to RA or vehicle. RESULTS: Treatment with RA resulted in decreased cellular triacylglycerol content and increased basal lipolysis and fatty acid oxidation rate. At the mRNA level, RA treatment led......), and to an increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  9. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice.

    Science.gov (United States)

    Huszar, Jessica M; Payne, Christopher J

    2013-01-01

    Impaired biogenesis of microRNAs disrupts spermatogenesis and leads to infertility in male mice. Spermatogonial differentiation is a key step in spermatogenesis, yet the mechanisms that control this event remain poorly defined. In this study, we discovered microRNA 146 (Mir146) to be highly regulated during spermatogonial differentiation, a process dependent on retinoic acid (RA) signaling. Mir146 transcript levels were diminished nearly 180-fold in differentiating spermatogonia when compared with undifferentiated spermatogonia. Luciferase assays revealed the direct binding of Mir146 to the 3' untranslated region of the mediator complex subunit 1 (Med1), a coregulator of retinoid receptors (RARs and RXRs). Overexpression of Mir146 in cultured undifferentiated spermatogonia reduced Med1 transcript levels, as well as those of differentiation marker kit oncogene (Kit). MED1 protein was also diminished. Conversely, inhibition of Mir146 increased the levels of Kit. When undifferentiated spermatogonia were exposed to RA, Mir146 was downregulated along with a marker for undifferentiated germ cells, zinc finger and BTB domain containing 16 (Zbtb16; Plzf); Kit was upregulated. Overexpression of Mir146 in RA-treated spermatogonia inhibited the upregulation of Kit, stimulated by retinoic acid gene 8 (Stra8), and spermatogenesis- and oogenesis-specific basic helix-loop-helix 2 (Sohlh2). Inhibition of Mir146 in RA-treated spermatogonia greatly enhanced the upregulation of these genes. We conclude that Mir146 modulates the effects of RA on spermatogonial differentiation.

  10. MicroRNA 146 (Mir146) Modulates Spermatogonial Differentiation by Retinoic Acid in Mice1

    Science.gov (United States)

    Huszar, Jessica M.; Payne, Christopher J.

    2012-01-01

    ABSTRACT Impaired biogenesis of microRNAs disrupts spermatogenesis and leads to infertility in male mice. Spermatogonial differentiation is a key step in spermatogenesis, yet the mechanisms that control this event remain poorly defined. In this study, we discovered microRNA 146 (Mir146) to be highly regulated during spermatogonial differentiation, a process dependent on retinoic acid (RA) signaling. Mir146 transcript levels were diminished nearly 180-fold in differentiating spermatogonia when compared with undifferentiated spermatogonia. Luciferase assays revealed the direct binding of Mir146 to the 3′ untranslated region of the mediator complex subunit 1 (Med1), a coregulator of retinoid receptors (RARs and RXRs). Overexpression of Mir146 in cultured undifferentiated spermatogonia reduced Med1 transcript levels, as well as those of differentiation marker kit oncogene (Kit). MED1 protein was also diminished. Conversely, inhibition of Mir146 increased the levels of Kit. When undifferentiated spermatogonia were exposed to RA, Mir146 was downregulated along with a marker for undifferentiated germ cells, zinc finger and BTB domain containing 16 (Zbtb16; Plzf); Kit was upregulated. Overexpression of Mir146 in RA-treated spermatogonia inhibited the upregulation of Kit, stimulated by retinoic acid gene 8 (Stra8), and spermatogenesis- and oogenesis-specific basic helix-loop-helix 2 (Sohlh2). Inhibition of Mir146 in RA-treated spermatogonia greatly enhanced the upregulation of these genes. We conclude that Mir146 modulates the effects of RA on spermatogonial differentiation. PMID:23221399

  11. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis

    Science.gov (United States)

    Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón; Carmona, Rita

    2017-01-01

    Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA), acting through nuclear retinoic acid receptors (RARs), is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system. PMID:28230720

  12. Adipocyte Derived Paracrine Mediators of Mammary Ductal Morphogenesis Controlled by Retinoic Acid Receptors

    Science.gov (United States)

    Marzan, Christine V.; Kupumbati, Tara S.; Bertran, Silvina P.; Samuels, TraceyAnn; Leibovitch, Boris; Lopez, Rafael Mira y; Ossowski, Liliana; Farias, Eduardo F.

    2010-01-01

    We generated a transgenic (Tg)-mouse model expressing a dominant negative-(DN)-RARα, (RARαG303E) under adipocytes-specific promoter to explore the paracrine role of adipocyte retinoic acid receptors (RARs) in mammary morphogenesis. Transgenic adipocytes had reduced level of RARα, β and γ, which coincided with a severely underdeveloped pubertal and mature ductal tree with profoundly decreased epithelial cell proliferation. Transplantation experiments of mammary epithelium and of whole mammary glands implicated a fat-pad dependent paracrine mechanism in the stunted phenotype of the epithelial-ductal tree. Co-cultures of primary adipocytes, or in vitro differentiated adipocyte cell line, with mammary epithelium showed that when activated, adipocyte RARs contribute to generation of secreted proliferative and pro-migratory factors. Gene expression microarrays revealed a large number of genes regulated by adipocyte-RARs. Among them, pleiotrophin (PTN) was identified as the paracrine effectors of epithelial cell migration. Its expression was found to be strongly inhibited by DN-RARα, an inhibition relieved by pharmacological doses of all-trans retinoic acid (atRA) in culture and in vivo. Moreover, adipocyte-PTHR, another atRA responsive gene, was found to be an up-stream regulator of PTN. Overall, these results support the existence of a novel paracrine loop controlled by adipocyte-RAR that regulates the mammary ductal tree morphogenesis. PMID:20974122

  13. Role of Vitamin A/Retinoic Acid in Regulation of Embryonic and Adult Hematopoiesis

    Directory of Open Access Journals (Sweden)

    Ana Cañete

    2017-02-01

    Full Text Available Vitamin A is an essential micronutrient throughout life. Its physiologically active metabolite retinoic acid (RA, acting through nuclear retinoic acid receptors (RARs, is a potent regulator of patterning during embryonic development, as well as being necessary for adult tissue homeostasis. Vitamin A deficiency during pregnancy increases risk of maternal night blindness and anemia and may be a cause of congenital malformations. Childhood Vitamin A deficiency can cause xerophthalmia, lower resistance to infection and increased risk of mortality. RA signaling appears to be essential for expression of genes involved in developmental hematopoiesis, regulating the endothelial/blood cells balance in the yolk sac, promoting the hemogenic program in the aorta-gonad-mesonephros area and stimulating eryrthropoiesis in fetal liver by activating the expression of erythropoietin. In adults, RA signaling regulates differentiation of granulocytes and enhances erythropoiesis. Vitamin A may facilitate iron absorption and metabolism to prevent anemia and plays a key role in mucosal immune responses, modulating the function of regulatory T cells. Furthermore, defective RA/RARα signaling is involved in the pathogenesis of acute promyelocytic leukemia due to a failure in differentiation of promyelocytes. This review focuses on the different roles played by vitamin A/RA signaling in physiological and pathological mouse hematopoiesis duddurring both, embryonic and adult life, and the consequences of vitamin A deficiency for the blood system.

  14. Processive pulses of retinoic acid propel asynchronous and continuous murine sperm production.

    Science.gov (United States)

    Hogarth, Cathryn A; Arnold, Samuel; Kent, Travis; Mitchell, Debra; Isoherranen, Nina; Griswold, Michael D

    2015-02-01

    The asynchronous cyclic nature of spermatogenesis is essential for continual sperm production and is one of the hallmarks of mammalian male fertility. While various mRNA and protein localization studies have indirectly implicated changing retinoid levels along testis tubules, no quantitative evidence for these changes across the cycle of the seminiferous epithelium currently exists. This study utilized a unique mouse model of induced synchronous spermatogenesis, localization of the retinoid-signaling marker STRA8, and sensitive quantification of retinoic acid concentrations to determine whether there are fluctuations in retinoid levels at each of the individual stages of germ cell differentiation and maturation to sperm. These data show that processive pulses of retinoic acid are generated during spermatogonial differentiation and are the likely trigger for cyclic spermatogenesis and allow us, for the first time, to understand how the cycle of the seminiferous epithelium is generated and maintained. In addition, this study represents the first direct quantification of a retinoid gradient controlling cellular differentiation in a postnatal tissue.

  15. Influence of suppressor gene p16 on retinoic acid inducing cancer cell A549 differentiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To investigate the role of suppressor gene p16 in the process of differential regulation of retinoic acid (RA) on the A549 lung cancer cells.Methods Tumor suppressor gene p16 was transferred into A549 cells and the cells were treated with all-trans retinoic acid (ATR) at the dosage of 5×10-6 mol/L for 4 d. After that, the proliferation and differentiation of A549 cells were examined by growth curve and cytometry analysis, the change of lung lineage-specific marker MUC1 was tested by immunohistochemical staining. Meanwhile, Western blot was used to observe the change of p16 protein expression in A549 cells treated with ATRA.Results ATRA could obviously inhibit the growth and induce the differentiation of A549 Cells that were transferred with p16 gene. There were more cells arrested in G1/G0 phase and the expression of MUG1 was markedly down-regulated than in control cells. The expression of p16 protein was up-regulated in A549 cells treated with ATRA.Conclusion Suppressor gene p16 could enhance the effects of RA and proliferated suppression and differential induction of A549 cells.

  16. Retinoic acid receptor regulation of epimorphic and homeostatic regeneration in the axolotl.

    Science.gov (United States)

    Nguyen, Matthew; Singhal, Pankhuri; Piet, Judith W; Shefelbine, Sandra J; Maden, Malcolm; Voss, S Randal; Monaghan, James R

    2017-02-15

    Salamanders are capable of regenerating amputated limbs by generating a mass of lineage-restricted cells called a blastema. Blastemas only generate structures distal to their origin unless treated with retinoic acid (RA), which results in proximodistal (PD) limb duplications. Little is known about the transcriptional network that regulates PD duplication. In this study, we target specific retinoic acid receptors (RARs) to either PD duplicate (RA treatment or RARγ agonist) or truncate (RARβ antagonist) regenerating limbs. RARE-EGFP reporter axolotls showed divergent reporter activity in limbs undergoing PD duplication versus truncation, suggesting differences in patterning and skeletal regeneration. Transcriptomics identified expression patterns that explain PD duplication, including upregulation of proximal homeobox gene expression and silencing of distal-associated genes, whereas limb truncation was associated with disrupted skeletal differentiation. RARβ antagonism in uninjured limbs induced a loss of skeletal integrity leading to long bone regression and loss of skeletal turnover. Overall, mechanisms were identified that regulate the multifaceted roles of RARs in the salamander limb including regulation of skeletal patterning during epimorphic regeneration, skeletal tissue differentiation during regeneration, and homeostatic regeneration of intact limbs.

  17. Tbx1 and Brn4 regulate retinoic acid metabolic genes during cochlear morphogenesis

    Directory of Open Access Journals (Sweden)

    Braunstein Evan M

    2009-05-01

    Full Text Available Abstract Background In vertebrates, the inner ear is comprised of the cochlea and vestibular system, which develop from the otic vesicle. This process is regulated via inductive interactions from surrounding tissues. Tbx1, the gene responsible for velo-cardio-facial syndrome/DiGeorge syndrome in humans, is required for ear development in mice. Tbx1 is expressed in the otic epithelium and adjacent periotic mesenchyme (POM, and both of these domains are required for inner ear formation. To study the function of Tbx1 in the POM, we have conditionally inactivated Tbx1 in the mesoderm while keeping expression in the otic vesicle intact. Results Conditional mutants (TCre-KO displayed malformed inner ears, including a hypoplastic otic vesicle and a severely shortened cochlear duct, indicating that Tbx1 expression in the POM is necessary for proper inner ear formation. Expression of the mesenchyme marker Brn4 was also lost in the TCre-KO. Brn4-;Tbx1+/-embryos displayed defects in growth of the distal cochlea. To identify a potential signal from the POM to the otic epithelium, expression of retinoic acid (RA catabolizing genes was examined in both mutants. Cyp26a1 expression was altered in the TCre-KO, while Cyp26c1 showed reduced expression in both TCre-KO and Brn4-;Tbx1+/- embryos. Conclusion These results indicate that Tbx1 expression in the POM regulates cochlear outgrowth potentially via control of local retinoic acid activity.

  18. Effect of Retinoic acid on Platelet-derived Growth Factor and Lung Development in Newborn Rats

    Institute of Scientific and Technical Information of China (English)

    陈红兵; 常立文; 刘汉楚; 容志惠; 祝华平; 张谦慎; 李文斌

    2004-01-01

    Summary: The influence of platelet-derived growth factor (PDGF) on lung development in newborn rats and the effect of retinoic acid (RA) on PDGF in lung development were investigated. Newborn Sprague-Dawley (SD) rats were randomly assigned to two groups: control group and RA group.The rats in RA group was intraperitoneally injected with all trans-retinoic acid (500 μg/kg every day) for consecutive 3 days after birth, while those in the control group were not subjected to intervention, Immunohistochemical assay was performed to locate the expression of PDGF. mRNA levels of PDGF were measured by reverse transcription polymerase chain reaction (RT-PCR) at age of 1, 3, 5, 7, 10, 14, 21 days. The method of radial alveolar counts (RAC) was used to measure the amount of the alveoli of the lungs. It was found that with increasing days, levels of PDGF-A and PDGF-B changed to verying degrees. RA could elevate significantly the expression levels of PDGF A mRNA and protein (P<0.01), but not affect the expression levels of PDGF-B mRNA and pro tein markedly (P>0.05). It is suggested that PDGF might play an important role in lung development. RA can stimulate lung development through increasing the expression levels of PDGF-A mRNA and protein.

  19. DEVELOPMENT OF A FORMULATION WITH RETINOIC ACID FOR STRETCH MARKS IS HIS PRIMARY STABILITY

    Directory of Open Access Journals (Sweden)

    F. G. S. Paz

    2017-02-01

    Full Text Available Stretch marks are undesirable skin changes, defined as visible linear scars that are arranged parallel to each other and may be rare or numerous and indicate an injury to the skin because there is an elastic localized imbalance. There is evidence that their appearance is multifactorial, not only mechanical and endocrine factors, but genetic and familial predisposition. The highest incidence occurs among females, aged 12 and 14, and children 12 to 15 years. The objective of this study was to develop a formulation containing the Retinoic Acid in the concentration of 2%, based on preliminary studies of stability, so that proves a better effectiveness of this asset in restoring the appearance of striated skin, seeking to improve the physical appearance and psychological people affected by stretch. As part of the study we developed we used the tests of physical and chemical stability, such as organoleptic characteristics, pH, viscosity, thermal stress, and centrifugation cycle freezes and thaws. The applied tests show that retinoic acid behaves within the standards required for the formulation development.

  20. Retinoic acid stimulates interstitial collagenase messenger ribonucleic acid in osteosarcoma cells

    Science.gov (United States)

    Connolly, T. J.; Clohisy, J. C.; Shilt, J. S.; Bergman, K. D.; Partridge, N. C.; Quinn, C. O.

    1994-01-01

    The rat osteoblastic osteosarcoma cell line UMR 106-01 secretes interstitial collagenase in response to retinoic acid (RA). The present study demonstrates by Northern blot analysis that RA causes an increase in collagenase messenger RNA (mRNA) at 6 h, which is maximal at 24 h (20.5 times basal) and declines toward basal level by 72 h. This stimulation is dose dependent, with a maximal response at 5 x 10(-7) M RA. Nuclear run-on assays show a greater than 20-fold increase in the rate of collagenase mRNA transcription between 12-24 h after RA treatment. Cycloheximide blocks RA stimulation of collagenase mRNA, demonstrating the need for de novo protein synthesis. RA not only causes an increase in collagenase secretion, but is known to decrease collagen synthesis in UMR 106-01 cells. In this study, the increase in collagenase mRNA is accompanied by a concomitant decrease in the level of alpha 1(I) procollagen mRNA, which is maximal at 24 h (70% decrease), with a return to near-control levels by 72 h. Nuclear run-on assays demonstrated that the decrease in alpha 1 (I) procollagen expression does not have a statistically significant transcriptional component. RA did not statistically decrease the stability of alpha 1 (I) procollagen mRNA (calculated t1/2 = 8.06 +/- 0.30 and 9.01 +/- 0.62 h in the presence and absence of RA, respectively). However, transcription and stability together probably contribute to the major decrease in stable alpha 1 (I) procollagen mRNA observed. Cycloheximide treatment inhibits basal level alpha 1 (I) procollagen mRNA accumulation, demonstrating the need for on-going protein synthesis to maintain basal expression of this gene.

  1. Retinoic acid receptor-dependent, cell-autonomous, endogenous retinoic acid signaling and its target genes in mouse collecting duct cells.

    Science.gov (United States)

    Wong, Yuen Fei; Wilson, Patricia D; Unwin, Robert J; Norman, Jill T; Arno, Matthew; Hendry, Bruce M; Xu, Qihe

    2012-01-01

    Vitamin A is necessary for kidney development and has also been linked to regulation of solute and water homeostasis and to protection against kidney stone disease, infection, inflammation, and scarring. Most functions of vitamin A are mediated by its main active form, all-trans retinoic acid (tRA), which binds retinoic acid receptors (RARs) to modulate gene expression. We and others have recently reported that renal tRA/RAR activity is confined to the ureteric bud (UB) and collecting duct (CD) cell lineage, suggesting that endogenous tRA/RARs primarily act through regulating gene expression in these cells in embryonic and adult kidney, respectively. To explore target genes of endogenous tRA/RARs, we employed the mIMCD-3 mouse inner medullary CD cell line, which is a model of CD principal cells and exhibits constitutive tRA/RAR activity as CD principal cells do in vivo. Combining antagonism of RARs, inhibition of tRA synthesis, exposure to exogenous tRA, and gene expression profiling techniques, we have identified 125 genes as candidate targets and validated 20 genes that were highly regulated (Dhrs3, Sprr1a, and Ppbp were the top three). Endogenous tRA/RARs were more important in maintaining, rather than suppressing, constitutive gene expression. Although many identified genes were expressed in UBs and/or CDs, their exact functions in this cell lineage are still poorly defined. Nevertheless, gene ontology analysis suggests that these genes are involved in kidney development, renal functioning, and regulation of tRA signaling. A rigorous approach to defining target genes for endogenous tRA/RARs has been established. At the pan-genomic level, genes regulated by endogenous tRA/RARs in a CD cell line have been catalogued for the first time. Such a catalogue will guide further studies on molecular mediators of endogenous tRA/RARs during kidney development and in relation to renal defects associated with vitamin A deficiency.

  2. Heterodimeric BMP-2/7 antagonizes the inhibition of all-trans retinoic acid and promotes the osteoblastogenesis

    NARCIS (Netherlands)

    Bi, W.; Gu, Z.; Zheng, Y.; Zhang, X.; Guo, J.; Wu, G.

    2013-01-01

    Objectives Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized th

  3. Analysis of the interplay between all-trans retinoic acid and histone deacetylase inhibitors in leukemic cells

    DEFF Research Database (Denmark)

    Noack, Katrin; Mahendrarajah, Nisintha; Hennig, Dorle

    2017-01-01

    The treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) induces granulocytic differentiation. This process renders APL cells resistant to cytotoxic chemotherapies. Epigenetic regulators of the histone deacetylases (HDACs) family, which comprise four classes (I–IV),...

  4. Craniosynostosis and Multiple Skeletal Anomalies in Humans and Zebrafish Result from a Defect in the Localized Degradation of Retinoic Acid

    NARCIS (Netherlands)

    Laue, Kathrin; Pogoda, Hans-Martin; Daniel, Philip B.; van Haeringen, Arie; Alanay, Yasemin; von Ameln, Simon; Rachwalski, Martin; Morgan, Tim; Gray, Mary J.; Breuning, Martijn H.; Sawyer, Gregory M.; Sutherland-Smith, Andrew J.; Nikkels, Peter G.; Kubisch, Christian; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias; Robertson, Stephen P.

    2011-01-01

    Excess exogenous retinoic acid (RA) has been well documented to have teratogenic effects in the limb and craniofacial skeleton. Malformations that have been observed in this context include craniosynostosis, a common developmental defect of the skull that occurs in 1 in 2500 individuals and results

  5. Heterodimeric BMP-2/7 antagonizes the inhibition of all-trans retinoic acid and promotes the osteoblastogenesis

    NARCIS (Netherlands)

    Bi, W.; Gu, Z.; Zheng, Y.; Zhang, X.; Guo, J.; Wu, G.

    2013-01-01

    Objectives Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized th

  6. Effects of synthetic retinoids and retinoic acid isomers on the expression of alkaline phosphatase in F9 teratocarcinoma cells.

    Science.gov (United States)

    Gianni, M; Zanotta, S; Terao, M; Garattini, S; Garattini, E

    1993-10-15

    Expression of ALP in F9 teratocarcinoma cells is induced by all-trans retinoic acid (ATRA) (Gianni' et al., Biochem. J. 274: 673-678, 1991). The specific ligand for retinoic acid related receptors (RXRs), 9-cis retinoic acid (9-cis RA), and three synthetic analogs binding to the alpha, beta and gamma forms of the retinoic acid receptors (RARs), AM580, CD2019, and CD437, were used to study their effects on alkaline phosphatase (ALP) enzymatic activity and mRNA levels. At concentrations close to the Kd for their respective receptors, 9-cis RA, AM580 (the RAR alpha agonist) and CD437 (the RAR gamma agonist) clearly upregulate the expression of the ALP gene, whereas the effect of CD2019 (the RAR beta agonist) is very modest. A specific inhibitor of the RAR alpha, Ro 41-5253, completely blocks the induction of ALP triggered by AM580, while it has minor effects on the upregulation caused by ATRA, 9-cis RA, CD437 and CD2019. The induction of ALP observed with the various retinoids is inhibited by the contemporaneous treatment with dibutyryl cAMP. The levels of the RAR alpha and gamma transcripts are unaltered, while RAR beta mRNAs are induced by ATRA, AM580, CD437 and to a lower extent by 9-cis RA and CD2019.

  7. The cell cycle, cell death, and cell morphology during retinoic acid-induced differentiation of embryonal carcinoma cells

    NARCIS (Netherlands)

    Mummery, C.L.; Brink, C.E. van den; Saag, P.T. van der; Laat, S.W. de

    1984-01-01

    Abstract Time-lapse films were made of PC13 embryonal carcinoma cells, synchronized by mitotic shake off, in the absence and presence of retinoic acid. Using a method based on the transition probability model, cell cycle parameters were determined during the first five generations following synchron

  8. 9-CIS-RETINOIC ACID REPRESSES ESTROGEN-INDUCED EXPRESSION OF THE VERY-LOW-DENSITY APOLIPOPROTEIN-II GENE

    NARCIS (Netherlands)

    SCHIPPERS, IJ; KLOPPENBURG, M; SNIPPE, L; AB, G

    1994-01-01

    The chicken very low density apolipoprotein II (apoVLDLII) gene is estrogen-inducible and specifically expressed in liver. We examined the possible involvement of the retinoid X receptor (RXR) and its ligand 9-cis-retinoic acid (9-cis-RA) in the activation of the apoVLDLII promoter. We first concent

  9. Retinoic acid primes human dendritic cells to induce gut-homing, IL-10-producing regulatory T cells

    NARCIS (Netherlands)

    Bakdash, G.; Vogelpoel, L.T.; Capel, T.M. van; Kapsenberg, M.L.; Jong, E.C. de

    2015-01-01

    The vitamin A metabolite all-trans retinoic acid (RA) is an important determinant of intestinal immunity. RA primes dendritic cells (DCs) to express CD103 and produce RA themselves, which induces the gut-homing receptors alpha4beta7 and CCR9 on T cells and amplifies transforming growth factor (TGF)-

  10. A CYCLIC-AMP RESPONSE ELEMENT IS INVOLVED IN RETINOIC ACID-DEPENDENT RAR-BETA-2 PROMOTER ACTIVATION

    NARCIS (Netherlands)

    KRUYT, FAE; FOLKERS, G; VANDENBRINK, CE; VANDERSAAG, PT; Kruyt, Frank

    1992-01-01

    Activation of the retinoic acid receptor (RAR) beta2 promoter is known to be mediated by a RA response element located in the proximity of the TATA-box. By deletion studies in P19 embryonal carcinoma cells we have analyzed the RARbeta2 promoter for the presence of additional regulatory elements. We

  11. 9-CIS-RETINOIC ACID REPRESSES ESTROGEN-INDUCED EXPRESSION OF THE VERY-LOW-DENSITY APOLIPOPROTEIN-II GENE

    NARCIS (Netherlands)

    SCHIPPERS, IJ; KLOPPENBURG, M; SNIPPE, L; AB, G

    1994-01-01

    The chicken very low density apolipoprotein II (apoVLDLII) gene is estrogen-inducible and specifically expressed in liver. We examined the possible involvement of the retinoid X receptor (RXR) and its ligand 9-cis-retinoic acid (9-cis-RA) in the activation of the apoVLDLII promoter. We first concent

  12. Phytanic acid and docosahexaenoic acid increase the metabolism of all-trans-retinoic acid and CYP26 gene expression in intestinal cells.

    Science.gov (United States)

    Lampen, A; Meyer, S; Nau, H

    2001-10-31

    Retinoids are essential for growth and cell differentiation of epithelial tissues. The effects of the food compounds phytol, the phytol metabolite phytanic acid, and the fatty acid docosahexaenoic acid (DHA) on the retinoid signaling pathway in intestinal cells were studied. Phytol inhibited the formation of all-trans-retinoic acid (RA) from dietary retinol in intestinal cells. Phytanic acid, a known retinoic X receptor (RXRalpha) and peroxisome proliferator activating receptor (PPARalpha) activator, also activated PPARdelta, and to a lesser degree PPARgamma, in a transactivation assay. Phytanic acid had no effect on intestinal RA hydroxylase CYP26 (also named P450RAI) gene expression and metabolism of all-trans-RA in intestinal Caco-2 cells. However, in combination with retinoic acid receptor (RAR)-ligands (all-trans-RA or synthetic Am580) phytanic acid enhanced the induction of CYP26 and RA-metabolism in comparison to treatments with all-trans-RA or Am580 alone. Also treatment with DHA did not affect CYP26 gene expression and RA-metabolism but cotreatment of the cells with DHA and all-trans-RA or Am580 enhanced the induction of CYP26, in comparison to the induction caused by all-trans-RA or Am580 alone. This study indicates that food compounds such as phytanic acid and DHA that are RXR-agonists and have an impact on intestinal CYP26 gene expression and metabolism of all-trans-RA in intestinal cells.

  13. Heterodimeric BMP-2/7 antagonizes the inhibition of all-trans retinoic acid and promotes the osteoblastogenesis.

    Directory of Open Access Journals (Sweden)

    Wenjuan Bi

    Full Text Available OBJECTIVES: Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized that heterodimeric bone morphogenetic protein-2/7 could antagonize all-trans retinoic acid and enhance osteoblastogenesis, with an aim to accelerate and enhance bone regeneration and implant osteointegration. MATERIALS AND METHODS: We applied 5 ng/ml or 50 ng/ml bone morphogenetic protein-2/7 to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line that was inhibited by 1 µM all-trans retinoic acid. We evaluated the efficacy by assessing cell numbers (proliferation, alkaline phosphatase activity (a marker for early differentiation, osteocalcin (a marker for late differentiation, calcium deposition (a marker for final mineralization and the expression of osteoblastogenic genes (such as Runx2, Collagen Ia, alkaline phosphatase and osteocalcin at different time points. RESULTS: All-trans retinoic acid significantly inhibited the expression of all the tested osteoblastogenic genes and proteins except alkaline phosphatase activity. In the presence of ATRA, 50 ng/ml bone morphogenetic protein-2/7 not only completely restored but also significantly enhanced all the osteoblastogenic genes and proteins. On the 28(th day, mineralization was completely inhibited by all-trans retinoic acid. In contrast, 50 ng/ml BMP-2/7 could antagonize ATRA and significantly enhance the mineralization about 2.5 folds in comparison with the control treatment (no ATRA, no BMP2/7. CONCLUSIONS: Heterodimeric bone morphogenetic protein-2/7 bears a promising application potential to significantly promote bone regeneration and implant osteointegration for the patients with hypervitaminosis A and alcoholism.

  14. An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoic acid homeostasis.

    Science.gov (United States)

    Tonk, Elisa C M; Pennings, Jeroen L A; Piersma, Aldert H

    2015-08-01

    Developmental toxicity can be caused through a multitude of mechanisms and can therefore not be captured through a single simple mechanistic paradigm. However, it may be possible to define a selected group of overarching mechanisms that might allow detection of the vast majority of developmental toxicants. Against this background, we have explored the usefulness of retinoic acid mediated regulation of neural tube and axial patterning as a general mechanism that, when perturbed, may result in manifestations of developmental toxicity that may cover a large part of malformations known to occur in experimental animals and in man. Through a literature survey, we have identified key genes in the regulation of retinoic acid homeostasis, as well as marker genes of neural tube and axial patterning, that may be used to detect developmental toxicants in in vitro systems. A retinoic acid-neural tube/axial patterning adverse outcome pathway (RA-NTA AOP) framework was designed. The framework was tested against existing data of flusilazole exposure in the rat whole embryo culture, the zebrafish embryotoxicity test, and the embryonic stem cell test. Flusilazole is known to interact with retinoic acid homeostasis, and induced common and unique NTA marker gene changes in the three test systems. Flusilazole-induced changes were similar in directionality to gene expression responses after retinoic acid exposure. It is suggested that the RA-NTA framework may provide a general tool to define mechanistic pathways and biomarkers of developmental toxicity that may be used in alternative in vitro assays for the detection of embryotoxic compounds.

  15. Liver-specific cytochrome P450 CYP2C22 is a direct target of retinoic acid and a retinoic acid-metabolizing enzyme in rat liver.

    Science.gov (United States)

    Qian, Linxi; Zolfaghari, Reza; Ross, A Catharine

    2010-07-01

    Several cytochrome P450 (CYP) enzymes catalyze the C4-hydroxylation of retinoic acid (RA), a potent inducer of cell differentiation and an agent in the treatment of several diseases. Here, we have characterized CYP2C22, a member of the rat CYP2C family with homology to human CYP2C8 and CYP2C9. CYP2C22 was expressed nearly exclusively in hepatocytes, where it was one of the more abundant mRNAs transcripts. In H-4-II-E rat hepatoma cells, CYP2C22 mRNA was upregulated by all-trans (at)-RA, and Am580, a nonmetabolizable analog of at-RA. In comparison, in primary human hepatocytes, at-RA increased CYP2C9 but not CYP2C8 mRNA. Analysis of the CYP2C22 promoter region revealed a RA response element (5'-GGTTCA-(n)5-AGGTCA-3') in the distal flanking region, which bound the nuclear hormone receptors RAR and RXR and which was required for transcriptional activation response of this promoter to RA in CYP2C22-luciferase-transfected RA-treated HepG2 cells. The cDNA-expressed CYP2C22 protein metabolized [3H]at-RA to more polar metabolites. While long-chain polyunsaturated fatty acids competed, 9-cis-RA was a stronger competitor. Our studies demonstrate that CYP2C22 is a high-abundance, retinoid-inducible, hepatic P450 with the potential to metabolize at-RA, providing additional insight into the role of the CYP2C gene family in retinoid homeostasis.

  16. Retinoic acid is enriched in Hensen's node and is developmentally regulated in the early chicken embryo.

    Science.gov (United States)

    Chen, Y; Huang, L; Russo, A F; Solursh, M

    1992-11-01

    Retinoic acid (RA) has been considered as a potential morphogen in the chicken limb and has also been suggested to be involved in early embryonic development. On the basis of biological activity, previous reports suggest that Hensen's node, the anatomical equivalent in the chicken of the Spemann's organizer, may contain RA. Here, by using a molecular assay system, we demonstrate that Hensen's node contains retinoids in a concentration approximately 20 times more than that in the neighboring tissues. Furthermore, stage 6 Hensen's node contains approximately 3 times more retinoid than that of stage 4 embryos. These endogenous retinoids may establish a concentration gradient from Hensen's node to adjacent tissues and play a role in establishing the primary embryonic axis in the vertebrate. The results also suggest that the retinoid concentration in Hensen's node is developmentally regulated.

  17. Induction of cranial and posterior trunk neural crest by exogenous retinoic acid in zebrafish

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Retinoic acid (RA) plays an important role in development of vertebrate embryos. We demonstrate impacts of exogenous RA on the formation of neural crest cells in zebrafish using specific neural crest markers sox9b and crestin. Treatment with all-trans RA at 10?7 mmol/L at 50% epiboly induces sox9b expression in the forebrain and crestin expression in the forebrain and midbrain, resulting in significant increase of pigment cells in the head derived from the cranial neural crest. In addition, RA treatment induces expression of sox9b and crestin in the caudal marginal cells of the neuroectoderm during early segmentation. Earlier commitment of these cells to the neural crest fate in the posterior margins leads to abnormal development of the posterior body, probably by preventing mingling of ventral derived and dorsal-derived cells during the formation of the tailbud.

  18. Cullin 3 mediates SRC-3 ubiquitination and degradation to control the retinoic acid response.

    Science.gov (United States)

    Ferry, Christine; Gaouar, Samia; Fischer, Benoit; Boeglin, Marcel; Paul, Nicodeme; Samarut, Eric; Piskunov, Aleksandr; Pankotai-Bodo, Gabriella; Brino, Laurent; Rochette-Egly, Cecile

    2011-12-20

    SRC-3 is an important coactivator of nuclear receptors including the retinoic acid (RA) receptor α. Most of SRC-3 functions are facilitated by changes in the posttranslational code of the protein that involves mainly phosphorylation and ubiquitination. We recently reported that SRC-3 is degraded by the proteasome in response to RA. Here, by using an RNAi E3-ubiquitin ligase entry screen, we identified CUL-3 and RBX1 as components of the E3 ubiquitin ligase involved in the RA-induced ubiquitination and subsequent degradation of SRC-3. We also show that the RA-induced ubiquitination of SRC-3 depends on its prior phosphorylation at serine 860 that promotes binding of the CUL-3-based E3 ligase in the nucleus. Finally, phosphorylation, ubiquitination, and degradation of SRC-3 cooperate to control the dynamics of transcription. In all, this process participates to the antiproliferative effect of RA.

  19. Antagonism between retinoic acid and fibroblast growth factor signaling during limb development.

    Science.gov (United States)

    Cunningham, Thomas J; Zhao, Xianling; Sandell, Lisa L; Evans, Sylvia M; Trainor, Paul A; Duester, Gregg

    2013-05-30

    The vitamin A metabolite retinoic acid (RA) provides patterning information during vertebrate embryogenesis, but the mechanism through which RA influences limb development is unclear. During patterning of the limb proximodistal axis (upper limb to digits), avian studies suggest that a proximal RA signal generated in the trunk antagonizes a distal fibroblast growth factor (FGF) signal. However, mouse and zebrafish genetic studies suggest that loss of RA suppresses forelimb initiation. Here, using genetic and pharmacological approaches, we demonstrate that limb proximodistal patterning is not RA dependent, thus indicating that RA-FGF antagonism does not occur along the proximodistal axis of the limb. Instead, our studies show that RA-FGF antagonism acts prior to limb budding along the anteroposterior axis of the trunk lateral plate mesoderm to provide a patterning cue that guides formation of the forelimb field. These findings reconcile disparate ideas regarding RA-FGF antagonism and provide insight into how endogenous RA programs the early embryo.

  20. Antagonism between Retinoic Acid and Fibroblast Growth Factor Signaling during Limb Development

    Directory of Open Access Journals (Sweden)

    Thomas J. Cunningham

    2013-05-01

    Full Text Available The vitamin A metabolite retinoic acid (RA provides patterning information during vertebrate embryogenesis, but the mechanism through which RA influences limb development is unclear. During patterning of the limb proximodistal axis (upper limb to digits, avian studies suggest that a proximal RA signal generated in the trunk antagonizes a distal fibroblast growth factor (FGF signal. However, mouse and zebrafish genetic studies suggest that loss of RA suppresses forelimb initiation. Here, using genetic and pharmacological approaches, we demonstrate that limb proximodistal patterning is not RA dependent, thus indicating that RA-FGF antagonism does not occur along the proximodistal axis of the limb. Instead, our studies show that RA-FGF antagonism acts prior to limb budding along the anteroposterior axis of the trunk lateral plate mesoderm to provide a patterning cue that guides formation of the forelimb field. These findings reconcile disparate ideas regarding RA-FGF antagonism and provide insight into how endogenous RA programs the early embryo.

  1. The histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia.

    Science.gov (United States)

    Arteaga, Maria Francisca; Mikesch, Jan-Henrik; Qiu, Jihui; Christensen, Jesper; Helin, Kristian; Kogan, Scott C; Dong, Shuo; So, Chi Wai Eric

    2013-03-18

    While all-trans retinoic acid (ATRA) treatment in acute promyelocytic leukemia (APL) has been the paradigm of targeted therapy for oncogenic transcription factors, the underlying mechanisms remain largely unknown, and a significant number of patients still relapse and become ATRA resistant. We identified the histone demethylase PHF8 as a coactivator that is specifically recruited by RARα fusions to activate expression of their downstream targets upon ATRA treatment. Forced expression of PHF8 resensitizes ATRA-resistant APL cells, whereas its downregulation confers resistance. ATRA sensitivity depends on the enzymatic activity and phosphorylation status of PHF8, which can be pharmacologically manipulated to resurrect ATRA sensitivity to resistant cells. These findings provide important molecular insights into ATRA response and a promising avenue for overcoming ATRA resistance.

  2. MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation.

    Science.gov (United States)

    Stallings, Raymond L; Foley, Niamh H; Bray, Isabella M; Das, Sudipto; Buckley, Patrick G

    2011-10-01

    Many neuroblastoma cell lines can be induced to differentiate into a mature neuronal cell type with retinoic acid and other compounds, providing an important model system for elucidating signalling pathways involved in this highly complex process. Recently, it has become apparent that miRNAs, which act as regulators of gene expression at a post-transcriptional level, are differentially expressed in differentiating cells and play important roles governing many aspects of this process. This includes the down-regulation of DNA methyltransferases that cause the de-methylation and transcriptional activation of numerous protein coding gene sequences. The purpose of this article is to review involvement of miRNAs and DNA methylation alterations in the process of neuroblastoma cell differentiation. A thorough understanding of miRNA and genetic pathways regulating neuroblastoma cell differentiation potentially could lead to targeted therapies for this disease.

  3. Retinoic acid as a survival factor in neuronal development of the grasshopper, Locusta migratoria.

    Science.gov (United States)

    Sukiban, Jeyathevy; Bräunig, Peter; Mey, Jörg; Bui-Göbbels, Katrin

    2014-11-01

    Based on experience with cell cultures of adult insect neurons, we develop a serum-free culture system for embryonic locust neurons. Influences of trophic substances on survival and neurite outgrowth of developing neurons are investigated. For the first time, a positive trophic effect of 9-cis retinoic acid (9-cis RA) was shown in vitro on embryonic neurons of an insect. We observed longer cell survival of 50 % developmental stage neurons in cultures supplemented with 0.3 nM 9-cis RA. Furthermore, an influence on neuron morphology was revealed, as the addition of 9-cis RA to cell culture medium led to an increase in the number of neurites per cell. Although an RA receptor gene, LmRXR (Locusta migratoria retinoid X receptor), was expressed in the central nervous system throughout development, the influence of 9-cis RA on neuronal survival and outgrowth was restricted to 50 % stage embryonic cells.

  4. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development.

    Science.gov (United States)

    Bohnsack, Brenda L; Kahana, Alon

    2013-01-15

    Craniofacial and ocular morphogenesis require proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development.

  5. Retinoic acid receptor agonists regulate expression of ATP-binding cassette transporter G1 in macrophages.

    Science.gov (United States)

    Ayaori, Makoto; Yakushiji, Emi; Ogura, Masatsune; Nakaya, Kazuhiro; Hisada, Tetsuya; Uto-Kondo, Harumi; Takiguchi, Shunichi; Terao, Yoshio; Sasaki, Makoto; Komatsu, Tomohiro; Iizuka, Maki; Yogo, Makiko; Uehara, Yoshinari; Kagechika, Hiroyuki; Nakanishi, Tsuyoshi; Ikewaki, Katsunori

    2012-04-01

    ABC transporter G1 (ABCG1) plays a pivotal role in HDL-mediated cholesterol efflux and atherogenesis. We investigated whether, and how, retinoic acid receptors (RARs) regulate ABCG1 expression in macrophages. All-trans retinoic acid (ATRA), an RAR ligand, increased ABCG1 protein levels and apoA-I/HDL-mediated cholesterol efflux from the macrophages. Both ATRA and other RAR agonists, TTNPB and Am580, increased major transcripts driven by promoter B upstream of exon 5, though minor transcripts driven by promoter A upstream of exon 1 were only increased by ATRA. The stimulatory effects of ATRA on ABCG1 expression were completely abolished in the presence of RAR/RXR antagonists but were only partially canceled in the presence of an LXR antagonist. Adenovirus with overexpressed oxysterol sulfotransferase abolished the LXR pathway, as previously reported, and ATRA-responsiveness in ABCA1/ABCG1 expressions were respectively attenuated by 38 and 22% compared to the control virus. Promoter assays revealed that ABCG1 levels were regulated more by promoter B than promoter A, and ATRA activated promoter B in a liver X receptor-responsive element (LXRE)-dependent manner. Further, LXRE-B in intron 7, but not LXRE-A in intron 5, enhanced ATRA responsiveness under overexpression of all RAR isoforms-RARα/β/γ. In contrast, the activation of promoter B by TTNPB depended on LXRE-B and RARα, but not on RARβ/γ. Finally, chromatin immunoprecipitation and gel-shift assays revealed a specific and direct repeat 4-dependent binding of RARα to LXRE-B. In conclusion, RAR ligands increase ABCA1/G1 expression and apoA-I/HDL-mediated cholesterol efflux from macrophages, and modulate ABCG1 promoter activity via LXRE-dependent mechanisms.

  6. Alterations of intercellular junctions in peritoneal mesothelial cells from patients undergoing dialysis: effect of retinoic Acid.

    Science.gov (United States)

    Retana, Carmen; Sanchez, Elsa; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas, Jesus; Cruz, Carmen; Vital, Socorro; Reyes, Jose L

    2015-01-01

    Dialysis patients are classified according to their peritoneal permeability as low transporter (LT, low solute permeability) or high transporter (HT, high solute permeability). Tight junction (TJ) proteins are critical to maintain ions, molecules and water paracellular transport through peritoneum. Exposure to peritoneal dialysis solutions causes damage to TJ in human peritoneal mesothelial cells (HPMCs). We analyzed the quantity, distribution and function of TJ proteins: claudin-1, -2 and -8, ZO-1 and occludin, in HPMC cultures from LT and HT patients. Since all-trans retinoic acid (ATRA) might modify the expression of TJ proteins, we studied its effect on HPMCs. Control HPMCs were isolated from human omentum, while HT or LT cells were obtained from dialysis effluents. Cells were cultured in presence of ATRA 0, 50 or 100 nM. Transepithelial electrical resistance (TER) measurement, immunostaining and Western blot analyses were performed. HT exhibited lower TER than control and LT monolayers. Immunofluorescence for TJ was weak and discontinuous along the cell contour, in LT and HT. Furthermore, claudin-1, occludin and ZO-1 expressions were decreased. In all groups, claudin-2 was localized at nuclei. We observed that ATRA improved TJ distribution and increased TJ expression in HT. This retinoid did not modify claudin-2 and -8 expressions. All-trans retinoic acid decreased TER in HT, but had no effect in LT. Tight junctions were altered in HPMCs from dialyzed patients. The HT monolayer has lower TER than LT, which might be associated with the peritoneal permeability in these patients. ATRA might be a therapeutic alternative to maintain mesothelial integrity, since it improved TJ localization and expression. Copyright © 2015 International Society for Peritoneal Dialysis.

  7. Fungistatic activity of all-trans retinoic acid against Aspergillus fumigatus and Candida albicans

    Directory of Open Access Journals (Sweden)

    Campione E

    2016-04-01

    Full Text Available Elena Campione,1 Roberta Gaziano,2 Daniele Marino,2 Augusto Orlandi3 1Department of Dermatology, 2Department of Microbiology, 3Department of Anatomic Pathology, University of Rome Tor Vergata, Rome, Italy Purpose: Fungal infections are a major complication in hematologic and neoplastic patients causing severe morbidity and mortality. Aspergillus fumigatus and Candida albicans are among the most invasive opportunistic pathogens in immunocompromised patients, and classic antifungal drugs are frequently unsuccessful in these patients. Recent reports hypothesize that the antifungal efficacy of all-trans retinoic acid (ATRA is mainly related to its strong capacity to stimulate monocyte-mediated immunity, but no consideration was given to its potential direct fungistatic activity. Moreover, ATRA offers the opportunity for systemic therapy. Methods and results: We investigated the efficacy of ATRA at different concentrations for its antifungal activity against opportunistic A. fumigatus and C. albicans obtained from clinical samples according to standard protocols. A fungistatic activity of ATRA on A. fumigatus and C. albicans at 0.5–1 mM concentration was documented up to 7 days. Conclusion: This is the first evidence of a direct and strong fungistatic activity of ATRA against A. fumigatus and C. albicans. The potential adjuvant therapeutic application of ATRA might be useful in the treatment and/or prevention of systemic mycoses in immunocompromised patients. The discovery of a direct fungistatic activity, in association with its reported immunomodulatory properties, makes ATRA an excellent candidate for new combined antifungal strategies for systemic mycoses in immunocompromised and cancer patients. Keywords: all-trans retinoic acid, fungistatic activity, fungal infections

  8. Mechanism of alcohol-induced impairment in renal development: Could it be reduced by retinoic acid?

    Science.gov (United States)

    Gray, Stephen P; Cullen-McEwen, Luise A; Bertram, John F; Moritz, Karen M

    2012-09-01

    1. Prenatal alcohol exposure impairs kidney development, resulting in a reduced nephron number. However, the mechanism through which alcohol acts to disrupt renal development is largely unknown. Retinoic acid (RA) is critically involved in kidney development and it has been proposed that a diminished concentration of RA is a contributing factor to fetal alcohol syndrome. 2. In the present study we proposed that the ethanol-induced inhibition of ureteric branching morphogenesis and glomerular development in the cultured rat kidney would be ameliorated by coculture with exogenous RA and that examining the expression profile of key genes involved in the development of the kidney would provide insights into the potential molecular pathways involved. 3. Whole rat metanephroi cultured in the presence of exogenous RA (10-20 nmol/L) without ethanol appeared larger and had significantly more ureteric branch points, tips and glomeruli than metanephroi cultured in control media. Those cultured in the presence of ethanol alone (0.2%) had 20% fewer ureteric branch points, tips and glomeruli, which was ameliorated by coculture with retinoic acid. 4. Gene expression analysis identified changes in the expression of enzymes involved in the metabolism of alcohol in conjunction with changes in key regulators of kidney development, including cRET. 5. These results demonstrate that the teratogenic effects of alcohol in vitro on kidney development resulting in reduced ureteric branching morphogenesis and glomerular development can be ameliorated through coculture with RA. These results provide the foundation for future research into the mechanism through which alcohol acts to disrupt kidney development.

  9. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons.

    Directory of Open Access Journals (Sweden)

    Dennis E Coyle

    Full Text Available The NTERA2 cl D1 (NT2 cell line, derived from human teratocarcinoma, exhibits similar properties as embryonic stem (ES cells or very early neuroepithelial progenitors. NT2 cells can be induced to become postmitotic central nervous system neurons (NT2N with retinoic acid. Although neurons derived from pluripotent cells, such as NT2N, have been characterized for their neurotransmitter phenotypes, their potential suitability as a donor source for neural transplantation also depends on their ability to respond to localized environmental cues from a specific region of the CNS. Therefore, our study aimed to characterize the regional transcription factors that define the rostocaudal and dorsoventral identity of NT2N derived from a monolayer differentiation paradigm using quantitative PCR (qPCR. Purified NT2N mainly expressed both GABAergic and glutamatergic phenotypes and were electrically active but did not form functional synapses. The presence of immature astrocytes and possible radial glial cells was noted. The NT2N expressed a regional transcription factor code consistent with forebrain, hindbrain and spinal cord neural progenitors but showed minimal expression of midbrain phenotypes. In the dorsoventral plane NT2N expressed both dorsal and ventral neural progenitors. Of major interest was that even under the influence of retinoic acid, a known caudalization factor, the NT2N population maintained a rostral phenotype subpopulation which expressed cortical regional transcription factors. It is proposed that understanding the regional differentiation bias of neurons derived from pluripotent stem cells will facilitate their successful integration into existing neuronal networks within the CNS.

  10. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Lan; Josifi, Erlena; Tiao, Joshua R. [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  11. Acute promyelocytic leukemia and differentiation therapy: molecular mechanisms of differentiation, retinoic acid resistance and novel treatments

    Directory of Open Access Journals (Sweden)

    Bülent Özpolat

    2009-06-01

    Full Text Available Incorporation of all-trans-retinoic acid (ATRA into the treatment of acute promyelocytic leukemia (APL, a type of acute myeloid leukemia (AML, revolutionized the therapy of cancer in the last decade and introduced the concept of differentiation therapy. ATRA, a physiological metabolite of vitamin A (retinol, induces complete clinical remissions (CRs in about 90% of patients with APL. In contrast to the cytotoxic chemotherapeutics, ATRA can selectively induce terminal differentiation of promyelocytic leukemic cells into normal granulocytes without causing bone marrow hypoplasia or exacerbation of the frequently occurring fatal hemorrhagic syndromes in patients with APL. However, remissions induced by ATRA alone are transient and the patients commonly become resistant to the therapy, leading to relapses in most patients and thus limiting the use of ATRA as a single agent. Therefore, ATRA is currently combined with anthracycline-based chemotherapy, and this regimen dramatically improves patient survival compared to chemotherapy alone, curing about 70% of the patients. However, 30% of APL patients still relapse and die in five years. Recently, arsenic trioxide (As2O3 was proven to be highly effective in inducing CRs not only in APL patients relapsed after ATRA treatment and conventional chemotherapy but also in primary APL patients. Despite the well-documented clinical efficacy of ATRA, molecular mechanisms responsible for development of ATRA resistance are not well understood. Based on in vitro and clinical observations, several mechanisms, including induction of accelerated metabolism of ATRA, decreased bioavailability and plasma drug levels, point mutations in the ATRA-binding domain of promyelocytic leukemia (PML-retinoic acid receptor-alpha (RARα and other molecular events have been proposed to explain ATRA resistance. In this review, the molecular mechanisms of ATRA-induced myeloid cell differentiation and resistance are discussed, together

  12. Saturated fatty acids regulate retinoic acid signalling and suppress tumorigenesis by targeting fatty acid-binding protein 5.

    Science.gov (United States)

    Levi, Liraz; Wang, Zeneng; Doud, Mary Kathryn; Hazen, Stanley L; Noy, Noa

    2015-11-23

    Long chain fatty acids (LCFA) serve as energy sources, components of cell membranes and precursors for signalling molecules. Here we show that these biological compounds also regulate gene expression and that they do so by controlling the transcriptional activities of the retinoic acid (RA)-activated nuclear receptors RAR and PPARβ/δ. The data indicate that these activities of LCFA are mediated by FABP5, which delivers ligands from the cytosol to nuclear PPARβ/δ. Both saturated and unsaturated LCFA (SLCFA, ULCFA) bind to FABP5, thereby displacing RA and diverting it to RAR. However, while SLCFA inhibit, ULCFA activate the FABP5/PPARβ/δ pathway. We show further that, by concomitantly promoting the activation of RAR and inhibiting the activation of PPARβ/δ, SLCFA suppress the oncogenic properties of FABP5-expressing carcinoma cells in cultured cells and in vivo. The observations suggest that compounds that inhibit FABP5 may constitute a new class of drugs for therapy of certain types of cancer.

  13. All-Trans Retinoic Acid plus Arsenic Trioxide versus All-Trans Retinoic Acid plus Chemotherapy for Newly Diagnosed Acute Promyelocytic Leukemia: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Yafang Ma

    Full Text Available Recently, the all-trans retinoic acid (ATRA plus arsenic trioxide (ATO protocol has become a promising first-line therapeutic approach in patients with newly diagnosed acute promyelocytic leukemia (APL, but its benefits compared with standard ATRA plus chemotherapy regimen needs to be proven. Herein, we conducted a meta-analysis comparing the efficacy of ATRA plus ATO with ATRA plus chemotherapy for adult patients with newly diagnosed APL.We systematically searched biomedical electronic databases and conference proceedings through February 2016. Two reviewers independently assessed all studies for relevance and validity.Overall, three studies were eligible for inclusion in this meta-analysis, which included a total of 585 patients, with 317 in ATRA plus ATO group and 268 in ATRA plus chemotherapy group. Compared with patients who received ATRA and chemotherapy, patients who received ATRA plus ATO had a significantly better event-free survival (hazard ratio [HR] = 0.38, 95% confidence interval [CI]: 0.22-0.67, p = 0.009, overall survival (HR = 0.44, 95% CI: 0.24-0.82, p = 0.009, complete remission rate (relative risk [RR] = 1.05; 95% CI: 1.01-1.10; p = 0.03. There were no significant differences in early mortality (RR = 0.48; 95% CI: 0.22-1.05; p = 0.07.Thus, this analysis indicated that ATRA plus ATO protocol may be preferred to standard ATRA plus chemotherapy protocol, particularly in low-to-intermediate risk APL patients. Further larger trials were needed to provide more evidence in high-risk APL patients.

  14. Transcriptional regulation of genes involved in retinoic acid metabolism in Senegalese sole larvae.

    Science.gov (United States)

    Boglino, Anaïs; Ponce, Marian; Cousin, Xavier; Gisbert, Enric; Manchado, Manuel

    2017-01-01

    The aim of this study was the characterization of transcriptional regulatory pathways mediated by retinoic acid (RA) in Senegalese sole larvae. For this purpose, pre-metamorphic larvae were treated with a low concentration of DEAB, an inhibitor of RALDH enzyme, until the end of metamorphosis. No differences in growth, eye migration or survival were observed. Nevertheless, gene expression analysis revealed a total of 20 transcripts differentially expressed during larval development and only six related with DEAB treatments directly involved in RA metabolism and actions (rdh10a, aldh1a2, crbp1, igf2r, rarg and cyp26a1) to adapt to a low-RA environment. In a second experiment, post-metamorphic larvae were exposed to the all-trans RA (atRA) observing an opposite regulation for those genes involved in RA synthesis and degradation (rdh10a, aldh1a2, crbp1 and cyp26a1) as well as other related with thyroid- (dio2) and IGF-axes (igfbp1, igf2r and igfbp5) to balance RA levels. In a third experiment, DEAB-pretreated post-metamorphic larvae were exposed to atRA and TTNPB (a specific RAR agonist). Both drugs down-regulated rdh10a and aldh1a2 and up-regulated cyp26a1 expression demonstrating their important role in RA homeostasis. Moreover, five retinoic receptors that mediate RA actions, the thyroid receptor thrb, and five IGF binding proteins changed differentially their expression. Overall, this study demonstrates that exogenous RA modulates the expression of some genes involved in the RA synthesis, degradation and cellular transport through RAR-mediated regulatory pathways establishing a negative feedback regulatory mechanism necessary to balance endogenous RA levels and gradients.

  15. Altered retinoic acid metabolism in diabetic mouse kidney identified by O isotopic labeling and 2D mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Jonathan M Starkey

    Full Text Available Numerous metabolic pathways have been implicated in diabetes-induced renal injury, yet few studies have utilized unbiased systems biology approaches for mapping the interconnectivity of diabetes-dysregulated proteins that are involved. We utilized a global, quantitative, differential proteomic approach to identify a novel retinoic acid hub in renal cortical protein networks dysregulated by type 2 diabetes.Total proteins were extracted from renal cortex of control and db/db mice at 20 weeks of age (after 12 weeks of hyperglycemia in the diabetic mice. Following trypsinization, (18O- and (16O-labeled control and diabetic peptides, respectively, were pooled and separated by two dimensional liquid chromatography (strong cation exchange creating 60 fractions further separated by nano-HPLC, followed by peptide identification and quantification using mass spectrometry. Proteomic analysis identified 53 proteins with fold change >or=1.5 and pretinoic acid as a key signaling hub that was altered in the diabetic renal cortical proteome. Western blotting and real-time PCR confirmed diabetes-induced upregulation of RALDH1, which was localized by immunofluorescence predominantly to the proximal tubule in the diabetic renal cortex, while PCR confirmed the downregulation of ADH identified with mass spectrometry. Despite increased renal cortical tissue levels of retinol and RALDH1 in db/db versus control mice, all-trans-retinoic acid was significantly decreased in association with a significant decrease in PPARbeta/delta mRNA.Our results indicate that retinoic acid metabolism is significantly dysregulated in diabetic kidneys, and suggest that a shift in all-trans-retinoic acid metabolism is a novel feature in type 2 diabetic renal disease. Our

  16. ALTERATIONS IN A11 TRANS RETINOIC ACID METABOLISM IN LIVER MICROSOMES FROM MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC CONAZOLES

    Science.gov (United States)

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may be a key event in co...

  17. Genital Ulcer Development in Patients with Acute Promyelocytic Leukaemia Treated with All-Trans Retinoic Acid: A Case Series

    Directory of Open Access Journals (Sweden)

    Mohammed Al Huneini

    2013-05-01

    Full Text Available We report here four cases of genital ulcers that developed after the administration of all-trans retinoic acid (ATRA for the treatment of acute promyelocytic leukemia (APL. Between October 2007 and March 2010, three males and one female (age range 19-35 years were identified to have genital ulcers after being prescribed all-trans retinoic acid (ATRA as a part of chemotherapy for APL. This is the first series of cases describing genital ulcers, as a unique and rare complication of ATRA used for treatment of APL in these patients, with no other cause identified. Following temporary cessation of ATRA for a few days in these three cases, improvement of the ulcers was noted.

  18. Identification of target genes of transcription factor CEBPB in acute promyelocytic leukemia cells induced by all-trans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    Lei Yu; Yang-De Zhang; Jun Zhou; De-Ming Yao; Xiang Li

    2013-01-01

    Objective: To indentify target genes of transcription factor CCAAT enhancer-binding proteinβ (CEBPB) in acute promyelocytic leukemia cells induced by all-trans retinoic acid. Methods:A new strategy for high-throughput identification of direct target genes was established by combining chromatin immunoprecipitation (ChIP) with in vitro selection. Then, 106 potential CEBPB binding fragments from the genome of the all-trans retinoic acid (ATRA)-treated NB4 cells were identified. Results: Of them, 82 were mapped in proximity to known or previously predicted genes; 7 were randomly picked up for further confirmation by ChIP-PCR and 3 genes (GALM, ITPR2 and ORM2) were found to be specifically up-regulated in the ATRA-treated NB4 cells, indicating that they might be the down-stream target genes of ATRA. Conclusions: Our results provided new insight into the mechanisms of ATRA-induced granulocytic differentiation.

  19. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1.

    Science.gov (United States)

    Nelson, Cara H; Peng, Chi-Chi; Lutz, Justin D; Yeung, Catherine K; Zelter, Alex; Isoherranen, Nina

    2016-08-01

    Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.

  20. Genital ulcers during treatment with ALL-trans retinoic acid for acute promyelocytic leukemia.

    Science.gov (United States)

    Fukuno, Kenji; Tsurumi, Hisashi; Goto, Hideko; Oyama, Masami; Tanabashi, Shinobu; Moriwaki, Hisataka

    2003-11-01

    Scrotal ulcer is a unique adverse effect of all-trans retinoic acid (ATRA) in patients with acute promyelocytic leukemia (APL). The pathogenesis of scrotal ulceration remains unknown. We describe genital ulcers that developed in four patients with APL who were undergoing ATRA therapy (45 mg/m2 per day p.o.). Two of the patients were female, in whom this condition is quite rare. Genital ulcers with concomitant fever appeared between 17 and 32 days of therapy in all four patients. Genital ulcers healed in three of the patients while another patient developed Fournier's gangrene and underwent left testectomy. Ulcer healing was brought by either local or intravenous corticosteroids. Intravenous dexamethasone actually enabled continued ATRA administration in one patient, while ATRA was discontinued in other two patients. If corticosteroids cannot control progression of genital ulcers nor concomitant fever, ATRA administration should be discontinued so as not to induce Fournier's gangrene nor retionic acid syndrome. Our experience indicates the importance of recognizing genital ulcers associated with ATRA in order that appropriate countermeasures can be taken.

  1. Retinoic Acid Upregulates Preadipocyte Genes to Block Adipogenesis and Suppress Diet-Induced Obesity

    Science.gov (United States)

    Berry, Daniel C.; DeSantis, David; Soltanian, Hooman; Croniger, Colleen M.; Noy, Noa

    2012-01-01

    Retinoic acid (RA) protects mice from diet-induced obesity. The activity is mediated in part through activation of the nuclear receptors RA receptors (RARs) and peroxisome proliferator–activated receptor β/δ and their associated binding proteins cellular RA binding protein type II (CRABP-II) and fatty acid binding protein type 5 in adipocytes and skeletal muscle, leading to enhanced lipid oxidation and energy dissipation. It was also reported that RA inhibits differentiation of cultured preadipocytes. However, whether the hormone suppresses adipogenesis in vivo and how the activity is propagated remained unknown. In this study, we show that RA inhibits adipocyte differentiation by activating the CRABP-II/RARγ path in preadipose cells, thereby upregulating the expression of the adipogenesis inhibitors Pref-1, Sox9, and Kruppel-like factor 2 (KLF2). In turn, KLF2 induces the expression of CRABP-II and RARγ, further potentiating inhibition of adipocyte differentiation by RA. The data also indicate that RA suppresses adipogenesis in vivo and that the activity significantly contributes to the ability of the hormone to counteract diet-induced obesity. PMID:22396202

  2. Induction of Epstein-Barr virus early antigens by corticosteroids: inhibition by TPA and retinoic acid.

    Science.gov (United States)

    Bauer, G

    1983-03-15

    Corticosteroids can induce the synthesis of EBV antigens in the Burkitt lymphoma line Daudi. As early as 12 h after application of the drug, an increase of EA-positive cells can be seen, the maximum induction being reached after 2 days. Nanogram amounts per ml of hormone are sufficient for measurable effects. Early antigen induction by corticosteroids does not require replication of viral DNA. Induction by corticosteroid differs from induction by other systems in two major respects: (1) it does not cooperate with other inducers, and (2) it is specifically inhibited by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Induction by corticosteroids, however, shares at least one retinoic acid-sensitive step with induction by chemicals such as TPA, 5-iodo-2-deoxyuridine (IdUrd), n-butyric acid (n-BA) or inducing serum factor. This study defines three qualitatively different effects of TPA in Daudi cells: an inhibitory effect on EBV induction by corticosteroids and two differential types of synergistic effects with serum factor or n-BA, respectively. In this particular cell line, TPA exhibits no inducing capacity when applied alone.

  3. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U. [Department of Pharmaceutical Biosciences, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo (Norway); Paulsen, Ragnhild E., E-mail: r.e.paulsen@farmasi.uio.no [Department of Pharmaceutical Biosciences, University of Oslo, P.O. Box 1068, Blindern, N-0316 Oslo (Norway)

    2011-10-14

    Highlights: {yields} NGFI-B and RXR translocate out of the nucleus after glutamate treatment. {yields} Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. {yields} Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXR{alpha} were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXR{alpha}, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  4. Targeting breast cancer using retinoic acid trifloromethyl chalcone: A promising therapeutic strategy in the treatment of breast cancer

    OpenAIRE

    Hao Ding; Ben-Zhong Wang; Hua-Qing Zhu; Liu-Yi Dong; Yu-Fang Gu; Yu Zhao

    2015-01-01

    The study was devised to investigate the effect of retinoic acid trifloromethyl chalcone (RAFC) on mammary carcinogenesis in female rats. The data revealed a significant decrease in number of rats with mammary tumor, number of tumors per rat and tumor volume by 54, 72 and 75% respectively in RAFC group compared to control group. The ibuprofen treated rats also showed a significant decrease in number of rats with tumor, number of tumors per rat and tumor volumes by 43%, 55%, and 59%, respectiv...

  5. Retinoic acid therapy resistance progresses from unilineage to bilineage in HL-60 leukemic blasts.

    Directory of Open Access Journals (Sweden)

    Holly A Jensen

    Full Text Available Emergent resistance can be progressive and driven by global signaling aberrations. All-trans retinoic acid (RA is the standard therapeutic agent for acute promyelocytic leukemia, but 10-20% of patients are not responsive, and initially responsive patients relapse and develop retinoic acid resistance. The patient-derived, lineage-bipotent acute myeloblastic leukemia (FAB M2 HL-60 cell line is a potent tool for characterizing differentiation-induction therapy responsiveness and resistance in t(15;17-negative cells. Wild-type (WT HL-60 cells undergo RA-induced granulocytic differentiation, or monocytic differentiation in response to 1,25-dihydroxyvitamin D3 (D3. Two sequentially emergent RA-resistant HL-60 cell lines, R38+ and R38-, distinguishable by RA-inducible CD38 expression, do not arrest in G1/G0 and fail to upregulate CD11b and the myeloid-associated signaling factors Vav1, c-Cbl, Lyn, Fgr, and c-Raf after RA treatment. Here, we show that the R38+ and R38- HL-60 cell lines display a progressive reduced response to D3-induced differentiation therapy. Exploiting the biphasic dynamic of induced HL-60 differentiation, we examined if resistance-related defects occurred during the first 24 h (the early or "precommitment" phase or subsequently (the late or "lineage-commitment" phase. HL-60 were treated with RA or D3 for 24 h, washed and retreated with either the same, different, or no differentiation agent. Using flow cytometry, D3 was able to induce CD38, CD11b and CD14 expression, and G1/G0 arrest when present during the lineage-commitment stage in R38+ cells, and to a lesser degree in R38- cells. Clustering analysis of cytometry and quantified Western blot data indicated that WT, R38+ and R38- HL-60 cells exhibited decreasing correlation between phenotypic markers and signaling factor expression. Thus differentiation induction therapy resistance can develop in stages, with initial partial RA resistance and moderate vitamin D3 responsiveness

  6. Retinoic acid therapy resistance progresses from unilineage to bilineage in HL-60 leukemic blasts.

    Science.gov (United States)

    Jensen, Holly A; Bunaciu, Rodica P; Ibabao, Christopher N; Myers, Rebecca; Varner, Jeffrey D; Yen, Andrew

    2014-01-01

    Emergent resistance can be progressive and driven by global signaling aberrations. All-trans retinoic acid (RA) is the standard therapeutic agent for acute promyelocytic leukemia, but 10-20% of patients are not responsive, and initially responsive patients relapse and develop retinoic acid resistance. The patient-derived, lineage-bipotent acute myeloblastic leukemia (FAB M2) HL-60 cell line is a potent tool for characterizing differentiation-induction therapy responsiveness and resistance in t(15;17)-negative cells. Wild-type (WT) HL-60 cells undergo RA-induced granulocytic differentiation, or monocytic differentiation in response to 1,25-dihydroxyvitamin D3 (D3). Two sequentially emergent RA-resistant HL-60 cell lines, R38+ and R38-, distinguishable by RA-inducible CD38 expression, do not arrest in G1/G0 and fail to upregulate CD11b and the myeloid-associated signaling factors Vav1, c-Cbl, Lyn, Fgr, and c-Raf after RA treatment. Here, we show that the R38+ and R38- HL-60 cell lines display a progressive reduced response to D3-induced differentiation therapy. Exploiting the biphasic dynamic of induced HL-60 differentiation, we examined if resistance-related defects occurred during the first 24 h (the early or "precommitment" phase) or subsequently (the late or "lineage-commitment" phase). HL-60 were treated with RA or D3 for 24 h, washed and retreated with either the same, different, or no differentiation agent. Using flow cytometry, D3 was able to induce CD38, CD11b and CD14 expression, and G1/G0 arrest when present during the lineage-commitment stage in R38+ cells, and to a lesser degree in R38- cells. Clustering analysis of cytometry and quantified Western blot data indicated that WT, R38+ and R38- HL-60 cells exhibited decreasing correlation between phenotypic markers and signaling factor expression. Thus differentiation induction therapy resistance can develop in stages, with initial partial RA resistance and moderate vitamin D3 responsiveness (unilineage

  7. Leucine-rich repeat kinase 2 modulates retinoic acid-induced neuronal differentiation of murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Cathrin Schulz

    Full Text Available BACKGROUND: Dominant mutations in the leucine-rich repeat kinase 2 (LRRK2 gene are the most prevalent cause of Parkinson's disease, however, little is known about the biological function of LRRK2 protein. LRRK2 is expressed in neural precursor cells suggesting a role in neurodevelopment. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, differential gene expression profiling revealed a faster silencing of pluripotency-associated genes, like Nanog, Oct4, and Lin28, during retinoic acid-induced neuronal differentiation of LRRK2-deficient mouse embryonic stem cells compared to wildtype cultures. By contrast, expression of neurotransmitter receptors and neurotransmitter release was increased in LRRK2+/- cultures indicating that LRRK2 promotes neuronal differentiation. Consistently, the number of neural progenitor cells was higher in the hippocampal dentate gyrus of adult LRRK2-deficient mice. Alterations in phosphorylation of the putative LRRK2 substrates, translation initiation factor 4E binding protein 1 and moesin, do not appear to be involved in altered differentiation, rather there is indirect evidence that a regulatory signaling network comprising retinoic acid receptors, let-7 miRNA and downstream target genes/mRNAs may be affected in LRRK2-deficient stem cells in culture. CONCLUSION/SIGNIFICANCE: Parkinson's disease-linked LRRK2 mutations that associated with enhanced kinase activity may affect retinoic acid receptor signaling during neurodevelopment and/or neuronal maintenance as has been shown in other mouse models of chronic neurodegenerative diseases.

  8. Vitamin A increases nerve growth factor and retinoic acid receptor beta and improves diabetic neuropathy in rats.

    Science.gov (United States)

    Hernández-Pedro, Norma; Granados-Soto, Vinicio; Ordoñez, Graciela; Pineda, Benjamin; Rangel-López, Edgar; Salazar-Ramiro, Aleli; Arrieta, Oscar; Sotelo, Julio

    2014-09-01

    All-trans retinoic acid (ATRA) promotes the endogenous expression of both nerve growth factor (NGF) and retinoic acid receptor beta (RAR-β). We have previously shown that the administration of ATRA partly reverts the damage induced by diabetic neuropathy (DN). In this investigation, we evaluated the effects of vitamin A, a commercial, inexpensive compound of retinoic acid, on the therapy of DN. A total of 70 rats were randomized into 4 groups. Group A was the control, and groups B, C, and D received a total dose of 60 mg/kg streptozotocin intraperitoneally. When signs of DN developed, groups C and D were treated either with vitamin A (20,000 IU) or with ATRA 25 mg/kg for 60 days. Plasma glucose, contents of NGF, thermal and nociceptive tests, and RAR-β expression were evaluated. All diabetic rats developed neuropathy. The treatment with vitamin A and ATRA reverted similarly the sensorial disturbances, which was associated with increased contents of NGF and RAR-β expression. Our results indicate that the administration of vitamin A has the same therapeutic effect as ATRA on peripheral neuropathy and suggest its potential therapeutic use in patients with diabetes.

  9. Effect of retinoic acid on expression of LINGO-1 and neural regeneration after cerebral ischemia.

    Science.gov (United States)

    Xing, Hong-yi; Meng, Er-yan; Xia, Yuan-peng; Peng, Hai

    2015-02-01

    The purpose of this study was to observe the expression of LINGO-1 after cerebral ischemia, investigate the effects of retinoic acid (RA) on the expression of LINGO-1 and GAP-43, and the number of synapses, and to emplore the repressive effect of LINGO-1 on neural regeneration after cerebral ischemia. The model of permanent focal cerebral ischemia was established by the modified suture method of middle cerebral artery occlusion (MCAO) in Sprague-Dawley (SD) rats. The expression of LINGO-1 was detected by Western blotting and that of GAP-43 by immunohistochemistry. The number of synapses was observed by transmission electron microscopy. The SD rats were divided into three groups: sham operation (sham) group, cerebral ischemia (CI) group and RA treatment (RA) group. The results showed that the expression level of LINGO-1 at 7th day after MCAO in sham, CI and RA groups was 0.266 ± 0.019, 1.215 ± 0.063 and 0.702 ± 0.081, respectively (PLINGO-1 expression is up-regulated after cerebral ischemia, and RA inhibits the expression of LINGO-1, promotes the expression of GAP-43 and increases the number of synapses. It suggests that LINGO-1 may be involved in the pathogenesis of cerebral ischemia, which may provide an experimenal basis for LINGO-1 antogonist, RA, for the treatment of cerebral ischemia.

  10. NPM and BRG1 Mediate Transcriptional Resistance to Retinoic Acid in Acute Promyelocytic Leukemia.

    Science.gov (United States)

    Nichol, Jessica N; Galbraith, Matthew D; Kleinman, Claudia L; Espinosa, Joaquín M; Miller, Wilson H

    2016-03-29

    Perturbation in the transcriptional control of genes driving differentiation is an established paradigm whereby oncogenic fusion proteins promote leukemia. From a retinoic acid (RA)-sensitive acute promyelocytic leukemia (APL) cell line, we derived an RA-resistant clone characterized by a block in transcription initiation, despite maintaining wild-type PML/RARA expression. We uncovered an aberrant interaction among PML/RARA, nucleophosmin (NPM), and topoisomerase II beta (TOP2B). Surprisingly, RA stimulation in these cells results in enhanced chromatin association of the nucleosome remodeler BRG1. Inhibition of NPM or TOP2B abrogated BRG1 recruitment. Furthermore, NPM inhibition and targeting BRG1 restored differentiation when combined with RA. Here, we demonstrate a role for NPM and BRG1 in obstructing RA differentiation and implicate chromatin remodeling in mediating therapeutic resistance in malignancies. NPM mutations are the most common genetic change in patients with acute leukemia (AML); therefore, our model may be applicable to other more common leukemias driven by NPM.

  11. Retinoic acid increases glucocorticoid receptor phosphorylation via cyclin-dependent kinase 5.

    Science.gov (United States)

    Brossaud, Julie; Roumes, Hélène; Helbling, Jean-Christophe; Moisan, Marie-Pierre; Pallet, Véronique; Ferreira, Guillaume; Biyong, Essi-Fanny; Redonnet, Anabelle; Corcuff, Jean-Benoît

    2017-07-01

    Glucocorticoid receptor (GR) function is modulated by phosphorylation. As retinoic acid (RA) can activate some cytoplasmic kinases able to phosphorylate GR, we investigated whether RA could modulate GR phosphorylation in neuronal cells in a context of long-term glucocorticoid exposure. A 4-day treatment of dexamethasone (Dex) plus RA, showed that RA potentiated the (Dex)-induced phosphorylation on GR Serine 220 (pSer220GR) in the nucleus of a hippocampal HT22 cell line. This treatment increased the cytoplasmic ratio of p35/p25 proteins, which are major CDK5 cofactors. Roscovitine, a pharmacological CDK5 inhibitor, or a siRNA against CDK5 prevented RA potentiation of GR phosphorylation. Furthermore, roscovitine counter-acted the effect of RA on GR sensitive target proteins such as BDNF or tissue-transglutaminase. These data help understanding the interaction between RA- and glucocorticoid-signalling pathways, both of which have strong influences on the adult brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells.

    Science.gov (United States)

    Smith, James; Bunaciu, Rodica P; Reiterer, Gudrun; Coder, David; George, Thaddeus; Asaly, Michael; Yen, Andrew

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  13. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun [Department of Biomedical Sciences, T4-008 VRT, Cornell University, Ithaca, NY 14853 (United States); Coder, David; George, Thaddeus [Amnis Corporation, Seattle, Washington (United States); Asaly, Michael [Department of Biomedical Sciences, T4-008 VRT, Cornell University, Ithaca, NY 14853 (United States); Yen, Andrew, E-mail: ay13@cornell.edu [Department of Biomedical Sciences, T4-008 VRT, Cornell University, Ithaca, NY 14853 (United States)

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  14. Retinoic acid as target for local pharmacokinetic interaction with modafinil in neural cells.

    Science.gov (United States)

    Hellmann-Regen, Julian; Gertz, Karen; Uhlemann, Ria; Colla, Michael; Endres, Matthias; Kronenberg, Golo

    2012-12-01

    While the biological importance of the cytochrome P450 system in the liver is well established, much less is known about its role in the brain and drug interactions at the level of brain cells have hardly been investigated. Here, we show that modafinil, a well-known inducer of hepatic CYP enzymes, also increases CYP3A4 expression in human-derived neuron-like SH-SY5Y cells. Upregulation of CYP3A4 by modafinil was associated with increased retinoic acid (RA) degradation, which could be blocked by specific CYP3A4 inhibitor erythromycin. In turn, reduced RA levels in culture medium during modafinil treatment resulted in decreased neuronal differentiation of SH-SY5Y cells as assessed by intracellular neurotransmitter concentrations and proliferative activity. Again, this differentiation-impeding effect of modafinil on SH-SY5Y cells was antagonized by erythromycin. Similarly, modafinil treatment of the murine GL261 glioma cell line resulted in increased proliferative activity. This was associated with upregulation of RA-degrading CYP26A1 in GL261 cells. Taken together, our results indicate that psychopharmacological agents such as modafinil may directly act on CYP enzymes in neural tissue. These kinds of drug effects may become highly relevant especially in the context of biomolecules such as RA whose local metabolism in brain is under tight spatial and temporal control.

  15. Comparison of Hensen's node and retinoic acid in secondary axis induction in the early chick embryo.

    Science.gov (United States)

    Chen, Y; Solursh, M

    1992-10-01

    Retinoic acid (RA) and Hensen's node, the organizer center in the chick embryo, have been shown to have polarizing activity when applied or grafted into the chick limb bud. Here we investigate and compare the effects of RA and grafted Hensen's node on the early chick embryo. Anion exchange beads soaked with RA at concentrations ranging from 5 to 100 ng/ml and implanted on the anterior side or on the left side of the host anteroposterior axis of a stage 4 chick embryo in ovo have the ability to induce secondary axis formation, while beads soaked with RA of the same concentration and implanted on the right side or on the posterior side of the host axis are unable to induce the secondary axis. All of the induced axes contain trunk-tail structures. Hensen's node from quail embryos implanted into the early chick blastoderm could also cause the formation of secondary axes in addition to self-differentiation of the graft into a secondary axis. Both RA and grafted Hensen's node caused the inhibition of forebrain development with an increase in hindbrain development and the host heart to loop in an abnormal direction. The results support the hypothesis that Hensen's node is a source of RA which is involved in early embryogenesis. Alternatively, RA might stimulate the formation of Hensen's nodal properties in adjacent tissue.

  16. Pathophysiology, clinical features and radiological findings of differentiation syndrome/all-trans-retinoic acid syndrome

    Institute of Scientific and Technical Information of China (English)

    Luciano; Cardinale; Francesco; Asteggiano; Federica; Moretti; Federico; Torre; Stefano; Ulisciani; Carmen; Fava; Giovanna; Rege-Cambrin

    2014-01-01

    In acute promyelocytic leukemia, differentiation thera-py based on all-trans-retinoic acid can be complicated by the development of a differentiation syndrome(DS). DS is a life-threatening complication, characterized by respiratory distress, unexplained fever, weight gain, interstitial lung infiltrates, pleural or pericardial effusions, hypotension and acute renal failure. The diagnosis of DS is made on clinical grounds and has proven to be difficult, because none of the symptoms is pathognomonic for the syndrome without any definitive diagnostic criteria. As DS can have subtle signs and symptoms at presentation but progress rapidly, end-stage DS clinical picture resembles the acute respiratory distress syndrome with extremely poor prognosis; so it is of absolute importance to be conscious of these complications and initiate therapy as soon as it was suspected. The radiologic appearance resembles the typical features of cardiogenic pulmonary edema. Diagnosis of DS remains a great skill for radiologists and haematologist but it is of an utmost importance the cooperation in suspect DS, detect the early signs of DS, examine the patients’ behaviour and rapidly detect the complications.

  17. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles.

    Science.gov (United States)

    Akanda, Mushfiq H; Rai, Rajeev; Slipper, Ian J; Chowdhry, Babur Z; Lamprou, Dimitrios; Getti, Giulia; Douroumis, Dennis

    2015-09-30

    In this study retinoic acid (RTA) loaded solid lipid nanoparticles (SLNs) were optimized by tuning the process parameters (pressure/temperature) and using different lipids to develop nanodispersions with enhanced anticancer activity. The RTA-SLN dispersions were produced by high-pressure homogenization and characterized in terms of particle size, zeta potential, drug entrapment efficiency, stability, transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and in vitro drug release. Thermal and X-ray analysis showed the RTA to be in the amorphous state, whilst microscopic images revealed a spherical shape and uniform particle size distribution of the nanoparticles. Anticancer efficiency was evaluated by incubating RTA-SLNs with human prostate cancer (LNCap) cells, which demonstrated reduced cell viability with increased drug concentrations (9.53% at 200 ug/ml) while blank SLNs displayed negligible cytotoxicity. The cellular uptake of SLN showed localization within the cytoplasm of cells and flow cytometry analysis indicated an increase in the fraction of cells expressing early apoptotic markers, suggesting that the RTA loaded SLNs are able to induce apoptosis in LNCap cells. The RTA-SLN dispersions have the potential to be used for prostate anticancer treatment.

  18. Retinoic acid restores adult hippocampal neurogenesis and reverses spatial memory deficit in vitamin A deprived rats.

    Directory of Open Access Journals (Sweden)

    Emilie Bonnet

    Full Text Available A dysfunction of retinoid hippocampal signaling pathway has been involved in the appearance of affective and cognitive disorders. However, the underlying neurobiological mechanisms remain unknown. Hippocampal granule neurons are generated throughout life and are involved in emotion and memory. Here, we investigated the effects of vitamin A deficiency (VAD on neurogenesis and memory and the ability of retinoic acid (RA treatment to prevent VAD-induced impairments. Adult retinoid-deficient rats were generated by a vitamin A-free diet from weaning in order to allow a normal development. The effects of VAD and/or RA administration were examined on hippocampal neurogenesis, retinoid target genes such as neurotrophin receptors and spatial reference memory measured in the water maze. Long-term VAD decreased neurogenesis and led to memory deficits. More importantly, these effects were reversed by 4 weeks of RA treatment. These beneficial effects may be in part related to an up-regulation of retinoid-mediated molecular events, such as the expression of the neurotrophin receptor TrkA. We have demonstrated for the first time that the effect of vitamin A deficient diet on the level of hippoccampal neurogenesis is reversible and that RA treatment is important for the maintenance of the hippocampal plasticity and function.

  19. Retinol Dehydrogenase-10 Regulates Pancreas Organogenesis and Endocrine Cell Differentiation via Paracrine Retinoic Acid Signaling.

    Science.gov (United States)

    Arregi, Igor; Climent, Maria; Iliev, Dobromir; Strasser, Jürgen; Gouignard, Nadège; Johansson, Jenny K; Singh, Tania; Mazur, Magdalena; Semb, Henrik; Artner, Isabella; Minichiello, Liliana; Pera, Edgar M

    2016-12-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon(+) and insulin(+) cells. During the secondary transition, the reduction of Neurogenin3(+) endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.

  20. Retinoic acid reverses the PTU related decrease in neurogranin level in mice brain.

    Science.gov (United States)

    Enderlin, V; Vallortigara, J; Alfos, S; Féart, C; Pallet, V; Higueret, P

    2004-09-01

    Recent data have shown that fine regulation of retinoid mediated gene expression is fundamentally important for optimal brain functioning in aged mice. Nevertheless, alteration of the thyroid hormone signalling pathway may be a limiting factor, which impedes retinoic acid (RA) from exerting its modulating effect. Mild hypothyroidism is often described in the elderly. Thus, in the present study, it was of interest to determine if RA exerts its neurological modulating effect in mild hypothyroidism. To obtain further insight into this question, mice were submitted to a low propylthiouracyl (PTU) drink (0.05%) in order to slightly reduce the serum level of triiodothyronine (T3). A quantitative evaluation of RA nuclear receptors (RAR, RXR), T3 nuclear receptor (TR) and of neurogranin (RC3, a RA target gene which codes for a protein considered as a good marker of synaptic plasticity) in PTU treated mice injected with vehicle or RA or T3 was carried out. The PTU-related decrease in expression of RAR, RXR and RC3 was restored following RA or T3 administration, as observed in aged mice. The amount of TR mRNA, which was not affected in PTU treated mice, was increased only after T3 treatment as observed in overt hypothyroidism. These results suggest that neurobiological alterations observed in aged mice are probably related to RA and T3 signalling pathway modifications associated, in part, with mild changes in thyroid function.

  1. Inhibition of matrix metalloproteinases expression in human dental pulp cells by all-trans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    Jin Man Kim; Sang Wook Kang; Su-Mi Shin; Duck Su Kim; Kyong-Kyu Choi; Eun-Cheol Kim; Sun-Young Kim

    2014-01-01

    All-trans retinoic acid (ATRA) inhibits matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fibroblasts, skin fibroblasts, bronchoalveolar lavage cells and cancer cells, but activates MMP-9 in neuroblast and leukemia cells. Very little is known regarding whether ATRA can activate or inhibit MMPs in human dental pulp cells (HDPCs). The purpose of this study was to determine the effects of ATRA on the production and secretion of MMP-2 and-9 in HDPCs. The productions and messenger RNA (mRNA) expressions of MMP-2 and-9 were accessed by gelatin zymography and real-time polymerase chain reaction (PCR), respectively. ATRA was found to decrease MMP-2 level in a dose-dependent manner. Significant reduction in MMP-2 mRNA expression was also observed in HDPCs treated with 25 mmol?L21 ATRA. However, HDPCs treated with ATRA had no effect on the pattern of MMP-9 produced or secreted in either cell extracts or conditioned medium fractions. Taken together, ATRA had an inhibitory effect on MMP-2 expression in HDPCs, which suggests that ATRA could be a candidate as a medicament which could control the inflammation of pulp tissue in vital pulp therapy and regenerative endodontics.

  2. Retinoic acid alleviates Con A-induced hepatitis and differentially regulates effector production in NKT cells.

    Science.gov (United States)

    Lee, Kyoo-A; Song, You Chan; Kim, Ga-Young; Choi, Gyeyoung; Lee, Yoon-Sook; Lee, Jung-Mi; Kang, Chang-Yuil

    2012-07-01

    Retinoic acid (RA) is a diverse regulator of immune responses. Although RA promotes natural killer T (NKT) cell activation in vitro by increasing CD1d expression on antigen-presenting cells (APCs), the direct effects of RA on NKT-cell responses in vivo are not known. In the present study, we demonstrated the effect of RA on the severity of Con A-induced hepatitis and molecular changes of NKT cells. First, we demonstrated that Con A-induced liver damage was ameliorated by RA. In correlation with cytokine levels in serum, RA regulated the production of IFN-γ and IL-4 but not TNF-α by NKT cells without influencing the NKT-cell activation status. However, RA did not alleviate α-GalCer-induced liver injury, even though it reduced IFN-γ and IL-4 but not TNF-α levels in serum. This regulation was also detected when liver mononuclear cells (MNCs) or NKT hybridoma cells were treated with RA in vitro. The regulatory effect of RA on NKT cells was mediated by RAR-α, and RA reduced the phosphorylation of MAPK. These results suggest that RA differentially modulates the production of effector cytokines by NKT cells in hepatitis, and the suppressive effect of RA on hepatitis varies with the pathogenic mechanism of liver injury.

  3. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  4. Roles of retinoic acid signaling in normal and abnormal development of the palate and tongue.

    Science.gov (United States)

    Okano, Junko; Udagawa, Jun; Shiota, Kohei

    2014-05-01

    Palatogenesis involves various developmental events such as growth, elevation, elongation and fusion of opposing palatal shelves. Extrinsic factors such as mouth opening and subsequent tongue withdrawal are also needed for the horizontal elevation of palate shelves. Failure of any of these steps can lead to cleft palate, one of the most common birth defects in humans. It has been shown that retinoic acid (RA) plays important roles during palate development, but excess RA causes cleft palate in fetuses of both rodents and humans. Thus, the coordinated regulation of retinoid metabolism is essential for normal palatogenesis. The endogenous RA level is determined by the balance of RA-synthesizing (retinaldehyde dehydrogenases: RALDHs) and RA-degrading enzymes (CYP26s). Cyp26b1 is a key player in normal palatogenesis. In this review, we discuss recent progress in the study of the pathogenesis of RA-induced cleft palate, with special reference to the regulation of endogenous RA levels by RA-degrading enzymes.

  5. All-trans-retinoic acid inhibits tumour growth of malignant pleural mesothelioma in mice.

    Science.gov (United States)

    Tabata, C; Tabata, R; Hirayama, N; Yasumitsu, A; Yamada, S; Murakami, A; Iida, S; Tamura, K; Terada, T; Kuribayashi, K; Fukuoka, K; Nakano, T

    2009-11-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignant tumour of mesothelial origin associated with asbestos exposure. Because MPM has limited response to conventional chemotherapy and radiotherapy, the prognosis is very poor. Several researchers have reported that cytokines such as interleukin (IL)-6 play an important role in the growth of MPM. Previously, it was reported that all-trans-retinoic acid (ATRA) inhibited the production and function of IL-6 and transforming growth factor (TGF)-beta1 in experiments using lung fibroblasts. We investigated whether ATRA had an inhibitory effect on the cell growth of MPM, the origin of which was mesenchymal cells similar to lung fibroblasts, using a subcutaneous xenograft mouse model. We estimated the tumour growth and performed quantitative measurements of IL-6, TGF-beta1 and platelet-derived growth factor (PDGF) receptor (PDGFR)-beta mRNA levels both of cultured MPM cells and cells grown in mice with or without the administration of ATRA. ATRA significantly inhibited MPM tumour growth. In vitro studies disclosed that the administration of ATRA reduced 1) mRNA levels of TGF-beta1, TGF-beta1 receptors and PDGFR-beta, and 2) TGF-beta1-dependent proliferation and PDGF-BB-dependent migration of MPM cells. These data may provide a rationale to explore the clinical use of ATRA for the treatment of MPM.

  6. Anti-Inflammatory Strategy for M2 Microglial Polarization Using Retinoic Acid-Loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Marta Machado-Pereira

    2017-01-01

    Full Text Available Inflammatory mechanisms triggered by microglial cells are involved in the pathophysiology of several brain disorders, hindering repair. Herein, we propose the use of retinoic acid-loaded polymeric nanoparticles (RA-NP as a means to modulate microglia response towards an anti-inflammatory and neuroprotective phenotype (M2. RA-NP were first confirmed to be internalized by N9 microglial cells; nanoparticles did not affect cell survival at concentrations below 100 μg/mL. Then, immunocytochemical studies were performed to assess the expression of pro- and anti-inflammatory mediators. Our results show that RA-NP inhibited LPS-induced release of nitric oxide and the expression of inducible nitric oxide synthase and promoted arginase-1 and interleukin-4 production. Additionally, RA-NP induced a ramified microglia morphology (indicative of M2 state, promoting tissue viability, particularly neuronal survival, and restored the expression of postsynaptic protein-95 in organotypic hippocampal slice cultures exposed to an inflammatory challenge. RA-NP also proved to be more efficient than the free equivalent RA concentration. Altogether, our data indicate that RA-NP may be envisioned as a promising therapeutic agent for brain inflammatory diseases.

  7. Retinoic acid derived from the fetal ovary initiates meiosis in mouse germ cells.

    Science.gov (United States)

    Mu, Xinyi; Wen, Jing; Guo, Meng; Wang, Jianwei; Li, Ge; Wang, Zhengpin; Wang, Yijing; Teng, Zhen; Cui, Yan; Xia, Guoliang

    2013-03-01

    Meiotic initiation of germ cells at 13.5 dpc (days post-coitus) indicates female sex determination in mice. Recent studies reveal that mesonephroi-derived retinoic acid (RA) is the key signal for induction of meiosis. However, whether the mesonephroi is dispensable for meiosis is unclear and the role of the ovary in this meiotic process remains to be clarified. This study provides data that RA derived from fetal ovaries is sufficient to induce germ cell meiosis in a fetal ovary culture system. When fetal ovaries were collected from 11.5 to 13.5 dpc fetuses, isolated and cultured in vitro, germ cells enter meiosis in the absence of mesonephroi. To exclude RA sourcing from mesonephroi, 11.5 dpc urogenital ridges (UGRs; mesonephroi and ovary complexes) were treated with diethylaminobenzaldehyde (DEAB) to block retinaldehyde dehydrogenase (RALDH) activity in the mesonephros and the ovary. Meiosis occurred when DEAB was withdrawn and the mesonephros was removed 2 days later. Furthermore, RALDH1, rather than RALDH2, serves as the major RA synthetase in UGRs from 12.5 to 15.5 dpc. DEAB treatment to the ovary alone was able to block germ cell meiotic entry. We also found that exogenously supplied RA dose-dependently reduced germ cell numbers in ovaries by accelerating the entry into meiosis. These results suggest that ovary-derived RA is responsible for meiosis initiation.

  8. Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology.

    Science.gov (United States)

    Moutier, Emmanuel; Ye, Tao; Choukrallah, Mohamed-Amin; Urban, Sylvia; Osz, Judit; Chatagnon, Amandine; Delacroix, Laurence; Langer, Diana; Rochel, Natacha; Moras, Dino; Benoit, Gerard; Davidson, Irwin

    2012-07-27

    Retinoic acid receptors (RARs) heterodimerize with retinoid X receptors (RXRs) and bind to RA response elements (RAREs) in the regulatory regions of their target genes. Although previous studies on limited sets of RA-regulated genes have defined canonical RAREs as direct repeats of the consensus RGKTCA separated by 1, 2, or 5 nucleotides (DR1, DR2, DR5), we show that in mouse embryoid bodies or F9 embryonal carcinoma cells, RARs occupy a large repertoire of sites with DR0, DR8, and IR0 (inverted repeat 0) elements. Recombinant RAR-RXR binds these non-canonical spacings in vitro with comparable affinities to DR2 and DR5. Most DR8 elements comprise three half-sites with DR2 and DR0 spacings. This specific half-site organization constitutes a previously unrecognized but frequent signature of RAR binding elements. In functional assays, DR8 and IR0 elements act as independent RAREs, whereas DR0 does not. Our results reveal an unexpected diversity in the spacing and topology of binding elements for the RAR-RXR heterodimer. The differential ability of RAR-RXR bound to DR0 compared to DR2, DR5, and DR8 to mediate RA-dependent transcriptional activation indicates that half-site spacing allosterically regulates RAR function.

  9. Transcription factor TLX1 controls retinoic acid signaling to ensure spleen development

    Science.gov (United States)

    Lenti, Elisa; Farinello, Diego; Penkov, Dmitry; Castagnaro, Laura; Lavorgna, Giovanni; Wuputra, Kenly; Tjaden, Naomi E. Butler; Bernassola, Francesca; Caridi, Nicoletta; Wagner, Michael; Kozinc, Katja; Niederreither, Karen; Blasi, Francesco; Pasini, Diego; Trainor, Paul A.

    2016-01-01

    The molecular mechanisms that underlie spleen development and congenital asplenia, a condition linked to increased risk of overwhelming infections, remain largely unknown. The transcription factor TLX1 controls cell fate specification and organ expansion during spleen development, and Tlx1 deletion causes asplenia in mice. Deregulation of TLX1 expression has recently been proposed in the pathogenesis of congenital asplenia in patients carrying mutations of the gene-encoding transcription factor SF-1. Herein, we have shown that TLX1-dependent regulation of retinoic acid (RA) metabolism is critical for spleen organogenesis. In a murine model, loss of Tlx1 during formation of the splenic anlage increased RA signaling by regulating several genes involved in RA metabolism. Uncontrolled RA activity resulted in premature differentiation of mesenchymal cells and reduced vasculogenesis of the splenic primordium. Pharmacological inhibition of RA signaling in Tlx1-deficient animals partially rescued the spleen defect. Finally, spleen growth was impaired in mice lacking either cytochrome P450 26B1 (Cyp26b1), which results in excess RA, or retinol dehydrogenase 10 (Rdh10), which results in RA deficiency. Together, these findings establish TLX1 as a critical regulator of RA metabolism and provide mechanistic insights into the molecular determinants of human congenital asplenia. PMID:27214556

  10. The retinoic acid derivative, ABPN, inhibits pancreatic cancer through induction of Nrdp1

    Science.gov (United States)

    Byun, Sanguine; Shin, Seung Ho; Lee, Eunjung; Lee, Jihoon; Lee, Sung-Young; Farrand, Lee; Jung, Sung Keun; Cho, Yong-Yeon; Um, Soo-Jong; Sin, Hong-Sig; Kwon, Youn-Ja; Zhang, Chengjuan; Tsang, Benjamin K.; Bode, Ann M.; Lee, Hyong Joo; Lee, Ki Won; Dong, Zigang

    2015-01-01

    Combination chemotherapy for the treatment of pancreatic cancer commonly employs gemcitabine with an EGFR inhibitor such as erlotinib. Here, we show that the retinoic acid derivative, ABPN, exhibits more potent anticancer effects than erlotinib, while exhibiting less toxicity toward noncancerous human control cells. Low micromolar concentrations of ABPN induced apoptosis in BxPC3 and HPAC pancreatic cancer cell lines, concomitant with a reduction in phosphorylated EGFR as well as decreased ErbB3, Met and BRUCE protein levels. The degradation of ErbB3 is a result of proteasomal degradation, possibly due to the ABPN-dependent upregulation of Nrdp1. Administration of ABPN showed significant reductions in tumor size when tested using a mouse xenograft model, with higher potency than erlotinib at the same concentration. Analysis of the tumors demonstrated that ABPN treatment suppressed ErbB3 and Met and induced Nrdp1 in vivo. The data suggest that ABPN may be more suitable in combination chemotherapy with gemcitabine than the more widely used EGFR inhibitor, erlotinib. PMID:26464195

  11. The meninges is a source of retinoic acid for the late-developing hindbrain.

    Science.gov (United States)

    Zhang, Jinghua; Smith, Deborah; Yamamoto, Miyuki; Ma, Lanhua; McCaffery, Peter

    2003-08-20

    One general function for retinoic acid (RA) is pattern organization in the CNS. This regulatory factor has an essential role in spinal cord motor neuron and early posterior hindbrain development. In the anterior CNS, however, there is only a limited number of foci of RA synthesis, and less attention has been placed on regions such as the anterior hindbrain where RA synthesizing enzymes are absent. This study shows that a rich source of RA lies around the hindbrain from the RA synthetic enzyme retinaldehyde dehydrogenase-2 (RALDH2) present in the surrounding meninges and mesenchyme by embryonic day 13. RALDH2 is not distributed uniformly throughout the meninges but is restricted to territories over the developing hindbrain, suggesting that RA signaling may be localized to those regions. Further regulation of RA signaling is provided by the presence of a RA sink in the form of the CYP26B1 RA catabolic enzyme expressed in deeper regions of the brain. As a guide to the neural anatomy of hindbrain RA signaling, we used a mouse transgenic for a lacZ reporter gene driven by a RA response element (RAREhsplacZ) to identify regions of RA signaling. This reporter mouse provides evidence that RA signaling in the hindbrain after embryonic day 13 occurs in the regions of the cerebellum and precerebellar system adjacent to sources of RA, including the inferior olive and the pontine nuclei.

  12. Regulation of retinoid receptors by retinoic acid and axonal contact in Schwann cells.

    Directory of Open Access Journals (Sweden)

    Maria-Jesus Latasa

    Full Text Available BACKGROUND: Schwann cells (SCs are the cell type responsible for the formation of the myelin sheath in the peripheral nervous system (PNS. As retinoic acid (RA and other retinoids have a profound effect as regulators of the myelination program, we sought to investigate how their nuclear receptors levels were regulated in this cell type. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, by using Schwann cells primary cultures from neonatal Wistar rat pups, as well as myelinating cocultures of Schwann cells with embryonic rat dorsal root ganglion sensory neurons, we have found that sustained expression of RXR-γ depends on the continuous presence of a labile activator, while axonal contact mimickers produced an increase in RXR-γ mRNA and protein levels, increment that could be prevented by RA. The upregulation by axonal contact mimickers and the transcriptional downregulation by RA were dependent on de novo protein synthesis and did not involve changes in mRNA stability. On the other hand, RAR-β mRNA levels were only slightly modulated by axonal contact mimickers, while RA produced a strong transcriptional upregulation that was independent of de novo protein synthesis without changes in mRNA stability. CONCLUSIONS/SIGNIFICANCE: All together, our results show that retinoid receptors are regulated in a complex manner in Schwann cells, suggesting that they could have a prominent role as regulators of Schwann cell physiology.

  13. DNA Methylation of Cellular Retinoic Acid-Binding Proteins in Cervical Cancer

    Science.gov (United States)

    Arellano-Ortiz, Ana L.; Salcedo-Vargas, Mauricio; Vargas-Requena, Claudia L.; López-Díaz, José A.; De la Mora-Covarrubias, Antonio; Silva-Espinoza, Juan C.; Jiménez-Vega, Florinda

    2016-01-01

    This study determined the methylation status of cellular retinoic acid-binding protein (CRABP) gene promoters and associated them with demographic characteristics, habits, and the presence of human papilloma virus (HPV) in patients with cervical cancer (CC), low and high squamous intraepithelial lesions, and no intraepithelial lesion. Women (n = 158) were selected from the Colposcopy Clinic of Sanitary Jurisdiction II in Ciudad Juarez, Chihuahua, Mexico. Demographic characteristics and habit information were collected. Cervical biopsy and endocervical scraping were used to determine methylation in promoter regions by methylation-specific polymerase chain reaction technique. We found hemi-methylation patterns in the promoter regions of CRABP1 and CRABP2; there was 28.5% hemi-methylation in CRABP1 and 7.0% in that of CRABP2. Methylation in CRABP1 was associated with age (≥35 years, P = 0.002), family history of cancer (P = 0.032), the presence of HPV-16 (P = 0.013), and no alcohol intake (P = 0.035). These epigenetic changes could be involved in the CC process, and CRABP1 has the potential to be a predictive molecular marker of retinoid therapy response. PMID:27867303

  14. Gangrenous cheilitis associated with all-trans retinoic acid therapy for acute promyelocytic leukemia.

    Science.gov (United States)

    Tanaka, Mariko; Fukushima, Noriyasu; Itamura, Hidekazu; Urata, Chisako; Yokoo, Masako; Ide, Masaru; Hisatomi, Takashi; Tomimasu, Rika; Sueoka, Eisaburo; Kimura, Shinya

    2010-01-01

    A 67-year-old Japanese woman who presented with erythema on the abdomen and pancytopenia was found to have acute promyelocytic leukemia (APL). A skin biopsy revealed invasion of APL cells. She was started on induction treatment with all-trans retinoic acid (ATRA) at 45 mg/m(2). On day 4, the leukemic cell number had increased to over 1.0 x 10(9)/L. Consequently, chemotherapy with idarubicin and cytarabine was initiated. On day 10, dryness of the lips appeared. The lower lip swelled and developed painful black eschars. A high fever was also present. Despite discontinuing ATRA on day 20 and administering antibiotics, an anti-fungal agent and valaciclovir, these signs did not improve. Histopathologically, the biopsied lip revealed infiltration of neutrophils and vasculitis. The patient was given ATRA on days 29 and 30 due to an increase in APL cell numbers, after which the gangrenous cheilitis extended over the whole lip. On day 49, the patient was started on re-induction treatment with arsenic trioxide. She achieved complete remission and the gangrenous cheilitis slowly healed over the following 8 weeks. Since the clinical features of the gangrenous cheilitis in this case were similar to those of ATRA-associated scrotal ulcers, it appears that activated neutrophils derived from differentiated APL cells may have caused the gangrenous cheilitis. Physicians should be alert to the development of gangrenous cheilitis during treatment with ATRA.

  15. Effect of retinoic acid on proliferation and polyamine metabolism in cultured bovine retinal pigment epithelial cells.

    Science.gov (United States)

    Yasunari, T; Yanagihara, N; Komatsu, T; Moriwaki, M; Shiraki, K; Miki, T; Yano, Y; Otani, S

    1999-01-01

    Reports regarding the effect of all-trans-retinoic acid (RA) on the cell growth of retinal pigment epithelial cells (RPE) have been contradictory. The aims of this study are to clarify the in vitro effect of RA on RPE cells and to examine polyamine metabolism after RA stimulation. A 4-day incubation of fetal-calf-serum (FCS)-stimulated RPE cells with 10 or 25 microM RA significantly increased both cell number and [3H]thymidine incorporation. RPE cells grown over an extended period for 8 days also increased in number and reached full confluency. However, if the incubation was further extended to 12 days, no further increase in cell number was detected. RA treatment of FCS-stimulated RPE cells shifted the peak of ornithine decarboxylase (ODC) activity from 16 to 4 h. S-adenosylmethionine decarboxylase (SAMDC) activity and spermidine/spermine N1-acetyltransferase (SAT) activity of RA-treated RPE cells were significantly greater until 8 and 16 h after incubation, respectively. The putrescine content was significantly increased in RA-treated RPE cells up until 24 h, while spermidine, spermine and N1-acetylspermidine contents were significantly increased until 16 h. Our findings suggest that RA treatment increases the intracellular polyamine concentration of RPE cells via activation of ODC, SAMDC and SAT and that this results in the promotion of RPE cell growth until the cells reach full confluency.

  16. Meningeal retinoic acid contributes to neocortical lamination and radial migration during mouse brain development

    Science.gov (United States)

    Haushalter, Carole; Schuhbaur, Brigitte

    2017-01-01

    ABSTRACT Retinoic acid (RA) is a diffusible molecule involved in early forebrain patterning. Its later production in the meninges by the retinaldehyde dehydrogenase RALDH2 coincides with the time of cortical neuron generation. A function of RA in this process has not been adressed directly as Raldh2−/− mouse mutants are embryonic lethal. Here, we used a conditional genetic strategy to inactivate Raldh2 just prior to onset of its expression in the developing meninges. This inactivation does not affect the formation of the cortical progenitor populations, their rate of division, or timing of differentiation. However, migration of late-born cortical neurons is delayed, with neurons stalling in the intermediate zone and exhibiting an abnormal multipolar morphology. This suggests that RA controls the multipolar-to-bipolar transition that occurs in the intermediate zone and allows neurons to start locomotion in the cortical plate. Our work also shows a role for RA in cortical lamination, as deep layers are expanded and a subset of layer IV neurons are not formed in the Raldh2-ablated mutants. These data demonstrate that meninges are a source of extrinsic signals important for cortical development. PMID:28011626

  17. The retinoic acid machinery in invertebrates: ancestral elements and vertebrate innovations.

    Science.gov (United States)

    Albalat, Ricard

    2009-12-10

    Recent discoveries have changed our view of the evolutionary history of retinoic acid (RA) machinery. It is no longer considered a vertebrate or chordate invention but rather a common genetic toolkit of diverse lineages of metazoans. In particular, the basic machinery of RA-metabolizing enzymes, retinoid-binding proteins and RA-binding nuclear receptors has been identified in protostome and deuterostome lineages. Moreover, the retinoid content and the effects of RA treatment have been described in a number of invertebrates, although the physiological role of RA signaling outside vertebrates is still not fully understood. This review summarizes the evidence gathered over many years on the invertebrate RA system, highlighting the ancient origin of the RA genetic machinery and a basic role in neuronal differentiation. Comparison of invertebrate and vertebrate RA toolkits suggests some innovations in the RA machinery of vertebrates that might have contributed to improving the physiological control of retinoid homeostasis, compensating for vitamin A fluctuations in this lineage. Analysis of the RA machinery in invertebrates also reveals independent losses of RA components during evolution, which might be related to changes in embryonic developmental modes and the absence of the temporal collinearity of hox clusters. Additional studies analyzing the biochemical and functional characteristics of the invertebrate RA genetic machinery are warranted to lend experimental support to the hypotheses sketched in this review. These hypotheses open, however, new perspectives toward understanding how the RA genetic machinery evolved to suit the physiological and developmental requirements of metazoans.

  18. Human gastric epithelial cells contribute to gastric immune regulation by providing retinoic acid to dendritic cells.

    Science.gov (United States)

    Bimczok, D; Kao, J Y; Zhang, M; Cochrun, S; Mannon, P; Peter, S; Wilcox, C M; Mönkemüller, K E; Harris, P R; Grams, J M; Stahl, R D; Smith, P D; Smythies, L E

    2015-05-01

    Despite the high prevalence of chronic gastritis caused by Helicobacter pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule retinol (ROL), and that gastric epithelial cells express both RA biosynthesis genes and RA response genes, indicative of active RA biosynthesis. Moreover, primary gastric epithelial cells cultured in the presence of ROL synthesized RA in vitro and induced RA biosynthesis in co-cultured monocytes through an RA-dependent mechanism, suggesting that gastric epithelial cells may also confer the ability to generate RA on gastric dendritic cells (DCs). Indeed, DCs purified from gastric mucosa had similar levels of aldehyde dehydrogenase activity and RA biosynthesis gene expression as small intestinal DCs, although gastric DCs lacked CD103. In H. pylori-infected gastric mucosa, gastric RA biosynthesis gene expression was severely disrupted, which may lead to reduced RA signaling and thus contribute to disease progression. Collectively, our results support a critical role for RA in human gastric immune regulation.

  19. Retinoic acid enhances lactoferrin-induced IgA responses by increasing betaglycan expression.

    Science.gov (United States)

    Lee, Jeong-Min; Jang, Young-Saeng; Jin, Bo-Ra; Kim, Sun-Jin; Kim, Hyeon-Jin; Kwon, Bo-Eun; Ko, Hyun-Jeong; Yoon, Sung-Il; Lee, Geun-Shik; Kim, Woan-Sub; Seo, Goo-Young; Kim, Pyeung-Hyeun

    2016-11-01

    Lactoferrin (LF) and retinoic acid (RA) are enriched in colostrum, milk, and mucosal tissues. We recently showed that LF-induced IgA class switching through binding to betaglycan (transforming growth factor-beta receptor III, TβRIII) and activation of canonical TGF-β signaling. We investigated the combined effect of LF and RA on the overall IgA response. An increase in IgA production by LF was further augmented by RA. This combination effect was also evident in Ig germ-line α (GLα) transcription and GLα promoter activity, indicating that LF in cooperation with RA increased IgA isotype switching. We subsequently found that RA enhanced TβRIII expression and that this increase contributed to LF-stimulated IgA production. In addition to the IgA response, LF and RA in combination also enhanced the expression of the gut-homing molecules C-C chemokine receptor 9 (CCR9) and α4β7 on B cells. Finally, peroral administration of LF and RA enhanced the frequency of CCR9(+)IgA(+) plasma cells in the lamina propria. Taken together, these results suggest that LF in cooperation with RA can contribute to the establishment of gut IgA responses.

  20. Aldose Reductase Acts as a Selective Derepressor of PPARγ and the Retinoic Acid Receptor

    Directory of Open Access Journals (Sweden)

    Devi Thiagarajan

    2016-04-01

    Full Text Available Histone deacetylase 3 (HDAC3, a chromatin-modifying enzyme, requires association with the deacetylase-containing domain (DAD of the nuclear receptor corepressors NCOR1 and SMRT for its stability and activity. Here, we show that aldose reductase (AR, the rate-limiting enzyme of the polyol pathway, competes with HDAC3 to bind the NCOR1/SMRT DAD. Increased AR expression leads to HDAC3 degradation followed by increased PPARγ signaling, resulting in lipid accumulation in the heart. AR also downregulates expression of nuclear corepressor complex cofactors including Gps2 and Tblr1, thus affecting activity of the nuclear corepressor complex itself. Though AR reduces HDAC3-corepressor complex formation, it specifically derepresses the retinoic acid receptor (RAR, but not other nuclear receptors such as the thyroid receptor (TR and liver X receptor (LXR. In summary, this work defines a distinct role for AR in lipid and retinoid metabolism through HDAC3 regulation and consequent derepression of PPARγ and RAR.

  1. Effect of All-trans Retinoic Acid on Airway Inflammation in Asthmatic Rats and Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    方红; 金红芳; 王宏伟

    2004-01-01

    Summary: The inhibitive effects of all-trans retinoic acid (ARTA) on airway inflammation in asthmatic rats and its mechanism on the basis of the regulation of nuclear factor kappaB (NF-κB) were explored. Thirty-two SD rats were randomly divided into 4 groups: control group, asthma group,dexamethasone treatment group and retinotic acid treatment group. The total and differential cell counts in the collected bronchoalveolar lavage fluid (BALF) were measured. The pathological changes in lung tissues were estimated by scoring. The expression of NF-κB inhibitor (IκBa), NF-κB,intercellular adhering molecule-1 (ICAM-1) in lung tissue was detected by immunohistochemical method. The results showed that in the two treatment groups, the total cell counts and proportion of inflammatory cells in BALF were significantly reduced, but there was no significant difference in differential cell counts in BALF between, them. The pathological changes in lung tissues in the treatment groups were significantly attenuated as compared with asthma group. Except the epithelial injury in retinotic acid treatment group was milder than in dexamethasone treatment group, the remaining lesions showed no significant difference between them. In the two treatment groups, the expression of IκBa was increased, while the expression of NF-κB and ICAM-1 decreased with the difference between the two groups being not significant. It was concluded that the similar anti-inflammatory effects and mechanism of ATRA on airway in asthmatic rats to those of dexamethasone were contributed to the increase of cytoplasmic IκBa content and suppression of NF-cB activation and expression.

  2. Retinoic acid and 1,25-dihydroxyvitamin D3 stimulate osteoclast formation by different mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Scheven, B.A.; Hamilton, N.J. (Rowett Research Institute, Bucksburn, Aberdeen (Scotland))

    1990-01-01

    The effects of retinoic acid (RA) and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on osteoclast formation were examined in intact fetal long bones of different ages/developmental stages maintained in organ culture using a chemically defined medium with or without the presence of serum. Besides stimulating bone resorption, RA and 1,25-(OH)2D3 increased the number of osteoclasts in 19-day-old fetal rat tibiae. Likewise, these bone-resorbing agents induced and stimulated osteoclast formation in 19- and 18-day-old metatarsal bones which were osteoclast-free at the beginning of the culture. The response to 1,25-(OH)2D3 was greatly enhanced by 10% fetal bovine serum (FBS) irrespective of the developmental stage of the long bone. The response to RA was not. Light microscopic autoradiography after labeling of the cultures with tritiated thymidine showed that both RA and 1,25-(OH)2D3 induced osteoclast differentiation from proliferating and postmitotic precursors. However, neither agent was able to stimulate proliferation of osteoclast progenitor cells in the older bones (19 days). Studies on the formation of osteoclast-like (tartrate-resistant acid phosphatase positive) cells in bone marrow cultures indicated that FBS was a potent inducer of osteoclast-like cell formation. In the presence of FBS, 1,25-(OH)2D3 significantly stimulated this response, but RA did not. The results demonstrate that although both RA and 1,25-(OH)2D3 stimulate osteoclast formation from proliferating and postmitotic precursors in long bones in vitro, they do so by different mechanisms.

  3. Retinoic acid treatment enhances lipid oxidation and inhibits lipid biosynthesis capacities in the liver of mice.

    Science.gov (United States)

    Amengual, Jaume; Ribot, Joan; Bonet, M Luisa; Palou, Andreu

    2010-01-01

    Vitamin A, mainly as retinoic acid (RA), is known to affect the development and function of adipose tissues. Treatment with RA reduces body weight and adiposity independent of changes in food intake in mice. Lipid metabolism in liver can have a major impact on whole body adiposity. The aim of this work was to investigate the effects of an in vivo treatment with RA on hepatic lipid metabolism in mice. Adult, standard diet-fed mice were treated with different doses of all-trans RA or vehicle (subcutaneous injection) for 4 days before sacrifice. Food intake and body weight changes during treatment were determined, as well as adiposity, liver composition, levels of circulating metabolites and lipoproteins and expression levels of key mRNA species in liver following sacrifice. RA treatment resulted in reduced body weight and adiposity, as expected. In the liver, RA treatment triggered an increase in the mRNA expression levels of peroxisome proliferator-activated receptor alpha, retinoid X receptor alpha, uncoupling protein 2, liver-type carnitine palmitoyltransferase 1, and carnitine/acylcarnitine carrier, and a reduction in the mRNA expression levels of sterol regulatory element binding protein 1c and fatty acid synthase. Consistent with the changes in gene expression, hepatic triacylglycerol content and circulating VLDL fraction were reduced and levels of circulating ketone bodies increased after RA treatment. These results point to a capacity of active vitamin A forms to shift liver lipid metabolism in vivo towards increased catabolism and reduced lipogenesis. These effects might contribute to the reduction of adiposity brought about by RA treatment.

  4. Senescence in hepatic stellate cells as a mechanism of liver fibrosis reversal: a putative synergy between retinoic acid and PPAR-gamma signalings.

    Science.gov (United States)

    Panebianco, Concetta; Oben, Jude A; Vinciguerra, Manlio; Pazienza, Valerio

    2017-08-01

    Hepatic stellate cells (HSCs), also known as perisinusoidal cells, are pericytes found in the perisinusoidal space of the liver. HSCs are the major cell type involved in liver fibrosis, which is the formation of scar tissue in response to liver damage. When the liver is damaged, stellate cells can shift into an activated state, characterized by proliferation, contractility and chemotaxis. The activated HSCs secrete collagen scar tissue, which can lead to cirrhosis. Recent studies have shown that in vivo activation of HSCs by fibrogenic agents can eventually lead to senescence of these cells, which would contribute to reversal of fibrosis although it may also favor the insurgence of liver cancer. HSCs in their non-active form store huge amounts of retinoic acid derivatives in lipid droplets, which are progressively depleted upon cell activation in injured liver. Retinoic acid is a metabolite of vitamin A (retinol) that mediates the functions of vitamin A, generally required for growth and development. The precise function of retinoic acid and its alterations in HSCs has yet to be elucidated, and nonetheless in various cell types retinoic acid and its receptors (RAR and RXR) are known to act synergistically with peroxisome proliferator-activated receptor gamma (PPAR-gamma) signaling through the activity of transcriptional heterodimers. Here, we review the recent advancements in the understanding of how retinoic acid signaling modulates the fibrogenic potential of HSCs and proposes a synergistic combined action with PPAR-gamma in the reversal of liver fibrosis.

  5. Anti-melasma codrug of retinoic acid assists cutaneous absorption with attenuated skin irritation.

    Science.gov (United States)

    Hsieh, Pei-Wen; Hung, Chi-Feng; Lin, Chih-Hung; Huang, Chang-Wei; Fang, Jia-You

    2017-05-01

    Melasma treatment with combined retinoic acid (RA) and hydroquinone (HQ) usually causes unsatisfactory outcomes and safety concerns. This study attempted to evaluate the cutaneous absorption and skin tolerance of the codrug conjugated with RA and HQ via ester linkage. The codrug's permeation of the pig skin was estimated using Franz diffusion cell. The codrug and parent drugs were comparatively examined for anti-inflammatory activity and tyrosinase inhibition. In vivo cutaneous irritation was assessed on nude mouse skin. Chemical conjugation of RA with HQ increased the lipophilicity and thus the skin absorption. The codrug absorption produced a 5.5- and a 60.8-fold increment compared to RA skin deposition at an equimolar (1.2mM) and saturated solubility dose, respectively. The cumulative amount of HQ derived from the codrug in the receptor was comparable to or less than that of topically applied HQ. The RA-HQ codrug was partly hydrolyzed on penetrating the skin. The hydrolysis rate in intact skin was significantly lower than that in esterase medium and skin homogenates. The codrug showed an interleukin (IL)-6 inhibition activity comparable to RA. A therapeutic index 6-fold greater than RA was obtained with the topical codrug. The tyrosinase inhibition percentage of the codrug and HQ was 13% and 21%, respectively. The skin tolerance test determined by transepidermal water loss (TEWL), redness, and histopathology had exhibited minor skin irritation caused by the codrug compared to the physical mixture of RA and HQ at an equivalent dose. Topical codrug delivery not only promoted RA absorption, but also diminished the adverse effects of the parent agents.

  6. Effect of All-Trans Retinoic Acid on the Pancreas of Streptozotocin-Induced Diabetic Rat.

    Science.gov (United States)

    Eltony, Sohair A; Elmottaleb, Nashwa A; Gomaa, Asmaa M; Anwar, Mamdouh M; El-Metwally, Tarek H

    2016-03-01

    All-trans Retinoic acid (atRA) is instructive for the development of endocrine pancreas and is an integral component of β-cell induction protocols. We showed that atRA induces glucose-responsive endocrine transdifferentiation of pleomorphic pancreatic ductal adenocarcinoma cells in vitro. This study aimed to detect the role of atRA in improving the histological changes of the pancreas in diabetic rats. Forty young male Wistar rats were used and divided into three groups. Group I: normal vehicle control (N = 5). Group II: streptozotocin-induced diabetic rats (N = 20) were followed up at 0.0, 1, 2, and 4 weeks. Group III: streptozotocin-induced diabetic rats (N = 15) treated with atRA (2.5 mg/kg/day), were followed up at 1, 2, and 4 weeks. Specimens from the pancreas were processed for light, electron microscopy and pancreatic insulin mRNA expression. Blood samples were assayed for the levels of glucose, insulin, and total peroxides. In the atRA-treated group, the number of the islets and the islet area significantly increased. Strong insulin-immunoreactive endocrine-like cells were observed nearby the pancreatic acini and the interlobular ducts. Interestingly, insulin-positive cells seemed to arise from pancreatic acinar and ductal epithelium. Ultrastructurally, ß-cells, acinar, and ductal cells restored their normal appearance. Pancreatic insulin mRNA and blood indices were almost normalized. AtRA improved the histological changes of the pancreas and the blood indices in diabetic rats. © 2015 Wiley Periodicals, Inc.

  7. LEUKOCYTOSIS AND RETINOIC ACID SYNDROME IN PATIENTS WITH ACUTE PROMYELOCYTIC LEUKEMIA TREATED WITH ARSENIC TRIOXIDE

    Institute of Scientific and Technical Information of China (English)

    Bo Jin; Ke-zuo Hou; Yun-peng Liu; Ping Yu

    2006-01-01

    Objective To study the incidence of leukocytosis and retinoic acid (RA) syndrome in newly diagnosed and relapsed acute promyelocytic leukemia (APL) patients treated with arsenic trioxide (ATO).Methods Thirty patients with newly diagnosed or relapsed APL received ATO for remission induction at the dose of 10 mg/d. RA syndrome was defined when patient was with one or more of the following signs or symptoms: fever,dyspnea, serous cavity effusion, muscular pain, pulmonary infiltration, weight gain, or pulmonary infiltration on chest X-ray.Results Twenty-three (77%) patients achieved complete remission, mean time to remission was 37.1 days. Leukocytosis was observed in 14 (47%) patients, mean time to leukocytosis was 12.7 days, median baseline leukocyte count for patients with leukocytosis was 3.1 × 109/L, which was higher than that for patients who did not develop leukocytosis (2.6×109/L, z=-2.635, P=0.008). No other cytotoxic therapy was administered, and the leukocytosis resolved in all cases. The RA syndrome was observed in 9(30%) patients, mean time to diagnose of RA syndrome was 13.9 days, median baseline leukocyte count for patients with RA syndrome was 3.6×109/L, which was higher than that for patients who did not develop RA syndrome (2.6 × 109/L, z=-1.909, P=0.046). No patient died of RA syndrome.Conclusion Leukocytosis and RA syndrome are associated with ATO and baseline leukocyte count respectively,and there is distinct link between leukocytosis and RA syndrome.

  8. Redox balance influences differentiation status of neuroblastoma in the presence of all-trans retinoic acid.

    Science.gov (United States)

    Silvis, Anne M; McCormick, Michael L; Spitz, Douglas R; Kiningham, Kinsley K

    2016-04-01

    Neuroblastoma is the most common extra-cranial solid tumor in childhood; and patients in stage IV of the disease have a high propensity for tumor recurrence. Retinoid therapy has been utilized as a means to induce differentiation of tumor cells and to inhibit relapse. In this study, the expression of a common neuronal differentiation marker [neurofilament M (NF-M)] in human SK-N-SH neuroblastoma cells treated with 10μM all-trans retinoic acid (ATRA) showed significantly increased expression in accordance with reduced cell number. This was accompanied by an increase in MitoSOX and DCFH2 oxidation that could be indicative of increased steady-state levels of reactive oxygen species (ROS) such as O2(•-) and H2O2, which correlated with increased levels of MnSOD activity and immuno-reactive protein. Furthermore PEG-catalase inhibited the DCFH2 oxidation signal to a greater extent in the ATRA-treated cells (relative to controls) at 96h indicating that as the cells became more differentiated, steady-state levels of H2O2 increased in the absence of increases in peroxide-scavenging antioxidants (i.e., glutathione, glutathione peroxidase, and catalase). In addition, ATRA-induced stimulation of NF-M at 48 and 72h was enhanced by decreasing SOD activity using siRNA directed at MnSOD. Finally, treatment with ATRA for 96h in the presence of MnSOD siRNA or PEG-catalase inhibited ATRA induced increases in NF-M expression. These results provide strong support for the hypothesis that changes in steady-state levels of O2(•-) and H2O2 significantly contribute to the process of ATRA-induced differentiation in neuroblastoma, and suggest that retinoid therapy for neuroblastoma could potentially be enhanced by redox-based manipulations of superoxide metabolism to improve patient outcome.

  9. Characterization of the human MSX-1 promoter and an enhancer responsible for retinoic acid induction.

    Science.gov (United States)

    Shen, R; Chen, Y; Huang, L; Vitale, E; Solursh, M

    1994-01-01

    Previous studies have shown that the expression of some human HOX genes can be induced by retinoic acid (RA) in cultured embryonal carcinoma (EC) cells. However, the mechanisms for the regulation of HOX gene expression by RA are still unclear. We have examined the effects of RA on the human MSX-1 (formerly named HOX-7) gene expression in cultured EC cells (NT2/D1). Furthermore, we have cloned and characterized the human MSX-1 promoter and analyzed the activities of the promoter in response to RA. Our results demonstrate that transcription of human MSX-1 is activated by RA in cultured EC cells. This activation is dose and time responsive. The MSX-1 promoter was shown to be TATA-box independent and able to promote transcription in RA-treated EC cells. DNase-I footprinting studies revealed protection of several GAGA factor binding sites and an NF-kappa B site upstream to the transcription start site by nuclear extracts prepared from EC cells. A downstream sequence was differentially protected by the nuclear extract from RA treated cells. This differential binding of the sequence with the nuclear extract was further confirmed by gel shift assays. This sequence confers to a heterologous promoter with the ability to respond to RA induction. Point mutation within this DNA fragment abolished the binding of the fragment to the nuclear extract and the response of this element in a heterologous promoter to RA induction. Deletion of this enhancer element together with the adjacent NF-kappa B and GAGA sites abolished the ability of the promoter to direct transcription in RA-treated EC cells. However, removal of a downstream DNA fragment from the promoter endowed the promoter with the ability to direct transcription in RA-untreated cells. Taken together, both positive and negative regulatory cis-elements are involved in the regulation of the MSX-1 promoter and coordinate to control the gene expression.

  10. Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression.

    Science.gov (United States)

    Sirbu, Ioan Ovidiu; Gresh, Lionel; Barra, Jacqueline; Duester, Gregg

    2005-06-01

    Retinoic acid (RA) generated by Raldh2 in paraxial mesoderm is required for specification of the posterior hindbrain, including restriction of Hoxb1 expression to presumptive rhombomere 4 (r4). Hoxb1 expression requires 3' and 5' RA response elements for widespread induction up to r4 and for r3/r5 repression, but RA has previously been detected only from r5-r8, and vHnf1 is required for repression of Hoxb1 posterior to r4 in zebrafish. We demonstrate in mouse embryos that an RA signal initially travels from the paraxial mesoderm to r3, forming a boundary next to the r2 expression domain of Cyp26a1 (which encodes an RA-degrading enzyme). After Hoxb1 induction, the RA boundary quickly shifts to r4/r5, coincident with induction of Cyp26c1 in r4. A functional role for Cyp26c1 in RA degradation was established through examination of RA-treated embryos. Analysis of Raldh2-/- and vHnf1-/- embryos supports a direct role for RA in Hoxb1 induction up to r4 and repression in r3/r5, as well as an indirect role for RA in Hoxb1 repression posterior to r4 via RA induction of vHnf1 up to the r4/r5 boundary. Our findings suggest that Raldh2 and Cyp26 generate shifting boundaries of RA activity, such that r3-r4 receives a short pulse of RA and r5-r8 receives a long pulse of RA. These two pulses of RA activity function to establish expression of Hoxb1 and vHnf1 on opposite sides of the r4/r5 boundary.

  11. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  12. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos.

    Science.gov (United States)

    Li, Junbo; Yue, Yunyun; Zhao, Qingshun

    2016-02-01

    Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.

  13. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering

    Science.gov (United States)

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A.; Alvarez, Susana; de Lera, Angel R.; Kuraku, Shigehiro; Bourguet, William; Laudet, Vincent

    2016-01-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication–degeneration–complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor–ligand interactions of NRs following WGDs. PMID:27069642

  14. Efficient differentiation of embryonic stem cells into mesodermal precursors by BMP, retinoic acid and Notch signalling.

    Directory of Open Access Journals (Sweden)

    Josema Torres

    Full Text Available The ability to direct differentiation of mouse embryonic stem (ES cells into specific lineages not only provides new insights into the pathways that regulate lineage selection but also has translational applications, for example in drug discovery. We set out to develop a method of differentiating ES cells into mesodermal cells at high efficiency without first having to induce embryoid body formation. ES cells were plated on a feeder layer of PA6 cells, which have membrane-associated stromal-derived inducing activity (SDIA, the molecular basis of which is currently unknown. Stimulation of ES/PA6 co-cultures with Bone Morphogenetic Protein 4 (BMP4 both favoured self-renewal of ES cells and induced differentiation into a Desmin and Nestin double positive cell population. Combined stimulation with BMP4 and all-trans Retinoic Acid (RA inhibited self-renewal and resulted in 90% of cells expressing Desmin and Nestin. Quantitative reverse transcription-polymerase chain reaction (qPCR analysis confirmed that the cells were of mesodermal origin and expressed markers of mesenchymal and smooth muscle cells. BMP4 activation of a MAD-homolog (Smad-dependent reporter in undifferentiated ES cells was attenuated by co-stimulation with RA and co-culture with PA6 cells. The Notch ligand Jag1 was expressed in PA6 cells and inhibition of Notch signalling blocked the differentiation inducing activity of PA6 cells. Our data suggest that mesodermal differentiation is regulated by the level of Smad activity as a result of inputs from BMP4, RA and the Notch pathway.

  15. Retinoic acid inhibits endometrial cancer cell growth via multiple genomic mechanisms.

    Science.gov (United States)

    Cheng, You-Hong; Utsunomiya, Hiroki; Pavone, Mary Ellen; Yin, Ping; Bulun, Serdar E

    2011-04-01

    Previous studies have indicated that retinoic acid (RA) may be therapeutic for endometrial cancer. However, the downstream target genes and pathways triggered by ligand-activated RA receptor α (RARα) in endometrial cancer cells are largely unknown. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and immunoblotting assays were used to assess the roles of RA and the RA agonist (AM580) in the growth of endometrial cancer cells. Illumina-based microarray expression profiling of endometrial Ishikawa cells incubated with and without AM580 for 1, 3, and 6 h was performed. We found that both RA and AM580 markedly inhibited endometrial cancer cell proliferation, while knockdown of RARα could block AM580 inhibition. Knockdown of RARα significantly increased proliferating cell nuclear antigen and BCL2 protein levels. Incubation of Ishikawa cells with or without AM580 followed by microarray expression profiling showed that 12 768 genes out of 47 296 gene probes were differentially expressed with significant P values. We found that 90 genes were the most regulated genes with the most significant P value (PAM580 highly regulated these genes, whereas chromatin immunoprecipitation-PCR assay demonstrated that ligand-activated RARα interacted with the promoter of these genes in intact endometrial cancer cells. AM580 also significantly altered 18 pathways including those related to cell growth, differentiation, and apoptosis. In conclusion, AM580 treatment of Ishikawa cells causes the differential expression of a number of RARα target genes and activation of signaling pathways. These pathways could, therefore, mediate the carcinogenesis of human endometrial cancer.

  16. Selective agonists of retinoic acid receptors: comparative toxicokinetics and embryonic exposure.

    Science.gov (United States)

    Arafa, H M; Elmazar, M M; Hamada, F M; Reichert, U; Shroot, B; Nau, H

    2000-01-01

    Three biologically active synthetic retinoids were investigated that bind selectively to retinoic acid receptors RARs (alpha, beta and gamma). The retinoids were previously demonstrated to have different teratogenic effects in the mouse in terms of potency and regioselectivity. The teratogenic potency rank order (alpha >beta >gamma) was found to be more or less compatible with the receptor binding affinities and transactivation potencies of the retinoid ligands to their respective receptors. The RARalpha agonist (Am580; CD336) induced a wide spectrum of malformations; CD2019 (RARbeta agonist) and especially CD437 (RARgamma agonist) produced more restricted defects. In the current study we tried to address whether the differences in teratogenic effects are solely related to binding affinity and transactivation differences or also due to differences in embryonic exposure. Therefore, transplacental kinetics of the ligands were assessed following administration of a single oral dose of 15 mg/kg of either retinoid given to NMRI mice on day 11 of gestation. Am580 was rapidly transferred to the embryo resulting in the highest embryonic exposure [embryo to maternal plasma area under the time vs concentration curve (AUC)(0-24 h )ratio (E/M) was 1.7], in accordance with its highest teratogenic potency. The low placental transfer of CD2019 (E/M of 0.3) was compatible with its lower teratogenic potential. Of major interest was the finding that the CD437, though being least teratogenic, exhibited considerable embryonic exposure (E/M of 0.6). These findings suggest that both the embryonic exposure and receptor binding transactivation selectivity are crucial determinants of the teratogenicity of these retinoid ligands.

  17. Glyphosate-based herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling.

    Science.gov (United States)

    Paganelli, Alejandra; Gnazzo, Victoria; Acosta, Helena; López, Silvia L; Carrasco, Andrés E

    2010-10-18

    The broad spectrum herbicide glyphosate is widely used in agriculture worldwide. There has been ongoing controversy regarding the possible adverse effects of glyphosate on the environment and on human health. Reports of neural defects and craniofacial malformations from regions where glyphosate-based herbicides (GBH) are used led us to undertake an embryological approach to explore the effects of low doses of glyphosate in development. Xenopus laevis embryos were incubated with 1/5000 dilutions of a commercial GBH. The treated embryos were highly abnormal with marked alterations in cephalic and neural crest development and shortening of the anterior-posterior (A-P) axis. Alterations on neural crest markers were later correlated with deformities in the cranial cartilages at tadpole stages. Embryos injected with pure glyphosate showed very similar phenotypes. Moreover, GBH produced similar effects in chicken embryos, showing a gradual loss of rhombomere domains, reduction of the optic vesicles, and microcephaly. This suggests that glyphosate itself was responsible for the phenotypes observed, rather than a surfactant or other component of the commercial formulation. A reporter gene assay revealed that GBH treatment increased endogenous retinoic acid (RA) activity in Xenopus embryos and cotreatment with a RA antagonist rescued the teratogenic effects of the GBH. Therefore, we conclude that the phenotypes produced by GBH are mainly a consequence of the increase of endogenous retinoid activity. This is consistent with the decrease of Sonic hedgehog (Shh) signaling from the embryonic dorsal midline, with the inhibition of otx2 expression and with the disruption of cephalic neural crest development. The direct effect of glyphosate on early mechanisms of morphogenesis in vertebrate embryos opens concerns about the clinical findings from human offspring in populations exposed to GBH in agricultural fields.

  18. Retinoic acid cross-talk with calcitriol activity in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Ørnsrud, R; Lock, E J; Glover, C N; Flik, G

    2009-09-01

    Vitamins A (VA) and D (VD) are metabolised by vertebrates to bioactive retinoic acid (RA) and calcitriol (CTR). RA and CTR involvement in bone metabolism requires fine-tuned regulation of their synthesis and breakdown. In mammals antagonism of VA and VD is observed, but the mechanism of interaction is unknown. We investigated VA-VD interactions in Atlantic salmon (Salmo salar L.) following i.p. injection of RA and/or CTR. VA metabolites, CTR, calcium (Ca), magnesium (Mg) and phosphorus (P) were determined in plasma. Expression of bone matrix Gla protein (mgp), collagen 1 alpha2 chain (col1a2) and alkaline phosphatase (alp) mRNA was quantified to reflect osteogenesis. Branchial epithelial Ca channel (ecac listed as trpv6 in ZFIN Database) mRNA levels and intestinal Ca and P influx were determined to study Ca/P handling targets of RA and CTR. RA-injection (with or without CTR) decreased plasma CTR-levels three- to sixfold. CTR injection did not affect RA metabolites, but lowered CTR in plasma 3 and 5 days after injection. Lowered plasma CTR correlated with decreased mgp and col1a2 expression in all groups and with decreased alp in CTR-injected fish. RA-treated salmon had enhanced alp expression, irrespective of reduced plasma CTR. Expression of ecac and unidirectional intestinal influx of Ca were stimulated following RA-CTR treatment. Plasma Ca, Mg and P were not affected by any treatment. The results suggest cross-talk of RA with the VD endocrine system in Atlantic salmon. Enhanced Ca flux and osteogenesis (alp transcription) in RA-treated fish and inhibition of mgp expression revealed unprecedented disturbance of Ca physiology in hypervitaminosis A.

  19. Effect of retinoic acid on the nitrergic innervation of meibomian glands in rats

    Directory of Open Access Journals (Sweden)

    A. Bolekova

    2012-11-01

    Full Text Available The purpose of this study was to investigate the effect of prenatal administration of retinoic acid (RA on the development of nicotinamide adenine dinucleotide diaphorase (NADPH-d positive structures in the rat Meibomian glands. One mg/kg of RA was applied to pregnant Wistar rats intraperitonaelly during the gestational period in each of the 12th-14th embryonic days (totally 3 mg/kg. Sections of the central upper eyelids were investigated in rat pups on the 14th postnatal day. They were processed histochemically for NADPH-d, to study the presence and distribution of nitric oxide synthase (NOS positive nerve structures. NADPH-d staining of Meibomian glands was compared in two groups of rat pups. In the control group, eyelids of 14 day-old rats were studied with no experimental intervention. The second group consisted of rat pups which were prenatally administered the excess of RA. Histochemical analysis of control eyelids revealed numerous NADPH-d well-stained acini of Meibomian glands arranged tightly into groups. Intensively stained vessels and NADPH-d/NOS-positive nerve fibers bordered acini of Meibomian glands. These structures were present in the submucosal layer as well. The analysis of RA group showed less numerous, shrunken acini of Meibomian glands that were seen not only smaller in size, but also in density of their staining and the amount of nitrergic nerve fibers around acini were considerably lowered. In the submucosa differences were noticed compared to the control group, there were numerous NADPH-d stained vessels accompanied by NADPH-d/NOS-positive nerve fibers. The excess of RA during the prenatal period may influence on the development and morphology of NADPH-d positive structures of rat’s Meibomian glands.

  20. Effect of retinoic acid on the nitrergic innervation of meibomian glands in rats.

    Science.gov (United States)

    Bolekova, A; Kluchova, D; Tomasova, L; Hvizdosova, N

    2012-11-30

    The purpose of this study was to investigate the effect of prenatal administration of retinoic acid (RA) on the development of nicotinamide adenine dinucleotide diaphorase (NADPH-d) positive structures in the rat Meibomian glands. One mg/kg of RA was applied to pregnant Wistar rats intraperitonaelly during the gestational period in each of the 12th-14th embryonic days (totally 3 mg/kg). Sections of the central upper eyelids were investigated in rat pups on the 14th postnatal day. They were processed histochemically for NADPH-d, to study the presence and distribution of nitric oxide synthase (NOS) positive nerve structures. NADPH-d staining of Meibomian glands was compared in two groups of rat pups. In the control group, eyelids of 14 day-old rats were studied with no experimental intervention. The second group consisted of rat pups which were prenatally administered the excess of RA. Histochemical analysis of control eyelids revealed numerous NADPH-d well-stained acini of Meibomian glands arranged tightly into groups. Intensively stained vessels and NADPH-d/NOS-positive nerve fibers bordered acini of Meibomian glands. These structures were present in the submucosal layer as well. The analysis of RA group showed less numerous, shrunken acini of Meibomian glands that were seen not only smaller in size, but also in density of their staining and the amount of nitrergic nerve fibers around acini were considerably lowered. In the submucosa differences were noticed compared to the control group, there were numerous NADPH-d stained vessels accompanied by NADPH-d/NOS-positive nerve fibers. The excess of RA during the prenatal period may influence on the development and morphology of NADPH-d positive structures of rat's Meibomian glands.

  1. Impairment of Retinoic Acid Signaling in Cornelia de Lange Syndrome Fibroblasts.

    Science.gov (United States)

    Fazio, Grazia; Bettini, Laura Rachele; Rigamonti, Silvia; Meta, Dorela; Biondi, Andrea; Cazzaniga, Giovanni; Selicorni, Angelo; Massa, Valentina

    2017-07-28

    Cornelia de Lange syndrome (CdLS) is a rare genetic disorder affecting the neurodevelopment, gastrointestinal, musculoskeletal systems. CdLS is caused by mutations within NIPBL, SMC1A, SMC3, RAD21, and HDAC8 genes. These genes codify for the "cohesin complex" playing a role in chromatid adhesion, DNA repair and gene expression regulation. The aim of this study was to investigate retinoic acid (RA) signaling pathway, a master developmental regulator, in CdLS cells. Skin biopsies from CdLS patients and healthy controls were cultured and derived primary fibroblast cells were treated with RA or dimethyl sulfoxide (vehicle). After RA treatment, cells were harvested and RNA was isolated for quantitative real-time polymerase chain reaction experiments. We analyzed several components of RA metabolism in a human cell line of kidney fibroblasts (293T), in addition to fibroblasts collected from both NIPBL-mutated patients and healthy donors, with or without RA treatment. In all cases, ADH and RALDH1 gene expression was not affected by RA treatment, while CRABP1 was induced. CRABP2 was dramatically upregulated upon RA treatment in healthy donors but not in CdLS patients cells. We investigated if CdLS alterations are associated to perturbation of RA signaling. Cells derived from CdLS patients do not respond to RA signaling as efficiently as healthy controls. RA pathway alterations suggest a possible underlying mechanism for several cellular and developmental abnormalities associated with cohesin function. Birth Defects Research, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. RETINOIC ACID DOWN-REGULATES BONE MORPHOGENETIC PROTEIN 7 EXPRESSION IN RAT WITH CLEFT PALATE

    Institute of Scientific and Technical Information of China (English)

    Lei Guo; Yu-yan Zhao; Shi-liang Zhang; Kui Liu; Xiao-yu Gao

    2008-01-01

    Objective To evaluate the effects of retinoic acid (RA) on expression of bone morphogenetic protein 7 (BMP-7)in rat fetus with cleft palate, and the effects of RA on proliferation and apoptosis of osteoblasts. Methods All-trans RA (ATRA) was used to induce congenital cleft palate in Wistar rat. BMP-7 mRNA expres-sion in maxillary bone tissue of fetal rats was measured by Northern blotting analysis. Flow cytometry and MTT assay were used to measure the apoptosis and proliferation of ATRA-treated MC-3T3-E1 cells. BMP-7 mRNA and protein ex-pressions in ATRA-treated MC-3T3-E1 cells were detected by RT-PCR and Western blotting analysis.Results ATRA could induce cleft palate of rat fetus. The incidence rate of cleft palate induced by 100 mg/kg AT-RA (45.5%) was significantly higher than 50 mg/kg ATRA (12.5%, P<0.05). BMP-7 mRNA expression de-creased in maxillary bone tissue of rat fetus with cleft palate. MC-3T3-E1 cells proliferation treated with 1 × 10-6 mol/L ATRA decreased by 60%, the cell apoptosis increased by 2 times. BMP-7 mR.NA and protein levels in MC-3T3-E1cells treated with 1 × 10-6 mol/L ATRA decreased by 60% and 80%, respectively, compared with ATRA-untreated ceils (P<0.05).Conclusions BMP-7 may play an important role in embryonic palate development RA may possess the ability to down-regulate cell proliferation through regulation of BMP-7 gene expression.

  3. Modeling and analysis of retinoic acid induced differentiation of uncommitted precursor cells.

    Science.gov (United States)

    Tasseff, Ryan; Nayak, Satyaprakash; Song, Sang Ok; Yen, Andrew; Varner, Jeffrey D

    2011-05-01

    Manipulation of differentiation programs has therapeutic potential in a spectrum of human cancers and neurodegenerative disorders. In this study, we integrated computational and experimental methods to unravel the response of a lineage uncommitted precursor cell-line, HL-60, to Retinoic Acid (RA). HL-60 is a human myeloblastic leukemia cell-line used extensively to study human differentiation programs. Initially, we focused on the role of the BLR1 receptor in RA-induced differentiation and G1/0-arrest in HL-60. BLR1, a putative G protein-coupled receptor expressed following RA exposure, is required for RA-induced cell-cycle arrest and differentiation and causes persistent MAPK signaling. A mathematical model of RA-induced cell-cycle arrest and differentiation was formulated and tested against BLR1 wild-type (wt) knock-out and knock-in HL-60 cell-lines with and without RA. The current model described the dynamics of 729 proteins and protein complexes interconnected by 1356 interactions. An ensemble strategy was used to compensate for uncertain model parameters. The ensemble of HL-60 models recapitulated the positive feedback between BLR1 and MAPK signaling. The ensemble of models also correctly predicted Rb and p47phox regulation and the correlation between p21-CDK4-cyclin D formation and G1/0-arrest following exposure to RA. Finally, we investigated the robustness of the HL-60 network architecture to structural perturbations and generated experimentally testable hypotheses for future study. Taken together, the model presented here was a first step toward a systematic framework for analysis of programmed differentiation. These studies also demonstrated that mechanistic network modeling can help prioritize experimental directions by generating falsifiable hypotheses despite uncertainty.

  4. Retinoic acid improves morphology of cultured peritoneal mesothelial cells from patients undergoing dialysis.

    Directory of Open Access Journals (Sweden)

    Carmen Retana

    Full Text Available Patients undergoing continuous ambulatory peritoneal dialysis are classified according to their peritoneal permeability as low transporter (low solute permeability or High transporter (high solute permeability. Factors that determine the differences in permeability between them have not been fully disclosed. We investigated morphological features of cultured human peritoneal mesothelial cells from low or high transporter patients and its response to All trans retinoic Acid (ATRA, vitamin A active metabolite, as compared to non-uremic human peritoneal mesothelial cells. Control cells were isolated from human omentum. High or low transporter cells were obtained from dialysis effluents. Cells were cultured in media containing ATRA (0, 50, 100 or 200 nM. We studied length and distribution of microvilli and cilia (scanning electron microscopy, epithelial (cytokeratin, claudin-1, ZO-1 and occludin and mesenchymal (vimentin and α-smooth muscle actin transition markers by immunofluorescence and Western blot, and transforming growth factor β1 expression by Western blot. Low and high transporter exhibited hypertrophic cells, reduction in claudin-1, occludin and ZO-1 expression, cytokeratin and vimentin disorganization and positive α-smooth muscle actin label. Vimentin, α-smooth muscle actin and transforming growth factor-β1 were overexpressed in low transporter. Ciliated cells were diminished in low and high transporters. Microvilli number and length were severely reduced in high transporter. ATRA reduced hypertrophic cells number in low transporter. It also improved cytokeratin and vimentin organization, decreased vimentin and α-smooth muscle actin expression, and increased claudin 1, occludin and ZO-1 expression, in low and high transporter. In low transporter, ATRA reduced transforming growth factor-β1 expression. ATRA augmented percentage of ciliated cells in low and high transporter. It also augmented cilia length in high transporter

  5. All-TRANS RETINOIC ACID INTERFERES DEVELOPMENT OF PULMONARY HYPERTENSION INDUCED BY MONOCROTALINE IN RATS

    Institute of Scientific and Technical Information of China (English)

    秦玉明; 周爱卿; 贲晓明; 沈捷; 梁瑛; 李奋

    2001-01-01

    Objective To determine whether all-trans retinoic acid (atRA) affects the metabolism of collagen in main pulmonary artery and exerts an inhibitory effect in rats with pulmonary hypertension induced by monocrotaline . Methods All rats (n=72) were divided into 3 groups as control, model, and atRA . In model and atRA groups, rats (n=48) were assigned at random to be given a single subcutaneous injection of monocrotaline (60mgg/kg) and administrated with either atRA (30rng·kg-1·d-1) for atRA group or saline through oral-gastro intubation for model group. In control group, rats (n=24) received a single subcutaneous injection of an equal volume of 0. 9% saline. On day 7, 14,21 and 28 after monocrotaline or saline injection, cardiovascular catheters were inserted into the pulmonary artery of rats in each group to examine their mean pulmonary artery pressure, in addition with their hydroxyproline content determined by chromometry. Results In comparison with the control rats, the mean pulmonary artery pressure of rats in model group increased significantly on day 21 and up to the peak on day 28 (P<0.01), while their hydroxyproline contents decreased significantly on day 14 ( P < 0.05) and increased significantly on day 21 and 28. The atRA group when compared with the model group show reduction in the content of hydroxyproline and the mean pulmonary artery pressure ( P < 0.01 ). Conclusion The atRA inhibits the accumulation of collagen in main pulmonary artery and interferes the development of pulmonary hypertension which might elicit favorable geometric remodeling of rat pulmonary hypertension induced by monocrotaline.

  6. Retinoic acid induces differentiation of buffalo (Bubalus bubalis) embryonic stem cells into germ cells.

    Science.gov (United States)

    Shah, Syed Mohmad; Singla, Suresh Kumar; Palta, Prabhat; Manik, Radhey Sham; Chauhan, Manmohan Singh

    2017-08-30

    Development of precise and reproducible culture system for in vitro differentiation of embryonic stem (ES) cells into germ cells counts as a major leap forward for understanding not only the remarkable process of gametogenesis, otherwise obscured by limited availability of precursor primordial germ cells (PGCs), but in finally treating the catastrophic infertility. Taking into account the significant role of retinoic acid (RA) during in vivo gametogenesis, we designed the present study to investigate the effects of its stimulation on directing the differentiation of ES cells into germ cells. The effects of RA were analyzed across dose-and-time upon various stages of gametogenesis like PGC induction, meiosis initiation and completion, haploid cell formation and development of the final gamete (oocyte and spermatozoa). Out of the series of RA doses (2, 4, 8, 16, 20 and 30μM), 16μM RA for 8day culture interval was found to induce highest expression of PGC- and meiosis-associated genes like DAZL, VASA, SYCP3, MLH1, TNP1/2 and PRM2, while mature germ cell genes like BOULE and TEKT1 (Spermatocyte markers), GDF9 and ZP2 (Oocyte markers) showed higher expression at 2μM RA dose, suggesting functional concentration-gradient of RA activity. Immunocytochemistry revealed expression of germ lineage-specific markers like: c-KIT, DAZL and VASA (PGC-markers); SYCP3, MLH1 and PROTAMINE1 (Meiotic-markers); ACROSIN and HAPRIN (Spermatocyte-markers); and GDF9 and ZP4 (Oocyte-markers) in optimally differentiated embryoid bodies (EBs) and adherent cultures. We observed significantly reduced (pcell population, indicating completion of meiosis. Oocyte-like structures (OLS) were obtained in adherent differentiated cultures. They had a big nucleus and a zona pellucida (ZP4) coat. They showed progression through 2-cell, 4-cell, 8-cell, morula and blastocyst-like structures upon extended culture beyond 14days. Copyright © 2017. Published by Elsevier B.V.

  7. Inhibition of retinoic acid synthesis disrupts spermatogenesis and fecundity in zebrafish.

    Science.gov (United States)

    Pradhan, Ajay; Olsson, Per-Erik

    2015-01-01

    Timing of germ cell entry into meiosis is sexually dimorphic in mammals. However it was recently shown that germ cells initiate meiosis at the same time in male and female zebrafish. Retinoic acid (RA) has been shown to be critical for mammalian spermatogenesis. Inhibition of RA synthesis by WIN 18,446 has been reported to inhibit spermatogenesis in a wide variety of animals including humans and was once used as a contraceptive in humans. In this study we explored the role of RA in zebrafish spermatogenesis. In silico analysis with Internal coordinate mechanics docking software showed that WIN 18,446 can bind to the rat, human and zebrafish Aldh1a2 catalytic domain with equivalent potency. RA exposure resulted in up-regulation of the RA metabolizing enzyme genes cyp26a1, cyp26b1 and cyp26c1 in vitro and in vivo. Exposure to WIN 18,446 resulted in down-regulation of Aldh1a2, cyp26a1 and cyp26b1 in vivo. WIN 18,446 was effective in disrupting spermatogenesis and fecundity in zebrafish but the reduction in sperm count and fecundity was only observed when zebrafish were maintained on a strict Artemia nauplii diet which is known to contain low levels of vitamin A. This study shows that RA is involved in spermatogenesis as well as oocyte development in zebrafish. As the zebrafish Aldh1a2 structure and function is similar to the mammalian counterpart, Aldh1a2 inhibitor screening using zebrafish as a model system may be beneficial in the discovery and development of new and safe contraceptives for humans.

  8. Retinoic acid decreases ATF-2 phosphorylation and sensitizes melanoma cells to taxol-mediated growth inhibition.

    Science.gov (United States)

    Huang, Ying; Minigh, Jennifer; Miles, Sarah; Niles, Richard M

    2008-02-12

    Cutaneous melanoma is often resistant to chemo- and radiotherapy. This resistance has recently been demonstrated to be due, at least in part, to high activating transcription factor 2 (ATF-2) activity in these tumors. In concordance with these reports, we found that B16 mouse melanoma cells had higher levels of ATF-2 than immortalized, but non-malignant mouse melanocytes. In addition, the melanoma cells had a much higher amount of phosphorylated (active) ATF-2 than the immortalized melanocytes. In the course of determining how retinoic acid (RA) stimulates activating protein-1 (AP-1) activity in B16 melanoma, we discovered that this retinoid decreased the phosphorylation of ATF-2. It appears that this effect is mediated through p38 MAPK, because RA decreased p38 phosphorylation, and a selective inhibitor of p38 MAPK (SB203580) also inhibited the phosphorylation of ATF-2. Since ATF-2 activity appears to be involved in resistance of melanoma to chemotherapy, we tested the hypothesis that treatment of the melanoma cells with RA would sensitize them to the growth-inhibitory effect of taxol. We found that pretreatment of B16 cells with RA decreased the IC50 from 50 nM to 1 nM taxol. On the basis of these findings and our previous work on AP-1, we propose a model in which treatment of B16 cells with RA decreases the phosphorylation of ATF-2, which results in less dimer formation with Jun. The "freed-up" Jun can then form a heterodimer with Fos, resulting in the increased AP-1 activity observed in RA-treated B16 cells. Shifting the balance from predominantly ATF-2:Jun dimers to a higher amount of Jun:Fos dimers could lead a change in target gene expression that reduces resistance to chemotherapeutic drugs and contributes to the pathway by which RA arrests proliferation and induces differentiation.

  9. The effects of retinoic acid on immunoglobulin synthesis: Role of interleukin 6

    Energy Technology Data Exchange (ETDEWEB)

    Ballow, M.; Xiang, Shunan; Wang, Weiping; Brodsky, L. [Children`s Hospital of Buffalo, NY (United States)]|[State Univ. of New York, Buffalo, NY (United States)

    1996-05-01

    Retinoic acid (RA) and its parent compound, retinol (ROH, vitamin A), have been recognized as important immunopotentiating agents. Previous studies from our laboratory have demonstrated that PA can augment formalin-treated Staphylococcus aureus (SAC) stimulated immunoglobulin (Ig) synthesis of cord blood mononuclear cells (CBMC). To determine the mechanism(s) by which RA modulates Ig synthesis, we studied the effects of RA on B cells and cytokine production. The addition of RA (10{sup -5} to 10{sup -10} M) to Epstein-Barr virus (EBV)-transformed B-cell clones derived from either adult or cord blood B cells augmented Ig secretion twofold. In contrast, cell proliferation was inhibited as measured by {sup 3}H-thymidine incorporation. We evaluated two cytokines known to be constitutively produced by EBV cell lines, IL-1 and IL-6. While RA had no effect on IL-1 production, IL-6 synthesis was greatly enhanced (20- to 45-fold), which was also reflected by an increase in steady-state mRNA levels for IL-6 but not TNF-{alpha} or TGF-{beta} on Northern blot analysis. Polyclonal rabbit anti-IL-6 antibodies were used to block the augmenting effects of RA on Ig synthesis of adenoidal B cells. RA-induced augmentation in IgG and IgA synthesis was blocked 58 and 29%, respectively, by anti-IL-6 antibodies. These studies suggest that the enhancing effects of RA on Ig synthesis are mediated, at least in part, by the autocrine or paracrine effects of IL-6 on B-cell differentiation. 37 refs., 5 figs.

  10. An alternative retinoic acid-responsive Stra6 promoter regulated in response to retinol deficiency.

    Science.gov (United States)

    Laursen, Kristian B; Kashyap, Vasundhra; Scandura, Joseph; Gudas, Lorraine J

    2015-02-13

    Cellular uptake of vitamin A (retinol) is essential for many biological functions. The Stra6 protein binds the serum retinol-binding protein, RBP4, and acts in conjunction with the enzyme lecithin:retinol acyltransferase to facilitate retinol uptake in some cell types. We show that in embryonic stem (ES) cells and in some tissues, the Stra6 gene encodes two distinct mRNAs transcribed from two different promoters. Whereas both are all-trans-retinoic acid (RA)-responsive in ES cells, the downstream promoter contains a half-site RA response element (RARE) and drives an ∼ 13-fold, RA-associated increase in luciferase reporter activity. We employed CRISPR-Cas9 genome editing to show that the endogenous RARE is required for RA-induced transcription of both Stra6 isoforms. We further demonstrate that in ES cells, 1) both RARγ and RXRα are present at the Stra6 RARE; 2) RA increases co-activator p300 (KAT3B) binding and histone H3 Lys-27 acetylation at both promoters; 3) RA decreases Suz12 levels and histone H3 Lys-27 trimethylation epigenetic marks at both promoters; and 4) these epigenetic changes are diminished in the absence of RARγ. In the brains of WT mice, both the longer and the shorter Stra6 transcript (Stra6L and Stra6S, respectively) are highly expressed, whereas these transcripts are found only at low levels in RARγ(-/-) mice. In the brains of vitamin A-deficient mice, both Stra6L and Stra6S levels are decreased. In contrast, in the vitamin A-deficient kidneys, the Stra6L levels are greatly increased, whereas Stra6S levels are decreased. Our data show that kidneys respond to retinol deficiency by differential Stra6 promoter usage, which may play a role in the retention of retinol when vitamin A is low.

  11. Induction and prepatterning of the zebrafish pectoral fin bud requires axial retinoic acid signaling.

    Science.gov (United States)

    Gibert, Yann; Gajewski, Alexandra; Meyer, Axel; Begemann, Gerrit

    2006-07-01

    Vertebrate forelimbs arise as bilateral appendages from the lateral plate mesoderm (LPM). Mutants in aldh1a2 (raldh2), an embryonically expressed gene encoding a retinoic acid (RA)-synthesizing enzyme, have been used to show that limb development and patterning of the limb bud are crucially dependent on RA signaling. However, the timing and cellular origin of RA signaling in these processes have remained poorly resolved. We have used genetics and chemical modulators of RA signaling to resolve these issues in the zebrafish. By rescuing pectoral fin induction in the aldh1a2/neckless mutant with exogenous RA and by blocking RA signaling in wild-type embryos, we find that RA acts as a permissive signal that is required during the six- to eight-somite stages for pectoral fin induction. Cell-transplantation experiments show that RA production is not only crucially required from flanking somites, but is sufficient to permit fin bud initiation when the trunk mesoderm is genetically ablated. Under the latter condition, intermediate mesoderm alone cannot induce the pectoral fin field in the LPM. We further show that induction of the fin field is directly followed by a continued requirement for somite-derived RA signaling to establish a prepattern of anteroposterior fates in the condensing fin mesenchyme. This process is mediated by the maintained expression of the transcription factor hand2, through which the fin field is continuously posteriorized, and lasts up to several hours prior to limb-budding. Thus, RA signaling from flanking somites plays a dual early role in the condensing limb bud mesenchyme.

  12. Polydimethylsiloxane (PDMS) modulates CD38 expression, absorbs retinoic acid and may perturb retinoid signalling.

    Science.gov (United States)

    Futrega, Kathryn; Yu, Jianshi; Jones, Jace W; Kane, Maureen A; Lott, William B; Atkinson, Kerry; Doran, Michael R

    2016-04-21

    Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34(+) cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34(+) haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34(+) cells.

  13. Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation.

    Directory of Open Access Journals (Sweden)

    Rafaela C Sartore

    Full Text Available The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC cells, embryonic stem (ES cells and induced pluripotent stem (iPS cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal

  14. All-trans-retinoic acid antagonizes the Hedgehog pathway by inducing patched.

    Science.gov (United States)

    Busch, Alexander M; Galimberti, Fabrizio; Nehls, Kristen E; Roengvoraphoj, Monic; Sekula, David; Li, Bin; Guo, Yongli; Direnzo, James; Fiering, Steven N; Spinella, Michael J; Robbins, David J; Memoli, Vincent A; Freemantle, Sarah J; Dmitrovsky, Ethan

    2014-04-01

    Male germ cell tumors (GCTs) are a model for a curable solid tumor. GCTs can differentiate into mature teratomas. Embryonal carcinomas (ECs) represent the stem cell compartment of GCTs and are the malignant counterpart to embryonic stem (ES) cells. GCTs and EC cells are useful to investigate differentiation therapy and chemotherapy response. This study explored mechanistic interactions between all-trans-retinoic acid (RA), which induces differentiation of EC and ES cells, and the Hedgehog (Hh) pathway, a regulator of self-renewal and proliferation. RA was found to induce mRNA and protein expression of Patched 1 (Ptch1), the Hh ligand receptor and negative regulator of this pathway. PTCH1 is also a target gene of Hh signaling through Smoothened (Smo) activation. Yet, this observed RA-mediated Ptch1 induction was independent of Smo. It occurred despite co-treatment with RA and Smo inhibitors. Retinoid induction of Ptch1 also occurred in other RA-responsive cancer cell lines and in normal ES cells. Notably, this enhanced Ptch1 expression was preceded by induction of the homeobox transcription factor Meis1, a direct RA target. Direct interaction between Meis1 and Ptch1 was confirmed using chromatin immunoprecipitation assays. To establish the translational relevance of this work, Ptch1 expression was shown to be deregulated in human ECs relative to mature teratoma and the normal seminiferous tubule. Taken together, these findings reveal a previously unrecognized mechanism through which RA can inhibit the Hh pathway via Ptch1 induction. Engaging this pathway is a new way to repress the Hh pathway that can be translated into the cancer clinic.

  15. NR4A orphan nuclear receptors influence retinoic acid and docosahexaenoic acid signaling via up-regulation of fatty acid binding protein 5

    Energy Technology Data Exchange (ETDEWEB)

    Volakakis, Nikolaos; Joodmardi, Eliza [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); Perlmann, Thomas, E-mail: thomas.perlmann@licr.ki.se [Ludwig Institute for Cancer Research Ltd., Box 240, S-17177 Stockholm (Sweden); The Department of Cell and Molecular Biology, Karolinska Institute, S-17177 Stockholm (Sweden)

    2009-12-25

    The orphan nuclear receptor (NR) Nurr1 is expressed in the developing and adult nervous system and is also induced as an immediate early gene in a variety of cell types. In silico analysis of human promoters identified fatty acid binding protein 5 (FABP5), a protein shown to enhance retinoic acid-mediated PPAR{beta}/{delta} signaling, as a potential Nurr1 target gene. Nurr1 has previously been implicated in retinoid signaling via its heterodimerization partner RXR. Since NRs are commonly involved in cross-regulatory control we decided to further investigate the regulatory relationship between Nurr1 and FABP5. FABP5 expression was up-regulated by Nurr1 and other NR4A NRs in HEK293 cells, and Nurr1 was shown to activate and bind to the FABP5 promoter, supporting that FABP5 is a direct downstream target of NR4A NRs. We also show that the RXR ligand docosahexaenoic acid (DHA) can induce nuclear translocation of FABP5. Moreover, via up-regulation of FABP5 Nurr1 can enhance retinoic acid-induced signaling of PPAR{beta}/{delta} and DHA-induced activation of RXR. We also found that other members of the NR4A orphan NRs can up-regulate FABP5. Thus, our findings suggest that NR4A orphan NRs can influence signaling events of other NRs via control of FABP5 expression levels.

  16. Retinoic acid regulates several genes in bile acid and lipid metabolism via upregulation of small heterodimer partner in hepatocytes.

    Science.gov (United States)

    Mamoon, Abulkhair; Subauste, Angela; Subauste, Maria C; Subauste, Jose

    2014-10-25

    Retinoic acid (RA) affects multiple aspects of development, embryogenesis and cell differentiation processes. The liver is a major organ that stores RA suggesting that retinoids play an important role in the function of hepatocytes. In our previous studies, we have demonstrated the involvement of small heterodimer partner (SHP) in RA-induced signaling in a non-transformed hepatic cell line AML 12. In the present study, we have identified several critical genes in lipid homeostasis (Apoa1, Apoa2 and ApoF) that are repressed by RA-treatment in a SHP dependent manner, in vitro and also in vivo with the use of the SHP null mice. In a similar manner, RA also represses several critical genes involved in bile acid metabolism (Cyp7a1, Cyp8b1, Mdr2, Bsep, Baat and Ntcp) via upregulation of SHP. Collectively our data suggest that SHP plays a major role in RA-induced potential changes in pathophysiology of metabolic disorders in the liver.

  17. Treatment of Symptomatic Geographic Tongue with Triamcinolone Acetonide Alone and in Combination with Retinoic Acid: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Shamsolmoulouk Najafi

    2016-08-01

    Full Text Available Objectives: Geographic tongue or migratory glossitis is an inflammatory disorder with unknown etiology. Considering the accompanied burning pain, taste dysfunction, and lack of definite cure, it is important to treat this condition symptomatically. The objective of the current study was to compare the efficacy of a combination of 0.05% retinoic acid and 0.1% triamcinolone acetonide with that of triamcinolone acetonide alone for treatment of symptomatic geographic tongue.Materials and Methods: This randomized controlled double-blind clinical trial was performed on 28 patients with symptomatic geographic tongue, who were referred to two dental clinics. Participants were randomly divided into two groups and treated with triamcinolone alone or retinoic acid plus triamcinolone for 10 days. Patients were assessed for the level of pain, burning sensation and size of lesion at the beginning and at the end of the study. Participants were followed up for two months after cessation of treatment (at the end of each month. SPSS 11 was applied to compare the two therapeutic modalities.Results: Twenty-eight participants with a mean age of 40 years were evaluated including Seven (25% males and 21(75% females. There was a positive family history of geographic tongue in 21 patients. Despite the diminished pain and burning sensation as well as smaller size of lesions following treatment (P<0.05, no statistically significant differences were found between the two groups (P> 0.05. No side effect was reported. Conclusion: The combination of triamcinolone and retinoic acid was not more effective than triamcinolone alone for symptomatic treatment of geographic tongue.

  18. Ubiquitin/proteasome pathway regulates levels of retinoic acid receptor gamma and retinoid X receptor alpha in human keratinocytes.

    Science.gov (United States)

    Boudjelal, M; Wang, Z; Voorhees, J J; Fisher, G J

    2000-04-15

    Repeated exposure of human skin to solar UV radiation leads to premature aging (photoaging) and skin cancer. UV-induced skin damage can be ameliorated by all-trans retinoic acid treatment. The actions of retinoic acid in skin keratinocytes are mediated primarily by nuclear retinoic acid receptor gamma (RARgamma) and retinoid X receptor alpha (RXRalpha). We found that exposure of cultured primary human keratinocytes to UV irradiation (30 mJ/cm2) substantially reduced (50-90%) RARgamma and RXRalpha mRNA and protein within 8 h. The rates of disappearance of RARgamma and RXRalpha proteins after UV exposure or treatment with the protein synthesis inhibitor cycloheximide were similar. UV irradiation did not increase the rate of breakdown of RARgamma or RXRalpha but rather reduced their rate of synthesis. The addition of proteasome inhibitors MG132 and LLvL, but not the lysosomal inhibitor E64, prevented loss of RARgamma and RXRalpha proteins after exposure of keratinocytes to either UV radiation or cycloheximide. Soluble extracts from nonirradiated or UV-irradiated keratinocytes possessed similar levels of proteasome activity that degraded RARgamma and RXRalpha proteins in vitro. Furthermore, RARgamma and RXRalpha were polyubiquitinated in intact cells. RXRalpha was found to contain two proline, glutamate/aspartate, serine, and threonine (PEST) motifs, which confer rapid turnover of many short-lived regulatory proteins that are degraded by the ubiquitin/proteasome pathway. However, the PEST motifs in RXRalpha did not function to regulate its stability, because deletion of the PEST motifs individually or together did not alter ubiquitination or proteasome-mediated degradation of RXRalpha. These results demonstrate that loss of RARgamma and RXRalpha proteins after UV irradiation results from degradation via the ubiquitin/proteasome pathway. Taken together, the data here indicate that ubiquitin/proteasome-mediated breakdown is an important mechanism regulating the levels of

  19. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Directory of Open Access Journals (Sweden)

    Brenda L Bohnsack

    Full Text Available 1-Phenyl 2-thiourea (PTU is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM, PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03% and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf. Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4 in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3 and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  20. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle development to changes in retinoic acid and IGF signaling.

    Science.gov (United States)

    Bohnsack, Brenda L; Gallina, Donika; Kahana, Alon

    2011-01-01

    1-Phenyl 2-thiourea (PTU) is a tyrosinase inhibitor commonly used to block pigmentation and aid visualization of zebrafish development. At the standard concentration of 0.003% (200 µM), PTU inhibits melanogenesis and reportedly has minimal other effects on zebrafish embryogenesis. We found that 0.003% PTU altered retinoic acid and insulin-like growth factor (IGF) regulation of neural crest and mesodermal components of craniofacial development. Reduction of retinoic acid synthesis by the pan-aldehyde dehydrogenase inhibitor diethylbenzaldehyde, only when combined with 0.003% PTU, resulted in extraocular muscle disorganization. PTU also decreased retinoic acid-induced teratogenic effects on pharyngeal arch and jaw cartilage despite morphologically normal appearing PTU-treated controls. Furthermore, 0.003% PTU in combination with inhibition of IGF signaling through either morpholino knockdown or pharmacologic inhibition of tyrosine kinase receptor phosphorylation, disrupted jaw development and extraocular muscle organization. PTU in and of itself inhibited neural crest development at higher concentrations (0.03%) and had the greatest inhibitory effect when added prior to 22 hours post fertilization (hpf). Addition of 0.003% PTU between 4 and 20 hpf decreased thyroxine (T4) in thyroid follicles in the nasopharynx of 96 hpf embryos. Treatment with exogenous triiodothyronine (T3) and T4 improved, but did not completely rescue, PTU-induced neural crest defects. Thus, PTU should be used with caution when studying zebrafish embryogenesis as it alters the threshold of different signaling pathways important during craniofacial development. The effects of PTU on neural crest development are partially caused by thyroid hormone signaling.

  1. THE CORRELATIONS OF RETINOIC ACID RECEPTOR-α AND ESTROGEN RECEPTOR EXPRESSION IN HUMAN BREAST CANCER CELL LINES AND TUMORS

    Institute of Scientific and Technical Information of China (English)

    余黎明; 邵志敏; 蔡三军; 韩企夏; 沈镇宙

    1998-01-01

    Retinoic acid receptor-α(RAR α) plays a major role in the growth inhibitory effect of retinoic acid on human breast cancer ceils, may be it could serve as an indicator to guide the treatment and prevent of breast cancer with retinoic acid in ciiinc. All previous researchs were based on observing the changes ofRAR a mRAN expression. In this study, the expression of RAR a in human breast cell lines was studied by Northern Blot, Western Blot and Immunohistochemistry in mRNA level and protein level. Results showed that RAR a protein expression was correlated with RAR a mRNA expression. RAR α mRNA expression was higher in estrogen receptor (ER)-positive human breast cancer cell lines than in ER-negative ones. So was RAR α protein expression. Both RAR α mRNA amd RAR α protein expression were associated with ER status. The expression of RAR α and the relationship between RAR α and ER status were also determined by immunohistochemistry in 58 human primary breast cancer tumors. 37 (63.8%) tumors were ER-positive and of these 28 (75. 7%) were also RAR α -positive. The coexpression of ER and RAR α was statistleally significant (P<0. 01, by X2 contingency analysis), It was reported that RAR α expression in cultured breast cancer ceils was regulated by estrogen acting via the ER. Our study demonstrated that RAR α expression may be modulated in breast cancer in vivo by estrogen via ER.

  2. Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution

    Directory of Open Access Journals (Sweden)

    Wang Tian-Tian

    2007-01-01

    Full Text Available Abstract Background Nuclear receptors are hormone-regulated transcription factors whose signaling controls numerous aspects of development and physiology. Many receptors recognize DNA hormone response elements formed by direct repeats of RGKTCA motifs separated by 1 to 5 bp (DR1-DR5. Although many known such response elements are conserved in the mouse and human genomes, it is unclear to which extent transcriptional regulation by nuclear receptors has evolved specifically in primates. Results We have mapped the positions of all consensus DR-type hormone response elements in the human genome, and found that DR2 motifs, recognized by retinoic acid receptors (RARs, are heavily overrepresented (108,582 elements. 90% of these are present in Alu repeats, which also contain lesser numbers of other consensus DRs, including 50% of consensus DR4 motifs. Few DR2s are in potentially mobile AluY elements and the vast majority are also present in chimp and macaque. 95.5% of Alu-DR2s are distributed throughout subclasses of AluS repeats, and arose largely through deamination of a methylated CpG dinucleotide in a non-consensus motif present in AluS sequences. We find that Alu-DR2 motifs are located adjacent to numerous known retinoic acid target genes, and show by chromatin immunoprecipitation assays in squamous carcinoma cells that several of these elements recruit RARs in vivo. These findings are supported by ChIP-on-chip data from retinoic acid-treated HL60 cells revealing RAR binding to several Alu-DR2 motifs. Conclusion These data provide strong support for the notion that Alu-mediated expansion of DR elements contributed to the evolution of gene regulation by RARs and other nuclear receptors in primates and humans.

  3. Polymorphism in the retinoic acid metabolizing enzyme CYP26B1 and the development of Crohn's Disease.

    Directory of Open Access Journals (Sweden)

    Karin Fransén

    Full Text Available Several studies suggest that Vitamin A may be involved in the pathogenesis of inflammatory bowel disease (IBD, but the mechanism is still unknown. Cytochrome P450 26 B1 (CYP26B1 is involved in the degradation of retinoic acid and the polymorphism rs2241057 has an elevated catabolic function of retinoic acid, why we hypothesized that the rs2241057 polymorphism may affect the risk of Crohn's disease (CD and Ulcerative Colitis (UC. DNA from 1378 IBD patients, divided into 871 patients with CD and 507 with UC, and 1205 healthy controls collected at Örebro University Hospital and Karolinska University Hospital were analyzed for the CYP26B1 rs2241057 polymorphism with TaqMan® SNP Genotyping Assay followed by allelic discrimination analysis. A higher frequency of patients homozygous for the major (T allele was associated with CD but not UC compared to the frequency found in healthy controls. A significant association between the major allele and non-stricturing, non-penetrating phenotype was evident for CD. However, the observed associations reached borderline significance only, after correcting for multiple testing. We suggest that homozygous carriers of the major (T allele, relative to homozygous carriers of the minor (C allele, of the CYP26B1 polymorphism rs2241057 may have an increased risk for the development of CD, which possibly may be due to elevated levels of retinoic acid. Our data may support the role of Vitamin A in the pathophysiology of CD, but the exact mechanisms remain to be elucidated.

  4. Morphological and Functional Differentiation in BE (2)-M17 Neuroblastoma Cells by Treatment with Trans-Retinoic Acid

    Science.gov (United States)

    2013-04-18

    CONTRACT NUMBER treatment with Trans-retinoic acid 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andres, D, Keyser, BM, Petrali, J...differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion: Taken together...with a series of low K+ (3 mM)- containing isotonic buffers (136 mM NaCl, 0–2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES, 10 mM glucose, and 0.1% BSA, ph 7.25

  5. Importance of interferon inducible trans-membrane proteins and retinoic acid inducible gene I for influenza virus replication: A review.

    Science.gov (United States)

    Suo, Siqingaowa; Ren, Xiaofeng

    2016-01-01

    Understanding the interplay between Influenza viruses and host cells is key to elucidating the pathogenesis of these viruses. Several host factors have been identified that exert antiviral functions; however, influenza viruses continue to replicate utilizing host cell machinery. Herein, we review the mechanisms of action of two host-derived proteins on conferring cellular resistance to the influenza virus; (1) the interferon inducible trans-membrane proteins, 1, 2 and 3, a recently identified family of early restriction factors; and (2) retinoic acid inducible gene I, a key mediator of antiviral immunity. These data may contribute to the design of novel and efficient anti-influenza treatments.

  6. Outcome of pregnancy in women treated with all-trans retinoic acid; a case report and review of literature.

    Science.gov (United States)

    Valappil, Saudabi; Kurkar, Micheal; Howell, Rosemary

    2007-10-01

    All-trans-retinoic acid (ATRA) has been proved to be an effective treatment for acute promyelocytic leukemia (APL), inducing remission in more than 90% of cases. Treatment of APL in pregnancy is controversial as the use of ATRA has been questioned due to the teratogenic effect of retinoids. We report a case of pregnancy in a woman exposed to ATRA during the first trimester. The baby was born healthy, without any anomalies. Review of all reported cases of the use of ATRA in pregnancy revealed no serious adverse outcomes or congenital anomalies although only very few cases had exposure in the first trimester.

  7. Diencephalic Size Is Restricted by a Novel Interplay Between GCN5 Acetyltransferase Activity and Retinoic Acid Signaling.

    Science.gov (United States)

    Wilde, Jonathan J; Siegenthaler, Julie A; Dent, Sharon Y R; Niswander, Lee A

    2017-03-08

    Diencephalic defects underlie an array of neurological diseases. Previous studies have suggested that retinoic acid (RA) signaling is involved in diencephalic development at late stages of embryonic development, but its roles and mechanisms of action during early neural development are still unclear. Here we demonstrate that mice lacking enzymatic activity of the acetyltransferase GCN5 ((Gcn5(hat/hat) )), which were previously characterized with respect to their exencephalic phenotype, exhibit significant diencephalic expansion, decreased diencephalic RA signaling, and increased diencephalic WNT and SHH signaling. Using a variety of molecular biology techniques in both cultured neuroepithelial cells treated with a GCN5 inhibitor and forebrain tissue from (Gcn5(hat/hat) ) embryos, we demonstrate that GCN5, RARα/γ, and the poorly characterized protein TACC1 form a complex in the nucleus that binds specific retinoic acid response elements in the absence of RA. Furthermore, RA triggers GCN5-mediated acetylation of TACC1, which results in dissociation of TACC1 from retinoic acid response elements and leads to transcriptional activation of RA target genes. Intriguingly, RA signaling defects caused by in vitro inhibition of GCN5 can be rescued through RA-dependent mechanisms that require RARβ. Last, we demonstrate that the diencephalic expansion and transcriptional defects seen in (Gcn5(hat/hat) ) mutants can be rescued with gestational RA supplementation, supporting a direct link between GCN5, TACC1, and RA signaling in the developing diencephalon. Together, our studies identify a novel, nonhistone substrate for GCN5 whose modification regulates a previously undescribed, tissue-specific mechanism of RA signaling that is required to restrict diencephalic size during early forebrain development.SIGNIFICANCE STATEMENT Changes in diencephalic size and shape, as well as SNPs associated with retinoic acid (RA) signaling-associated genes, have been linked to neuropsychiatric

  8. Retinoic acid upregulates ret and induces chain migration and population expansion in vagal neural crest cells to colonise the embryonic gut.

    Directory of Open Access Journals (Sweden)

    Johanna E Simkin

    Full Text Available Vagal neural crest cells (VNCCs arise in the hindbrain, and at (avian embryonic day (E 1.5 commence migration through paraxial tissues to reach the foregut as chains of cells 1-2 days later. They then colonise the rest of the gut in a rostrocaudal wave. The chains of migrating cells later resolve into the ganglia of the enteric nervous system. In organ culture, E4.5 VNCCs resident in the gut (termed enteric or ENCC which have previously encountered vagal paraxial tissues, rapidly colonised aneural gut tissue in large numbers as chains of cells. Within the same timeframe, E1.5 VNCCs not previously exposed to paraxial tissues provided very few cells that entered the gut mesenchyme, and these never formed chains, despite their ability to migrate in paraxial tissue and in conventional cell culture. Exposing VNCCs in vitro to paraxial tissue normally encountered en route to the foregut conferred enteric migratory ability. VNCC after passage through paraxial tissue developed elements of retinoic acid signalling such as Retinoic Acid Binding Protein 1 expression. The paraxial tissue's ability to promote gut colonisation was reproduced by the addition of retinoic acid, or the synthetic retinoid Am80, to VNCCs (but not to trunk NCCs in organ culture. The retinoic acid receptor antagonist CD 2665 strongly reduced enteric colonisation by E1.5 VNCC and E4.5 ENCCs, at a concentration suggesting RARα signalling. By FACS analysis, retinoic acid application to vagal neural tube and NCCs in vitro upregulated Ret; a Glial-derived-neurotrophic-factor receptor expressed by ENCCs which is necessary for normal enteric colonisation. This shows that early VNCC, although migratory, are incapable of migrating in appropriate chains in gut mesenchyme, but can be primed for this by retinoic acid. This is the first instance of the characteristic form of NCC migration, chain migration, being attributed to the application of a morphogen.

  9. Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Pilar Gil-Ibáñez

    Full Text Available The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3'-triiodo-L-thyronine (T3 to its nuclear receptors (TR to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development.

  10. Chronically administered retinoic acid has trophic effects in the rat small intestine and promotes adaptation in a resection model of short bowel syndrome.

    Science.gov (United States)

    Wang, Lihua; Tang, Yuzhu; Rubin, Deborah C; Levin, Marc S

    2007-06-01

    Following the loss of functional small bowel surface area, the intestine undergoes a compensatory adaptive response. The observation that adaptation is inhibited in vitamin A-deficient rats following submassive intestinal resection suggested that vitamin A is required for this response and raised the possibility that exogenous vitamin A could augment adaptation. Therefore, to directly assess whether chronically administered retinoic acid could stimulate gut adaptation in a model of short bowel syndrome and to address the mechanisms of any such effects, Sprague-Dawley rats were implanted with controlled release retinoic acid or control pellets and then subjected to mid-small bowel or sham resections. At 2 wk postoperation, changes in gut morphology, crypt cell proliferation and apoptosis, enterocyte migration, the extracellular matrix, and gene expression were assessed. Retinoic acid had significant trophic effects in resected and sham-resected rats. Retinoic acid markedly inhibited apoptosis and stimulated crypt cell proliferation and enterocyte migration postresection. Data presented indicate that these proadaptive effects of retinoic acid may be mediated via changes in the extracellular matrix (e.g., by increasing collagen IV synthesis, decreasing E-cadherin expression, and reducing integrin beta(3) levels), via affects on Hedgehog signaling (e.g., by reducing expression of the Hedgehog receptors Ptch and Ptch2 and the Gli1 transcription factor), by increasing expression of Reg1 and Pap1, and by modulation of retinoid and peroxisome proliferator-activated receptor signaling pathways. These studies are the first to demonstrate that retinoic acid can significantly enhance intestinal adaptation and suggest it may be beneficial in patients with short bowel syndrome.

  11. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis.

    Science.gov (United States)

    Weber, Thomas J; Magnaldo, Thierry; Xiong, Yijia

    2014-09-11

    We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects.

  12. Inhibition of retinoic acid biosynthesis by the bisdichloroacetyldiamine WIN 18,446 markedly suppresses spermatogenesis and alters retinoid metabolism in mice.

    Science.gov (United States)

    Paik, Jisun; Haenisch, Michael; Muller, Charles H; Goldstein, Alex S; Arnold, Samuel; Isoherranen, Nina; Brabb, Thea; Treuting, Piper M; Amory, John K

    2014-05-23

    Knowledge of the regulation of testicular retinoic acid synthesis is crucial for understanding its role in spermatogenesis. Bisdichloroacetyldiamines strongly inhibit spermatogenesis. We reported previously that one of these compounds, WIN 18,446, potently inhibited spermatogenesis in rabbits by inhibiting retinoic acid synthesis. To understand how WIN 18,446 inhibits retinoic acid synthesis, we characterized its effects on human retinal dehydrogenase ALDH1A2 in vitro as well as its effects on retinoid metabolism in vivo using mice. WIN 18,446 strongly and irreversibly inhibited ALDH1A2 in vitro. In vivo, WIN 18,446 treatment completely abolished spermatogenesis after 4 weeks of treatment and modestly reduced adiposity in mice fed a chow diet. Effects of WIN 18,446 on retinoid concentrations were tissue-dependent. Although lung and liver retinyl ester concentrations were lower in WIN 18,446-treated animals, adipose retinyl ester levels were increased following the treatment. Interestingly, animals treated with WIN 18,446 had significantly higher circulating retinol concentrations compared with control mice. The effect on spermatogenesis by WIN 18,446 was not prevented by simultaneous treatment with retinoic acid, whereas effects on other tissues were partially or completely reversed. Cessation of WIN 18,446 treatment for 4 weeks reversed most retinoid-related phenotypes except for inhibition of spermatogenesis. Our data suggest that WIN 18,446 may be a useful model of systemic acquired retinoic acid deficiency. Given the effects observed in our study, inhibition of retinoic acid biosynthesis may have relevance for the treatment of obesity and in the development of novel male contraceptives.

  13. Evaluation of cellular retinoic acid binding protein 2 gene expression through the retinoic acid pathway by co-incubation of Blastocystis ST-1 with HT29 cells in vitro.

    Science.gov (United States)

    Liao, Chen-Chieh; Song, Eing-Ju; Chang, Tsuey-Yu; Lin, Wei-Chen; Liu, Hsiao-Sheng; Chen, Lih-Ren; Huang, Lynn L H; Shin, Jyh-Wei

    2016-05-01

    Blastocystis is a parasitic protist with a worldwide distribution that is commonly found in patients with colon and gastrointestinal pathological symptoms. Blastocystis infection has also commonly been reported in colorectal cancer and HIV/AIDS patients with gastrointestinal symptoms. To understand the pathway networks of gene regulation and the probable mechanisms influencing functions of HT-29 host cells in response to parasite infection, we examined the expression of 163 human oncogenes and kinases in human colon adenocarcinoma HT-29 cells co-incubated with Blastocystis by in-house cDNA microarray and PCR analysis. At least 10 genes were shown to be modified following Blastocystis co-incubation, including those with immunological, tumorigenesis, and antitumorigenesis functions. The expression of genes encoding cellular retinoic acid binding protein 2 (CRABP2) and proliferating cell nuclear antigen (PCNA) was markedly upregulated and downregulated, respectively. Reverse transcriptase-PCR validated the modified transcript expression of CRABP2 and other associated genes such as retinoic acid (RA)-related nuclear-receptor (RARα). Together, our data indicate that CRABP2, RARα, and PCNA expressions are involved in RA signaling regulatory networks that affect the growth, proliferation, and inflammation of HT-29 cells.

  14. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle

    Science.gov (United States)

    Lapteva, Maria; Möller, Michael; Gurny, Robert; Kalia, Yogeshvar N.

    2015-11-01

    Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn 400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A® Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 +/- 1.1% vs. 0.4 +/- 0.1% and 7.5 +/- 0.8% vs. 0.8 +/- 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm® (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A® Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A® Micro in terms of delivery efficiency to PSU presenting human skin (10.4 +/- 3.2% vs. 0.6 +/- 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU, potentially translating to a safer and more efficient

  15. Retinoic acid signaling plays a restrictive role in zebrafish primitive myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Dong Liang

    Full Text Available Retinoic acid (RA is known to regulate definitive myelopoiesis but its role in vertebrate primitive myelopoiesis remains unclear. Here we report that zebrafish primitive myelopoiesis is restricted by RA in a dose dependent manner mainly before 11 hpf (hours post fertilization when anterior hemangioblasts are initiated to form. RA treatment significantly reduces expressions of anterior hemangioblast markers scl, lmo2, gata2 and etsrp in the rostral end of ALPM (anterior lateral plate mesoderm of the embryos. The result indicates that RA restricts primitive myelopoiesis by suppressing formation of anterior hemangioblasts. Analyses of ALPM formation suggest that the defective primitive myelopoiesis resulting from RA treatment before late gastrulation may be secondary to global loss of cells for ALPM fate whereas the developmental defect resulting from RA treatment during 10-11 hpf should be due to ALPM patterning shift. Overexpressions of scl and lmo2 partially rescue the block of primitive myelopoiesis in the embryos treated with 250 nM RA during 10-11 hpf, suggesting RA acts upstream of scl to control primitive myelopoiesis. However, the RA treatment blocks the increased primitive myelopoiesis caused by overexpressing gata4/6 whereas the abolished primitive myelopoiesis in gata4/5/6 depleted embryos is well rescued by 4-diethylamino-benzaldehyde, a retinal dehydrogenase inhibitor, or partially rescued by knocking down aldh1a2, the major retinal dehydrogenase gene that is responsible for RA synthesis during early development. Consistently, overexpressing gata4/6 inhibits aldh1a2 expression whereas depleting gata4/5/6 increases aldh1a2 expression. The results reveal that RA signaling acts downstream of gata4/5/6 to control primitive myelopoiesis. But, 4-diethylamino-benzaldehyde fails to rescue the defective primitive myelopoiesis in either cloche embryos or lycat morphants. Taken together, our results demonstrate that RA signaling restricts

  16. Retinoic Acid signalling and the control of meiotic entry in the human fetal gonad.

    Directory of Open Access Journals (Sweden)

    Andrew J Childs

    Full Text Available The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal ovarian germ cells to mesonephros-derived retinoic acid (RA. Aspects of this model are hard to reconcile with the spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros at 8-9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to detect RA receptors RARα, β and RXRα, we find germ cells to be the predominant target of RA signalling in the fetal human ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1. Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis, but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local production of RA within the fetal ovary may

  17. Growth Inhibition and Apoptosis Induced by Retinoic Acid Combined with Interferon Alpha-2a on Transitional Cell Carcinoma of Bladder

    Institute of Scientific and Technical Information of China (English)

    QIANLi-xin; LIUXun-liang; ZHOUJian-wei; MonicaLiebert; ZOUChang-chun; ZOUChang-ping

    2004-01-01

    To identify new favorable agents and develop novel approaches for the chemoprevention and treatment of superficial bladder cancer and invesligate the effects of combination of relinoids and interferon α-2a on growth inhibition and apoptosis induction in bladder cancer cell lines. Methods: Four bladder cancer cell lines, grade 1 to 3,and two retinoids, all-trans-retinoic acid(ATRA) ,9.cis retinoic acid(9cRA) ,combined with inteferon α-2a(INF),were used in the study.We compared the competence of these agents to inhibit growth, induce apoptosis, affect the exptession of nuclear retinoid receptors, and modulate STAT1 protein. Resu/ts: Most of the bladder cancer cell lines were resistant to the effect of ATRA and 9cRA on growth inhibition and apoptosis induction, even at higher concentration (10-5M).The effects of ATRA and 9c RA on cell growth and apoptosis were enhanced by INF α-2a.Combination of ATRA and IFNa-2a induced ~ and Slat 1 expression in three bladder cancer cell lines, ~: The results demonstrated that INFw2a synergize with the inhibitory effect of ATRA and 9c RA on the growth intn'bition and apoptosis of bladder cancer cells in vitro, which suggested that it has a potenlJal intexest for the trealment of transitimml cell carcinmna of bladder.

  18. Sequential Analysis for Comparing the Effect of Keyin Decoction(克银方) with Retinoic Acid in Treating Psoriasis

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-ning(王砚宁); GU Jun(顾军)

    2003-01-01

    Objective: To compare the effect of Keyin Decoction(克银方)with retinoic acid in treatingpsoriasis. Methods: One hundred and six patients were randomly divided by paired grouping into the KYD group and the all-trans retinoic acid (RA) group, 53 in each group with 19 cases belonging to Wind-Heat Syndrome type and 34 to Wind-Dryness type. The Wind-Heat Syndrome type in the KYD group was trea- ted with KYD Ⅰ (with the action of rearing Heat, removing Dampness, cooling blood and dispelling Wind), and the Wind-Dryness type with KYD Ⅱ (with the action of nourishing blood, moistening skin and dredging Qi-blood circulation, ). The RA group was treated with RA. Sequential analysis was adopted to observe the effect. At the same time, the adverse reaction was observed. Results: When the test got to the 44th pair of patients, the scription of result reached the UA line of sequential chart, suggesting that the efficacy of KYD was superior to that of RA. Skin lesion subsidence rate in the KYD group and the RA group was 39.6% and 20.8% respectively with significant difference (P<0.05). And for the patients of progressive phase in the two groups, skin lesion subsidence rate was 57.8% and 21.1% respectively (P<0.05). No obvious adverse reaction was found in the KYD group. Conclusion: Keyin Decoction had goodeffect in treating psoriasis.

  19. Expression of the retinoic acid-metabolizing enzymes RALDH2 and CYP26b1 during mouse postnatal testis development

    Institute of Scientific and Technical Information of China (English)

    Jing-Wen Wu; Ru-Yao Wang; Qiang-Su Guo; Chen Xu

    2008-01-01

    Aim: To study the expression pattern of the retinoic acid metabolizing enzymes RALDH2 and CYP26bl during mouse postnatal testis development at both mRNA and protein levels. Methods: Real-time polymerase chain reaction and Western blot analysis were performed to determine the relative quantity of RALDH2 and CYP26bl at both mRNA and protein levels at postnatal day 1, 5, 10, 20, and in adult mice (70 days testes). Testicular localization of RALDH2 and CYP26bl during mouse postnatal development was examined using immunohistochemistry assay. Results: Aldhla 2 transcripts and its protein RALDH2 began to increase at postnatal day 10, and remained at a high level through postnatal day 20 to adulthood. Cyp26bl transcripts and CYP26bl protein did not change significantly during mouse postnatal testis development. RALDH2 was undetectable in the postnatal 1, 5 and 10 day testes using immunohis- tochemistry assay. At postnatal day 20 it was detected in pachytene spermatocytes. Robust expression of RALDH2 was restricted in round spermatids in the adult mouse testis. In the developing and adult testis, CYP26bl protein was confined to the peritubular myoepithelial cells. Conclusion: Our results indicate that following birth, the level of retinoic acid in the seminiferous tubules might begin to increase at postnatal day 10, and maintain a high level through postnatal day 20 to adulthood. (Asian J Androl 2008 Jul; 10: 569-576)

  20. RALDH2, the enzyme for retinoic acid synthesis, mediates meiosis initiation in germ cells of the female embryonic chickens.

    Science.gov (United States)

    Yu, Minli; Yu, Ping; Leghari, Imdad H; Ge, Chutian; Mi, Yuling; Zhang, Caiqiao

    2013-02-01

    Meiosis is a process unique to the differentiation of germ cells and exhibits sex-specific in timing. Previous studies showed that retinoic acid (RA) as the vitamin A metabolite is crucial for controlling Stra8 (Stimulated by retinoic acid gene 8) expression in the gonad and to initiate meiosis; however, the mechanism by which retinoid-signaling acts has remained unclear. In the present study, we investigated the role of the enzyme retinaldehyde dehydrogenase 2 (RALDH2) which catalyzes RA synthesizes by initiating meiosis in chicken ovarian germ cells. Meiotic germ cells were first detected at day 15.5 in chicken embryo ovary when the expression of synaptonemal complex protein 3 (Scp3) and disrupted meiotic cDNA 1 homologue (Dmc1) became elevated, while Stra8 expression was specifically up-regulated at day 12.5 before meiosis onset. It was observed from the increase in Raldh2 mRNA expression levels and decreases in Cyp26b1 (the enzyme for RA catabolism) expression levels during meiosis that requirement for RA accumulation is essential to sustain meiosis. This was also revealed by RA stimulation of the cultured ovaries with the initiation of meiosis response, and the knocking down of the Raldh2 expression during meiosis, leading to abolishment of RA-dependent action. Altogether, these studies indicate that RA synthesis by the enzyme RALDH2 and signaling through its receptor is crucial for meiosis initiation in chicken embryonic ovary.

  1. Chromosomal localization of a novel retinoic acid induced gene RA28 and the protein distribution of its encoded protein

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Gene RA28 is a retinoic acid induced novel gene isolated in our laboratory previously. All-trans retinoic acid (ATRA) was used to induce lung adenocarcinoma cell line GLC-82, and RA28 was obtained by subtractive hybridization. Green fluorescent protein (GFP) has emerged as a unique tool for examining introcellular phenomena in living cells. GFP possesses an intrinsic fluorescence at 488 nm that does not require other co-factors. In this report, an eukaryotic expression plasmid pEGFP-C1-RA28 was constructed and transfected with parental cell line GLC-82 to analyze protein expression and its distribution in living cells. Moreover, radiation hybrid (RH) technique was used to localize RA28 to the chromosome. The results show that gene RA28 is mapped to the chromosome 19q13.1 region, its encoded protein is distributed on cell membrane. All the results further demonstrate that GFP and RH techniques are accurate, fast, repetitive, and will be powerful methods for investigating the gene and protein localization.

  2. Clinical trial of valproic acid and all-trans retinoic acid in patients with poor-risk acute myeloid leukemia.

    Science.gov (United States)

    Bug, Gesine; Ritter, Markus; Wassmann, Barbara; Schoch, Claudia; Heinzel, Thorsten; Schwarz, Kerstin; Romanski, Annette; Kramer, Oliver H; Kampfmann, Manuela; Hoelzer, Dieter; Neubauer, Andreas; Ruthardt, Martin; Ottmann, Oliver G

    2005-12-15

    Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, induced in vitro differentiation of primary acute myeloid leukemia (AML) blasts, an effect enhanced by all-trans retinoic acid (ATRA). Clinical responses to VPA were recently observed in patients with myelodysplastic syndrome (MDS). Herein, the authors have described results of a clinical trial with VPA plus ATRA in 26 patients with poor-risk AML. VPA (5-10 mg/kg starting dose) and ATRA (45 mg/m(2)) were administered orally. Low-dose AraC or hydroxyurea were permitted to control leukocytosis. Biologic activity of VPA was confirmed by serial analysis of HDAC2 protein levels in peripheral blood (PB) mononuclear cells. Nineteen of 26 patients completed at least 4 weeks of VPA/ATRA treatment; 7 patients were withdrawn prematurely because of rapidly progressive disease (n = 3) or unacceptable neurologic and cardiovascular toxicity (n = 4). Additional cytoreductive treatment was required in 58% of patients enrolled. Median treatment duration was 3 months. No patient achieved complete remission, one with de novo AML had a minor response, and two patients with secondary AML arising from myeloproliferative disorder (MPD) achieved a partial remission and clearance of PB blasts, respectively. The latter responses were accompanied by profound granulocytosis and erythrocytosis in both patients, reminiscent of the response pattern known from ATRA treatment of acute promyelocytic leukemia. However, cytogenetic analysis of isolated CD34(+) cells and granulocytes did not reveal terminal differentiation of leukemic blasts. Treatment with VPA/ATRA results in transient disease control in a subset of patients with AML that has evolved from a myeloproliferative disorder but not in patients with a primary or MDS-related AML. Copyright 2005 American Cancer Society.

  3. Molecular characterization and chromosomal assignment of equine cartilage derived retinoic acid sensitive protein (CD-RAP)/melanoma inhibitory activity (MIA)

    DEFF Research Database (Denmark)

    Berg, Lise Charlotte; Mata, Xavier; Thomsen, Preben Dybdahl

    2008-01-01

    Cartilage-derived retinoic acid sensitive protein (CD-RAP) also known as melanoma inhibitory activity (MIA) has already been established as a marker for chondrocyte differentiation and a number of cancerous condition sin humans. Studies have also shown that CD-RAP/MIA is a potential marker of joint...... to the human gene is 90% for the translated region. The upstream sequence includes regulatory elements and putative transcription factor binding sites previously described in the human and murine promoter regions. The deduced amino acid sequence consists of 130 aa including a signal peptide of 23 aa, and has...... a 91% identity to the human protein. Using radiation hybrid mapping, the CD-RAP/MIA gene was localized to the p arm of equine chromosome 10 (ECA10p), which is in accordance with prediction based on the current human-equine comparative map. Gene expression studies showed expression of CD-RAP/MIA m...

  4. Prognostic value of FLT3 mutations in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy

    NARCIS (Netherlands)

    Barragan, Eva; Montesinos, Pau; Camos, Mireia; Gonzalez, Marcos; Calasanz, Maria J.; Roman-Gomez, Jose; Gomez-Casares, Maria T.; Ayala, Rosa; Lopez, Javier; Fuster, Oscar; Colomer, Dolors; Chillon, Carmen; Larrayoz, Maria J.; Sanchez-Godoy, Pedro; Gonzalez-Campos, Jose; Manso, Felix; Amador, Maria L.; Vellenga, Edo; Lowenberg, Bob; Sanz, Miguel A.

    2011-01-01

    Background Fms-like tyrosine kinase-3 (FLT3) gene mutations are frequent in acute promyelocytic leukemia but their prognostic value is not well established. Design and Methods We evaluated FLT3-internal tandem duplication and FLT3-D835 mutations in patients treated with all-trans retinoic acid and a

  5. Localization of the cellular retinoic acid binding protein (CRABP) gene relative to the acute promyelocytic leukemia-associated breakpoint on human chromosome 15

    NARCIS (Netherlands)

    A.H.M. Geurts van Kessel (Ad); H. de Leeuw (H.); E.J. Dekker (E.); J.M. Rijks (Jolianne); N. Spurr (N.); A.M. Ledbetter (Andrew M.); E. Kootwijk (E.); M.J. Vaessen (Marie-Josée)

    1991-01-01

    textabstractA human genomic fragment comprising the cellular retinoic acid binding protein (CRABP) gene was isolated. By using a panel of somatic cell hybrids, this gene could be assigned to human chromosome 15. Subsequently, a possible involvement of the CRABP gene in translocation (15;17) (q22;q11

  6. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all- trans retinoic acid and anthracycline chemotherapy: Characteristics, outcome, and prognostic factors

    NARCIS (Netherlands)

    P. Montesinos (Pau); J.M. Bergua (Juan Miguel); E. Vellenga (Edo); C. Rayón (Chelo); R. Parody (Ricardo); J. de Serna (Javier); A. León (Angel); J. Esteve (Jordi); G. Milone (Gustavo); G. Debén (Guillermo); C. Rivas (Concha); M. González (Marcos); M. Tormo (Mar); D.M. Joaquín; J.D. González (José David); S. Negri (Silvia); E. Amutio (Elena); S. Brunet (Salut); B. Löwenberg (Bob); M.A. Sanz (Miguel Angel)

    2009-01-01

    textabstractDifferentiation syndrome (DS) can be a life-threatening complication in patients with acute promyelocytic leukemia (APL) undergoing induction therapy with all- trans retinoic acid (ATRA). Detailed knowl- edge about DS has remained limited. We present an analysis of the incidence, char- a

  7. Prognostic value of FLT3 mutations in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy

    NARCIS (Netherlands)

    Barragan, Eva; Montesinos, Pau; Camos, Mireia; Gonzalez, Marcos; Calasanz, Maria J.; Roman-Gomez, Jose; Gomez-Casares, Maria T.; Ayala, Rosa; Lopez, Javier; Fuster, Oscar; Colomer, Dolors; Chillon, Carmen; Larrayoz, Maria J.; Sanchez-Godoy, Pedro; Gonzalez-Campos, Jose; Manso, Felix; Amador, Maria L.; Vellenga, Edo; Lowenberg, Bob; Sanz, Miguel A.

    2011-01-01

    Background Fms-like tyrosine kinase-3 (FLT3) gene mutations are frequent in acute promyelocytic leukemia but their prognostic value is not well established. Design and Methods We evaluated FLT3-internal tandem duplication and FLT3-D835 mutations in patients treated with all-trans retinoic acid and

  8. Differentiation of TERA-2 human embryonal carcinoma cells into neurons and HCMV permissive cells. Induction by agents other than retinoic acid.

    Science.gov (United States)

    Andrews, P W; Gönczöl, E; Plotkin, S A; Dignazio, M; Oosterhuis, J W

    1986-01-01

    Retinoic acid induces the differentiation of NTERA-2 cl. D1 human embryonal carcinoma (EC) cells into neurons, cells permissive for the replication of human cytomegalovirus (HCMV), and other cell types that cannot as yet be classified but are distinguishable from the stem cells. We tested several additional agents for their ability to induce the differentiation of these EC cells. No differentiation was induced by butyrate, cyclic AMP, cytosine arabinoside, the tumor promoter 12-0-tetradecanoylphorbol 13-acetate (TPA), or the chemotherapeutic agent cis-diaminedichloroplatinum, although morphological changes were detected at the highest concentrations of these agents that permitted cell survival. However, retinal, retinol, 5-bromouracil 2'deoxyribose (BUdR), 5-iodouracil 2'deoxyribose (IUdR), hexamethylene bisacetamide (HMBA), dimethylacetamide (DMA), and dimethylsulfoxide (DMSO) all induced some neuronal differentiation, but to a lesser extent than retinoic acid. Also, BUdR, IUdR, HMBA, and DMA induced the appearance of many cells permissive for the replication of HCMV. Differentiation was, in all cases, accompanied by the loss of SSEA-3, a globoseries glycolipid antigen characteristically expressed by human EC cells. However, another glycolipid antigen, A2B5, which appears in 60%-80% of differentiated cells 7 days following retinoic acid induction, was detected in less than 20% of the cells induced by the other agents studied. This implies that the HCMV-permissive cells induced by retinoic acid are not identical to those induced by BUdR, IUdR, and DMA.

  9. Receptor for advanced glycation end products plays a more important role in cellular survival than in neurite outgrowth during retinoic acid-induced differentiation of neuroblastoma cells.

    Science.gov (United States)

    Sajithlal, Gangadharan; Huttunen, Henri; Rauvala, Heikki; Munch, Gerald

    2002-03-01

    The receptor for advanced glycation end products (RAGE), a member of the immunoglobulin superfamily, is known to interact with amphoterin. This interaction has been proposed to play a role in neurite outgrowth and process elongation during neurodifferentiation. However, there is as yet no direct evidence of the relevance of this pathway to neurodifferentiation under physiological conditions. In this study we have investigated a possible role of RAGE and amphoterin in the retinoic acid-induced differentiation of neuroblastoma cells. The functional inactivation of RAGE by dominant negative and antisense strategies showed that RAGE is not required for process outgrowth or differentiation, although overexpression of RAGE accelerates the elongation of neuritic processes. Using the antisense strategy, amphoterin was shown to be essential for process outgrowth and differentiation, suggesting that amphoterin may interact with other molecules to exert its effect in this context. Interestingly, the survival of the neuroblastoma cells treated with retinoic acid was partly dependent on the expression of RAGE, and inhibition of RAGE function partially blocked the increase in anti-apoptotic protein Bcl-2 following retinoic acid treatment. Based on these results we propose that a combination therapy using RAGE blockers and retinoic acid may prove as a useful approach for chemotherapy for the treatment of neuroblastoma.

  10. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all- trans retinoic acid and anthracycline chemotherapy: Characteristics, outcome, and prognostic factors

    NARCIS (Netherlands)

    P. Montesinos (Pau); J.M. Bergua (Juan Miguel); E. Vellenga (Edo); C. Rayón (Chelo); R. Parody (Ricardo); J. de Serna (Javier); A. León (Angel); J. Esteve (Jordi); G. Milone (Gustavo); G. Debén (Guillermo); C. Rivas (Concha); M. González (Marcos); M. Tormo (Mar); D.M. Joaquín; J.D. González (José David); S. Negri (Silvia); E. Amutio (Elena); S. Brunet (Salut); B. Löwenberg (Bob); M.A. Sanz (Miguel Angel)

    2009-01-01

    textabstractDifferentiation syndrome (DS) can be a life-threatening complication in patients with acute promyelocytic leukemia (APL) undergoing induction therapy with all- trans retinoic acid (ATRA). Detailed knowl- edge about DS has remained limited. We present an analysis of the incidence, char-

  11. EXPRESSION OF EGFR AND ITS LIGANDS IN RESPONSE TO TCDD OR RETINOIC ACID IN EGF AND TGFALPHA KO FETAL MOUSE PALATE

    Science.gov (United States)

    EXPRESSION OF EGFR AND ITS LIGANDS IN RESPONSE TO TCDD OR RETINOIC ACID IN EGF AND TGF" KO FETAL MOUSE PALATE. Abbott, Barbara D.1; Boyd, Hadiya2; Wood, Carmen1; Held, Gary1. 1.EPA, ORD, NHEERL, RTD, US EPA, Research Triangle Park, NC, USA. 2MARC Program, NCCU, Durham, NC, USA. <...

  12. RETINOIC ACID INDUCTION OF CLEFT PALATE IN EGF AND TGF-ALPHA KNOCKOUT MICE: STAGE SPECIFIC INFLUENCES OF GROWTH FACTOR EXPRESSION

    Science.gov (United States)

    ABBOTT, B. D., LEFFLER, K.E. AND BUCKALEW, A.R, Reproductive Toxicology Division, NHEERL, ORD, US EPA, Research Triangle Park, North Carolina. Retinoic acid induction of cleft palate (CP) in EGF and TGF knockout mice: Stage specific influences of growth factor expression.<...

  13. Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens

    NARCIS (Netherlands)

    Montesinos, Pau; Rayon, Chelo; Vellenga, Edo; Brunet, Salut; Gonzalez, Jose; Gonzalez, Marcos; Holowiecka, Aleksandra; Esteve, Jordi; Bergua, Juan; Gonzalez, Jose D.; Rivas, Concha; Tormo, Mar; Rubio, Vicente; Bueno, Javier; Manso, Felix; Milone, Gustavo; de la Serna, Javier; Perez, Inmaculada; Perez-Encinas, Manuel; Krsnik, Isabel; Ribera, Josep M.; Escoda, Lourdes; Lowenberg, Bob; Sanz, Miguel A.

    2011-01-01

    The expression of CD56 antigen in acute promyelocytic leukemia (APL) blasts has been associated with short remission duration and extramedullary relapse. We investigated the clinical significance of CD56 expression in a large series of patients with APL treated with all-trans retinoic acid and anthr

  14. Contrasting Roles For All-Trans Retinoic Acid in TGF-ß-mediated Induction of Foxp3 and Il10 Genes in Developing Regulatory T Cells

    Science.gov (United States)

    Extrathymic induction of regulatory T cells (Treg) is essential to the regulation of effector T cell responses in the periphery. TGF-ß has been shown to induce Foxp3-expressing Tregs both in vitro and in vivo. More recently, the vitamin A metabolite, all-trans retinoic acid (at-RA), has been found t...

  15. Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens

    NARCIS (Netherlands)

    Montesinos, Pau; Rayon, Chelo; Vellenga, Edo; Brunet, Salut; Gonzalez, Jose; Gonzalez, Marcos; Holowiecka, Aleksandra; Esteve, Jordi; Bergua, Juan; Gonzalez, Jose D.; Rivas, Concha; Tormo, Mar; Rubio, Vicente; Bueno, Javier; Manso, Felix; Milone, Gustavo; de la Serna, Javier; Perez, Inmaculada; Perez-Encinas, Manuel; Krsnik, Isabel; Ribera, Josep M.; Escoda, Lourdes; Lowenberg, Bob; Sanz, Miguel A.

    2011-01-01

    The expression of CD56 antigen in acute promyelocytic leukemia (APL) blasts has been associated with short remission duration and extramedullary relapse. We investigated the clinical significance of CD56 expression in a large series of patients with APL treated with all-trans retinoic acid and

  16. The Effectiveness of a 5% Retinoic Acid Peel Combined with Microdermabrasion for Facial Photoaging: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    Science.gov (United States)

    Faghihi, Gita; Siadat, Amir Hossein; Sadeghian, Giti; Ali Nilforoushzadeh, Mohammad; Mohamadian-shoeili, Hamed

    2017-01-01

    Background. Tretinoin has been shown to improve photoaged skin. This study was designed to evaluate the efficacy and tolerability of a 5% retinoic acid peel combined with microdermabrasion for facial photoaging. Materials and Methods. Forty-five patients, aged 35–70, affected by moderate-to-severe photodamage were enrolled in this trial. All patients received 3 sessions of full facial microdermabrasion and 3 sessions of either 5% retinoic acid peel or placebo after the microdermabrasion. Efficacy was measured using the Glogau scale. Patients were assessed at 2 weeks and 1, 2, and 6 months after treatment initiation. Results. The mean ± SD age of participants was 49.55 ± 11.61 years, and the majorities (73.3%) were female. Between 1 month and 2 months, participants reported slight but statistically significant improvements for all parameters (P < 0.001). In terms of adverse effects, there were statistically significant differences reported between the 5% retinoic acid peel groups and the control group (P < 0.001). The majority of adverse effects reported in the study were described as mild and transient. Conclusion. This study demonstrated that 5% retinoic acid peel cream combined with microdermabrasion was safe and effective in the treatment of photoaging in the Iranian population. This trial is registered with IRCT2015121112782N8.

  17. Nolz1 promotes striatal neurogenesis through the regulation of retinoic acid signaling

    Directory of Open Access Journals (Sweden)

    Urbán Noelia

    2010-08-01

    Full Text Available Abstract Background Nolz1 is a zinc finger transcription factor whose expression is enriched in the lateral ganglionic eminence (LGE, although its function is still unknown. Results Here we analyze the role of Nolz1 during LGE development. We show that Nolz1 expression is high in proliferating neural progenitor cells (NPCs of the LGE subventricular zone. In addition, low levels of Nolz1 are detected in the mantle zone, as well as in the adult striatum. Similarly, Nolz1 is highly expressed in proliferating LGE-derived NPC cultures, but its levels rapidly decrease upon cell differentiation, pointing to a role of Nolz1 in the control of NPC proliferation and/or differentiation. In agreement with this hypothesis, we find that Nolz1 over-expression promotes cell cycle exit of NPCs in neurosphere cultures and negatively regulates proliferation in telencephalic organotypic cultures. Within LGE primary cultures, Nolz1 over-expression promotes the acquisition of a neuronal phenotype, since it increases the number of β-III tubulin (Tuj1- and microtubule-associated protein (MAP2-positive neurons, and inhibits astrocyte generation and/or differentiation. Retinoic acid (RA is one of the most important morphogens involved in striatal neurogenesis, and regulates Nolz1 expression in different systems. Here we show that Nolz1 also responds to this morphogen in E12.5 LGE-derived cell cultures. However, Nolz1 expression is not regulated by RA in E14.5 LGE-derived cell cultures, nor is it affected during LGE development in mouse models that present decreased RA levels. Interestingly, we find that Gsx2, which is necessary for normal RA signaling during LGE development, is also required for Nolz1 expression, which is lost in Gsx2 knockout mice. These findings suggest that Nolz1 might act downstream of Gsx2 to regulate RA-induced neurogenesis. Keeping with this hypothesis, we show that Nolz1 induces the selective expression of the RA receptor (RARβ without altering

  18. Incidence of secondary neoplasms in patients with acute promyelocytic leukemia treated with all-trans retinoic acid plus chemotherapy or with all-trans retinoic acid plus arsenic trioxide.

    Science.gov (United States)

    Eghtedar, Alireza; Rodriguez, Ildefonso; Kantarjian, Hagop; O'Brien, Susan; Daver, Naval; Garcia-Manero, Guillermo; Ferrajoli, Alessandra; Kadia, Tapan; Pierce, Sherry; Cortes, Jorge; Ravandi, Farhad

    2015-05-01

    The incidence and pattern of secondary neoplasms in patients with acute promyelocytic leukemia (APL) treated with all-trans retinoic acid (ATRA)-containing regimens is not well described. We compared 160 patients with APL treated with ATRA plus idarubicin (n = 54) or ATRA plus arsenic trioxide (ATO) (n = 106) for the incidence of secondary cancers per unit time of follow-up. Median follow-up times for the two cohorts were 136 and 29 months, respectively. Nine patients developed secondary cancers in the chemotherapy group. These included two breast cancers, three myelodysplastic syndromes/acute myeloid leukemia, one vulvar cancer, one prostate cancer, one colon cancer and one soft tissue sarcoma. A melanoma and one pancreatic cancer developed in the ATO group. We conclude that treatment of patients with APL using the non-chemotherapy regimen of ATRA plus ATO is not associated with a higher incidence of secondary cancers (p = 0.29) adjusted for unit time of exposure.

  19. Different patterns of glycolipid antigens are expressed following differentiation of TERA-2 human embryonal carcinoma cells induced by retinoic acid, hexamethylene bisacetamide (HMBA) or bromodeoxyuridine (BUdR).

    Science.gov (United States)

    Andrews, P W; Nudelman, E; Hakomori, S; Fenderson, B A

    1990-04-01

    NTERA-2 cl.D1 human embryonal carcinoma (EC) cells were induced to differentiate by either bromodeoxyuridine (BUdR) or hexamethylene bisacetamide (HMBA), and also by retinoic acid. Following exposure to each of these inducers, the globoseries glycolipid antigens stage-specific embryonic antigens -3 and -4 (SSEA-3 and -4) and the glycoprotein antigen TRA-1-60, all characteristic of the human EC cell surface, underwent a marked reduction in expression within about 7 days. At the same time, the lactoseries glycolipid antigen SSEA-1, and ganglioseries antigens A2B5 (GT3) and ME311 (9-0-acetyl GD3) were induced in BUdR- and retinoic acid-treated cells. However, these antigens did not appear during the first 7-14 days of HMBA-induced differentiation. The observations of cell surface antigen expression were paralleled by analysis of glycolipids isolated from the cells by thin-layer chromatography. This analysis, in which the new monoclonal antibodies VINIS-56 and VIN-2PB-22 were included, also revealed expression of gangliosides GD3 and GD2 in all differentiated cultures, albeit at much lower levels following HMBA exposure than following retinoic acid or BUdR-exposure. Further, disialylparagloboside was detected in retinoic acid and BUdR-induced, but not HMBA-induced, cultures. Taken with morphological observations, the results suggest that HMBA induces differentiation of NTERA-2 cl.D1 EC cells along a pathway distinct from the pathway(s) induced by retinoic acid and BUdR.

  20. Sec61alpha synthesis is enhanced during translocation of nascent chains of collagen type IV in F9 teratocarcinoma cells after retinoic acid treatment

    Directory of Open Access Journals (Sweden)

    L.R. Ferreira

    2003-01-01

    Full Text Available Nascent procollagen peptides and other secretory proteins are transported across the endoplasmic reticulum (ER membrane through a protein-conducting channel called translocon. Sec61alpha, a multispanning membrane translocon protein, has been implicated as being essential for translocation of polypeptide chains into the cisterns of the ER. Sec61alpha forms a protein complex with collagen and Hsp47, an ER-resident heat shock protein that binds specifically to collagen. However, it is not known whether Sec61alpha is ubiquitously produced in collagen-producing F9 teratocarcinoma cells or under heat shock treatment. Furthermore, the production and utilization of Sec61alpha may depend on the stage of cell differentiation. Cultured F9 teratocarcinoma cells are capable of differentiation in response to low concentrations of retinoic acid. This differentiation results in loss of tumorigenicity. Mouse F9 cells were grown in culture medium at 37ºC and 43ºC (heat shock treatment treated or not with retinoic acid, and labeled in certain instances with 35S-methionine. Membrane-bound polysomes of procollagen IV were then isolated. Immunoprecipitation and Western blot analysis were performed using polyclonal antibodies against collagen IV, Hsp47 and Sec61alpha. Under retinoic acid-untreated conditions, F9 cells produced undetectable amounts of Sec61alpha. Sec61alpha, Hsp47 and type IV collagen levels were increased after retinoic acid treatment. Heat shock treatment did not alter Sec61alpha levels, suggesting that Sec61alpha production is probably not affected by heat shock. These data indicate that the enhanced production of Sec61alpha in retinoic acid-induced F9 teratocarcinoma cells parallels the increased synthesis of Hsp47 and collagen type IV.

  1. Epidermal growth factor receptor transactivation by intracellular prostaglandin E2-activated prostaglandin E2 receptors. Role in retinoic acid receptor-β up-regulation.

    Science.gov (United States)

    Fernández-Martínez, Ana B; Lucio Cazaña, Francisco J

    2013-09-01

    The pharmacological modulation of renoprotective factor vascular endothelial growth factor-A (VEGF-A) in the proximal tubule has therapeutic interest. In human proximal tubular HK-2 cells, treatment with all-trans retinoic acid or prostaglandin E2 (PGE2) triggers the production of VEGF-A. The pathway involves an initial increase in intracellular PGE2, followed by activation of EP receptors (PGE2 receptors, most likely an intracellular subset) and increase in retinoic acid receptor-β (RARβ) expression. RARβ then up-regulates transcription factor hypoxia-inducible factor-1α (HIF-1α), which increases the transcription and production of VEGF-A. Here we studied the role in this pathway of epidermal growth factor receptor (EGFR) transactivation by EP receptors. We found that EGFR inhibitor AG1478 prevented the increase in VEGF-A production induced by PGE2- and all-trans retinoic acid. This effect was due to the inhibition of the transcriptional up-regulation of RARβ, which resulted in loss of the RARβ-dependent transcriptional up-regulation of HIF-1α. PGE2 and all-trans retinoic acid also increased EGFR phosphorylation and this effect was sensitive to antagonists of EP receptors. The role of intracellular PGE2 was indicated by two facts; i) PGE2-induced EGFR phosphorylation was substantially prevented by inhibitor of prostaglandin uptake transporter bromocresol green and ii) all-trans retinoic acid treatment, which enhanced intracellular but not extracellular PGE2, had lower effect on EGFR phosphorylation upon pre-treatment with cyclooxygenase inhibitor diclofenac. Thus, EGFR transactivation by intracellular PGE2-activated EP receptors results in the sequential activation of RARβ and HIF-1α leading to increased production of VEGF-A and it may be a target for the therapeutic modulation of HIF-1α/VEGF-A. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. COMPARISON OF CLINICAL OBSERVATIONS BETWEEN PATIENTS WITH ACUTE PROMYELOCYTIC LEUKEMIA TREATED WITH ALL-TRANS RETINOIC ACID AND CHEMOTHERAPY

    Institute of Scientific and Technical Information of China (English)

    张芬琴; 吴立德; 李秀松; 孙关林; 蔡敬仁; 王振义

    1992-01-01

    Clinical observations were retrospectively compared between 2 matched groups of patients with acute promyelocytic leukemia (APL) each 20. The first group were treated with chemotherapy, the other with all-tram retinoic acid (ATRA) alone at a dose of 45-60mg/M~2/d. The complete remission (CR) rate of ATRA group was significantly higher than that of chemotherapy (90% vs 55%). The time for obtaining CR as well as the duration of fever and hospitalization were shorter and the amount of blood transfused was less in the former than in the latter group. Seven cases were complicated by DIC and 4 died in the group of chemotherapy, while no case was by of DIC or death in the ATRA group. The mechanism was discussed. ATRA is an alternative effective drug for remission induction therapy in APL with high rate of CR.

  3. The role of a retinoic acid response element in establishing the anterior neural expression border of Hoxd4 transgenes.

    Science.gov (United States)

    Nolte, Christof; Amores, Angel; Nagy Kovács, Erzsébet; Postlethwait, John; Featherstone, Mark

    2003-03-01

    The zebrafish hoxd4a locus was compared to its murine ortholog, Hoxd4. The sequence of regulatory elements, including a DR5 type retinoic acid response element (RARE) required for Hoxd4 neural enhancer activity, are highly conserved. Additionally, zebrafish and mouse neural enhancers function identically in transgenic mouse embryos. We tested whether sequence conservation reflects functional importance by altering the spacing and sequence of the RARE in the Hoxd4 neural enhancer. Stabilizing receptor-DNA interactions did not anteriorize transgene expression. By contrast, conversion of the RARE from a DR5 to a DR2 type element decreased receptor-DNA stability and posteriorized expression. Hence, the setting of the Hox anterior expression border is not a simple function of the affinity of retinoid receptors for their cognate element.

  4. All-trans retinoic acid induces cellular senescence via upregulation of p16, p21, and p27.

    Science.gov (United States)

    Park, Sun-Hye; Lim, Joo Song; Jang, Kyung Lib

    2011-11-28

    We here present a new anti-tumor mechanism of all-trans retinoic acid (ATRA). ATRA induced several biomarkers of cellular senescence including irreversible G1 arrest, morphological changes, senescence-associated β-galactosidase, and heterochromatin foci in HepG2 cells. ATRA also upregulated levels of p16, p21, and p27 which lead to activation of Rb and subsequent inactivation of E2F1. These effects were abolished by the RNA interference-mediated silencing of p16, p21, and p27. Moreover, ATRA failed to induce cellular senescence in Huh7 and HCT116, in which p16, p21, and p27 were not upregulated by ATRA, confirming that ATRA induces cellular senescence via upregulation of p16, p21, and p27. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. [Successful treatment of acute promyelocytic leukemia in a pregnant woman by using all-trans retinoic acid].

    Science.gov (United States)

    Tsuda, H; Doi, H; Inada, T; Shirono, K

    1994-07-01

    A 34-year-old woman was admitted because of pancytopenia with DIC in the 28th week of pregnancy. Bone marrow aspirate demonstrated 81.2% abnormal cells which showed Auer bodies and faggot formation. Chromosomal analysis demonstrated an abnormality, t (15; 17). The patient was diagnosed as having acute promyelocytic leukemia (APL) and started to receive treatment with all-trans retinoic acid (ATRA) 70 mg/body/day per os. She had a cesarean section and gave birth to a female infant in the 29th week of pregnancy. An increase of WBC counts was observed on the 9th hospital day, then chemotherapy with anti-cancer agents was performed additionally. Complete remission was achieved on the 27th hospital day. Management of pregnant patients with APL could be improved by using ATRA instead of conventional combinations of cytotoxic agents.

  6. [A neonate born to a mother with acute promyelocytic leukemia treated by all-trans retinoic acid].

    Science.gov (United States)

    Maeda, M; Tyugu, H; Okubo, T; Yamamoto, M; Nakamura, K; Dan, K

    1997-09-01

    We report a female neonate delivered in week 32 of gestation by a mother who had acute promyelocytic leukemia (APL) treated by all-trans retinoic acid (ATRA). APL was diagnosed in week 29 of gestation and was treated with ATRA from week 30. Physical examination and laboratory tests showed no abnormalities at birth. The girl has since shown normal development, with no peripheral blood abnormalities at 2 years old. Hypersegmented neutrophils, which often appear during ATRA treatment, were seen in the peripheral blood of the mother and cord blood but not peripheral blood of the neonate on the day of birth. ATRA is known to cross the placenta, and has been revealed to be teratogenic in animal studies. There have been eight neonates born to the mothers with APL who were treated with ATRA during pregnancy. All infants, including this one, have shown normal growth without any complications.

  7. Genital ulcers after treatment with all-trans-retinoic acid in a child with acute promyelocytic leukemia.

    Science.gov (United States)

    Unal, Selma; Gümrük, Fatma; Cetin, Mualla; Hiçsönmez, Gönül

    2005-01-01

    All-trans-retinoic acid (ATRA) has been shown to improve the outcome of patients with acute promyelocytic leukemia (APL). However, various adverse effects of ATRA treatment have been noted, such as scrotal and genital ulcers in adult patients. The authors report genital ulcers that developed in a child with APL after ATRA treatment. An 8-year-old girl with APL was treated with ATRA for 21 days and after discontinuation of ATRA treatment she developed genital ulcers. Systemic and local antibiotic pomades were applied and the lesions improved within 15 days. In conclusion, genital ulcers may develop in children with APL as a complication of ATRA treatment and physicians should be alert to this possibility.

  8. All trans retinoic acid depresses the content and activity of the mitochondrial ATP synthase in human keratinocytes.

    Science.gov (United States)

    Papa, F; Lippolis, R; Sardaro, N; Gnoni, A; Scacco, S

    2017-01-08

    Proteomic analysis shows that treatment of keratinocytes cultures with all trans retinoic acid (ATRA), under condition in which it inhibits cell growth, results in marked decrease of the level of the F1-β subunit of the catalytic sector of the mitochondrial FoF1 ATP synthase complex. Enzymatic analysis shows in ATRA-treated keratinocytes a consistent depression of the ATPase activity, with decreased olygomycin sensitivity, indicating an overall alteration of the ATP synthase complex. These findings, together with the previously reported inhibition of respiratory complex I, show that depression of the activity of oxidative phosphorylation enzymes is involved in the cell growth inhibitory action of ATRA. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Regulation of Retinoic Acid Inducible Gene-I (RIG-I Activation by the Histone Deacetylase 6

    Directory of Open Access Journals (Sweden)

    Helene Minyi Liu

    2016-07-01

    Full Text Available Retinoic acid inducible gene-I (RIG-I is a cytosolic pathogen recognition receptor that initiates the immune response against many RNA viruses. Upon RNA ligand binding, RIG-I undergoes a conformational change facilitating its homo-oligomerization and activation that results in its translocation from the cytosol to intracellular membranes to bind its signaling adaptor protein, mitochondrial antiviral-signaling protein (MAVS. Here we show that RIG-I activation is regulated by reversible acetylation. Acetyl-mimetic mutants of RIG-I do not form virus-induced homo-oligomers, revealing that acetyl-lysine residues of the RIG-I repressor domain prevent assembly to active homo-oligomers. During acute infection, deacetylation of RIG-I promotes its oligomerization upon ligand binding. We identify histone deacetylase 6 (HDAC6 as the deacetylase that promotes RIG-I activation and innate antiviral immunity to recognize and restrict RNA virus infection.

  10. Targeting breast cancer using retinoic acid trifloromethyl chalcone: A promising therapeutic strategy in the treatment of breast cancer

    Directory of Open Access Journals (Sweden)

    Hao Ding

    2015-03-01

    Full Text Available The study was devised to investigate the effect of retinoic acid trifloromethyl chalcone (RAFC on mammary carcinogenesis in female rats. The data revealed a significant decrease in number of rats with mammary tumor, number of tumors per rat and tumor volume by 54, 72 and 75% respectively in RAFC group compared to control group. The ibuprofen treated rats also showed a significant decrease in number of rats with tumor, number of tumors per rat and tumor volumes by 43%, 55%, and 59%, respectively. Treatment of rats with RAFC also increased the latency period of tumor induction significantly. Median detection period (50% of tumors was 92, 83 and 56 days respectively in the rats from RAFC, ibuprofen and control groups respectively after DMBA induction. These results demonstrate that RAFC possesses strong chemopreventive activity against mammary carcinogenesis.

  11. All-trans retinoic acid enhances bystander effect of suicide gene therapy in the treatment of breast cancer.

    Science.gov (United States)

    Kong, Heng; Liu, Xia; Yang, Liucheng; Qi, Ke; Zhang, Haoyun; Zhang, Jingwen; Huang, Zonghai; Wang, Hongxian

    2016-03-01

    All-trans retinoic acid (ATRA) has been shown to enhance the expression of connexin 43 (Cx43) and the bystander effect (BSE) in suicide gene therapy. These in turn improve effects of suicide gene therapies for several tumor types. However, whether ATRA can improve BSE remains unclear in suicide gene therapy for breast cancer. In the present study, MCF-7, human breast cancer cells were treated with ATRA in combination with a VEGFP-TK/CD gene suicide system developed by our group. We found that this combination enhances the efficiency of cell killing and apoptosis of breast cancer by strengthening the BSE in vitro. ATRA also promotes gap junction intercellular communication (GJIC) in MCF-7 cells by upregulation of the connexin 43 mRNA and protein in MCF-7 cells. These results indicate that enhancement of GJIC by ATRA in suicide gene system might serve as an attractive and cost-effective strategy of therapy for breast cancer cells.

  12. Raldh expression in embryos of the direct developing frog Eleutherodactylus coqui and the conserved retinoic acid requirement for forelimb initiation.

    Science.gov (United States)

    Elinson, Richard P; Walton, Zachary; Nath, Kimberly

    2008-11-15

    Embryos of the direct developing frog, Eleutherodactylus coqui, provide opportunities to examine frog early limb development that are not available in species with tadpoles. We cloned two retinaldehyde dehydrogenase genes, EcRaldh1 and EcRaldh2, to see which enzyme likely supplies retinoic acid for limb development. EcRaldh1 is expressed in the dorsal retina, otic vesicle, pronephros, and pronephric duct, but not in the limb. EcRaldh2 is expressed early at the blastoporal lip and then in the mesoderm in the neurula, so this expression could function in forelimb initiation. Later EcRaldh2 is expressed in the mesoderm at the base of the limbs and in the ventral spinal cord where motor neurons innervating the limbs emerge. These observations on a frog support the functional conservation of EcRaldh2 in forelimb initiation in Osteichthyans and in limb patterning and motor neuron specification in tetrapods.

  13. All-trans-retinoic acid induces integrin-independent B-cell adhesion to ADAM disintegrin domains.

    Science.gov (United States)

    Bridges, Lance C; Lingo, Joshuah D; Grandon, Rachel A; Kelley, Melissa D

    2008-04-15

    Cell adhesion is an integral aspect of immunity facilitating extravasation of immune cells during homing and activation. All -trans-Retinoic acid ( t-RA) regulates leukocyte differentiation, proliferation, and transmigration. However, the role of t-RA in immune cell adhesion is poorly defined. In this study, we evaluated the impact of t-RA and its metabolism on B and T cell adhesion. Specifically, we address the impact of t-RA on the adhesive properties of the human mature B and T cell lines RPMI 8866, Daudi and Jurkats. The effect of t-RA exposure on cell adhesion to vascular cell adhesion molecule-1 (VCAM-1), a well-established integrin counter receptor involved in immunity, and to nonconventional ADAM integrin ligands was assessed. We show for the first time that t-RA potently induces B cell adhesion in an integrin-independent manner to both VCAM-1 and select ADAM disintegrin domains. Using retinoid extraction and reverse-phase HPLC analysis, we identify the retinoid that is functionally responsible for this augmented adhesion. We also provide evidence that this novel t-RA adhesive response is not prototypical of lymphocytes since both Daudi and Jurkats do not alter their adhesive properties upon t-RA treatment. Further, the t-RA metabolic profiles between these lineages is distinct with 9- cis-retinoic acid being exclusively detected in Jurkat media. This study is the first to demonstrate that t-RA directly induces B cell adhesion in an integrin-independent manner and is not contingent upon t-RA metabolism.

  14. TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomonobu [Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638 (Japan); Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638 (Japan); Okumura, Fumihiko [Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638 (Japan); Iguchi, Akihiro; Ariga, Tadashi [Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638 (Japan); Hatakeyama, Shigetsugu, E-mail: hatas@med.hokudai.ac.jp [Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer TRIM32 enhanced RAR{alpha}-mediated transcriptional activity even in the absence of RA. Black-Right-Pointing-Pointer TRIM32 stabilized RAR{alpha} in the human promyelogenous leukemic cell line HL60. Black-Right-Pointing-Pointer Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. Black-Right-Pointing-Pointer TRIM32 may function as a coactivator for RAR{alpha}-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor {alpha} (RAR{alpha}). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RAR{alpha} and enhances transcriptional activity of RAR{alpha} in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RAR{alpha}, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RAR{alpha}-mediated transcriptional activity even in the absence of RA and stabilizes RAR{alpha} in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RAR{alpha}-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  15. Treatment of newly diagnosed and relapsed acute promyelocytic leukemia with intravenous liposomal all-trans retinoic acid.

    Science.gov (United States)

    Douer, D; Estey, E; Santillana, S; Bennett, J M; Lopez-Bernstein, G; Boehm, K; Williams, T

    2001-01-01

    A novel intravenous liposomal formulation of all-trans retinoic acid (ATRA) was evaluated in 69 patients with acute promyelocytic leukemia (APL): 32 new diagnoses, 35 relapses, and 2 oral ATRA failures. Liposomal ATRA (90 mg/m(2)) was administered every other day until complete remission (CR) or a maximum of 56 days. Treatment following CR was liposomal ATRA with or without chemotherapy. In an intent-to-treat (ITT) analysis of all patients, CR rates were 62%, 70%, and 20% in newly diagnosed, group 1 first relapses (ATRA naive or off oral ATRA more than or equal to 1 year), or group 2 relapses (second or subsequent relapse or first relapses off oral ATRA less than 1 year), respectively. In 56 evaluable patients (receiving 4 or more doses), CR rates for the same groups were 87% (20 of 23), 78% (14 of 18), and 23% (3 of 13). Remission failure in newly diagnosed patients was not from resistant disease. Several patients in CR became polymerase chain reaction (PCR) negative for promyelocytic leukemia/retinoic acid receptor-alpha (PML/RARalpha) after liposomal ATRA alone. Toxicity was generally mild, most commonly headaches (67. 5%). Eighteen patients (26%) had ATRA syndrome develop during induction. One-year survival of ITT patients was 62%, 56%, and 20% for newly diagnosed, group 1, and group 2, respectively. The medium duration of CR has not yet been reached and was 18 and 5.5 months in the same groups. These results demonstrate that liposomal ATRA is effective in inducing CR in newly diagnosed or group 1 APL patients. It provides a reliable dosage of ATRA for patients with APL unable to swallow or absorb medications and can induce molecular remissions without chemotherapy.

  16. Nicotinamide attenuates aquaporin 3 overexpression induced by retinoic acid through inhibition of EGFR/ERK in cultured human skin keratinocytes.

    Science.gov (United States)

    Song, Xiuzu; Xu, Aie; Pan, Wei; Wallin, Brittany; Kivlin, Rebecca; Lu, Shan; Cao, Cong; Bi, Zhigang; Wan, Yinsheng

    2008-08-01

    The most common adverse effects that are related to all-trans retinoic acid (atRA) treatment are irritation and dryness of the skin. atRA therapy is reported to impair barrier function as achieved by trans-epidermal water loss (TEWL). Treatment with nicotinamide prior to initiation of atRA therapy provides additional barrier protection and thus reduces susceptibility of retinoic acid. Our previous studies showed that atRA upregulates aquaporin 3 (AQP3) in cultured human skin keratinocytes and fibroblasts. Others have demonstrated that in atopic dermatitis, overexpression of AQP3 is linked to elevated TEWL and that nicotinamide treatment reduces skin TEWL. In this study, we observed that while atRA upregulates AQP3 expression in cultured human skin keratinocytes (HaCaT cells), nicotinamide attenuates the effect of atRA in a concentration-dependent manner. atRA treatment induces EGFR and ERK activation. PD153035, an EGFR inhibitor, and U0126, an ERK inhibitor, inhibit atRA-induced upregulation of AQP3. Nicotinamide also inhibits atRA-induced activation of EGFR/ERK signal transduction and decreases water permeability by downregulating AQP3 expression. Collectively, our results indicate that the effect of atRA on AQP3 expression is at least partly mediated by EGFR/ERK signaling in cultured human skin keratinocytes. Nicotinamide attenuates atRA-induced AQP3 expression through inhibition of EGFR/ERK signal transduction and eventually decreases water permeability and water loss. Our study provides insights into the molecular mechanism through which nicotinamide reverses the side effects of dryness in human skin after treatment with atRA.

  17. Influence of retinoic acid on TBX1 expression in myocardial cells induced by Shh and Fgf8

    Institute of Scientific and Technical Information of China (English)

    Miao LIU; Xiaoyan WU; Jiawei XU; Runming JIN

    2009-01-01

    The aim of this study was to explore the regulatory mechanism of retinoic acid (RA) on the TBX1 gene expression in myocardial cells. Ventricular cardio-cytes were isolated from neonatal rats and cultured, and then treated with different concentrations of retinoic acid. The expression of Shh and Fgf8 at mRNA and protein levels in neonatal rat myocardial cells were measured by using RT-PCR and Western blot technique, respectively. There was basal expression of Shh and Fgf8 in the control group. When treated with 3×10-7 mol/L RA, we observed that the expression of Shh mRNA and protein in neonatal rat myocardial cells were up-regulated by 1.51 (P<0.05) and 1.10 times (P<0.05), respectively. In comparison with the control group, under the concentra-tion of 5×10-7 mol/L RA, they were up-regulated by 2.21 (P < 0.05) and 2.38 times (P < 0.05) individually. Mean-while, we could detect that the expression of Fgf8 mRNA and protein were up-regulated by 2.50 times (P < 0.05) and 80% (P<0.05) separately compared with the control group after stimulation of 3×10-7 mol/L RA, and they were up-regulated by 3.48 (P< 0.05) and 2.04 times(P < 0.05) individually after stimulation of 5×10-7 mol/LRA. The results indicated that RA could induce the expression of Shh and Fgf8 in neonatal rat myocardial cells. At the same time, it has shown that Shh and Fgf8 were involved in the regulation process of RA on TBX1 expression.

  18. Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis.

    Science.gov (United States)

    Endo, Tsutomu; Romer, Katherine A; Anderson, Ericka L; Baltus, Andrew E; de Rooij, Dirk G; Page, David C

    2015-05-05

    Mammalian spermatogenesis--the transformation of stem cells into millions of haploid spermatozoa--is elaborately organized in time and space. We explored the underlying regulatory mechanisms by genetically and chemically perturbing spermatogenesis in vivo, focusing on spermatogonial differentiation, which begins a series of amplifying divisions, and meiotic initiation, which ends these divisions. We first found that, in mice lacking the retinoic acid (RA) target gene Stimulated by retinoic acid gene 8 (Stra8), undifferentiated spermatogonia accumulated in unusually high numbers as early as 10 d after birth, whereas differentiating spermatogonia were depleted. We thus conclude that Stra8, previously shown to be required for meiotic initiation, also promotes (but is not strictly required for) spermatogonial differentiation. Second, we found that injection of RA into wild-type adult males induced, independently, precocious spermatogonial differentiation and precocious meiotic initiation; thus, RA acts instructively on germ cells at both transitions. Third, the competencies of germ cells to undergo spermatogonial differentiation or meiotic initiation in response to RA were found to be distinct, periodic, and limited to particular seminiferous stages. Competencies for both transitions begin while RA levels are low, so that the germ cells respond as soon as RA levels rise. Together with other findings, our results demonstrate that periodic RA-STRA8 signaling intersects with periodic germ-cell competencies to regulate two distinct, cell-type-specific responses: spermatogonial differentiation and meiotic initiation. This simple mechanism, with one signal both starting and ending the amplifying divisions, contributes to the prodigious output of spermatozoa and to the elaborate organization of spermatogenesis.

  19. Short communication: retinoic acid plus prolactin to synergistically increase specific casein gene expression in MAC-T cells.

    Science.gov (United States)

    Lee, H Y; Heo, Y T; Lee, S E; Hwang, K C; Lee, H G; Choi, S H; Kim, N H

    2013-06-01

    Mammary alveolar (MAC-T) cells, an established bovine mammary epithelial cell line, are frequently used to investigate differentiation. A lactogenic phenotype in these cells is induced by treatment with a combination of hydrocortisone, insulin, and prolactin (PRL). The effect of the vitamin A derivative retinoic acid (RA), which induces differentiation in many cells, has not been studied in MAC-T cells. The objective of this study was to evaluate the differentiation potential of RA (1 μM) in MAC-T cells and to examine the effect of combined treatment with RA (1 μM) and PRL (5 μg/mL). Although RA treatment alone inhibited MAC-T cell proliferation, co-treatment of RA with PRL increased cell growth compared with the control group (treated with 1 μg/mL hydrocortisone and 5 μg/mL insulin). The ratio of Bcl to Bax mRNA was decreased in the RA treatment compared with RA+PRL or control. Retinoic acid-induced differentiation of MAC-T cells was associated with an increase in the mRNA expression of αS1-casein (3.9-fold), αS2-casein (4.5-fold), and β-casein (4.4-fold) compared with the control group. Expression of αS1-casein, αS2-casein, and β-casein was increased 12.9-fold, 11.9-fold, and 19.3-fold, respectively, following treatment with RA and PRL combined compared with the control group. These results demonstrate that RA induces differentiation of MAC-T cells and acts synergistically with PRL to increase specific casein gene expression.

  20. A truncated-Flt1 isoform of breast cancer cells is upregulated by Notch and downregulated by retinoic acid.

    Science.gov (United States)

    Mezquita, Belén; Mezquita, Jovita; Barrot, Carme; Carvajal, Silvia; Pau, Montserrat; Mezquita, Pau; Mezquita, Cristóbal

    2014-01-01

    We have previously reported that the major isoform of Flt1/VEGFR-1 expressed in MDA-MB-231 breast cancer cells was a truncated intracellular isoform transcribed from intron 21 (i21 Flt1). This isoform upregulated the active form of Src and increased breast cancer cell invasiveness. Since expression of the transmembrane and soluble Flt1 isoforms of HUVEC is activated by Notch signaling, we wondered whether the expression of the intracellular isoform i21 Flt1 was also dependent on Notch activation. We report here that the expression of i21 Flt1 in HUVEC and MDA-MB-231 cells is downregulated by the γ-secretase inhibitor DAPT. In addition, treatment of MDA-MB-231 cells with siRNA specific for Notch-1 and Notch-3 downregulates the expression of i21 Flt1. In agreement with these findings, HUVEC and MDA-MB-231 breast cancer cells, cultured on dishes coated with recombinant human Dll4 extracellular domain, express higher levels of i21 Flt1. In cancer cells, Flt1 is a target of the micro RNA family miR-200. In MDA-MB-231 breast cancer cells, the truncated intracellular isoform i21 Flt1 is also negatively regulated by miR-200c. Retinoic acid interferes i21 Flt1 expression by downregulating Notch-3 and upregulating miR-200 expression. Treatment of MDA-MB-231 breast cancer cells with both a γ-secretase inhibitor and retinoic acid suppresses the expression of i21 Flt1, providing a new mechanism to explain the effectiveness of this therapeutic approach. © 2013 Wiley Periodicals, Inc.

  1. Cleft lip with or without cleft palate: Associations with transforming growth factor alpha and retinoic acid receptor loci

    Energy Technology Data Exchange (ETDEWEB)

    Chenevix-Trench, G.; Jones, K. (Queensland Inst. of Medical Research (Australia) Univ. of Queensland (Australia)); Green, A.C.; Duffy, D.L.; Martin, N.G. (Queensland Inst. of Medical Research (Australia))

    1992-12-01

    The first association study of cleft lip with or without cleft palate (CL/P), with candidate genes, found an association with the transforming growth-factor alpha (TGFA) locus. This finding has since been replicated, in whole or in part, in three independent studies. Here the authors extend their original analysis of the TGFA TaqI RFLP to two other TGFA RFLPs and seven other RFLPs at five candidate genes in 117 nonsyndromic cases of CL/P and 113 controls. The other candidate genes were the retinoic acid receptor (RARA), the bcl-2 oncogene, and the homeobox genes 2F, 2G, and EN2. Significant associations with the TGFA TaqI and BamHI RFLPs were confirmed, although associations of clefting with previously reported haplotypes did not reach significance. Of particular interest, in view of the known teratogenic role of retinoic acid, was a significant association with the RARA PstI RFLP (P = .016; not corrected for multiple testing). The effect on risk of the A2 allele appears to be additive, and although the A2A2 homozygote only has an odds ratio of about 2 and recurrence risk to first-degree relatives ([lambda][sub 1]) of 1.06, because it is so common it may account for as much as a third of the attributable risk of clefting. There is no evidence of interaction between the TGFA and RARA polymorphisms on risk, and jointly they appear to account for almost half the attributable risk of clefting. 43 refs., 1 fig., 4 tabs.

  2. Effects of retinoic acid and hydrogen peroxide on sterol regulatory element-binding protein-1a activation during adipogenic differentiation of 3T3-L1 cells

    OpenAIRE

    Eldaim, Mabrouk A. Abd; Okamatsu-Ogura, Yuko; Terao, Akira; Kimura, Kazuhiro

    2010-01-01

    Both retinoic acid (RA) and oxidative stress (H2O2) increased transcription and cleavage of membrane-bound sterol regulatory element-binding protein (SREBP)-1, leading to enhanced transcription of fatty acid synthase (FAS) in hepatoma cells. On the other hand, RA and H2O2 decreased and increased lipogenesis in adipocytes, respectively, although roles of SREBP-1 activation in these effects remain to be elucidated. To elucidate its involvement, we examined the activation of SREBP...

  3. A Possible Mechanism of Zika Virus Associated Microcephaly: Imperative Role of Retinoic Acid Response Element (RARE Consensus Sequence Repeats in the Viral Genome.

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2016-08-01

    Full Text Available Owing to the reports of microcephaly as a consistent outcome in the foetuses of pregnant women infected with ZIKV in Brazil, Zika virus (ZIKV - microcephaly etiomechanistic relationship has recently been implicated. Researchers, however, are still struggling to establish an embryological basis for this interesting causal handcuff. The present study reveals robust evidence in favour of a plausible ZIKV-microcephaly cause-effect liaison. The rationale is based on: (1 sequence homology between ZIKV genome and the response element of an early neural tube developmental marker ‘retinoic acid’ in human DNA and (2 comprehensive similarities between the details of brain defects in ZIKV-microcephaly and retinoic acid embryopathy. Retinoic acid is considered as the earliest factor for regulating anteroposterior axis of neural tube and positioning of structures in developing brain through retinoic acid response elements (RARE consensus sequence (5′–AGGTCA–3′ in promoter regions of retinoic acid-dependent genes. We screened genomic sequences of already reported virulent ZIKV strains (including those linked to microcephaly and other viruses available in National Institute of Health genetic sequence database (GenBank for the RARE consensus repeats and obtained results strongly bolstering our hypothesis that ZIKV strains associated with microcephaly may act through precipitation of dysregulation in retinoic acid-dependent genes by introducing extra stretches of RARE consensus sequence repeats in the genome of developing brain cells. Additional support to our hypothesis comes from our findings that screening of other viruses for RARE consensus sequence repeats is positive only for those known to display neurotropism and cause foetal brain defects (for which maternal-foetal transmission during developing stage may be required. The numbers of RARE sequence repeats appeared to match with the virulence of screened positive viruses. Although bioinformatic

  4. A Possible Mechanism of Zika Virus Associated Microcephaly: Imperative Role of Retinoic Acid Response Element (RARE) Consensus Sequence Repeats in the Viral Genome

    Science.gov (United States)

    Kumar, Ashutosh; Singh, Himanshu N.; Pareek, Vikas; Raza, Khursheed; Dantham, Subrahamanyam; Kumar, Pavan; Mochan, Sankat; Faiq, Muneeb A.

    2016-01-01

    Owing to the reports of microcephaly as a consistent outcome in the fetuses of pregnant women infected with ZIKV in Brazil, Zika virus (ZIKV)—microcephaly etiomechanistic relationship has recently been implicated. Researchers, however, are still struggling to establish an embryological basis for this interesting causal handcuff. The present study reveals robust evidence in favor of a plausible ZIKV-microcephaly cause-effect liaison. The rationale is based on: (1) sequence homology between ZIKV genome and the response element of an early neural tube developmental marker “retinoic acid” in human DNA and (2) comprehensive similarities between the details of brain defects in ZIKV-microcephaly and retinoic acid embryopathy. Retinoic acid is considered as the earliest factor for regulating anteroposterior axis of neural tube and positioning of structures in developing brain through retinoic acid response elements (RARE) consensus sequence (5′–AGGTCA–3′) in promoter regions of retinoic acid-dependent genes. We screened genomic sequences of already reported virulent ZIKV strains (including those linked to microcephaly) and other viruses available in National Institute of Health genetic sequence database (GenBank) for the RARE consensus repeats and obtained results strongly bolstering our hypothesis that ZIKV strains associated with microcephaly may act through precipitation of dysregulation in retinoic acid-dependent genes by introducing extra stretches of RARE consensus sequence repeats in the genome of developing brain cells. Additional support to our hypothesis comes from our findings that screening of other viruses for RARE consensus sequence repeats is positive only for those known to display neurotropism and cause fetal brain defects (for which maternal-fetal transmission during developing stage may be required). The numbers of RARE sequence repeats appeared to match with the virulence of screened positive viruses. Although, bioinformatic evidence and

  5. A retinoic acid receptor beta agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord.

    Science.gov (United States)

    Agudo, Marta; Yip, Ping; Davies, Meirion; Bradbury, Elizabeth; Doherty, Patrick; McMahon, Stephen; Maden, Malcolm; Corcoran, Jonathan P T

    2010-01-01

    After spinal cord injury in the adult mammal, axons do not normally regrow and this commonly leads to paralysis. Retinoic acid (RA) can stimulate neurite outgrowth in vitro of both the embryonic central and peripheral nervous system, via activation of the retinoic acid receptor (RAR) beta2. We show here that regions of the adult CNS, including the cerebellum and cerebral cortex, express RARbeta2. We show that when cerebellar neurons are grown in the presence of myelin-associated glycoprotein (MAG) which inhibits neurite outgrowth, RARbeta can be activated in a dose dependent manner by a RARbeta agonist (CD2019) and neurite outgrowth can occur via phosphoinositide 3-kinase (PI3K) signalling. In a model of spinal cord injury CD2019 also acts through PI3K signalling to induce axonal outgrowth of descending corticospinal fibres and promote functional recovery. Our data suggest that RARbeta agonists may be of therapeutic potential for human spinal cord injuries.

  6. Further evidence of a relationship between the retinoic acid receptor alpha locus and nonsyndromic cleft lip with or without cleft palate (CL [+-] P)

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D.; Field, L. (Univ. of Calgary (Canada)); Ray, A. (Univ. of Toronto (Canada)); Marazita, M. (Medical College of Virginia, Richmond, VA (United States))

    1993-11-01

    Chenevix-Trench et al. (1992) reported a significant difference between nonsyndromic cleft lip with or without cleft palate (CL [+-] P) cases and unrelated controls in the frequency of alleles at the retinoic acid receptor alpha (RARA) PstI RFLP located at 17q21.1. They also observed borderline significant (P = .055) differences between allele frequencies in subjects with cleft lip and palate (CL + P) compared with those with cleft lip only (CL). Retinoic acid (RA) is a known teratogen capable of producing cleft palate in rodents (Abbott and Birnbaum 1990). Chenevix-Tench et al. (1992) hypothesized that variation in susceptibility to the effects of RA in humans may result from alterations at the RARA locus. We have investigated association and linkage between CL [+-] P and a microsatellite marker (D17S579) located at 17q21 (Hall et al. 1992), selected for its proximity to RARA, in 14 extended multiplex families from rural West Bengal, India.

  7. Is interferon-α and retinoic acid combination along with radiation superior to chemo-radiation in the treatment of advanced carcinoma of cervix?

    Directory of Open Access Journals (Sweden)

    Basu Partha

    2006-01-01

    Full Text Available Locally advanced cervical cancers comprise a large majority of the gynecologic cancers in India and other developing countries. Concurrent chemo-radiation has improved the survival of high risk stage I and stage II cervical cancers. There is no evidence that the same survival benefit has been achieved with chemo-radiation in stage III and stage IV disease. Interferon-a and Retinoic acid have synergistic anti-proliferative activity. In combination with radiation, they substantially enhance the sensitivity of the squamous carcinoma cells to radiation. Based on these observations from the in vitro studies, a few clinical trials have evaluated the combination of interferon-a and Retinoic acid, concomitant with radiation, to treat cervical cancers. The results from these early trials were encouraging and the combination had minimal toxicities. However, till date, no phase III randomized controlled trial has been done to evaluate this therapeutic modality.

  8. Synergistic Effect of Schwann Cells and Retinoic Acid on Differentiation and Synaptogenesis of Hippocampal Neural Stem Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    XUE-BAO ZHANG; YUAN-SHAN ZENG; WEI ZHANG; YA-YUN CHEN; WEI ZHANG; YI XIONG; SUI-JUN CHEN

    2006-01-01

    Objective To investigate the synergistic effect of Schwann cells (YCs) and retinoic acid (RA) on differentiation and synaptogenesis of neural stem cells (NSCs) derived from hippocampus of neonatal rats. Methods The classical method for 2×2 factorial analysis experiment was used to assess synergistic action of SCs and RA. NSCs were treated with RA, SCs,and SCs + RA in DMEM/F12 with 0.5% fetal bovine serum for six days, respectively. Double immunofluorescent staining was used to detect the differentiation of NSCs including nestin, glial fibrillary acidic protein (GFAP) and Map2. The expression of PSD95 was used to demonstrate synaptogenesis. Results After NSCs were treated with RA or SCs, the expression of nestin and GFAP was significantly decreased while the expression of Map2 and PSD95 was significantly increased in comparison with the control. Factorial ANOVA showed that interactions between SCs and RA could induce the expression of Map2 and PSD95. Conclusion SCs and RA could promote synergistically the neuronal differentiation and synaptogenesis of hippocampal neural stem cells in vitro while they decreased the astrocytes and nestin positive NSCs.

  9. Use of Magnetic Folate-Dextran-Retinoic Acid Micelles for Dual Targeting of Doxorubicin in Breast Cancer

    Directory of Open Access Journals (Sweden)

    J. Varshosaz

    2013-01-01

    Full Text Available Amphiphilic copolymer of folate-conjugated dextran/retinoic acid (FA/DEX-RA was self-assembled into micelles by direct dissolution method. Magnetic iron oxide nanoparticles (MNPs coated with oleic acid (OA were prepared by hydrothermal method and encapsulated within the micelles. Doxorubicin HCl was loaded in the magnetic micelles. The characteristics of the magnetic micelles were determined by Fourier transform infrared (FT-IR spectroscopy, thermogravimetric analysis (TGA, transmission electron microscopy (TEM, and vibrating sample magnetometer (VSM. The crystalline state of OA-coated MNPs and their heat capacity were analyzed by X-ray diffraction (XRD and differential scanning calorimetry (DSC methods, respectively. The iron content of magnetic micelles was determined using inductively coupled plasma optical emission spectrometry (ICP-OES. Bovine serum albumin (BSA was used to test the protein binding of magnetic micelles. The cytotoxicity of doxorubicin loaded magnetic micelles was studied on MCF-7 and MDA-MB-468 cells using MTT assay and their quantitative cellular uptake by fluorimetry method. TEM results showed the MNPs in the hydrophobic core of the micelles. TGA results confirmed the presence of OA and FA/DEX-RA copolymer on the surface of MNPs and micelles, respectively. The magnetic micelles showed no significant protein bonding and reduced the IC50 of the drug to about 10 times lower than the free drug.

  10. Uniaxially aligned electrospun cellulose acetate nanofibers for thin layer chromatographic screening of hydroquinone and retinoic acid adulterated in cosmetics.

    Science.gov (United States)

    Tidjarat, Siripran; Winotapun, Weerapath; Opanasopit, Praneet; Ngawhirunpat, Tanasait; Rojanarata, Theerasak

    2014-11-01

    Uniaxially aligned cellulose acetate (CA) nanofibers were successfully fabricated by electrospinning and applied to use as stationary phase for thin layer chromatography. The control of alignment was achieved by using a drum collector rotating at a high speed of 6000 rpm. Spin time of 6h was used to produce the fiber thickness of about 10 μm which was adequate for good separation. Without any chemical modification after the electrospinning process, CA nanofibers could be readily devised for screening hydroquinone (HQ) and retinoic acid (RA) adulterated in cosmetics using the mobile phase consisting of 65:35:2.5 methanol/water/acetic acid. It was found that the separation run on the aligned nanofibers over a distance of 5 cm took less than 15 min which was two to three times faster than that on the non-aligned ones. On the aligned nanofibers, the masses of HQ and RA which could be visualized were 10 and 25 ng, respectively, which were two times lower than those on the non-aligned CA fibers and five times lower than those on conventional silica plates due to the appearance of darker and sharper of spots on the aligned nanofibers. Furthermore, the proposed method efficiently resolved HQ from RA and ingredients commonly found in cosmetic creams. Due to the satisfactory analytical performance, facile and inexpensive production process, uniaxially aligned electrospun CA nanofibers are promising alternative media for planar chromatography.

  11. Regulation of expression of citrate synthase by the retinoic acid receptor-related orphan receptor α (RORα.

    Directory of Open Access Journals (Sweden)

    Christine Crumbley

    Full Text Available The retinoic acid receptor-related orphan receptor α (RORα is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression.

  12. Retinoic acid exerts dual regulatory actions on the expression and nuclear localization of interferon regulatory factor-1.

    Science.gov (United States)

    Luo, Xin M; Ross, A Catharine

    2006-05-01

    Interferon regulatory factor-1 (IRF-1), a transcription factor and tumor suppressor involved in cell growth regulation and immune responses, has been shown to be induced by all-trans retinoic acid (ATRA). However, the factors controlling the cellular location and activity of IRF-1 are not well understood. In this study, we examined the expression of IRF-1 and its nuclear localization, DNA-binding activity, and target gene expression in human mammary epithelial MCF10A cells, a model of breast epithelial cell differentiation and carcinogenesis. Following initial treatment with ATRA, IRF-1 mRNA and protein were induced within 2 hrs, reached a peak (>30-fold induction) at 8 hrs, and declined afterwards. IRF-1 protein was predominantly cytoplasmic during this treatment. Although a second dose of ATRA or Am580 (a related retinoid selective for retinoic acid receptor-alpha [RARalpha]), given 16 hrs after the first dose, restimulated IRF-1 mRNA and protein levels to a similar level to that obtained by the first dose, IRF-1 was predominantly concentrated in the nucleus after restimulation. ATRA and Am580 also increased nuclear RARalpha, whereas retinoid X receptor-alpha (RXRalpha)--a dimerization partner for RARalpha, was localized to the nucleus upon second exposure to ATRA. However, ATRA and Am580 did not regulate the expression or activation of signal transducer and activator of transcription-1 (STAT-1), a transcription factor capable of inducing the expression of IRF-1, indicating an STAT-1-independent mechanism of regulation by ATRA and Am580. The increase in nuclear IRF-1 after retinoid restimulation was accompanied by enhanced binding to an IRF-E DNA response element, and elevated expression of an IRF-1 target gene, 2',5'-oligoadenylate synthetase-2. The dual effect of retinoids in increasing IRF-1 mRNA and protein and in augmenting the nuclear localization of IRF-1 protein may be essential for maximizing the tumor suppressor activity and the immunosurveillance

  13. Cancer procoagulant and tissue factor are differently modulated by all-trans-retinoic acid in acute promyelocytic leukemia cells.

    Science.gov (United States)

    Falanga, A; Consonni, R; Marchetti, M; Locatelli, G; Garattini, E; Passerini, C G; Gordon, S G; Barbui, T

    1998-07-01

    All-trans-retinoic acid (ATRA) downregulates the expression of two cellular procoagulants, tissue factor (TF) and cancer procoagulant (CP), in human promyelocytic leukemia cells. To evaluate whether or not changes of the procoagulant activities (PCAs) may share mechanisms with the ATRA-induced cyto-differentiation process, we have characterized the effect of ATRA on the TF and CP expression by NB4 cells, an ATRA maturation-inducible cell line, and two NB4-derived cell lines resistant to ATRA-induced maturation, the NB4. 306 and NB4.007/6 cells. Next, we evaluated the effect on the PCAs of the NB4 parental cells of three synthetic retinoid analogues, ie: AM580 (selective for the retinoic acid receptor [RAR] alpha), capable to induce the granulocytic differentiation of NB4 cells; and CD2019 (selective for RARbeta) and CD437 (selective for RARgamma), both lacking this capability. Cells were treated with either ATRA or the analogues (10(-6) to 10(-8) mol/L) for 96 hours. The effect on cell differentiation was evaluated by morphologic changes, cell proliferation, nitro blue tetrazolium reduction assay, and flow cytometry analysis of the CD33 and CD11b surface-antigen expression. PCA was first measured in 20 mmol/L Veronal Buffer cell extracts by the one-stage clotting assay of normal and FVII-deficient plasmas. Further TF and CP have been characterized and quantified in cell-sample preparations by chromogenic and immunological assays. In the first series of experiments, ATRA downregulates both TF and CP in NB4 parental cells, as expected. However, in the differentiation-resistant cell lines, it induced a significant loss of TF but had little or no effect on CP. In a second series of experiments, in the NB4 parental cells, the RARalpha agonist (AM580) induced cell maturation and reduced 91% CP expression, whereas CD437 and CD2019 had no cyto-differentiating effects and did not affect CP levels. On the other hand, in the same cells the TF expression was reduced by ATRA

  14. In vitro study on arsenic sulfide (realgar)-induced apoptosis of retinoic acid susceptible or resistant acute promyelocytic leukemia cell lines

    Institute of Scientific and Technical Information of China (English)

    CHEN Si-yu; LIU Shan-xi; LI Xin-min

    2002-01-01

    Objective: To further understand the possible mechanisms of arsenic sulfide (realgar) in the treatment of acute promyelocytic leukemia (APL). Methods: All-trans retinoic acid (ATRA)-susceptible APL cell line (NB4 cells) and ATRA-resistant APL cell line (MR2 subclone) were used as models in vitro. At various times after incubated with various concentrations of realgar, NB4 and MR2 cells were observed by cell viability, cell proliferation and cell morphology; cell cycle and the expression of Annexin V were assayed by flow cytometry. Results: Cell viability and proliferation of NB4 and MR2 cells were inhibited after the treatment,to some extent, in a dose and time dependent manner. 177-711 μg/L of realgar treated NB4 and MR2 cell presented morphologically some features of apoptotic cells such as intact cell membrane, chromatin condensation and nuclear fragmentation, apoptosis body could be found by electron microscopy as well. Sub-G1 ceils andcell cycle arrest were observed by flow cytometry. The proportion of Annexin V -FITC+/PI cells, which represent apoptotic cells, was up-regulated. Conclusion: Realgar could induce apoptosis of acute promyelocytic leukemia cell despite its susceptibility to retinoic acid in the way that may be different from retinoic acid.

  15. Evidence for genetic regulation of mRNA expression of the dosage-sensitive gene retinoic acid induced-1 (RAI1) in human brain

    Science.gov (United States)

    Chen, Li; Tao, Yu; Song, Fan; Yuan, Xi; Wang, Jian; Saffen, David

    2016-01-01

    RAI1 (retinoic acid induced-1) is a dosage-sensitive gene that causes Smith-Magenis syndrome (SMS) when mutated or deleted and Potocki-Lupski Syndrome (PTLS) when duplicated, with psychiatric features commonly observed in both syndromes. How common genetic variants regulate this gene, however, is unknown. In this study, we found that RAI1 mRNA expression in Chinese prefrontal and temporal cortex correlate with genotypes of common single nucleotide polymorphisms (SNPs) located in the RAI1 5′-upstream region. Using genotype imputation, “R2-Δ2” analysis, and data from the RegulomeDB database, we identified SNPs rs4925102 and rs9907986 as possible regulatory variants, accounting for approximately 30–40% of the variance in RAI1 mRNA expression in both brain regions. Specifically, rs4925102 and rs9907986 are predicted to disrupt the binding of retinoic acid RXR-RAR receptors and the transcription factor DEAF1 (Deformed epidermal autoregulatory factor-1), respectively. Consistent with these predictions, we observed binding of RXRα and RARα to the predicted RAI1 target in chromatin immunoprecipitation assays. Retinoic acid is crucial for early development of the central neural system, and DEAF1 is associated with intellectual disability. The observation that a significant portion of RAI1 mRNA expression is genetically controlled raises the possibility that common RAI1 5′-region regulatory variants contribute more generally to psychiatric disorders. PMID:26743651

  16. Impact of preconditioning with retinoic acid during early development on morphological and functional characteristics of human induced pluripotent stem cell-derived neurons

    Directory of Open Access Journals (Sweden)

    Sandra Horschitz

    2015-07-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs are a suitable tool to study basic molecular and cellular mechanisms of neurodevelopment. The directed differentiation of hiPSCs via the generation of a self-renewable neuronal precursor cell line allows the standardization of defined differentiation protocols. Here, we have investigated whether preconditioning with retinoic acid during early neural induction impacts on morphological and functional characteristics of the neuronal culture after terminal differentiation. For this purpose we have analyzed neuronal and glial cell markers, neuronal outgrowth, soma size, depolarization-induced distal shifts of the axon initial segment as well as glutamate-evoked calcium influx. Retinoic acid preconditioning led to a higher yield of neurons vs. glia cells and longer axons than unconditioned controls. In contrast, glutamatergic activation and depolarization induced structural plasticity were unchanged. Our results show that the treatment of neuroectodermal cells with retinoic acid during early development, i.e. during the neurulation phase, increases the yield of neuronal phenotypes, but does not impact on the functionality of terminally differentiated neuronal cells.

  17. Granulosa cells and retinoic acid co-treatment enrich potential germ cells from manually selected Oct4-EGFP expressing human embryonic stem cells.

    Science.gov (United States)

    Chen, Hsin-Fu; Jan, Pey-Shynan; Kuo, Hung-Chih; Wu, Fang-Chun; Lan, Chen-Wei; Huang, Mei-Chi; Chien, Chung-Liang; Ho, Hong-Nerng

    2014-09-01

    Differentiation of human embryonic stem (HES) cells to germ cells may become clinically useful in overcoming diseases related to germ-cell development. Niches were used to differentiate HES cell lines, NTU1 and H9 Oct4-enhanced green fluorescence protein (EGFP), including laminin, granulosa cell co-culture or conditioned medium, ovarian stromal cell co-culture or conditioned medium, retinoic acid, stem cell factor (SCF) and BMP4-BMP7-BMP8b treatment. Flow cytometry showed that granulosa cell co-culture (P cells expressing early germ cell marker stage-specific embryonic antigen 1(SSEA1); sorted SSEA1[+] cells did not express higher levels of germ cell gene VASA and GDF9. Manually collected H9 Oct4-EGFP[+] cells expressed significantly higher levels of VASA (P = 0.005) and GDF9 (P = 0.001). H9 Oct4-EGFP[+] cells developed to ovarian follicle-like structures after culture for 28 days but with low efficiency. Unlike SCF and BMP4, retinoic acid co-treatment enhanced VASA, GDF9 and SCP3 expression. A protocol is recommended to enrich differentiated HES cells with germ-cell potential by culture with granulosa cells, conditioned medium or retinoic acid, manual selection of Oct4-EGFP[+] cells, and analysis of VASA, GDF9 expression, or both.

  18. Polymeric nanoparticles based on chitooligosaccharide as drug carriers for co-delivery of all-trans-retinoic acid and paclitaxel.

    Science.gov (United States)

    Zhang, Jing; Han, Jian; Zhang, Xiuli; Jiang, Jing; Xu, Maolei; Zhang, Daolai; Han, Jingtian

    2015-09-20

    An amphiphilic all-trans-retinoic acid (ATRA)-chitooligosaccharide (RCOS) conjugate was synthesized to form self-assembled polymeric nanoparticles to facilitate the co-delivery of ATRA and paclitaxel (PTX). The blank RCOS nanoparticles possessed low hemolytic activity and cytotoxicity, and could efficiently load PTX with a drug loading of 22.2% and a high encapsulation efficiency of 71.3%. PTX-loaded RCOS nanoparticles displayed a higher cytotoxicity to HepG2 cells compared to PTX plus ATRA solution when corrected by the accumulated drug release. Cellular uptake profiles of RCOS nanoparticles were evaluated via confocal laser scanning microscope and flow cytometry with FITC as a fluorescent mark. The RCOS nanoparticles could be rapidly and continuously taken up by HepG2 cells via endocytosis and transported into the nucleus, and the uptake rates increased with particle concentration. These results revealed the promising potential of RCOS nanoparticles as drug carriers for co-delivery of ATRA and PTX or other hydrophobic therapeutic agents.

  19. A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification

    Directory of Open Access Journals (Sweden)

    Scott A. Rankin

    2016-06-01

    Full Text Available Organogenesis of the trachea and lungs requires a complex series of mesoderm-endoderm interactions mediated by WNT, BMP, retinoic acid (RA, and hedgehog (Hh, but how these pathways interact in a gene regulatory network is less clear. Using Xenopus embryology, mouse genetics, and human ES cell cultures, we identified a conserved signaling cascade that initiates respiratory lineage specification. We show that RA has multiple roles; first RA pre-patterns the lateral plate mesoderm and then it promotes Hh ligand expression in the foregut endoderm. Hh subsequently signals back to the pre-patterned mesoderm to promote expression of the lung-inducing ligands Wnt2/2b and Bmp4. Finally, RA regulates the competence of the endoderm to activate the Nkx2-1+ respiratory program in response to these mesodermal WNT and BMP signals. These data provide insights into early lung development and a paradigm for how mesenchymal signals are coordinated with epithelial competence during organogenesis.

  20. THE EFFECTS OF RETINOIC ACID ON EXPRESSION OF C-MYC, C-FOS IN LEUKEMIC PROMYELOCYTES

    Institute of Scientific and Technical Information of China (English)

    邵国英; 徐荣婷; 孙关林; 欧阳仁荣; 应大明

    1992-01-01

    The expression of c-myc, c-fos of leukemic promyelocytes (HL-60 and acute promyelocytic leukemia cells) from 18 acute promyelocytic leukemia (APL) patients treated with all-trans retinoic acid (RA) in vitro was studied. There was no expression of c-fos in HL-60 cells and APL cells from 17 patients. But in one case, a slight expression of c-fos in leukemic cells was observed, and the alteration of expression level was found during the treatment of the cells with RA in vitro. The expression of c-myc in HL-60 cells induced by RA was altered, decrease in the early, increase in the middle, and decline in the later stage were found. The c-myc expression in leukemic cells of eighteen APL patients was variable. There was c-myc expression in eleven APL cells, but no expression in the others. The APL cells with c-myc expression were treated with RA in vitro to observe the kinetic changes of c-myc RNA level. The results showed that the expression of c-myc was gradually decreased except in few cases. Using in situ hybridization technique for detecting the alteration of c-myc expression in leukemic cells of two APL patients. the high level of c-myc before RA treatment and low level of c-myc expression after obtaining complete remission induced by RA were found. The possibility of different proto-oncogenes implicated differentiation was discussed.

  1. Elevated TrkA receptor expression is associated with all-trans retinoic acid-induced neuroblastoma differentiation.

    Science.gov (United States)

    Gao, Q; Chen, C F; Dong, Q; Hou, L; Chen, X; Zhi, Y L; Li, X; Lu, H T; Zhang, H Y

    2015-10-27

    Neuroblastoma is the most common and one of the deadliest among pediatric tumors; however, a subset of infants with neuroblastoma display spontaneous regression. The mechanism of spontaneous regression remains to be elucidated. TrkA plays an essential role in the differentiation and functionality of neurons; abundant TrkA expression is associated with favorable prognosis of neuroblastoma. All-trans retinoic acid (ATRA), a first-line drug for acute promyelocytic leukemia (APL) treatment, has been shown to induce differentiation and inhibit cell growth. Neuroblastoma tissues in our hospital inpatient were collected, primary cell culture was performed, and the cells were separated and purified to be cell line. Trypan blue exclusion was used to count the numbers of cells alive, morphological changes were observed under the phase-contrast microscope. RT-PCR was used to determine the expression level of TrkA. In this study, a human neuroblastoma cell line was successfully established; in addition, we demonstrated that ATRA induces growth arrest and promotes the differentiation of neuroblastoma cells. In addition, ATRA was shown to significantly increase the levels of TrkA mRNA expression. Therefore, we concluded that the elevated expression of the TrkA receptor is associated with ATRA-induced growth arrest and differentiation o neuroblastoma cells. The results of this study provide a theoretical basis for the clinical application of differentiation-inducing ATRA for neuroblastoma therapy.

  2. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia.

    Science.gov (United States)

    Boutzen, Héléna; Saland, Estelle; Larrue, Clément; de Toni, Fabienne; Gales, Lara; Castelli, Florence A; Cathebas, Mathilde; Zaghdoudi, Sonia; Stuani, Lucille; Kaoma, Tony; Riscal, Romain; Yang, Guangli; Hirsch, Pierre; David, Marion; De Mas-Mansat, Véronique; Delabesse, Eric; Vallar, Laurent; Delhommeau, François; Jouanin, Isabelle; Ouerfelli, Ouathek; Le Cam, Laurent; Linares, Laetitia K; Junot, Christophe; Portais, Jean-Charles; Vergez, François; Récher, Christian; Sarry, Jean-Emmanuel

    2016-04-04

    Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD-Scid-IL2rγ(null)mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies.

  3. Stable, position-related responses to retinoic acid by chick limb-bud mesenchymal cells in serum-free cultures.

    Science.gov (United States)

    Paulsen, D F; Solursh, M; Langille, R M; Pang, L; Chen, W D

    1994-03-01

    Retinoic acid (RA) has dramatic effects on limb-skeletal patterning in vivo and may well play a pivotal role in normal limb morphogenesis. RA's effects on the expression of pattern-related genes in the developing limb are probably mediated by cytoplasmic RA-binding proteins and nuclear RA-receptors. Little is known, however, about how RA modifies specific cellular behaviors required for skeletal morphogenesis. Earlier studies supported a role for regional differences in RA concentration in generating the region-specific cell behaviors that lead to pattern formation. The present study explores the possibility that position-related, cell-autonomous differences in the way limb mesenchymal cells respond to RA might have a role in generating pattern-related cell behavior. Mesenchymal cells from different proximodistal regions of stage 21-22 and 23-24 chick wing-buds were grown in chemically defined medium and exposed to 5 or 50 ng/ml of RA for 4 days in high-density microtiter cultures. The effects of RA on chondrogenesis in these cultures clearly differed depending on the limb region from which the cells were isolated. Regional differences in RA's effects on growth over 4 days in these cultures were less striking. The region-dependent responses of these cells to RA proved relatively stable in culture despite ongoing cytodifferentiation. This serum-free culture model will be useful in exploring the mechanisms underlying the region-dependent responsiveness of these cells to RA.

  4. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    Directory of Open Access Journals (Sweden)

    Laura Jimenez

    2016-04-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP, which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC cells. Time-lapse and lineage analysis of Tg(snai1b:GFP embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells.

  5. Improved Homology Model of the Human all-trans Retinoic Acid Metabolizing Enzyme CYP26A1

    Directory of Open Access Journals (Sweden)

    Mohamed K. A. Awadalla

    2016-03-01

    Full Text Available A new CYP26A1 homology model was built based on the crystal structure of cyanobacterial CYP120A1. The model quality was examined for stereochemical accuracy, folding reliability, and absolute quality using a variety of different bioinformatics tools. Furthermore, the docking capabilities of the model were assessed by docking of the natural substrate all-trans-retinoic acid (atRA, and a group of known azole- and tetralone-based CYP26A1 inhibitors. The preferred binding pose of atRA suggests the (4S-OH-atRA metabolite production, in agreement with recently available experimental data. The distances between the ligands and the heme group iron of the enzyme are in agreement with corresponding distances obtained for substrates and azole inhibitors for other cytochrome systems. The calculated theoretical binding energies agree with recently reported experimental data and show that the model is capable of discriminating between natural substrate, strong inhibitors (R116010 and R115866, and weak inhibitors (liarozole, fluconazole, tetralone derivatives.

  6. Inhibition of invasiveness and expression of epidermal growth factor receptor in human colorectal carcinoma cells induced by retinoic acid

    Institute of Scientific and Technical Information of China (English)

    SUNBAODONG; JINDANSONG

    1995-01-01

    Human amniotic basement membrane (HABM) model and agarose drop explant method were used to investigate the effects of retinoic acid(RA) on the invasive ness and adhesiveness to the basement membrane,and the migration of a highly invasive human colorectal cancer cell line CCL229.Results showed that 5×106 MRA markedly reduced the in vitro invasiveness and adhesiveness to the HABM,and the migration of the CCL229 cells.In addition,to elucidate the relation between expression of epidermal growth factor receptor(EGFR) and the invasiveness of the colorectal carcinoma cells,two well-differentiated,but with different invasiveness colorectal cancer cell lines were compared at mRNA level for expression of EGFR by using EGFR cDNA probe labeled with digoxigenin(DIG). Expression of EGFR was shown to be markedly higher in the highly invassive CCL229 cells than that in the low invasive CX-1 cells.Furthermore,expression of EGFR in RA treated CCL229 cells gradually decreased with time,the level being the lowest on day 6 of the RA treatment.

  7. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling

    Science.gov (United States)

    Foy, Eileen; Li, Kui; Sumpter, Rhea; Loo, Yueh-Ming; Johnson, Cynthia L.; Wang, Chunfu; Fish, Penny Mar; Yoneyama, Mitsutoshi; Fujita, Takashi; Lemon, Stanley M.; Gale, Michael

    2005-01-01

    Hepatitis C virus (HCV) is a major human pathogen that infects 170 million people. A hallmark of HCV is its ability to establish persistent infections reflecting the evasion of host immunity and interference with α/β-IFN innate immune defenses. We demonstrate that disruption of retinoic acid-inducible gene I (RIG-I) signaling by the viral NS3/4A protease contributes to the ability of HCV to control innate antiviral defenses. RIG-I was essential for virus or HCV RNA-induced signaling to the IFN-β promoter in human hepatoma cells. This signaling was disrupted by the protease activity of NS3/4A, which ablates RIG-I signaling of downstream IFN regulatory factor 3 and NF-κB activation, attenuating expression of host antiviral defense genes and interrupting an IFN amplification loop that otherwise suppresses HCV replication. Treatment of cells with an active site inhibitor of the NS3/4A protease relieved this suppression and restored intracellular antiviral defenses. Thus, NS3/4A control of RIG-I supports HCV persistence by preventing IFN regulatory factor 3 and NF-κB activation. Our results demonstrate that these processes are amenable to restoration through pharmacologic inhibition of viral protease function. PMID:15710892

  8. Association between Retinoic acid receptor-β hypermethylation and NSCLC risk: a meta-analysis and literature review

    Science.gov (United States)

    Li, Yan; Lu, De-guo; Ma, Ying-mei; Liu, Hongxiang

    2017-01-01

    Emerging evidence indicates that Retinoic acid receptor-β (RARβ) is a tumor suppressor in many types of tumor. However, whether or not RARβ is a risk factor and is correlated to clinicopathological characteristics of non-small cell lung cancer (NSCLC) remains unclear. In this report, we performed a meta-analysis to determine the effects of RARβ hypermethylation on the incidence of NSCLC and clinicopathological characteristics in human NSCLC patients. Final valuation and analysis of 1780 cancer patients from 16 eligible studies was performed. RARβ hypermethylation was found to be significantly higher in NSCLC than in normal lung tissue, the pooled OR from 7 studies including 646 NSCLC and 580 normal lung tissues, OR = 6.05, 95% CI = 3.56-10.25, p<0.00001. RARβ hypermethylation was significantly higher in adenocarcinoma (AC) compared to squamous cell carcinoma (SCC), pooled OR is 0.68 (95% CI = 0.52-0.89, p = 0.005). RARβ hypermethylation was also found to occur significantly higher in smoker (n = 232) than non-smoker (n = 213) (OR = 2.46, 95% CI = 1.54-3.93, p = 0.0002). Our results indicate that RARβ hypermethylation correlates well with an increased risk in NSCLC patients. RARβ geneinactivation caused by RARβ methylation contributes the NSCLC tumorigenesis and may serve as a potential risk factor, diagnostic marker and drug target of NSCLC. PMID:28008143

  9. Retinoic acid signaling regulates Krt5 and Krt14 independently of stem cell markers in submandibular salivary gland epithelium.

    Science.gov (United States)

    Abashev, Timur M; Metzler, Melissa A; Wright, Diana M; Sandell, Lisa L

    2017-02-01

    Retinoic acid (RA), the active metabolite of vitamin A, has been demonstrated to be important for growth and branching morphogenesis of mammalian embryonic salivary gland epithelium. However, it is not known whether RA functions directly within epithelial cells or in associated tissues that influence morphogenesis of salivary epithelium. Moreover, downstream targets of RA regulation have not been identified. Here, we show that canonical RA signaling occurs in multiple tissues of embryonic mouse salivary glands, including epithelium, associated parasympathetic ganglion neurons, and nonneuronal mesenchyme. By culturing epithelium explants in isolation from other tissues, we demonstrate that RA influences epithelium morphogenesis by direct action in that tissue. Moreover, we demonstrate that inhibition of RA signaling represses cell proliferation and expression of FGF10 signaling targets, and upregulates expression of basal epithelial keratins Krt5 and Krt14. Importantly, we show that the stem cell gene Kit is regulated inversely from Krt5/Krt14 by RA signaling. RA regulates Krt5 and Krt14 expression independently of stem cell character in developing salivary epithelium. RA, or chemical inhibitors of RA signaling, could potentially be used for modulating growth and differentiation of epithelial stem cells for the purpose of re-populating damaged glands or generating bioengineered organs. Developmental Dynamics 246:135-147, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Retinoic acid regulates CD1d gene expression at the transcriptional level in human and rodent monocytic cells.

    Science.gov (United States)

    Chen, Qiuyan; Ross, A Catharine

    2007-04-01

    CD1d belongs to a group of nonclassical antigen-presenting molecules that present glycolipid antigens and thereby activate natural killer T (NKT) cells, a subset of bifunctional T cells. Little is known so far regarding the expression and physiologic regulation of CD1d. Here we show that all-trans-retinoic acid (RA), the active metabolite of vitamin A, rapidly (1 hr after treatment) increases CD1d mRNA in human and rodent monocytic cells at a physiologic dose (10 nM). The induction is RA specific and RA receptor (RAR) dependent-RA and an RARalpha agonist, Am580, both had a pronounced positive effect, whereas the addition of RARalpha antagonist partially blocked the increase in CD1d mRNA induced by RA and Am580. The induction was also completely blocked by the presence of actinomycin D. A putative RA-response element was identified in the distal 5' flanking region of the CD1d gene, which binds nuclear retinoid receptors and was responsive to RA in both gel mobility shift assay and transient transfection assay in THP-1 cells. These results further confirmed the transcriptional regulation of RA in CD1d gene expression. Moreover, RA significantly increased alpha-galactosylceramide-induced spleen cell proliferation. These studies together provide evidence for a previously unknown mechanism of CD1d gene expression regulation by RA and suggest that RA is a significant modulator of NKT cell activation.

  11. Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Patrycja Konieczna

    Full Text Available Appropriate dendritic cell processing of the microbiota promotes intestinal homeostasis and protects against aberrant inflammatory responses. Mucosal CD103(+ dendritic cells are able to produce retinoic acid from retinal, however their role in vivo and how they are influenced by specific microbial species has been poorly described. Bifidobacterium infantis 35624 (B. infantis feeding to mice resulted in increased numbers of CD103(+retinaldehyde dehydrogenase (RALDH(+ dendritic cells within the lamina propria (LP. Foxp3(+ lymphocytes were also increased in the LP, while TH1 and TH17 subsets were decreased. 3,7-dimethyl-2,6-octadienal (citral treatment of mice blocked the increase in CD103(+RALDH(+ dendritic cells and the decrease in TH1 and TH17 lymphocytes, but not the increase in Foxp3(+ lymphocytes. B. infantis reduced the severity of DSS-induced colitis, associated with decreased TH1 and TH17 cells within the LP. Citral treatment confirmed that these effects were RALDH mediated. RALDH(+ dendritic cells decreased within the LP of control inflamed animals, while RALDH(+ dendritic cells numbers were maintained in the LP of B. infantis-fed mice. Thus, CD103(+RALDH(+ LP dendritic cells are important cellular targets for microbiota-associated effects on mucosal immunoregulation.

  12. Modulation of fibroblast growth factor receptor expression and signalling during retinoic acid-induced differentiation of Tera-2 teratocarcinoma cells.

    Science.gov (United States)

    Pertovaara, L; Tienari, J; Vainikka, S; Partanen, J; Saksela, O; Lehtonen, E; Alitalo, K

    1993-02-26

    We have analyzed the regulation of fibroblast growth factor receptors (FGFRs) during retinoic acid (RA) induced differentiation of Tera-2 human embryonal carcinoma cells. Undifferentiated Tera-2 cells expressed mRNAs for all four known FGFRs. Their differentiation led to loss of FGFR-4 mRNA expression and mRNA levels for FGFR-2 and FGFR-3 were considerably downregulated, whereas the mRNA levels for FGFR-1 remained unaltered. A substantial decrease in binding of K-FGF was found to occur upon RA-induced differentiation of the cells. In undifferentiated Tera-2 cells FGF stimulation caused an increase of c-fos mRNA, and c-jun mRNAs, but no increase of junB mRNA, whereas in the differentiated cells, FGFs strongly stimulated the expression of all three genes. Thus differentiation of the Tera-2 cells leads to marked changes in FGFR gene expression as well as to complex alterations in their responses to exogenous FGFs.

  13. ALDH1A1 provides a source of meiosis-inducing retinoic acid in mouse fetal ovaries.

    Science.gov (United States)

    Bowles, Josephine; Feng, Chun-Wei; Miles, Kim; Ineson, Jessica; Spiller, Cassy; Koopman, Peter

    2016-02-19

    Substantial evidence exists that during fetal ovarian development in mammals, retinoic acid (RA) induces germ cells to express the pre-meiotic marker Stra8 and enter meiosis, and that these effects are prevented in the fetal testis by the RA-degrading P450 enzyme CYP26B1. Nonetheless, the role of RA has been disputed principally because germ cells in embryos lacking two major RA-synthesizing enzymes, ALDH1A2 and ALDH1A3, remain able to enter meiosis. Here we show that a third RA-synthesizing enzyme, ALDH1A1, is expressed in fetal ovaries, providing a likely source of RA in the absence of ALDH1A2 and ALDH1A3. In ovaries lacking ALDH1A1, the onset of germ cell meiosis is delayed. Our data resolve the conundrum posed by conflicting published data sets and reconfirm the model that meiosis is triggered by endogenous RA in the developing ovary.

  14. Retinoic Acid Receptors Control Spermatogonia Cell-Fate and Induce Expression of the SALL4A Transcription Factor.

    Directory of Open Access Journals (Sweden)

    Aurore Gely-Pernot

    2015-10-01

    Full Text Available All-trans retinoic acid (ATRA is instrumental to male germ cell differentiation, but its mechanism of action remains elusive. To address this question, we have analyzed the phenotypes of mice lacking, in spermatogonia, all rexinoid receptors (RXRA, RXRB and RXRG or all ATRA receptors (RARA, RARB and RARG. We demonstrate that the combined ablation of RXRA and RXRB in spermatogonia recapitulates the set of defects observed both upon ablation of RAR in spermatogonia. We also show that ATRA activates RAR and RXR bound to a conserved regulatory region to increase expression of the SALL4A transcription factor in spermatogonia. Our results reveal that this major pluripotency gene is a target of ATRA signaling and that RAR/RXR heterodimers are the functional units driving its expression in spermatogonia. They add to the mechanisms through which ATRA promote expression of the KIT tyrosine kinase receptor to trigger a critical step in spermatogonia differentiation. Importantly, they indicate also that meiosis eventually occurs in the absence of a RAR/RXR pathway within germ cells and suggest that instructing this process is either ATRA-independent or requires an ATRA signal originating from Sertoli cells.

  15. Chromatin reader ZMYND8 is a key target of all trans retinoic acid-mediated inhibition of cancer cell proliferation.

    Science.gov (United States)

    Basu, Moitri; Khan, Md Wasim; Chakrabarti, Partha; Das, Chandrima

    2017-04-01

    All trans retinoic acid (ATRA), an active vitamin-A derivative, has been shown to regulate gene expression program and thus imparts anti-proliferative activity to cancer cells. Previously, we identified a dual histone reader ZMYND8 (zinc finger MYND (Myeloid, Nervy and DEAF-1)-type containing 8), to be a novel target of ATRA. In the present study, we attempted to decipher the detail mechanism of its transcription regulation. ATRA can reprogram the epigenetic landscape in the upstream regulatory region of ZMYND8 thereby promoting its expression. Interestingly, there is a unique H3K27Me3 to H3K27Ac switch upon ATRA-treatment. We show here that ATRA causes dynamic changes in recruitment of transcription factor YY1 in concert with HDAC1 at ZMYND8 promoter. Further, we show that ATRA treatment triggers an anti-proliferative activity in cancer cells through regulation of ZMYND8 expression. Subsequently, in 4T1-induced syngenic tumor mouse model, ATRA injection caused significant upregulation of ZMYND8. Overall our findings highlight a novel mechanism underlying ATRA-mediated changes in ZMYND8 expression which, in turn, activates the anti-proliferative program in a cancer cell. Thus, histone reader mediated modulation of epigenetic language could play a significant role in retinoid based therapeutic strategy which is well exploited to combat tumor growth. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Acute promyelocytic leukemia (APL) resulting in broad cerebral infarction during all-trans retinoic acid (ATRA) treatment].

    Science.gov (United States)

    Ikeda, Y; Yoshinaga, K; Iki, S; Ohbayashi, Y; Urabe, A

    1994-02-01

    A 27-year-old woman visited Kanto Teishin Hospital complaining of fever and petechiae in September, 1992. Her fetus had suddenly died in the uterus two weeks before (in the sixth month of pregnancy). Total white blood cell (WBC) count was 3.2 x 10(3)/microliters with 80% promyelocytes. Bone marrow was hypercellular with 90% promyelocytes. Disseminated intravascular coagulation (DIC) was recognized. She was diagnosed as having acute promyelocytic leukemia (APL), and treatment with daily oral administration of all-trans retinoic acid (ATRA) (70 mg/body/day) was begun. On day 4, hemiplegia and aphasia appeared. Broad cerebral infarction was suspected from computed tomography. On day 9, the WBC count increased rapidly, standard chemotherapy was added and she achieved complete remission. ATRA is known to have stimulatory effects on the differentiation of APL cells, but some reports have described thromboembolic events during the administration of ATRA. In this case, ATRA might have affected coagulability resulting in cerebral infarction.

  17. Endogenous Retinoic Acid Required to Maintain the Epidermis Following Ultraviolet Light Exposure in SKH-1 Hairless Mice.

    Science.gov (United States)

    Gressel, Katherine L; Duncan, F Jason; Oberyszyn, Tatiana M; La Perle, Krista M; Everts, Helen B

    2015-01-01

    Ultraviolet light B (UVB) exposure induces cutaneous squamous cell carcinoma (cSCC), one of the most prevalent human cancers. Reoccurrence of cSCC in high-risk patients is prevented by oral retinoids. But oral retinoid treatment causes significant side effects; and patients develop retinoid resistance. Exactly how retinoids prevent UVB-induced cSCC is currently not well understood. Retinoid resistance blocks mechanistic studies in the leading mouse model of cSCC, the UVB-exposed SKH-1 hairless mouse. To begin to understand the role of retinoids in UVB-induced cSCC we first examined the localization pattern of key retinoid metabolism proteins by immunohistochemistry 48 h after UVB treatment of female SKH-1 mice. We next inhibited retinoic acid (RA) synthesis immediately after UVB exposure. Acute UVB increased RA synthesis, signaling and degradation proteins in the stratum granulosum. Some of these proteins changed their localization; while other proteins just increased in intensity. In contrast, acute UVB reduced the retinoid storage protein lectin:retinol acyltransferase (LRAT) in the epidermis. Inhibiting RA synthesis disrupted the epidermis and impaired differentiation. These data suggest that repair of the epidermis after acute UVB exposure requires endogenous RA synthesis.

  18. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways

    Directory of Open Access Journals (Sweden)

    Fang Bo

    2009-07-01

    Full Text Available Abstract Background All-trans retinoic acid (RA is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs, we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. Results Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. Conclusion RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.

  19. CHANGES OF POLYAMINE METABOLISM IN HL-60 CELLS DURING THE INDUCTION OF DIFFERENTIATION BY RETINOIC ACID AND DIMETHYLSULFOXIDE

    Institute of Scientific and Technical Information of China (English)

    缪金明; 潘瑞彭; 欧阳仁荣

    1992-01-01

    The polyamines putrescine, spermidine and spermine have been implicated in the regulation of cell proliferation and differentiation. In this study, the changes of intracellular polyamine contents and activity of ornithine decarboxylase, a rate-limiting enzyme in the polyamine synthetic pathway, were studied. The results showed that both retinoic acid (RA) and dimethylsulfoxide (DMSO) could elevate intracellular putrescine level by more than 2-fold over control value, then it declined gradually. In RA-treated cells, transient increase in spermidine and spermine levels was noted. In contrast, the spermidine and spermine levels in DMSO-treated cells declined to about 50% of the level of control cells at 96 h. The measurement of ornithine decarboxylase activity demonstrated that the increase of intracellular putrescine in RA and DMSO treated cells was due to the polyamine synthesis by inducing ornithine decarboxylase which reached 2 to 4-fold higher over basic level at 2 h, and above 6-fold at 16 h. These results suggest that the polyamine metabolism may be involved in RA and DMSO-induced granulocytic differentiation of HL-60 promyelocytic leukemia cells.

  20. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources

    Science.gov (United States)

    Lippmann, Ethan S.; Al-Ahmad, Abraham; Azarin, Samira M.; Palecek, Sean P.; Shusta, Eric V.

    2014-02-01

    Blood-brain barrier (BBB) models are often used to investigate BBB function and screen brain-penetrating therapeutics, but it has been difficult to construct a human model that possesses an optimal BBB phenotype and is readily scalable. To address this challenge, we developed a human in vitro BBB model comprising brain microvascular endothelial cells (BMECs), pericytes, astrocytes and neurons derived from renewable cell sources. First, retinoic acid (RA) was used to substantially enhance BBB phenotypes in human pluripotent stem cell (hPSC)-derived BMECs, particularly through adherens junction, tight junction, and multidrug resistance protein regulation. RA-treated hPSC-derived BMECs were subsequently co-cultured with primary human brain pericytes and human astrocytes and neurons derived from human neural progenitor cells (NPCs) to yield a fully human BBB model that possessed significant tightness as measured by transendothelial electrical resistance (~5,000 Ωxcm2). Overall, this scalable human BBB model may enable a wide range of neuroscience studies.

  1. Postbiotic Modulation of Retinoic Acid Imprinted Mucosal-like Dendritic Cells by Probiotic Lactobacillus reuteri 17938 In vitro

    Directory of Open Access Journals (Sweden)

    Yeneneh eHaileselassie

    2016-03-01

    Full Text Available Lactobacilli are widely used as probiotics with beneficial effects on infection-associated diarrhea, but also used in clinical trials of e.g. necrotizing enterocolitis and inflammatory bowel diseases. The possibility of using probiotic metabolic products, so called postbiotics, is desirable as it could prevent possible side effects of live bacteria in individuals with a disturbed gut epithelial barrier. Here we studied how Lactobacillus reuteri DSM 17938 cell free supernatant (L. reuteri-CFS influenced retinoic acid (RA-driven mucosal-like dendritic cells (DC and their subsequent effect on T regulatory cells (Treg in vitro. RA clearly imprinted a mucosal-like DC phenotype with higher IL10 production, increased CD103 and CD1d expression and a down-regulated mRNA expression of several inflammatory-associated genes (NFκB1, RELB and TNF. Treatment with L. reuteri-CFS further influenced the tolerogenic phenotype of RA-DC by down-regulating most genes involved in antigen uptake, antigen presentation and signal transduction as well as several chemokine receptors, while up regulating IL10 production. L. reuteri-CFS also augmented CCR7 expression on RA-DC. In co-cultures, RA-DC increased IL10 and FOXP3 expression in Treg, but pre-treatment with L. reuteri-CFS did not further influence the Treg phenotype. In conclusion, L. reuteri-CFS modulates the phenotype and function of mucosal-like DC, implicating its potential application as postbiotic.

  2. Postbiotic Modulation of Retinoic Acid Imprinted Mucosal-like Dendritic Cells by Probiotic Lactobacillus reuteri 17938 In Vitro.

    Science.gov (United States)

    Haileselassie, Yeneneh; Navis, Marit; Vu, Nam; Qazi, Khaleda Rahman; Rethi, Bence; Sverremark-Ekström, Eva

    2016-01-01

    Lactobacilli are widely used as probiotics with beneficial effects on infection-associated diarrhea, but also used in clinical trials of e.g., necrotizing enterocolitis and inflammatory bowel diseases. The possibility of using probiotic metabolic products, so-called postbiotics, is desirable as it could prevent possible side effects of live bacteria in individuals with a disturbed gut epithelial barrier. Here, we studied how Lactobacillus reuteri DSM 17938 cell-free supernatant (L. reuteri-CFS) influenced retinoic acid (RA)-driven mucosal-like dendritic cells (DC) and their subsequent effect on T regulatory cells (Treg) in vitro. RA clearly imprinted a mucosal-like DC phenotype with higher IL10 production, increased CD103 and CD1d expression, and a downregulated mRNA expression of several inflammatory-associated genes (NFκB1, RELB, and TNF). Treatment with L. reuteri-CFS further influenced the tolerogenic phenotype of RA-DC by downregulating most genes involved in antigen uptake, antigen presentation, and signal transduction as well as several chemokine receptors, while upregulating IL10 production. L. reuteri-CFS also augmented CCR7 expression on RA-DC. In cocultures, RA-DC increased IL10 and FOXP3 expression in Treg, but pre-treatment with L. reuteri-CFS did not further influence the Treg phenotype. In conclusion, L. reuteri-CFS modulates the phenotype and function of mucosal-like DC, implicating its potential application as postbiotic.

  3. A TDG/CBP/RARα Ternary Complex Mediates the Retinoic Acid-dependent Expression of DNA Methylation-sensitive Genes

    Directory of Open Access Journals (Sweden)

    Hélène Léger

    2014-02-01

    Full Text Available The thymine DNA glycosylase (TDG is a multifunctional enzyme, which is essential for embryonic development. It mediates the base excision repair (BER of G:T and G:U DNA mismatches arising from the deamination of 5-methyl cytosine (5-MeC and cytosine, respectively. Recent studies have pointed at a role of TDG during the active demethylation of 5-MeC within CpG islands. TDG interacts with the histone acetylase CREB-binding protein (CBP to activate CBP-dependent transcription. In addition, TDG also interacts with the retinoic acid receptor α (RARα, resulting in the activation of RARα target genes. Here we provide evidence for the existence of a functional ternary complex containing TDG, CBP and activated RARα. Using global transcriptome profiling, we uncover a coupling of de novo methylation-sensitive and RA-dependent transcription, which coincides with a significant subset of CBP target genes. The introduction of a point mutation in TDG, which neither affects overall protein structure nor BER activity, leads to a significant loss in ternary complex stability, resulting in the deregulation of RA targets involved in cellular networks associated with DNA replication, recombination and repair. We thus demonstrate for the first time a direct coupling of TDG’s epigenomic and transcription regulatory function through ternary complexes with CBP and RARα.

  4. Phosphorylation of the retinoic acid receptor RARγ2 is crucial for the neuronal differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Al Tanoury, Ziad; Gaouar, Samia; Piskunov, Aleksandr; Ye, Tao; Urban, Sylvia; Jost, Bernard; Keime, Céline; Davidson, Irwin; Dierich, Andrée; Rochette-Egly, Cécile

    2014-05-01

    Retinoic acid (RA) plays key roles in cell differentiation and growth arrest by activating nuclear RA receptors (RARs) (α, β and γ), which are ligand-dependent transcription factors. RARs are also phosphorylated in response to RA. Here, we investigated the in vivo relevance of the phosphorylation of RARs during RA-induced neuronal differentiation of mouse embryonic stem cells (mESCs). Using ESCs where the genes encoding each RAR subtype had been inactivated, and stable rescue lines expressing RARs mutated in phospho-acceptor sites, we show that RA-induced neuronal differentiation involves RARγ2 and requires RARγ2 phosphorylation. By gene expression profiling, we found that the phosphorylated form of RARγ2 regulates a small subset of genes through binding an unusual RA response element consisting of two direct repeats with a seven-base-pair spacer. These new findings suggest an important role for RARγ phosphorylation during cell differentiation and pave the way for further investigations during embryonic development.

  5. All-trans-Retinoic Acid Ameliorated High Fat Diet-Induced Atherosclerosis in Rabbits by Inhibiting Platelet Activation and Inflammation

    Directory of Open Access Journals (Sweden)

    Birong Zhou

    2012-01-01

    Full Text Available Background. All-trans-retinoic acid (atRA is effective for many proliferative diseases. We investigated the protective effects of atRA against atherosclerosis. Methods. Rabbits were randomly allocated to receive basal diet or an HFD for 4 weeks. HFD group then received rosuvastatin (3 mg/day, atRA (5 mg/kg/day, or the same volume of vehicle, respectively, for next 8 weeks. Results. HFD group showed increases in plasma lipids and aortic plaque formation. P-selectin expression and fibrinogen binding on platelets or deposition on the intima of the aorta also increased significantly as did the levels of TNF-α, IL-6, and fibrinogen in plasma. After 8 weeks of treatment with atRA, there was a significant decrease in plasma lipids and improvement in aortic lesions. AtRA also inhibited the expression of P-selectin and fibrinogen binding on platelets and deposition on the intima of the aorta. Conclusion. AtRA can ameliorate HFD-induced AS in rabbits by inhibiting platelet activation and inflammation.

  6. Effect of all-trans retinoic acid 0n drug sensitivity and expression of survivin in LoVo cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background All-trans retinoic acid(ATRA)can influence the tumor cell proliferation cycle,and some chemotherapeutic drugs are cycle specific.In this study,we hypothesize that ATRA can enhance chemotherapeutic drug sensitivity by affecting the cell cycle of tumor cells.Methods The cell cycle of LoVo cells was evaluated using flow cytometry(FCM).Cell viability was analyzed using the MTT assay.The morphologic changes in the treated LoVo cells were measured with acridine orange (AO)/ethidium bromide(EB)staining.Expression of survivin in LoVo cells was analyzed by immunofluorescence assay.Results After LoVo cells were treated with ATRA,the G0/G1 ratio of the tumor cells increased and the cell ratio of Sand G2/M-phase decreased.Viability of the cells decreased significantly after combined treatment with ATRA and 5-fluorouracil(5-FU)or mitomycin c(MMC) and was evaluated by fluorescence microscopy.Expression level of survivin in the tumor cells decreased after ATRA combination treatment.Conclusions ATRA enhances drug sensitivity of the LoVo cell line to cell cycle-specific agents and inhibits the expression of survivin in LoVo cells.The combination of ATRA and 5-FU or MMC promoted cell apoptosis,and the mechanism involved in apoptosis may be related to inhibition of survivin gene expression.

  7. Knockdown of lecithin retinol acyltransferase increases all-trans retinoic acid levels and restores retinoid sensitivity in malignant melanoma cells.

    Science.gov (United States)

    Amann, Philipp M; Czaja, Katharina; Bazhin, Alexandr V; Rühl, Ralph; Skazik, Claudia; Heise, Ruth; Marquardt, Yvonne; Eichmüller, Stefan B; Merk, Hans F; Baron, Jens M

    2014-11-01

    Retinoids such as all-trans retinoic acid (ATRA) influence cell growth, differentiation and apoptosis and may play decisive roles in tumor development and progression. An essential retinoid-metabolizing enzyme known as lecithin retinol acyltransferase (LRAT) is expressed in melanoma cells but not in melanocytes catalysing the esterification of all-trans retinol (ATRol). In this study, we show that a stable LRAT knockdown (KD) in the human melanoma cell line SkMel23 leads to significantly increased levels of the substrate ATRol and biologically active ATRA. LRAT KD restored cellular sensitivity to retinoids analysed in cell culture assays and melanoma 3D skin models. Furthermore, ATRA-induced gene regulatory mechanisms drive depletion of added ATRol in LRAT KD cells. PCR analysis revealed a significant upregulation of retinoid-regulated genes such as CYP26A1 and STRA6 in LRAT KD cells, suggesting their possible involvement in mediating retinoid resistance in melanoma cells. In conclusion, LRAT seems to be important for melanoma progression. We propose that reduction in ATRol levels in melanoma cells by LRAT leads to a disturbance in cellular retinoid level. Balanced LRAT expression and activity may provide protection against melanoma development and progression. Pharmacological inhibition of LRAT activity could be a promising strategy for overcoming retinoid insensitivity in human melanoma cells.

  8. Rdh10a Provides a Conserved Critical Step in the Synthesis of Retinoic Acid during Zebrafish Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Enrico D'Aniello

    Full Text Available The first step in the conversion of vitamin A into retinoic acid (RA in embryos requires retinol dehydrogenases (RDHs. Recent studies have demonstrated that RDH10 is a critical core component of the machinery that produces RA in mouse and Xenopus embryos. If the conservation of Rdh10 function in the production of RA extends to teleost embryos has not been investigated. Here, we report that zebrafish Rdh10a deficient embryos have defects consistent with loss of RA signaling, including anteriorization of the nervous system and enlarged hearts with increased cardiomyocyte number. While knockdown of Rdh10a alone produces relatively mild RA deficient phenotypes, Rdh10a can sensitize embryos to RA deficiency and enhance phenotypes observed when Aldh1a2 function is perturbed. Moreover, excess Rdh10a enhances embryonic sensitivity to retinol, which has relatively mild teratogenic effects compared to retinal and RA treatment. Performing Rdh10a regulatory expression analysis, we also demonstrate that a conserved teleost rdh10a enhancer requires Pax2 sites to drive expression in the eyes of transgenic embryos. Altogether, our results demonstrate that Rdh10a has a conserved requirement in the first step of RA production within vertebrate embryos.

  9. Cholesterol supports the retinoic acid-induced synaptic vesicle formation in differentiating human SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    Sarkanen, Jertta-Riina; Nykky, Jonna; Siikanen, Jutta; Selinummi, Jyrki; Ylikomi, Timo; Jalonen, Tuula O

    2007-09-01

    Synaptic vesicle formation, vesicle activation and exo/endocytosis in the pre-synaptic area are central steps in neuronal communication. The formation and localization of synaptic vesicles in human SH-SY5Y neuroblastoma cells, differentiated with 12-o-tetradecanoyl-phorbol-13-acetate, dibutyryl cyclic AMP, all-trans-retinoic acid (RA) and cholesterol, was studied by fluorescence microscopy and immunocytochemical methods. RA alone or together with cholesterol, produced significant neurite extension and formation of cell-to-cell contacts. Synaptic vesicle formation was followed by anti-synaptophysin (SypI) and AM1-43 staining. SypI was only weakly detected, mainly in cell somata, before 7 days in vitro, after which it was found in neurites. Depolarization of the differentiated cells with high potassium solution increased the number of fluorescent puncta, as well as SypI and AM1-43 co-localization. In addition to increase in the number of synaptic vesicles, RA and cholesterol also increased the number and distribution of lysosome-associated membrane protein 2 labeled lysosomes. RA-induced Golgi apparatus fragmentation was partly avoided by co-treatment with cholesterol. The SH-SY5Y neuroblastoma cell line, differentiated by RA and cholesterol and with good viability in culture, is a valuable tool for basic studies of neuronal metabolism, specifically as a model for dopaminergic neurons.

  10. Promotive Effect of Minoxidil Combined with All-trans Retinoic Acid (tretinoin) on Human Hair Growth in Vitro

    Science.gov (United States)

    Kwon, Oh Sang; Pyo, Hyun Keol; Oh, Youn Jin; Han, Ji Hyun; Lee, Se Rah; Chung, Jin Ho; Eun, Hee Chul

    2007-01-01

    Minoxidil induces hair growth in male pattern baldness and prolongs the anagen phase. All-trans retinoic acid (ATRA) has been reported to act synergistically with minoxidil in vivo: they can enhance more dense hair regrowth than either compound alone. We evaluated the effect of minoxidil combined with ATRA on hair growth in vitro. The effect of co-treatment of minoxidil and ATRA on hair growth was studied in hair follicle organ culture. In cultured human dermal papilla cells (DPCs) and normal human epidermal keratinocytes, the expressions of Erk, Akt, Bcl-2, Bax, P53 and P21 were evaluated by immunoblot analysis. Minoxidil plus ATRA additively promoted hair growth in vitro, compared with minoxidil alone. In addition, minoxidil plus ATRA elevated phosphorylated Erk, phosphorylated Akt and the ratio of Bcl-2/Bax, but decreased the expressions of P53 and P21 more effectively than by minoxidil alone. Our results suggest that minoxidil plus ATRA would additively enhance hair growth by mediating dual functions: 1) the prolongation of cell survival by activating the Erk and Akt signaling pathways, and 2) the prevention of apoptosis of DPCs and epithelial cells by increasing the ratio of Bcl-2/Bax and downregulating the expressions of P53 and P21. PMID:17449938

  11. Retinoic Acid Protects and Rescues the Development of Zebrafish Embryonic Retinal Photoreceptor Cells from Exposure to Paclobutrazol

    Directory of Open Access Journals (Sweden)

    Wen-Der Wang

    2017-01-01

    Full Text Available Paclobutrazol (PBZ is a widely used fungicide that shows toxicity to aquatic embryos, probably through rain-wash. Here, we specifically focus on its toxic effect on eye development in zebrafish, as well as the role of retinoic acid (RA, a metabolite of vitamin A that controls proliferation and differentiation of retinal photoreceptor cells, in this toxicity. Embryos were exposed to PBZ with or without RA from 2 to 72 h post-fertilization (hpf, and PBZ-treated embryos (2–72 hpf were exposed to RA for additional hours until 120 hpf. Eye size and histology were examined. Expression levels of gnat1 (rod photoreceptor marker, gnat2 (cone photoreceptor marker, aldehyde dehydrogenases (encoding key enzymes for RA synthesis, and phospho-histone H3 (an M-phase marker in the eyes of control and treated embryos were examined. PBZ exposure dramatically reduces photoreceptor proliferation, thus resulting in a thinning of the photoreceptor cell layer and leading to a small eye. Co-treatment of PBZ with RA, or post-treatment of PBZ-treated embryos with RA, partially rescues photoreceptor cells, revealed by expression levels of marker proteins and by retinal cell proliferation. PBZ has strong embryonic toxicity to retinal photoreceptors, probably via suppressing the production of RA, with effects including impaired retinal cell division.

  12. Modulation of cartilage differentiation by melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP).

    Science.gov (United States)

    Schubert, Thomas; Schlegel, Jacqueline; Schmid, Rainer; Opolka, Alfred; Grassel, Susanne; Humphries, Martin; Bosserhoff, Anja-Katrin

    2010-03-31

    Melanoma inhibiting activity/cartilage-derived retinoic acid-sensitive protein (MIA/CD-RAP) is a small soluble protein secreted from malignant melanoma cells and from chondrocytes. Recently, we revealed that MIA/CD-RAP can modulate bone morphogenetic protein (BMP)2-induced osteogenic differentiation into a chondrogenic direction. In the current study we aimed to find the molecular details of this MIA/CD-RAP function. Direct influence of MIA on BMP2 by protein-protein-interaction or modulating SMAD signaling was ruled out experimentally. Instead, we revealed inhibition of ERK signaling by MIA/CD-RAP. This inhibition is regulated via binding of MIA/CD-RAP to integrin alpha5 and abolishing its activity. Active ERK signaling is known to block chondrogenic differentiation and we revealed induction of aggrecan expression in chondrocytes by treatment with MIA/CD-RAP or PD098059, an ERK inhibitor. In in vivo models we could support the role of MIA/CD-RAP in influencing osteogenic differentiation negatively. Further, MIA/CD-RAP-deficient mice revealed an enhanced calcified cartilage layer of the articular cartilage of the knee joint and disordered arrangement of chondrocytes. Taken together, our data indicate that MIA/CD-RAP stabilizes cartilage differentiation and inhibits differentiation into bone potentially by regulating signaling processes during differentiation.

  13. In vitro induction and differentiation of umbilical cord mesenchymal stem cells into neuron-like cells by alltrans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    Wei; Jin; Yao-Peng; Xu; An-Huai; Yang; Yi-Qiao; Xing

    2015-01-01

    AIM: To determine the optimal concentration for inducing the differentiation of human umbilical cord-derived mesenchymal stem cells(h UC-MSCs) into neuron-like cells, although it is understood that all-trans retinoic acid(ATRA) regulates cell proliferation in the nervous system by modulating the balance between mitosis and apoptosis.METHODS: The abilities of ATRA to promote apoptosis as well as neural differentiation were assessed in cultured h UC-MSCs by morphological observation, MTT assay, annexin V-FITC/PI flow cytometry and immunocytochemistry.RESULTS: The data showed that low concentrations of ATRA(0.5 μmol, 0.25 μmol) had no effect on the number of cells. However, treatment with 1.0 μmol or 2.0 μmol ATRA induced a 24.16% and 52.67% reduction in cell number, respectively, compared with vehicle-treated cultures. Further, 4.0 μmol ATRA had a potent effect on cell number, with almost no adherent cells recovered after 24 h. We further showed that 0.5 μmol ATRA caused these cells to express characteristic markers of neuronal progenitor cells.CONCLUSION: Taken together, we conclude that ATRA has a dose-dependent influence on the neural differentiation and apoptosis of h UC-MSCs. These findings have implications on the use of ATRA-differentiated h UC-MSCs for the study of neural degeneration diseases.

  14. Sertraline increases the survival of retinoic acid induced neuronal cells but not glial cells from human mesenchymal stem cells.

    Science.gov (United States)

    Verdi, Javad; Sharif, Shiva; Banafshe, Hamid Reza; Shoae-Hassani, Alireza

    2014-08-01

    An increase in the number of viable in vitro differentiated neuronal cells is important for their use in clinics. A proportion of differentiated cells lose their viability before being used, and therefore we decided to use a pharmacological agent, sertraline, to increase neural cell differentiation and their survival. Purified endometrial stem cells (EnSCs) were examined for neuronal and glial cell specific markers after retinoic acid (RA) and sertraline treatment via RT-PCR, immunocytochemistry and Western blot analysis. The survival of differentiated cells was measured by MTT assay and the frequency of apoptosis, demonstrated by caspase-3-like activity. EnSCs were differentiated into neuronal cells after RA induction. Sertraline increased neuronal cell differentiation by 1.2-fold and their survival by 1.4-fold, and decreased from glial cell differentiation significantly. The findings indicate that sertraline could be used to improve the in vitro differentiation process of stem cells into neuronal cells, and may be involved in regenerative pharmacology in future. © 2014 International Federation for Cell Biology.

  15. Molecular mechanism of 9-cis-retinoic acid inhibition of adipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, Chiaki; Takahashi, Katsuhiko [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan); Kagechika, Hiroyuki [School of Biomedical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo 101-0062 (Japan); Takahashi, Noriko, E-mail: t-noriko@hoshi.ac.jp [Laboratory of Physiological Chemistry, Institute of Medicinal Chemistry, Hoshi University, Shinagawa, Tokyo 142-8501 (Japan)

    2013-03-29

    Highlights: ► We examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1. ► 9-cis-RA inhibited lipid accumulation in adipogenetically-induced 3T3-L1 cells. ► A RXR pan-antagonist suppressed the inhibitory effects of 9-cis-RA on adipogenesis. ► This antagonist had no effects on RXRα and PPARγ levels in 9-cis-RA-treated cells. ► 9-cis-RA-induced decrease in both RXRα and PPARγ was independent of RXR activation. -- Abstract: Retinoic acid (RA) signaling is mediated by specific nuclear hormone receptors. Here we examined the effects of 9-cis-RA on adipogenesis in mouse preadipocyte 3T3-L1 cells. 9-cis-RA inhibits the lipid accumulation of adipogenetically induced 3T3-L1 cells. The complex of retinoid X receptor α (RXRα) with peroxisome proliferator-activated receptor γ (PPARγ) is a major transcription factor in the process of adipogenesis, and the levels of these molecules were decreased by 9-cis-RA treatment. A RXR pan-antagonist suppressed 9-cis-RA’s inhibitory effects on adipogenesis, but not on the intracellular levels of both RXRα and PPARγ. These results suggest that 9-cis-RA could inhibit adipogenesis by activating RXR, and decrease both RXR and PPARγs levels in a RXR activation-independent manner.

  16. Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo.

    Directory of Open Access Journals (Sweden)

    Richard J White

    2007-11-01

    Full Text Available Positional identities along the anterior-posterior axis of the vertebrate nervous system are assigned during gastrulation by multiple posteriorizing signals, including retinoic acid (RA, fibroblast growth factors (Fgfs, and Wnts. Experimental evidence has suggested that RA, which is produced in paraxial mesoderm posterior to the hindbrain by aldehyde dehydrogenase 1a2 (aldh1a2/raldh2, forms a posterior-to-anterior gradient across the hindbrain field, and provides the positional information that specifies the locations and fates of rhombomeres. Recently, alternative models have been proposed in which RA plays only a permissive role, signaling wherever it is not degraded. Here we use a combination of experimental and modeling tools to address the role of RA in providing long-range positional cues in the zebrafish hindbrain. Using cell transplantation and implantation of RA-coated beads into RA-deficient zebrafish embryos, we demonstrate that RA can directly convey graded positional information over long distances. We also show that expression of Cyp26a1, the major RA-degrading enzyme during gastrulation, is under complex feedback and feedforward control by RA and Fgf signaling. The predicted consequence of such control is that RA gradients will be both robust to fluctuations in RA synthesis and adaptive to changes in embryo length during gastrulation. Such control also provides an explanation for the fact that loss of an endogenous RA gradient can be compensated for by RA that is provided in a spatially uniform manner.

  17. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis.

    Science.gov (United States)

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A; Whatcott, Clifford; Soh, Katherine K; Warner, Steven; Bearss, David; Jette, Cicely A; Stewart, Rodney A

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, calledTg(snai1b:GFP), which labels epithelial cells undergoing EMT to producesox10-positive neural crest (NC) cells. Time-lapse and lineage analysis ofTg(snai1b:GFP)embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. TreatingTg(snai1b:GFP)embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RAin vivoand raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. © 2016. Published by The Company of Biologists Ltd.

  18. Lactoferrin Combined with Retinoic Acid Stimulates B1 Cells to Express IgA Isotype and Gut-homing Molecules.

    Science.gov (United States)

    Kang, Seong-Ho; Jin, Bo-Ra; Kim, Hyeon-Jin; Seo, Goo-Young; Jang, Young-Saeng; Kim, Sun-Jin; An, Sun-Jin; Park, Seok-Rae; Kim, Woan-Sub; Kim, Pyeung-Hyeun

    2015-02-01

    It is well established that TGF-β1 and retinoic acid (RA) cause IgA isotype switching in mice. We recently found that lactoferrin (LF) also has an activity of IgA isotype switching in spleen B cells. The present study explored the effect of LF on the Ig production by mouse peritoneal B cells. LF, like TGF-β1, substantially increased IgA production in peritoneal B1 cells but little in peritoneal B2 cells. In contrast, LF increased IgG2b production in peritoneal B2 cells much more strongly than in peritoneal B1 cells. LF in combination with RA further enhanced the IgA production and, interestingly, this enhancement was restricted to IgA isotype and B1 cells. Similarly, the combination of the two molecules also led to expression of gut homing molecules α4β7 and CCR9 on peritoneal B1 cells, but not on peritoneal B2 cells. Thus, these results indicate that LF and RA can contribute to gut IgA response through stimulating IgA isotype switching and expression of gut-homing molecules in peritoneal B1 cells.

  19. Effect of all-trans retinoic acid on newly diagnosed acute promyelocytic leukemia patients: results of a Brazilian center

    Directory of Open Access Journals (Sweden)

    B.C. de-Medeiros

    1998-12-01

    Full Text Available Thirty-seven patients with acute promyelocytic leukemia (APL were treated with all-trans retinoic acid (ATRA. Patients received 45 mg m-2 day-1 po of ATRA until complete remission (CR was achieved, defined as: a presence of less than 5% blasts in the bone marrow, with b white blood cells >103/mm3, c platelets >105/mm3 and d hemoglobin concentration >8 g/dl, with no blood or platelet transfusions. Thirty-one (83.7% patients achieved CR by day 50, and 75% of these before day 30. Correction of the coagulopathy, achieved between days 2 and 10 (mean, 3 days, was the first evidence of response to treatment. Only one patient had been previously treated with chemotherapy and three had the microgranular variant M3 form. Dryness of skin and mucosae was the most common side effect observed in 82% of the patients. Thrombosis, hepatotoxicity and retinoid acid syndrome (RAS were observed in 7 (19%, 6 (16% and 4 (11% patients, respectively. Thirteen (35% patients had to be submitted to chemotherapy due to hyperleukocytosis (above 40 x 103/mm3 and six of these presented with new signs of coagulopathy after chemotherapy. Four (11% patients died secondarily to intracerebral hemorrhage (IH and two (5.4% dropped out of the protocol due to severe ATRA side effects (one RAS and one hepatotoxicity. RAS and IH were related strictly to hyperleukocytosis. The reduced use of platelets and fresh frozen plasma probably lowered the total cost of treatment. We conclude that ATRA is an effective agent for inducing complete remission in APL patients.

  20. Knockdown of FABP3 Impairs Cardiac Development in Zebrafish through the Retinoic Acid Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xuejie Wang

    2013-07-01

    Full Text Available Fatty acid-binding protein 3 (FABP3 is a member of the intracellular lipid-binding protein family, and is primarily expressed in cardiac muscle tissue. Previously, we found that FABP3 is highly expressed in patients with ventricular-septal defects and is often used as a plasma biomarker in idiopathic dilated cardiomyopathy, and may play a significant role in the development of these defects in humans. In the present study, we aimed to investigate the role of FABP3 in the embryonic development of the zebrafish heart, and specifically how morpholino (MO mediated knockdown of FABP3 would affect heart development in this species. Our results revealed that knockdown of FABP3 caused significant impairment of cardiac development observed, including developmental delay, pericardial edema, a linear heart tube phenotype, incomplete cardiac loop formation, abnormal positioning of the ventricles and atria, downregulated expression of cardiac-specific markers and decreased heart rate. Mechanistically, our data showed that the retinoic acid (RA catabolizing enzyme Cyp26a1 was upregulated in FABP3-MO zebrafish, as indicated by in situ hybridization and real-time PCR. On the other hand, the expression level of the RA synthesizing enzyme Raldh2 did not significantly change in FABP3-MO injected zebrafish. Collectively, our results indicated that FABP3 knockdown had significant effects on cardiac development, and that dysregulated RA signaling was one of the mechanisms underlying this effect. As a result, these studies identify FABP3 as a candidate gene underlying the etiology of congenital heart defects.

  1. Effects of receptor-selective retinoids on CYP26 gene expression and metabolism of all-trans-retinoic acid in intestinal cells.

    Science.gov (United States)

    Lampen, A; Meyer, S; Nau, H

    2001-05-01

    Retinoids mediate most of their function via interaction with retinoid receptors [retinoic acid receptors (RARs) and retinoid X receptors (RXRs)], which act as ligand-activated transcription factors controlling the expression of a number of target genes. The complex mechanistic pattern of retinoid-induced effects on gene expression of CYP26 and intestinal metabolism of all-trans-retinoic acid (RA) was investigated here by studying the effects of retinoid ligands with relative selectivity for binding and transactivation of the retinoid acid receptors, RARs and RXRs, in human intestinal Caco-2 cells. We show here that CYP26 is expressed in human duodenum and colon. In Caco-2 cells not only all-trans-RA but also synthetic agonists of the RAR induced intestinal CYP26 gene expression and all-trans-RA metabolism as well. The RARalpha ligand Am580 induced the CYP26 gene expression more than the RARbeta ligand CD2019 or the RARgamma ligand CD437 suggesting the highest specificity for RARalpha on intestinal CYP26 gene regulation. RXR ligands alone did not induce CYP26 gene expression or RA metabolism in Caco-2 cells at all. But together with the RARalpha ligand, Am580, there were enhanced effects on the induction of CYP26 gene expression and on the induction of the metabolism of all-trans-RA. We conclude that gene regulation of CYP26 and the metabolism of all-trans-RA in intestinal cells is regulated through RXR and RAR heterodimerization. When coadministered, RAR agonists showed the highest potency for CYP26 gene regulation. Receptor-selective retinoids showed enhanced effects on induction of CYP26 gene expression and all-trans-retinoic acid metabolism.

  2. In vitro inhibition of promyelocytic leukemia/retinoic acid receptor-alpha (PML/RARalpha) expression and leukemogenic activity by DNA/LNA chimeric antisense oligos.

    Science.gov (United States)

    Caprodossi, Sara; Galluzzi, Luca; Biagetti, Simona; Della Chiara, Giulia; Pelicci, Pier Giuseppe; Magnani, Mauro; Fanelli, Mirco

    2005-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by the chromosomal translocation t(15:17) that leads to the expression of promyelocytic leukemia/retinoic acid receptor-alpha (PML/ RARalpha) oncofusion protein. The block of differentiation at the promyelocytic stage of the blasts and their increased survival induced by PML/RARalpha are the principal biological features of the disease. Therapies based on pharmacological doses of retinoic acid (RA, 10(-6) M) are able to restore APL cell differentiation in most cases, but not to achieve complete hematological remission because retinoic acid resistance occurs in many patients. In order to elaborate alternative therapeutic approaches, we focused our attention on the use of antisense oligonucleotides as gene-specific drug directed to PML/RARalpha mRNA target. We used antisense molecules containing multiple locked nucleic acid (LNA) modifications. The LNAs are nucleotide analogues that are able to form duplexes with complementary DNA or RNA sequences with highly increased thermal stability and are resistant to 3'-exonuclease degradation in vitro. The DNA/LNA chimeric molecules were designed on the fusion sequence of PML and RARalpha genes to specifically target the oncofusion protein. Cell-free and in vitro experiments using U937-PR9-inducible cell line showed that DNA/LNA oligonucleotides were able to interfere with PML/RARalpha expression more efficiently than the corresponding unmodified DNA oligo. Moreover, the treatment of U937-PR9 cells with these chimeric antisense molecules was able to abrogate the block of differentiation induced by PML/RARalpha oncoprotein. These data suggest a possible application of oligonucleotides containing LNA in an antisense therapeutic strategy for APL.

  3. DNA fragmentation induced by all-trans retinoic acid and its steroidal analogue EA-4 in C2 C12 mouse and HL-60 human leukemic cells in vitro.

    Science.gov (United States)

    Alakhras, Raghda S; Stephanou, Georgia; Demopoulos, Nikos A; Grintzalis, Konstantinos; Georgiou, Christos D; Nikolaropoulos, Sotirios S

    2014-08-01

    We have recently shown that retinoic acid induces micronucleation mainly via chromosome breakage (Alakhras et al. Cancer Lett 2011; 306: 15-26). To further study retinoic acid clastogenicity and evaluate DNA damaging potential we investigated the ability of (a) all-trans retinoic acid and its steroidal analogue EA-4 to induce DNA fragmentation by using Comet assay under alkaline unwinding and neutral condition electrophoresis, and (b) the retinoids under study to induce small (0-1 kb) DNA fragments. Two cell lines, C2C12 mouse cells and HL-60 human leukemic cells were used in this study. We found that all-trans retinoic acid and its steroidal analogue EA-4 (a) provoke DNA migration due to DNA fragmentation as it is shown by the increased values of Comet parameters, and (b) induce significantly small-size fragmented genomic DNA as indicated by the quantification of necrotic/apoptotic small DNA segments in both cell systems. A different response between the two cell lines was observed in relation to retinoid ability to increase the percentage of DNA in the tail as well as break DNA in to small fragments. Our findings confirm the ability of retinoic acid to provoke micronucleation by disrupting DNA into fragments, among which small pieces of double-stranded DNA up to 1 kb are identified. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Retinoic acid-loaded polymeric nanoparticles enhance vascular regulation of neural stem cell survival and differentiation after ischaemia

    Science.gov (United States)

    Ferreira, R.; Fonseca, M. C.; Santos, T.; Sargento-Freitas, J.; Tjeng, R.; Paiva, F.; Castelo-Branco, M.; Ferreira, L. S.; Bernardino, L.

    2016-04-01

    Stroke is one of the leading causes of death and disability worldwide. However, current therapies only reach a small percentage of patients and may cause serious side effects. We propose the therapeutic use of retinoic acid-loaded nanoparticles (RA-NP) to safely and efficiently repair the ischaemic brain by creating a favourable pro-angiogenic environment that enhances neurogenesis and neuronal restitution. Our data showed that RA-NP enhanced endothelial cell proliferation and tubule network formation and protected against ischaemia-induced death. To evaluate the effect of RA-NP on vascular regulation of neural stem cell (NSC) survival and differentiation, endothelial cell-conditioned media (EC-CM) were collected. EC-CM from healthy RA-NP-treated cells reduced NSC death and promoted proliferation while EC-CM from ischaemic RA-NP-treated cells decreased cell death, increased proliferation and neuronal differentiation. In parallel, human endothelial progenitor cells (hEPC), which are part of the endogenous repair response to vascular injury, were collected from ischaemic stroke patients. hEPC treated with RA-NP had significantly higher proliferation, which further highlights the therapeutic potential of this formulation. To conclude, RA-NP protected endothelial cells from ischaemic death and stimulated the release of pro-survival, proliferation-stimulating factors and differentiation cues for NSC. RA-NP were shown to be up to 83-fold more efficient than free RA and to enhance hEPC proliferation. These data serve as a stepping stone to use RA-NP as vasculotrophic and neurogenic agents for vascular disorders and neurodegenerative diseases with compromised vasculature.

  5. Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid.

    Science.gov (United States)

    Soden, Marta E; Chen, Lu

    2010-12-15

    Homeostatic synaptic plasticity adjusts the strength of synapses during global changes in neural activity, thereby stabilizing the overall activity of neural networks. Suppression of synaptic activity increases synaptic strength by inducing synthesis of retinoic acid (RA), which activates postsynaptic synthesis of AMPA-type glutamate receptors (AMPARs) in dendrites and promotes synaptic insertion of newly synthesized AMPARs. Here, we show that fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates dendritic protein synthesis, is essential for increases in synaptic strength induced by RA or by blockade of neural activity in the mouse hippocampus. Although activity-dependent RA synthesis is maintained in Fmr1 knock-out neurons, RA-dependent dendritic translation of GluR1-type AMPA receptors is impaired. Intriguingly, FMRP is only required for the form of homeostatic plasticity that is dependent on both RA signaling and local protein synthesis. Postsynaptic expression of wild-type or mutant FMRP(I304N) in knock-out neurons reduced the total, surface, and synaptic levels of AMPARs, implying a role for FMRP in regulating AMPAR abundance. Expression of FMRP lacking the RGG box RNA-binding domain had no effect on AMPAR levels. Importantly, postsynaptic expression of wild-type FMRP, but not FMRP(I304N) or FMRPΔRGG, restored synaptic scaling when expressed in knock-out neurons. Together, these findings identify an unanticipated role for FMRP in regulating homeostatic synaptic plasticity downstream of RA. Our results raise the possibility that at least some of the symptoms of fragile X syndrome reflect impaired homeostatic plasticity and impaired RA signaling.

  6. Retinoic acid synergistically enhances the melanocytotoxic and depigmenting effects of monobenzylether of hydroquinone in black guinea pig skin.

    Science.gov (United States)

    Kasraee, Behrooz; Fallahi, Mohammad Reza; Ardekani, Gholamreza Safaee; Ebrahimi, Saeed; Doroudchi, Gholamreza; Omrani, Gholamhossein R; Handjani, Farhad; Amini, Mitra; Tanideh, Nader; Haddadi, Marzieh; Nikbakhsh, Mohammad; Jahanbani, Saeedeh; Tran, Christian; Sorg, Olivier; Saurat, Jean-Hilaire

    2006-07-01

    Monobenzylether of hydroquinone (MBEH) has long been utilized for the depigmentation therapy of patients with extensive vitiligo. In this approach, the normally pigmented areas surrounding vitiligo lesions are depigmented to achieve a uniform skin tone. One of the important disadvantages of MBEH therapy, however, is the resistance of a considerable number of vitiligo patients against the depigmenting effect of this agent. We have previously proposed that the glutathione-dependent cytoprotection of melanocytes can be impaired through the inhibition of the enzyme glutathione S-transferase by retinoic acid (RA). The combination of RA with melanocytotoxic agents could thus lead to increased susceptibility of melanocytes to such compounds. In this study we have shown, for the first time, that the melanocytotoxic and depigmenting effects of MBEH are synergistically enhanced when it is combined with RA. The treatment of black guinea pig skin with RA (0.025%) alone induced no significant changes in the number of epidermal melanocytes and no skin depigmentation. On the other hand, MBEH (10%) produced mild to moderate skin depigmentation and reduced the average number of melanocytes from 76 (+/-5)/field (magnification: x 40) in control sites, to 42 (+/-6)/field in the depigmented skin. The RA (0.025%)-MBEH (10%) combination, however, produced a complete degree of depigmentation in the majority of treated sites after 10 days of application and reduced the average number of melanocytes to only 6 (+/-6)/field. RA-MBEH combination serves as a very potent skin depigmenting formula and now awaits future assessments of its potential use for the treatment of extensive vitiligo.

  7. All-trans retinoic acid prevents epidural fibrosis through NF-κB signaling pathway in post-laminectomy rats.

    Science.gov (United States)

    Zhang, Chao; Kong, Xiaohong; Ning, Guangzhi; Liang, Zhipin; Qu, Tongjun; Chen, Feiran; Cao, Daigui; Wang, Tianyi; Sharma, Hari S; Feng, Shiqing

    2014-04-01

    Laminectomy is a widely accepted treatment for lumbar disorders, and epidural fibrosis (EF) is a common complication. EF is thought to cause post-operative pain recurrence after laminectomy or discectomy. All-trans retinoic acid (ATRA) has shown anti-fibrotic, anti-inflammatory, and anti-proliferative functions. The object of this study was to investigate the effects of ATRA on the prevention of EF in post-laminectomy rats. In vitro, the anti-fibrotic effect of ATRA was demonstrated with cultured fibroblasts count, which comprised of those that were cultured with/without ATRA. In vivo, rats underwent laminectomy at the L1-L2 levels. We first demonstrated the beneficial effects using 0.05% ATRA compared to vehicle (control group). We found that a higher concentration of ATRA (0.1%) achieved dose-dependent results. Hydroxyproline content, Rydell score, vimentin-positive cell density, fibroblast density, inflammatory cell density and inflammatory factor expression levels all suggested better outcomes in the 0.1% ATRA rats compared to the other three groups. Presumably, these effects involved ATRA's ability to suppress transforming growth factor (TGF-β1) and interleukin (IL)-6 which was confirmed with reverse-transcriptase polymerase chain reaction (RT-PCR). Finally we demonstrated that ATRA down-regulated nuclear factor (NF)-κB by immunohistochemistry and western blotting for p65 and inhibition of κB (IκBα), respectively. Our findings indicate that topical application of ATRA can inhibit fibroblast proliferation, decrease TGF-β1 and IL-6 expression level, and prevent epidural scar adhesion in rats. The highest concentration employed in this study (0.1%) was the most effective. ATRA suppressed EF through down-regulating NF-κB signaling, whose specific mechanism is suppression of IκB phosphorylation and proteolytic degradation.

  8. Functional and cellular characterization of human Retinoic Acid Induced 1 (RAI1 mutations associated with Smith-Magenis Syndrome

    Directory of Open Access Journals (Sweden)

    Carmona-Mora Paulina

    2010-08-01

    Full Text Available Abstract Background Smith-Magenis Syndrome is a contiguous gene syndrome in which the dosage sensitive gene has been identified: the Retinoic Acid Induced 1 (RAI1. Little is known about the function of human RAI1. Results We generated the full-length cDNA of the wild type protein and five mutated forms: RAI1-HA 2687delC, RAI1-HA 3103delC, RAI1 R960X, RAI1-HA Q1562R, and RAI1-HA S1808N. Four of them have been previously associated with SMS clinical phenotype. Molecular weight, subcellular localization and transcription factor activity of the wild type and mutant forms were studied by western blot, immunofluorescence and luciferase assays respectively. The wild type protein and the two missense mutations presented a higher molecular weight than expected, localized to the nucleus and activated transcription of a reporter gene. The frameshift mutations generated a truncated polypeptide with transcription factor activity but abnormal subcellular localization, and the same was true for the 1-960aa N-terminal half of RAI1. Two different C-terminal halves of the RAI1 protein (1038aa-end and 1229aa-end were able to localize into the nucleus but had no transactivation activity. Conclusion Our results indicate that transcription factor activity and subcellular localization signals reside in two separate domains of the protein and both are essential for the correct functionality of RAI1. The pathogenic outcome of some of the mutated forms can be explained by the dissociation of these two domains.

  9. Sonic hedgehog and retinoic Acid induce bone marrow-derived stem cells to differentiate into glutamatergic neural cells.

    Science.gov (United States)

    Yu, Zhenhai; Wu, Shixing; Liu, Zhen; Lin, Haiyan; Chen, Lei; Yuan, Xinli; Zhang, Zhiying; Liu, Fang; Zhang, Chuansen

    2015-01-01

    Studies have showed that transplanted stem cells in the inner ear won't regenerate to replace the damaged sensory hair cells. They can spontaneously differentiate into mesenchymal cells and fibrocytes in the damaged inner ear. Only mature sensory cells of MSCs-derived possess the great potency for cell transplantation in the treatment of sensorineural hearing loss. So, we try to establish an efficient generation of the glutamatergic sensory neural phenotype for the cell transplantation of the hearing loss. We isolated MSCs from femoral and tibial bones according to their adherence to culture dishes. After purification, proliferation, and passaged, cells became homogeneous in appearance, showing more uniformity and grew in a monolayer with a typical spindle-shape morphology. The cell surface markers were assessed using FACS to characterize the isolated cells. For neural induction to harvest the glutamatergic sensory neurons, passage 3 MSCs were incubated with preinduced medium for 24 hr, and neural-induced medium for an additional 14 days. The cells exhibit a typical neural shape. RT-PCR analysis indicated that the mRNA levels of the neural cell marker nestin, Tau, MAP-2, β-tubulin III, GluR-3, and GluR-4 were higher compared with primary MSCs. Immunohistochemistry and western-blotting proofed that nestin, MAP-2, β-tubulin III, and GluR-4 proteins indeed exhibit their expression difference in the induced cells compared to the MSCs. We show an efficient protocol by the combined applications of Sonic Hedgehog (Shh) and Retinoic Acid (RA) to induce MSCs to differentiate into the glutamatergic sensory neuron which were identified from the morphological, biochemical, and molecular characteristics.

  10. Combined therapy with {sup 131}I and retinoic acid in Korean patients with radioiodine-refractory papillary thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oh, So Won [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University Boramae Medical Center, Department of Nuclear Medicine, Seoul (Korea, Republic of); Moon, Seung-hwan; Chung, June-Key [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Park, Do Joon; Cho, Bo Youn [Seoul National University College of Medicine, Department of Internal Medicine, Seoul (Korea, Republic of); Jung, Kyeong Cheon [Seoul National University College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Lee, Dong Soo [Seoul National University College of Medicine, Department of Nuclear Medicine, Seoul (Korea, Republic of); Seoul National University WCU Graduate School of Convergence Science and Technology, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    The aim of this study was to assess the clinical outcome of redifferentiation therapy using retinoic acid (RA) in combination with {sup 131}I therapy, and to identify biological parameters that predict therapeutic response in Korean patients with radioiodine-refractory papillary thyroid carcinoma (PTC). A total of 47 patients (13 men, 34 women; age 54.2 {+-} 13.6 years) with radioiodine-refractory PTC underwent therapy consisting of consecutive treatment with {sup 131}I and RA. Each {sup 131}I/RA treatment cycle involved the administration of oral isotretinoin for 6 weeks at 1-1.5 mg/kg daily followed by a single oral dose of {sup 131}I (range 5.5-16.7 GBq). Therapeutic responses were determined using serum thyroglobulin (Tg) levels and the change in tumour size 6 months after completing the {sup 131}I/RA therapy. Biological parameters and pathological parameters before and after combined therapy were compared. After completing {sup 131}I/RA therapy, 1 patient showed a complete response, 9 partial response, 9 stable disease, and 28 progressive disease, representing an overall response rate of 21.3%. Univariate analysis revealed that an age of <45 years and a persistently high serum Tg level were related to a good response. No clinical response was achieved when metastases showing no iodine uptake were present. Multivariate regression analysis showed that an age of <45 years was significantly associated with a good response. Of the 24 patients with well-differentiated carcinoma, 5 (20.8%) responded to {sup 131}I/RA therapy, whereas all 6 patients with poorly differentiated carcinoma failed to respond. {sup 131}I/RA therapy was found to elicit a response rate of 21.3% among patients with radioiodine-refractory PTC, and an age of <45 years was found to be significantly associated with a good response. (orig.)

  11. Paradoxical effects of all-trans-retinoic acid on lupus-like disease in the MRL/lpr mouse model.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liao

    Full Text Available Roles of all-trans-retinoic acid (tRA, a metabolite of vitamin A (VA, in both tolerogenic and immunogenic responses are documented. However, how tRA affects the development of systemic autoimmunity is poorly understood. Here we demonstrate that tRA have paradoxical effects on the development of autoimmune lupus in the MRL/lpr mouse model. We administered, orally, tRA or VA mixed with 10% of tRA (referred to as VARA to female mice starting from 6 weeks of age. At this age, the mice do not exhibit overt clinical signs of lupus. However, the immunogenic environment preceding disease onset has been established as evidenced by an increase of total IgM/IgG in the plasma and expansion of lymphocytes and dendritic cells in secondary lymphoid organs. After 8 weeks of tRA, but not VARA treatment, significantly higher pathological scores in the skin, brain and lung were observed. These were accompanied by a marked increase in B-cell responses that included autoantibody production and enhanced expression of plasma cell-promoting cytokines. Paradoxically, the number of lymphocytes in the mesenteric lymph node decreased with tRA that led to significantly reduced lymphadenopathy. In addition, tRA differentially affected renal pathology, increasing leukocyte infiltration of renal tubulointerstitium while restoring the size of glomeruli in the kidney cortex. In contrast, minimal induction of inflammation with tRA in the absence of an immunogenic environment in the control mice was observed. Altogether, our results suggest that under a predisposed immunogenic environment in autoimmune lupus, tRA may decrease inflammation in some organs while generating more severe disease in others.

  12. Galactomutarotase and other galactose-related genes are rapidly induced by retinoic acid in human myeloid cells.

    Science.gov (United States)

    Pai, Tongkun; Chen, Qiuyan; Zhang, Yao; Zolfaghari, Reza; Ross, A Catharine

    2007-12-25

    Aldose-1-epimerase (mutarotase) catalyzes the interconversion of alpha and beta hexoses, which is essential for normal carbohydrate metabolism and the production of complex oligosaccharides. Galactose mutarotase (GALM) has been well characterized at the protein level, but information is lacking on the regulation of GALM gene expression. We report herein that all-trans-retinoic acid (RA), an active metabolite of vitamin A that is known to induce myeloid lineage cell differentiation into macrophage-like cells, induces a rapid and robust regulation of GALM mRNA expression in human myeloid cells. all-trans-RA at a physiological concentration (20 nM), or Am580, a ligand selective for the nuclear retinoid receptor RARalpha, increased GALM mRNA in THP-1 cells, with significantly increased expression in 2 h, increasing further to an approximately 8-fold elevation after 6-40 h (P < 0.005). In contrast, tumor necrosis factor-alpha did not increase GALM mRNA expression, although it is capable of inducing cell differentiation. RA also increased GALM mRNA in U937 and HL-60 cells. The increase in GALM mRNA by RA was blocked by pretreating THP-1 cells with actinomycin D but not by cycloheximide. GALM protein and mutarotase activity were also increased time dependently in RA-treated THP-1 cells. In addition to GALM, several other genes in the biosynthetic pathway of galactosyl-containing complex oligosaccharides were more highly expressed in RA-treated THP-1 cells, including B4GALT5, ST3GAL3, ST6GALNAC5, and GALNAC4S-6ST. Thus, the results of this study identify RA as a significant regulator of GALM and other galactose-related genes in myeloid-monocytic cells, which could affect energy utilization and synthesis of cell-surface glycoproteins or glycolipids involved in cell motility, adhesion, and/or functional properties.

  13. All-trans retinoic acid-triggered antimicrobial activity against Mycobacterium tuberculosis is dependent on NPC2.

    Science.gov (United States)

    Wheelwright, Matthew; Kim, Elliot W; Inkeles, Megan S; De Leon, Avelino; Pellegrini, Matteo; Krutzik, Stephan R; Liu, Philip T

    2014-03-01

    A role for vitamin A in host defense against Mycobacterium tuberculosis has been suggested through epidemiological and in vitro studies; however, the mechanism is unclear. In this study, we demonstrate that vitamin A-triggered antimicrobial activity against M. tuberculosis requires expression of NPC2. Comparison of monocytes stimulated with all-trans retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D3), the biologically active forms of vitamin A and vitamin D, respectively, indicates that ATRA and 1,25D3 induce mechanistically distinct antimicrobial activities. Stimulation of primary human monocytes with ATRA did not result in expression of the antimicrobial peptide cathelicidin, which is required for 1,25D3 antimicrobial activity. In contrast, ATRA triggered a reduction in the total cellular cholesterol concentration, whereas 1,25D3 did not. Blocking ATRA-induced cellular cholesterol reduction inhibits antimicrobial activity as well. Bioinformatic analysis of ATRA- and 1,25D3-induced gene profiles suggests that NPC2 is a key gene in ATRA-induced cholesterol regulation. Knockdown experiments demonstrate that ATRA-mediated decrease in total cellular cholesterol content and increase in lysosomal acidification are both dependent upon expression of NPC2. Expression of NPC2 was lower in caseous tuberculosis granulomas and M. tuberculosis-infected monocytes compared with normal lung and uninfected cells, respectively. Loss of NPC2 expression ablated ATRA-induced antimicrobial activity. Taken together, these results suggest that the vitamin A-mediated antimicrobial mechanism against M. tuberculosis requires NPC2-dependent expression and function, indicating a key role for cellular cholesterol regulation in the innate immune response.

  14. Prenatal treatment with retinoic acid activates parathyroid hormone-related protein signaling in the nitrofen-induced hypoplastic lung.

    Science.gov (United States)

    Doi, Takashi; Sugimoto, Kaoru; Ruttenstock, Elke; Dingemann, Jens; Puri, Prem

    2011-01-01

    Prenatal treatment with retinoic acid (RA) has been reported to stimulate alveologenesis in hypoplastic lungs (HL) in the nitrofen model of congenital diaphragmatic hernia (CDH). Parathyroid hormone-related protein (PTHrP) promotes alveolar maturation by stimulating surfactant production, regulated by PTHrP receptor (PTHrP-R). PTHrP knockout and PTHrP-R null mice both exhibit pulmonary hypoplasia. We have recently reported that nitrofen inhibits PTHrP signaling in the nitrofen-induced HL. Because both PTHrP and PTHrP-R genes have RA-inducible element, we hypothesized that prenatal administration of RA upregulates pulmonary gene expression of PTHrP and PTHrP-R in the nitrofen-induced HL. Pregnant rats were exposed to either olive oil or nitrofen on day 9 of gestation (D9). RA was given on days D18, D19 and D20. Fetal lungs were obtained on D21 and divided into four groups: control, control + RA, nitrofen, nitrofen + RA. RT-PCR and Immunohistochemistry were performed to investigate the pulmonary PTHrP and PTHrP-R gene and protein expression in each group, respectively. The pulmonary gene expression levels of PTHrP and PTHrP-R were significantly increased in nitrofen + RA group compared to nitrofen group (p PTHrP and PTHrP-R was also remarkably increased in nitrofen + RA group compared to nitrofen group. Upregulation of PTHrP and PTHrP-R genes after prenatal treatment with RA in the nitrofen-induced HL suggests that RA may have a therapeutic potential in reverting lung hypoplasia in CDH, by stimulating surfactant production and alveolar maturation.

  15. N-cadherin is essential for retinoic acid-mediated cardiomyogenic differentiation in mouse embryonic stem cells

    Directory of Open Access Journals (Sweden)

    R Bugorsky

    2009-08-01

    Full Text Available Contraction forces developed by cardiomyocytes are transmitted across the plasma membrane through end-to-end connections between the myocytes, called intercalated disks, which enable the coordinated contraction of heart muscle. A component of the intercalated disk, the adherens junction, consists of the cell adhesion molecule, N-cadherin. Embryos lacking N-cadherin die at mid-gestation from cardiovascular abnormalities. We have evaluated the role of Ncadherin in cardiomyogenesis using N-cadherin-null mouse embryonic stem (ES cells grown as embryoid bodies (EBs in vitro. Myofibrillogenesis, the spatial orientation of myofibers, and intercellular contacts including desmosomes were normal in N-cadherin-null ES cell-derived cardiomyocytes. The effect of retinoic acid (RA, a stage and dosedependent cardiogenic factor, was assessed in differentiating ES cells. all-trans (at RA increased the number of ES cell-derived cardiomyocytes by »3-fold (at 3×10-9 M in wt EBs. However, this effect was lost in N-cadherin-null EBs. In the presence of supplemented at-RA, the emergence of spontaneously beating cardiomyocytes appeared to be delayed and slightly less efficient in N-cadherin-null compared with wt and heterozygous EBs (frequencies of EBs with beating activity at 5 days: 54±18% vs. 96±0.5%, and 93±7%, respectively; peak frequencies of EBs with beating activity: 83±8% vs. 96±0.5% and 100%, respectively. In conclusion, cardiomyoyctes differentiating from N-cadherinnull ES cells in vitro show normal myofibrillogenesis and intercellular contacts, but impaired responses to early cardiogenic effects mediated by at-RA. These results suggest that N-cadherin may be essential for RA-induced cardiomyogenesis in mouse ES cells in vitro.

  16. Induction of apoptosis and change of bcl—2 expression in macrophage Ana—1 cells by all—trans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    YINDELING; XIUHAIREN; 等

    1996-01-01

    Macrophage cells play an important role in the initiation and regulation of the immune response.All-trans retinoic acid (ATRA) and its natural and synthetic analogs (retinoids)affect a large number of biological processes.Recently,retinoids have been shown promise in the therapy and prevention of various cancers.However,many interesting questions related to the activities of retinoids remain to be answered:(I) Molecular mechanisms by which retinoids exert their effects;(Ⅱ)why the clinical uses of retinoids give undesirable side effects of varying severity with a higher frequency of blood system symptoms;(Ⅲ)little is known for its impacts on macrophage cells etc.We set up this experiment,therefore,to examine the apoptosis of ATRA on macrophage Ana-1 cell line.Apoptosis of the cells was quantitated,after staining cells with propidium iodide(PI),by both accounting nuclear condensation and flow cytometry.When the cells were treated with ATRA at or higher than 1μM for more than 24h,significant amount of the apoptotic cells was observed.Induction of apoptosis of Ana-1 cells by ATRA was in time-and dose-dependent manners,exhibiting the similar pattern as the apoptosis induced by actinomycin D (ACTD).ATRA treatment of Ana-1 cells also caused the changes of the mRNA levels of apoptosis-associated gene bcl-2,as detected by Northern blot analysis.The temporal changes of bcl-2 expression by ATRA was also parallel to that by ACTD.In conclusion,ATRA can induce apoptosis in macrophage cells,which may be helpful in understanding of immunological functions retinoids.

  17. Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis.

    Directory of Open Access Journals (Sweden)

    Lizhi Wu

    Full Text Available UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA, the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations.

  18. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab.

    Science.gov (United States)

    Abaza, Yasmin; Kantarjian, Hagop; Garcia-Manero, Guillermo; Estey, Elihu; Borthakur, Gautam; Jabbour, Elias; Faderl, Stefan; O'Brien, Susan; Wierda, William; Pierce, Sherry; Brandt, Mark; McCue, Deborah; Luthra, Rajyalakshmi; Patel, Keyur; Kornblau, Steven; Kadia, Tapan; Daver, Naval; DiNardo, Courtney; Jain, Nitin; Verstovsek, Srdan; Ferrajoli, Alessandra; Andreeff, Michael; Konopleva, Marina; Estrov, Zeev; Foudray, Maria; McCue, David; Cortes, Jorge; Ravandi, Farhad

    2017-03-09

    The combination of all-trans-retinoic acid (ATRA) plus arsenic trioxide (ATO) has been shown to be superior to ATRA plus chemotherapy in the treatment of standard-risk patients with newly diagnosed acute promyelocytic leukemia (APL). A recent study demonstrated the efficacy of this regimen with added gemtuzumab ozogamicin (GO) in high-risk patients. We examined the long-term outcome of patients with newly diagnosed APL treated at our institution on 3 consecutive prospective clinical trials, using the combination of ATRA and ATO, with or without GO. For induction, all patients received ATRA (45 mg/m(2) daily) and ATO (0.15 mg/kg daily) with a dose of GO (9 mg/m(2) on day 1) added to high-risk patients (white blood cell count, >10 × 10(9)/L), as well as low-risk patients who experienced leukocytosis during induction. Once in complete remission, patients received 4 cycles of ATRA plus ATO consolidation. One hundred eighty-seven patients, including 54 with high-risk and 133 with low-risk disease, have been treated. The complete remission rate was 96% (52 of 54 in high-risk and 127 of 133 in low-risk patients). Induction mortality was 4%, with only 7 relapses. Among low-risk patients, 60 patients (45%) required either GO or idarubicin for leukocytosis. Median duration of follow-up was 47.6 months. The 5-year event-free, disease-free, and overall survival rates are 85%, 96%, and 88%, respectively. Late hematological relapses beyond 1 year occurred in 3 patients. Fourteen deaths occurred beyond 1 year; 12 were related to other causes. This study confirms the durability of responses with this regimen.

  19. In vitro antitumor potential of 4-BPRE, a butyryl aminophenyl ester of retinoic acid: role of the butyryl group.

    Science.gov (United States)

    Um, Soo-Jong; Han, Hye-Sook; Kwon, Youn-Ja; Park, Si-Ho; Bae, Tae-Sung; Rho, Young-Soy; Sin, Hong-Sig

    2004-03-01

    Retinoic acid (RA) and sodium butyrate (NaB) have been implicated in the regulation of growth and differentiation in various cancer cells. To produce an agent with the properties of both RA and NaB, a butyryl aminophenyl ester of RA (4-BPRE) was synthesized. The agent was compared with an aminophenyl ester devoid of the butyryl group (4-APRE) for antitumor potential in vitro. Like RA, 4-hydroxyphenyl retinamide (4-HPR) and 4-APRE, 4-BPRE was an active ligand for all three subtypes of RAR, but not for RXR, as determined by transcription assays in COS-1 cells. In addition, regardless of the butyryl group, 4-BPRE actively suppressed c-Jun transcriptional activity, which may result in reduced expression of matrix metalloproteinases (MMP-1 and MMP-2), and effectively inhibited HCT116 cell invasion into Matrigel. In these respects, 4-BPRE is similar to 4-APRE, and even to RA and 4-HPR. However, our results showed that in HCT116 colon and A549 lung cancer cells, 4-BPRE was much more cytotoxic than RA and 4-APRE, and was also more cytotoxic than 4-HPR, which is the most cytotoxic retinoid derivative under clinical investigation. Subsequent assays using DAPI staining, DNA fragmentation, and FACS analysis suggested that the cytotoxic effect of 4-BPRE is mediated by apoptosis in HCT116 cells. Moreover, 4-BPRE inhibited histone deacetylase (HDAC) activity to some degree, although inhibition was less than that induced by the known HDAC inhibitors TSA and NaB. These results suggest that 4-BPRE could be a promising antitumor retinoid with both NaB activity and RA function.

  20. Impact of retinoic acid exposure on midfacial shape variation and manifestation of holoprosencephaly in Twsg1 mutant mice

    Directory of Open Access Journals (Sweden)

    Charles J. Billington

    2015-02-01

    Full Text Available Holoprosencephaly (HPE is a developmental anomaly characterized by inadequate or absent midline division of the embryonic forebrain and midline facial defects. It is believed that interactions between genes and the environment play a role in the widely variable penetrance and expressivity of HPE, although direct investigation of such effects has been limited. The goal of this study was to examine whether mice carrying a mutation in a gene encoding the bone morphogenetic protein (BMP antagonist twisted gastrulation (Twsg1, which is associated with a low penetrance of HPE, are sensitized to retinoic acid (RA teratogenesis. Pregnant Twsg1+/− dams were treated by gavage with a low dose of all-trans RA (3.75 mg/kg of body weight. Embryos were analyzed between embryonic day (E9.5 and E11.5 by microscopy and geometric morphometric analysis by micro-computed tomography. P19 embryonal carcinoma cells were used to examine potential mechanisms mediating the combined effects of increased BMP and retinoid signaling. Although only 7% of wild-type embryos exposed to RA showed overt HPE or neural tube defects (NTDs, 100% of Twsg1−/− mutants exposed to RA manifested severe HPE compared to 17% without RA. Remarkably, up to 30% of Twsg1+/− mutants also showed HPE (23% or NTDs (7%. The majority of shape variation among Twsg1+/− mutants was associated with narrowing of the midface. In P19 cells, RA induced the expression of Bmp2, acted in concert with BMP2 to increase p53 expression, caspase activation and oxidative stress. This study provides direct evidence for modifying effects of the environment in a genetic mouse model carrying a predisposing mutation for HPE in the Twsg1 gene. Further study of the mechanisms underlying these gene-environment interactions in vivo will contribute to better understanding of the pathogenesis of birth defects and present an opportunity to explore potential preventive interventions.

  1. Genes involved in cell adhesion and signaling: a new repertoire of retinoic acid receptor target genes in mouse embryonic fibroblasts.

    Science.gov (United States)

    Al Tanoury, Ziad; Piskunov, Aleksandr; Andriamoratsiresy, Dina; Gaouar, Samia; Lutzing, Régis; Ye, Tao; Jost, Bernard; Keime, Céline; Rochette-Egly, Cécile

    2014-02-01

    Nuclear retinoic acid (RA) receptors (RARα, β and γ) are ligand-dependent transcription factors that regulate the expression of a battery of genes involved in cell differentiation and proliferation. They are also phosphoproteins and we previously showed the importance of their phosphorylation in their transcriptional activity. In the study reported here, we conducted a genome-wide analysis of the genes that are regulated by RARs in mouse embryonic fibroblasts (MEFs) by comparing wild-type MEFs to MEFs lacking the three RARs. We found that in the absence of RA, RARs control the expression of several gene transcripts associated with cell adhesion. Consequently the knockout MEFs are unable to adhere and to spread on substrates and they display a disrupted network of actin filaments, compared with the WT cells. In contrast, in the presence of the ligand, RARs control the expression of other genes involved in signaling and in RA metabolism. Taking advantage of rescue cell lines expressing the RARα or RARγ subtypes (either wild-type or mutated at the N-terminal phosphorylation sites) in the null background, we found that the expression of RA-target genes can be controlled either by a specific single RAR or by a combination of RAR isotypes, depending on the gene. We also selected genes that require the phosphorylation of the receptors for their regulation by RA. Our results increase the repertoire of genes that are regulated by RARs and highlight the complexity and diversity of the transcriptional programs regulated by RARs, depending on the gene.

  2. Aerosol probes of emphysema progression in dogs treated with all trans retinoic acid--an exploratory study.

    Science.gov (United States)

    Rosenthal, Frank S

    2007-01-01

    This study used aerosol probes and lung function tests to investigate whether all trans retinoic acid (RA) can reverse experimental emphysema in dogs. Three dogs were evaluated with lung mechanics tests, including inspiratory capacity (IC), total lung capacity (TLC), and the ratio of forced expired volume in 0.5 sec to forced vital capacity (FEV0.5/FVC), an aerosol-derived measure of pulmonary airspace size (effective airspace diameter, EAD), and an aerosol-derived measure of nonuniform ventilation (aerosol dispersion, AD). Emphysema was induced by exposure to aerosolized papain. At 11 or 12 weeks post-papain exposure, dogs received oral RA (2 mg/kg/day) for 8 weeks, and were followed for an additional 4 weeks after stopping RA treatment. In all dogs, lung injury increased in the first 11-12 weeks following papain exposure, as evidenced by increasing trends of inspiratory capacity IC, TLC, EAD, and AD, and a decreasing trend of FEV0.5/FVC. These parameters of lung injury partially and transiently reversed their trends between 2 and 6 weeks following the initiation of RA treatment. A sham RA-treated group was not studied. However, similar reversals of lung injury were not seen in a previous study of dogs treated with papain but not RA, suggesting that RA altered emphysema progression in the current study. The limited reversal of lung injury in this study contrasts with more pronounced treatment effects seen in previous studies with rats. This paper discusses possible reasons for differences in these studies, as well as suggestions for improved experimental investigations of emphysema therapies.

  3. Retinoic acid signaling controls the formation, proliferation and survival of the blastema during adult zebrafish fin regeneration.

    Science.gov (United States)

    Blum, Nicola; Begemann, Gerrit

    2012-01-01

    Adult teleosts rebuild amputated fins through a proliferation-dependent process called epimorphic regeneration, in which a blastema of cycling progenitor cells replaces the lost fin tissue. The genetic networks that control formation of blastema cells from formerly quiescent stump tissue and subsequent blastema function are still poorly understood. Here, we investigated the cellular and molecular consequences of genetically interfering with retinoic acid (RA) signaling for the formation of the zebrafish blastema. We show that RA signaling is upregulated within the first few hours after fin amputation in the stump mesenchyme, where it controls Fgf, Wnt/β-catenin and Igf signaling. Genetic inhibition of the RA pathway at this stage blocks blastema formation by inhibiting cell cycle entry of stump cells and impairs the formation of the basal epidermal layer, a signaling center in the wound epidermis. In the established blastema, RA signaling remains active to ensure the survival of the highly proliferative blastemal population by controlling expression of the anti-apoptotic factor bcl2. In addition, RA signaling maintains blastema proliferation through the activation of growth-stimulatory signals mediated by Fgf and Wnt/β-catenin signaling, as well as by reducing signaling through the growth-inhibitory non-canonical Wnt pathway. The endogenous roles of RA in adult vertebrate appendage regeneration are uncovered here for the first time. They provide a mechanistic framework to understand previous observations in salamanders that link endogenous sources of RA to the regeneration process itself and support the hypothesis that the RA signaling pathway is an essential component of vertebrate tissue regeneration.

  4. Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability.

    Science.gov (United States)

    Kürti, Levente; Veszelka, Szilvia; Bocsik, Alexandra; Ozsvári, Béla; Puskás, László G; Kittel, Agnes; Szabó-Révész, Piroska; Deli, Mária A

    2013-05-01

    The nasal pathway represents an alternative route for non-invasive systemic administration of drugs. The main advantages of nasal drug delivery are the rapid onset of action, the avoidance of the first-pass metabolism in the liver and the easy applicability. In vitro cell culture systems offer an opportunity to model biological barriers. Our aim was to develop and characterize an in vitro model based on confluent layers of the human RPMI 2650 cell line. Retinoic acid, hydrocortisone and cyclic adenosine monophosphate, which influence cell attachment, growth and differentiation have been investigated on the barrier formation and function of the nasal epithelial cell layers. Real-time cell microelectronic sensing, a novel label-free technique was used for dynamic monitoring of cell growth and barrier properties of RPMI 2650 cells. Treatments enhanced the formation of adherens and tight intercellular junctions visualized by electron microscopy, the presence and localization of junctional proteins ZO-1 and β-catenin demonstrated by fluorescent immunohistochemistry, and the barrier function of nasal epithelial cell layers. The transepithelial resistance of the RPMI 2650 cell model reached 50 to 200 Ω × cm(2), the permeability coefficient for 4.4 kDa FITC-dextran was 9.3 to 17 × 10(-6) cm/s, in agreement with values measured on nasal mucosa from in vivo and ex vivo experiments. Based on these results human RPMI 2650 cells seem to be a suitable nasal epithelial model to test different pharmaceutical excipients and various novel formulations, such as nanoparticles for toxicity and permeability.

  5. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression.

    Directory of Open Access Journals (Sweden)

    Jingcheng Zhang

    Full Text Available Retinoic acid (RA is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs. Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.

  6. Requirement of retinoic acid receptor β for genipin derivative-induced optic nerve regeneration in adult rat retina.

    Directory of Open Access Journals (Sweden)

    Yoshiki Koriyama

    Full Text Available Like other CNS neurons, mature retinal ganglion cells (RGCs are unable to regenerate their axons after nerve injury due to a diminished intrinsic regenerative capacity. One of the reasons why they lose the capacity for axon regeneration seems to be associated with a dramatic shift in RGCs' program of gene expression by epigenetic modulation. We recently reported that (1R-isoPropyloxygenipin (IPRG001, a genipin derivative, has both neuroprotective and neurite outgrowth activities in murine RGC-5 retinal precursor cells. These effects were both mediated by nitric oxide (NO/S-nitrosylation signaling. Neuritogenic activity was mediated by S-nitrosylation of histone deacetylase-2 (HDAC2, which subsequently induced retinoic acid receptor β (RARβ expression via chromatin remodeling in vitro. RARβ plays important roles of neural growth and differentiation in development. However, the role of RARβ expression during adult rat optic nerve regeneration is not clear. In the present study, we extended this hypothesis to examine optic nerve regeneration by IPRG001 in adult rat RGCs in vivo. We found a correlation between RARβ expression and neurite outgrowth with age in the developing rat retina. Moreover, we found that IPRG001 significantly induced RARβ expression in adult rat RGCs through the S-nitrosylation of HDAC2 processing mechanism. Concomitant with RARβ expression, adult rat RGCs displayed a regenerative capacity for optic axons in vivo by IPRG001 treatment. These neuritogenic effects of IPRG001 were specifically suppressed by siRNA for RARβ. Thus, the dual neuroprotective and neuritogenic actions of genipin via S-nitrosylation might offer a powerful therapeutic tool for the treatment of RGC degenerative disorders.

  7. Topical treatment of all-trans retinoic acid inhibits murine melanoma partly by promoting CD8(+) T-cell immunity.

    Science.gov (United States)

    Yin, Wei; Song, Yan; Liu, Qing; Wu, Yunyun; He, Rui

    2017-10-01

    All-trans retinoic acid (atRA), the main biologically active metabolite of vitamin A, has been implicated in immunoregulation and anti-cancer. A recent finding that vitamin A could decrease the risk of melanoma in humans indicates the beneficial role of atRA in melanoma. However, it remains unknown whether topical application of atRA could inhibit melanoma growth by influencing tumour immunity. We demonstrate topical application of tretinoin ointment (atRA as the active ingredient) effectively inhibited B16F10 melanoma growth. This is accompanied by markedly enhanced CD8(+) T-cell responses, as evidenced by significantly increased proportions of effector CD8(+) T cells expressing granzyme B, tumour necrosis factor-α, or interferon-γ, and Ki67(+) proliferating CD8(+) T cells in atRA-treated tumours compared with vaseline controls. Furthermore, topical atRA treatment promoted the differentiation of effector CD8(+) T cells in draining lymph nodes (DLN) of tumour-bearing mice. Interestingly, atRA did not affect tumoral CD4(+) T-cell response, and even inhibited the differentiation of interferon-γ-expressing T helper type 1 cells in DLN. Importantly, we demonstrated that the tumour-inhibitory effect of atRA was partly dependent on CD8(+) T cells, as CD8(+) T-cell depletion restored tumour volumes in atRA-treated mice, which, however, was still significantly smaller than those in vaseline-treated mice. Finally, we demonstrated that atRA up-regulated MHCI expression in B16F10 cells, and DLN cells from tumour-bearing mice had a significantly higher killing rate when culturing with atRA-treated B16F10 cells. Hence, our study demonstrates that topical atRA treatment effectively inhibits melanoma growth partly by promoting the differentiation and the cytotoxic function of effector CD8(+) T cells. © 2017 John Wiley & Sons Ltd.

  8. Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis.

    Science.gov (United States)

    Wu, Lizhi; Chaudhary, Sandeep C; Atigadda, Venkatram R; Belyaeva, Olga V; Harville, Steven R; Elmets, Craig A; Muccio, Donald D; Athar, Mohammad; Kedishvili, Natalia Y

    2016-01-01

    UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA), the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB) irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations.

  9. A PU.1 suppressive target gene, metallothionein 1G, inhibits retinoic acid-induced NB4 cell differentiation.

    Directory of Open Access Journals (Sweden)

    Naomi Hirako

    Full Text Available We recently revealed that myeloid master regulator SPI1/PU.1 directly represses metallothionein (MT 1G through its epigenetic activity of PU.1, but the functions of MT1G in myeloid differentiation remain unknown. To clarify this, we established MT1G-overexpressing acute promyelocytic leukemia NB4 (NB4MTOE cells, and investigated whether MT1G functionally contributes to all-trans retinoic acid (ATRA-induced NB4 cell differentiation. Real-time PCR analyses demonstrated that the inductions of CD11b and CD11c and reductions in myeloperoxidase and c-myc by ATRA were significantly attenuated in NB4MTOE cells. Morphological examination revealed that the percentages of differentiated cells induced by ATRA were reduced in NB4MTOE cells. Since G1 arrest is a hallmark of ATRA-induced NB4 cell differentiation, we observed a decrease in G1 accumulation, as well as decreases in p21WAF1/CIP1 and cyclin D1 inductions, by ATRA in NB4MTOE cells. Nitroblue tetrazolium (NBT reduction assays revealed that the proportions of NBT-positive cells were decreased in NB4MTOE cells in the presence of ATRA. Microarray analyses showed that the changes in expression of several myeloid differentiation-related genes (GATA2, azurocidin 1, pyrroline-5-carboxylate reductase 1, matrix metallopeptidase -8, S100 calcium-binding protein A12, neutrophil cytosolic factor 2 and oncostatin M induced by ATRA were disturbed in NB4MTOE cells. Collectively, overexpression of MT1G inhibits the proper differentiation of myeloid cells.

  10. Molecular cloning and characterization of two novel retinoic acid-inducible orphan G-protein-coupled receptors (GPRC5B and GPRC5C).

    Science.gov (United States)

    Robbins, M J; Michalovich, D; Hill, J; Calver, A R; Medhurst, A D; Gloger, I; Sims, M; Middlemiss, D N; Pangalos, M N

    2000-07-01

    Using homology searching of public databases with a metabotropic glutamate receptor sequence from Caenorhabditis elegans, two novel protein sequences (named RAIG-2 (HGMW-approved symbol GPRC5B) and RAIG-3 (HGMW-approved symbol GPRC5C) were identified containing seven putative transmembrane domains characteristic of G-protein-coupled receptors (GPCRs). RAIG-2 and RAIG-3 encode open reading frames of 403 and 442 amino acid polypeptides, respectively, and show 58% similarity to the recently identified retinoic acid-inducible gene-1 (RAIG-1, HGMW-approved symbol RAI3). Analysis of the three protein sequences places them within the type 3 GPCR family, which includes metabotropic glutamate receptors, GABA(B) receptors, calcium-sensing receptors, and pheromone receptors. However, in contrast to other type 3 GPCRs, RAIG-1, RAIG-2, and RAIG-3 have only short N-terminal domains. RAIG-2 and RAIG-3 cDNA sequences were cloned into the mammalian expression vector pcDNA3 with c-myc or HA epitope tags inserted at their N-termini, respectively. Transient transfection experiments in HEK239T cells using these constructs demonstrated RAIG-2 and RAIG-3 expression at the cell surface. Distribution profiles of mRNA expression obtained by semiquantitative Taq-Man PCR analysis showed RAIG-2 to be predominantly expressed in human brain areas and RAIG-3 to be predominantly expressed in peripheral tissues. In addition, expression of RAIG-2 and RAIG-3 mRNA was increased following treatment with all-trans-retinoic acid in a manner similar to that previously described for RAIG-1. Finally, RAIG-2 was mapped to chromosome 16p12 (D16S405-D16S3045) and RAIG-3 to chromosome 17q25 (D17S1352-D17S785). These results suggest that RAIG-1, RAIG-2, and RAIG-3 represent a novel family of retinoic acid-inducible receptors, most closely related to the type 3 GPCR subfamily, and provide further evidence for a linkage between retinoic acid and G-protein-coupled receptor signal transduction pathways.

  11. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    Science.gov (United States)

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.

  12. Molecular recognition of CYP26A1 binding pockets and structure-activity relationship studies for design of potent and selective retinoic acid metabolism blocking agents.

    Science.gov (United States)

    Sun, Bin; Song, Shuai; Hao, Chen-Zhou; Huang, Wan-Xu; Liu, Chun-Chi; Xie, Hong-Lei; Lin, Bin; Cheng, Mao-Sheng; Zhao, Dong-Mei

    2015-03-01

    All-trans-retinoic acid (ATRA), the biologically most active metabolite of vitamin A, plays a major role in the regulation of cellular differentiation and proliferation, and it is also an important pharmacological agent particularly used in the treatment of cancer, skin, neurodegenerative and autoimmune diseases. However, ATRA is very easy to be metabolized into 4-hydroxyl-RA in vivo by CYP26A1, an inducible cytochrome P450 enzyme, eventually into more polar metabolites. Therefore, it is vital to develop specific retinoic acid metabolism blocking agents (RAMBAs) to inhibit the metabolic enzyme CYP26A1 in the treatment of relevant diseases aforementioned. In this study, CYP26A1 and its interactions with retinoic acid-competitive metabolism blocking agents were investigated by a combined ligand- and structure-based approach. First, since the crystal structure of CYP26A1 protein has not been determined, we constructed the 3D structure of CYP26A1 using homology modeling. In order to achieve a deeper insight into the mode of action of RAMBAs in the active site, the molecular superimposition model and the common feature pharmacophore model were constructed, and molecular docking was performed. The molecular superimposition model is composed of three features: the main chain groups, side chain groups, and azole groups. The common feature pharmacophore model consists of five chemical features: four hydrophobic groups and one hydrogen acceptor (HHHHA). The results of molecular docking show that the characteristic groups of RAMBAs were mapped into three different active pockets, respectively. A structure-activity relationship (SAR) was obtained by a combination of the molecular superimposition and docking results with the pharmacophore model. This study gives more insight into the interaction model inside the CYP26A1 active site and provides guidance for the design of more potent and possibly more selective RAMBAs.

  13. Induced differentiation of human myeloid leukemia cells into M2 macrophages by combined treatment with retinoic acid and 1α,25-dihydroxyvitamin D3.

    Directory of Open Access Journals (Sweden)

    Hiromichi Takahashi

    Full Text Available Retinoids and 1α,25-dihydroxyvitamin D3 (1,25(OH2D3 induce differentiation of myeloid leukemia cells into granulocyte and macrophage lineages, respectively. All-trans retinoic acid (ATRA, which is effective in the treatment of acute promyelocytic leukemia, can induce differentiation of other types of myeloid leukemia cells, and combined treatment with retinoid and 1,25(OH2D3 effectively enhances the differentiation of leukemia cells into macrophage-like cells. Recent work has classified macrophages into M1 and M2 types. In this study, we investigated the effect of combined treatment with retinoid and 1,25(OH2D3 on differentiation of myeloid leukemia THP-1 and HL60 cells. 9-cis Retinoic acid (9cRA plus 1,25(OH2D3 inhibited proliferation of THP-1 and HL60 cells and increased myeloid differentiation markers including nitroblue tetrazolium reducing activity and expression of CD14 and CD11b. ATRA and the synthetic retinoic acid receptor agonist Am80 exhibited similar effects in combination with 1,25(OH2D3 but less effectively than 9cRA, while the retinoid X receptor agonist HX630 was not effective. 9cRA plus 1,25(OH2D3 effectively increased expression of M2 macrophage marker genes, such as CD163, ARG1 and IL10, increased surface CD163 expression, and induced interleukin-10 secretion in myeloid leukemia cells, while 9cRA alone had weaker effects on these phenotypes and 1,25(OH2D3 was not effective. Taken together, our results demonstrate selective induction of M2 macrophage markers in human myeloid leukemia cells by combined treatment with 9cRA and 1,25(OH2D3.

  14. Retinoic Acid-Mediated Regulation of GLI3 Enables Efficient Motoneuron Derivation from Human ESCs in the Absence of Extrinsic SHH Activation.

    Science.gov (United States)

    Calder, Elizabeth L; Tchieu, Jason; Steinbeck, Julius A; Tu, Edmund; Keros, Sotirios; Ying, Shui-Wang; Jaiswal, Manoj K; Cornacchia, Daniela; Goldstein, Peter A; Tabar, Viviane; Studer, Lorenz

    2015-08-19

    The derivation of somatic motoneurons (MNs) from ES cells (ESCs) after exposure to sonic hedgehog (SHH) and retinoic acid (RA) is one of the best defined, directed differentiation strategies to specify fate in pluripotent lineages. In mouse ESCs, MN yield is particularly high after RA + SHH treatment, whereas human ESC (hESC) protocols have been generally less efficient. In an effort to optimize yield, we observe that functional MNs can be derived from hESCs at high efficiencies if treated with patterning molecules at very early differentiation steps before neural induction. Remarkably, under these conditions, equal numbers of human MNs were obtained in the presence or absence of SHH exposure. Using pharmacological and genetic strategies, we demonstrate that early RA treatment directs MN differentiation independently of extrinsic SHH activation by suppressing the induction of GLI3. We further demonstrate that neural induction triggers a switch from a poised to an active chromatin state at GLI3. Early RA treatment prevents this switch by direct binding of the RA receptor at the GLI3 promoter. Furthermore, GLI3 knock-out hESCs can bypass the requirement for early RA patterning to yield MNs efficiently. Our data demonstrate that RA-mediated suppression of GLI3 is sufficient to generate MNs in an SHH-independent manner and that temporal changes in exposure to patterning factors such as RA affect chromatin state and competency of hESC-derived lineages to adopt specific neuronal fates. Finally, our work presents a streamlined platform for the highly efficient derivation of human MNs from ESCs and induced pluripotent stem cells. Our study presents a rapid and efficient protocol to generate human motoneurons from embryonic and induced pluripotent stem cells. Surprisingly, and in contrast to previous work, motoneurons are generated in the presence of retinoic acid but in the absence of factors that activate sonic hedgehog signaling. We show that early exposure to retinoic

  15. A Complicated Case of Acute Promyelocytic Leukemia in the Second Trimester of Pregnancy Successfully Treated with All-trans-Retinoic Acid.

    Science.gov (United States)

    Agarwal, Kanika; Patel, Megha; Agarwal, Vandana

    2015-01-01

    A 40-year-old female at 26-week gestation was diagnosed with acute promyelocytic leukemia (APL) after an abnormal prenatal lab workup showed pancytopenia. She was treated with all-trans-retinoic acid (ATRA), idarubicin, and dexamethasone. After day one of treatment, she developed differentiation syndrome, which was treated with dexamethasone. At 30-week gestation, she had preterm premature rupture of membranes and delivered by cesarean section because of the fetus' breech presentation. Despite ATRA's potential for teratogenicity, a viable infant was born without apparent anomalies. Postpartum, she underwent consolidation treatment with ATRA and arsenic trioxide (ATO). The patient continued ATRA therapy after delivery and is currently in remission.

  16. [Successful treatment of acute promyelocytic leukemia in a pregnant patient with all-trans retinoic acid and chemotherapy resulting in a safe delivery].

    Science.gov (United States)

    Itoh, Mitsuru; Takao, Sumiko; Yago, Kazuhiro; Shimada, Hideto

    2003-06-01

    A 32-year-old woman at 21 gestational weeks was admitted because of leukocytosis with DIC. She was diagnosed as having acute promyelocytic leukemia and treated with all-trans retinoic acid (70 mg/body) in combination with daunorubicin and cytosine arabinoside. She achieved complete remission, and continuously received a second treatment with daunorubicin and cytosine arabinoside. Cesarean section was performed, and a live male infant was born in the 30th week of pregnancy. The mother and baby have progressed excellently to date. In a such case, the choice of treatment and time of birth should be considered depending on the individual situation.

  17. Molecular characterization and chromosomal assignment of equine cartilage derived retinoic acid sensitive protein (CD-RAP)/melanoma inhibitory activity (MIA).

    Science.gov (United States)

    Berg, Lise C; Mata, Xavier; Thomsen, Preben D

    2008-01-15

    Cartilage-derived retinoic acid sensitive protein (CD-RAP) also known as melanoma inhibitory activity (MIA) has already been established as a marker for chondrocyte differentiation and a number of cancerous conditions in humans. Studies have also shown that CD-RAP/MIA is a potential marker of joint disease. The objective of this study was to characterize the equine CD-RAP/MIA gene and thus make it available as a marker in cartilage research and clinical studies. Gene analysis revealed that the equine gene (GenBank accession no. EF679787) consists of four exons and three introns, and the homology to the human gene is 90% for the translated region. The upstream sequence includes regulatory elements and putative transcription factor binding sites previously described in the human and murine promoter regions. The deduced amino acid sequence consists of 130 aa including a signal peptide of 23 aa, and has a 91% identity to the human protein. Using radiation hybrid mapping, the CD-RAP/MIA gene was localized to the p arm of equine chromosome 10 (ECA10p), which is in accordance with prediction based on the current human-equine comparative map. Gene expression studies showed expression of CD-RAP/MIA mRNA in articular cartilage and chondrocytes from horses with no signs of joint disease. The expression decreased as the cells dedifferentiated in monolayer culture. We also identified an equine CD-RAP/MIA splice variant similar to that reported in humans. The CD-RAP/MIA protein was detected in equine synovial fluid, serum and culture medium from chondrocyte cultures. In conclusion, CD-RAP/MIA is expressed in equine cartilage and chondrocytes, and the protein can be detected in equine serum, synovial fluid and in culture medium from chondrocyte cultures. The equine gene and resulting protein share great homology with the human gene, making future studies on CD-RAP/MIAs potential as a marker in joint disease possible using the equine joint as a model.

  18. Alterações estruturais in vivo dos isômeros todo-trans, 9-cis e 13-cis do b-caroteno

    Directory of Open Access Journals (Sweden)

    Costa Maria Aparecida Lopes da

    2002-01-01

    Full Text Available Com o objetivo de verificar alterações estruturais nos isômeros todo-trans, 9- e 13-cis do beta-caroteno foi realizado um ensaio biológico baseado no modelo de esgotamento das reservas hepáticas de carotenóides em ratos. Animais depletados desses carotenóides receberam, durante quinze dias, os isômeros puros todo-trans, 9-cis e 13-cis do beta-caroteno. Ao final deste período, verificou-se a ocorrência de re-isomerização in vivo desses isômeros, a partir da quantificação dos mesmos depositados no fígado dos animais. Foi observada re-isomerização do 9-cis em todo-trans, do todo-trans em 9-cis, do 13-cis em 9-cis e todo-trans. O 13-cis foi mais susceptível à isomerização que o 9-cis, pois este último passou a todo-trans e nunca a 13-cis. Já o 13-cis, tanto pode se transformar em 9-cis quanto em todo-trans.

  19. Improved Outcomes With Retinoic Acid and Arsenic Trioxide Compared With Retinoic Acid and Chemotherapy in Non-High-Risk Acute Promyelocytic Leukemia: Final Results of the Randomized Italian-German APL0406 Trial.

    Science.gov (United States)

    Platzbecker, Uwe; Avvisati, Giuseppe; Cicconi, Laura; Thiede, Christian; Paoloni, Francesca; Vignetti, Marco; Ferrara, Felicetto; Divona, Mariadomenica; Albano, Francesco; Efficace, Fabio; Fazi, Paola; Sborgia, Marco; Di Bona, Eros; Breccia, Massimo; Borlenghi, Erika; Cairoli, Roberto; Rambaldi, Alessandro; Melillo, Lorella; La Nasa, Giorgio; Fiedler, Walter; Brossart, Peter; Hertenstein, Bernd; Salih, Helmut R; Wattad, Mohammed; Lübbert, Michael; Brandts, Christian H; Hänel, Mathias; Röllig, Christoph; Schmitz, Norbert; Link, Hartmut; Frairia, Chiara; Pogliani, Enrico Maria; Fozza, Claudio; D'Arco, Alfonso Maria; Di Renzo, Nicola; Cortelezzi, Agostino; Fabbiano, Francesco; Döhner, Konstanze; Ganser, Arnold; Döhner, Hartmut; Amadori, Sergio; Mandelli, Franco; Ehninger, Gerhard; Schlenk, Richard F; Lo-Coco, Francesco

    2017-02-20

    Purpose The initial results of the APL0406 trial showed that the combination of all- trans-retinoic acid (ATRA) and arsenic trioxide (ATO) is at least not inferior to standard ATRA and chemotherapy (CHT) in first-line therapy of low- or intermediate-risk acute promyelocytic leukemia (APL). We herein report the final analysis on the complete series of patients enrolled onto this trial. Patients and Methods The APL0406 study was a prospective, randomized, multicenter, open-label, phase III noninferiority trial. Eligible patients were adults between 18 and 71 years of age with newly diagnosed, low- or intermediate-risk APL (WBC at diagnosis ≤ 10 × 10(9)/L). Overall, 276 patients were randomly assigned to receive ATRA-ATO or ATRA-CHT between October 2007 and January 2013. Results Of 263 patients evaluable for response to induction, 127 (100%) of 127 patients and 132 (97%) of 136 patients achieved complete remission (CR) in the ATRA-ATO and ATRA-CHT arms, respectively ( P = .12). After a median follow-up of 40.6 months, the event-free survival, cumulative incidence of relapse, and overall survival at 50 months for patients in the ATRA-ATO versus ATRA-CHT arms were 97.3% v 80%, 1.9% v 13.9%, and 99.2% v 92.6%, respectively ( P < .001, P = .0013, and P = .0073, respectively). Postinduction events included two relapses and one death in CR in the ATRA-ATO arm and two instances of molecular resistance after third consolidation, 15 relapses, and five deaths in CR in the ATRA-CHT arm. Two patients in the ATRA-CHT arm developed a therapy-related myeloid neoplasm. Conclusion These results show that the advantages of ATRA-ATO over ATRA-CHT increase over time and that there is significantly greater and more sustained antileukemic efficacy of ATO-ATRA compared with ATRA-CHT in low- and intermediate-risk APL.

  20. In vivo pharmacokinetics, biodistribution and antitumor effect of amphiphilic poly(L-amino acids) micelles loaded with a novel all-trans retinoic acid derivative.

    Science.gov (United States)

    Tang, Jihui; Wang, Xinqun; Wang, Ting; Chen, Feihu; Zhou, Jianping

    2014-01-23

    Poly(amino acid)s are well-known as biodegradable and environmentally acceptable materials. In this study, a series of poly(L-aspartic acid)-b-poly(L-phenylalanine) (PAA-PPA) compounds with different degrees of polymerization were used to prepare copolymer micelles for a poorly water-soluble drug 4-amino-2-trifluoromethyl-phenyl retinate (ATPR, a novel all-trans retinoic acid derivative) and in vivo pharmacokinetics, biodistribution and antitumor efficacy of ATPR delivered by PAA-PPA micelles were evaluated. The area under the plasma concentration time curve AUC0→∞ of ATPR-loaded PAA20PPA20 micelles was 2.23 and 1.97 times higher than that of ATPR solution and ATPR CrmEL solution, respectively; In addition, the mean residence time (MRT) was increased 1.67 and 1.97-fold, respectively and the total body clearance (CL) was reduced 2.25 and 1.98-fold, respectively. The biodistribution study indicated that most of the ATPR in the ATPR-M group was distributed in the liver and there was delayed liver aggregation compared with the ATPR solution and ATPR CrmEL solution groups. Furthermore, the antitumor efficacy of ATPR-loaded PAA20PPA20 micelles was demonstrated in in vivo antitumor models involving mice inoculated with the human gastric cancer cell line SGC-7901. At the same dose of 7mg/kg, the ATPR-loaded micelles group demonstrated a better tumor growth inhibition and induced differentiation than the groups given ATPR solution and ATPR CrmEL solution. Therefore, the ATPR-loaded PAA-PPA micelles appear to be a potentially useful drug delivery system for ATPR and suitable for the chemotherapy of gastric cancer.

  1. Retinoic acid induction of CD38 antigen expression on normal and leukemic human myeloid cells: relationship with cell differentiation.

    Science.gov (United States)

    Prus, Eugenia; Fibach, Eitan

    2003-04-01

    Differentiation in the hematopoietic system involves, among other changes, altered expression of antigens, including the CD34 and CD38 surface antigens. In normal hematopoiesis, the most immature stem cells have the CD34 + CD34 - phenotype. In acute myeloid leukemia (AML), although blasts from most patients are CD38 +, some are CD38 - . AML blasts are blocked at early stages of differentiation; in some leukemic cells this block can be overcome by a variety of agents, including retinoids, that induce maturation into macrophages and granulocytes both in vitro and in vivo. Retinoids can also induce CD38 expression. In the present study, we investigated the relationship between induction of CD38 expression and induction of myeloid differentiation by retinoic acid (RA) in normal and leukemic human hematopoietic cells. In the promyelocytic (PML) CD34 - cell lines, HL60 and CB-1, as well as in normal CD34 + CD34 - hematopietic progenitor cells RA induced both CD38 expression as well as morphological and functional myeloid differentiation that resulted in loss of self-renewal. In contrast, in the myeloblastic CD34 + leukemic cell lines, ML-1 and KG-1a, as well as in primary cultures of cells derived from CD34 + -AML (M0 and M1) patients, RA caused an increase in CD38 + that was not associated with significant differentiation. Yet, long exposure of ML-1, but not KG-1, cells to RA resulted in loss of self-renewal. The results suggest that while in normal hematopoietic cells and in PML CD34 - cells induction of CD38 antigen expression by RA results in terminal differentiation along the myeloid lineage, in early myeloblastic leukemic CD34 + cells, induction of CD38 and differentiation are not functionally related. Since, several lines of evidence suggest that the CD38 - cells are the targets of leukemic transformation, transition of these cellsinto CD38 + phenotype by RA or other drugs may have therapeutic effect, either alone or in conjunction with cytotoxic drugs, regardless

  2. All-trans retinoic acid protects against arsenic-induced uterine toxicity in female Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, A.; Chatterji, U., E-mail: urmichatterji@gmail.com

    2011-12-15

    Background and purpose: Arsenic exposure frequently leads to reproductive failures by disrupting the rat uterine histology, hormonal integrity and estrogen signaling components of the rat uterus, possibly by generating reactive oxygen species. All-trans retinoic acid (ATRA) was assessed as a prospective therapeutic agent for reversing reproductive disorders. Experimental approach: Rats exposed to arsenic for 28 days were allowed to either recover naturally or were treated simultaneously with ATRA for 28 days or treatment continued up to 56 days. Hematoxylin-eosin double staining was used to evaluate changes in the uterine histology. Serum gonadotropins and estradiol were assayed by ELISA. Expression of the estrogen receptor (ER{alpha}), an estrogen responsive gene vascular endothelial growth factor (VEGF), and cell cycle regulatory proteins, cyclin D1 and CDK4, was assessed by RT-PCR, immunohistochemistry and western blot analysis. Key results: ATRA ameliorated sodium arsenite-induced decrease in circulating estradiol and gonadotropin levels in a dose- and time-dependent manner, along with recovery of luminal epithelial cells and endometrial glands. Concomitant up regulation of ER{alpha}, VEGF, cyclin D1, CDK4 and Ki-67 was also observed to be more prominent for ATRA-treated rats as compared to the rats that were allowed to recover naturally for 56 days. Conclusions and implications: Collectively, the results reveal that ATRA reverses arsenic-induced disruption of the circulating levels of gonadotropins and estradiol, and degeneration of luminal epithelial cells and endometrial glands of the rat uterus, indicating resumption of their functional status. Since structural and functional maintenance of the pubertal uterus is under the influence of estradiol, ATRA consequently up regulated the estrogen receptor and resumed cellular proliferation, possibly by an antioxidant therapeutic approach against arsenic toxicity. Highlights: Black-Right-Pointing-Pointer Arsenic

  3. Combination of arsenicum trioxide and all trans retinoic acid in the treatment of relapsed acute promyelocytic leukemia

    Directory of Open Access Journals (Sweden)

    A. N. Sokolov

    2015-01-01

    Full Text Available From 2001 to 2013 eleven patients with relapsed acute promyelocytic leukemia (APL (median age – 30 years received arsenicum trioxide (ATO. ATO was administered as a 2nd line relapse therapy in 9 patients, as 1st line relapse therapy in 2 patients. ATO was administered in a dose of 0.1 mg/kg in 7 patients, 0.15 mg/kg – in 4 patients. The induction duration was 14 days in 3 patients, 24–35 days in 2 patients, 60 days in 6 patients. From the 1st day of ATO patients received 45 mg/m2 all trans retinoic acid (ATRA (1 patient – from day 29 of ATO therapy. Maintenance therapy ATO + ATRA (10–14 days courses, every four weeks patients were receiving during 10–15 months. 2 from 3 patients with molecular relapses achieved remission lasting 57 and 89 months after the 14-day ATO courses. 1 from 2 patients with bone marrow relapse achieved remission lasting 27 months after the 24–35-day ATO courses. 60-day courses were effective in 5 of 6 patients: in 4 of which remission are retained during 16, 19, 27, 57 months; 1 patient was relapsed after 12 months; 1 patient did not achieve molecular remission. 3 patients received allogeneic hematopoietic stem cell transplantation (alloHSCT, 2 of which alive in remission. 1 patient received autologous hematopoietic stem cell transplantation in the 2nd molecular remission (alive in remission. 4 patients died: 1 – in the 3rd relapse (duration of 2nd remission – 9 months, 1 – in remission from complications after alloHSCT, 1 – from APL progression, 1 – sudden death in 2nd remission lasting 72 months. ATO + ATRA for 60 days with supportive therapy are more effective than chemotherapy in the treatment of APL relapse. Interferon α + ATRA are inappropriate treatment of APL molecular and cytogenetic relapse. Using autologous HSCT in 2nd molecular remission will improve the results of APL relapse treatment.

  4. Inhalation administration of all-trans-retinoic acid for treatment of elastase-induced pulmonary emphysema in Fischer 344 rats.

    Science.gov (United States)

    March, Thomas H; Cossey, Patricia Y; Esparza, Dolores C; Dix, Kelly J; McDonald, Jacob D; Bowen, Larry E

    2004-01-01

    A past study demonstrated that all-trans-retinoic acid (ATRA) treatment by intraperitoneal injection in a rat model of elastase-induced emphysema caused tissue regeneration as evidenced by a decrease in alveolar size and lung volume and an increase in alveolar number. We postulated that treatment with this retinoid by nose-only inhalation exposure would be a more efficient means of targeting damaged lung tissue. Emphysema was induced in male Fischer 344 rats by intratracheal instillation of pancreatic elastase (0.5 IU/g body weight). Four weeks after elastase instillation, animals were treated once daily, 4 days/week, for 3 weeks by exposing them nose-only to aerosolized ATRA (target concentration-time of 3000 or 15,000 mg-min/m3) or by injecting them intraperitoneally with ATRA in cottonseed oil (0.5 or 2.5 mg/kg). Based on estimates of particle deposition in the respiratory tract, inhalation doses were chosen to be consistent with injected doses. Lungs were fixed by inflation with formalin (constant pressure for 6 hours followed by >48 hours of immersion) and were embedded in paraffin. Sections were evaluated by histopathology and stereology. Inhalation exposure to ATRA at both aerosol concentrations caused significant elevations of ATRA in the lung, whereas only the high-dose injection treatment was associated with an elevation of lung ATRA. The mean ATRA concentration from lungs of rats in the high-dose inhalation exposure groups as measured by liquid chromatography--mass spectrometry was approximately 12-fold greater than that of high-dose injection-treated rats. Elastase instillation caused increased lung volumes, irregular alveolar air space enlargement, and fragmentation and attenuation of alveolar septa. Neither inhaled nor injected ATRA reduced the enlarged lung volumes associated with this emphysema model. Stereology demonstrated that alveolar air space enlargement in ATRA-treated rats was similar to that in sham-treated emphysematous animals. Thus

  5. Retinoic acid-independent expression of Meis2 during autopod patterning in the developing bat and mouse limb.

    Science.gov (United States)

    Mason, Mandy K; Hockman, Dorit; Curry, Lyle; Cunningham, Thomas J; Duester, Gregg; Logan, Malcolm; Jacobs, David S; Illing, Nicola

    2015-01-01

    The bat has strikingly divergent forelimbs (long digits supporting wing membranes) and hindlimbs (short, typically free digits) due to the distinct requirements of both aerial and terrestrial locomotion. During embryonic development, the morphology of the bat forelimb deviates dramatically from the mouse and chick, offering an alternative paradigm for identifying genes that play an important role in limb patterning. Using transcriptome analysis of developing Natal long-fingered bat (Miniopterus natalensis) fore- and hindlimbs, we demonstrate that the transcription factor Meis2 has a significantly higher expression in bat forelimb autopods compared to hindlimbs. Validation by reverse transcriptase and quantitative polymerase chain reaction (RT-qPCR) and whole mount in situ hybridisation shows that Meis2, conventionally known as a marker of the early proximal limb bud, is upregulated in the bat forelimb autopod from CS16. Meis2 expression is localised to the expanding interdigital webbing and the membranes linking the wing to the hindlimb and tail. In mice, Meis2 is also expressed in the interdigital region prior to tissue regression. This interdigital Meis2 expression is not activated by retinoic acid (RA) signalling as it is present in the retained interdigital tissue of Rdh10 (trex/trex) mice, which lack RA. Additionally, genes encoding RA-synthesising enzymes, Rdh10 and Aldh1a2, and the RA nuclear receptor Rarβ are robustly expressed in bat fore- and hindlimb interdigital tissues indicating that the mechanism that retains interdigital tissue in bats also occurs independently of RA signalling. Mammalian interdigital Meis2 expression, and upregulation in the interdigital webbing of bat wings, suggests an important role for Meis2 in autopod development. Interdigital Meis2 expression is RA-independent, and retention of interdigital webbing in bat wings is not due to the suppression of RA-induced cell death. Rather, RA signalling may play a role in the thinning

  6. Low-dose decitabine plus all-trans retinoic acid in patients with myeloid neoplasms ineligible for intensive chemotherapy.

    Science.gov (United States)

    Wu, Wei; Lin, Yan; Xiang, Lili; Dong, Weimin; Hua, Xiaoying; Ling, Yun; Li, Haiqian; Yan, Feng; Xie, Xiaobao; Gu, Weiying

    2016-06-01

    In our previous in vitro trials, decitabine and all-trans retinoic acid (ATRA) demonstrated synergistic effects on growth inhibition, differentiation, and apoptosis in SHI-1 cells; in K562 cells, ATRA enhanced the effect of decitabine on p16 demethylation, and the combination of the two drugs was found to activate RAR-β expression (p16 and RAR-β are two tumor suppressor genes). On the rationale of our in vitro trials, we used low-dose decitabine and ATRA to treat 31 myeloid neoplasms deemed ineligible for intensive chemotherapy. The regimen consisted of decitabine at the dose of 15 mg/m(2) intravenously over 1 h daily for consecutive 5 days and ATRA at the dose of 20 mg/m(2) orally from day 1 to 28 except day 4 to 28 in the first cycle, and the regimen was repeated every 28 days. After 6 cycles, decitabine treatment was stopped, and ATRA treatment was continued for maintenance treatment. Treated with a median of 2 cycles (range 1-6), 7 patients (22.6 %) achieved complete remission (CR), 7 (22.6 %) marrow CR (mCR), and 4 (12.9 %) partial remission (PR). The overall remission (CR, mCR, and PR) rate was 58.1 %, and the best response (CR and mCR) rate was 45.2 %. The median overall survival (OS) was 11.0 months, the 1-year OS rate was 41.9 %, and the 2-year OS rate was 26.6 %. In univariate analyses, age, performance status, comorbidities, white blood cell counts and platelets at diagnosis, percentage of bone marrow blasts, karyotype, and treatment efficacy demonstrated no impacts on OS (P > 0.05, each). Main side effects were tolerable hematologic toxicities. In conclusion, low-dose decitabine plus ATRA is a promising treatment for patients with myeloid neoplasms judged ineligible for intensive chemotherapy.

  7. Nanosecond pulsed electric field suppresses development of eyes and germ cells through blocking synthesis of retinoic acid in Medaka (Oryzias latipes.

    Directory of Open Access Journals (Sweden)

    Eri Shiraishi

    Full Text Available Application of nanosecond pulsed electric fields (nsPEFs has attracted rising attention in various scientific fields including medical, pharmacological, and biological sciences, although its effects and molecular mechanisms leading to the effects remain poorly understood. Here, we show that a single, high-intensity (10-30 kV/cm, 60-ns PEF exposure affects gene expression and impairs development of eyes and germ cells in medaka (Oryzias latipes. Exposure of early blastula stage embryos to nsPEF down-regulated the expression of several transcription factors which are essential for eye development, causing abnormal eye formation. Moreover, the majority of the exposed genetic female embryos showed a fewer number of germ cells similar to that of the control (unexposed genetic male at 9 days post-fertilization (dpf. However, all-trans retinoic acid (atRA treatment following the exposure rescued proliferation of germ cells and resumption of normal eye development, suggesting that the phenotypes induced by nsPEF are caused by a decrease of retinoic acid levels. These results confirm that nsPEFs induce novel effects during embryogenesis in medaka.

  8. A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and -103, target the differentiation inhibitor ID2.

    Directory of Open Access Journals (Sweden)

    Daniela Annibali

    Full Text Available The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells--miR-9 and miR-103--restrain ID2 expression by directly targeting the coding sequence and 3' untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development.

  9. Differentiation of mesenchymal stem cells to germ-like cells under induction of Sertoli cell-conditioned medium and retinoic acid.

    Science.gov (United States)

    Ghaem Maghami, R; Mirzapour, T; Bayrami, A

    2017-09-25

    The aim of this research was to find a way to differentiate germ cells from umbilical cord Wharton's jelly mesenchymal stem cells (MSCs) to support in vitro spermatogenesis. A small piece of Wharton's jelly was cultured in high-glucose Dulbecco's modified Eagle's medium in present of 10% foetal calf serum. After the fourth passage, the cells were isolated and cultured in Sertoli cell-conditioned medium under induction of two different doses of retinoic acid (10(-5) , 10(-6)  m). The differentiation of MSC to germ-like cells was evaluated by expression of Oct4, Nanog, Plzf, Stra8 and Prm1 genes during different days of culture through qPCR. The results showed that there were downregulation of Oct4 and Nanog and upregulation of pre-meiotic germ cell marker (stra8) and haploid cell marker (Prm1) when MSCs are differentiated over time. The expression of Bax gene (an apoptotic marker) was significantly observed in high dosage of retinoic acid (RA). As a result, RA has positive effects on proliferation and differentiation of MSCs, but its effects are related to dosage. The success of this method can introduce umbilical cord MSC as a source of germ cells for treatment of infertility in future. © 2017 Blackwell Verlag GmbH.

  10. E2F1 impairs all-trans retinoic acid-induced osteogenic differentiation of osteosarcoma via promoting ubiquitination-mediated degradation of RARα

    Science.gov (United States)

    Zhang, Lei; Zhou, Qian; Zhang, Ning; Li, Weixu; Ying, Meidan; Ding, Wanjing; Yang, Bo; He, Qiaojun

    2014-01-01

    All-trans retinoic acid (ATRA) is a widely used differentiation drug that can effectively induce osteogenic differentiation of osteosarcoma cells, but the underlying mechanism remains elusive, which limits the clinical application for ATRA in osteosarcoma patients. In this study, we identified E2F1 as a novel regulator involved in ATRA-induced osteogenic differentiation of osteosarcoma cells. We observed that osteosarcoma cells are coupled with individual differences in the expression levels of E2F1 in patients, and E2F1 impairs ATRA-induced differentiation of osteosarcoma cells. Moreover, remarkable anti-proliferative and differentiation-inducing effects of ATRA treatment are only observed in E2F1 low to negative expressed primary osteosarcoma cultures. These results strongly suggested that E2F1 may serve as a potent indicator for the effectiveness of ATRA treatment in osteosarcoma. Interestingly, E2F1 is found to downregulate retinoic acid receptor α (RARα), a key factor determines the effectiveness of ATRA. E2F1 specifically binds to RARα and promotes its ubiquitination-mediated degradation; as a consequence, RARα-mediated differentiation is inhibited in osteosarcoma. Therefore, our studies present E2F1 as a potent biomarker, as well as a therapeutic target for ATRA-based differentiation therapeutics, and raise the hope of using differentiation-based approaches for osteosarcoma patients. PMID:24608861

  11. Characterization of a DNA-damage-recognition protein from F9 teratocarcinoma cells, which is inducible by retinoic acid and cyclic AMP.

    Science.gov (United States)

    Chao, C C; Sun, N K; Lin-Chao, S

    1993-02-15

    A nuclear protein that recognizes u.v.-damaged DNA was detected in extracts from murine F9 embryonic stem cells using a DNA-binding assay. The nuclear-protein-binding activity was increased in cells after treatment with retinoic acid/dibutyryl cyclic AMP (dbcAMP), with optimum induction at 6 days. In vitro treatment of nuclear extracts with agents that affect protein conformation (such as urea, Nonidet P40 and Ca2+) slightly modulated the damage-recognition activity. Furthermore, treatment of nuclear extracts with phosphatase dramatically inhibited the binding activity. In addition, damaged-DNA recognition of the nuclear extracts was effectively inhibited by damaged double- and single-stranded DNA. The expression of the nuclear protein with similar characteristics was abundant in HeLa cells and was increased in drug- or u.v.-resistant cells. The findings suggest that the recognition of a u.v.-DNA adduct is modulated, at least in part, by an activity that is induced during retinoic acid/dbcAMP-induced differentiation. These results also imply that the identified damage-recognition protein may be important for the sensitivity or resistance of mammalian cells to DNA damage.

  12. The oncofusion protein FUS-ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia.

    Science.gov (United States)

    Sotoca, A M; Prange, K H M; Reijnders, B; Mandoli, A; Nguyen, L N; Stunnenberg, H G; Martens, J H A

    2016-04-14

    The ETS transcription factor ERG has been implicated as a major regulator of both normal and aberrant hematopoiesis. In acute myeloid leukemias harboring t(16;21), ERG function is deregulated due to a fusion with FUS/TLS resulting in the expression of a FUS-ERG oncofusion protein. How this oncofusion protein deregulates the normal ERG transcription program is unclear. Here, we show that FUS-ERG acts in the context of a heptad of proteins (ERG, FLI1, GATA2, LYL1, LMO2, RUNX1 and TAL1) central to proper expression of genes involved in maintaining a stem cell hematopoietic phenotype. Moreover, in t(16;21) FUS-ERG co-occupies genomic regions bound by the nuclear receptor heterodimer RXR:RARA inhibiting target gene expression and interfering with hematopoietic differentiation. All-trans retinoic acid treatment of t(16;21) cells as well as FUS-ERG knockdown alleviate the myeloid-differentiation block. Together, the results suggest that FUS-ERG acts as a transcriptional repressor of the retinoic acid signaling pathway.

  13. Expression and Subcellular Localization of Retinoic Acid Receptor-α (RARα) in Healthy and Varicocele Human Spermatozoa: Its Possible Regulatory Role in Capacitation and Survival.

    Science.gov (United States)

    Perrotta, Ida; Perri, Mariarita; Santoro, Marta; Panza, Salvatore; Caroleo, Maria C; Guido, Carmela; Mete, Annamaria; Cione, Erika; Aquila, Saveria

    2015-01-01

    Varicocele, an abnormal tortuosity and dilation of veins of the pampiniform plexus, is the most common identifiable and correctable cause of male infertility. It is now becoming apparent that signaling through vitamin A metabolites, such as all-trans retinoic acid (ATRA), is indispensable for spermatogenesis and disruption of retinoic acid receptor-α (RARα) function may result in male sterility and aberrant spermatogenesis. Herein, we investigated by Western blot and immunogold electron microscopy the expression profiles and subcellular localization of RARα in healthy and varicocele human sperm; in addition, we analyzed the effects of ATRA on cholesterol efflux and sperm survival utilizing enzymatic colorimetric CHOD-PAP method and Eosin Y technique, respectively. In varicocele samples, a strong reduction of RARα expression was observed. Immunogold labeling evidenced cellular location of RARα also confirming its reduced expression in "varicocele" samples. Sperm responsiveness to ATRA treatment was reduced in varicocele sperm. Our study showed that RARα is expressed in human sperm probably with a dual role in promoting both cholesterol efflux and survival. RARα might be involved in the pathogenesis of varicocele as its expression is reduced in pathologic samples. Thus, ATRA administration in procedures for artificial insemination or dietary vitamin A supplementation might represent a promising therapeutic approach for the management of male infertility.

  14. Retinoic acid-induced IgG production in TLR-activated human primary B cells involves ULK1-mediated autophagy.

    Science.gov (United States)

    Eriksen, Agnete Bratsberg; Torgersen, Maria Lyngaas; Holm, Kristine Lillebø; Abrahamsen, Greger; Spurkland, Anne; Moskaug, Jan Øivind; Simonsen, Anne; Blomhoff, Heidi Kiil

    2015-01-01

    In the present study we have established a vital role of autophagy in retinoic acid (RA)-induced differentiation of toll-like receptor (TLR)-stimulated human B cells into Ig-secreting cells. Thus, RA enhanced autophagy in TLR9- and CD180-stimulated peripheral blood B cells, as revealed by increased levels of the autophagosomal marker LC3B-II, enhanced colocalization between LC3B and the lysosomal marker Lyso-ID, by a larger percentage of cells with more than 5 characteristic LC3B puncta, and by the concomitant reduction in the level of SQSTM1/p62. Furthermore, RA induced expression of the autophagy-inducing protein ULK1 at the transcriptional level, in a process that required the retinoic acid receptor RAR. By inhibiting autophagy with specific inhibitors or by knocking down ULK1 by siRNA, the RA-stimulated IgG production in TLR9- and CD180-mediated cells was markedly reduced. We propose that the identified prominent role of autophagy in RA-mediated IgG-production in normal human B cells provides a novel mechanism whereby vitamin A exerts its important functions in the immune system.

  15. Hif1α down-regulation is associated with transposition of great arteries in mice treated with a retinoic acid antagonist

    Directory of Open Access Journals (Sweden)

    Amati Francesca

    2010-09-01

    Full Text Available Abstract Background Congenital heart defect (CHD account for 25% of all human congenital abnormalities. However, very few CHD-causing genes have been identified so far. A promising approach for the identification of essential cardiac regulators whose mutations may be linked to human CHD, is the molecular and genetic analysis of heart development. With the use of a triple retinoic acid competitive antagonist (BMS189453 we previously developed a mouse model of congenital heart defects (81%, thymic abnormalities (98% and neural tube defects (20%. D-TGA (D-transposition of great arteries was the most prevalent cardiac defect observed (61%. Recently we were able to partially rescue this abnormal phenotype (CHD were reduced to 64.8%, p = 0.05, by oral administration of folic acid (FA. Now we have performed a microarray analysis in our mouse models to discover genes/transcripts potentially implicated in the pathogenesis of this CHD. Results We analysed mouse embryos (8.5 dpc treated with BMS189453 alone and with BMS189453 plus folic acid (FA by microarray and qRT-PCR. By selecting a fold change (FC ≥ ± 1.5, we detected 447 genes that were differentially expressed in BMS-treated embryos vs. untreated control embryos, while 239 genes were differentially expressed in BMS-treated embryos whose mothers had also received FA supplementation vs. BMS-treated embryos. On the basis of microarray and qRT-PCR results, we further analysed the Hif1α gene. In fact Hif1α is down-regulated in BMS-treated embryos vs. untreated controls (FCmicro = -1.79; FCqRT-PCR = -1.76; p = 0.005 and its expression level is increased in BMS+FA-treated embryos compared to BMS-treated embryos (FCmicro = +1.17; FCqRT-PCR = +1.28: p = 0.005. Immunofluorescence experiments confirmed the under-expression of Hif1α protein in BMS-treated embryos compared to untreated and BMS+FA-treated embryos and, moreover, we demonstrated that at 8.5 dpc, Hif1α is mainly expressed in the embryo heart

  16. Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1.

    Science.gov (United States)

    Schnedermann, Christoph; Muders, Vera; Ehrenberg, David; Schlesinger, Ramona; Kukura, Philipp; Heberle, Joachim

    2016-04-13

    Channelrhodopsins are light-gated ion channels with extensive applications in optogenetics. Channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) exhibits a red-shifted absorption spectrum as compared to Channelrhodopsin-2, which is highly beneficial for optogenetic application. The primary event in the photocycle of CaChR1 involves an isomerization of the protein-bound retinal chromophore. Here, we apply highly time-resolved vibronic spectroscopy to reveal the electronic and structural dynamics associated with the first step of the photocycle of CaChR1. We observe vibrationally coherent formation of the P1 intermediate exhibiting a twisted 13-cis retinal with a 110 ± 7 fs time constant. Comparison with low-temperature resonance Raman spectroscopy of the corresponding trapped photoproduct demonstrates that this rapidly formed P1 intermediate is stable for several hundreds of nanoseconds.

  17. Potentiation of the teratogenic effects induced by coadministration of retinoic acid or phytanic acid/phytol with synthetic retinoid receptor ligands.

    Science.gov (United States)

    Elmazar, M M A; Nau, H

    2004-11-01

    Previous studies in our laboratory identified retinoid-induced defects that are mediated by RAR-RXR heterodimerization using interaction of synthetic ligands selective for the retinoid receptors RAR and RXR in mice (Elmazar et al. 1997, Toxicol Appl Pharmacol 146:21-28; Elmazar et al. 2001, Toxicol Appl Pharmacol 170:2-9; Nau and Elmazar 1999, Handbook of experimental pharmacology, vol 139, Retinoids, Springer-Verlag, pp 465-487). The present study was designed to investigate whether these RAR-RXR heterodimer-mediated defects can be also induced by interactions of natural and synthetic ligands for retinoid receptors. A non-teratogenic dose of the natural RXR agonist phytanic acid (100 mg/kg orally) or its precursor phytol (500 mg/kg orally) was coadministered with a synthetic RARalpha-agonist (Am580; 5 mg/kg orally) to NMRI mice on day 8.25 of gestation (GD8.25). Furthermore, a non-teratogenic dose of the synthetic RXR agonist LGD1069 (20 mg/kg orally) was also coadministered with the natural RAR agonist, all- trans-retinoic acid (atRA, 20 mg/kg orally) or its precursor retinol (ROH, 50 mg/kg orally) to NMRI mice on GD8.25. The teratogenic outcome was scored in day-18 fetuses. The incidence of Am580-induced resorptions, spina bifida aperta, micrognathia, anotia, kidney hypoplasia, dilated bladder, undescended testis, atresia ani, short and absent tail, fused ribs and fetal weight retardation were potentiated by coadministration of phytanic acid or its precursor phytol. Am580-induced exencephaly and cleft palate, which were not potentiated by coadministration with the synthetic RXR agonists, were also not potentiated by coadministration with either phytanic acid or its precursor phytol. LGD1069 potentiated atRA- and ROH-induced resorption, exencephaly, spina bifida, aperta, ear anotia and microtia, macroglossia, kidney hypoplasia, undescended testis, atresia ani, tail defects and fetal weight retardation, but not cleft palate. These results suggest that synergistic

  18. Oral Vitamin A and Retinoic Acid Supplementation Stimulates Antibody Production and Splenic Stra6 Expression in Tetanus Toxoid–Immunized Mice12

    Science.gov (United States)

    Tan, Libo; Wray, Amanda E.; Ross, A. Catharine

    2012-01-01

    Coadministration of retinoic acid (RA) and polyinosinic acid:polycytidylic acid (PIC) has been shown to cooperatively enhance the anti–tetanus toxoid (anti-TT) vaccine response in adult mice. Germinal center formation in the spleen is critical for a normal antibody response. Recent studies have identified Stimulated by Retinoic Acid-6 (Stra6) as the cell membrane receptor for retinol-binding protein (RBP) in many organs, including spleen. The objectives of the present studies were to test whether orally administered vitamin A (VA) itself, either alone or combined with RA, and/or treatment with PIC regulates Stra6 gene expression in mouse spleen and, concomitantly, antibody production. Eight-week-old C57BL/6 mice were immunized with TT. In an initial kinetic study, oral VA (6 mg/kg) increased anti-TT IgM and IgG production as well as splenic Stra6 mRNA expression. In treatment studies that were analyzed 9 d postimmunization, retinoids including VA, RA, VA and RA combined, and PIC significantly increased plasma anti-TT IgM and IgG (P Treatments that included PIC elevated plasma anti-TT IgM and IgG concentrations >20-fold (P treatment. In conclusion, retinoid treatments that included VA, RA, VA and RA combined, and the combination of retinoid and PIC stimulated the expression of Stra6 in spleen, which potentially could increase the local uptake of retinol. Concomitantly, these treatments increased the systemic antigen-specific antibody response. The ability of oral retinoids to stimulate systemic immunity has implications for public health and therapeutic use of VA. PMID:22739370

  19. Experimental study of the enhancement effect of aminopeptidase N inhibitor ubenimex on the differentiation induction activity of all-trans-retinoic acid in acute promyeiocytic leukemia cells and its mechanism

    Institute of Scientific and Technical Information of China (English)

    钱习军

    2006-01-01

    Objective To investigate the effect of aminopeptidase N inhibitor ubenimex on differentiation induction of alltrans -retinoic acid (ATRA) in acute promyelocytic leukemia (APL) cells and its mechanism. Methods The expression of CD11b was analyzed by flow cytometry and nitroblue-tetrazolium (NBT) reduction assay was per-

  20. Retinoic acids acting through retinoid receptors protect hippocampal neurons from oxygen-glucose deprivation-mediated cell death by inhibition of c-jun-N-terminal kinase and p38 mitogen-activated protein kinase.

    Science.gov (United States)

    Shinozaki, Y; Sato, Y; Koizumi, S; Ohno, Y; Nagao, T; Inoue, K

    2007-06-15

    Retinoic acids (RAs), including all-trans retinoic acid (ATRA) and 9-cis retinoic acid (9-cis RA), play fundamental roles in a variety of physiological events in vertebrates, through their specific nuclear receptors: retinoic acid receptor (RAR) and retinoid X receptor (RXR). Despite the physiological importance of RA, their functional significance under pathological conditions is not well understood. We examined the effect of ATRA on oxygen/glucose-deprivation/reperfusion (OGD/Rep)-induced neuronal damage in cultured rat hippocampal slices, and found that ATRA significantly reduced neuronal death. The cytoprotective effect of ATRA was observed not only in cornu ammonis (CA) 1 but also in CA2 and dentate gyrus (DG), and was attenuated by selective antagonists for RAR or RXR. By contrast, in the CA3 region, no protective effects of ATRA were observed. The OGD/Rep also increased phosphorylated forms of c-jun-N-terminal kinase (P-JNK) and p38 (P-p38) in hippocampus, and specific inhibitors for these kinases protected neurons. ATRA prevented the increases in P-JNK and P-p38 after OGD/Rep, as well as the decrease in NeuN and its shrinkage, all of which were inhibited by antagonists for RAR or RXR. These findings suggest that the ATRA signaling via retinoid receptors results in the inhibition of JNK and p38 activation, leading to the protection of neurons against OGD/Rep-induced damage in the rat hippocampus.

  1. Risk-adapted treatment of acute promyelocytic leukemia with all-trans retinoic acid and anthracycline monochemotherapy : long-term outcome of the LPA 99 multicenter study by the PETHEMA Group

    NARCIS (Netherlands)

    Sanz, Miguel A.; Montesinos, Pau; Vellenga, Edo; Rayon, Consuelo; de la Serna, Javier; Parody, Ricardo; Bergua, Juan M.; Leon, Angel; Negri, Silvia; Gonzalez, Marcos; Rivas, Concha; Esteve, Jordi; Milone, Gustavo; Gonzalez, Jose D.; Amutio, Elena; Brunet, Salut; Garcia-Larana, J.; Colomer, Dolors; Calasanz, Maria J.; Chillon, Carmen; Barragan, Eva; Bolufer, Pascual; Lowenberg, Bob

    2008-01-01

    A previous report of the Programa de Estudio y Tratamiento de las Hemopatias Malignas (PETHEMA) Group showed that a risk-adapted strategy combining all-trans retinoic acid (ATRA) and anthracycline monochemotherapy for induction and consolidation in newly diagnosed acute promyelocytic leukemia

  2. Risk-adapted treatment of acute promyelocytic leukemia with all-trans retinoic acid and anthracycline monochemotherapy: Long-term outcome of the LPA 99 multicenter study by the PETHEMA Group

    NARCIS (Netherlands)

    M.A. Sanz (Miguel Angel); P. Montesinos (Pau); E. Vellenga (Edo); C. Rayón (Consuelo); J. de Serna (Javier); R. Parody (Ricardo); J.M. Bergua (Juan Miguel); A. León (Angel); S. Negri (Silvia); M. González (Marcos); C. Rivas (Concha); J. Esteve (Jordi); G. Milone (Gustavo); E. Amutio (Elena); S. Brunet (Salut); J. García-Laraña; D. Colomer (Dolors); M.J. Calasanz (Maria); C. Chillón (Carmen); E. Barragán (Eva); P. Bolufer (Pascual); B. Löwenberg (Bob)

    2008-01-01

    textabstractA previous report of the Programa de Estudio y Tratamiento de las Hemopatfas Malignas (PETHEMA) Group showed that a risk-adapted strategy combining all-trans retinoic acid (ATRA) and anthracycline monochemotherapy for induction and consolidation in newly diagnosed acute promyelocytic

  3. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: Further improvements in treatment outcome

    NARCIS (Netherlands)

    M.A. Sanz (Miguel Angel); P. Montesinos (Pau); C. Rayón (Chelo); A. Holowiecka (Aleksandra); J. De La Serna (Javier); G. Milone (Gustavo); E. de Lisa (Elena); S. Brunet (Salut); V. Rybio (Vicente); J.M. Ribera (Josep Maria); C. Rivas (Concha); I. Krsnik (Isabel); J.M. Bergua (Juan Miguel); J.D. González (José David); J. Díaz-Mediavilla (Joaquín); R. Rojas (Rafael); F. Manso (Félix); G.J. Ossenkoppele (Gert); B. Löwenberg (Bob)

    2010-01-01

    textabstractA risk-adapted strategy based on all-trans retinoic acid (ATRA) and anthracycline monochemotherapy (PETHEMALPA99 trial) has demonstrated a high antileukemic efficacy in acute promyelocytic leukemia. We designed a new trial (LPA2005) with the objective of achieving stepwise improvements i

  4. Risk-adapted treatment of acute promyelocytic leukemia with all-trans retinoic acid and anthracycline monochemotherapy: Long-term outcome of the LPA 99 multicenter study by the PETHEMA Group

    NARCIS (Netherlands)

    M.A. Sanz (Miguel Angel); P. Montesinos (Pau); E. Vellenga (Edo); C. Rayón (Consuelo); J. de Serna (Javier); R. Parody (Ricardo); J.M. Bergua (Juan Miguel); A. León (Angel); S. Negri (Silvia); M. González (Marcos); C. Rivas (Concha); J. Esteve (Jordi); G. Milone (Gustavo); E. Amutio (Elena); S. Brunet (Salut); J. García-Laraña; D. Colomer (Dolors); M.J. Calasanz (Maria); C. Chillón (Carmen); E. Barragán (Eva); P. Bolufer (Pascual); B. Löwenberg (Bob)

    2008-01-01

    textabstractA previous report of the Programa de Estudio y Tratamiento de las Hemopatfas Malignas (PETHEMA) Group showed that a risk-adapted strategy combining all-trans retinoic acid (ATRA) and anthracycline monochemotherapy for induction and consolidation in newly diagnosed acute promyelocytic leu

  5. All-trans retinoic acid with daunorubicin or idarubicin for risk-adapted treatment of acute promyelocytic leukaemia : a matched-pair analysis of the PETHEMA LPA-2005 and IC-APL studies

    NARCIS (Netherlands)

    Sanz, Miguel A.; Montesinos, Pau; Kim, Haesook T.; Ruiz-Argueelles, Guillermo J.; Undurraga, Maria S.; Uriarte, Maria R.; Martinez, Lem; Jacomo, Rafael H.; Gutierrez-Aguirre, Homero; Melo, Raul A. M.; Bittencourt, Rosane; Pasquini, Ricardo; Pagnano, Katia; Fagundes, Evandro M.; Vellenga, Edo; Holowiecka, Alexandra; Gonzalez-Huerta, Ana J.; Fernandez, Pascual; De la Serna, Javier; Brunet, Salut; De Lisa, Elena; Gonzalez-Campos, Jose; Ribera, Jose M.; Krsnik, Isabel; Ganser, Arnold; Berliner, Nancy; Ribeiro, Raul C.; Lo-Coco, Francesco; Lowenberg, Bob; Rego, Eduardo M.

    2015-01-01

    Front-line treatment of acute promyelocytic leukaemia (APL) consists of all-trans retinoic acid (ATRA) and anthracycline-based chemotherapy. In this setting, a comparison of idarubicin and daunorubicin has never been carried out. Two similar clinical trials using ATRA and chemotherapy for newly diag

  6. Risk-adapted treatment of acute promyelocytic leukemia with all-trans retinoic acid and anthracycline monochemotherapy : long-term outcome of the LPA 99 multicenter study by the PETHEMA Group

    NARCIS (Netherlands)

    Sanz, Miguel A.; Montesinos, Pau; Vellenga, Edo; Rayon, Consuelo; de la Serna, Javier; Parody, Ricardo; Bergua, Juan M.; Leon, Angel; Negri, Silvia; Gonzalez, Marcos; Rivas, Concha; Esteve, Jordi; Milone, Gustavo; Gonzalez, Jose D.; Amutio, Elena; Brunet, Salut; Garcia-Larana, J.; Colomer, Dolors; Calasanz, Maria J.; Chillon, Carmen; Barragan, Eva; Bolufer, Pascual; Lowenberg, Bob

    2008-01-01

    A previous report of the Programa de Estudio y Tratamiento de las Hemopatias Malignas (PETHEMA) Group showed that a risk-adapted strategy combining all-trans retinoic acid (ATRA) and anthracycline monochemotherapy for induction and consolidation in newly diagnosed acute promyelocytic leukemia result

  7. Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development.

    Science.gov (United States)

    Jørgensen, A; Nielsen, J E; Perlman, S; Lundvall, L; Mitchell, R T; Juul, A; Rajpert-De Meyts, E

    2015-10-01

    What are the effects of experimentally manipulating meiosis signalling by addition of retinoic acid (RA) in cultured human fetal gonads? RA-treatment accelerated meiotic entry in cultured fetal ovary samples, while addition of RA resulted in a dysgenetic gonadal phenotype in fetal testis cultures. One of the first manifestations of sex differentiation is the initiation of meiosis in fetal ovaries. In contrast, meiotic entry is actively prevented in the fetal testis at this developmental time-point. It has previously been shown that RA-treatment mediates initiation of meiosis in human fetal ovary ex vivo. This was a controlled ex vivo study of human fetal gonads treated with RA in 'hanging-drop' tissue cultures. The applied experimental set-up preserves germ cell-somatic niche interactions and the investigated outcomes included tissue integrity and morphology, cell proliferation and survival and the expression of markers of meiosis and sex differentiation. Tissue from 24 first trimester human fetuses was included in this study, all from elective terminations at gestational week (GW) 7-12. Gonads were cultured for 2 weeks with and without addition of 1 µM RA. Samples were subsequently formalin-fixed and investigated by immunohistochemistry and cell counting. Proteins investigated and quantified included; octamer-binding transcription factor 4 (OCT4), transcription factor AP-2 gamma (AP2γ) (embryonic germ cell markers), SRY (sex determining region Y)-box 9 (SOX9), anti-Müllerian hormone (AMH) (immature Sertoli cell markers), COUP transcription factor 2 (COUP-TFII) (marker of interstitial cells), forkhead box L2 (FOXL2) (granulosa cell marker), H2A histone family, member X (γH2AX) (meiosis marker), doublesex and mab-3 related transcription factor 1 (DMRT1) (meiosis regulator), cleaved poly ADP ribose polymerase (PARP), cleaved Caspase 3 (apoptosis markers) and Ki-67 antigen (Ki-67) (proliferation marker). Also, proliferation was determined using a 5'-bromo-2

  8. AM580, a stable benzoic derivative of retinoic acid, has powerful and selective cyto-differentiating effects on acute promyelocytic leukemia cells.

    Science.gov (United States)

    Gianní, M; Li Calzi, M; Terao, M; Guiso, G; Caccia, S; Barbui, T; Rambaldi, A; Garattini, E

    1996-02-15

    All-trans retinoic acid (ATRA) is successfully used in the cyto-differentiating treatment of acute promyelocytic leukemia (APL). Paradoxically, APL cells express PML-RAR, an aberrant form of the retinoic acid receptor type alpha (RAR alpha) derived from the leukemia-specific t(15;17) chromosomal translocation. We show here that AM580, a stable retinobenzoic derivative originally synthesized as a RAR alpha agonist, is a powerful inducer of granulocytic maturation in NB4, an APL-derived cell line, and in freshly isolated APL blasts. After treatment of APL cells with AM580 either alone or in combination with granulocyte colony-stimulating factor (G-CSF), the compound induces granulocytic maturation, as assessed by determination of the levels of leukocyte alkaline phosphatase, CD11b, CD33, and G-CSF receptor mRNA, at concentrations that are 10- to 100-fold lower than those of ATRA necessary to produce similar effects. By contrast, AM580 is not effective as ATRA in modulating the expression of these differentiation markers in the HL-60 cell line and in freshly isolated granulocytes obtained from the peripheral blood of chronic myelogenous leukemia patients during the stable phase of the disease. In NB4 cells, two other synthetic nonselective RAR ligands are capable of inducing LAP as much as AM580, whereas RAR beta- or RAR gamma-specific ligands are totally ineffective. These results show that AM580 is more powerful than ATRA in modulating the expression of differentiation antigens only in cells in which PML-RAR is present. Binding experiments, using COS-7 cells transiently transfected with PML-RAR and the normal RAR alpha, show that AM580 has a lower affinity than ATRA for both receptors. However, in the presence of PML-RAR, the synthetic retinoid is a much better transactivator of retinoic acid-responsive element-containing promoters than the natural retinoid, whereas, in the presence of RAR alpha, AM580 and ATRA have similar activity. This may explain the strong cyto

  9. Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells.

    Science.gov (United States)

    Fenderson, B A; Andrews, P W; Nudelman, E; Clausen, H; Hakomori, S

    1987-07-01

    We have analyzed the glycolipid markers of a recently cloned human embryonal carcinoma (EC) cell line, NTERA-2, which differentiates extensively into a variety of somatic cell types when exposed to retinoic acid. These tumor cells provide a model system that can be used to study the ontogeny of glycolipid diversity during human embryonic development. Glycolipid antigens were identified by cell surface immunofluorescence and thin-layer chromatography immunostaining using a comprehensive set of anticarbohydrate monoclonal antibodies. Undifferentiated NTERA-2 cells were found to express predominantly globo-series glycolipids, including Gb3, Gb5 (IV3GalGb4), globo-ganglioside (IV3NeuAc alpha 2----3GalGb4), globo-H (IV3Fuc alpha 1----2GalGb4), and globo-A (IV3GalNAc alpha 1----3[Fuc alpha 1----2]GalGb4). When NTERA-2 cells were induced to differentiate by culturing in the presence of 10(-5) M retinoic acid, a remarkable shift of cellular glycolipids from globo-series to lacto- and ganglio-series was observed: Globo-series structures declined, particularly during the period 7-20 days after first exposure to retinoic acid, while lacto-series structures, including fucosyl alpha 1----3 type 2 chain (Lex) and sialosyl type 2 chain, and ganglio-series structures, including GM3, GD3, 9-O-acetyl-GD3, GM2, GD2, and GT3, increased. The presence of globo-A and globo-H as the major ABH blood group antigens in undifferentiated NTERA-2 cells suggests that globo-series blood group antigens are embryonic antigens, synthesis of which switches to lacto-series during human development. Two-color immunofluorescence analysis indicated preferential expression of several ganglio- and lacto-series antigens on different subsets of differentiated cells and permitted the relationship of these subsets to the development of neurons in NTERA-2 cultures to be determined. The results suggest that glycosyltransferase, particularly those involved in controlling glycoconjugate core structure assembly

  10. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue.

    Science.gov (United States)

    Landrier, Jean-Francois; Kasiri, Elnaz; Karkeni, Esma; Mihály, Johanna; Béke, Gabriella; Weiss, Kathrin; Lucas, Renata; Aydemir, Gamze; Salles, Jérome; Walrand, Stéphane; de Lera, Angel R; Rühl, Ralph

    2017-01-01

    Adiponectin is an adipocyte-derived adipokine with potent antidiabetic, anti-inflammatory, and antiatherogenic activity. Long-term, high-fat diet results in gain of body weight, adiposity, further inflammatory-based cardiovascular diseases, and reduced adiponectin secretion. Vitamin A derivatives/retinoids are involved in several of these processes, which mainly take place in white adipose tissue (WAT). In this study, we examined adiponectin expression as a function of dietary high-fat and high-vitamin A conditions in mice. A decrease of adiponectin expression in addition to an up-regulation of aldehyde dehydrogenase A1 (ALDH1A1), retinoid signaling, and retinoic acid response element signaling was selectively observed in WAT of mice fed a normal-vitamin A, high-fat diet. Reduced adiponectin expression in WAT was also observed in mice fed a high-vitamin A diet. Adipocyte cell culture revealed that endogenous and synthetic retinoic acid receptor (RAR)α- and RARγ-selective agonists, as well as a synthetic retinoid X receptor agonist, efficiently reduced adiponectin expression, whereas ALDH1A1 expression only increased with RAR agonists. We conclude that reduced adiponectin expression under high-fat dietary conditions is dependent on 1) increased ALDH1A1 expression in adipocytes, which does not increase all-trans-retinoic acid levels; 2) further RAR ligand-induced, WAT-selective, increased retinoic acid response element-mediated signaling; and 3) RAR ligand-dependent reduction of adiponectin expression.-Landrier, J.-F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., Aydemir, G., Salles, J., Walrand, S., de Lera, A. R., Rühl, R. Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. © The Author(s).

  11. Genetic variation in toll-like receptors and retinoic acid-inducible gene I and outcome of hepatitis C virus infection: a candidate gene association study

    DEFF Research Database (Denmark)

    Clausen Nygaard, Louise; Ladelund, S; Weis, N;

    2014-01-01

    with resolution in the discovery cohort were genotyped in a validation cohort. Multivariate logistic regression adjusted for sex, hepatitis B surface antigen, HIV infection and the interleukin-28B rs12979860 SNP was performed in the combined cohort. Haplotype reconstruction and linkage disequilibrium analysis......We evaluated the effects of genetic variation in toll-like receptors (TLR), retinoic acid-inducible gene I (RIG-I) and their signalling pathways on spontaneous hepatitis C virus (HCV) resolution. We screened 95 single-nucleotide polymorphisms (SNPs) in 22 genes. SNPs significantly associated...... were performed. srs2233437, rs730775 and rs28362857 in Inhibitor of NF-kB ε (IkBε) and rs352140 in TLR9 were associated with spontaneous HCV resolution (P ≤ 0.05) in the discovery cohort (n = 308). In the validation cohort (n = 216), we replicated a significant association with HCV resolution for two...

  12. A Complicated Case of Acute Promyelocytic Leukemia in the Second Trimester of Pregnancy Successfully Treated with All-trans-Retinoic Acid

    Directory of Open Access Journals (Sweden)

    Kanika Agarwal

    2015-01-01

    Full Text Available A 40-year-old female at 26-week gestation was diagnosed with acute promyelocytic leukemia (APL after an abnormal prenatal lab workup showed pancytopenia. She was treated with all-trans-retinoic acid (ATRA, idarubicin, and dexamethasone. After day one of treatment, she developed differentiation syndrome, which was treated with dexamethasone. At 30-week gestation, she had preterm premature rupture of membranes and delivered by cesarean section because of the fetus’ breech presentation. Despite ATRA’s potential for teratogenicity, a viable infant was born without apparent anomalies. Postpartum, she underwent consolidation treatment with ATRA and arsenic trioxide (ATO. The patient continued ATRA therapy after delivery and is currently in remission.

  13. Simple in vitro migration assay for neural crest cells and the opposite effects of all-trans-retinoic acid on cephalic- and trunk-derived cells.

    Science.gov (United States)

    Usami, Makoto; Mitsunaga, Katsuyoshi; Irie, Tomohiko; Miyajima, Atsuko; Doi, Osamu

    2014-08-01

    Here, we describe a simple in vitro neural crest cell (NCC) migration assay and the effects of all-trans-retinoic acid (RA) on NCCs. Neural tubes excised from the rhombencephalic or trunk region of day 10.5 rat embryos were cultured for 48 h to allow emigration and migration of NCCs. Migration of NCCs was measured as the change in the radius (radius ratio) calculated from the circular spread of NCCs between 24 and 48 h of culture. RA was added to the culture medium after 24 h at embryotoxic concentrations determined by rat whole embryo culture. RA (10 μM) reduced the migration of cephalic NCCs, whereas it enhanced the migration of trunk NCCs, indicating that RA has opposite effects on these two types of NCCs. © 2014 Japanese Teratology Society.

  14. The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor γt (RORγt) in Th17 cells.

    Science.gov (United States)

    Han, Lei; Yang, Jing; Wang, Xiuwen; Wu, Qingsi; Yin, Shuying; Li, Zhiyuan; Zhang, Jing; Xing, Yue; Chen, Zuojia; Tsun, Andy; Li, Dan; Piccioni, Miranda; Zhang, Yu; Guo, Qiang; Jiang, Lindi; Bao, Liming; Lv, Ling; Li, Bin

    2014-09-12

    Stable retinoic acid-related orphan nuclear receptor γt (RORγt) expression is pivotal for the development and function of Th17 cells. Here we demonstrate that expression of the transcription factor RORγt can be regulated through deubiquitination, which prevents proteasome-mediated degradation. We establish that USP17 stabilizes RORγt protein expression by reducing RORγt polyubiquitination at its Lys-360 residue. In contrast, knockdown of endogenous USP17 in Th17 cells resulted in decreased RORγt protein levels and down-regulation of Th17-related genes. Furthermore, USP17 expression was up-regulated in CD4(+) T cells from systemic lupus erythematosus patients. Our data reveal a molecular mechanism in which RORγt expression in Th17 cells can be positively regulated by USP17, thereby modulating Th17 cell functions.

  15. Genome-wide distribution of histone H3 acetylation in all-trans retinoic acid induced neuronal differentiation of SH-SY5Y cells

    Institute of Scientific and Technical Information of China (English)

    FANG HongBo; MI Yang; WU NingHua; ZHANG Ye; SHEN YuFei

    2009-01-01

    With chromatin immunoprecipitation (CHIP) and promoter DNA microarray analyses (ChiP-on-chip), we analyzed the variations of acetylation on histone H3 in all-trans retinoic acid (RA) induced neuronal cell differentiation. Neuroblastoma SH-SY5Y cells were treated with RA for 24 h and the acetylation on histone H3 in the promoter region of the genes was detected. Results showed that, after treatment, the level of acetylation on histone H3 elevated in 597 genes in the genome, and reduced in the other 647 genes compared with those of the control. In summary, we have successfully adopted a high throughput technique to detect and analyze variations of acetylation of histone H3 in human genome at the early phage of RA induced neuronal differentiation of the SH-SY5Y cells.

  16. Identification of daidzein as a ligand of retinoic acid receptor that suppresses expression of matrix metalloproteinase-9 in HaCaT cells.

    Science.gov (United States)

    Oh, Hyeon-Jeong; Kang, Young-Gyu; Na, Tae-Young; Kim, Hyeon-Ji; Park, Jun Seong; Cho, Won-Jea; Lee, Mi-Ock

    2013-08-25

    Retinoids have been used as therapeutics for diverse skin diseases, but their side effects limit clinical usage. Here, we report that extracts of two soybeans, Glycine max and Rhynchosia nulubilis, and their ethyl acetate fractions increased the transcriptional activity of retinoic acid receptors (RARs), and that daidzin and genistin were the major constituents of the active fractions. Daidzin and its aglycone, daidzein, induced transcriptional activity of RAR and RARγ. FRET analysis demonstrated that daidzein, but not daidzin, bound both RAR and RARγ with EC50 values of 28μM and 40μM, respectively. Daidzein increased expression of mRNA of RARγ through direct binding of RAR and recruitment of p300 to the RARγ2 promoter. Further, mRNA and gelatinolytic activity of matrix metalloproteinase-9 were decreased by daidzein in HaCaT cells. Together, these results indicate that daidzein functions as a ligand of RAR that could be a candidate therapeutic for skin diseases.

  17. A retinoic acid responsive Hoxa3 transgene expressed in embryonic pharyngeal endoderm, cardiac neural crest and a subdomain of the second heart field.

    Directory of Open Access Journals (Sweden)

    Nata Y S-G Diman

    Full Text Available A transgenic mouse line harbouring a β-galacdosidase reporter gene controlled by the proximal 2 kb promoter of Hoxa3 was previously generated to investigate the regulatory cues governing Hoxa3 expression in the mouse. Examination of transgenic embryos from embryonic day (E 8.0 to E15.5 revealed regionally restricted reporter activity in the developing heart. Indeed, transgene expression specifically delineated cells from three distinct lineages: a subpopulation of the second heart field contributing to outflow tract myocardium, the cardiac neural crest cells and the pharyngeal endoderm. Manipulation of the Retinoic Acid (RA signaling pathway showed that RA is required for correct expression of the transgene. Therefore, this transgenic line may serve as a cardiosensor line of particular interest for further analysis of outflow tract development.

  18. A Retinoic Acid Responsive Hoxa3 Transgene Expressed in Embryonic Pharyngeal Endoderm, Cardiac Neural Crest and a Subdomain of the Second Heart Field

    Science.gov (United States)

    Diman, Nata Y. S.-G.; Remacle, Sophie; Bertrand, Nicolas; Picard, Jacques J.; Zaffran, Stéphane; Rezsohazy, René

    2011-01-01

    A transgenic mouse line harbouring a β-galacdosidase reporter gene controlled by the proximal 2 kb promoter of Hoxa3 was previously generated to investigate the regulatory cues governing Hoxa3 expression in the mouse. Examination of transgenic embryos from embryonic day (E) 8.0 to E15.5 revealed regionally restricted reporter activity in the developing heart. Indeed, transgene expression specifically delineated cells from three distinct lineages: a subpopulation of the second heart field contributing to outflow tract myocardium, the cardiac neural crest cells and the pharyngeal endoderm. Manipulation of the Retinoic Acid (RA) signaling pathway showed that RA is required for correct expression of the transgene. Therefore, this transgenic line may serve as a cardiosensor line of particular interest for further analysis of outflow tract development. PMID:22110697

  19. Morphogenetic and neuronal characterization of human neuroblastoma multicellular spheroids cultured under undifferentiated and all-trans-retinoic acid-differentiated conditions

    Directory of Open Access Journals (Sweden)

    Gwon-Soo Jung

    2013-05-01

    Full Text Available In this study, we aimed to compare the morphogenetic andneuronal characteristics between monolayer cells andspheroids. For this purpose, we established spheroid formationby growing SH-SY5Y cells on the hydrophobic surfaces ofthermally-collapsed elastin-like polypeptide. After 4 days ofculture, the relative proliferation of the cells within spheroidswas approximately 92% of the values for monolayer cultures.As measured by quantitative assays for mRNA and proteinexpressions, the production of synaptophysin and neuronspecificenolase (NSE as well as the contents of cell adhesionmolecules (CAMs and extracellular matrix (ECM proteins aremuch higher in spheroids than in monolayer cells. Under theall-trans-retinoic acid (RA-induced differentiation condition,spheroids extended neurites and further up-regulated theexpression of synaptophysin, NSE, CAMs, and ECM proteins.Our data indicate that RA-differentiated SH-SY5Y neurospheroidsare functionally matured neuronal architectures. [BMBReports 2013; 46(5: 276-281

  20. Protein phosphatase 2A associates with Rb2/p130 and mediates retinoic acid-induced growth suppression of ovarian carcinoma cells

    DEFF Research Database (Denmark)

    Vuocolo, Scott; Purev, Enkhtsetseg; Zhang, Dongmei

    2003-01-01

    Levels of Rb2/p130 protein are increased 5-10-fold following all-trans-retinoic acid (ATRA) treatment of the retinoid-sensitive ovarian adenocarcinoma cell line CAOV3, but not the retinoid-resistant adenocarcinoma cell line SKOV3. We found that this increase in Rb2/p130 protein levels in ATRA......-treated CAOV3 cells was the result of an increased protein stability. Moreover, Rb2/p130 exhibited a decreased ubiquitination following ATRA treatment. Because phosphorylation frequently mediates ubiquitination of proteins, we examined the serine/threonine phosphatase activity in our CAOV3 cells following ATRA...... treatment. A significant increase in Ser/Thr phosphatase activity was found, which correlated with a rise in the level of protein phosphatase 2A (PP2A) catalytic subunit-alpha. In addition, co-immunoprecipitation and glutathione S-transferase pull-down studies demonstrated that PP2A and Rb2/p130 associate...

  1. Effects and mechanism of retinoic acid receptors on brain development%视黄酸核受体在脑发育中的作用及机制

    Institute of Scientific and Technical Information of China (English)

    王蓉; 李廷玉

    2004-01-01

    维生素A(vitamin A,VA)是人体必需的重要微量营养素,它在人体的视觉、免疫、生长发育及细胞分化等方面发挥广泛的生理学效应,一直都是营养学界研究的热点。VA的作用主要通过其体内活性代谢产物视黄酸(retinoic acid,RA)介导两大类视黄酸核受体:RARs(retinoic acid receptors)和RXRs (retinoid-X re-

  2. Eosinophils from Murine Lamina Propria Induce Differentiation of Naive T Cells into Regulatory T Cells via TGF-β1 and Retinoic Acid.

    Directory of Open Access Journals (Sweden)

    Hong-Hu Chen

    Full Text Available Treg cells play a crucial role in immune tolerance, but mechanisms that induce Treg cells are poorly understood. We here have described eosinophils in lamina propria (LP that displayed high aldehyde dehydrogenase (ALDH activity, a rate-limiting step during all-trans retinoic acid (ATRA synthesis, and expressed TGF-β1 mRNA and high levels of ATRA. Co-incubation assay confirmed that LP eosinophils induced the differentiation of naïve T cells into Treg cells. Differentiation promoted by LP eosinophils were inhibited by blocked either TGF-β1 or ATRA. Peripheral blood (PB eosinophils did not produce ATRA and could not induce Treg differentiation. These data identifies LP eosinophils as effective inducers of Treg cell differentiation through a mechanism dependent on TGF-β1 and ATRA.

  3. THE EXPRESSION OF CONNEXIN GENES IN NASOPHARYNGEAL CARCINOMA CELLS AND THE EFFECT OF RETINOIC ACID ON THE REGULATION OF THOSE GENES

    Institute of Scientific and Technical Information of China (English)

    JIANG Ning; BIN Liang-hua; TANG Xiang-na; ZHOU Ming; ZENG Zhao-yang; Li Gui-yuan

    1999-01-01

    Objective: To detect which members in the connexin gene family are expressed in nasopharyngeal carcinoma (NPC) cell line HNE1, and the mechanism by which those genes are specifically switched on and off during retinoic acid (RA) induction. Methods: Establishing the cell growth curves of NPC cells. Observing the effect of RA on connexin genes by Northern hybridization. Results: Two genes Cx46 and Cx37, belonging to the connexin gene family, were expressed in HNE, The down-regulation of Cx46 and Cx37, up-regulation of RARa and growth inhibition was observed in HNE1, after exposure to RA. The gene expression and cell growth in HNE1 cells was restored after removal of RA. Conclusion: Two members of the connexin gene family: Cx37 and Cx46 were expressed in HNE1 cells, RA can inhibit the expression of those two genes mediated by RARa, and the effects of RA on HNE1 are reversible.

  4. Notch通路及维甲酸与肾纤维化研究进展%Notch Signaling in Renal Interstitial Fibrosis and Retinoic <