WorldWideScience

Sample records for 12cr18ni10ti stainless steel

  1. Thermal Induced Processes in Laminar System of Stainless Steel - Beryllium

    International Nuclear Information System (INIS)

    The paper reports on investigation of the laminar system 'stainless steel 12Cr18Ni10Ti - Be' at thermal treatment. There have been determined sequences of phase transformations along with relative amount of iron-containing phases in the samples subjected to thermal beryllization. It has been revealed that thermal beryllization of stainless steel thin foils results in γ→α transformation and formation of the beryllides NiBe and FeBe2. It has also been revealed that direct γ→α- and reverse α→γ-transformations are accompanied by, correspondingly, formation and decomposition of the beryllide NiBe. It is shown that distribution of the formed phases within sample bulk is defined by local concentration of beryllium. Based on obtained experimental data there is proposed a physical model of phase transformations in stainless steel at thermal beryllization.

  2. Phase diffusionless γ↔α transformations and their effect on physical, mechanical and corrosion properties of austenitic stainless steels irradiated with neutrons and charged particles

    Science.gov (United States)

    Maksimkin, O. P.

    2016-04-01

    The work presents relationships of γ→α' and α'→γ-transformations in reactor 12Cr18Ni10Ti and 08Cr16Ni11Mo3 austenitic stainless steels induced by cold work, irradiation and/or temperature. Energy and mechanical parameters of nucleation and development of deformation-induced martensitic α'-phase in the non-irradiated and irradiated steels are given. The mechanisms of localized static deformation were investigated and its effect on martensitic γ→α' transformation is determined. It has been shown that irradiation of 12Cr18Ni10Ti steel with heavy Kr ions (1.56MeV/nucleon, fluence of 1·1015 cm-2) results in formation of α'-martensite in near-surface layer of the sample. Results of systematic research on reversed α'→γ-transformation in austenitic metastable stainless steels irradiated with slow (VVR-K) and fast (BN-350) neutrons are presented. The effect of annealing on strength and magnetic characteristics was determined. It was found that at the temperature of 400 °C in the irradiated with neutrons samples (59 dpa) an increase of ferromagnetic α'-phase and microhardness was observed. The obtained results could be used during assessment of operational characteristics of highly irradiated austenitic steels during transportation and storage of Fuel Assemblies for fast nuclear reactors.

  3. Recrystallization and modification of the stainless-steel surface relief under photonic heat load in powerful plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Budaev, V. P., E-mail: budaev@mail.ru; Martynenko, Yu. V. [National Research Centre Kurchatov Institute (Russian Federation); Khimchenko, L. N. [Project Center ITER (Russian Federation); Zhitlukhin, A. M.; Klimov, N. S. [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Pitts, R. A. [ITER Organization (France); Linke, J. [EURATOM Association, Forschungszentrum Jülich GmbH (Germany); Bazylev, B. [IHM, Karlsruhe Institute of Technology (Germany); Belova, N. E.; Karpov, A. V. [National Research Centre Kurchatov Institute (Russian Federation); Kovalenko, D. V.; Podkovyrov, V. L.; Yaroshevskaya, A. D. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2013-11-15

    Targets made of ITER-grade 316L(N)-IG stainless steel and Russian-grade 12Cr18Ni10Ti stainless steel with a close composition were exposed at the QSPA-T plasma gun to plasma photonic radiation pulses simulating conditions of disruption mitigation in ITER. After a large number of pulses, modification of the stainless-steel surface was observed, such as the formation of a wavy structure, irregular roughness, and cracks on the target surface. X-ray and optic microscopic analyses of targets revealed changes in the orientation and dimensions of crystallites (grains) over a depth of up to 20 μm for 316L(N)-IG stainless steel after 200 pulses and up to 40 μm for 12Cr18Ni10Ti stainless steel after 50 pulses, which is significantly larger than the depth of the layer melted in one pulse (∼10 μm). In a series of 200 tests of ITER-grade 316L(N)-IG ITER stainless steel, a linear increase in the height of irregularity (roughness) with increasing number of pulses at a rate of up to ∼1 μm per pulse was observed. No alteration in the chemical composition of the stainless-steel surface in the series of tests was revealed. A model is developed that describes the formation of wavy irregularities on the melted metal surface with allowance for the nonlinear stage of instability of the melted layer with a vapor/plasma flow above it. A decisive factor in this case is the viscous flow of the melted metal from the troughs to tops of the wavy structure. The model predicts saturation of the growth of the wavy structure when its amplitude becomes comparable with its wavelength. Approaches to describing the observed stochastic relief and roughness of the stainless-steel surface formed in the series of tests are considered. The recurrence of the melting-solidification process in which mechanisms of the hill growth compete with the spreading of the material from the hills can result in the formation of a stochastic relief.

  4. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  5. Fatigue of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Solin, J. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2010-05-15

    The 2009b update of ASME III introduces a new set of fatigue design curves. The new curve for austenitic stainless steels is exactly matching with the one endorsed in 2007 by the US NRC for new designs only. This has a notable effect in usage factor calculation at strain amplitudes below 0.5 %. However, experimental results clearly demonstrate that a new air curve would not be needed for the studied stainless steel grades. Our current results suggest arguments for use of stabilized stainless steels in NPP piping components, where high cycle fatigue (epsilon{sub a}<=0.5%) is a concern. (orig.)

  6. Articles comprising ferritic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  7. Stainless Steel Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Buchenauer, Dean A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Karnesky, Richard A. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    An understanding of the behavior of hydrogen isotopes in materials is critical to predicting tritium transport in structural metals (at high pressure), estimating tritium losses during production (fission environment), and predicting in-vessel inventory for future fusion devices (plasma driven permeation). Current models often assume equilibrium diffusivity and solubility for a class of materials (e.g. stainless steels or aluminum alloys), neglecting trapping effects or, at best, considering a single population of trapping sites. Permeation and trapping studies of the particular castings and forgings enable greater confidence and reduced margins in the models. For FY15, we have continued our investigation of the role of ferrite in permeation for steels of interest to GTS, through measurements of the duplex steel 2507. We also initiated an investigation of the permeability in work hardened materials, to follow up on earlier observations of unusual permeability in a particular region of 304L forgings. Samples were prepared and characterized for ferrite content and coated with palladium to prevent oxidation. Issues with the poor reproducibility of measurements at low permeability were overcome, although the techniques in use are tedious. Funding through TPBAR and GTS were secured for a research grade quadrupole mass spectrometer (QMS) and replacement turbo pumps, which should improve the fidelity and throughput of measurements in FY16.

  8. Stainless steel display evaluation

    Science.gov (United States)

    Hopper, Darrel G.; Meyer, Frederick M.; Longo, Sam J.; Trissell, Terry L.

    2007-04-01

    Active matrix organic light emitting diode (AMOLED) technology is one candidate to become a low power alternative in some applications to the currently dominant, active matrix liquid crystal display (AMLCD), technology. Furthermore, fabrication of the AMOLED on stainless steel (SS) foil rather than the traditional glass substrate, while presenting a set of severe technical challenges, opens up the potential for displays that are both lighter and less breakable. Also, transition to an SS foil substrate may enable rollable displays - large when used but small for stowage within gear already worn or carried or installed. Research has been initiated on AMOLED/SS technology and the first 320 x 240 color pixel 4-in. demonstration device has been evaluated in the AFRL Display Test and Evaluation Laboratory. Results of this evaluation are reported along with a research roadmap.

  9. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.;

    2004-01-01

    This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding. Th......This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot...

  10. Strip casting of stainless steels

    OpenAIRE

    Raabe, D.

    1997-01-01

    FLAT PRODUCTS OF STAINLESS STEELS ARE CONVENTIONALLY MANUFACTURED BY CONTINUOUS CASTING, HOT ROLLING, HOT BAND ANNEALING, PICKLING, COLD ROLLING AND RECRYSTALLISATION. IN THE LAST YEARS STRIP CASTING HAS INCREASINGLY ATTRACTED ATTENTION. IT OFFERS THREE IMPROVEMENTS IN COMPARISON TO THE CONVENTIONAL METHOD.1.) IT ALLOWS TO CAST STEEL SHEETS WITH THE SAME THICKNESS AND WIDTH AS THOSE PRODUCED BY HOT ROLLING. THIS MEANS THAT THE HOT ROLLING PROCESSIS BYPASSED. 2.) THE STRIP CAST STEEL REVEALS A...

  11. Preformed posterior stainless steel crowns: an update.

    Science.gov (United States)

    Croll, T P

    1999-02-01

    For almost 50 years, dentists have used stainless steel crowns for primary and permanent posterior teeth. No other type of restoration offers the convenience, low cost, durability, and reliability of such crowns when interim full-coronal coverage is required. Preformed stainless steel crowns have improved over the years. Better luting cements have been developed and different methods of crown manipulation have evolved. This article reviews stainless steel crown procedures for primary and permanent posterior teeth. Step-by-step placement of a primary molar stainless steel crown is documented and permanent molar stainless steel crown restoration is described. A method for repairing a worn-through crown also is reviewed.

  12. Corrosion behavior of 2205 duplex stainless steel.

    Science.gov (United States)

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires. PMID:9228844

  13. Stainless steel denitriding with slag

    International Nuclear Information System (INIS)

    Calculation and experimental methods were used to investigate the process of titanium nitride formation when alloying chromium nickel stainless steels with titanium. At common concentrations of titanium and nitrogen, titanium nitrides were observed to be precipitated from the melt into slag in amounts of 0.1% and more. The laboratory study of the slag influence of the process of steel refining from titanium nitrides showed that the slag containing calcium, aluminium and magnesium oxides is favourable to the denitriding of steel. In addition, the possibility of direct transition of dissolved nitrogen from the metal into the slag is revealed. 7 refs., 1 fig., 2 tabs

  14. The comparison of frictional resistance in titanium, self-ligating stainless steel, and stainless steel brackets using stainless steel and TMA archwires: An in vitro study

    OpenAIRE

    Syed Altaf Khalid; Vadivel Kumar; Prithviraj Jayaram

    2012-01-01

    Aim: The aim of the study was to compare the frictional resistance of titanium, self-ligating stainless steel, and conventional stainless steel brackets, using stainless steel and titanium molybdenum alloy (TMA) archwires. Materials and Methods: We compared the frictional resistance in 0.018 slot and 0.022 slot of the three brackets - titanium, self-ligating stainless steel, and conventional stainless steel - using stainless steel archwires and TMA archwires. An in vitro study of simulated ca...

  15. Microbial corrosion of stainless steel.

    Science.gov (United States)

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  16. Nano-composite stainless steel

    Science.gov (United States)

    Dehoff, Ryan R.; Blue, Craig A.; Peter, William H.; Chen, Wei; Aprigliano, Louis F.

    2015-07-14

    A composite stainless steel composition is composed essentially of, in terms of wt. % ranges: 25 to 28 Cr; 11 to 13 Ni; 7 to 8 W; 3.5 to 4 Mo; 3 to 3.5 B; 2 to 2.5 Mn; 1 to 1.5 Si; 0.3 to 1.7 C; up to 2 O; balance Fe. The composition has an austenitic matrix phase and a particulate, crystalline dispersed phase.

  17. Hot workability of duplex stainless steels

    OpenAIRE

    Martin, Guilhem

    2011-01-01

    The Duplex Stainless Steels (DSS) are defined as a family of stainless steels consisting of a two-phase microstructure involving δ-ferrite and γ-austenite. Exceptional combinations of strength and toughness together with good corrosion resistance under critical working conditions designate DSS a suitable alternative to conventional austenitic stainless steels. Unfortunately, the relatively poor hot workability of these alloys makes the industrial processing of flat products particularly criti...

  18. Brazing of stainless steel; Stainless ko no rozuke

    Energy Technology Data Exchange (ETDEWEB)

    Matsu, T.

    1996-04-01

    This paper explains brazing of stainless steel as to its processing materials, brazing materials, brazing methods, and brazing works. When performing brazing at higher than 800{degree}C on a martensite-based stainless steel represented by the 13Cr steel, attention is required on cracking caused by quenching. When a ferrite-based stainless steel represented by the 18Cr steel is heated above 900{degree}C, crystalline particles grow coarser, causing their tenacity and corrosion resistance to decline. High-temperature long-time heating in brazing in a furnace demands cautions. Austenite-based stainless steel represented by the 18Cr-8Ni steel has the best brazing performance. However, since the steel has large thermal expansion coefficient and low thermal conductivity, attention is required on strain and deformation due to heating, and on localized overheating. Deposition hardened stainless steel made of the Cr-Ni alloy steel added with aluminum and titanium has poor wettability in a brazing work, hence pretreatment is required for the purpose of activation. 9 figs., 7 tabs.

  19. Interaction between stainless steel and plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Dunwoody, John T [Los Alamos National Laboratory; Mason, Richard E [Los Alamos National Laboratory; Freibert, Franz J [Los Alamos National Laboratory; Willson, Stephen P [Los Alamos National Laboratory; Veirs, Douglas K [Los Alamos National Laboratory; Worl, Laura A [Los Alamos National Laboratory; Archuleta, Alonso [Los Alamos National Laboratory; Conger, Donald J [Los Alamos National Laboratory

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  20. Duplex stainless steels for osteosynthesis devices.

    Science.gov (United States)

    Cigada, A; Rondelli, G; Vicentini, B; Giacomazzi, M; Roos, A

    1989-09-01

    The austenitic stainless steels used today for the manufacture of osteosynthesis devices are sensitive to crevice corrosion. In this study the corrosion properties of some duplex stainless steels were evaluated and compared to traditional austenitic stainless steels. According to our results the following ranking was established: 23Cr-4Ni less than AISI 316L less than ASTM F138 less than 22Cr-5Ni-3Mo less than 27Cr-31Ni-3.5Mo less than 25Cr-7Ni-4Mo-N. In particular the results showed that the high-performance 25Cr-7Ni-4Mo-N duplex stainless steel, with high molybdenum and nitrogen contents, can be considered not susceptible to crevice corrosion in the human body. The duplex stainless steels have also better mechanical properties at the same degree of cold working compared with austenitic stainless steels. Hence the 25Cr-7Ni-4Mo-N duplex stainless steel can be considered a convenient substitute of ASTM F138 for orthopedic and osteosynthesis devices. PMID:2777835

  1. Preparation of precursor for stainless steel foam

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiang-yang; LI Shan-ni; LI Jie; LIU Ye-xiang

    2008-01-01

    The effects of polyurethane sponge pretreatment and slurry compositions on the slurry loading in precursor were discussed, and the,performances of stainless steel foams prepared from precursors with different slurry loadings and different particle sizes of the stainless steel powder were also investigated. The experimental results show that the pretreatment of sponge with alkaline solution is effective to reduce the jam of cells in precursor and ensure the slurry to uniformly distribute in sponge, and it is also an effective method for increasing the slurry loading in precursor; the mass fraction of additive A and solid content in slurry greatly affect the slurry loading in precursor, when they are kept in 9%-13% and 52%-75%, respectively, the stainless steel foam may hold excellent 3D open-cell network structure and uniform muscles; the particle size of the stainless steel powder and the slurry loading in precursor have great effects on the bending strength, apparent density and open porosity of stainless steel foam; when the stainless steel powder with particle size of 44 tan and slurry loading of 0.5 g/cm3 in precursor are used, a stainless steel foam can be obtained, which has open porosity of 81.2%, bending strength of about 51.76 MPa and apparent density of about 1.0 g/cm3.

  2. Recycle of radiologically contaminated austenitic stainless steels

    International Nuclear Information System (INIS)

    The United States Department of Energy owns large quantities of radiologically contaminated austenitic stainless steel which could by recycled for reuse if appropriate release standards were in place. Unfortunately, current policy places the formulation of a release standard for USA industry years, if not decades, away. The Westinghouse Savannah River Company, Idaho National Engineering Laboratory and various university and industrial partners are participating in initiative to recycle previously contaminated austenitic stainless steels into containers for the storage and disposal of radioactive wastes. This paper describes laboratory scale experiments which demonstrated the decontamination and remelt of stainless steel which had been contaminated with radionuclides

  3. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  4. Hydrogen compatibility handbook for stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, G.R. Jr.

    1983-06-01

    This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

  5. Horizontal electron beam welding for stainless steels

    International Nuclear Information System (INIS)

    Stainless steel samples have been realized by local vacuum apparatus for electron beam welding applications to reactor core shell realizations. The best welding parameters have been determined by a systematic study. The welds have been characterized by mechanical tests

  6. A Duplex Stainless Steel for Chloride Environments

    Science.gov (United States)

    Sridhar, N.; Kolts, J.; Flasche, L. H.

    1985-03-01

    This paper examines the effects of microstructural changes on the corrosion, stress corrosion cracking and corrosion fatigue resistance of a duplex stainless steel to chloride environments. The microstructural changes can be precipitation of phases such as sigma and carbides, or changes in the distribution of austenite and ferrite. The former can be important in hot forming operations while the latter is important in welding. The methods of minimizing these deleterious effects can sometimes be different from those used for austenitic stainless steel.

  7. Studies of stainless steel exposed to sandblasting

    OpenAIRE

    Horodek Paweł; Eseev Marat K.; Kobets Andrey G.

    2015-01-01

    The influence of sandblasting on surface and subsurface of stainless steel is investigated using variable energy positron beam (VEP), positron annihilation spectroscopy (PAS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Samples of stainless steel were blasted using 110 μm particles of Al2O3 under different pressure and time duration. In the case of sandblasting for 90 s, the reduction of positron diffusion length depending on the applied pressure was observed. Sandb...

  8. Fracture toughness properties of duplex stainless steels

    OpenAIRE

    Sieurin, Henrik

    2006-01-01

    Good toughness properties in base and weld material enable the use of duplex stainless steels (DSS) in critical applications. DSS offer high strength compared to common austenitic stainless steels. The high strength can be utilized to reduce the wall thickness and accordingly accomplish reduction of cost, welding time and transportation weight, contributing to ecological and energy savings. Although DSS have been used successfully in many applications the last decades, the full utilisation in...

  9. Phase transformations in welded supermartensitic stainless steels

    OpenAIRE

    Carrouge, Dominique

    2002-01-01

    Supermartensitic stainless steels have recently been introduced in the oil and gas industries to substitute more expensive duplex stainless steels for onshore and offshore tubing applications. Although easily joined by arc welding processes, the service life of the supermartensitic welded joint in corrosive environments relies to a large extent on the behaviour of the heat-affected zone (HAZ). The microstructure of the HAZ in these new materials has, until now, received little ...

  10. Stainless steel recycle FY94 progress report

    International Nuclear Information System (INIS)

    The Materials Technology Section (MTS) of the Savannah River Technology Center (SRTC) was asked to demonstrate the practicality of recycling previously contaminated stainless steel components such as reactor heat exchanger heads, process water piping and slug buckets into 208 liters (55 gallon) drums and 2.8 cubic meter (100 ft3) storage boxes. Radioactively contaminated stainless steel scrap will be sent to several industrial partners where it will be melted, decontaminated/cast into ingots, and rolled into plate and sheet and fabricated into the drums and boxes. As part of this recycle initiative, MTS was requested to demonstrate that radioactively contaminated Type 304L stainless steel could be remelted and cast to meet the applicable ASTM specification for fabrication of drums and boxes. In addition, MTS was requested to develop the technical basis of melt decontamination and establish practicality of using this approach for value added products. The findings presented in this investigation lead to the following conclusions: recycle of 18 wt% Cr-8 wt% Ni alloy can be achieved by melting Type 304 stainless steel in a air vacuum induction furnace; limited melt decontamination of the contaminated stainless steel was achieved, surface contamination was removed by standard decontamination techniques; carbon uptake in the as-cast ingots resulted from the graphite susceptor used in this experiment and is unavoidable with this furnace configuration. A new furnace optimized for melting stainless steel has been installed and is currently being tested for use in this program

  11. High Mn austenitic stainless steel

    Science.gov (United States)

    Yamamoto, Yukinori [Oak Ridge, TN; Santella, Michael L [Knoxville, TN; Brady, Michael P [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Liu, Chain-tsuan [Knoxville, TN

    2010-07-13

    An austenitic stainless steel alloy includes, in weight percent: >4 to 15 Mn; 8 to 15 Ni; 14 to 16 Cr; 2.4 to 3 Al; 0.4 to 1 total of at least one of Nb and Ta; 0.05 to 0.2 C; 0.01 to 0.02 B; no more than 0.3 of combined Ti+V; up to 3 Mo; up to 3 Co; up to 1W; up to 3 Cu; up to 1 Si; up to 0.05 P; up to 1 total of at least one of Y, La, Ce, Hf, and Zr; less than 0.05 N; and base Fe, wherein the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale including alumina, nanometer scale sized particles distributed throughout the microstructure, the particles including at least one of NbC and TaC, and a stable essentially single phase FCC austenitic matrix microstructure that is essentially delta-ferrite-free and essentially BCC-phase-free.

  12. Review on research and application of stainless steel reinforced concrete

    OpenAIRE

    Gu Li; Meng Xian Hong

    2016-01-01

    For ordinary reinforced under corrosion environment corrosion problems and analysis the main factors affecting ordinary steel corrosion, proposed stainless steel bar rust and corrosion resistance advantages, introduce the related properties of the stainless steel reinforced, combined with the research status of domestic and international stainless steel bar, put forward the research and engineering application of stainless steel rebar for the related problems and direction, the prospects and ...

  13. Radiation-induced sensitisation of stainless steels

    International Nuclear Information System (INIS)

    The book contains the proceedings of a symposium on radiation-induced sensitization of stainless steels, which took place at Berkeley, United Kingdom, 1986. The purpose of the symposium was to examine the mechanism leading to inter-granular corrosion of 20%Cr/25% Ni/Nb stainless steel cladding of AGR fuel following irradiation. Nine papers are presented, of which three are theoretical, two papers are based upon corrosion studies of 20%Cr/25%Ni/Nb steel, and the remaining are concerned with compositional redistribution and its measurement. (U.K.)

  14. Corrosion behavior of sensitized duplex stainless steel.

    Science.gov (United States)

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  15. Aging degradation of cast stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.

    1985-10-01

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 450/sup 0/C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the ..cap alpha..' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 450/sup 0/C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 450/sup 0/C. 18 refs., 13 figs.

  16. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast-duplex stainless steels under light-water reactor operating conditions. Data from room-temperature Charpy-impact tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and compared with results from other studies. Microstructures of cast-duplex stainless steels subjected to long-term aging either in the laboratory or in reactor service have been characterized. The results indicate that at least two processes contribute to the low-temperature embrittleent of duplex stainless steels, viz., weakening of the ferrite/austenite phase boundary by carbide precipitation and embrittlement of ferrite matrix by the formation of additional phases such as G-phase, Type X, or the α' phase. Carbide precipitation has a significant effect on the onset of embrittlement of CF-8 and -8M grades of stainless steels aged at 400 or 4500C. The existing correlations do not accurately represent the embrittlement behavior over the temperature range 300 to 4500C. 18 refs., 13 figs

  17. HTPro: Low-temperature Surface Hardening of Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2013-01-01

    Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance.......Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance....

  18. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular, the...

  19. Low temperature gaseous surface hardening of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2011-01-01

    The present contribtion gives an overview of some of the technological aspects of low temperature thermochemical treatment of stainless steel. Examples of low temperature gaseous nitriding, carburising and nitrocarburising of stainless steel are presented and discussed. In particular, the...

  20. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    Science.gov (United States)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  1. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  2. Use of ferrofluids in machining of metals

    Science.gov (United States)

    Podgorkov, V. V.

    1985-03-01

    Ferrofluids controlled by an external magnetic field are suitable as lubricants for moving metal machining parts. Empirical relations of the form M sub c = kDt sub bs sup av sup c were established for the unit cutting torque M sub c as function of the drill diameter, the depth of hole t, the feed rate s, and the cutting rate v when holes in Al3V aluminum alloy, TsAM10-5 zinc alloy, VT1 titanium alloy, or 12Cr18Ni10Ti stainless are cut with a drill of R6M5 high-speed steel using a fixture made of nonmagnetic stainless and a ferrofluid based on MVP mineral tool oil as lubricant. Values of the coefficient and the exponents were determined by the Student significance test and Fisher adequacy test. It is found that ferrofluid as lubricant is more effective in machining of nonmagnetic materials.

  3. Initial oxidation of duplex stainless steel 2205

    Energy Technology Data Exchange (ETDEWEB)

    Donik, E.; Kocijan, A.; Jenko, M. [Institute of metals and technology, Ljubljana (Slovenia)

    2009-07-01

    Due to superior mechanical and corrosion properties of duplex stainless steels which result in weight reduction of the constructions, thus contributing to the decreases in total costs and also due to the large and versatile usage of the alloy, duplex stainless steel is gradually displacing stainless steels of the AISI 300 series. Pickling of duplex stainless steel has proven to be much more difficult than that of standard austenitic grade (AISI 300 series). There is no complete agreement in the literature on scale (high temperature oxidation) dissolution mechanism in neutral pickling solutions. During annealing, duplex stainless steel is heated in annealing furnace up to 1050 C and is kept at this temperature for some time to soften the metal in order to release the work hardening induced by hot and cold rolling. The elimination of surface defects by forming the oxide scale is required to improve the corrosion resistance. Three different techniques were used to produce thin oxide layers on polished and sputter cleaned duplex stainless steel samples. They were exposed to 10{sup -5} mb pure oxygen inside the vacuum chamber, exposed to ambient conditions for 24 hours and plasma oxidized. Oxide layers thus produced were analysed using XPS depth profiling for determination of the oxide layer's composition with depth. It was found that all techniques produce oxide layer with different traces of metallic components and with chromium oxide maximum concentration shifted towards the oxide layer - bulk metal interface. Depletion of Cr in bulk immediately below the interface was also observed. Simplified ARXPS procedure was used to corroborate thickness estimates for thinnest oxide layers. (authors)

  4. Stainless Steel Microstructure and Mechanical Properties Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  5. Measuring secondary phases in duplex stainless steels

    Science.gov (United States)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  6. Embrittlement of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    To prevent hot-cracking, austenitic stainless steel welds generally contain a small percent of delta ferrite. Although ferrite has been found to effectively prevent hot-cracking, it can lead to embrittlement of welds when exposed to elevated temperatures. The aging behavior of type-308 stainless steel weld has been examined over a range of temperatures 475--850 C for times up to 10,000 hrs. Upon aging, and depending on the temperature range, the unstable ferrite may undergo a variety of solid state transformations. These phase changes creep-rupture and Charpy impact properties

  7. 21 CFR 878.4495 - Stainless steel suture.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stainless steel suture. 878.4495 Section 878.4495...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4495 Stainless steel suture. (a) Identification. A stainless steel suture is a needled or unneedled nonabsorbable surgical suture composed of...

  8. 21 CFR 872.3350 - Gold or stainless steel cusp.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Gold or stainless steel cusp. 872.3350 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3350 Gold or stainless steel cusp. (a) Identification. A gold or stainless steel cusp is a prefabricated device made of austenitic alloys or...

  9. Nickel-free austenitic stainless steels for medical applications

    Directory of Open Access Journals (Sweden)

    Ke Yang and Yibin Ren

    2010-01-01

    Full Text Available The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength and good plasticity, better corrosion and wear resistances, and superior biocompatibility compared to the currently used 316L stainless steel, the newly developed high-nitrogen nickel-free stainless steel is a reliable substitute for the conventional medical stainless steels.

  10. Stainless chromium-nickel steels. Chapter I

    International Nuclear Information System (INIS)

    The chemical composition is tabulated of 90 chromium-nickel stainless steels and alloys given in volume %. The values are also given of the corrosion resistance of the steels and alloys. The tables show data on the surface condition or the methods of material working, types and chemical composition of the medium where corrosion resistance tests were carried out, temperature, pressure, time of tests, corrosion rates, corrosion types, and literature references. A total of 35 references is given. (J.B.)

  11. Advances in the research of nitrogen containing stainless steels

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The current status of nitrogen containing stainless steels at home and aboard has been introduced. The function and existing forms of nitrogen in the stainless steels, influence of nitrogen on mechanical properties and anti-corrosion properties as well as the application of nitrogen containing cast stainless steels were discussed in this paper. It is clear that nitrogen will be a potential and important alloying element in stainless steels. And Argon Oxygen Decarbonization (AOD) refining can provide an advanced manufacture process for nitrogen containing stainless steels with ultra-low- carbon and high cleanliness.

  12. Sintering and characterization of YAG dispersed ferritic stainless steels

    International Nuclear Information System (INIS)

    The present study investigates the effect of yttrium aluminium garnet (YAG) addition on the densification, mechanical, tribological and corrosion behaviour of ferritic (434L) stainless steels. The composites were sintered at both solid-state (1200 deg. C) and supersolidus (1400 deg. C) sintering conditions. Supersolidus sintering results in superior densification, hardness and corrosion resistance of both straight 434L stainless steel as well as YAG reinforced 434L stainless steels. The addition of YAG to 434L stainless steels at supersolidus sintered conditions improves the strength and wear resistance of 434L stainless steels without significantly degrading the corrosion performance

  13. Stainless steel forgings for nuclear chemical plants

    International Nuclear Information System (INIS)

    This Specification covers detailed requirements for the supply of austenitic stainless steel forgings used in radioactive and corrosive areas within the Nuclear Industry. With the exception of 316S51 the materials specified are all suitable for contact with nitric acid, 316S51 being included as suitable for use in contact with sodium and other alkali metals at elevated temperatures. (author)

  14. CASE-HARDENING OF STAINLESS STEEL

    DEFF Research Database (Denmark)

    2004-01-01

    The invention relates to case-hardening of a stainless steel article by means of gas including carbon and/or nitrogen, whereby carbon and/or nitrogen atoms diffuse through the surface into the article. The method includes activating the surface of the article, applying a top layer on the activated...

  15. Austenitic stainless steels for cryogenic service

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E.N.C.; Juhas, M.C.

    1985-09-19

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K.

  16. Stabilizing stainless steel components for cryogenic service

    Science.gov (United States)

    Holden, C. F.

    1967-01-01

    Warpage and creep in stainless steel valve components are decreased by a procedure in which components are machined to a semifinish and then cold soaked in a bath of cryogenic liquid. After the treatment they are returned to ambient temperature and machine finished to the final drawing dimensions.

  17. Hydrogen gas embrittlement of selected stainless steels

    International Nuclear Information System (INIS)

    Hydrogen gas embrittlement of selected stainless steels: metastable 18-8, (α+γ) IN 744 and γ' or N-hardened austenites, has been investigated means of the triaxial disk pressure test at various pressure increase rates, at RT or sometimes -500C and +1000C. Test are supplemented with SEM and magnetic phase determination

  18. Ne Implantation Induced Transformation in Stainless Steel

    NARCIS (Netherlands)

    Noordhuis, J.; Hosson, J.Th.M. De

    1990-01-01

    This paper reports a microstructural investigation of the changes induced by Ne implantation in stainless steel of the austenitic type. At a critical dose of 2.3 · 10^17/cm^2 a martensitic phase transformation was observed. In particular, attention has been paid to the effect of the stress held of n

  19. Microbially Influenced Corrosion of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deuk; Ryu, Seung Ki; Kim Young Ho [POSCO Techanical Researh Laboratories, Pohang (Korea, Republic of)

    1996-06-25

    Microbially Influenced Corrosion(MIC) is often a significant factor in controlling the long-term performance of most structural materials in industrial applications. This papers cover MIC mechanism and evaluation of stainless steels in soil and sea water environments. Papers also cover detection, monitoring and mitigation of MIC, biocides and treatments. (author). 28 refs., 2 tabs., 5 figs.

  20. Austenitic stainless steels for cryogenic service

    International Nuclear Information System (INIS)

    Presently available information on austenitic Fe-Cr-Ni stainless steel plate, welds, and castings for service below 77 K are reviewed with the intent (1) of developing systematic relationships between mechanical properties, composition, microstructure, and processing, and (2) of assessing the adequacy of these data bases in the design, fabrication, and operation of engineering systems at 4 K

  1. Granulate of stainless steel as compensator material

    NARCIS (Netherlands)

    J.P.C. van Santvoort (J. P C)

    1995-01-01

    textabstractCompensators produced with computer controlled milling devices usually consist of a styrofoam mould, filled with an appropriate material. We investigated granulate of stainless steel as filling material. This cheap, easy to use, clean and re-usable material can be obtained with an averag

  2. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' and Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of G phase to loss of toughness is now known. Microstructural data also indicate that weakening of ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 4500C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  3. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  4. Nickel-free austenitic stainless steels for medical applications

    OpenAIRE

    Ke Yang and Yibin Ren

    2010-01-01

    The adverse effects of nickel ions being released into the human body have prompted the development of high-nitrogen nickel-free austenitic stainless steels for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel in medical stainless steels, the advantages of nitrogen in stainless steels, and emphatically, the development of high-nitrogen nickel-free stainl...

  5. Tensile-property characterization of thermally aged cast stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K. [Argonne National Lab., IL (United States)

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  6. Phase Transformation in Cast Superaustenitic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee Phillips, Nathaniel Steven [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.

  7. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  8. Studies of stainless steel exposed to sandblasting

    Directory of Open Access Journals (Sweden)

    Horodek Paweł

    2015-12-01

    Full Text Available The influence of sandblasting on surface and subsurface of stainless steel is investigated using variable energy positron beam (VEP, positron annihilation spectroscopy (PAS, scanning electron microscopy (SEM, and atomic force microscopy (AFM. Samples of stainless steel were blasted using 110 μm particles of Al2O3 under different pressure and time duration. In the case of sandblasting for 90 s, the reduction of positron diffusion length depending on the applied pressure was observed. Sandblasting during 30 s leads only to the reduction of positron diffusion length to about 60 nm for all samples. Positron lifetimes close to 170 ps measured using positrons emitted directly from the source point to the presence of vacancies on the dislocation lines. SEM and AFM images show that surface roughness depends rather on pressure of sandblasting than time of exposition.

  9. Weldability of Additive Manufactured Stainless Steel

    Science.gov (United States)

    Matilainen, Ville-Pekka; Pekkarinen, Joonas; Salminen, Antti

    Part size in additive manufacturing is limited by the size of building area of AM equipment. Occasionally, larger constructions that AM machines are able to produce, are needed, and this creates demand for welding AM parts together. However there is very little information on welding of additive manufactured stainless steels. The aim of this study was to investigate the weldability aspects of AM material. In this study, comparison of the bead on plate welds between AM parts and sheet metal parts is done. Used material was 316L stainless steel, AM and sheet metal, and parts were welded with laser welding. Weld quality was evaluated visually from macroscopic images. Results show that there are certain differences in the welds in AM parts compared to the welds in sheet metal parts. Differences were found in penetration depths and in type of welding defects. Nevertheless, this study presents that laser welding is suitable process for welding AM parts.

  10. Tritium Depth Profiles in 316 Stainless Steel

    Science.gov (United States)

    Torikai, Yuji; Murata, Daiju; Penzhorn, Ralf-Dieter; Akaishi, Kenya; Watanabe, Kuniaki; Matsuyama, Masao

    To investigate the behavior of hydrogen uptake and release by 316 stainless steel (SS316), as-received and finely polished stainless steel specimens were exposed at 573 K to tritium gas diluted with hydrogen. Then tritium concentration in the exposed specimens was measured as a function of depth using a chemical etching method. All the tritium concentration profiles showed a sharp drop in the range of 10 μm from the top surface up to the bulk. The amount of tritium absorbed into the polished specimens was three times larger than that into the as-received specimen. However, the polishing effects disappeared by exposing to the air for a long time.

  11. Warm compacting behavior of stainless steel powders

    Institute of Scientific and Technical Information of China (English)

    肖志瑜; 柯美元; 陈维平; 召明; 李元元

    2004-01-01

    The warm compacting behaviors of four different kinds of stainless steel powders, 304L, 316L, 410L and 430L, were studied. The results show that warm compaction can be applied to stainless steel powders. The green densities and strengths of compacts obtained through warm compaction are generally higher than those obtained through cold compaction. The compacting behaviors in warm compaction and cold compaction are similar.Under the compacting pressure of 700 MPa, the warm compacted densities are 0. 10 - 0.22 g/cm3 higher than the cold compacted ones, and the green strengths are 11.5 %-50 % higher. The optimal warm compacting temperature is 100 - 110 ℃. In the die wall lubricated warm compaction, the optimum internal lubricant content is 0.2%.

  12. State on AISI 304 Stainless Steel

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2011-01-01

    Full Text Available The passivity and protective nature of the passive films are essentially related to ionic and electronic transport processes, which are controlled by the optical and electronic properties of passive films. In this study, the electrochemical behavior of passive films anodically formed on AISI 304 stainless steel in sulfuric acid solution has been examined using electrochemical impedance spectroscopy. AISI 304 in sulphuric acid solution is characterized by high interfacial impedance, thereby illustrating its high corrosion resistance. Results showed that the interfacial impedance and the polarization resistance (pol initially increase with applied potential, within the low potential passive. However, at a sufficiently high potential passive (>0.4 V, the interfacial impedance and the polarization resistance decrease with increasing potential. An electrical equivalent circuit based on the impedance analysis, which describes the behavior of the passive film on stainless steel more satisfactorily than the proposed models, is presented.

  13. Diamond deposition on siliconized stainless steel

    International Nuclear Information System (INIS)

    Silicon diffusion layers in AISI 304 and AISI 316 type stainless steels were investigated as an alternative to surface barrier coatings for diamond film growth. Uniform 2 μm thick silicon rich interlayers were obtained by coating the surface of the steels with silicon and performing diffusion treatments at 800 deg. C. Adherent diamond films with low sp2 carbon content were deposited on the diffused silicon layers by a modified hot filament assisted chemical vapor deposition (HFCVD) method. Characterization of as-siliconized layers and diamond coatings was performed by energy dispersive X-ray analysis, scanning electron microscopy, X-ray diffraction and Raman spectroscopy.

  14. Fatigue fracture modes of a stainless steel

    International Nuclear Information System (INIS)

    The influence of strain hardening and martensite phase transformation on the fatigue fracture regions (pulsative tension) of a Stainless Steel type AISI 316 was investigated. This lead to the conclusion that the greater austenite strain hardening level only favours the occurrence of a brittle fracture. Also, in as much as the static induced martensite is concerned, a direct influence on the failure process was not observed, whereas, apparently, the one transformed under cyclic loading has no contribution to the rupture mechanisms. (author)

  15. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  16. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  17. Complex Protection of Vertical Stainless Steel Tanks

    OpenAIRE

    Fakhrislamov Radik Zakievich

    2014-01-01

    The authors consider the problem of fail-safe oil and oil products storage in stainless steel tanks and present the patented tank inner side protection technology. The latter provides process, ecological and fire safety and reducing soil evaporation of oil products, which is a specific problem. The above-mentioned technology includes corrosion protection and heat insulation protection providing increase of cover durability and RVS service life in general. The offered technological protection ...

  18. Cyclic deformation of duplex stainless steels

    OpenAIRE

    Mateo García, Antonio Manuel; Gironés, Ana

    2011-01-01

    Duplex stainless steels configure a family of metallic alloys that combined elevated mechanical properties with improved corrosion resistance when compared to standard austenitic grades. This excellent combination of properties leads to their use under many different applications, particularly in the fields of chemical, petrochemical, pulp and paper industries. Moreover, these applications usually involve cyclic loading, and consequently the study of fatigue properties has a great significanc...

  19. Thermal ageing of duplex stainless steels

    International Nuclear Information System (INIS)

    The evolution of the mechanical properties of Mobearing anf Mo-free cast duplex stainless steels, induced by long term ageing in the range 300-400 deg C, has been studied in relation with the evolution of their microstructure. The unmixing of the ferritic Fe-Cr-Ni, solid solution by three-dimensional (sponge-like) spinodal decomposition and the precipitation of intermetallic G-phase particles are the main characteristics of this microstructural evolution

  20. SRS stainless steel beneficial reuse program

    Energy Technology Data Exchange (ETDEWEB)

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  1. SCC of stainless steel under evaporative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, H.; Arnvig, P.E.; Wasielewska, W.; Wegrelius, L.; Wolfe, C. [Avesta Sheffield AB, Avesta (Sweden)

    1998-12-31

    Three different test methods have been used to assess the susceptibility of different stainless steel grades to SCC under evaporative and immersed conditions. The methods employed were the drop evaporation test, the wick test and a high temperature, high pressure test simulating a feedwater heater tubing application in power plants. The alloys investigated were commercially produced austenitic and duplex stainless steels varying in chemical composition, plus one copper-nickel alloy. The resistance of austenitic stainless steels towards SCC increased by increasing the content of Ni, Mo and Cr, thus the super austenitic 654SMO{reg_sign} (uns32654) did not show any cracking in any of the three tests. The super austenitic 254SMO{reg_sign} (UNS31254) revealed only slight SCC in the simulated feed water heater tubing application while the equivalent N08367 revealed severe pitting and cracking. The drop evaporation test exhibited the most severe test conditions characterized by thermally induced fatigue effects, sensibility to onset of corrosion and severe acidic conditions generated under deposits on the test specimen. Some factors in stress corrosion cracking tests such as thermal fatigue, diffusion, heat transfer and stress condition, are discussed with regard to their influence on the test results.

  2. Aging degradation of cast stainless steel

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. Microstructures of cast materials subjected to long-term aging either in reactor service or in the laboratory have been characterized by TEM, SANS, and APFIM techniques. Two precipitate phases, i.e., the Cr-rich α' phase and the Ni- and Si-rich G phase, have been identified in the ferrite matrix of the aged steels. The results indicate that the low-temperature embrittlement is primarily caused by α' precipitates which form by spinodal decomposition. The relative contribution of the G phase to loss of toughness is now known. Microstructural data also indicate that weakening of the ferrite/austenite phase boundary by carbide precipitates has a significant effect on the onset and extent of embrittlement of the high-carbon CF-8 and CF-8M grades of stainless steels, particularly after aging at 400 or 4500C. Data from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 350, 400, and 4500C are presented and correlated with the microstructural results. Thermal aging of the steels results in an increase in tensile strength and a decrease in impact energy, J/sub IC/, and tearing modulus. The fracture toughness results show good agreement with the Charpy-impact data. The effects of compositional and metallurgical variables on loss of toughness are discussed

  3. Corrosion fatigue of a superduplex stainless steel weldment

    OpenAIRE

    Comer, Anthony John

    2004-01-01

    Superduplex stainless steels have superior mechanical and corrosion properties compared to austenitic stainless steels such as the grade 300 series. This is a result of a microstructure consisting of roughly equal percentages of austenite (y) and ferrite (a) and negligible inclusion content. As a result, super duplex stainless steels are increasingly being used in the offshore oil and gas industries. It is also envisaged that they will find application in the emergent renewable energy sec...

  4. Sinter-hardening process applicable to stainless steels

    OpenAIRE

    M. Rosso; Z. Brytan; L.A. Dobrzański

    2007-01-01

    Purpose: of this paper was to describe sintered duplex stainless steels manufactured in sinter-hardening process and its usability in field of stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, ferritic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies apart from the preparation of mixes, Schaeffler’s diagram was taken into consideration. Pr...

  5. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    OpenAIRE

    Oladayo OLANIRAN; Peter Apata OLUBAMBI; Benjamin Omotayo ADEWUYI; Joseph Ajibade OMOTOYINBO; Ayodeji Ebenezar AFOLABI; Davies FOLORUNSO; Adekunle ADEGBOLA; Emanuel IGBAFEN

    2015-01-01

    Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction) dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr) and Nickel (Ni) were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail...

  6. Buckling response of ferritic stainless steel columns at elevated temperatures

    OpenAIRE

    Afshan, S; Gardner, L; Baddoo, NR

    2013-01-01

    This paper presents a numerical study on the buckling behaviour of ferritic stainless steel columns in fire. Finite element models were developed and validated against existing test results to predict the elevated temperature non-linear response of ferritic stainless steel columns. A total of nine austenitic and three ferritic stainless steel column tests were replicated using the finite element analysis package ABAQUS. Parametric studies were performed to investigate the effects of variation...

  7. Electrochemical aspects of stainless steel behaviour in biocorrosive environment

    International Nuclear Information System (INIS)

    Electrochemical measurements have been used to evaluate and follow, to understand and control microbial induced corrosion of stainless steels. Results include seawater loop tests and laboratory-based microbiological experiments. With natural flowing seawater, impedance spectroscopy measurements have been used to evaluate and follow biofilms on stainless steel tube-electrodes. With batch cultures of single bacterial strain (Sulphate Reducing Bacteria), open-circuit potential measurements and polarization curves performed on 316 L and 430 Ti stainless steels, have shown that the corrosion behaviour of these stainless steels is mainly dependent on the sulphide content of the culture media

  8. Complex Protection of Vertical Stainless Steel Tanks

    Directory of Open Access Journals (Sweden)

    Fakhrislamov Radik Zakievich

    2014-03-01

    Full Text Available The authors consider the problem of fail-safe oil and oil products storage in stainless steel tanks and present the patented tank inner side protection technology. The latter provides process, ecological and fire safety and reducing soil evaporation of oil products, which is a specific problem. The above-mentioned technology includes corrosion protection and heat insulation protection providing increase of cover durability and RVS service life in general. The offered technological protection scheme is a collaboration of the author, Steel Paint GmbH firm and JSC “Koksokhimmontazhproyekt”. PU foam unicomponent materials of Steel Paint GmbH firm provide the protection of tank inner side and cover.

  9. Bacterial inhibition of silver-containing stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, W.C. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Chang, S.M.; Lin, J.D.; Tseng, I.S.; Wu, J.K. [National Taiwan Ocean Univ., Taiwan (China). Inst. of Materials Engineering

    2010-07-01

    In this study, silver (Ag) was added to AlSl 316 austenitic 2205 duplex and 430 ferritic stainless steels as a means of inhibiting bacterial contamination. Three Ag-containing stainless steels were prepared using vacuum melting techniques. The influence of the Ag addition on corrosion resistance, bacterial inhibition, and mechanical properties was investigated. A study of the Ag-containing stainless steel microstructures demonstrated that Ag precipitates as small particles on the steel matrix surface. The precipitates act as anodes in the local action cell in the presence of bacteria. Ag dissolution mechanisms from the Ag precipitates on the Ag-containing stainless steels in the presence of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were also discussed. Results of the study suggested that Ag-containing stainless steels may be used in areas where hygiene is a significant concern.

  10. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate CN/CFe near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  11. Fatigue properties of duplex stainless steel

    OpenAIRE

    Turrel, Benjamin; Luna Garcia, Jordi; Andraschko, Stephan

    2009-01-01

    PFC presentat a Oslo University College The aim of the project is to study fatigue properties of duplex stainless steel used for a bridge. The samples had to be tested and the results have to be compared with the theory, studied before. Six specimens have been broken by tensile fatigue testing machine in order to get more knowledge about the lifetime and the behavior under dynamic stress and not only for welded parts. Out of this new knowledge a new fatigue curve for this ma...

  12. Flow lines and microscopic elemental inhomogeneities in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Mosley, Jr, W C

    1982-01-01

    Flow lines in mechanically formed austenitic stainless steels are known to influence fracture behavior. Enhancement of flow lines by chemical etching is evidence of elemental inhomogeneity. This paper presents the results of electron microprobe analyses to determine the nature of flow lines in three austenitic stainless steels: 21Cr-6Ni-9Mn, 304L, and 19Ni-18Cr.

  13. EXAFS investigation of low temperature nitrided stainless steel

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny;

    2008-01-01

    Low temperature nitrided stainless steel AISI 316 flakes were investigated with EXAFS and X-ray diffraction analysis. The stainless steel flakes were transformed into a mixture of nitrogen expanded austenite and nitride phases. Two treatments were carried out yielding different overall nitrogen...

  14. Characterization of silane layers on modified stainless steel surfaces and related stainless steel-plastic hybrids

    International Nuclear Information System (INIS)

    The aim of this work was to characterize silane layers on the modified stainless steel surfaces and relate it to the adhesion in the injection-molded thermoplastic urethane-stainless steel hybrids. The silane layers were characterized with scanning electron microscope and transmission electron microscope, allowing the direct quantization of silane layer thickness and its variation. The surface topographies were characterized with atomic force microscope and chemical analyses were performed with X-ray photoelectron spectroscopy. The mechanical strength of the respective stainless steel-thermoplastic urethane hybrids was determined by peel test. Polishing and oxidation treatment of the steel surface improved the silane layer uniformity compared to the industrially pickled surface and increased the adhesion strength of the hybrids, resulting mainly cohesive failure in TPU. XPS analysis indicated that the improved silane bonding to the modified steel surface was due to clean Fe2O3-type surface oxide and stronger interaction with TPU was due to more amino species on the silane layer surface compared to the cleaned, industrially pickled surface. Silane layer thickness affected failure type of the hybrids, with a thick silane layer the hybrids failed mainly in the silane layer and with a thinner layer cohesively in plastic.

  15. Operational experience with stainless steel condenser tubes

    International Nuclear Information System (INIS)

    Longitudinal seam welded tubes of stainless austenitic 18/8 CrNi and 18/8/2 CrNiMo steels have proved their worth when used in steam condensers with fresh water recooling. However, in water containing a high level of salt, in particular brackish water and seawater, experience to date has not been satisfactory in the case of these materials. High-alloy austenitic, ferritic and austenitic-ferritic steels developed during the last 10 years, on the other hand, have high pitting potentials and, both in the laboratory and in practice, have proved their suitability as heat-exchanger materials for steam condensers. These materials are easily worked to form welded tubes with a longitudinal seam and are therefore a relatively inexpensive design which ensures both plant safety and availability

  16. Development of a lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Liljas, M.; Johansson, P.; Liu Hui-Ping; Olsson, C.O.A. [Avesta Research Centre, Avesta (Sweden). Outokumpu Stainless

    2008-06-15

    The classic series of duplex stainless steels shows very high corrosion resistance and can be used for very demanding applications. A new lean duplex steel, LDX 2101 {sup registered} (EN 1.4162, UNS S32101), has been developed with corrosion resistance on a par with standard austenitic grades. Application areas include: structural components, chemical industry, tanks and containers. The steel was designed to have equal amounts of ferrite and austenite in annealed condition and with an austenite that is stable against strain-induced martensite. Thanks to its high nitrogen content, the steel has a fast austenite reformation when subjected to thermal cycling, e.g. welding. Unlike conventional duplex grades, the formation of intermetallic phase is very sluggish, although precipitation of nitrides and carbides has a certain impact on material properties after exposure in the temperature range 600 to 800 C. The precipitation behaviour after different isothermal treatments is described and its influence on different product properties is shown. A good agreement was found between impact toughness and corrosion resistance for a wide range of thermal treatments. (orig.)

  17. Citric Acid Passivation of Stainless Steel

    Science.gov (United States)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  18. Carburization of stainless steel furnace tubes

    International Nuclear Information System (INIS)

    Stainless steel containing molybdenum are usually recommended to resist naphtenic acid corrosion in vacuum heaters. In 1993 the original 5Cr-1/2Mo roof tubes of the furnace in a vacuum unit were replaced by stainless steel 316 Ti to minimize tube replacement and increase heater reliability. Unexpectedly, some of the new tubes failed after only three years of service and just one year after undergoing the last inspection. The damage occurred in the form of deep holes and perforations, starting from the outside tube surface on the fireside. Coke build-up occurred due to severe operating conditions, overheating the tubes on the fireside, above 675 Centigrade. Metallographic and Scanning Electron Microscopy (Sem) examination revealed internal and external carburization of the material due to the presence of coke and combustion ashes, respectively. The increase in the skin metal temperature facilitated the diffusion of carbon from these carbon-rich deposits into the low carbon content material (0.023%). Depletion of chromium at the grain boundaries due to the massive formation of chromium carbides, resulted in a severe intergranular corrosion attack by molten salts rich in vanadium and sulfur produced by asphalt burning. Normal operating practice demands the use of steam for the heater tubes to control coke build-up. This practice had been first reduced and then eliminated, during the past two years prior to the failure, because of economic incentives. This paper describes the root cause analysis conducted to account for these premature tube failures. (Author)

  19. Fracture toughness of irradiated stainless steel alloys

    International Nuclear Information System (INIS)

    The postirradiation fracture toughness responses of Types 316 and 304 stainless steel (SS) wrought products, cast CF8 SS and Type 308 SS weld deposit were characterized at 4270C using J/sub R/-curve techniques. Fast-neutron irradiation of these alloys caused an order of magnitude reduction in J/sub c/ and two orders of magnitude reduction in tearing modulus at neutron exposures above 10 dpa, where radiation-induced losses in toughness appeared to saturate. Saturation J/sub c/ values for the wrought materials ranged from 28 to 31 kJ/m2; the weld exhibited a saturation level of 11 kJ/m2. Maximum allowable flaw sizes for highly irradiated stainless steel components stressed to 90% of the unirradiated yield strength are on the order of 3 cm for the wrought material and 1 cm for the weld. Electron fractographic examination revealed that irradiation displacement damage brought about a transition from ductile microvoid coalescence to channel fracture, associated with local separation along planar deformation bands. The lower saturation toughness value for the weld relative to that for the wrought products was attributed to local failure of ferrite particles ahead of the advancing crack which prematurely initiated channel fracture

  20. Embrittlement of austenitic stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Vitek, J.M. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-31

    The microstructure of type-308 austenitic stainless steel weld metal containing {gamma} and {delta} and ferrite is shown. Typical composition of the weld metal is Cr-20.2, Ni-9.4, Mn-1.7, Si-0.5, C-0.05, N-0.06 and balance Fe (in wt %). Exposure of austenitic stainless steel welds to elevated temperatures can lead to extensive changes in the microstructural features of the weld metal. On exposure to elevated temperatures over a long period of time, a continuous network of M{sub 23}C{sub 6} carbide forms at the austenite/ferrite interface. Upon aging at temperatures between 550--850 C, ferrite in the weld has been found to be unstable and transforms to sigma phase. These changes have been found to influence mechanical behavior of the weld metal, in particular the creep-rupture properties. For aging temperatures below 550 C the ferrite decomposes spinodally into {alpha} and {alpha}{prime} phases. In addition, precipitation of G-phase occurs within the decomposed ferrite. These transformations at temperatures below 550 C lead to embrittlement of the weld metal as revealed by the Charpy impact properties.

  1. Assessment of thermal embrittlement of cast stainless steels

    International Nuclear Information System (INIS)

    A procedure and correlations are presented for assessing thermal embrittlement and predicting Charpy-impact energy and fracture toughness J-R curve of cast stainless steel components under Light Water Reactor operating conditions from known material information. The ''saturation'' impact strength and fracture toughness of a specific cast stainless steel, i.e., the minimum value that would be achieved for the material after long-term service, is estimated from the chemical composition of the steel. Fracture properties as a function of time and temperature of reactor service are estimated from the kinetics of embrittlement, which are also determined from chemical composition. A common ''predicted lower-bound'' J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, ferrite content, and temperature. Examples of estimating fracture toughness of cast stainless steel components during reactor service are presented

  2. EXPERIMENTAL RESEARCH OF THE DUPLEX STAINLESS STEEL WELDS IN SHIPBUILDING

    OpenAIRE

    Juraga, Ivan; Stojanović, Ivan; Ljubenkov, Boris

    2014-01-01

    Duplex stainless steel is used in shipbuilding increasingly because of its good mechanical properties and marked corrosion resistance. This steel has a two phase structure (austenite-ferrite) which is sensitive on heat input during welding because of the possible ferritisation appearance, that is, increase in ferrite content in the area of heat effected zone (HAZ) which can lead to loss of mechanical and corrosion properties. Work with duplex stainless steel requires special attention in ever...

  3. Nickel-free Stainless Steel for Medical Applications

    Institute of Scientific and Technical Information of China (English)

    Yibin REN; Ke YANG; Bingchun ZHANG; Yaqing WANG; Yong LIANG

    2004-01-01

    BIOSS4 steel is essentially a nickel-free austenitic stainless steel developed by the Institute of Metal Research, Chinese Academy of Sciences, in response to nickel allergy problems associated with nickel-containing stainless steels that are widely used in medical applications. The high nitrogen content of this steel effectively maintains the austenitic stability and also contributes to the high levels of corrosion resistance and strength. BIOSS4 steel possesses a good combination of high strength and toughness, better corrosion resistance, and better blood compatibility, in comparison with the medical 316L stainless steel. Potential applications of BIOSS4 steel can include medical implantation material and orthodontic or orthopedic devices, as well as jewelries and other decorations.

  4. In vivo behavior of a high performance duplex stainless steel.

    Science.gov (United States)

    Cigada, A; De Santis, G; Gatti, A M; Roos, A; Zaffe, D

    1993-01-01

    An in vivo investigation of a new high molybdenum and nitrogen duplex stainless steel (25Cr--7Ni--4Mo--0.3N) has been performed. Cylindrical pins and specially developed devices, to test in static conditions the in vivo localized corrosion resistance, made of this new duplex steel and of a common austenitic stainless steel were implanted in rabbit's femurs for 6 and 12 months. After sacrifice, SEM observations and EDS microanalyses to detect metallic ion release were carried out on the femur sections surrounding the pins. Morphologic observations with stereoscope and SEM were performed on the metallic surfaces of the special devices in order to detect the presence of localized corrosion. Both ion release and localized corrosion were observed for the specimens made of austenitic stainless steel, but not for those made of 25Cr--7Ni--4Mo--0.3N duplex stainless steel. PMID:10148344

  5. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Science.gov (United States)

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  6. Compressibility of 304 Stainless Steel Powder Metallurgy Materials Reinforced with 304 Short Stainless Steel Fibers

    Directory of Open Access Journals (Sweden)

    Bibo Yao

    2016-03-01

    Full Text Available Powder metallurgy (P/M technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.

  7. A mortality study among mild steel and stainless steel welders.

    Science.gov (United States)

    Moulin, J J; Wild, P; Haguenoer, J M; Faucon, D; De Gaudemaris, R; Mur, J M; Mereau, M; Gary, Y; Toamain, J P; Birembaut, Y

    1993-03-01

    A mortality study was carried out in conjunction with the European mortality study among welders coordinated by the International Agency for Research on Cancer (IARC). The study was aimed at assessing risks for lung cancer in relation to exposure to asbestos, welding fumes containing chromium and nickel, and tobacco smoke. The study included a cohort of 2721 welders and an internal comparison group of 6683 manual workers employed in 13 factories in France. The mortality of the two cohorts was studied from 1975 to 1988 by the historical prospective method. Job histories of welders were traced including welding processes used, metals welded, and proportion of worktime spent in welding. Data on smoking habits were collected from medical records. The observed number of deaths were compared with those expected (standardised mortality ratio (SMR)) based on national rates with adjustments for age, sex, and calendar time. The smoking habits of 87% of the whole study population were known. The distribution of welders and controls according to smoking was not statistically different. The overall mortality was slightly higher for welders (SMR = 1.02, 95% confidence interval (95% CI) 0.89-1.18) than for controls (SMR = 0.91, 95% CI 0.84-0.99). For lung cancer, the SMR was 1.24 (95% CI 0.75-1.94) for welders, whereas the corresponding value was lower for controls (SMR = 0.94, 95% CI 0.68-1.26). The SMR for lung cancer was 1.59 among non-shipyard mild steel welders (95% CI 0.73-3.02). This contrasted with the results for all stainless steel welders (SMR = 0.92, 95% CI 0.19-2.69), and for stainless steel welders predominantly exposed to chromium VI (SMR = 1.03, 95% CI 0.12-3.71). Moreover, SMRs for lung cancer for mild steel welders tended to increase with duration of exposure and time since first exposure, leading to significant excesses for duration > or = 20 years and latency > or = 20 years. Such a pattern was not found for stainless steel welders.

  8. Nitrogen bearing austenitic stainless steels for surgical implants

    Energy Technology Data Exchange (ETDEWEB)

    Tschiptschin, A.P.; Aidar, C.H.; Alonso-Falleiros, N. [Sao Paulo Univ. (Brazil). Escola Politecnica; Neto, F.B. [Instituto de Pesquisas Tecnologicas, Sao Paulo (Brazil)

    1999-07-01

    Nitrogen addition promotes substantial improvements on general and localized corrosion performance of stainless steels. In recent times high nitrogen (up to 0.6 wt%) and Mn bearing super austenitic stainless steel has been studied for medical applications due to its low Ni content, the so called body friendly alloys. 18%Cr, 0.4%N and 15%Mn stainless steels were cast either from electrolytic or commercial master alloys in induction furnace, forged, solubilized at 1423K for 3 hours and water quenched. Delta ferrite and carbide precipitate free structures were observed. (orig.)

  9. Structural Analysis of Cavitation for Different Stainless Steels

    Directory of Open Access Journals (Sweden)

    Mădălina-Elena Mânzână

    2011-09-01

    Full Text Available The cavitation phenomenon is currently approaching all areas of technology and modern industry, where are fluid in motion. In this paper cavitational erosion was conducted on different samples of stainless steels. The cavitation were performed in magnetostrictive vibrating apparatus at Cavitation Laboratory (Polytechnic University of Timisoara. The present paper intends to identify specific structural features in stainless steels. Several investigations were done: macrostructural analysis (Olympus SZX57, scaning electron microscope (Philips SEM and X-ray diffraction (D8 ADVANCE. After quantitative and qualitative investigations structural features were put in evidence on experimental stainless steels.

  10. Investigation of the Hot Plasticity of Duplex Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    LIN Gang; ZHANG Zhi-xia; SONG Hong-wei; TONG Jun; ZHOU Can-dong

    2008-01-01

    Hot plasticity of a nitrogen alloyed 25Cr-7Ni-4 Mo duplex stainless steel was investigated.The results indicate that thc main factors affecting the hot plasticity of duplex stainless steel are listed as follows:coalescent force of phase interface,microstructure,and the phase ratio and difference between the mechanicsl propertms of ferrite and austenite.The heat treatment and sulphur contents have a notable effect on the hot plasticity.The reasonable heat treatrnents and the irlcreased interfacial coalescent force will effectively enhance the hot plasticity of duplex stainless steel.

  11. Magnetic characterisation of duplex stainless steel

    Science.gov (United States)

    Mészáros, I.

    2006-02-01

    Heat treatment-induced microstructural processes were studied by different non-destructive magnetic and mechanical material testing methods in the present work. A commercial SAF 2507 type superduplex stainless steel was investigated. This alloy contains about 40% metastable ferrite which can decompose to a sigma phase and secondary austenite due to heat treatment. All the mechanical, corrosion resistance and magnetic properties are strongly influenced by this microstructural changes. This study had two aims: to understand better the kinetics of the ferrite decomposition process and to study the application possibilities of the applied magnetic measurements. This paper presents an application possibility of the nonlinear harmonics analysis measurement and demonstrates the possibility to find a quantitative correlation between measured harmonics and mechanical properties obtained from destructive tests.

  12. Electrochemical decontamination of Pu contaminated stainless steel

    International Nuclear Information System (INIS)

    Electrochemical decontamination has been demonstrated to be very effective in removing plutonium nitrate contamination (0.5 μg cm-2) on stainless steels. The amount of metal dissolved to achieve a DF of 102 to 103 was 2 to 7 μm depending on the electrolyte used. In unstirred electrolytes 1M HNO3, 1M HNO3/0.1M NaF, 5M HNO3 perform best. Under stirred electrolyte conditions, there is a general marginal fall in effectiveness except for 5M HNO3 where there is a slight improvement. The optimum performance is a compromise between maximizing the electrolyte throwing power and minimizing substrate surface roughening during decontamination. (author)

  13. MOCVD deposition of YSZ on stainless steels

    Science.gov (United States)

    Chevalier, S.; Kilo, M.; Borchardt, G.; Larpin, J. P.

    2003-01-01

    Yttria stabilized zirconia was deposited on stainless steel using the metal-organic chemical vapor deposition (MOCVD) technique, from β-diketonate precursors. The variation of the evaporation temperatures of yttrium and zirconium precursor allowed to control the level of Y within the film. Over the temperature range 125-150 °C, the Y content increased from 2.5 to 17.6 at.%. X-ray diffraction (XRD) analyses evidenced tetragonal phase of zirconia when the Y content was below 8 at.%, and cubic phase for higher concentration. Sputtered neutral mass spectrometry (SNMS) profiles confirmed that the control and stability of Y precursor temperature were of major importance to guarantee the homogeneity of the deposited films.

  14. A stainless steel bracket for orthodontic application.

    Science.gov (United States)

    Oh, Keun-Taek; Choo, Sung-Uk; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2005-06-01

    Aesthetics has become an essential element when choosing orthodontic fixed appliances. Most metallic brackets used in orthodontic therapy are made from stainless steel (SS) with the appropriate physical properties and good corrosion resistance, and are available as types 304, 316 and 17-4 PH SS. However, localized corrosion of these materials can frequently occur in the oral environment. This study was undertaken to evaluate the accuracy of sizing, microstructure, hardness, corrosion resistance, frictional resistance and cytotoxicity of commercially available Mini-diamond (S17400), Archist (S30403) and experimentally manufactured SR-50A (S32050) brackets. The size accuracy of Mini-diamond was the highest at all locations except for the external horizontal width of the tie wing (P SS brackets. PMID:15947222

  15. MICROSCOPIC CORROSION STUDIES OF DUPLEX STAINLESS STEELS

    Institute of Scientific and Technical Information of China (English)

    C.Leygraf; J.Pan; M.Femenia

    2004-01-01

    Electrochemical scanning tunneling microscopy and scanning electrochemical microscopy have been used for in situ monitoring of localized corrosion processes of different Duplex stainless steels (DSS) in acidic chloride solutions. The techniques allow imaging of local dissolution events with micrometer resolution, as opposed to conventional electrochemical techniques, which only give an overall view of the corrosion behavior. In addition, combined scanning Kelvin probe force microscopy and magnetic force microscopy were used for mapping the Volta potential variation over the surface of DSSs. A significant difference in Volta potential between the austenite and ferrite phases suggests galvanic interaction between the phases. A compositional gradient appears within 2 micrometers across the phase boundary, as seen with scanning Auger microscopy (SAM). In all, the studies suggest that higher alloyed DSS exhibit a more homogeneous dissolution behavior than lower alloyed DSS, due to higher and more similar corrosion resistance of the two phases, and enhanced resistance of the ferrite/austenite phase boundary regions.

  16. Thermal fatigue crack growth in stainless steel

    International Nuclear Information System (INIS)

    A judgment of residual service life of engineering parts exposed to thermal fatigue makes it possible to deal with economic and safety issues in power plants. The aim of this study is to analyze a fatigue crack initiation and propagation in A321 stainless steel bodies subjected to repeated thermal shocks. For this purpose, various methods of crack propagation monitoring were used. The first stage of experiments included mechanical cyclic loading of specimens with the central notch at fixed temperatures ranging from 20 °C to 410 °C. The crack growth rate was only minimally influenced by temperature in this case. Thermal loading of the same specimens with ΔT varying from 150 °C to 340 °C showed very rapid crack initiation in the notches and its asymmetric growth. Metallographic and fractographic analyses of failed specimens were carried out after 1000, 3000 and 6000 thermal cycles. The comparison of the fracture surface micromorphology confirmed the similarity in the mechanism of the thermal and mechanical fatigue crack growth. Stress analysis using the finite element method consisting of transient thermal and mechanical solutions was performed in order to simulate the experiments. Thermal fatigue crack growth assessment was carried out on the basis of the experiments and the computed thermally induced stress intensity factors. This model successfully confirms the discussed analogy of thermal and mechanical stress induced damage. Highlights: ► A fatigue crack initiation and propagation in A321 stainless steel was analyzed. ► Mechanical and thermal experiments were performed, simulated also by FEM. ► Similarity in the mechanism of thermal and mechanical fatigue crack growth found. ► Application of the Paris model for the thermal cycling confirmed.

  17. Behaviour and design of cold-formed lean duplex stainless steel members

    OpenAIRE

    Huang, Yun'er; 黃韵兒

    2013-01-01

    Cold-formed stainless steel sections have been increasingly used in architectural and structural applications. Yet the high price of stainless steel limits the application to construction projects. The lean duplex stainless steel (EN 1.4162) offers an opportunity for stainless steels to be used more widely due to its competitive in price, good mechanical properties and corrosion resistance. The lean duplex stainless steel is a relatively new material, and research on this material is limited....

  18. Effects of Cr2N Precipitation on the Antibacterial Properties of AISI 430 Stainless Steel

    OpenAIRE

    Je-Kang Du; Chih-Yeh Chao; Yu-Ting Jhong; Chung-Hao Wu; Ju-Hui Wu

    2016-01-01

    Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu2+ and Ag2+ ions have been added onto biomaterials for increasing the anti...

  19. Stainless steel anodes for alkaline water electrolysis and methods of making

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  20. Bacterial adhesion on ion-implanted stainless steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Q. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom)]. E-mail: q.zhao@dundee.ac.uk; Liu, Y. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, C. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, S. [Department of Mechanical Engineering, University of Dundee, Dundee DD1 4HN (United Kingdom); Peng, N. [Surrey Ion Beam Centre, University of Surrey, Surrey GU2 7XH (United Kingdom); Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Surrey GU2 7XH (United Kingdom)

    2007-08-31

    Stainless steel disks were implanted with N{sup +}, O{sup +} and SiF{sub 3} {sup +}, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF{sub 3} {sup +}-implanted stainless steel performed much better than N{sup +}-implanted steel, O{sup +}-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  1. Bacterial adhesion on ion-implanted stainless steel surfaces

    International Nuclear Information System (INIS)

    Stainless steel disks were implanted with N+, O+ and SiF3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF3+-implanted stainless steel performed much better than N+-implanted steel, O+-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions

  2. Bacterial adhesion on ion-implanted stainless steel surfaces

    Science.gov (United States)

    Zhao, Q.; Liu, Y.; Wang, C.; Wang, S.; Peng, N.; Jeynes, C.

    2007-08-01

    Stainless steel disks were implanted with N +, O + and SiF 3+, respectively at the Surrey Ion Beam Centre. The surface properties of the implanted surfaces were analyzed, including surface chemical composition, surface topography, surface roughness and surface free energy. Bacterial adhesion of Pseudomonas aeruginosa, Staphylococcus epidermidis and Staphylococcus aureus, which frequently cause medical device-associated infections was evaluated under static condition and laminar flow condition. The effect of contact time, growth media and surface properties of the ion-implanted steels on bacterial adhesion was investigated. The experimental results showed that SiF 3+-implanted stainless steel performed much better than N +-implanted steel, O +-implanted steel and untreated stainless steel control on reducing bacterial attachment under identical experimental conditions.

  3. Phase Transformations in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  4. Phase transformations in cast duplex stainless steels

    Science.gov (United States)

    Kim, Yoon-Jun

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as sigma (sigma) and chi (chi) can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (sigma + chi) formation were analyzed using the Johnson-Mehl-Avrami (JMA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities, a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, a was stabilized with increasing Cr addition and chi by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in

  5. Eddy sensors for small diameter stainless steel tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Jack L.; Morales, Alfredo Martin; Grant, J. Brian; Korellis, Henry James; LaFord, Marianne Elizabeth; Van Blarigan, Benjamin; Andersen, Lisa E.

    2011-08-01

    The goal of this project was to develop non-destructive, minimally disruptive eddy sensors to inspect small diameter stainless steel metal tubes. Modifications to Sandia's Emphasis/EIGER code allowed for the modeling of eddy current bobbin sensors near or around 1/8-inch outer diameter stainless steel tubing. Modeling results indicated that an eddy sensor based on a single axial coil could effectively detect changes in the inner diameter of a stainless steel tubing. Based on the modeling results, sensor coils capable of detecting small changes in the inner diameter of a stainless steel tube were designed, built and tested. The observed sensor response agreed with the results of the modeling and with eddy sensor theory. A separate limited distribution SAND report is being issued demonstrating the application of this sensor.

  6. Controlled dissolution of colossal quantities of nitrogen in stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2006-01-01

    The solubility of nitrogen in austenitic stainless steel was investigated thermogravimetrically by equilibrating thin foils of AISI 304 and AISI 316 in ammonia/hydrogen gas mixtures. Controlled dissolution of colossal amounts of nitrogen under metastable equilibrium conditions was realized...

  7. Development of oxide dispersion strengthened 2205 duplex stainless steel composite

    Directory of Open Access Journals (Sweden)

    Oladayo OLANIRAN

    2015-05-01

    Full Text Available Composites of duplex stainless steel were produced by oxide dispersion strengthening with comparatively improved mechanical properties by hot press sintering of partially stabilized Zirconia (PSZ, 3% yttria, mole fraction dispersion in 2205 duplex stainless steels. Ceramic oxide was added as reinforcement, while chromium (Cr and Nickel (Ni were incorporated to maintain the austenitic/ferritic phase balance of the duplex stainless steel. The powders and sintered were characterized in detail using scanning electron microscopy (SEM and X-ray diffraction (XRD. The microstructural evolution and phase formation during oxide dispersion strengthening of duplex stainless steel composites were investigated. The influence of composition variation of the reinforcements on the microstructural and corrosion behaviour in simulated mine water of the composites were investigated. In this manuscript, it was established that composition has great influence on the structure/properties relationship of the composites developed.

  8. Stainless steels and special grades for specific applications

    International Nuclear Information System (INIS)

    The development of special steels grades with a composition between stainless steels and nickel alloys for localised corrosion resistance applications (steam condenser, combustion products de-pollution...) are shortly presented by family (austenitic and super-austenitic stainless steels of the URANUS family with or without nitrogen additions, austeno-ferritic steels), with electrochemistry corrosion tests evaluation : in standard medium (30 g/l NaCl + 6% FeCl3) or in real medium. (A.B.). 6 refs., 12 figs., 2 tabs

  9. Properties of duplex stainless steels made by powder metallurgy

    OpenAIRE

    M. Rosso; M. Actis Grande; Z. Brytan; L.A. Dobrzański

    2007-01-01

    Purpose: of this paper was to examine the mechanical properties of duplex stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been sintered in a vacuu...

  10. Probing the duplex stainless steel phases via magnetic force microscopy

    Science.gov (United States)

    Gheno, S. M.; Santos, F. S.; Kuri, S. E.

    2008-03-01

    Duplex stainless steels are austenitic-ferritic alloys used in many applications, thanks to their excellent mechanical properties and high corrosion resistance. In this work, chemical analyses, x-ray diffraction, and magnetic force microscopy (MFM) were employed to characterize the solution annealed and aged duplex stainless steel. The samples exhibited no changes in lattice parameters and the MFM technique proved successful in clearly imaging the magnetic domain structure of the ferrite phase.

  11. Fatigue curve and stress strain response for stainless steel

    International Nuclear Information System (INIS)

    Applicability of ASME, KTA and RCC-M fatigue design curves for stainless steels is an issue of current debate. Laboratory data have shown environmental effects in coolant waters, but applicability of the proposed new design criteria to current plant components has been questioned. In a Regulatory Guide for new designs, the US NRC endorsed also a new air curve for stainless steels. Aim of the current study is to test applicability of the existing and proposed design criteria

  12. Restorasi Gigi Insisivus Sulung Menggunakan Resin Veneer Mahkota Stainless Steel

    OpenAIRE

    Hilda Shandika P.

    2008-01-01

    Untuk memperbaiki kerusakan gigi yang luas diperlukan restorasi yang tahan lama, retentif, dan estetik. Mahkota stainless steel digunakan untuk merestorasi insisivus sulung yang mengalami karies berat, kelainan bentuk atau akibat trauma. Mahkota ini merupakan restorasi yang kuat, tidak mudah fraktur, dan jarang rusak sampai beberapa tahun selama masih berada di tempatnya. Namun mahkota stainless steel memiliki kekurangan dari segi estetik karena warna peraknya yang mengganggu perhatian pada w...

  13. Thermal fatigue of austenitic and duplex stainless steels

    OpenAIRE

    Virkkunen, Iikka

    2001-01-01

    Thermal fatigue behavior of AISI 304L, AISI 316, AISI 321, and AISI 347 austenitic stainless steels as well as 3RE60 and ACX-100 duplex stainless steels was studied. Test samples were subjected to cyclic thermal transients in the temperature range 20 - 600°C. The resulting thermal strains were analyzed with measurements and numerical calculations. The evolution of thermal fatigue damage was monitored with periodic residual stress measurements and replica-assisted microscopy. The elastic strai...

  14. Corrosion resistance properties of sintered duplex stainless steel

    OpenAIRE

    L.A. Dobrzański; Z. Brytan; M. Actis Grande; M. Rosso

    2006-01-01

    Purpose: of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the ...

  15. Stainless steel reinforcement for durability in concrete structures

    International Nuclear Information System (INIS)

    Stainless steels and concrete are materials which the nuclear industry, more than any other, has given special attention to over the years. It is the intention of this paper to inform congress about developments outside the nuclear industry, in the use of stainless steel as reinforcement (rebar) in concrete structures. It is left to individual engineers within the industry to assess the implications of this information to applications with which they will be familiar. (author)

  16. Copper contamination in thin stainless steel sheet

    International Nuclear Information System (INIS)

    The standard welding technique used at Oak Ridge Y-12 Plant for joining thin stainless sheet is the gas tungsten arc (GTA) welding process. One of the reoccurring problems with the sheet welds is surface cracking in the heat-affected zone (HAZ). Metallography shows that the cracks are only about 0.05 mm (0.002 in.) deep which is significant in a 0.25 mm (0.01 in.) thick sheet. Thus, welding requirements do not permit any surfacing cracking as detected by a fluorescent dye penetrant test conducted on every part after welding. Surface cracks have been found in both of the two most common weld designs in the thin sheet fabricated at the Oak Ridge Y-12 Plant. These butt joints are welded between two 0.25 mm thick stainless steel sheets and a tube with eyelet welded to a 25 mm (0.98 in.) thick sheet. The weld between the two sheets is made on a semiautomatic seam welding unit, whereas the tube-to-eyelet-to-sheet welds are done manually. The quality of both welds is very dependent on the welding procedure and the way the parts are placed in the weld fixturing. Metallographic examination has indicated that some welded parts with surface cracking in the weld region had copper particles on the surface, and the question of copper contamination has been raised. With the aid of a scanning electron microscope and an electron microprobe, the existence of copper in an around the surface cracks has been verified. The copper is on the surface of the parts prior to welding in the form of small dust particles

  17. The electrochemistry of 13% chromium stainless steel in oilfield brines

    Energy Technology Data Exchange (ETDEWEB)

    Sidorin, Dmitry; Pletcher, Derek [Department of Chemistry, The University of Southampton, Southampton SO17 1BJ (United Kingdom); Hedges, Bill [BP Trinidad Ltd., P.O. Box 714, Port of Spain (Trinidad and Tobago)

    2005-07-25

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel. (author)

  18. The electrochemistry of 13% chromium stainless steel in oilfield brines

    International Nuclear Information System (INIS)

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel

  19. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    OpenAIRE

    Prabhu Paulraj; Rajnish Garg

    2015-01-01

    Duplex Stainless Steels (DSS) and Super Duplex Stainless Steel (SDSS) have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic pha...

  20. Plasma spot welding of ferritic stainless steels

    Directory of Open Access Journals (Sweden)

    Lešnjak, A.

    2002-06-01

    Full Text Available Plasma spot welding of ferritic stainless steels is studied. The study was focused on welding parameters, plasma and shielding gases and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared. Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas, i.e., a 98 % Ar/2 % H 2 gas mixture. Tension-shear strength of plasma-spot welded joints was compared to that of resistance-spot welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a larger weld spot diameter of the former. Strength of both types of welded joints is approximately the same.

    El artículo describe el proceso de soldeo de aceros inoxidables ferríticos por puntos con plasma. La investigación se centró en el establecimiento de los parámetros óptimos de la soldadura, la definición del gas de plasma y de protección más adecuado, así como del equipo óptimo para la realización de la soldadura. Las uniones de láminas de aceros inoxidables ferríticos de 0,8 mm de espesor, soldadas a solape por puntos con plasma, se inspeccionaron visualmente y se ensayaron mecánicamente mediante el ensayo de cizalladura por tracción. Se realizaron macro pulidos. Los resultados de la investigación demostraron que la solución más adecuada para el soldeo por puntos con plasma es elegir el mismo gas de plasma que de protección. Es decir, una mezcla de 98 % de argón y 2 % de hidrógeno. La resistencia a la cizalladura por tracción de las uniones soldadas por puntos con plasma fue comparada con la resistencia de las uniones soldadas por resistencia por puntos. Se llegó a la conclusión de que las uniones soldadas por resistencia soportan una carga algo mayor que la uniones

  1. Liquid Phase Sintering of Highly Alloyed Stainless Steel

    DEFF Research Database (Denmark)

    Mathiesen, Troels

    1996-01-01

    Liquid phase sintering of stainless steel is usually applied to improve corrosion resistance by obtaining a material without an open pore system. The dense structure normally also give a higher strength when compared to conventional sintered steel. Liquid phase sintrering based on addition...

  2. Fracture toughness of stainless steel welds

    International Nuclear Information System (INIS)

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  3. Martensite transformation in antimony implanted stainless steel

    International Nuclear Information System (INIS)

    The authors have used Rutherford backscattering analysis (RBS) and transmission electron microscopy (TEM) and diffraction to investigate austenitic stainless steel crystals implanted at room temperature with 80 keV Sb+ ions to a fluence of 5 x 1020 ions/m2, thus providing implantation with a heavy group V element. RBS channeling spectra from implanted crystals show a damage peak which approaches the height of the random level and therefore indicates a very high degree of disorder in the implanted layers. The distribution of the disorder extends to a depth 3-5 times the depth of the primary radiation damage. The Sb peaks under channeling as well as random conditions are indistinguishable, confirming that substitutionality during implantation is negligible. To establish the nature of the disorder which cannot be assessed from the RBS analysis alone, and in particular to assess whether an amorphous alloy is formed in the implanted layer as indicated from the RBS spectra, samples implanted under similar conditions were investigated in the TEM. Significant extra spots in the patterns can be ascribed to the presence of a radiation induced b.c.c. phase of martensitic origin. The result that a significant amount of martensite can be induced by antimony implantation seems to indicate that the main driving force for the transition is due to damage induced stress concentrations. (Auth.)

  4. Corrosion behavior of duplex stainless steel in sulphuric acid

    International Nuclear Information System (INIS)

    Duplex stainless steels are alloyed and processed to develop microstructure of roughly equal amounts of ferrite and austenite. Duplex stainless steel constitute a new class of materials because they have balanced amounts of ferrite and austenite. Since they have high content of chromium and molybdenum present, thus they have good corrosion resistance. Their corrosion resistance is double to that of annealed austenitic stainless steels with regard to pitting, crevice corrosion, sulphide stress corrosion, and chloride stress corrosion environments. The corrosion behavior of duplex stainless steel in various concentrations of sulphuric acid was studied. The reactions were carried out by placing the steel specimen in a beaker containing a known concentration of sulphuric acid at room temperature for a definite period. Pits were initiated in duplex stainless steel specimen and the propagation of pits depends upon the concentration of the acid solution in which the sample is in contact. The weight loss for definite period of time were measured and corrosion rates were calculated in millimetres per year. The corrosion rates increases with an increase in acid concentration at room temperature. A comparison of the results obtained from various concentrations of sulphuric acid with the same concentrations of nitric acid is also discussed. (author)

  5. Stainless steel tube-based cell cryopreservation containers.

    Science.gov (United States)

    Shih, Wei-Hung; Yu, Zong-Yan; Wu, Wei-Te

    2013-12-01

    This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the

  6. Modern high strength QT, TM and duplex-stainless steels

    International Nuclear Information System (INIS)

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  7. 77 FR 28568 - Grant of Authority for Subzone Status; North American Stainless, (Stainless Steel), Ghent, KY

    Science.gov (United States)

    2012-05-15

    ... public comment has been given in the Federal Register (76 FR 66684-66685, 10-27-2011) and the application... Steel), Ghent, KY Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as... authority to establish a special-purpose subzone at the stainless steel mill of North American...

  8. Experimental study on the emissivity of stainless steel

    International Nuclear Information System (INIS)

    The emissivity of material is a very important parameter for thermal radiative heat transfer. The emissivities of stainless steel 316L and 304 were measured as a fuction of surface temperature and heating time of test section by indirect method using the infrared thermometer. The error range of experiment is within 3∼10% and most of errors were occurred in measuring the surface temperature by thermocouple. The range of temperature for the experiment was 50∼540.deg. C and the emissivities of stainless steel 316L and 304 were increased along with the increase of surface temperature, and the increase rates for two materials were approximately the same and the value was about 1.31x10-4(1/.deg. C). The emissivity of stainless steel 316L with surface roughness 4.1μm was between 0.44 and 0.51, and the emissivity of stainless steel 304 with surface roughness 2.0μm was between 0.32 and 0.38 in this temperature range. The emissivity of stainless steel 304 was gradually increased by a value of 0.03 at 395.deg. C for 266 hours

  9. Aging of cast duplex stainless steels in LWR systems

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are evaluated to determine the expected embrittlement of cast components during the operating lifetime of reactors and to define the objectives and scope of the investigation. This presentation describes the status of the program. Data for the metallurgical characterization of the various cast stainless steels used in the investigation are presented. Charpy impact tests on short-term aged material indicate that CF-3 stainless steels are less susceptible to embrittlement than CF-8 or CF-8M stainless steels. Microstructural characterization of cast stainless steels that were obtained from Georg Fischer Co. and aged for up to 70,000 h at 300, 350, and 4000C reveals the formation of four different types of precipitates that are not α'. Embrittlement of the ferrite phase is primarily due to pinning of the dislocations by two of these precipitates, designated as Type M and Type X. The ferrite phase is embrittled after approx. 8 y at 3000C and shows cleavage fracture. Examination of the fracture surfaces of the impact-test specimens indicates that the toughness of the long-term aged material is determined by the austenite phase. 8 figures, 3 tables

  10. Compresibility and sinterability of HCx PM steel diluted with stainless steels

    OpenAIRE

    Gordo Elena; Khattab Nermein Hamid; Ruiz-Navas Elisa María

    2003-01-01

    HCx powder metallurgy steel contains in its composition high contents of Cr and C, and significant quantities of alloy elements typical of tool steels (Mo, V, W), to provide the corrosion resistance of stainless steel with wear resistance of tool steels. HCx appears to be a suitable material for applications in aggressive environments, as valve seat inserts in automotive engines. However, this steel presents a low compressibility leading to high production costs. In this work, some results ca...

  11. Operational experience of stainless steels in seawater-cooled systems

    International Nuclear Information System (INIS)

    A study has been made of chiefly Swedish and Finnish operational experience of stainless steel in seawater and brackish water. A report is given on 23 typical cases, behind which in actual fact a considerably larger number of individual practical cases are concealed. The answer to the primary question why a standard steel of type SS 2343 (AISI 316) sometimes, contrary to expectation, remains unattacked by local corrosion is that there is usually spontaneous cathodic protection by other less noble components of carbon steel, cast iron or some copper alloy in direct contact with the stainless steel. The study confirms in other respects the adverse effect of residual oxides after welding and the beneficial of low temperature, high continuous waterflow and periodic cleaning, and of rinsing with fresh water during out-of service periods. It also verifies the additional advantages of the new high-alloy special steels which have begun to be marketed in recent years for seawater applications. (author)

  12. Tensile properties of the modified 13Cr martensitic stainless steels

    Science.gov (United States)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  13. Depth distribution of martensite in xenon implanted stainless steels

    International Nuclear Information System (INIS)

    The amount of stress-induced martensite and its distribution in depth in xenon implanted austenitic stainless steel poly- and single crystals have been measured by Rutherford backscattering and channeling analysis, depth selective conversion electron Moessbauer spectroscopy, cross-sectional transmission electron microscopy and x-ray diffraction analysis. In low nickel 17/7, 304 and 316 commercial stainless steels and in 17:13 single crystals the martensitic transformation starts at the surface and develops towards greater depth with increasing xenon fluence. The implanted layer is nearly completely transformed, and the interface between martensite and austenite is rather sharp and well defined. In high nickel 310 commercial stainless steel and 15:19 and 20:19 single crystals, on the other hand, only insignificant amounts of martensite are observed. (orig.)

  14. Highly robust stainless steel tips as microelectrospray emitters.

    Science.gov (United States)

    Ishihama, Yasushi; Katayama, Hiroyuki; Asakawa, Naoki; Oda, Yoshiya

    2002-01-01

    Tapered stainless steel spray tips for sheathless microelectrospray ionization (microESI) have been developed. The fabrication procedure for the tapered stainless steel tips was optimized using an electropolishing technique followed by removal of the burr. Using the tip as the microESI emitter, a stable ESI spray was obtained at a flow rate of 20 nL/min. The sensitivity of the microESI system was almost two orders greater than that of the conventional ion spray system. The tip was highly stable, and was successfully used for over 1000 h. Moreover, these stainless steel tips were suitable for use with sheathless capillary electrophoresis/mass spectrometry (CE/MS) and capillary liquid chromatography/mass spectrometry (LC/MS) for routine analysis in proteomic and pharmaceutical applications. PMID:11968120

  15. Microbially influenced corrosion of stainless steels in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, U.P.; Wolfram, J.H.; Rogers, R.D.

    1990-01-01

    This paper reviews the components, causative agents, corrosion sites, and potential failure modes of stainless steel components susceptible to microbially influenced corrosion (MIC). The stainless steel components susceptible to MIC are located in the reactor coolant, emergency, and reactor auxiliary systems, and in many plants, in the feedwater train and condenser. The authors assessed the areas of most high occurrence of corrosion and found the sites most susceptible to MIC to the heat-affected zones in the weldments of sensitized stainless steel. Pitting is the predominant MIC corrosion mechanisms, caused by sulfur reducing bacteria (SRB). Also discussed is the current status of the diagnostic, preventive, and mitigation techniques, including use of improved water chemistry, alternate materials, and improved thermomechanical treatments. 37 refs., 3 figs.

  16. Embrittlement of cast stainless steels in LWR systems

    International Nuclear Information System (INIS)

    Mechanical property data from Charpy-impact and J-R curve tests are presented for several experimental and commercial heats, as well as reactor-aged material of CF-3, CF-8, and CF-8M grades of cast stainless steel. The effects of material variables on the embrittlement of cast stainless steels are evaluated. The chemical composition and ferrite morphology have a strong effect on the extent and kinetics of embrittlement. The data are analyzed to establish the mechanisms of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast components during reactor service are described. The lower bound values of impact strength and fracture toughness for low-temperature aged cast stainless steel are defined. 13 refs., 13 figs., 3 tabs

  17. Evaluation of Additive Manufacturing for Stainless Steel Components

    Energy Technology Data Exchange (ETDEWEB)

    Peter, William H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lou, Xiaoyuan [General Electric (GE), Wilmington, NC (United States); List, III, Frederick Alyious [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Webber, David [General Electric (GE), Wilmington, NC (United States)

    2016-09-01

    This collaboration between Oak Ridge National Laboratory and General Electric Company aimed to evaluate the mechanical properties, microstructure, and porosity of the additively manufactured 316L stainless steel by ORNL’s Renishaw AM250 machine for nuclear application. The program also evaluated the stress corrosion cracking and corrosion fatigue crack growth rate of the same material in high temperature water environments. Results show the properties of this material to be similar to the properties of 316L stainless steel fabricated additively with equipment from other manufacturers with slightly higher porosity. The stress corrosion crack growth rate is similar to that for wrought 316L stainless steel for an oxygenated high temperature water environment and slightly higher for a hydrogenated high temperature water environment. Optimized heat treatment of this material is expected to improve performance in high temperature water environments.

  18. Mechanical properties of duple stainless steels laser joints

    International Nuclear Information System (INIS)

    The welded joints of stainless steels always present problems for the microstructural modifications that occur in the heat affected zone. Particularly, duplex stainless steels present very important changes when the weld pool solidifies forming fundamentally ferritic structures with some austenite in grain boundaries. These microstructural modifications, and those which occur in the HAZ, justify the mechanical properties of the joint and mainly those of plasticity, being all of them influenced by the processing conditions. In this work the influence of the laser welding speed on the tensile behaviour od duplex stainless steel welded joints is presented. The microstructure of the obtained seams and of the heat affected zone will be evaluated by means of optic and scanning electron microscopy. Also, different microhardness profiles have been obtained to evaluate the modifications in the mechanical properties both in the seam and the zone of thermal affection. (Author) 23 refs

  19. Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing

    Directory of Open Access Journals (Sweden)

    Massimiliano Filippi

    2009-03-01

    Full Text Available The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing, in comparison with those obtained under standard/conventional process (EP conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material - medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES and X-ray photoelectron spectroscopy (XPS were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size, EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.

  20. Sinter-hardening process applicable to stainless steels

    Directory of Open Access Journals (Sweden)

    M. Rosso

    2007-10-01

    Full Text Available Purpose: of this paper was to describe sintered duplex stainless steels manufactured in sinter-hardening process and its usability in field of stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, ferritic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies apart from the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been compacted at 800 MPa and sintered in a vacuum furnace with argon backfilling at temperatures from 1200°C to 1285°C for 0.5, 1 and 2 h. After sintering different cooling cycles were applied using nitrogen under pressure from 0.6 MPa to 0.002 MPa in argon atmosphere. Produced duplex stainless steels have been studied by scanning and optical microscopy and EDS chemical analysis of microstructure components.Findings: Obtained microstructure and mechanical properties of sintered duplex stainless steel strictly depend on the density and the pore morphology present in the microstructure and especially on cooling rate directly from sintering temperature in sinter-hardening process. The lowest cooling rate - applied gas pressure, the mechanical properties and corrosion resistance decrease due to precipitation of sigma phase. Proper bi-physic microstructure was obtained using nitrogen under pressure of 0.6 and 0.2 MPa.Research limitations/implications: Applied fast cooling rate seems to be a good compromise for mechanical properties and obtained microstructures, nevertheless further tests should be carried out in order to examine its influence on corrosion properties.Originality/value: The utilization of sinter-hardening process combined with use of elemental powders added to a stainless steel base powder shows its potentialities in terms of good microstructural homogeneity and especially working with cycles possible to introduce in

  1. Failure of austenitic stainless steel tubes during steam generator operation

    OpenAIRE

    M. Głowacka; J. Łabanowski; S. Topolska

    2012-01-01

    Purpose: of this study is to analyze the causes of premature failure of steam generator coil made of austenitic stainless steel. Special attention is paid to corrosion damage processes within the welded joints.Design/methodology/approach: Examinations were conducted several segments of the coil made of seamless cold-formed pipes Ø 23x2.3 mm, of austenitic stainless steel grade X6CrNiTi18-10 according to EN 10088-1:2007. The working time of the device was 6 months. The reason for the withdrawa...

  2. Fatigue behavior of welded austenitic stainless steel in different environments

    OpenAIRE

    D. S. Yawas; S.Y. Aku; S.O. Aluko

    2014-01-01

    The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat...

  3. Impact toughness of tungsten films deposited on martensite stainless steel

    Institute of Scientific and Technical Information of China (English)

    HUANG Ning-kang; YANG Bin; WANG De-zhi

    2005-01-01

    Tungsten films were deposited on stainless steel Charpy specimens by magnetron sputtering followed by electron beam heat treatment. Charpy impact tests and scanning electron microscopy were used to investigate the ductile-brittle transition behavior of the specimens. With decreasing test temperature the fracture mode was transformed from ductile to brittle for both kinds of specimens with and without W films. The data of the crack initiation energy, crack propagation energy, impact absorbing energy, fracture time and deflection as well as the fracture morphologies at test temperature of -70 ℃ show that W films can improve the impact toughness of stainless steel.

  4. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    Science.gov (United States)

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  5. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Michalska, J, E-mail: joanna.k.michalska@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  6. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  7. Deformation and rupture of stainless steel under cyclic, torsional creep

    OpenAIRE

    Rees, DWA

    2008-01-01

    Copyright 2008 @ Engineering Integrity Society. Recent results from a long-term, strain-limited, cyclic creep test program upon stainless steel tubes are given. The test conditions employed were: constant temperature 500 °C, shear stress Ƭ = ± 300 MPa and shear strain limits ƴ = ± 4%. It is believed that a cyclic creep behaviour for the material has been revealed that has not been reported before in the literature. That is, the creep curves for stainless steel under repeated, shear stress...

  8. Comparison of antibacterial ability of copper and stainless steel

    Institute of Scientific and Technical Information of China (English)

    GENG Ping; ZHANG Wen; TANG Hui; ZHANG Xinai; JIN Litong; FENG Zhen; WU Zirong

    2007-01-01

    In this paper,the electro-analysis and spectrophotometric analysis methods were used to study the antibacterial ability of copper and stainless steel materials.When Escherichia coli (E.coli) and photo-bacteria were used as samples,the antibacterial effect of stainless steel was very weak,while the percentage of bacteria dying from exposure to metallic copper for 30 min was over 90%.The antibacterial ability of copper has a potential application in the field of disinfection,food packaging and piping of drinking water.

  9. Development status of ultrasonic test techniques for cast stainless steel

    International Nuclear Information System (INIS)

    Ultrasonic testing has been thought to be difficult to apply to cast stainless steel which is used as the material for the main coolant pipes in pressurized water reactors (PWRs). An ultrasonic testing technique using large aperture twin crystal transducers was developed in INSS for application to inspection of the main coolant pipes. The method was evaluated in an application to detect circumferential and axial defects in the cast stainless steel pipes. It was found that (1) the defects could be detected which had a depth that was so small that their evaluation was not required; and (2) depth sizing and length sizing of detected defects were also possible. (author)

  10. Corrosion of 316L stainless steels MAVL wastes containers

    International Nuclear Information System (INIS)

    The long lived and medium activity wastes are conditioned or could be re-conditioned in primary drums of 316L stainless steels. In the framework of wastes storage, these drums will be placed in concrete containers; each containers would contain one or more drums. This document recalls global information on the corrosion of stainless steels, analyzes specific conditions bond to the drums conditioning in concrete containers and the nature of the wastes, and details the consequences on the possible risks of external and internal corrosion of the drums. (A.L.B.)

  11. Intergranular stress corrosion in soldered joints of stainless steel 304

    International Nuclear Information System (INIS)

    The intergranular stress cracking of welded joints of austenitic stainless steel, AISI 304, is a serious problem in BWR type reactors. It is associated with the simultaneous presence of three factors; stress, a critical media and sensibilization (DOS). EPR technique was used in order to verify the sensibilization degree in the base metal, and the zone affected by heat and welding material. The characterization of material was done. The objective of this work is the study of microstructure and the evaluation of EPR technique used for the determination of DOS in a welded plate of austenitic stainless steel AISI 304. (Author)

  12. Ozone decay on stainless steel and sugarcane bagasse surfaces

    Science.gov (United States)

    Souza-Corrêa, Jorge A.; Oliveira, Carlos; Amorim, Jayr

    2013-07-01

    Ozone was generated using dielectric barrier discharges at atmospheric pressure to treat sugarcane bagasse for bioethanol production. It was shown that interaction of ozone molecules with the pretreatment reactor wall (stainless steel) needs to be considered during bagasse oxidation in order to evaluate the pretreatment efficiency. The decomposition coefficients for ozone on both materials were determined to be (3.3 ± 0.2) × 10-8 for stainless steel and (2.0 ± 0.3) × 10-7 for bagasse. The results have indicated that ozone decomposition has occurred more efficiently on the biomass material.

  13. Evaluation of the thermal ageing of duplex stainless steels

    International Nuclear Information System (INIS)

    Three methods have been investigated to follow up the thermal ageing of duplex stainless steels: microhardness tests, instrumented ultramicrohardness tests and Small Angle Neutron Scattering (SANS) techniques. The values measured with these methods have been correlated with pertinent parameters of the metallurgical ageing phenomenon determined by Atom-Probe. These methods seem to be sensitive and reproducible enough to detect and follow up the ageing of duplex stainless steels. They can be applied on small samples (chips) drawn from in-service components. (authors). 10 refs., 9 figs., 3 tabs

  14. Application and development of stainless steel reinforced concrete structure

    Directory of Open Access Journals (Sweden)

    Meng Xian Hong

    2016-01-01

    Full Text Available Now reinforced concrete structure in our country develops very fast, and reinforced concrete structure has been widely applied by various buildings. But with the deepening of the research experts and scholars, they found in some areas where high corrosion of reinforced concrete structure with the increase of service time, the concrete cracks, and led to the internal steel bar corrosion conditions. In the face of these problems, the experts used stainless steel applied to the study of concrete. In this paper, the stainless stell reinforced concrete structure of the application and development status of made briefly.

  15. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG) 1.31, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This... content in stainless steel weld metal. It updates the guide to remove references to outdated standards...

  16. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2012-10-03

    ... COMMISSION Control of Ferrite Content in Stainless Steel Weld Metal AGENCY: Nuclear Regulatory Commission... Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates...

  17. Accelerated corrosion of stainless steel in thiocyanate-containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pistorius, P Chris; Li, Wen

    2012-09-19

    It is known that reduced sulfur compounds (such as thiocyanate and thiosulfate) can accelerate active corrosion of austenitic stainless steel in acid solutions, but before we started this project the mechanism of acceleration was largely unclear. This work combined electrochemical measurements and analysis using scanning electron microscopy (SEM) and X-ray photo-electron spectroscopy (XPS), which provided a comprehensive understanding of the catalytic effect of reduced sulfur species on the active corrosion of stainless steel. Both the behavior of the pure elements and the steel were studied and the work focused on the interaction between the pure elements of the steel, which is the least understood area. Upon completion of this work, several aspects are now much clearer. The main results from this work can be summarized as follows: The presence of low concentrations (around 0.1 mM) of thiocyanate or tetrathionate in dilute sulfuric acid greatly accelerates the anodic dissolution of chromium and nickel, but has an even stronger effect on stainless steels (iron-chromium-nickel alloys). Electrochemical measurements and surface analyses are in agreement with the suggestion that accelerated dissolution really results from suppressed passivation. Even well below the passivation potential, the electrochemical signature of passivation is evident in the electrode impedance; the electrode impedance shows clearly that this pre-passivation is suppressed in the presence of thiocyanate. For the stainless steels, remarkable changes in the morphology of the corroded metal surface and in the surface concentration of chromium support the suggestion that pre-passivation of stainless steels is suppressed because dissolution of chromium is accelerated. Surface analysis confirmed that adsorbed sulfur / sulfide forms on the metal surfaces upon exposure to solutions containing thiocyanate or thiosulfate. For pure nickel, and steels containing nickel (and residual copper), bulk sulfide

  18. Properties of duplex stainless steels made by powder metallurgy

    Directory of Open Access Journals (Sweden)

    M. Rosso

    2007-04-01

    Full Text Available Purpose: of this paper was to examine the mechanical properties of duplex stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been sintered in a vacuum furnace with argon backfilling at 1260°C for 1 h. After sintering: rapid cooling have been applied in argon atmosphere. Produced duplex stainless steels have been studied by scanning and optical microscopy. Mechanical properties such as tensile strength, impact energy, hardness and wear rate were evaluated.Findings: According to achieved results, it was affirmed that applied sintering method as well as powder mixes preparation allows for manufacturing the sintered duplex steels with good mechanical properties which depends on austenite/ferrite ratio in the microstructure and elements partitioning between phases. The additions of alloying elements powders (promoting formation ferritic and austenitic phase to master alloy powder, makes possible the formation of structure and properties of sintered duplex stainless steels. Sintered duplex steels obtained starting from austenitic and ferritic powders with admixture of elemental powders achieve lower mechanical properties when compared to composition obtained by mixing ferritic and austenitic powder in equal amounts.Research limitations/implications: According to the powders characteristic, the applied fast cooling rate seems to be a good compromise for mechanical properties and microstructures, nevertheless further tests should be carried out in order to examine different cooling rates.Originality/value: The use of elemental powders added to a stainless steel base showed its potentialities, in terms of fair compressibility and final

  19. A review of hot cracking in austenitic stainless steel weldments

    International Nuclear Information System (INIS)

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  20. Corrosion resistance of stainless steel pipes in soil

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, L.; Camitz, G. [Swerea KIMAB AB, Box 55970, SE-102 16 Stockholm (Sweden); Peultier, J.; Jacques, S.; Baudu, V.; Barrau, F.; Chareyre, B. [Industeel and ArcelorMittal R and D, 56 rue Clemenceau, BP19, FR-71201 le Creusot, Cedex (France); Bergquist, A. [Outokumpu Stainless AB, P.O. Box 74, SE-774 22 Avesta (Sweden); Pourbaix, A.; Carpentiers, P. [Belgian Centre for Corrosion Study, Avenue des Petits-Champs 4A, BE 1410 Waterloo (Belgium)

    2011-04-15

    To be able to give safe recommendations concerning the choice of suitable stainless steel grades for pipelines to be buried in various soil environments, a large research programme, including field exposures of test specimens buried in soil in Sweden and in France, has been performed. Resistance against external corrosion of austenitic, super austenitic, lean duplex, duplex and super duplex steel grades in soil has been investigated by laboratory tests and field exposures. The grades included have been screened according to their critical pitting-corrosion temperature and according to their time-to-re-passivation after the passive layer has been destroyed locally by scratching. The field exposures programme, being the core of the investigation, uses large specimens: 2 m pipes and plates, of different grades. The exposure has been performed to reveal effects of aeration cells, deposits or confined areas, welds and burial depth. Additionally, investigations of the tendency of stainless steel to corrode under the influence of alternating current (AC) have been performed, both in the laboratory and in the field. Recommendations for use of stainless steels under different soil conditions are given based on experimental results and on operating experiences of existing stainless steel pipelines in soil. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Electrochemically induced annealing of stainless-steel surfaces

    Science.gov (United States)

    Burstein, G. T.; Hutchings, I. M.; Sasaki, K.

    2000-10-01

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals.

  2. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  3. Carburisation of stainless steel caused by oil in sodium

    International Nuclear Information System (INIS)

    The primary objectives of this work were to investigate the kinetics of austenitic stainless steel carburisation in sodium caused by oil in sodium, and to measure the corresponding 'sodium carbon activity' (a quantitative measure of sodium steel carburisation potential). For comparative purposes, the steel carburising effects of chemically simpler carbon sources have also been studied. The specific experimental investigations have involved: (i) A study of the kinetics of stainless steel carburisation at 5500C caused by oil in sodium; (ii) A determination of the effective steel carburisation potential (carbon activity) arising from oil ingress, and its persistence with time, and (iii) A comparison of oil and chemically simpler carbon sources, namely graphite and cementite (as carburised iron, Fe-Fe3C), with regard to both kinetics of steel carburisation and sodium carbon activities produced. In all cases, the nature and extent of carburisation has been determined by optical metallography, X-ray and nuclear microprobe analysis. Preliminary studies on the mutual effect of steel surfaces in close proximity have also been conducted. Previous studies on steel carburisation in sodium are outlined, and the present results are discussed in the context of available thermodynamic and kinetic data pertaining to the carbon-steel and carbon-sodium systems. (author)

  4. Process-microstructure-corrosion interrelations for stainless steel

    OpenAIRE

    Lindell, David

    2015-01-01

    Stainless steels were first developed in the early 20th century and have since then emerged as a very diverse class of engineering materials. Along with steels having new combinations of properties, there is a continuous development of new technologies allowing the material to be produced in a faster and more energy effcient manner. A prerequisite for new technologies to be adapted quicklyis a fundamental understanding of the microstructure evolution throughout theprocess chain. The first par...

  5. High density sintered stainless steels with improved properties

    OpenAIRE

    M. Actis Grande; M. Rosso

    2007-01-01

    Purpose: of this paper is the study of the properties of sintered AISI 316L (1.4404 according to EN 10088. Sintered stainless steels occupy a prominent position in the high alloyed steels, however their properties are limited by the presence of porosity. The improvement of quality and performances of products coupled with a reduction of manufacturing costs calls for high compacting pressures, as well as high sintering temperatures. However, the possibility to fill the open porosity of sintere...

  6. Hydrometallurgical removal of zinc from stainless steel flue dusts

    OpenAIRE

    Järvinen, Outi

    2013-01-01

    Stainless steel flue dusts are problematic to the steel industry because of their chemi-cal composition that makes direct recycling and landfilling impossible. Pyrometallur-gical and hydrometallurgical processes have been tested in dust treatment. At the moment, most of the processes that have reached commercialization have been py-rometallurgical. Still, it is thought that hydrometallurgy could offer solutions espe-cially in small scale on-site treatment as it is less energy intensive and re...

  7. Construction of a stainless steel storage tank for phosphoric acid

    OpenAIRE

    Buh, Igor

    2006-01-01

    The main purpose of this thesis was to get acquainted with all necessary procedures for steel storage tank manufacturing and assembly control. The representative storage tank was built from stainless steel and it was designed to hold 750 m3 of phosphoric acid. In the first section all legally mandatory control procedures are described and they are applied to our storage tank in the second section. Welding control is presented, which consists of destructive and non-destructive inspections of t...

  8. Stainless steel weld metal designed to mitigate residual stresses

    OpenAIRE

    Shirzadi, A. A.; Bhadeshia, H. K. D. H.; Karlsson, L.; Withers, P.J.

    2009-01-01

    There have been considerable efforts to create welding consumables which on solid state phase transformation partly compensate for the stresses which develop when a constrained weld cools to ambient temperatures. All of these efforts have focused on structural steels which are ferritic. In the present work, alloy design methods have been used to create a stainless steel welding consumable which solidifies as δ ferrite, transforms almost entirely into austenite which then undergoes martensitic...

  9. Instrumental Neuron Activation Analysis for certification of stainless steel materials

    International Nuclear Information System (INIS)

    The use of Instrumental Neuron Activation Analysis (INAA) may contribute to improve the certification of the materials, especially in the case of minor and trace elements. In presented paper the INAA method of analysis of stainless steel materials has been elaborated. The obtained results were compared with those of common analytical techniques. The presented results show the usefulness of the INAA method for the certification of CRMs for the iron and steel industry

  10. Mechanical properties of low-nickel stainless steel

    Science.gov (United States)

    Montano, J. W.

    1978-01-01

    Demand for improved corrosion-resistant steels, coupled with increased emphasis on conserving strategic metals, has led to development of family of stainless steels in which manganese and nitrogen are substituted for portion of usual nickel content. Advantages are approximately-doubled yield strength in annealed condition, better resistance to stress-corrosion cracking, retention of low magnetic permeability even after severe cold working, excellent strength and ductility at cryogenic temperatures, superior resistance to wear and galling, and excellent high-temperature properties.

  11. Properties of super stainless steels for orthodontic applications.

    Science.gov (United States)

    Oh, Keun-Taek; Kim, Young-Sik; Park, Yong-Soo; Kim, Kyoung-Nam

    2004-05-15

    Orthodontic stainless-steel appliances are considered to be corrosion resistant, but localized corrosion can occur in the oral cavity. This study was undertaken to evaluate the properties of super stainless steels in orthodontic applications. Accordingly, the metallurgical properties, mechanical properties, corrosion resistance, amount of the released nickel, cytotoxicity, and characteristics of the passive film were investigated. Corrosion resistances of the specimens were high and in the following order: super austenitic stainless steel (SR-50A) > super ferritic stainless steel (SFSS) = super duplex stainless steel (SR-6DX) > 316L SS > super martensitic stainless steel (SR-3Mo) in artificial saliva, 37 degrees C. At 500 mV (SCE), current densities of SR-50A, SFSS, SR-6DX, 316L SS, and SR-3Mo were 5.96 microA/cm(2), 20.3 microA/cm(2), 31.9 microA/cm(2), 805 microA/cm(2), and 5.36 mA/cm(2), respectively. Open circuit potentials of SR-50A, 316L SS, SR-6DX, SR-3Mo, and SFSS were - 0.2, - 0.22, - 0.24, - 0.43, and - 0.46 V (SCE), respectively. SR-50A, SFSS, and SR-6DX released below 3 ng/ml nickel for 8 weeks, and increased a little with immersion time, and 316L SS released about 3.5 ng/ml nickel, but SR-3Mo released a large amount of nickel, which increased with immersion time. The study demonstrated that SR-50A, SR-6DX, and SFSS have high corrosion resistance and mild or no cytotoxicity, due to the passive film enhanced by synergistic effect of Mo + N or by high addition effect of Cr + W. All super stainless steels showed very low cytotoxicity regardless of their nickel contents, although SR-3Mo was found to be relatively cytotoxic. From these studies, these steels are considered suitable for orthodontic applications. PMID:15116408

  12. Adhesion of food-borne bacteria to stainless steel is reduced by food conditioning films

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Jorgensen, R.L.;

    2009-01-01

    to stainless steel. Attachment of Pseudomonas fluorescens AH2 to stainless steel coated with water-soluble coatings of animal origin was significantly reduced as compared with noncoated stainless steel or stainless steel coated with laboratory substrate or extracts of plant origin. Coating with animal extracts...... also decreases adhesion of other food-relevant bacteria. The manipulation of adhesion was not attributable to growth inhibitory effects. Chemical analysis revealed that the stainless steels were covered by homogenous layers of adsorbed proteins. The presence of tropomyocin was indicated by appearance...

  13. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. PMID:26952459

  14. Ionic bombardment of stainless steel by nitrogen and nickel ions immersion

    Institute of Scientific and Technical Information of China (English)

    XIONG Ling; HU Yong-jun; XU jian; MENG Ji-long

    2008-01-01

    A new nitriding process was used to carry out the ionic bombardment, in which nickel ion was introduced. The microstructure, composition and properties of the treated stainless steel were studied by means of scanning electron microscopy(SEM), micro-hardness test and electrochemistry method. The results show that the hardness of the stainless steel is greatly increased after ionic bombardment under nitrogen and nickel ions immersion. Vickers' hardness as high as Hv1268 is obtained. The bombarded stainless steel is of a little reduction in corrosion resistance, as compared with the original stainless steel. However, as compared with the traditional ion-nitriding stainless steel, the corrosion resistance is greatly improved.

  15. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  16. Redemption of asthma pharmaceuticals among stainless steel and mild steel welders

    DEFF Research Database (Denmark)

    Kristiansen, Pernille; Jørgensen, Kristian Tore; Hansen, Johnni;

    2015-01-01

    PURPOSE: The purpose was to examine bronchial asthma according to cumulative exposure to fume particulates conferred by stainless steel and mild steel welding through a proxy of redeemed prescribed asthma pharmaceuticals. METHODS: A Danish national company-based historical cohort of 5,303 male ever...... was estimated by combining questionnaire data on welding work with a welding exposure matrix. The estimated exposure accounted for calendar time, welding intermittence, type of steel, welding methods, local exhaustion and welding in confined spaces. Hazard ratios (HRs) with 95 % confidence intervals (CIs) were...... nonsignificant increased rate of redemption of asthma medicine was observed among high-level exposed stainless steel welders in comparison with low-level exposed welders (HR 1.54, 95 % CI 0.76-3.13). This risk increase was driven by an increase risk among non-smoking stainless steel welders (HR 1.46, 95 % CI 1...

  17. Effect of pulsating water jet peening on stainless steel

    OpenAIRE

    Hlaváček, Petr

    2015-01-01

    Effects of action of pulsating water jet on polished surface of the stainless steel AISI 316L are presented. Surface slip bands appeared after this treatment. In the most severe conditions, microcracks were formed. Hardness measurement showed that the affected layer was thinner than 60 μm. Application of the pulsating water jet has beneficial effect on the fatigue life of the material.

  18. Fatigue behavior of welded austenitic stainless steel in different environments

    Directory of Open Access Journals (Sweden)

    D.S. Yawas

    2014-01-01

    Full Text Available The fatigue behavior of welded austenitic stainless steel in 0.5 M hydrochloric acid and wet steam corrosive media has been investigated. The immersion time in the corrosive media was 30 days to simulate the effect on stainless steel structures/equipment in offshore and food processing applications and thereafter annealing heat treatment was carried out on the samples. The findings from the fatigue tests show that seawater specimens have a lower fatigue stress of 0.5 × 10−5 N/mm2 for the heat treated sample and 0.1 × 10−5 N/mm2 for the unheat-treated sample compared to the corresponding hydrochloric acid and steam samples. The post-welding heat treatment was found to increase the mechanical properties of the austenitic stainless steel especially tensile strength but it reduces the transformation and thermal stresses of the samples. These findings were further corroborated by the microstructural examination of the stainless steel specimen.

  19. Failure Assessment Diagram for Brazed 304 Stainless Steel Joints

    Science.gov (United States)

    Flom, Yory

    2011-01-01

    Interaction equations were proposed earlier to predict failure in Albemet 162 brazed joints. Present study demonstrates that the same interaction equations can be used for lower bound estimate of the failure criterion in 304 stainless steel joints brazed with silver-based filler metals as well as for construction of the Failure Assessment Diagrams (FAD).

  20. Sticking Phenomenon Occurring during Hot Rolling of Ferritic Stainless Steels

    International Nuclear Information System (INIS)

    Sticking phenomenon occurring during hot rolling of two ferritic stainless steels, STS 430J1L and STS 436L, was investigated in this study. A hot rolling simulation test was carried out using a high-temperature wear tester capable of controlling rolling speed, load, and temperature. The simulation test results at 900 .deg. C and 1000 .deg. C revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation, for the both stainless steels, and that STS 430J1L had a smaller number of sticking nucleation sites than the STS436L because of higher high-temperature hardness, thereby leading to a smaller amount of the sticking. When the test temperature was 1070 .deg. C, the sticking hardly occurred in both stainless steels as Fe-Cr oxide layers were formed on the surface of the rolled materials. These findings suggested that the improvement of high-temperature properties of stainless steels and the appropriate rolling conditions for readily forming oxide layers on the rolled material surface were required in order to prevent or minimize the sticking

  1. Hydrogen embrittlement of super duplex stainless steel in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Elhoud, A.M.; Renton, N.C.; Deans, W.F. [University of Aberdeen, School of Engineering, Aberdeen, AB24 3UE (United Kingdom)

    2010-06-15

    Super duplex stainless steel (SDSS) is a good choice of material when resistance to harsh environments is needed. Despite the material's excellent corrosion resistance and high strength, a number of in-service failures have been recorded. The root cause of these failures was environmentally induced cracking initiated at manufacturing and in-service metallurgical defects. In this study the hydrogen embrittlement of pre-strained super duplex stainless steel specimens was investigated after 48 h cathodic charging in 0.1 M H{sub 2}SO{sub 4}. The metallurgical changes that resulted from four levels of cold work (4, 8, 12, and 16% plastic strain) were considered and their effect on the embrittlement of the SDSS alloy was investigated. After hydrogen charging, the specimens were pulled immediately to failure and the mechanical properties evaluated. The obtaining fracture morphology was investigated using low and high magnification microscopy. Experimental results indicated that charging the super duplex stainless steel alloy with hydrogen caused varying degrees of embrittlement depending on cold work level. Increasing cold work resulted in a reduction of the elongation to failure. Microscopic investigation confirmed the significant effect of cold work on the hydrogen embrittlement susceptibility of the super duplex stainless steel alloy investigated. (author)

  2. Resistance microwelding of 316L stainless steel wire to block

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Khan, M.I.; Bay, Niels;

    2011-01-01

    The excellent corrosion resistance of low carbon vacuum melted 316 stainless steel coupled with its non-magnetic properties makes it ideal for biomedical applications. The typical joint geometry for microcomponents, such as medical implants, includes joining of fine wire to a larger block. However...

  3. New Stainless Steel Alloys for Low Temperature Surface Hardening?

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Dahl, Kristian Vinter; Somers, Marcel A. J.

    2015-01-01

    The present contribution showcases the possibility for developing new surface hardenable stainless steels containing strong nitride/carbide forming elements (SNCFE). Nitriding of the commercial alloys, austenitic A286, and ferritic AISI 409 illustrates the beneficial effect of having SNCFE presen...

  4. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    V Shankar; T P S Gill; S L Mannan; S Sundaresan

    2003-06-01

    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

  5. 77 FR 1504 - Stainless Steel Wire Rod From India

    Science.gov (United States)

    2012-01-10

    ... Commission instituted this review on July 1, 2011 (76 FR 38686) and determined on October 4, 2011, that it would conduct an expedited review (76 FR 64105, October 17, 2011). The Commission transmitted its... COMMISSION Stainless Steel Wire Rod From India Determination On the basis of the record \\1\\ developed in...

  6. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    Science.gov (United States)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  7. Elaboration of selective solar energy absorbers beginning with stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Aries, L.; Bonino, J.P.; Benavente, R.; Laaouini, A.; Traverse, J.P.

    1981-01-01

    An original simple and cheap method of elaboration of selective surfaces is described. The method involves anodic oxydation of stainless steel in acid solution with addition of sulfides; chemical conversion of the metallic surface is achieved. The selective surfaces exhibit an excellent thermal stability.

  8. Metal release from stainless steel in biological environments: A review.

    Science.gov (United States)

    Hedberg, Yolanda S; Odnevall Wallinder, Inger

    2016-03-01

    Due to its beneficial corrosion resistance, stainless steel is widely used in, e.g., biomedical applications, as surfaces in food contact, and for products intended to come into skin contact. Low levels of metals can be released from the stainless steel surface into solution, even for these highly corrosion resistant alloys. This needs to be considered in risk assessment and management. This review aims to compile the different metal release mechanisms that are relevant for stainless steel when used in different biological settings. These mechanisms include corrosion-induced metal release, dissolution of the surface oxide, friction-induced metal release, and their combinations. The influence of important physicochemical surface properties, different organic species and proteins in solution, and of biofilm formation on corrosion-induced metal release is discussed. Chemical and electrochemical dissolution mechanisms of the surface oxides of stainless steel are presented with a focus on protonation, complexation/ligand-induced dissolution, and reductive dissolution by applying a perspective on surface adsorption of complexing or reducing ligands and proteins. The influence of alloy composition, microstructure, route of manufacture, and surface finish on the metal release process is furthermore discussed as well as the chemical speciation of released metals. Typical metal release patterns are summarized. PMID:26514345

  9. Transformation in Austenitic Stainless Steel Sheet under Different Loading Directions

    NARCIS (Netherlands)

    Boogaard, van den A.H.; Krauer, J.; Hora, P.

    2011-01-01

    The stress-strain relation for austenitic stainless steels is based on 2 main contributions: work hardening and a phase transformation from austenite to martensite. The transformation is highly temperature dependent. In most models for phase transformation from austenite to martensite, the stress tr

  10. Heat treatment method for two-phase stainless steel

    International Nuclear Information System (INIS)

    A two-phase stainless steel the toughness of which is reduced by exposure to a high temperature is kept at from 900degC to 1040degC to be solidified and then quenched. With such procedures, a δ-phase deposited in a ferrite phase can be eliminated to restore the toughness. In the solidification step, the two-phase stainless steel having a plate thickness of 1cm or less is kept for 15mins or more, and is kept for additional 5min on every increase of the thickness of 1cm, and then it is compulsorily cooled with water or air. In the heat treatment comprising such steps, a Cr-depleted layer of the welded portion of the two-phase stainless steel of reduced toughness is eliminated to restore an initial state thereby enabling to maintain the integrity of the welded portion. Since the δ-phase deposited in the ferrite phase can be eliminated by solid-solubilizing the two phase stainless steel of reduced toughness by induction heating, reduced toughness can be restored thereby enabling to keep the integrity. (T.M.)

  11. Towards commercialization of fast gaseous nitrocarburising stainless steel

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo; Christiansen, Thomas; Somers, Marcel A. J.

    2010-01-01

    A novel method for fast and versatile low temperature nitrocarburising of stainless steel has recently been invented by the present authors. Selected results obtained with this new surface hardening process are presented. It is shown that it is possible to obtain a case thickness of 20 μm on...

  12. Sticking Phenomenon Occurring during Hot Rolling of Ferritic Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Son, Chang Young; Kim, Chang Kyu; Ha, Dae Jin; Lee, Sung Hak [Pohang Univ. of Institute of Science and Technology, Pohang (Korea, Republic of); Lee, Jong Seog; Kim, Kwang Tae; Lee, Yong Deuk [POSCO Technical Research Lab., Gwangyang (Korea, Republic of)

    2007-01-15

    Sticking phenomenon occurring during hot rolling of two ferritic stainless steels, STS 430J1L and STS 436L, was investigated in this study. A hot rolling simulation test was carried out using a high-temperature wear tester capable of controlling rolling speed, load, and temperature. The simulation test results at 900 .deg. C and 1000 .deg. C revealed that the sticking process proceeded with three stages, i.e., nucleation, growth, and saturation, for the both stainless steels, and that STS 430J1L had a smaller number of sticking nucleation sites than the STS436L because of higher high-temperature hardness, thereby leading to a smaller amount of the sticking. When the test temperature was 1070 .deg. C, the sticking hardly occurred in both stainless steels as Fe-Cr oxide layers were formed on the surface of the rolled materials. These findings suggested that the improvement of high-temperature properties of stainless steels and the appropriate rolling conditions for readily forming oxide layers on the rolled material surface were required in order to prevent or minimize the sticking.

  13. Welding Characteristics of Nitrogen Added Stainless Steels for Nuclear Application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. D. [Pohang Iron and Steel Co., Ltd, Pohang (Korea, Republic of)

    1997-07-01

    Characteristics of properties and manufacturing process was evaluated in development of high strength and corrosion resistant stainless steel. The continuous cast structure of STS 316L was similar to that of STS 304. The most of residual {delta}-ferrite of STS 316L was vermicular type. The residual {delta}-ferrite content increased from the surface towards the center of the slab and after reaching a maximum value at about 50mm distance from surface and steeply decreased towards the center itself. Hot ductility of STS 304L and STS 316L stainless steels containing below 1000 ppm N was appeared to be reasonably good in the range of hot rolling temperature. In case of the steels containing over 1000 ppm N, the hot ductility was decreased rapidly when sulfur content of the steel was above 20 ppm. Therefore, to achieve good hot ductility of the high nitrogen containing steel, reduction of sulfur contents is required as low as possible. The inter granular corrosion resistance and impact toughness of STS 316L were increased with increasing the nitrogen contents. Yield strength and tensile strength of 304 and 316 stainless steels are increased linearly with increasing the nitrogen contents but their elongations are decreased with increasing the nitrogen contents. Therefore, the mechanical properties of these stainless steels could be controlled with variation of nitrogen. The effects of nitrogen on the resistance of stress corrosion cracking (SCC) can be explained by improvement of the load bearing capacity with increasing tensile strength rather than inhibition of trans granular SCC crack generation and propagation. 101 refs., 17 tabs., 105 figs. (author)

  14. Phase formation at bonded vanadium and stainless steel interfaces

    International Nuclear Information System (INIS)

    The interface between vanadium bonded to stainless steel was studies to determine whether a brittle phase formed during three joining operations. Inertia friction welds between V and 21-6-9 stainless steel were examined using TEM. In the as-welded condition, a continuous, polygranular intermetallic layer about 0.25 μm thick was present at the interface. This layer grew to about 50 μm thick during heat treatment at 1000 degrees C for two hours. Analysis of electron diffraction patterns confirmed that this intermetallic was the ω phase. The interface between vanadium and type 304, SANDVIK SAF 2205, and 21-6-9 stainless steel bonded by a co-extrusion process had intermetallic particles at the interface in the as-extruded condition. Heat treatment at 1000 degrees C for two hours caused these particles to grow into continuous layers in all three cases. Based on the appearance, composition and hardness of this interfacial intermetallic, it was also concluded to be ω phase. Bonding V to type 430 stainless steel by co-extrusion caused V-rich carbides to form at the interface due to the higher concentration of C in the type 430 than in the other stainless steels investigated. The carbide particles initially present grew into a continuous layer during a two-hour heat treatment at 1000 degrees C. Co-hipping 21-6-9 stainless steel tubing with V rod resulted in slightly more concentric specimens than the co-extruded ones, but a continuous layer of the ω phase formed during the hipping operation. This brittle layer could initiate failure during subsequent forming operations. The vanadium near the stainless steel interface in the co-extruded and co-hipped tubing in some cases was harder than before heat treatment. It was concluded that this hardening was due to thermal straining during cooling following heat treatment and that thermal strains might present a greater problem than seen here when longer tubes are used in actual applications

  15. Behaviour of cold-formed stainless steel beams at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ju CHEN; Wei-liang JIN

    2008-01-01

    A study of the behaviour of constructional cold-formed stainless steel beams at elevated temperatures was conducted in this paper.An accurate finite element model(FEM)for stainless steel beams was developed using the finite element program ABAQUS.Stainless steel beams having different cross-sections were simulated in this study.The nonlinear FEM was verified against the experimental results.Generally,the developed FEM could accurately simulate the stainless steel beams.Based on the high temperature stainless steel material test results,a parametric study was carried out on stainless steel beams at elevated tem-peratures using the verified FEM.Both high strength stainless steel EN 1.4462 and normal strength stainless steel EN 1.4301 were considered.A total of 42 stainless steel beams were simulated in the parametric study.The effect of temperatures on the behaviour of stainless steel beams was investigated.In addition,a limiting temperature for stainless steel beams was also proposed.

  16. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  17. Low temperature surface hardening of stainless steel; the role of plastic deformation

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jespersen, Freja Nygaard; Hattel, Jesper Henri;

    2016-01-01

    Thermochemical surface engineering by nitriding of austenitic stainless steel transforms the surface zone into expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. As a consequence of the thermochemical surface engineering, huge......: - plastic deformation of metastable austenitic stainless steels leads to the development of strain-induced martensite, which compromises the uniformity and the homogeneity of the expanded austenite zone. - during low temperature surface engineering composition and stress profiles develop. On numerical...

  18. Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints

    OpenAIRE

    J. Łabanowski

    2007-01-01

    Purpose: The aim of the current study is to reveal the influence of welding conditions on structure and stresscorrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Butt joints between duplex 2205 and austenitic 316L steels were performedwith the use of submerged arc welding (SAW) method. The plates 15 mm in thickness were welded with heatinput in the range of 1.15 – 3.2 kJ/mm using duplex steel filler metal. Microstructure examinations an...

  19. Optimisation of welding procedures for duplex and superduplex stainless steels

    International Nuclear Information System (INIS)

    Austenitic stainless steels are increasingly being replaced by duplex grades that can offer similar corrosion resistance with far higher strength. This increased strength makes it possible to reduce material consumption whilst also decreasing transport and construction costs. Although established welding methods used for austenitic steels can be used for duplex steels, modification of the procedures can lead to improved results. This paper reviews the welding of duplex stainless steel and examines precautions that may be required. The advantages and disadvantages of different welding methods are highlighted and some high productivity solutions are presented. The application of a more efficient process with a high deposition rate (e.g. flux- cored arc welding) can decrease labour costs. Further close control of heat input and interpass temperature can result in more favourable microstructures and final properties. Although welding adversely affects the corrosion resistance of austenitic and duplex stainless steels, particularly the pitting resistance, relative to the parent material, this problem can be minimised by proper backing gas protection and subsequent pickling.

  20. Aging degradation of cast stainless steels: Effects on mechanical properties

    International Nuclear Information System (INIS)

    A program is being conducted to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water operating conditions. Mechanical property data are presented from Charpy-impact, tensile, and J-R curve tests for several heats of cast stainless steel aged up to 10,000 h at 450, 400, 350, 320, and 2900C. The results indicate that thermal aging increases the tensile strength and decreases the impact energy, J/sub IC/, and tearing modulus of the steels. Also, the ductile-to-brittle transition curve shifts to higher temperatures. The fracture toughness results are consistent with the Charpy-impact data, i.e., the relative reduction in J/sub IC/ is similar to the relative decrease in impact energy. The ferrite content and concentration of C in the steel have a strong effect on the overall process of low-temperature embrittlement. The low-carbon CF-3 steels are the most resistant and Mo-containing CF-8M steels are most susceptible to embrittlement. Weakening of the ferrite/austenite phase boundaries by carbide precipitates has a significant effect on the kinetics and extent of embrittlement of the high-carbon CF-8 and CF-8M steels, particularly after aging at temperatures ≥4000C. The influence of N content and distribution of ferrite on loss of toughness are discussed. The data also indicate that existing correlations do not accurately represent the embrittlement behavior over the temperature range 280 to 4500C, i.e., extrapolation of high-temperature data to reactor temperatures may not be valid for some compositions of cast stainless steel

  1. Thermal stability of ultrafine-grained austenitic stainless steels

    International Nuclear Information System (INIS)

    Ultrafine-grained 316 and 304 austenitic stainless steel samples have been produced by high pressure torsion. Their microstructure, after deformation and annealing at a temperature in the 350-900 deg. C range, has been characterized using several techniques (transmission electron microscopy, X-ray diffraction, Moessbauer spectroscopy). The average grain size in the ultrafine-grained 316 is about 40 nm while it is larger in the ultrafine-grained 304 due to a smaller deformation. Results show the formation of α'-martensite during deformation in both steels while ε-martensite is formed only in the 304 steel. Annealing at 350 deg. C induces the decrease of α'-martensite content in the 316 steel. The trend is different in the 304 steel, in which the α'-martensite content increases. Recrystallization of grains is observed from 700 deg. C. Moessbauer spectroscopy shows a reduction of the level of solute atoms in α'-martensite during annealing.

  2. 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M.

    2013-01-31

    This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R&D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on “Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels”; and, (5) Published report on “The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels”. These accomplishments are highlighted here and references given to additional reports for more detailed information.

  3. Corrosion Behavior of Austenitic and Duplex Stainless Steels in Lithium Bromide

    OpenAIRE

    Ayo Samuel AFOLABI; Alaneme, K.K.; Samson Oluwaseyi BADA

    2009-01-01

    The corrosion behavior of austenitic and duplex stainless steels in various concentrations of lithium, bromide solution was investigated by using the conventional weight loss measurement method. The results obtained show that corrosion of these steels occurred due to the aggressive bromide ion in the medium. Duplex stainless steel shows a greater resistance to corrosion than austenitic stainless steel in the medium. This was attributed to equal volume proportion of ferrite and austenite in th...

  4. Toughness of welded stainless steels sheets for automotive industry

    Directory of Open Access Journals (Sweden)

    E. Bayraktar

    2011-01-01

    Full Text Available Purpose: In the automotive industry, more and more it is compulsory to develop new grades of stainless steels, such as high resistant Martensitic Stainless Steels (MA-SS and Ferritic Stainless Steels (FSS in order to realise certain or many complex deep drawn pieces. For these grades, resistance spot welding (RSW is the most widespread process used largely for many parts of the car body in the automotive industry. This paper aims to characterise mechanical behaviour (toughness of the different steel grades under dynamic test conditions.Design/methodology/approach: A special crash test device is used in different temperatures and the simulated crash tests are performed at a constant speed of 5.52 m/s.Findings: The specimen is submitted to impact tensile test at different temperatures. According to testing temperature, fracture mode varies: At low temperatures, brittle fracture occurs: due to stress concentration, fracture always occurs in the notched section. At high temperatures, the specimen fails by ductile fracture. Toughness of the steel sheets (base metals, BM or welded parts is well compared at different materials and test conditions.Research limitations/implications: Evaluation of welded thin sheets submitted to the dynamic loading in order to correlate in real service conditions in order to realize a useful correlation between the transition temperature and deep drawability can be used for evaluating of the welding conditions and also of the material characteristics. For detail study, this type of the test needs a standard formulation.Practical implications: This is a new conception of specimen and of the impact/crash machine. It is widely used in automotive industry for practical and economic reason to give rapid answers to designer and also steel makers for ranking the materials.Originality/value: New developed test called impact crash test for evaluating the toughness of thin welded joints (tailored blanks / mechanical assemblies in

  5. Failure of austenitic stainless steel tubes during steam generator operation

    Directory of Open Access Journals (Sweden)

    M. Głowacka

    2012-12-01

    Full Text Available Purpose: of this study is to analyze the causes of premature failure of steam generator coil made of austenitic stainless steel. Special attention is paid to corrosion damage processes within the welded joints.Design/methodology/approach: Examinations were conducted several segments of the coil made of seamless cold-formed pipes Ø 23x2.3 mm, of austenitic stainless steel grade X6CrNiTi18-10 according to EN 10088-1:2007. The working time of the device was 6 months. The reason for the withdrawal of the generator from the operation was leaks in the coil tube caused by corrosion damage. The metallographic investigations were performed with the use of light microscope and scanning electron microscope equipped with the EDX analysis attachment.Findings: Examinations of coil tubes indicated severe corrosion damages as pitting corrosion, stress corrosion cracking, and intergranular corrosion within base material and welded joints. Causes of corrosion was defined as wrong choice of austenitic steel grade, improper welding technology, lack of quality control of water supply and lack of surface treatment of stainless steel pipes.Research limitations/implications: It was not known the quality of water supply of steam generator and this was the reason for some problems in the identification of corrosion processes.Practical implications: Based on the obtained research results and literature studies some recommendations were formulated in order to avoid failures in the application of austenitic steels in the steam generators. These recommendations relate to the selection of materials, processing technology and working environment.Originality/value: Article clearly shows that attempts to increase the life time of evaporator tubes and steam coils by replacing non-alloy or low alloy structural steel by austenitic steel, without regard to restrictions on its use, in practice often fail.

  6. Deformation behavior of open-cell stainless steel foams

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, A.C., E-mail: a.kaya@campus.tu-berlin.de; Fleck, C.

    2014-10-06

    This study presents the deformation and cell collapse behavior of open-cell stainless steel foams. 316L stainless-steel open-cell foams with two porosities (30 and 45 pores per inch, ppi) were produced with the pressureless powder metallurgical method, and tested in quasi-static compression. As a result of the manufacturing technique, 316L stainless steel open-cell foams have a high amount of microporosity. The deformation behavior was investigated on a macroscopic scale by digital image correlation (DIC) evaluation of light micrographs and on the microscopic scale by in situ loading of cells in the scanning electron microscope. The deformation behavior of the metal foams was highly affected by microstructural features, such as closed pores and their distribution throughout the foam specimen. Moreover, the closed pores made a contribution to the plateau stress of the foams through cell face stretching. Strut buckling and bending are the dominant mechanisms in cell collapse. Although there are edge defects on the struts, the struts have an enormous plastic deformation capability. The cell size of the steel foams had no significant effect on the mechanical properties. Due to the inhomogeneities in the microstructure, the measured plateau stresses of the foams showed about 20% scatter at the same relative density.

  7. Field welding of hydraulic turbines made of martensitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, A.

    1982-06-15

    Field welding of hydraulic turbines made of 13 Cr-Ni martensitic stainless steels was investigated. Two shielded metal arc welding electrodes, one containing 15 Cr-25 Ni and the other with 50% cobalt, were studied with respect to the criteria of weldability, structural integrity and cavitation erosion resistance. The cavitation erosion resistance of the 15 Cr-25 Ni material, evaluated with an ultrasonic vibratory test method, was found to be poor, being comparable to that of mild steel. Although the 50% cobalt alloy possesses excellent cavitation erosion properties, its cost is ca 10 times higher than that of austenitic stainless steels. Under certain welding conditions, the 50% cobalt alloy produces a hard interface with the martensitic stainless steel base material. These interfaces were systematically investigated using microhardness measurement and scanning electron microscopy. The interfaces between the base metal and the weld deposits as well as that between the two weld metals were subjected to measurements of Charpy impact energy, corrosion fatigue tests and an elastoplastic fracture mechanics analysis. It is concluded that the presence of the hard zone is not detrimental to structural integrity. A field welding procedure is proposed on the basis of these findings. The shallow cavitation damaged areas may be repaired with the 50% cobalt containing material. The cheaper 15 Cr-25 Ni material may be used for the filling of deep cavitation damaged areas and for the repair of cracks followed by an overlay of 50% cobalt weld metal. 20 refs., 22 figs., 7 tabs.

  8. High specialty stainless steels and nickel alloys for FGD dampers

    Energy Technology Data Exchange (ETDEWEB)

    Herda, W.R.; Rockel, M.B.; Grossmann, G.K. [Krupp VDM GmbH, Werdohl (Germany); Starke, K. [Mannesmann-Seiffert GmbH, Beckum (Germany)

    1997-08-01

    Because of process design and construction, FGD installations normally have bypass ducts, which necessitates use of dampers. Due to corrosion from acid dew resulting from interaction of hot acidic flue gases and colder outside environments, carbon steel cannot be used as construction material under these specific conditions. In the past, commercial stainless steels have suffered by pitting and crevice corrosion and occasionally failed by stress corrosion cracking. Only high alloy specialty super-austenitic stainless steels with 6.5% Mo should be used and considered for this application. Experience in Germany and Europe has shown that with regard to safety and life cycle cost analysis as well as providing a long time warranty, a new specialty stainless steel, alloy 31--UNS N08031--(31 Ni, 27 Cr, 6.5 Mo, 0.2 N) has proven to be the best and most economical choice. Hundreds of tons in forms of sheet, rod and bar, as well as strip (for damper seals) have been used and installed in many FGD installations throughout Europe. Under extremely corrosive conditions, the new advanced Ni-Cr-Mo alloy 59--UNS N06059--(59 Ni, 23 Cr, 16 Mo) should be used. This paper describes qualification and workability of these alloys as pertains to damper applications. Some case histories are also provided.

  9. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  10. Residual stresses and fatigue in a duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Johan

    1999-05-01

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  11. Residual stresses and fatigue in a duplex stainless steel

    International Nuclear Information System (INIS)

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  12. High density sintered stainless steels with improved properties

    Directory of Open Access Journals (Sweden)

    M. Actis Grande

    2007-04-01

    Full Text Available Purpose: of this paper is the study of the properties of sintered AISI 316L (1.4404 according to EN 10088. Sintered stainless steels occupy a prominent position in the high alloyed steels, however their properties are limited by the presence of porosity. The improvement of quality and performances of products coupled with a reduction of manufacturing costs calls for high compacting pressures, as well as high sintering temperatures. However, the possibility to fill the open porosity of sintered parts by infiltration process with a metal alloy or by the use of reactive sintering techniques can favour the production of stainless steel parts with enhanced mechanical properties and good corrosion resistance. Design/methodology/approach: Sintered AISI 316L (1.4404 according to EN 10088 stainless steel samples have been manufactured using different combinations of compacting pressure and sintering parameters (time, temperature, atmosphere, or a modified composition able to allow reactive sintering process, as well as the contact infiltration with bronze.Findings: The studies have been forwarded towards the statical and dynamic mechanical properties, as well as the corrosion behavior. Lowering the porosity level and increasing the sintering degree, by use of higher compacting pressure or sintering temperature, is of great effectiveness, especially from the point of view of mechanical properties and fatigue endurance.Practical implications: the obtained results demonstrate the benefits of contact infiltration and of reactive sintering techniques to sinter stainless steels components having higher density and better mechanical and corrosion resistance properties than the traditional compositions, compacted at high pressure and sintered at elevated temperature.Originality/value: very promising results have been also obtained with a modified composition able to allow reactive sintering process.

  13. Microstructure and antibacterial property of stainless steel implanted by Cu ions

    Institute of Scientific and Technical Information of China (English)

    XU Bo-fan; NI Hong-wei; XIONG Ping-yuan; XIONG Juan; DAN Zhi-gang

    2004-01-01

    Copper ions were implanted into AISI 304 austenitic stainless steel by metal vapor vacuum are (MEVVA) with 60 - 100 keV energy and a dose range (0.2 - 5.0) × 1017 cm-2. Then Cu-implanted stainless steel was treated by a special antibacterial treatment. Antibacterial rates of Cu-implanted stainless steel, Cu-implanted stainless steel with special antibacterial treatment and un-implanted stainless steel were obtained by agar plate method. Phase composition in the implanted layer was analyzed by glancing X-ray diffraction (GXRD). Microstructure of antibacterial stainless steel was observed with transmission electron microscopy (TEM), and changes of the bacterium appearance after 24 h antibacterial action on the surface of un-implanted and Cu-implanted stainless steel with antibacterial treatment were observed with bio-TEM respectively. The results show that stainless steel obtains antibacterial property against E. coli when the Cu ions dose approaches to the saturated one. A suitable amount of Cu-rich phase uniformly disperses on the surface of Cu-implanted stainless steel that is treated by the special antibacterial treatment. The Cu-rich phase naked on the surface has a function of damage to pericellular membrane and cell wall,the pericellular membrane is thickened and the karyon degraded, and finally, bacteria die. Cu-rich phase naked on the surface endows stainless steel with best antibacterial property.

  14. Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints

    Directory of Open Access Journals (Sweden)

    J. Łabanowski

    2007-01-01

    Full Text Available Purpose: The aim of the current study is to reveal the influence of welding conditions on structure and stresscorrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Butt joints between duplex 2205 and austenitic 316L steels were performedwith the use of submerged arc welding (SAW method. The plates 15 mm in thickness were welded with heatinput in the range of 1.15 – 3.2 kJ/mm using duplex steel filler metal. Microstructure examinations and corrosiontests were carried out. Slow strain rate tests (SSRT were performed in inert (glycerin and aggressive (boiling35% MgCl2 solution environments.Findings: It was shown that place of the lowest resistance to stress corrosion cracking is heat affected zone atduplex steel side of dissimilar joins. That phenomenon was connected with undesirable structure of that zoneconsisted of great amount of coarse ferrite grains and acicular austenite precipitates. High welding inputs do notdeteriorate stress corrosion cracking resistance of welds.Research limitations/implications: High welding heat inputs should enhance the precipitation process ofintermetallic phases in the HAZ. It is necessary to continue the research to determine the relationship betweenwelding parameters, obtained structures, and corrosion resistance of dissimilar stainless steels welded joints.Practical implications: Application of more productive joining process for dissimilar welds like submerged arcwelding instead of currently employed gas metal arc welding (GMAW method will be profitable in terms ofreduction the welding costs.Originality/value: The stress corrosion cracking resistance of dissimilar stainless steel welded joints wasdetermined. The zone of the weaker resistance to stress corrosion cracking was pointed out.

  15. Super austenitic stainless steels - a promising replacement for the currently used type 316L stainless steel as the construction material for flue-gas desulphurization plant

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, N.; Rajeswari, S. [University of Madras, Madras (India). Dept. of Analytical Chemistry

    1996-12-15

    Potentiodynamic anodic cyclic polarization experiments on type 316L stainless steel and 6Mo super austenitic stainless steels were carried out in simulated flue-gas desulphurization (FGD) environment in order to assess the localized corrosion resistance. The pitting corrosion resistance was higher in the case of the super austenitic stainless steel containing 6Mo and a higher amount of nitrogen. The accelerated leaching study conducted for the alloys showed that the super austenitic stainless steels have a little tendency for leaching of metal ions such as iron, chromium and nickel at different impressed potentials. This may be due to surface segregation of nitrogen as CrN, which would, in turn, enrich a chromium and molybdenum mixed oxide film and thus impede the release of metal ions. The present study indicates that the 6Mo super austenitics can be adopted as a promising replacement for the currently used type 316L stainless steel as the construction material for FGD plants.

  16. Mechanical and physical properties of irradiated type 348 stainless steel

    International Nuclear Information System (INIS)

    A type 348 stainless steel in-pile tube irradiated to a fluence of 3 x 1022 n/cm2, E > 1 MeV (57 dpa), was destructively examined. The service had resulted in a maximum total creep of 1.8% at the high fluence. The metal temperature ranged between 623 and 6520K, hence the thermal creep portion of the total was negligible. Total creep was greater than had been anticipated from creep data for austenitic stainless steels irradiated in other reactors. The objectives of the destructive examination were to determine the service-induced changes of mechanical and physical properties, and to assess the possibility of adverse effects of both these changes and the greater total creep on the prospective service life of other tubes

  17. Interaction between Lubricants Containing Phosphate Ester Additives and Stainless Steels

    Directory of Open Access Journals (Sweden)

    David W. Johnson

    2013-05-01

    Full Text Available One way to improve fuel efficiency in today’s jet aircraft engines is to create an environment for higher operating temperatures and speeds. New and improved lubricants and bearing materials must be developed to remain stable in these elevated operating temperatures. Three lubricants, with varying amounts of tricresyl phosphate added as an anti-wear/extreme pressure additive were tested on two different stainless steels at varying temperatures ranging from 300 °C to 350 °C in vacuum. Significant decomposition of the lubricant base-stocks and the phosphate ester additive did occur in most of the trials resulting in the formation of carboxylic acids and phenols. In these cases a film containing phosphorus was deposited onto the stainless steel substrate.

  18. Investigation of Laser Peening Effects on Hydrogen Charged Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Zaleski, Tania M. [San Jose State Univ., CA (United States)

    2008-10-30

    Hydrogen-rich environments such as fuel cell reactors can exhibit damage caused by hydrogen permeation in the form of corrosion cracking by lowering tensile strength and decreasing material ductility. Coatings and liners have been investigated, but there were few shot-peening or laser peening studies referenced in the literature with respect to preventing hydrogen embrittlement. The surface compressive residual stress induced by laser peening had shown success in preventing stress corrosion cracking (SCC) for stainless steels in power plants. The question arose if the residual stresses induced by laser peening could delay the effects of hydrogen in a material. This study investigated the effect of laser peening on hydrogen penetration into metal alloys. Three areas were studied: laser peening, hydrogenation, and hydrogen detection. This study demonstrated that laser peening does not reduce the hydrogen permeation into a stainless steel surface nor does it prevent hydrogen embrittlement. The effect of laser peening to reduce hydrogen-assisted fatigue was unclear.

  19. COLD ROLLING ORTHODONTIC WIRES OF AUSTENITIC STAINLESS STEEL AISI 304

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Messner

    2013-03-01

    Full Text Available Austenitic stainless steels wires are widely used in the final stages of orthodontic treatment. The objective of this paper is to study the process of conformation of rectangular wires from round wires commercial austenitic stainless steel AISI 304 by the process of cold rolling. The wire quality is evaluated by means of dimensional analysis, microhardness measurements, tensile strength and fractographic analysis of the wires subjected to tensile tests. Also a study on the application of finite element method to simulate the process, comparing the force and rolling stress obtained in the rolling is done. The simulation results are consistent with those obtained in the actual process and the rolled wires show ductile fracture, tensile strength and dimensional variations appropriate to orthodontic standards. The fracture morphology shows the model cup-cone type besides the high deformation and hardness inherent in the cold rolling process.

  20. Long-Term Underground Corrosion of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    M. K. Adler Flitton; T. S. Yoder

    2007-03-01

    In 1970, the National Institute of Standards and Technology (NIST) implemented the most ambitious and comprehensive long-term corrosion behavior test to date for stainless steels in soil environments. Over thirty years later, one of the six test sites was targeted to research subsurface contamination and transport processes in the vadose and saturated zones. This research directly applies to environmental management operational corrosion issues and long term stewardship scientific needs for understanding the behavior of waste forms and their near-field contaminant transport of chemical and radiological contaminants at nuclear disposal sites. This paper briefly describes the ongoing research and the corrosion analysis results of the stainless steel plate specimens recovered from the partial recovery of the first test site.

  1. Multilayer modelling of stainless steel with a nanocrystallised superficial layer

    Energy Technology Data Exchange (ETDEWEB)

    Petit, J. [Laboratoire Energetique Mecanique Electromagnetisme (LEME), EA4416, Universite Paris Ouest, 92410 Ville d' Avray (France); Waltz, L., E-mail: laurent.waltz@univ-montp2.fr [Laboratoire de Mecanique et Genie Civil de Montpellier (LMGC), University of Montpellier II, Place Eugene Bataillon, 34000 Montpellier (France); Montay, G.; Retraint, D.; Roos, A.; Francois, M. [Institut Charles Delaunay - LASMIS, UMR CNRS 6279, University of Technology of Troyes, 10010 Troyes (France)

    2012-02-28

    Highlights: Black-Right-Pointing-Pointer SMAT has been used for nanocrystallisation of an austenitic stainless steel. Black-Right-Pointing-Pointer The mechanical response of the nano-phase has been obtained by an indirect method. Black-Right-Pointing-Pointer Minimisation of a stress formulated objective function. Black-Right-Pointing-Pointer The model predicts the strain at which diffuse necking occurs. - Abstract: In order to obtain the macroscopic mechanical response of a 316L stainless steel, nanocrystallised by Surface Mechanical Attrition Treatment (SMAT), a multilayer model is proposed. The constitutive behaviour of each layer is determined from tensile tests or by an inverse method and its thickness is evaluated from Scanning and Transmission Electron Microscopy (SEM and TEM) analyses and local hardness measurements. The consistency of the model is verified by its ability to predict the strain at which diffuse necking occurs.

  2. PITTING CORROSION OF STAINLESS STEEL AT THE VARIOUS SURFACE TREATMENT

    Directory of Open Access Journals (Sweden)

    Viera Zatkalíková

    2011-09-01

    Full Text Available The stainless steel surface treatment is very important with regard to its pitting corrosion susceptibility. An effect of various types surfacing on pitting corrosion resistance of AISI 304stainless steel is investigated in this work. The samples of the tested material are turned, blasted, peened, grinded and a half of them are pickled to achieve higher purity of surfaces and better quality of passive film. Eight types of different finished surfaces are tested by electrochemical and immersion tests to determine corrosion behaviour in conditions where pitting is evoked by controlled potential and second by solution with high redox potential. By this way the effect of mechanical and chemical surface treatment on the resistance to pitting corrosion, character, size and shape of pits are compared in the conditions of different mechanisms of corrosion process.

  3. New hermetic sealing material for vacuum brazing of stainless steels

    Science.gov (United States)

    Hildebrandt, S.; Wiehl, G.; Silze, F.

    2016-03-01

    For vacuum brazing applications such as in vacuum interrupter industry Hermetic Sealing Materials (HSM) with low partial pressure are widely used. AgCu28 dominates the hermetic sealing market, as it has a very good wetting behavior on copper and metallized ceramics. Within recent decades wetting on stainless steel has become more and more important. However, today the silver content of HSMs is more in focus than in the past decades, because it has the biggest impact on the material prices. Umicore Technical Materials has developed a new copper based HSM, CuAg40Ga10. The wettability on stainless steel is significantly improved compared to AgCu28 and the total silver content is reduced by almost 44%. In this article the physical properties of the alloy and its brazed joints will be presented compared to AgCu28.

  4. Mechanical properties and corrosion resistance of dissimilar stainless steel welds

    OpenAIRE

    J. Łabanowski

    2007-01-01

    Purpose: The purpose of this paper is to determine the influence of welding on microstructure, mechanical properties, and stress corrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Duplex 2205 and austenitic 316L steels were used. Butt joints of plates 15 mm in thickness were performed with the use of submerged arc welding (SAW) method. The heat input was in the range of 1.15 – 3.2 kJ/mm. Various plates’ edge preparation...

  5. Corrosion Behavior of Austenitic and Duplex Stainless Steels in Lithium Bromide

    Directory of Open Access Journals (Sweden)

    Ayo Samuel AFOLABI

    2009-07-01

    Full Text Available The corrosion behavior of austenitic and duplex stainless steels in various concentrations of lithium, bromide solution was investigated by using the conventional weight loss measurement method. The results obtained show that corrosion of these steels occurred due to the aggressive bromide ion in the medium. Duplex stainless steel shows a greater resistance to corrosion than austenitic stainless steel in the medium. This was attributed to equal volume proportion of ferrite and austenite in the structure of duplex stainless steel coupled with higher content of chromium in its composition. Both steels produced electrochemical noise at increased concentrations of lithium bromide due to continuous film breakdown and repair caused by reduction in medium concentration by the alkaline corrosion product while surface passivity observed in duplex stainless steel is attributed to film stability on this steel.

  6. Surface nanocrystallization of stainless steel for reduced biofilm adherence.

    Science.gov (United States)

    Yu, Bin; Davis, Elisabeth M; Hodges, Robert S; Irvin, Randall T; Li, D Y

    2008-08-20

    Stainless steel is one of the most common metallic biomedical materials. For medical applications, its resistance to the adherence of biofilms is of importance to the elimination or minimization of bacterial infections. In this study, we demonstrate the effectiveness of a process combining surface nanocrystallization and thermal oxidation (or a recovery heat treatment in air) for reducing the biofilm's adherence to stainless steel. During this treatment, a target surface was sandblasted and the resultant dislocation cells in the surface layer were turned into nanosized grains by a subsequent recovery treatment in air. This process generated a more protective oxide film that blocked the electron exchange or reduced the surface activity more effectively. As a result, the biofilm's adherence to the treated surface was markedly minimized. A synthetic peptide was utilized as a substitute of biofilms to evaluate the adhesion between a treated steel surface and biofilms using an atomic force microscope (AFM) through measuring the adhesive force between the target surface and a peptide-coated AFM tip. It was shown that the adhesive force decreased with a decrease in the grain size of the steel. The corresponding surface electron work function (EWF) of the steel was also measured, which showed a trend of variation in EWF with the grain size, consistent with corresponding changes in the adhesive force. PMID:21730615

  7. Ionic nitriding of high chromium martensitic stainless steels

    International Nuclear Information System (INIS)

    Martensitic stainless steels are used in industrial applications where resistance to corrosion and mechanical resistance are needed simultaneously. These steels are normally used in tempering and annealing condition which gives them hardnesses of 500 and 600 HV (about 54 HRC). Ionic nitriding is an assisted diffusion technique that has recently been successfully applied to harden austenitic stainless steels without reducing their resistance to corrosion. The application with AISI 420 martensitic steels has not given good results yet, because in most cases, it affects their corrosion resistance. This work presents the results of the pulsed nitriding of martensitic steels with a higher chrome content, such as the M340 and M333 Boehler steels and they are compared with the same materials after tempering and annealing, without nitriding. The influence of the variations in the parameters of the process, such as the percentage of active time in the pulsed wave, partial nitrogen pressure, current density and effective tension in the microstructure, hardness and wear and corrosion resistance was studied. The microstructure was studied with an optic microscope; the wear resistance with abrasion tests following ASTM G-65 and corrosion with 100 hour long saline haze tests, in a device built according to ASTM B117. Hardness was found to rise to values of 1000 to 1350 HV in all the steels after ionic nitriding, the modified layers oscillated from 3 to 15 microns. As a result, wear resistance also increased, with differences depending on the microstructure and the thickness of the modified layer. However, corrosion resistance was not good, except in the case of the M333 steel test piece with less hardness and a less thick nitrided layer without a noticeable interphase (au)

  8. Highly alloyed stainless steels for sea water applications

    Energy Technology Data Exchange (ETDEWEB)

    Audouard, J.P.; Verneau, M. [Creusot-Loire Industrie, Le Creusot (France). Research Centre for Materials

    1996-10-01

    Natural sea water is known as a very aggressive environment which generates pitting and crevice corrosion on stainless steels. High chromium grades with sufficient molybdenum and nitrogen additions (PREN > 40) are generally recognized as resistant materials in natural sea water bu the material selection criteria must be improved to take into account the effect of climatic conditions and of biocide treatments which are widely used as anti-fouling agents in sea water circuits. The paper deals with the localized corrosion properties of conventional stainless steels (SS), duplex and superaustenitic alloys. The results of laboratory investigations conducted in more or less oxidizing chloride containing media are discussed. Then, immersion tests carried out in natural sea waters in different climatic conditions are presented and discussed. Finally, the effect of biocide addition on fouling and its consequences on corrosion is investigated. The results are interpreted taking into account the chemical composition of the stainless steels and biofilm criteria. The results showed the Mediterranean Sea to be slightly more aggressive than other European seas but a PREN value higher than 40 is sufficient for stainless steels to withstand localized corrosion in European natural sea waters. A residual chlorine level around 0.3--0.4 ppm was found to be very effective to limit the fouling and to avoid localized corrosion on SS. Nevertheless, due to difficulties in monitoring chlorine addition, PREN values higher than 50 are recommended to withstand localized corrosion in treated sea waters. As an example, the new super-austenitic grade 25Cr-22Ni-5.8Mo-1.5Cu-2W-0.45N with a PRENW value of 54 was found to be perfectly resistant to crevice corrosion with 0.5 ppm free chlorine at ambient temperature.

  9. Adhesive bonding of stainless steel : strength and durability

    OpenAIRE

    Boyes, Robert

    1998-01-01

    Adhesive bonding as an alternative method of joining materials together has many advantages over the more conventional joining methods such as fusion and spot welding, bolting and riveting. For example, adhesives can be used to bond dissimilar materials, adhesive joints have a high stiffness to weight ratio and the stress distribution within the joint is much improved. Stainless steels are commonly used in applications that would clearly benefit from adhesive bonding; architectural cladding, ...

  10. Modeling and optimization of turning duplex stainless steels

    OpenAIRE

    Ali, Rastee Dalshad

    2015-01-01

    In the present dissertation, machining investigations into duplex stainless steels are performed under different and systematically well-structured modeling and optimization frameworks. Focusing on the main objective of finding optimum machining process parameters and com-prehensively applying the statistical design of experiments to design the experiments, the study tackles the challenge of integrating modeling and optimization algorithms using six different approaches. Firstly, sets of non-...

  11. Manifestations of DSA in austenitic stainless steels and inconel alloys

    International Nuclear Information System (INIS)

    The aim of the investigation was to examine and compare different types of DSA (Dynamic Strain Aging) manifestations in AISI 316 austenitic stainless steel (SS) and Inconel 600 and Inconel 690 alloys by means of slow strain rate tensile testing, mechanical loss spectrometry (internal friction) and transmission electron microscopy (TEM). Another aim was to determine differences in the resulting dislocation structures and internal friction response of materials showing and not showing DSA behaviour

  12. Stainless steel: Recovery of properties after exposure to detrimental phases

    OpenAIRE

    Skaare, Andreas

    2015-01-01

    High alloyed stainless steel provides a desirable combination of corrosion resistance and mechanical properties, being a preferred material when ductility, overall strength and resistance to harsh environments are required. High service temperatures where alloy elements, as chromium and molybdenum, are present, is a well-known recipe for the precipitation of detrimental phases in the material. Even a small amount of these precipitations may impair the mechanical and corrosion properties. T...

  13. Hyperbaric welding of duplex stainless steel pipelines offshore.

    OpenAIRE

    Farrell, J.

    1996-01-01

    Three duplex stainless steels (Avesta 2205, Sandvik SAF2507 and Zeron 100) were successfully welded automatically at a range of pressures from 1 to 32bar. The gas tungsten arc (GTA) welding process was chosen as it allows a high degree of control to be exercised during welding. Initial autogenous bead on plate welds established the effects of pressure on the welding process and allowed the process parameters to be determined for subsequent experiments. Analysis of the eff...

  14. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  15. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  16. Chromium reduction from slag on electromelting of stainless steel

    International Nuclear Information System (INIS)

    Specific features of chromium reduction from the slag on electromelting of stainless steel type Kh18N10T according to one- or two-slag procedure were studied. It was shown that one-slag melting technology allows double decrease of chromium losses in the form of incompletely reduced oxides. This occurs due to additional chemical reactions between metal and slag on their combined pouring into the ladle. 1 ref.; 3 figs

  17. Increase of chromium utilization in stainless steel melting

    International Nuclear Information System (INIS)

    The processes of deoxidizing when melting stainless 18-10 steels in electric are furnaces by the method of remelting with wastes are investigated. The dependences of amount of reduced chromium on silicon consumption are made more precise. It is shown that it is useful to apply aluminium for deoxidation of acid high-chromium slags. Based on the data on pilot melts the extent to which aluminium can be used as a reducing agent for chromium is estimated. 3 refs., 2 figs

  18. Stabilization of final titanium concentration in stainless steel

    International Nuclear Information System (INIS)

    The technology of combined alloying of stainless steel type 08-12Kh18N10T with 30%-ferrotitanium and metallic spongy titanium is developed and put into practice. This permits to stabilize titanium assimilation at the level of 40-60 % in two-slag melting process and to increase chromium recovering from the slag. Stabilization of titanium assimilation promotes its homogeneous distribution in final metal after electroslag remelting. 2 refs. 3 figs

  19. 75 FR 67689 - Stainless Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review

    Science.gov (United States)

    2010-11-03

    ... Brazil. See Antidumping Duty Orders: Stainless Steel Bar from Brazil, India and Japan, 60 FR 9661... Steel Bar From Brazil: Preliminary Results of Antidumping Duty Administrative Review, 74 FR 10022 (March... market. \\2\\ These results were unchanged in the final results of review (Stainless Steel Bar From...

  20. 46 CFR 148.04-13 - Ferrous metal borings, shavings, turnings, or cuttings (excluding stainless steel).

    Science.gov (United States)

    2010-10-01

    ... (excluding stainless steel). 148.04-13 Section 148.04-13 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... stainless steel). (a) This section applies to the stowage and transportation in bulk of hazardous materials... steel). However, unmanned barges on which the article is stowed for or transported on a voyage...

  1. Corrosion resistance properties of sintered duplex stainless steel

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2006-09-01

    Full Text Available Purpose: of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements, such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s diagram was taken into consideration. Prepared mixes have been compacted at 800 MPa and sintered in a vacuum furnace with argon backfilling at 1260°C for 1 h. After sintering two different cooling cycles were applied: rapid cooling with an average cooling rate of 245 °C/min and slow cooling of 5 °C/min in argon atmosphere. Produced duplex stainless steels have been studied by scanning and optical microscopy and EDS chemical analysis of microstructure components. Corrosion properties have been studied through electrochemical methods in 1M NaCl water solutionFindings: According to achieved results, it was affirmed that applied sintering method as well as powder mixes preparation allows for manufacturing the sintered duplex steels with good corrosion properties which depends on austenite/ferrite ratio in the microstructure and elements partitioning between phases. Corrosion resistance of sintered stainless steels is strictly connected with the density and the pore morphology present in the microstructure too. The highest resistance to pitting corrosion in 1M NaCl solution was achieved for composition with approximate balance of ferrite and austenite in the microstructure.Research limitations/implications: According to the powders characteristic, the applied fast cooling rate seems to be a good compromise for corrosion properties and microstructures, nevertheless further tests should be carried out in

  2. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  3. Thermo-mechanical behavior of stainless steel knitted structures

    Science.gov (United States)

    Hamdani, Syed Talha Ali; Fernando, Anura; Maqsood, Muhammad

    2016-09-01

    Heating fabric is an advanced textile material that is extensively researched by the industrialists and the scientists alike. Ability to create highly flexible and drapeable heating fabrics has many applications in everyday life. This paper presents a study conducted on the comparison of heatability of knitted fabric made of stainless steel yarn. The purpose of the study is to find a suitable material for protective clothing against cold environments. In the current research the ampacity of stainless steel yarn is observed in order to prevent the overheating of the heating fabrics. The behavior of the knitted structure is studied for different levels of supply voltage. Infrared temperature sensing is used to measure the heat generated from the fabrics in order to measure the temperature of the fabrics without physical contact. It is concluded that interlock structure is one of the most suited structures for knitted heating fabrics. As learnt through this research, fabrics made of stainless steel yarn are capable of producing a higher level of heating compared to that of knitted fabric made using silver coated polymeric yarn at the same supply voltage.

  4. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Thak Sang; Yang, Ying; Overman, Nicole R.; Busby, Jeremy T.

    2016-02-28

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr–rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  5. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    Science.gov (United States)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  6. Adsorption of ammonia on treated stainless steel and polymer surfaces

    Science.gov (United States)

    Vaittinen, O.; Metsälä, M.; Persijn, S.; Vainio, M.; Halonen, L.

    2014-05-01

    Adsorption of dynamically diluted ammonia at part-per-billion to low part-per-million concentrations in dry nitrogen was studied with treated and non-treated stainless steel and polymer test tubes. The treatments included electropolishing and two types of coatings based on amorphous silicon. Cavity ring-down spectroscopy with an external cavity diode laser operating in the near-infrared wavelength range was used to monitor the adsorption process in real time in continuous-flow conditions to obtain quantitative assessment of the adsorptive properties of the studied surfaces. The investigated polymers were all less adsorptive than any of the treated or non-treated stainless steel surfaces. Some of the commercial coatings reduced the adsorption loss of stainless steel by a factor of ten or more. Polyvinylidene fluoride was found to be superior (less adsorption) to the four other studied polymer coatings. The number of adsorbed ammonia molecules per surface area obtained at different ammonia gas phase concentrations was modeled with Langmuir and Freundlich isotherms. The time behavior of the adsorption-desorption process occurring in the time scale of seconds and minutes was simulated with a simple kinetic model.

  7. [Clinical evaluation of gingival tissue restored with stainless steel crown].

    Science.gov (United States)

    Chao, D D; Tsai, T P; Chen, T C

    1992-12-01

    The use of stainless steel crown for the restoration of primary molars is widely accepted in pediatric dentistry. There has been a concern regarding their effect on the health of the gingival tissue. It is a possibility that the preformed crown may be a contributing cause of gingivitis. This study evaluated one hundred and thirty-seven crowns in forty-five patients who had received pedodontic treatment at Chang Gung Memorial Hospital. The results indicated that the majority of stainless steel crowns had one or more defects, with crown crimping being the most common error. According to what the paired t-test showed, non-ideal crowns indicated that the gingival index was significantly higher than the entire mouth and control teeth. However the supragingival plaque accumulation of these teeth was significant lower than the entire mouth and control teeth. There was only a moderate positive correlation between supragingival plaque and gingivitis. The operator is necessary to adapt the stainless steel crown margin as closely as possible to the tooth and to avoid the mechanical defect of a crown. It minimizes the irritation of gingival tissue and diminishes the bacterial adherence of subgingival plaque, therefore preserving the health of gingival tissue.

  8. Surface interactions of cesium and boric acid with stainless steel

    International Nuclear Information System (INIS)

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction

  9. Simulation of Friction Stir Processing in 304L Stainless Steel

    Directory of Open Access Journals (Sweden)

    MilesM.P.

    2016-01-01

    Full Text Available A major dilemma facing the nuclear industry is repair or replacement of stainless steel reactor components that have been exposed to neutron irradiation. When conventional fusion welding is used for weld repair, the high temperatures and thermal stresses inherent in the process enhance the growth of helium bubbles, causing intergranular cracking in the heat-affected zone (HAZ. Friction stir processing (FSP has potential as a weld repair technique for irradiated stainless steel, because it operates at much lower temperatures than fusion welding, and is therefore less likely to cause cracking in the HAZ. Numerical simulation of the FSP process in 304L stainless steel was performed using an Eulerian finite element approach. Model input required flow stresses for the large range of strain rates and temperatures inherent in the FSP process. Temperature predictions in three locations adjacent to the stir zone were accurate to within 4% of experimentally measure values. Prediction of recrystallized grain size at a location about 6mm behind the tool center was less accurate, because the empirical model employed for the prediction did not account for grain growth that occurred after deformation in the experiment was halted.

  10. Crevice Corrosion of 321 Stainless Steel in Sodium Chloride Solutions

    International Nuclear Information System (INIS)

    Electrochemical techniques have been applied to study the crevice corrosion behaviour of stabilized 321 stainless steel in both 0.5, 1 and 2 M sodium chloride solutions at 25 and 80 degree . This type of stainless steel enjoys a good corrosion resistance especially in the heat affected zone (Haz) of welds. In this investigation the crevice corrosion of 321 stainless steel was studied in both bulk solution environments as well as in chloride solutions simulating those formed inside crevices. A metal-to-nonmetal crevice assembly, in which disc type specimens were faced to a PTFE crevice former, is used for bulk solution tests. Crevice-free specimens of solutions formed inside crevices (known as the critical crevice solutions, CCS). Cyclic potentiodynamic technique was used in evaluating the electrochemical corrosion performance of the alloy in bulk (0.5 and 1 M Nacl) environment. This revealed that both chloride ion concentration and temperature have a marked effect on the electrochemical parameters generally used for the evaluation of the crevice corrosion susceptibility. This included the corrosion potential. E corr. The passivity breakdown potential, Eb, and the protection potential, E p

  11. Long term thermal aging of cast duplex stainless steels

    International Nuclear Information System (INIS)

    Cast duplex stainless steels of CF8M and CF8 are used in major components because of their superior characteristics, such as corrosion resistance, weldability and so on. But, these stainless steels are known to have tendency of thermal aging embrittlement after long term service. Therefore, mechanical properties and metallurgical structure were investigated using materials aged at 290--400 C up to 30,000 hours. As the results show, effects of thermal aging on mechanical properties and metallurgical behavior were identified. In addition, prediction method for Charpy absorbed energy and fracture toughness was established. The following results have been obtained: (1) it was recognized that Charpy absorbed energy and fracture toughness tend to decrease and the tensile strength tend to increase with the increasing aging time; (2) it was confirmed that thermal aging embrittlement was caused by the phase separation in ferrite from the test results of APFIM; (3) in the degradation prediction model development the prediction model was applied to the material test data, including materials aged for 30,000 hours. As the results, the degradation prediction formulas for CVRT, CVHT, JIC and J6 were obtained. The toughness of cast duplex stainless steels during service could be estimated from chemical composition using this method

  12. Long term thermal aging of cast duplex stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Isao; Koyama, Masakuni [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Kawaguchi, Seiichi [Mitsubishi Heavy Industries, Ltd., Takasago (Japan); Mimaki, Hidehito [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Akiyama, Mamoru; Mishima, Yoshitsugu [Univ. of Tokyo (Japan); Okubo, Tadatsune [Sophia Univ., Tokyo (Japan); Mager, T.R.

    1996-09-01

    Cast duplex stainless steels of CF8M and CF8 are used in major components because of their superior characteristics, such as corrosion resistance, weldability and so on. But, these stainless steels are known to have tendency of thermal aging embrittlement after long term service. Therefore, mechanical properties and metallurgical structure were investigated using materials aged at 290--400 C up to 30,000 hours. As the results show, effects of thermal aging on mechanical properties and metallurgical behavior were identified. In addition, prediction method for Charpy absorbed energy and fracture toughness was established. The following results have been obtained: (1) it was recognized that Charpy absorbed energy and fracture toughness tend to decrease and the tensile strength tend to increase with the increasing aging time; (2) it was confirmed that thermal aging embrittlement was caused by the phase separation in ferrite from the test results of APFIM; (3) in the degradation prediction model development the prediction model was applied to the material test data, including materials aged for 30,000 hours. As the results, the degradation prediction formulas for CVRT, CVHT, J{sub IC} and J{sub 6} were obtained. The toughness of cast duplex stainless steels during service could be estimated from chemical composition using this method.

  13. Passivation of duplex stainless steel in solutions simulating chloride-contaminated concrete

    OpenAIRE

    Takenouti, H.; Soriano, L; Palacín, S.; Gutiérrez, A.; Velasco, F.; Blanco, G; Bautista, A.

    2007-01-01

    Most studies published to date on the corrosion behaviour of stainless reinforcing steel are based on austenitic steel. The market presence of corrugated duplex steel is growing, however. The present study compared passivity in 2205 type duplex and 304 type austenitic stainless steel. Polarization tests in chloride-containing Ca(OH)2 solutions confirmed the exceptional performance of duplex steels. X-ray photoelectronic spectroscopy (XPS) showed that the passive layer generated on duplex stai...

  14. Microbially influenced corrosion of stainless steels; Stainless ko no biseibutsu fushoku ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Misawa, M. [Kansai Electric Power Co. Inc., Osaka (Japan)

    1998-11-30

    It is generally known, though not fully clarified, that stainless steel pipes, particularly those exposed to natural sea water; are susceptible to microbially influenced corrosion (MIC) at welded joints. In an effort to gain a better understanding of the mechanism, factors affecting the MIC behavior in welded stainless steel pipe joints were experimentally investigated. Results of the study indicate there are two major contributing factors to MIC development in the weld region. One is the circumferentially protruding shape effect of the deposited metal, provinding an environment that allows aquatic microorganisms to adhere to the downstream side of the welded bead surface. The other factor is the declining corrosion resistance in the welded joint due to the oxide film formation caused by insufficient shielding during welding. There factors, if combined, produce higher susceptibility to MIC in the weld than in the base metal. (author)

  15. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    Energy Technology Data Exchange (ETDEWEB)

    Jafarzadegan, M. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Feng, A.H. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Saeid, T. [Advanced Materials Research Center, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz (Iran, Islamic Republic of); Shen, J. [State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin (China); Assadi, H. [Department of Materials Eng., Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of)

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  16. Microstructure and properties of composite of stainless steel and partially stabilized zirconia

    Institute of Scientific and Technical Information of China (English)

    张文泉; 谢建新; 杨志国; 王从曾

    2003-01-01

    To fabricate the metal-ceramics multi-layer hollow functionally gradient materials(FGMs) that mightmeet the requirement of repeated service and long working time of high temperature burners, such as spacecraft en-gine, the microstructure and properties of composite of stainless steel and partially stabilized zirconia were investiga-ted. Samples of different proportions of stainless steel to partially yttria-stabilized zirconia were fabricated by powderextrusion and sintering method. Shrinkage, relative density, microstructure, micro-Vickers hardness, compressionstrength, bending strength, fractography morphology and electrical resistivity of sintered samples with differentproportions of stainless steel were measured. The results show that threshold of metallic matrix composite(MMC)is approximately equal to 60 % (volume fraction) stainless steel. The samples with 0 to 50% (volume fraction) stain-less steel indicate ceramic brittleness and non cutability, and the samples with 70% to 100% (volume fraction) stain-less steel indicate metallic plasticity and cutability.

  17. EFFECT OF INTERMETALLIC PHASES ON CORROSION BEHAVIOR AND MECHANICAL PROPERTIES OF DUPLEX STAINLESS STEEL AND SUPER-DUPLEX STAINLESS STEEL

    Directory of Open Access Journals (Sweden)

    Prabhu Paulraj

    2015-08-01

    Full Text Available Duplex Stainless Steels (DSS and Super Duplex Stainless Steel (SDSS have excellent integration of mechanical and corrosion properties. However, the formation of intermetallic phases is a major problem in their usage. The mechanical and corrosion properties are deteriorated due to the presence of intermetallic phases. These phases are induced during welding, prolonged exposure to high temperatures, and improper heat treatments. The main emphasis of this review article is on intermetallic phases and their effects on corrosion and mechanical properties. First the effect of various alloying elements on DSS and SDSS has been discussed followed by formation of various intermetallic phases. The intermetallic phases affect impact toughness and corrosion resistance significantly. Their deleterious effect on weldments has also been reviewed.

  18. The influence of sintering time on the properties of PM duplex stainless steel

    OpenAIRE

    Z. Brytan; L.A. Dobrzański; M. Actis Grande; M. Rosso

    2009-01-01

    Purpose: The purpose of this paper is to analyse the effect of sintering time on the pore morphology, microstructural changes, tensile properties and corrosion resistance of vacuum sintered duplex stainless steel.Design/methodology/approach: In presented study PM duplex stainless steels were obtained through mixing base ferritic stainless steel powder with controlled addition of elemental alloying powders and then sintered in a vacuum furnace with argon backfilling at 1250°C for different tim...

  19. Marine microbial fuel cell : use of stainless steel electrodes as anode and cathode materials

    OpenAIRE

    Dumas, Claire; Mollica, Alfonso; Féron, Damien; Basséguy, Régine; Etcheverry, Luc; Bergel, Alain

    2007-01-01

    Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cath...

  20. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    OpenAIRE

    Guilherme Zepon; Claudio Shyinti Kiminami; Walter José Botta Filho; Claudemiro Bolfarini

    2013-01-01

    Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stai...

  1. Influence of hydrogen on corrosion and stress induced cracking of stainless steel

    OpenAIRE

    Kivisäkk, Ulf

    2010-01-01

    Hydrogen is the smallest element in the periodical table. It has been shown in several studies that hydrogen has a large influence on the corrosion and cracking behaviour of stainless steels. Hydrogen is involved in several of the most common cathode reactions during corrosion and can also cause embrittlement in many stainless steels. Some aspects of the effect of hydrogen on corrosion and hydrogen-induced stress cracking, HISC, of stainless steels were studied in this work. These aspects rel...

  2. 77 FR 16207 - Stainless Steel Bar From Brazil, India, Japan, and Spain: Final Results of the Expedited Third...

    Science.gov (United States)

    2012-03-20

    ... Steel Bar From Spain, 60 FR 11656 (March 2, 1995). The Department received a notice of intent to.... Stainless steel bar means articles of stainless steel in straight lengths that have been either hot-rolled... International Trade Administration Stainless Steel Bar From Brazil, India, Japan, and Spain: Final Results...

  3. Tensile behavior of irradiated manganese-stabilized stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  4. Improved corrosion resistance of 316L stainless steel by nanocrystalline and electrochemical nitridation in artificial saliva solution

    Science.gov (United States)

    Lv, Jinlong; Liang, Tongxiang

    2015-12-01

    The fluoride ion in artificial saliva significantly changed semiconductor characteristic of the passive film formed on the surface of 316L stainless steels. The electrochemical results showed that nanocrystalline α‧-martensite improved corrosion resistance of the stainless steel in a typical artificial saliva compared with coarse grained stainless steel. Moreover, comparing with nitrided coarse grained stainless steel, corrosion resistance of the nitrided nanocrystalline stainless steel was also improved significantly, even in artificial saliva solution containing fluoride ion. The present study showed that the cryogenic cold rolling and electrochemical nitridation improved corrosion resistance of 316L stainless steel for the dental application.

  5. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media.

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2015-12-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other properties. The good corrosion resistance of the stainless steel is due to the formation of passive film. While, there is little literature about the electrochemical and passive behavior of ferritic stainless steel in the concrete environments. So, here, we present the several corrosion testing methods, such as the potentiodynamic measurements, EIS and Mott-Schottky approach, and the surface analysis methods like XPS and AES to display the passivation behavior of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions. These research results illustrated a simple and facile approach for studying the electrochemical and passivation behavior of stainless steel in the concrete pore environments. PMID:26501086

  6. NDE of explosion welded copper stainless steel first wall mock-up

    International Nuclear Information System (INIS)

    The study showed that reflection type C-mode scanning acoustic microscope (C-SAM) and internal ultrasonic inspection (IRIS) equipment can be applied for ultrasonic examination of copper stainless steel compound structures of ITER first wall mock-ups. Explosive welding can be applied to manufacture fully bonded copper stainless steel compound plates. However, explosives can be applied only for mechanical tightening of stainless steel cooling tubes within copper plate. If metallurgical bonding between stainless steel tubes and copper plate is required Hot Isostatic Pressing (HIP) method can be applied. (orig.)

  7. Electrochemical and passivation behavior investigation of ferritic stainless steel in simulated concrete pore media.

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2015-12-01

    The applications of stainless steel are one of the most reliable solutions in concrete structures to reduce chloride-induced corrosion problems and increase the structures service life, however, due to high prices of nickel, especially in many civil engineering projects, the austenitic stainless steel is replaced by the ferritic stainless steels. Compared with austenite stainless steel, the ferritic stainless steel is known to be extremely resistant of stress corrosion cracking and other properties. The good corrosion resistance of the stainless steel is due to the formation of passive film. While, there is little literature about the electrochemical and passive behavior of ferritic stainless steel in the concrete environments. So, here, we present the several corrosion testing methods, such as the potentiodynamic measurements, EIS and Mott-Schottky approach, and the surface analysis methods like XPS and AES to display the passivation behavior of 430 ferritic stainless steel in alkaline solution with the presence of chloride ions. These research results illustrated a simple and facile approach for studying the electrochemical and passivation behavior of stainless steel in the concrete pore environments.

  8. CO2 laser welding of AISI 321stainless steel

    International Nuclear Information System (INIS)

    CO2 laser welding of AISI 321austenitic stainless steel has been carried out. Bead on plate welds on 2 mm thick steel were performed with 450W CO2 laser at speeds ranging from 200 to 900 mm/min. It was observed that weld depth and width was decreased with increasing the speed at constant laser power. Butt welds on different sheet thickness of 1, 2 and 2.5 mm were performed with laser power of 450 W and at speed 750, 275 and 175 mm/min, respectively. The microstructures of the welded joints and the heat affected zones (HAZ) were examined by optical microscopy and SEM. The austenite/delta ferrite microstructure was reported in the welded zone. The microhardness and tensile strength of the welded joints were measured and found almost similar to base metal due to austenitic nature of steel

  9. Joining dissimilar stainless steels for pressure vessel components

    International Nuclear Information System (INIS)

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCrl3Ni4Mo) and AISI 347, respectively. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. Based on the weldability tests, a welding procedure - tungsten inert gas (TIG) welding for root passes with HNiCrMo-2B wire followed by manual metal arc (MMA) welding using coated electrode ENiCrFe-3B - was developed and a PWHT at 600 deg C/2h was recommended. Furthermore, the welding of tube/tube joints between these dissimilar steels is described. (21 refs., 11 figs., 14 tabs.)

  10. The interaction between nitride uranium and stainless steel

    Science.gov (United States)

    Shornikov, D. P.; Nikitin, S. N.; Tarasov, B. A.; Baranov, V. G.; Yurlova, M. S.

    2016-04-01

    Uranium nitride is most popular nuclear fuel for Fast Breeder Reactor New Generation. In-pile experiments at reactor BOR-60 was shown an interaction between nitride fuel and stainless steel in the range of 8-11% burn up (HA). In order to investigate this interaction has been done diffusion tests of 200 h and has been shown that the reaction occurs in the temperature range 1000-1100 ° C. UN interacted with steel in case of high pollution oxygen (1000-2000 ppm). Also has been shown to increase interaction UN with EP-823 steel in the presence of cesium. In this case the interaction layer had a thickness about 2-3 μm. Has been shown minimal interaction with new ODS steel EP-450. The interaction layer had a thickness less then 2 μm. Did not reveal the influence of tellurium and iodine increased interaction. It was show compatibility at 1000 °C between UN and EP-450 ODS steel, chrome steel, alloying aluminium and silicium.

  11. Fabrication of high nitrogen austenitic stainless steels with excellent mechanical and pitting corrosion properties

    Institute of Scientific and Technical Information of China (English)

    Hua-bing Li; Zhou-hua Jiang; Yang Cao; Zu-rui Zhang

    2009-01-01

    18Cr18Mn2Mo0.9N high nitrogen austenitic stainless steel exhibits high strength and good ductility at room temperature. The steel shows typical duc-tile-brittle transition behavior and excellent pitting corrosion resistance properties.

  12. The influence of cold work on the oxidation behaviour of stainless steel

    International Nuclear Information System (INIS)

    In this thesis the study of the interaction of oxygen gas with stainless steel surfaces is described. Thermogravimetry, microscopy and ellipsometry have been used to follow the oxidation in situ, while EDX, AES and XPS have been used to determine the oxide compositions. The aim of this thesis is to reveal the influence on the oxidation behaviour of stainless steel of i) cold work (rolling, drawing, milling, polishing and Ar ion bombardment) ii) the initially formed oxide and iii) the experimental conditions. Two types of stainless steels have been used (AISI 304 (a 18/8 Cr/Ni steel) and Incoloy 800 H (a 20/30 Cr/Ni steel)). (Auth.)

  13. In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste

    KAUST Repository

    Itty, Pierre-Adrien

    2014-06-01

    In a X-ray microcomputed tomography study, active corrosion was induced by galvanostatically corroding steel embedded in cement paste. The results give insight into corrosion product build up, crack formation, leaching of products into the cracks and voids, and differences in morphology of corrosion attack in the case of carbon steel or stainless steel reinforcement. Carbon steel was homogeneously etched away with a homogeneous layer of corrosion products forming at the steel/cement paste interface. For ferritic stainless steel, pits were forming, concentrating the corrosion products locally, which led to more extensive damage on the cement paste cover. © 2014 Elsevier Ltd.

  14. Effect of Deleterious Phases on Corrosion Resistance of Duplex Stainless Steel (2205)

    OpenAIRE

    AbdulKadar M. Godil; Hitesh A. Narsia; M. N. Patel; Mr. Paresh U. Haribhakti

    2013-01-01

    Duplex stainless steel is a Ferritic(BCC)-Austenitic(FCC) steel, covers the advantages of both Austenitic and Ferritic Stainless steels. They having good mechanical and corrosion resistance properties are widely used in many industries like chemical plants, refineries for critical equipments such as pressure vessels, heatexchangers, water heaters. Major problem occurs with duplex steels when they are worked or heated above about temperature of 280°C. Detrimental phases like Sigma, Chi, Laves ...

  15. Threshold Chloride Concentration of Stainless Steels in Simulated Concrete Pore Solution

    OpenAIRE

    Wang, Hailong; Ling, Jiayan; Sun, Xiaoyan

    2016-01-01

    To evaluate whether stainless steel can replace carbon steel as rebar in reinforced concrete structures exposed to aggressive environment, the threshold chloride concentration of carbon steel, austenitic and duplex stainless steels were experimentally studied in this paper. The solutions with pH ranging from 9.5 to 13.6 were used herein to simulate the pore liquids in both alkaline and carbonated concretes. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests we...

  16. Separation by transportation in vapor phase of stainless steels components

    International Nuclear Information System (INIS)

    A procedure for separating cobalt from other constituents of radioactive stainless steel is proposed in order to condition material originating from dismantling of reactor pressure vessels. The procedure is based on the transport in the vapour phase, under the presence of an appropriate carrier gas and a thermal gradient in a sealed device. By calculation, iodine was found to be the most appropriate carrier gas. Tests carried out at 50 mg to 2 g scale in quartz ampoules permitted to determine parameters, i.e. temperature range and gradient, pressure, and the effectiveness. It was shown that steel turnings may be treated efficiently. The procedure achieves well a partition of stainless steel into two metal masses: one containing the bulk of cobalt and radioactivity, the other depleted of cobalt and suitable for recycling. There is few or no secondary waste created, but the costs of the procedure are estimated to be high, i.e. between 100 and 1,000 ECU/kg

  17. Stable phases in aged type 321 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, J.; Leitnaker, J.M.

    1978-01-01

    X-ray diffraction and Analytical Electron Microscopy have been used to characterize the precipitate phases present in type 321 stainless steel after 17 years of service at approximately 600/sup 0/C. The morphology, crystallography, and orientation relationships with the matrix of the precipitates have been determined along with the chemical composition of several of the phases. Long-term aging of type 321 stainless steel indicates TiC, not M/sub 23/C/sub 6/, is the stable carbide phase. A theory is developed to explain appearance of M/sub 23/C/sub 6/ at intermediate times. The theory also indicates the means for preventing M/sub 23/C/sub 6/ formation and hence sensitization of the steel to intergranular corrosion. The amount of sigma found correlates well with results from shorter time studies. Ti/sub 4/C/sub 2/S/sub 2/ and a complex phosphide-arsenide were also present.

  18. High-pressure stainless steel active membrane microvalves

    Science.gov (United States)

    Sharma, G.; Svensson, S.; Ogden, S.; Klintberg, L.; Hjort, K.

    2011-07-01

    In this work, high-pressure membrane microvalves have been designed, manufactured and evaluated. The valves were able to withstand back-pressures of 200 bar with a response time of less than 0.6 s. These stainless steel valves, manufactured with back-end batch production, utilize the large volume expansion coupled to the solid-liquid phase transition in paraffin wax. When membrane materials were evaluated, parylene coated stainless steel was found to be the best choice as compared to polydimethylsiloxane and polyimide. Also, the influence of the orifice placement and diameter is included in this work. If the orifice is placed too close to the rim of the membrane, the valve can stay sealed even after turning the power off, and the valve will not open until the pressure in the system is released. The developed steel valves, evaluated for both water and air, provide excellent properties in terms of mechanical stability, ease of fabrication, and low cost. Possible applications include sampling at high pressures, chemical microreactors, high performance liquid chromatography, pneumatics, and hydraulics.

  19. Malfunction analysis of OPGW of stainless steel-unit structure

    Institute of Scientific and Technical Information of China (English)

    李星梅; 张素芳; 王旭锋; 乞建勋

    2008-01-01

    Composite fiber optic overhead ground wire (OPGW) is increasingly applied in China’s overhead transmission lines. The stainless steel structure is adopted by most OPGWs as it is very small and easy to match the existing ground wire. The malfunction of OPGW in Beijing-Shanghai Optical Communication Project was analyzed through the chemical composition method and spectrum semi-quantitative method. The analysis indicates that the cable fault was due to the failure of seepage and irregular holes in the steel pipe of the optical unit. The rain water and the watery air entered into the optical units, and the water in turn became ice when temperature dropped. The occurrence of ice led to the acceleration of attenuation of the fiber. The results show that the rupture of stainless steel tube is mainly due to the instability of welding technique. The malfunction of OPGW is due to the local defects of welding seam because of local stress concentration in the manufacturing process.

  20. Sensitization of Laser-beam Welded Martensitic Stainless Steels

    Science.gov (United States)

    Dahmen, Martin; Rajendran, Kousika Dhasanur; Lindner, Stefan

    Ferritic and martensitic stainless steels are an attractive alternative in vehicle production due to their inherent corrosion resistance. By the opportunity of press hardening, their strength can be increased to up to 2000 MPa, making them competitors for unalloyed ultra-high strength steels. Welding, nevertheless, requires special care, especially when it comes to joining of high strength heat treated materials. With an adopted in-line heat treatment of the welds in as-rolled as well as press hardened condition, materials with sufficient fatigue strength and acceptable structural behavior can be produced. Because of microstructural transformations in the base material such as grain coarsening and forced carbide precipitation, the corrosion resistance of the weld zone may be locally impaired. Typically the material in the heat-affected zone becomes sensitive to intergranular cracking in the form of knife-edge corrosion besides the fusion line. The current study comprises of two text scenarios. By an alternating climate test, general response in a corroding environment is screened. In order to understand the corrosion mechanisms and to localize the sensitive zones, sensitisation tests were undertaken. Furthermore, the applicability of a standard test according to ASTM 763-83 was examined. It was found that the alternative climate test does not reveal any corrosion effects. Testing by the oxalic acid test revealed clearly the effect of welding, weld heat treatment and state of thermal processing. Also application of the standard which originally suited for testing ferritic stainless steels could have been justified.

  1. Cold Spray Repair of Martensitic Stainless Steel Components

    Science.gov (United States)

    Faccoli, M.; Cornacchia, G.; Maestrini, D.; Marconi, G. P.; Roberti, R.

    2014-12-01

    The possibility of using cold spray as repair technique of martensitic stainless steel components was evaluated through laboratory investigations. An austenitic stainless steel feedstock powder was chosen, instead of soft metals powders like nickel, copper, or aluminum, used for repairing components made in light alloy or cast iron. The present study directly compares the microstructure, the residual stresses, and the micro-hardness of repairs obtained by cold spray and by TIG welding, that is commonly used as repair technique in large steel components. XRD and optical metallographic analysis of the repairs showed that cold spray offers some advantages, inducing compressive residual stresses in the repair and avoiding alterations of the interface between repair and base material. For these reasons, a heat treatment after the cold spray repair is not required to restore the base material properties, whereas a post-weld heat treatment is needed after the welding repair. Cold spray repair also exhibits a higher micro-hardness than the welding repair. In addition, the cavitation erosion resistance of a cold spray coating was investigated through ultrasonic cavitation tests, and the samples worn surfaces were observed by scanning electron microscopy.

  2. THE EFFECT OF W ON THE REPASSIVATION BEHAVIOR OF Ni-ADDED STAINLESS STEELS

    Institute of Scientific and Technical Information of China (English)

    J.X. Pan; K. Y. Kim

    2005-01-01

    The effect of W on the repassivation behavior of Ni-added stainless steels was investigated with respect to the repassivation rate and the SCC susceptibility. It was found that more stable passive film was formed on the W-modified stainless steels than that of steels without W-modification, and the repassivation rate was faster for W-modified stainless steels in acidic chloride solution (0.5M H2SO4+3.5% Cl-). In neutral chloride solution (1M MgCl2), there were no significant differences on both passivation properties and the repassivation rates for duplex stainless steels,while W-modified austenite stainless steel showed faster repassivation rate. The SCC tests verified that W-modified Ni-added stainless steels exhibited better SCC resistance than steels without W in chloride solution. Moreover, W-modification in higher Ni-added stainless steels exhibited more remarkable SCC resistance than steels with lower Ni content in chloride solution.

  3. Influence of surface finish on the cleanability of stainless steel.

    Science.gov (United States)

    Frank, J F; Chmielewski, R

    2001-08-01

    Stainless steel for fabricating food processing equipment is available with various surface finishes. The objective of this research was to determine the effect of surface finish on cleanability. Nine samples of stainless steel, type 304, from various manufacturers including no finish (hot rolled and pickled), #4 finish, 2B mechanical polished, and electropolished were tested. Cleanability was assessed by using coupon samples soiled with either cultured milk inoculated with spores of Bacillus stearothermophilus or by growth of a Pseudomonas sp. biofilm. Samples were cleaned by immersion in a turbulent bath of 1.28% sodium hydroxide at 66 degrees C for 3 min followed by a sterile water rinse, neutralizing in 0.1% phosphoric acid for 30 s, rinsing in phosphate buffer, sanitizing in 100 ppm hypochlorite, neutralizing in sodium thiosulfate, and drying. To determine residual milk soil, coupon samples were covered with PM indicator agar and incubated for 25 h at 58 degrees C. Other coupons were subjected to an additional 10 soiling or cleaning cycles, and the residual protein was measured by using epifluorescent microscopy and image analysis. Results indicate that the spore count was more precise for measuring initial cleanability of the finished samples, and the protein residue determination was useful for determining the effect of repeated cleaning. Data on the removal of milk soil suggest that stainless steel should be purchased based on measures of surface defects rather than finish type. Surface defects, as determined using a surface roughness gauge, produced a correlation of 0.82 with spore counts. Data also indicated that biofilm was more difficult to remove than milk-based soil. PMID:11510656

  4. A study on laser welding deformation of 304 stainless steel

    International Nuclear Information System (INIS)

    In heavy industries, 304 austenitic stainless steel is the most popular material which is used for nuclear equipment, chemical vessels, vacuum vessels and so on. On the fabrication, not only a joint quality but also severe dimensional accuracy is required. To keep dimensional accuracy, considerable cost and efforts are requested, because the welding deformation of austenitic stainless steel is deeply depended on the physical properties of material itself. To decrease welding deformation, big jigs or water cooling method are commonly used which lead to the high cost. In general, the fusion welding by high energy density heat source results in less distortion. Today, laser welding technology has grown up to the stage that enables to weld thick plate with small deformation. The researches of welding deformation have been conducted intensively, but they are mainly concerned for arc welding, and studies for laser welding are very few. In this report, the authors will show the test results of deformation behavior in laser welding of 304 stainless steel. Also, they will discuss the deformation behavior comparing to that in arc welding. The main results of this study are as follows. 1. The angular distortion of laser welding can be unified by heat input parameter (Hp) which is used for arc welding deformation. 2. The angular distortion are same under the condition of Hp3 in spite of different welding method, however under the condition of Hp>6-9 J/mm3 the angular distortion is quite different depending on the power density of welding method. 3. Pure angular distortion seemed to complete just after welding, but following longitudinal distortion took place for long period. 4. The critical value of longitudinal distortion can be estimated from heat input parameter. The transverse deformation can be also estimated by heat input parameter. (author)

  5. Aging and Embrittlement of High Fluence Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Was, gary; Jiao, Zhijie; der ven, Anton Van; Bruemmer, Stephen; Edwards, Dan

    2012-12-31

    Irradiation of austenitic stainless steels results in the formation of dislocation loops, stacking fault tetrahedral, Ni-Si clusters and radiation-induced segregation (RIS). Of these features, it is the formation of precipitates which is most likely to impact the mechanical integrity at high dose. Unlike dislocation loops and RIS, precipitates exhibit an incubation period that can extend from 10 to 46 dpa, above which the cluster composition changes and a separate phase, (G-phase) forms. Both neutron and heavy ion irradiation showed that these clusters develop slowly and continue to evolve beyond 100 dpa. Overall, this work shows that the irradiated microstructure features produced by heavy ion irradiation are remarkably comparable in nature to those produced by neutron irradiation at much lower dose rates. The use of a temperature shift to account for the higher damage rate in heavy ion irradiation results in a fairly good match in the dislocation loop microstructure and the precipitate microstructure in austenitic stainless steels. Both irradiations also show segregation of the same elements and in the same directions, but to achieve comparable magnitudes, heavy ion irradiation must be conducted at a much higher temperature than that which produces a match with loops and precipitates. First-principles modeling has confirmed that the formation of Ni-Si precipitates under irradiation is likely caused by supersaturation of solute to defect sinks caused by highly correlated diffusion of Ni and Si. Thus, the formation and evolution of Ni-Si precipitates at high dose in austenitic stainless steels containing Si is inevitable.

  6. Chromium-nickel stainless steel and method of its manufacture

    International Nuclear Information System (INIS)

    The chromium-nickel stainless steel is designed for the production of rolled bands to be welded onto the primary circuit component surfaces. The invention claims the steel composition. Phosphorus content is restricted to an amount of 0.005 to 0.025%, sulfur to 0.001 to 0.012%, oxygen to 0.001 to 0.008% aluminium to 0.005 to 0.05%, and titanium to 0.02 to 0.20%. The steel may also contain 0.01 to 0.15% of cerium, 0.01 to 0.15% of zirconium and 0.0001 to 0.005% of boron while the overall combined content of cerium, zirconium and boron does not exceed 0.25%. The initial material is nonalloyed waste, nickel metal and ferroalloys. The steel is deoxidized with aluminium and its chemical composition is adjusted with an addition of ferrochrome or nickel. The steel is then vacuum processed and after standing, it is cast at a temperature of 1520 to 1580 degC. (J.P.)

  7. Joining dissimilar stainless steels for pressure vessel components

    Science.gov (United States)

    Sun, Zheng; Han, Huai-Yue

    1994-03-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCr13Ni4Mo) and AISI 347, respectively. Such joints are important parts in, e.g. the primary circuit of a pressurized water reactor (PWR). This kind of joint requires both good mechanical properties, corrosion resistance and a stable magnetic permeability besides good weldability. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. The results of various tests indicated that the quality of the tube/tube joints is satisfactory for meeting all the design requirements.

  8. Thermal stability of ultrafine-grained austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Etienne, A.; Radiguet, B.; Genevois, C.; Le Breton, J.-M. [Groupe de Physique des Materiaux, Universite et INSA de Rouen, UMR CNRS 6634, BP 12, 76 801 Saint Etienne du Rouvray Cedex (France); Valiev, R. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12K. Marx Street, 450000 Ufa (Russian Federation); Pareige, P., E-mail: philippe.pareige@univ-rouen.fr [Groupe de Physique des Materiaux, Universite et INSA de Rouen, UMR CNRS 6634, BP 12, 76 801 Saint Etienne du Rouvray Cedex (France)

    2010-08-20

    Ultrafine-grained 316 and 304 austenitic stainless steel samples have been produced by high pressure torsion. Their microstructure, after deformation and annealing at a temperature in the 350-900 deg. C range, has been characterized using several techniques (transmission electron microscopy, X-ray diffraction, Moessbauer spectroscopy). The average grain size in the ultrafine-grained 316 is about 40 nm while it is larger in the ultrafine-grained 304 due to a smaller deformation. Results show the formation of {alpha}'-martensite during deformation in both steels while {epsilon}-martensite is formed only in the 304 steel. Annealing at 350 deg. C induces the decrease of {alpha}'-martensite content in the 316 steel. The trend is different in the 304 steel, in which the {alpha}'-martensite content increases. Recrystallization of grains is observed from 700 deg. C. Moessbauer spectroscopy shows a reduction of the level of solute atoms in {alpha}'-martensite during annealing.

  9. Microbial corrosion in weld zone of stainless steel. Stainless ko yosetsubu no biseibutsu fushoku

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, E. (National Chemical Laboratory for Industry, Tsukuba (Japan)); Nishimura, M. (Mitsubishi Kakoki Kaisha, Ltd., Tokyo (Japan))

    1992-10-15

    Microbial corrosion may happen wherever water is treated in many kinds of practical metal except titan, such as common steel, copper alloy, stainless steel, and high-nickel alloy. Although microbes causing microbial corrosion are not limited to specified microbes, specially affecting microbes are iron bacteria, iron-oxidizing bacteria, and sulfate-reducing bacteria. mechanism in these microbial corrosion, which is fundamentally caused through formation of oxygen concentration cells and production of metabolites, is complex and different by each microbe. In the case of stainless steel, the corrosion is located mainly in weld zones or heat affected zones, the shape of corrosion is like a pot, and the pattern is a type of pitting corrosion. Microbes are apt to adhere to the surface near weld zones, then oxygen becomes consequently insufficient beneath the surface, where the self-mending capacity of passive films is deprived, resulting in occurrence of pitting corrosion. For protection of microbial corrosion, it is essential to control water so that habitation of microbes is not formed. 9 refs., 3 figs.

  10. Characteristics of residual stresses of water jet peened stainless steel

    International Nuclear Information System (INIS)

    The material of the specimen was austenitic stainless steel, SUS316L. The residual stresses in the specimen was introduced by a water jet peening (WJP). The change in the residual stress with thermal aging at 773K was measured by an X-ray stress measurement. The WJP residual stresses were an equi-biaxial stress state, and the compressive residual stress did not decrease against the thermal aging. To investigate dependence of the residual stress on a lattice plane, the WJP residual stresses were measured using hard synchrotron X-rays. (author)

  11. Thermal aging evaluation of casting stainless steel under BWR environment

    International Nuclear Information System (INIS)

    Effect of thermal aging under BWR condition on material properties of casting stainless steel were evaluated by such as Charpy impact test, using replaced BWR component material. Solution heat treatment was performed to the same material and the material properties were obtained. Comparing each material test results, impact value of thermal aging material was lower than solution heat treatment material. By the results, thermal aging effect on material properties under BWR condition was confirmed. The material properties were compared with model equation using PLM evaluation and conservativeness of model equation was confirmed. (author)

  12. Analysis of ridging in ferritic stainless steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P.D. [Novelis Inc., Novelis Global Technology Centre, 945 Princess Street, Kingston, Ont., K7L 5L9 (Canada)]. E-mail: wupeidong@hotmail.com; Jin, H. [Novelis Inc., Novelis Global Technology Centre, 945 Princess Street, Kingston, Ont., K7L 5L9 (Canada); Shi, Y. [Novelis Inc., Novelis Global Technology Centre, 945 Princess Street, Kingston, Ont., K7L 5L9 (Canada); Lloyd, D.J. [Novelis Inc., Novelis Global Technology Centre, 945 Princess Street, Kingston, Ont., K7L 5L9 (Canada)

    2006-05-15

    The finite element method is used to numerically simulate the development of ridging/roping in ferritic stainless steel sheet under stretching. The measured electron backscattered diffraction (EBSD) data (grain orientations and their spatial distributions) are directly incorporated into the finite element model and the constitutive response at an integration point is described by the single crystal plasticity theory. The effects of spatial orientation distribution, imposed deformation path, and inhomogeneous deformation within individual grains on the roping are discussed. It is found that the initial texture and its spatial distribution are the predominant factors for the development of ridging.

  13. Low temperature gaseous nitriding and carburising of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A.J.

    2005-01-01

    The response of various austenitic and duplex stainless steel grades to low temperature gaseous nitriding and carburising was investigated. Gaseous nitriding was performed in ammonia/hydrogen mixtures at temperatures ,723 K; gaseous carburising was carried out in carbon monoxide/hydrogen mixtures...... for temperatures (783 K. The case developed by thermochemical treatment was examined using reflected light microscopy, X-ray diffraction analysis and microhardness testing. Both nitriding and carburising led to the development of expanded austenite in the surface adjacent zone, irrespective of the phase...... constitution of the substrate. A two step process, consisting of carburising followed by nitriding, provides great flexibility with regard to adjusting the hardness–depth profile....

  14. Femtosecond laser color marking stainless steel surface with different wavelengths

    Science.gov (United States)

    Li, Guoqiang; Li, Jiawen; Hu, Yanlei; Zhang, Chenchu; Li, Xiaohong; Chu, Jiaru; Huang, Wenhao

    2015-03-01

    The femtosecond laser color marking stainless steel surfaces with different incident wavelengths were investigated theoretically and experimentally. It indicates that the spectral regions of the colors firstly increase and then reduce with increasing spatial periods of the ripples induced by laser irradiation. Additionally, the colors are gradually changed from blue to red due to the elongation of the diffracted light wavelengths. As a result, the color effects are distinctly different. This study offers a new controllable parameter to produce diverse colors, which may find a wide range of applications in the laser color marking, art designing and so on.

  15. Laser-induced color marking of stainless steel

    Science.gov (United States)

    Antonczak, Arkadiusz J.; Nowak, Maciej; Koziol, Pawel; Kaczmarek, Pawel R.; Waz, Adam T.; Abramski, Krzysztof M.

    2013-01-01

    This paper presents the analysis of the impact of selected process parameters on the resulting laser color marking. The study was conducted for AISI 304 multipurpose stainless steel using a commercially available industrial fiber laser. It was determined how various process parameters, such as laser power, scanning speed of the laser beam, temperature of the material, location of the sample relative to the focal plane, affect the repeatability of the colors obtained. For objective assessment of color changes, an optical spectrometer and the CIE color difference parameter ΔEab * were used.

  16. General and Localized Corrosion of Borated Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    T.E. Lister; Ronald E. Mizia; A.W. Erickson; T.L. Trowbridge; B. S. Matteson

    2008-03-01

    The Transportation, Aging and Disposal (TAD) canister-based system is being proposed to transport and store spent nuclear fuel at the Monitored Geologic Repository (MGR) located at Yucca Mountain, Nevada. The preliminary design of this system identifies borated stainless steel as the neutron absorber material that will be used to fabricate fuel basket inserts for nuclear criticality control. This paper discusses corrosion test results for verifying the performance of this material manufactured to the requirements of ASTM A887, Grade A, under the expected repository conditions.

  17. NARROW GAP LASER WELDING OF THICK SECTION STAINLESS STEEL

    OpenAIRE

    2012-01-01

    Laser welding of metals typically has a weld penetration of 1-2 mm/kW laser power. Therefore laser welding of thick section materials would require very high power lasers. In this paper we report an investigation into multi-pass laser welding of 316L stainless steel sheets of 5-10 mm thickness, based on narrow gap (1.5 mm) approach using a 1 kW single mode fibre laser. A filler wire of 316L with a 0.8 mm diameter was used in the welding process. The integrity of the weld, microstructure and h...

  18. Glow Discharge Plasma Nitriding of AISI 304 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    A.QAYYUM; M.A.NAVEED; S.ZEB; G.MURTAZA; M.ZAKAULLAH

    2007-01-01

    Glow discharge plasma nitriding of AISI 304 austenitic stainless steel has been carried out for different processing time under optimum discharge conditions established by spectroscopic analysis.The treated samples were analysed by X-ray diffraction(XRD)to explore the changes induced in the crystallographic structure.The XRD pattern confirmed the formation of an expanded austenite phase(γN)owing to incorporation of nitrogen as an interstitial solid solution in the iron lattice.A Vickers microhardness tester was used to evaluate the surface hardness as a function of indentation depth(μm).The results showed clear evidence of surface changes with substantial increase in surface hardness.

  19. Laser Welding of Large Scale Stainless Steel Aircraft Structures

    Science.gov (United States)

    Reitemeyer, D.; Schultz, V.; Syassen, F.; Seefeld, T.; Vollertsen, F.

    In this paper a welding process for large scale stainless steel structures is presented. The process was developed according to the requirements of an aircraft application. Therefore, stringers are welded on a skin sheet in a t-joint configuration. The 0.6 mm thickness parts are welded with a thin disc laser, seam length up to 1920 mm are demonstrated. The welding process causes angular distortions of the skin sheet which are compensated by a subsequent laser straightening process. Based on a model straightening process parameters matching the induced welding distortion are predicted. The process combination is successfully applied to stringer stiffened specimens.

  20. Stainless steel clad for light water reactor fuels. Final report

    International Nuclear Information System (INIS)

    Proper reactor operation and design guidelines are necessary to assure fuel integrity. The occurrence of fuel rod failures for operation in compliance with existing guidelines suggests the need for more adequate or applicable operation/design criteria. The intent of this study is to develop such criteria for light water reactor fuel rods with stainless steel clad and to indicate the nature of uncertainties in its development. The performance areas investigated herein are: long term creepdown and fuel swelling effects on clad dimensional changes and on proximity to clad failure; and short term clad failure possibilities during up-power ramps

  1. Oxidation resistant high creep strength austenitic stainless steel

    Science.gov (United States)

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  2. Shrinkage Prediction for the Investment Casting of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sabau, Adrian S [ORNL

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  3. Hardening of aged duplex stainless steels by spinodal decomposition.

    Science.gov (United States)

    Danoix, F; Auger, P; Blavette, D

    2004-06-01

    Mechanical properties, such as hardness and impact toughness, of ferrite-containing stainless steels are greatly affected by long-term aging at intermediate temperatures. It is known that the alpha-alpha' spinodal decomposition occurring in the iron-chromium-based ferrite is responsible for this aging susceptibility. This decomposition can be characterized unambiguously by atom probe analysis, allowing comparison both with the existing theories of spinodal decomposition and the evolution of some mechanical properties. It is then possible to predict the evolution of hardness of industrial components during service, based on the detailed knowledge of the involved aging process. PMID:15233853

  4. Dependence of Radiation Damage in Stainless Steel on Irradiation Dose

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The accelerator driven radioactive clean nuclear power system (ADS) is a novel innovative idea forthe sustainable development of nuclear power system. The spallation neutron source system is one of thethree key parts of ADS, which provides source neutrons of about 1018 s-1 for the burning-up of fuels.Stainless steel (SS) is used for the beam window and target materials of the spallation neutron sourcesystem. It is irradiated by high-energy and intense protons and/or neutrons during operation. Theaccumulated displacement damage dose could reach a couple of hundred dpa (displacement per atom) per

  5. Fiber-laser welding for ultra-high tensile strength steel and stainless steel

    International Nuclear Information System (INIS)

    Ultra-high tensile strength steel of 980 or 1150 MPa class has been often used for a large scale construction machine with lightweight parts because of transport weight limit. This steel needs its pre-processing before welding and has a tendency of delayed cracking, that requests a high welding technique with qualified welders. Austenitic stainless steel frequency used for nuclear energy related equipments has much strains caused by welding because of a large coefficient of thermal expansion. As a welding with small amount of its heat input and without a large size facility like a vacuum chamber, a fiber-laser welding was chosen to apply to equipments made of ultra-high tensile strength steel and stainless steel. Tensile and bending tests for I-butt and around 2mm root gap welded joints of high strength steel of 980 MPa showed their mechanical properties were similar to those of base metal. I-butt welded joints of high strength steel of 1150 MPa showed similar mechanical properties of base metal but as for root gap welded joint, a filler metal was not available. With filler metal of 980 MPa instead, the welded joints showed similar tensile strength of base metal but a crack occurred at the bending test according to the JIS welding procedure qualification specification. Application of fiber laser welding to stainless steel had been conducted successfully for I-butt welded joints of good penetration up to the plate thickness of 8mm. As an example, T-joint of mercury target vessel for J-PARC was produced by fiber laser welding, that became to apply to other nuclear equipments. (T. Tanaka)

  6. 78 FR 45271 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam

    Science.gov (United States)

    2013-07-26

    ... Commission, Washington, DC, and by publishing the notice in the Federal Register of May 24, 2013 (78 FR 31574... COMMISSION Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam Determination On the... injured by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless steel pressure...

  7. Male-mediated spontaneous abortion among spouses of stainless steel welders

    DEFF Research Database (Denmark)

    Hjollund, N H; Bonde, Jens Peter; Jensen, Tina Kold;

    2000-01-01

    Male-mediated spontaneous abortion has never been documented for humans. The welding of stainless steel is associated with the pulmonary absorption of hexavalent chromium, which has genotoxic effects on germ cells in rodents. Clinical and early subclinical spontaneous abortions were examined among...... spouses of stainless-steel welders....

  8. 75 FR 76025 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Science.gov (United States)

    2010-12-07

    ... party responded to the sunset review notice of initiation by the applicable deadline * * *'' (75 FR... COMMISSION Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan AGENCY: United States... stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan would be likely to lead...

  9. 75 FR 59744 - Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan

    Science.gov (United States)

    2010-09-28

    ... group response to its notice of institution (75 FR 30437, June 1, 2010) was adequate and that the... COMMISSION Stainless Steel Sheet and Strip From Germany, Italy, Japan, Korea, Mexico, and Taiwan AGENCY... Korea and the antidumping duty orders on stainless steel sheet and strip from Germany, Italy,...

  10. 75 FR 53714 - Stainless Steel Butt-Weld Pipe Fittings From Japan, Korea, and Taiwan

    Science.gov (United States)

    2010-09-01

    ... imports of stainless steel butt-weld pipe fittings from Japan (53 FR 9787). On February 23, 1993, Commerce... on imports of stainless steel butt-weld pipe fittings from Japan, Korea, and Taiwan (65 FR 11766... Japan, Korea, and Taiwan (70 FR 61119). The Commission is now conducting third reviews to...

  11. 77 FR 41969 - Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative Review

    Science.gov (United States)

    2012-07-17

    ... Revocation in Part, and Deferral of Administrative Review, 77 FR 19179, 19181 (March 30, 2012). Based on a... International Trade Administration Stainless Steel Bar From Japan: Rescission of Antidumping Duty Administrative...) initiated an administrative review of the antidumping duty order on stainless steel bar from Japan...

  12. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Guilherme Zepon

    2013-06-01

    Full Text Available Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stainless steel, superduplex stainless steel modified with boron, and iron-based amorphous alloys, which presented high wear resistance while maintaining the corrosion performance1,2. The addition of boron to iron-based alloys promotes the formation of hard boride particles (M2B type which improve their wear resistances3-9. This work aimed to study the microstructure and wear resistance of supermartensitic stainless steel modified with 0.3 wt. (% and 0.7 wt. (% processed by spray forming (SF-SMSS 0.3%B and SF-SMSS 0.7%B, respectively. These boron contents were selected in order to improve the wear resistance of supermartensitic stainless steel through the formation of uniformly distributed borides maintaining the characteristics of the corrosion resistant matrix. SF-SMSS 0.7%B presents an abrasive wear resistance considerably higher than spray-formed supermartensitic stainless steel without boron addition (SF-SMSS.

  13. Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Bagge-Ravn, Dorthe; Kold, John;

    2003-01-01

    Abstract The aim of this study was to evaluate if hygienic characteristics of stainless steel used in the food industry could be improved by smoothing surface roughness from an Ra of 0.9 to 0.01 ƒÝm. The adherence of Pseudomonas sp., Listeria monocytogenes and Candida lipolytica to stainless steel...

  14. 75 FR 67110 - Forged Stainless Steel Flanges From India and Taiwan

    Science.gov (United States)

    2010-11-01

    ... stainless steel flanges from India and Taiwan (65 FR 49964). Following second five-year reviews by Commerce... duty orders on imports of forged stainless steel flanges from India and Taiwan (71 FR 3457, January 23... part 201), and part 207, subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74...

  15. On the Development of the Brass-Type Texture in Austenitic Stainless Steel

    OpenAIRE

    Singh, C. D.

    1993-01-01

    It has been clarified and demonstrated that the conclusions drawn by Singh, Ramaswamy and Suryanarayana (1992) in an investigation of development of rolling textures in an austenitic stainless steel are correct. The observations and reinterpretations drawn by Leffers (1993) are without any proper scientific basis and do not hold good at least in austenitic stainless steel.

  16. Stress corrosion cracking of stainless steels in NaCl solutions

    Science.gov (United States)

    Speidel, Markus O.

    1981-05-01

    The metallurgical influences on the stress corrosion resistance of many commercial stainless steels have been studied using the fracture mechanics approach. The straight-chromium ferritic stainless steels, two-phase ferritic-austenitic stainless steels and high-nickel solid solutions (like alloys 800 and 600) investigated are all fully resistant to stress corrosion cracking at stress intensity (K1) levels ≤ MN • m-3/2 in 22 pct NaCl solutions at 105 °C. Martensitic stainless steels, austenitic stainless steels and precipitation hardened superalloys, all with about 18 pct chromium, may be highly susceptible to stress corrosion cracking, depending on heat treatment and other alloying elements. Molybdenum additions improve the stress corrosion cracking resistance of austenitic stainless steels significantly. The fracture mechanics approach to stress corrosion testing of stainless steels yields results which are consistent with both the service experience and the results from testing with smooth specimens. In particular, the well known “Copson curve” is reproduced by plotting the stress corrosion threshold stress intensity (ATISCC) vs the nickel content of stainless steels with about 18 pct chromium.

  17. Internal attachment of laser beam welded stainless steel sheathed thermocouples into stainless steel upper end caps in nuclear fuel rods for the LOFT Reactor

    International Nuclear Information System (INIS)

    The Exxon Nuclear Company, Inc., acting as a subcontractor to EG and G Idaho Inc., Idaho National Engineering Laboratory, Idaho Falls, Idaho, conducted a laser beam welding study to attach internal stainless steel thermocouples into stainless steel upper end caps in nuclear fuel rods. The objective of this study was to determine the feasibility of laser welding a single 0.063 inch diameter stainless steel (304) sheathed thermocouple into a stainless steel (316) upper end cap for nuclear fuel rods. A laser beam was selected because of the extremely high energy input in unit volume that can be achieved allowing local fusion of a small area irrespective of the difference in material thickness to be joined. A special weld fixture was designed and fabricated to hold the end cap and the thermocouple with angular and rotational adjustment under the laser beam. A commercial pulsed laser and energy control system was used to make the welds

  18. Beneficially reusing LLRW the Savannah River Site Stainless Steel Program

    International Nuclear Information System (INIS)

    With 68 radioactively contaminated excess Process Water Heat Exchangers the Savannah River Site launched its program to turn potential LLRW metal liabilities into assets. Each Heat Exchanger contains approximately 100 tons of 304 Stainless Steel and could be disposed as LLRW by land burial. Instead the 7000 tons of metal will be recycled into LLRW, HLW, and TRU waste containers thereby eliminating the need for near term land disposal and also eliminating the need to add more clean metal to the waste stream. Aspects of the partnership between DOE and Private Industry necessary to accomplish this new mission are described. A life cycle cost analysis associated with past practices of using carbon steel containers to indefinitely store material (contributing to the creation of today's legacy waste problems) is presented. The avoided cost calculations needed to support the economics of the ''Indifference'' decision process in assessing the Beneficial Reuse option relative to the Burial option are described

  19. Nanoindentation Size Effect on Type 316 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    YAOYuan; QIAOLi-jie; QiangShi-san; CAOXian-kun; CHUWu-yan

    2004-01-01

    Nanoinlentation size effect was investigated under very low loads on type 316 stainless steel.Nanoindentation measurements were carried out on the samples surfaces with a Berkovich pytamidal diamond in-denter applying loads in the range of 25-1000μN. Simultaneously, AFM images of the sample surface were recorded before and after indentation process. For type 316 stairdess steel, the indentation size effect was found.The results were discussed in the terms of the model of geometrically necessary dislocations proposed to interpret the indentation size effect. It can be seen that the square of the nanohardness, H2, vs the ineerse of indentation depth, 1/h, is linearly dependent on the indented depth in the range of 25-150nm, which is a good qualitative agreement with the predictions of the model. However, for shallow indents, the slope of the line severely changes.Some possible mechanisms for this change were proposed.

  20. Small punch creep test in a 316 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Munoz, M. L.; Komazaki, S. I.; Hashida, T.; Lopez-Hirata, V. M.

    2015-03-30

    The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 degree centigrade. The small punch test was carried out using a creep tester with a specimen size of 10x10x0.3 mm at 650, 675 and 700 degree centigrade using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens. (Author)

  1. Corrosion of AISI 304 stainless steel in polluted seawater

    International Nuclear Information System (INIS)

    The sequence of microbiofouling settlement on AISI 304 stain steel samples exposed to polluted harbor sea water of a power cooling water intake is studied. The firts sates of bacterial colonization are followed by means of scanning electron microscopy during two weeks of exposure. The relation between microbiofouling and corrosion is also followed by scanning electron microscopy and evaluated through electrochemical polarization experiments. The results obtained show that microbial colonization and extracellular polimeric substances forming the biofilms have a marked influence on the electrochemical behaviour of stainless steel in sea water. Laboratory experiments using inorganic chloride solutions or artificial sea water show a considerably lesser attack of the metal than those performed 'in situ' with natural sea water. Passivity breadown is highly facilitated when complex biological and inorganic deposits (fouling) have settled on the metal surface. (Author)

  2. Stress corrosion cracking of duplex stainless steels in caustic solutions

    Science.gov (United States)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  3. The retention of iodine in stainless steel sample lines

    Energy Technology Data Exchange (ETDEWEB)

    Evans, G.J.; Deir, C. [Univ. of Toronto (Canada); Ball, J.M. [Whiteshell Laboratories, Pinawa (Canada)

    1995-02-01

    Following an accident in a multi-unit CANDU nuclear generating station, decontamination of air vented from containment would play a critical role in minimizing the release of iodine to the environment. The concentration of gas phase iodine in containment air would be measured using the post accident radiation monitoring system, requiring that air samples be passed through a considerable length of tubing to a remote location where the desired measurements could safely be made. A significant loss of iodine, due to adsorption on the sample line surfaces, could greatly distort the measurement. In this study, the retention of I{sub 2}(g) on stainless steel was evaluated in bench scale experiments in order to evaluate, and if possible minimise, the extent of any such line losses. Experiments at the University of Toronto were performed using 6 inch lengths of 1/4 inch stainless steel tubing. Air, containing I-131 labelled I{sub 2}(g), ranging in concentration from 10{sup {minus}10} to 10{sup {minus}6} mol/dm{sup 3} and relative humidity (:RH) from 20 to 90 %, was passed through tubing samples maintained at temperatures ranging from 25 to 90{degrees}C. Adsorption at low gas phase iodine concentrations differed substantially from that at higher concentrations. The rate of deposition was proportional to the gas phase concentration, giving support to the concept of a first order deposition velocity. The surface loading increased with increasing relative humidity, particularly at low RH values, while the deposition rate decreased with increasing temperature. Surface water on the steel may play an important role in the deposition process. The chemisorbed iodine was located primarily in areas of corrosion. Furthermore, water used to wash the steel contained Fe, Mn and iodine in the form of iodide, suggesting that I{sub 2} reacted to form metal iodides. The deposition of I{sub 2} was also found to depend on the initial surface condition.

  4. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Macedo Silva, Edgard de, E-mail: edgard@cefetpb.edu.br [Centro federal de Educacao Tecnologica da Paraiba (CEFET PB), Area da Industria, Avenida 1o de Maio, 720 - 58015-430 - Joao Pessoa/PB (Brazil); Costa de Albuquerque, Victor Hugo, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pereira Leite, Josinaldo, E-mail: josinaldo@ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Gomes Varela, Antonio Carlos, E-mail: varela@cefetpb.edu.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pinho de Moura, Elineudo, E-mail: elineudo@pq.cnpq.br [Universidade Federal do Ceara (UFC), Departamento de Engenharia Metalurgica e de Materiais, Campus do Pici, Bloco 715, 60455-760 - Fortaleza/CE (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica e Gestao Industrial (DEMEGI)/Instituto de Engenharia Mecanica e Gestao Industrial - INEGI, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2009-08-15

    Duplex stainless steel presents special mechanical properties such as, for example, mechanical and corrosion strength, becoming competitive in relation to the other types of stainless steel. One of the great problems of duplex stainless steel microstructural changes study is related to embrittlement above 300 deg. C, with the precipitation of the {alpha}' phase occurring over the ferritic microstructure. Aiming to characterise embrittlement of duplex stainless steel, hardening kinetics, from 425 to 475 deg. C, was analysed through the speed of sound, Charpy impact energy, X-ray diffraction, hardness and microscopy parameters. The presence of two hardening stages, detected through the speed of sound, was observed, one being of brittle characteristic and the other ductile. Moreover, the speed of sound showed a direct correlation with the material's hardness. Thus, it is concluded that the speed of sound is a promising nondestructive parameter to follow-up embrittlement in duplex stainless steel.

  5. Antibacterial Mechanism of Copper-bearing Antibacterial Stainless Steel against E.Coli

    Institute of Scientific and Technical Information of China (English)

    Li NAN; Weichao YANG; Yongqian LIU; Hui XU; Ying LI; Manqi L(U); Ke YANG

    2008-01-01

    A preliminary study was made on the antibacterial mechanism of copper-bearing antibacterial stainless steels against E.coli through experiments of microbiology such as EDTA (ethylenediaminetetraacetic acid) complex- ing, DNA smearing and AFM (atomic force microscope) observation. It was measured that the antibacterial stainless steels showed excellent antibacterial functions with antibacterial rate to E.coli over 99.99%. The antibacterial rate was weak if the bacteria solution was complexed by EDTA, indicating that the copper ions play a dominant role in the antibacterial effect of the antibacterial stainless steels. The electrophoresis experi- ment did not show the phenomenon of DNA smearing for E.coli after contacting antibacterial stainless steels, which meant that DNA of E.coli was not obviously damaged. It was observed by AFM that the morphology of E.coli changed a lot after contacting antibacterial stainless steels, such as cell walls being seriously changed and lots of contents in the cells being leaked.

  6. 76 FR 38686 - Stainless Steel Wire Rod From India; Institution of a Five-Year Review Concerning the Antidumping...

    Science.gov (United States)

    2011-07-01

    ... on imports of stainless steel wire rod from India (58 FR 63335). Following first five-year reviews by... duty order on imports of stainless steel wire rod from India (65 FR 47403). Following second five-year... antidumping duty order on imports of stainless steel wire rod from India (71 FR 45023). The Commission is...

  7. Influence of silver additions to type 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tseng, I-Sheng; Møller, Per;

    2010-01-01

    techniques. The microstructure of these 316 stainless steels was examined, and the influences of silver additions to 316 stainless steels on bacterial inhibition, mechanical properties, and corrosion resistance were investigated. This study suggested that silver-bearing 316 stainless steels could be used in...

  8. Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel%Optimization of Friction Welding Process Parameters for Joining Carbon Steel and Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    R Paventhan; P R Lakshminarayanan; V Balasubramanian

    2012-01-01

    Friction weIding is a solid state joining process used extensively currently owing to its advantages such as low heat input, high production efficiency, ease of manufacture, and environment friendliness. Materials difficult to be welded by fusion welding processes can be successfully welded by friction welding. An attempt was made to develop an empirical relationship to predict the tensile strength of friction welded AISI 1040 grade medium carbon steel and AISI 304 austenitic stainless steel, incorporating the process parameters such as friction pressure, forging pressure, friction time and forging time, which have great influence on strength of the joints. Response surface methodology was applied to optimize the friction welding process parameters to attain maximum tensile strength of the joint. The maximum tensile strength of 543 MPa could be obtained for the joints fabricated under the welding conditions of friction pressure of 90 MPa, forging pressure of 90 MPa, friction time of 6 s and forging time of 6 s.

  9. Compresibility and sinterability of HCx PM steel diluted with stainless steels

    Directory of Open Access Journals (Sweden)

    Elena Gordo

    2003-12-01

    Full Text Available HCx powder metallurgy steel contains in its composition high contents of Cr and C, and significant quantities of alloy elements typical of tool steels (Mo, V, W, to provide the corrosion resistance of stainless steel with wear resistance of tool steels. HCx appears to be a suitable material for applications in aggressive environments, as valve seat inserts in automotive engines. However, this steel presents a low compressibility leading to high production costs. In this work, some results carried out to improve the compressibility of HCx are presented. The way to attempt this improvement is the dilution of base material with two stainless steels, the ferritic 430LHC and the austenitic 316L. The powder mixes prepared were uniaxially pressed to study the compressibility. The sinterability was study by determining of density, hardness, transverse rupture strength (TRS and microstructural evolution after vacuum sintering at different temperatures. As a result, better compressibility is observed in the mixes although not all of them present the properties required.

  10. Effect of thermal aging on mechanical properties of cast stainless steels

    International Nuclear Information System (INIS)

    A procedure and correlations are presented for predicting mechanical properties of cast stainless steels in service at temperatures <450 degrees C from known material information. The ''saturation'' fracture properties of a cast stainless steel, i.e., the minimum values that would be achieved for the material after long-term service, are estimated from the chemical composition of the steel. Fracture properties as a function of time and temperature of service are estimated from the kinetics of embrittlement, which are also determined from chemical composition. The correlations successfully predict fracture toughness, Charpy-impact, and tensile properties of cast stainless steels from the Shippingport-, Ringhals-, and Gundremmingen-reactor components

  11. Development of stainless steels for nuclear power plant - Advanced nuclear materials development -

    International Nuclear Information System (INIS)

    This report reviews the status of R and D and the material specifications of nuclear components in order to develop the stainless steels for nuclear applications, and the technology of computer-assisted alloy design is developed to establish the thermodynamic data of Fe-Cr-Ni-Mo-Si-C-N system which is the basic stainless steel systems. High strength and corrosion resistant stainless steels, 316LN and super clean 347, are developed, and the manufacturing processes and heat treatment conditions are determined. In addition, a martensitic steel is produced as a model alloy for turbine blade, and characterized. The material properties showed a good performance for nuclear applications. (Author)

  12. Phase characterization in two centrifugally cast HK stainless steel tubes

    International Nuclear Information System (INIS)

    The petrochemical industry has been using 25% Cr - 20% Ni centrifugally cast stainless steel since the early 1960s in reformer and pyrolysis furnaces. This class of material has replaced the traditional superalloys showing similar creep behavior, with substantial reduction in costs. The use of the centrifugal casting technique for tube production has also contributed to better quality in these components. During the past two decades, several studies have been conducted concerning the improvement in the performance of this material at high temperatures. Some of them were related to failure analysis and life prediction, while others were related to the chemical composition balance and to new alloying procedures. As a consequence, a new generation of centrifugally cast steels has been developed in the form of niobium-modified HK and HP steels. The creep resistance of these alloys appears to be dependent on the composition, morphology, and distribution of carbides that form within them. The purpose of the study reported herein is to characterize the precipitation effects occurring during long- term service in two HK-type steels, one being of basic HK composition and the other a niobium-modified alloy

  13. Effect of heating rate on sintered series 300 stainless steel

    Directory of Open Access Journals (Sweden)

    Ornmanee Coovattanachai

    2010-05-01

    Full Text Available Stainless steel powders (303L, 304L, 310L and 316L were formed into tensile test bars using the “press and sinter”process. Most processing parameters, except heating rate, were kept constant. During the heating of the experimental specimensfrom 700°C to the sintering temperature of 1300°C, heating rates were varied, e.g., 2.5, 5.0, and 10.0°C/min. Experimentalresults showed that a material heated with a low heating rate tended to have higher sintered density and tensile strength.However, the low heating rate caused grain growth in the sintered material. These results are in contradiction with the improved densification of some ceramics by ultra rapid heating. The reasons for contradiction are as follows. First, the heatingrates employed in this work are not very different. The second is attributed to small thermal gradients generated in thethin metal powder compacts. Because of these reasons, densification of the sintered stainless steels series 300 is controlled by an isothermal condition. The low heating rate allows longer time for atomic diffusion, which is an important sintering factor. This means more atoms move to points of contact between powder particles to form necking and to cause neckinggrowth. This results in better sintering. However, the low heating rate means that the materials are exposed to heat for longertime and thus their grains have a tendency to grow.

  14. Thermal treatment effects on laser surface remelting duplex stainless steel

    Science.gov (United States)

    do Nascimento, Alex M.; Ierardi, Maria Clara F.; Aparecida Pinto, M.; Tavares, Sérgio S. M.

    2008-10-01

    In this paper the microstructural changes and effects on corrosion resistance of duplex stainless steels UNS S32304 and UNS S32205, commonly used by the petroleum industry, were studied, following the execution of laser surface remelting (LSM) and post-thermal treatments (TT). In this way, data was obtained, which could then be compared with the starting condition of the alloys. In order to analyze the corrosion behaviour of the alloys in the as-received conditions, treated with laser and after post-thermal treatments, cyclic polarization tests were carried out. A solution of 3.5% NaCl (artificial sea water) was used, as duplex stainless steels are regularly used by the petroleum industry in offshore locations. The results obtained showed that when laser surface treated, due to rapid resolidification, the alloys became almost ferritic, and since the level of nitrogen in the composition of both alloys is superior to their solubility limit in ferrite, a precipitation of Cr2N (chromium nitrides) occurred in the ferritic matrix, causing loss of corrosion resistance, thus resulting in an increase in surface hardness. However, after the post-thermal treatment the alloys corrosion resistance was restored to values close to those of the as-received condition.

  15. The diffusivity of hydrogen in Nb stabilized stainless steel

    Science.gov (United States)

    Outlaw, R. A.; Peterson, D. T.

    1983-01-01

    The evolution of hydrogen from 347 stainless steel has been studied by using a real time dynamic technique under ultrahigh vacuum conditions. Auger electron spectroscopy was used to determine the surface composition as a function of time and temperature. The surface film on the electropolished samples was found to be approximately 15 A thick and consisted of a carbon-oxygen complex and a metal oxide (FexOy). Upon heating to 400 C, the carbon-oxygen complex desorbed as CO and the remaining oxygen and carbon began to incorporate. Also at this temperature sulfur began to diffuse out of the bulk to the surface and at approximately 800 C formed a complete monolayer. At 900 C, carbon and oxygen virtually disappeared, leaving the monolayer of sulfur as the only surface contaminant. The hydrogen diffusivity was found to follow closely the equation D = 7.01 x 10 to the -7th exp(-48.0/RT) sq m per second over the entire temperature range studied, thus indicating that hydrogen evolution is not significantly affected by the changing surface composition. The somewhat higher value of the diffusivity obtained in this work compared to past measurements in austenitic stainless steels may indicate the importance of sample preprocessing and ultrahigh vacuum conditions in minimizing the effects of surface layers.

  16. Intergranular stress distributions in polycrystalline aggregates of irradiated stainless steel

    Science.gov (United States)

    Hure, J.; El Shawish, S.; Cizelj, L.; Tanguy, B.

    2016-08-01

    In order to predict InterGranular Stress Corrosion Cracking (IGSCC) of post-irradiated austenitic stainless steel in Light Water Reactor (LWR) environment, reliable predictions of intergranular stresses are required. Finite elements simulations have been performed on realistic polycrystalline aggregate with recently proposed physically-based crystal plasticity constitutive equations validated for neutron-irradiated austenitic stainless steel. Intergranular normal stress probability density functions are found with respect to plastic strain and irradiation level, for uniaxial loading conditions. In addition, plastic slip activity jumps at grain boundaries are also presented. Intergranular normal stress distributions describe, from a statistical point of view, the potential increase of intergranular stress with respect to the macroscopic stress due to grain-grain interactions. The distributions are shown to be well described by a master curve once rescaled by the macroscopic stress, in the range of irradiation level and strain considered in this study. The upper tail of this master curve is shown to be insensitive to free surface effect, which is relevant for IGSCC predictions, and also relatively insensitive to small perturbations in crystallographic texture, but sensitive to grain shapes.

  17. Fiber laser welding of AISI 304 stainless steel plates

    International Nuclear Information System (INIS)

    Compared with conventional lasers, fiber laser welding is characterized by high melting efficiency, deferent keyhole modes and power density characteristics, which could affect the heat and melt flow of the molten pool during welding. The objective of the present work was to study the fiber laser weldability of 5 mm thick AISI 304 austenitic stainless steel plates; therefore, bead-on-plate welding was exploited on AISI 304 stainless steel plates with different laser powers, welding speeds, defocused distances with different types of shielding gas and their effects on the weld zone geometry and properties and final solidification microstructure at room temperature. Laser power, welding speed and defocused distance have a great effect on the bead appearance and weld zone shape while almost no significant effect on both the type of microstructure and mechanical properties of welds. The microstructure of all laser welds was always austenitic including about 3-5 % ferrite. However, the lower the laser power and/or the higher the welding speed, the finer solidification structure, primary ferrite or mixed-mode solidification resulted in crack-free welds. (author)

  18. Development of Cast Alumina-Forming Austenitic Stainless Steels

    Science.gov (United States)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-09-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  19. Determination of delta ferrite volumetric fraction in austenitic stainless steel

    International Nuclear Information System (INIS)

    Measurements of delta ferrite volumetric fraction in AISI 304 austenitic stainless steels were done by X-ray diffraction, quantitative metallography (point count) and by means of one specific commercial apparatus whose operational principle is magnetic-inductive: The Ferrite Content Meter 1053 / Institut Dr. Foerster. The results obtained were comparated with point count, the reference method. It was also investigated in these measurements the influence of the martensite induced by mechanical deformation. Determinations by X-ray diffraction, by the ratio between integrated intensities of the ferrite (211) and austenite (311) lines, are in excelent agreement with those taken by point count. One correction curve for the lectures of the commercial equipment in focus was obtained, for the range between zero and 20% of delta ferrite in 18/8 stainless steels. It is demonstrated that, depending on the employed measurement method and surface finishing of the material to be analysed, the presence of martensite produced by mechanical deformation of the austenitic matrix is one problem to be considered. (Author)

  20. Spectrochemical determination of eight trace elements in stainless steel

    International Nuclear Information System (INIS)

    A method is described for the spectrochemical determination of Al, Pb, Sn, V, Nb, Cu, Co and Ti at trace levels in stainless steel. One hundred milligrammes of the stainless steel sample (in the form of turnings, filings, etc. ) are disolved in aqua regia. The solution is evaporated to dryness and then ignited over Bunsen flame to get a dark brown powder. The powder thus obtained is ground thoroughly with Specpure conducting graphite powder in the ratio 1:1 by weight and then with 2% NaF. Fifteen miligrammes of this mixture is taken in the cavity of a graphite electrode and excited in d.c. arc at 10 amps. The spectra of the sample and synthetic standards are recorded on a JACO 3.4 meter plane grating spectrograph, using a 1200 grooves/mm grating in the first order. The elements, Al, Pb, Sn, and V are estimated in the range 250-2500 ppm, by choosing suitable lines for internsity measurement. Iron is used as the internal standard element. (auth.)

  1. Aging degradation of cast stainless steel: status and program

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Ayrault, G.

    1983-10-01

    A program has been initiated to investigate the significance of in-service embrittlement of cast duplex stainless steels under light-water reactor operating conditions. The existing data are reviewed to determine the critical parameters that control the aging behavior and to define the objectives and scope of the investigation. The test matrices for microstructural studies and mechanical property measurements are presented. The initial experimental effort is focussed on characterizing the microstructure of long-term, low-temperature aged material. Specimens from three heats of cast CF-8 and CF-8M stainless steel aged for up to 70,000 h at 300, 350, and 400/sup 0/C were obtained from George Fisher Ltd., of Switzerland. Initial analyses reveal the formation of three different types of precipitates which are not ..cap alpha..'. An FCC phase, similar to the M/sub 23/C/sub 6/ precipitates, was present in all the long-term aged material. 15 references, 10 figures, 2 tables.

  2. Dynamic Recrystallization and Hot Workability of 316LN Stainless Steel

    Directory of Open Access Journals (Sweden)

    Chaoyang Sun

    2016-07-01

    Full Text Available To identify the optimal deformation parameters for 316LN austenitic stainless steel, it is necessary to study the macroscopic deformation and the microstructural evolution behavior simultaneously in order to ascertain the relationship between the two. Isothermal uniaxial compression tests of 316LN were conducted over the temperature range of 950–1150 °C and for the strain rate range of 0.001–10 s−1 using a Gleeble-1500 thermal-mechanical simulator. The microstructural evolution during deformation processes was investigated by studying the constitutive law and dynamic recrystallization behaviors. Dynamic recrystallization volume fraction was introduced to reveal the power dissipation during the microstructural evolution. Processing maps were developed based on the effects of various temperatures, strain rates, and strains, which suggests that power dissipation efficiency increases gradually with increasing temperature and decreasing stain rate. Optimum regimes for the hot deformation of 316LN stainless steel were revealed on conventional hot processing maps and verified effectively through the examination of the microstructure. In addition, the regimes for defects of the product were also interpreted on the conventional hot processing maps. The developed power dissipation efficiency maps allow optimized processing routes to be selected, thus enabling industry producers to effectively control forming variables to enhance practical production process efficiency.

  3. Large strain cyclic behavior of metastable austenic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Geijselaers, H.J.M., E-mail: h.j.m.geijselaers@utwente.nl; Hilkhuijsen, P.; Bor, T.C.; Boogaard, A.H. van den

    2015-04-17

    Metastable austenitic stainless steel will transform to martensite when subjected to mechanical working. In this research an austenitic stainless steel has been subjected to large amplitude strain paths containing a strain reversal. During the tests, apart from the stress and the strain also magnetic induction was measured. From the in situ magnetic induction measurements an estimate of the stress partitioning among the phases is determined. When the strain path reversal is applied at low strains, a classical Bauschinger effect is observed. When the strain reversal is applied at higher strains, a higher flow stress is measured after the reversal compared to the flow stress before reversal. Also a stagnation of the transformation is observed, meaning that a higher strain as well as a higher stress than before the strain path change is required to restart the transformation after reversal. The observed behavior can be explained by a model in which for the martensitic transformation a stress induced transformation model is used. The constitutive behavior of both the austenite phase and the martensite is described by a Chaboche model to account for the Bauschinger effect. Mean-field homogenization of the material behavior of the individual phases is employed to obtain a constitutive behavior of the two-phase composite. The overall applied stress, the stress in the martensite phase and the observed transformation behavior during cyclic shear are very well reproduced by the model simulations.

  4. EBSD study of a hot deformed austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, H., E-mail: h-m@gmx.com [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Cabrera, J.M. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. Bases de Manresa 1, 08242 Manresa (Spain); Najafizadeh, A. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Calvillo, P.R. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. Bases de Manresa 1, 08242 Manresa (Spain)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Microstructural characterization of an austenitic stainless steel by EBSD. Black-Right-Pointing-Pointer The role of twins in the nucleation and growth of dynamic recrystallization. Black-Right-Pointing-Pointer Grain refinement through the discontinuous dynamic recrystallization. Black-Right-Pointing-Pointer Determination of recrystallized fraction using the grain average misorientation. Black-Right-Pointing-Pointer Relationship between recrystallization and the frequency of high angle boundaries. - Abstract: The microstructural evolution of a 304 H austenitic stainless steel subjected to hot compression was studied by the electron backscattered diffraction (EBSD) technique. Detailed data about the boundaries, coincidence site lattice (CSL) relationships and grain size were acquired from the orientation imaging microscopy (OIM) maps. It was found that twins play an important role in the nucleation and growth of dynamic recrystallization (DRX) during hot deformation. Moreover, the conventional discontinuous DRX (DDRX) was found to be in charge of grain refinement reached under the testing conditions studied. Furthermore, the recrystallized fraction (X) was determined from the grain average misorientation (GAM) distribution based on the threshold value of 1.55 Degree-Sign . The frequency of high angle boundaries showed a direct relationship with X. A time exponent of 1.11 was determined from Avrami analysis, which was related to the observed single-peak behavior in the stress-strain flow curves.

  5. Microbially influenced corrosion of stainless steel by manganese oxidizing microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Linhardt, P. [Technische Universitaet Wien, Technische Versuchs- und Forschungsanstalt (TVFA), Karlsplatz 13, 1040 Wien (Austria)

    2004-03-01

    Based on the corrosion behaviour of stainless steels in fresh water and on the electrochemical properties of higher manganese oxides, the mechanism ''Microbially influenced corrosion by manganese oxidizing microorganisms'' (MIC by MOMOs) is presented as the consequence of biomineralized manganese oxides in contact with the metal. Localized corrosion may develop at elevated but normally undercritical chloride concentration in the water. The mechanism was found useful in the analysis of certain cases of unexpected failure of stainless steel in fresh water. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Ausgehend vom Korrosionsverhalten nichtrostender Staehle in Suesswasser und den elektrochemischen Eigenschaften hoeherer Manganoxide wird der Mechanismus ''Mikrobiell beeinflusste Korrosion durch manganoxidierende Mikroorganismen'' als die Folge des Kontaktes von biomineralisiertem Braunstein mit dem metallischen Werkstoff beschrieben. Unter diesen Bedingungen kann Lokalkorrosion bei Chloridkonzentrationen im Wasser entstehen, die normalerweise als unkritisch angesehen werden. Der Mechanismus hat sich bei der Schadensanalyse bestimmter, unerwarteter Korrosionsfaelle bewaehrt. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  6. Tearing resistance of aged cast austenitic stainless steels

    International Nuclear Information System (INIS)

    CF8 and CF8M type cast stainless steels containing about 10 to 25 % ferrite are used in the primary piping of light water reactors (PWRs and BWRs). It is now recognized that these materials are embrittled by thermal aging at the operating temperature (between 2900C and 3300C), mainly due to precipitation hardening of the ferrite by α', and other phases. Extensive research programs are under way in several countries to better understand the mechanisms of embrittlement and to determine the mechanical properties of components as a function of aging time and temperature. In earlier studies thermal aging embrittlement was mainly characterized by the evolutions of the tensile and Charpy impact properties. However the evaluation of reactor coolant circuit integrity through mechanical analyses requires the knowledge of fracture toughness properties. The first measurements of the tearing resistance of a CF8M type severely aged material were presented in 1983 by SLAMA, PETREQUIN and MAGER. Other contributions to the knowledge of the fracture toughness of aged materials were published, but were relative to medium or high toughness materials. The objective of this paper is to present the results of tearing resistance measurements made on a large spectrum of severely embrittled materials, which allow to give lower bound properties for aged CF8 and CF8M type cast stainless steels

  7. Spectrochemical determination of trace elements in stainless steel

    International Nuclear Information System (INIS)

    A method for the spectrochemical determination of Al, Pb, Sn, V, Nb, Cu and Ti at trace levels in stainless steel is reported. One hundred milligrammes of the stainless steel sample (in the form of turnings, filings, etc). were dissolved in aqua regia. The solution is evaporated to dryness and then ignited over Bunsen flame to get a dark brown powder. The powder thus obtained was ground thoroughly with specpure conducting graphite powder in the ratio 1:1 by weight and with 2% NaF. Fifteen milligrammes of this mixture were taken in the cavity of a graphite electrode and dc arc at 10 As. The spectra of the sample and synthetic standards were recorded on a JACO 3.4 on plane grating spectrograph, using 1200 grooves/mm grating in the first order. The elements, Al, Pb, Sn and V are estimated in the concentration range 50-500 ppm and Nb, Cu, Co and Ti in the range 250-2500 ppm, by choosing suitable lines for intensity measurement. Iron was used as the internal standards element. (auth.)

  8. Structure change of 430 stainless steel in the heating process

    Institute of Scientific and Technical Information of China (English)

    Xinzhong Liu; Jingtao Han; Wanhua Yu; Shifeng Dai

    2008-01-01

    The microstructure analysis was employed for the ferritic stainless steel (SUS430) with the carbon content from 0.029wt% to 0.100wt% under the simulated heating process condition. The higher carbon sample (430H) contains the duplex phase micro-structure at the temperature of 1150℃; on the other hand, the lower carbon content sample (430L) does not touch two phase area even at the temperature of 1450℃ and has the single phase ferritic microstrucmre. The carbon content need be well controlled for the 430 ferritic stainless steel since it can significandy affect the heating process curve, and the heating process may not be done in the two phase area due to the uncontrolled carbon content. With the low carbon content and the proper soaking time, the grain size is not sensitive to the heating process temperature and the soaking time. In the present heat treatment experiments, the soaking time is about 10 rain, and the processing parameters can be chosen according to the requ'trernent of the gross energy, the efficiency and the continual forming.

  9. Development of cryogenic thermal control heat pipes. [of stainless steels

    Science.gov (United States)

    1978-01-01

    The development of thermal control heat pipes that are applicable to the low temperature to cryogenic range was investigated. A previous effort demonstrated that stainless steel axially grooved tubing which met performance requirements could be fabricated. Three heat pipe designs utilizing stainless steel axially grooved tubing were fabricated and tested. One is a liquid trap diode heat pipe which conforms to the configuration and performance requirements of the Heat Pipe Experiment Package (HEPP). The HEPP is scheduled for flight aboard the Long Duration Flight Exposure Facility (LDEF). Another is a thermal switch heat pipe which is designed to permit energy transfer at the cooler of the two identical legs. The third thermal component is a hybrid variable conductance heat pipe (VCHP). The design incorporates both a conventional VCHP system and a liquid trap diode. The design, fabrication and thermal testing of these heat pipes is described. The demonstrated heat pipe behavior including start-up, forward mode transport, recovery after evaporator dry-out, diode performance and variable conductance control are discussed.

  10. Processing fine stainless-steel slag using spiral concentration.

    Science.gov (United States)

    Wolfe, Eric R; Klima, Mark S

    2008-04-01

    In this study, the effectiveness of spiral concentration to process a fine (-1 mm) stainless-steel slag was evaluated. Specifically, testing was conducted to determine the feasibility of producing a high metal content stainless steel product and a low metal content aggregate product. This involved investigating a key operating variable for both five-and seven-turn spiral concentrators. The raw slag and spiral products were characterized to determine their respective size and metal distributions. Separation testing was carried out using the two full-scale spiral concentrators to evaluate the effects of feed solids concentration on spiral performance at solids feed rates ranging from 15 to 30 kg/min. The results indicated that under certain conditions, a high-quality metal fraction could be produced. For example, using the five-turn spiral, a product containing 95% metal was obtained at a low metal recovery. Both spirals were ineffective at concentrating the aggregate fraction. Overall, the feed solids concentration did not significantly affect the quality or recoveries of the products, particularly for feed solids concentrations less than 35% by weight. In order to improve the metal recoveries and to produce a low-metal aggregate material, reprocessing of the product streams and/or additional liberation of the raw slag would be required. PMID:18324536

  11. Characterization of particle exposure in ferrochromium and stainless steel production.

    Science.gov (United States)

    Järvelä, Merja; Huvinen, Markku; Viitanen, Anna-Kaisa; Kanerva, Tomi; Vanhala, Esa; Uitti, Jukka; Koivisto, Antti J; Junttila, Sakari; Luukkonen, Ritva; Tuomi, Timo

    2016-07-01

    This study describes workers' exposure to fine and ultrafine particles in the production chain of ferrochromium and stainless steel during sintering, ferrochromium smelting, stainless steel melting, and hot and cold rolling operations. Workers' personal exposure to inhalable dust was assessed using IOM sampler with a cellulose acetate filter (AAWP, diameter 25 mm; Millipore, Bedford, MA). Filter sampling methods were used to measure particle mass concentrations in fixed locations. Particle number concentrations and size distributions were examined using an SMPS+C sequential mobile particle sizer and counter (series 5.400, Grimm Aerosol Technik, Ainring, Germany), and a hand-held condensation particle counter (CPC, model 3007, TSI Incorporated, MN). The structure and elemental composition of particles were analyzed using TEM-EDXA (TEM: JEM-1220, JEOL, Tokyo, Japan; EDXA: Noran System Six, Thermo Fisher Scientific Inc., Madison,WI). Workers' personal exposure to inhalable dust averaged 1.87, 1.40, 2.34, 0.30, and 0.17 mg m(-3) in sintering plant, ferrochromium smelter, stainless steel melting shop, hot rolling mill, and the cold rolling mill, respectively. Particle number concentrations measured using SMPS+C varied from 58 × 10(3) to 662 × 10(3) cm(-3) in the production areas, whereas concentrations measured using SMPS+C and CPC3007 in control rooms ranged from 24 × 10(3) to 243 × 10(3) cm(-3) and 5.1 × 10(3) to 97 × 10(3) cm(-3), respectively. The elemental composition and the structure of particles in different production phases varied. In the cold-rolling mill non-process particles were abundant. In other sites, chromium and iron originating from ore and recycled steel scrap were the most common elements in the particles studied. Particle mass concentrations were at the same level as that reported earlier. However, particle number measurements showed a high amount of ultrafine particles, especially in sintering, alloy smelting and melting, and tapping

  12. Characterization of particle exposure in ferrochromium and stainless steel production.

    Science.gov (United States)

    Järvelä, Merja; Huvinen, Markku; Viitanen, Anna-Kaisa; Kanerva, Tomi; Vanhala, Esa; Uitti, Jukka; Koivisto, Antti J; Junttila, Sakari; Luukkonen, Ritva; Tuomi, Timo

    2016-07-01

    This study describes workers' exposure to fine and ultrafine particles in the production chain of ferrochromium and stainless steel during sintering, ferrochromium smelting, stainless steel melting, and hot and cold rolling operations. Workers' personal exposure to inhalable dust was assessed using IOM sampler with a cellulose acetate filter (AAWP, diameter 25 mm; Millipore, Bedford, MA). Filter sampling methods were used to measure particle mass concentrations in fixed locations. Particle number concentrations and size distributions were examined using an SMPS+C sequential mobile particle sizer and counter (series 5.400, Grimm Aerosol Technik, Ainring, Germany), and a hand-held condensation particle counter (CPC, model 3007, TSI Incorporated, MN). The structure and elemental composition of particles were analyzed using TEM-EDXA (TEM: JEM-1220, JEOL, Tokyo, Japan; EDXA: Noran System Six, Thermo Fisher Scientific Inc., Madison,WI). Workers' personal exposure to inhalable dust averaged 1.87, 1.40, 2.34, 0.30, and 0.17 mg m(-3) in sintering plant, ferrochromium smelter, stainless steel melting shop, hot rolling mill, and the cold rolling mill, respectively. Particle number concentrations measured using SMPS+C varied from 58 × 10(3) to 662 × 10(3) cm(-3) in the production areas, whereas concentrations measured using SMPS+C and CPC3007 in control rooms ranged from 24 × 10(3) to 243 × 10(3) cm(-3) and 5.1 × 10(3) to 97 × 10(3) cm(-3), respectively. The elemental composition and the structure of particles in different production phases varied. In the cold-rolling mill non-process particles were abundant. In other sites, chromium and iron originating from ore and recycled steel scrap were the most common elements in the particles studied. Particle mass concentrations were at the same level as that reported earlier. However, particle number measurements showed a high amount of ultrafine particles, especially in sintering, alloy smelting and melting, and tapping

  13. Significance of stainless steel wire reinforcement on the mechanical properties of GFRP composites

    OpenAIRE

    K. Pazhanivel; G. B. Bhaskar; Elayaperumal, A.

    2014-01-01

    Investigations on flexural and tensile properties of GFRP laminates influenced by stainless steel wire reinforcement were carried out as a novel approach. Plain GFRP laminates and GFRP laminates reinforced with stainless steel wires at different depth with various pitch distances were fabricated by hand layup method. The composite specimens reinforced with steel wires were exposed to low frequency high amplitude cyclic load by using a cam arrangement. Three point bend test was carried out on ...

  14. Industrial Experience with Case Hardening of Stainless Steels by Solution Nitriding

    Institute of Scientific and Technical Information of China (English)

    Hans Berns; Bernd Edenhofer; Roland Zaugg

    2004-01-01

    SolNit(R) is a novel heat treatment to case harden stainless steels with nitrogen instead of carbon. The calculated equilibrium pressure of N2 corresponds well with the nitrogen content in the steel surface. The process is carried out in vacuum furnaces with pressurized gas quenching. Numerous parts of different stainless steels have been successfully SolNit(R) treated in industry leading to superior properties in respect to hardness/strength and corrosion resistance

  15. Grain size distribution after similar and dissimilar gas tungsten arc welding of a ferritic stainless steel

    OpenAIRE

    Ranjbarnodeh E.; Serajzadeh S.; Kokabi A.H.; Fischer A

    2015-01-01

    In this study, gas tungsten arc welding of ferritic stainless steel and grain size distribution in heat affected zone of the welded samples were investigated. Both similar and dissimilar arc welding operations were considered where in dissimilar welding joining of stainless steel to mild steel was examined. In the first stage, a three-dimensional model was developed to evaluate temperature field during and after arc welding while the model was performed usi...

  16. Interaction of bending and axial load for ferritic stainless steel RHS columns

    OpenAIRE

    Arrayago Luquin, Itsaso; Picci, F; Mirambell Arrizabalaga, Enrique; Real Saladrigas, Esther

    2015-01-01

    Stainless steels are ideal for sustainable structural performances due to their excellent corrosion resistance, appropriate mechanical properties, aesthetic appearance and easy maintenance. However, the nonlinear behaviour and strain-hardening effects characterizing these materials make them different from carbon steel and some specific guidance is necessary. Although some investigations regarding the behaviour of stainless steel beam-columns subjected to combined compression and bending mome...

  17. Influence of grinding operations on surface integrity and chloride induced stress corrosion cracking of stainless steels

    OpenAIRE

    Zhou, Nian

    2016-01-01

    Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments. A necessary component in this effort is to correlate the service performance with the production processes. The central theme of this thesis is the mechanical grinding process.  This is commonly ...

  18. Ultra-Pure Ferritic Stainless Steels-Grade, Refining Operation, and Application

    Institute of Scientific and Technical Information of China (English)

    YOU Xiang-mi; JIANG Zhou-hua; LI Hua-bing

    2007-01-01

    The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.

  19. Attenuation of shock waves in copper and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  20. Dissimilar Friction Stir Welding Between UNS S31603 Austenitic Stainless Steel and UNS S32750 Superduplex Stainless Steel

    Science.gov (United States)

    Theodoro, Maria Claudia; Pereira, Victor Ferrinho; Mei, Paulo Roberto; Ramirez, Antonio Jose

    2015-02-01

    In order to verify the viability of dissimilar UNS S31603 austenitic and UNS S32750 superduplex stainless steels joined by friction stir welding, 6-mm-thick plates were welded using a PCBN-WRe tool. The welded joints were performed in position control mode at rotational speeds of 100 to 300 rpm and a feed rate of 100 mm/min. The joints performed with 150 and 200 rpm showed good appearance and no defects. The metallographic analysis of both joints showed no internal defects and that the material flow pattern is visible only in the stirred zone (SZ) of the superduplex steel. On the SZ top, these patterns are made of regions of different phases (ferrite and austenite), and on the bottom and central part of the SZ, these patterns are formed by alternated regions of different grain sizes. The ferrite grains in the superduplex steel are larger than those in the austenitic ones along the SZ and thermo-mechanically affected zone, explained by the difference between austenite and ferrite recrystallization kinetics. The amount of ferrite islands present on the austenitic steel base metal decreased near the SZ interface, caused by the dissolving of the ferrite in austenitic matrix. No other phases were found in both joints. The best weld parameters were found to be 200 rpm rotation speed, 100 mm/min feed rate, and tool position control.

  1. Cancer incidence among mild steel and stainless steel welders and other metal workers

    DEFF Research Database (Denmark)

    Hansen, K S; Lauritsen, J M; Skytthe, A

    1996-01-01

    by a postal questionnaire in living cohort members and interviews by proxy for deceased and emigrated subjects. The incidence of lung cancer was increased among workers ever "employed as welders" (SIR = 1.38, 95% C.I. 1.03-1.81). There was a significant excess risk of lung cancer among "mild steel (MS) only...... "stainless steel (SS) only welders" (SIR = 2.38, 95% C.I. 0.77-5.55). In spite of signs of inconsistency in the risk estimation by duration and latency, we find the results support the conclusions of other studies: employment as a welder is associated with an increased lung cancer risk....

  2. Electrical-thermal interaction simulation for resistance spot welding nugget process of mild steel and stainless steel

    Institute of Scientific and Technical Information of China (English)

    王春生; 韩凤武; 陆培德; 赵熹华; 陈勇; 邱冬生

    2002-01-01

    A three-dimensional finite difference electrical-thermal model for resistance spot welding nugget process of mild steel and stainless steel is introduced. A simulation method of the interaction of electrical and thermal factors is presented. Meanwhile, calculation method of contact resistance and treatment method of heater structure is provided. The influence of the temperature dependent material properties and various cooling boundary conditions on welding process was also taken into account in the model. A method for improving the mild steel and stainless steel joint was analyzed in numerical simulation process. Experimental verification shows that the model prediction agrees well with the practice. The model provides a useful theoretic tool for the analysis of the process of resistance spot welding of mild steel and stainless steel.

  3. 76 FR 2708 - Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking Ware From...

    Science.gov (United States)

    2011-01-14

    ... (Third Review)] Porcelain-on-Steel Cooking Ware From Taiwan; Top-of-the-Stove Stainless Steel Cooking... revocation of the antidumping duty order on imports of porcelain-on-steel cooking ware from Taiwan and the antidumping and countervailing duty orders on imports of top-of-the- stove stainless steel cooking ware...

  4. Mechanical properties and corrosion resistance of dissimilar stainless steel welds

    Directory of Open Access Journals (Sweden)

    J. Łabanowski

    2007-01-01

    Full Text Available Purpose: The purpose of this paper is to determine the influence of welding on microstructure, mechanical properties, and stress corrosion cracking resistance of dissimilar stainless steels butt welded joints.Design/methodology/approach: Duplex 2205 and austenitic 316L steels were used. Butt joints of plates 15 mm in thickness were performed with the use of submerged arc welding (SAW method. The heat input was in the range of 1.15 – 3.2 kJ/mm. Various plates’ edge preparations were applied. Microstructure examinations were carried out. Mechanical properties were evaluated in tensile tests, bending tests and Charpy-V toughness tests. Susceptibility to stress corrosion cracking was determined with the use of slow strain rate tests (SSRT performed in inert (glycerin and aggressive (boiling 35% MgCl2 solution environments.Findings: All tested joints showed acceptable mechanical properties. Metallographic examinations did not indicate the excessive ferrite contents in heat affected zones (HAZ of the welds. It was shown that area of the lowest resistance to stress corrosion cracking is heat affected zone at duplex steel side of dissimilar joins. That phenomenon is connected with undesirable structure of that zone consisted of greater amounts of coarse ferrite grains and acicular austenite precipitates. High heat inputs do not deteriorate mechanical properties as well as stress corrosion cracking resistance of welds.Practical implications: All tested joints showed acceptable mechanical properties. Metallographic examinations did not indicate the excessive ferrite contents in heat affected zones (HAZ of the welds. It was shown that area of the lowest resistance to stress corrosion cracking is heat affected zone at duplex steel side of dissimilar joins. That phenomenon is connected with undesirable structure of that zone consisted of greater amounts of coarse ferrite grains and acicular austenite precipitates. High heat inputs do not deteriorate

  5. Stainless steel binder for the development of novel TiC-reinforced steel cermets

    Institute of Scientific and Technical Information of China (English)

    Akhtar Farid; Shiju Guo; Xia Yang; Yudong Lian

    2006-01-01

    Steel reinforced TiC composites are an attractive choice for wear resistance and corrosion resistance applications. TiCreinforced 17-4PH maraging stainless matrix composites were processed by conventional powder metallurgy (P/M). TiC-reinforced maraging stainless steel composites with >97% of theoretical density were fabricated. The microstructure, mechanical and wear properties of the composites were evaluated. The microstructure of these composites consisted of spherical and semi-spherical TiC particles.A few microcracks appeared in the composites, showing the presence of tensile stress in the composites produced during sintering.Typical properties, namely, hardness and bend strength were reported for the sintered composites. After heat treatment and aging, the increase of hardness was observed. The increase of hardness was attributed to the aging reaction in the 17-4PH stainless steel. The precipitates appeared in the microstructure and were responsible for the increase in hardness. The specific wear behavior of the composites was strongly dependent on the content of TiC particles, the interparticle spacing, and the presence of hard precipitates in the binder phase.

  6. Investigation on Dynamic Recrystallization Behavior of Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Facai Ren

    2014-01-01

    Full Text Available The hot deformation behavior of X20Cr13 martensitic stainless steel was studied using the hot compression flow curves corresponding to the temperature range of 900–1150°C under strain rates from 0.01 to 10 s−1. A new mathematical model to estimate the flow stress under hot deformation conditions up to the peak of the flow curves was developed. The critical strains for initiation of dynamic recrystallization were also derived by the developed model. Furthermore, the effects of Zener-Hollomon parameter on the characteristic points of the flow curves were studied using the power law relation. The deformation activation energy obtained for this steel was 359.4 kJ/mol in the temperature range from 900°C to 1150°C. At the same time, the Avrami kinetic equation of dynamic recrystallization for X20Cr13 steel and the recrystallized grain size model were also established. Good agreement was obtained between the predictions and the experimental values.

  7. Modified Monkman-Grant relationship for austenitic stainless steel foils

    Science.gov (United States)

    Osman Ali, Hassan; Tamin, Mohd Nasir

    2013-02-01

    Characteristics of creep deformation for austenitic stainless steel foils are examined using the modified Monkman-Grant equation. A series of creep tests are conducted on AISI 347 steel foils at 700 °C and different stress levels ranging from 54 to 221 MPa. Results showed that at lower stress levels below 110 MPa, the creep life parameters ɛ, ɛr, tr can be expressed using the modified Monkman-Grant equation with exponent m'= 0.513. This indicates significant deviation of the creep behavior from the first order reaction kinetics theory for creep (m' = 1.0). The true tertiary creep damage in AISI 347 steel foil begins after 65.9% of the creep life of the foil has elapsed at stress levels above 150 MPa. At this high stress levels, Monkman-Grant ductility factor λ' saturates to a value of 1.3 with dislocation-controlled deformation mechanisms operating. At low stress levels, λ' increases drastically (λ'=190 at 54 MPa) when slow diffusion-controlled creep is dominant.

  8. The diffusion of carbon from liquid sodium into stainless steel

    International Nuclear Information System (INIS)

    A theory which describes the diffusion of carbon from liquid sodium into austenitic stainless steels is proposed. It is suggested that diffusion occurs simultaneously along two routes, i.e. the grain boundaries and the grains themselves. The grain boundaries provide a faster route than through the grains. In both routes the diffusion is accompanied by precipitation of iron/chromium carbides. The contributions of each route to the carbon concentration in the steel add together to give the observed profile. Each contribution obeys an equation of the error function type given as a solution to Fick's second law. A method of fitting such an equation to suitable curves using the minimising of sums of squares has been developed. It's application to profiles obtained in the present work has shown them to obey the above theory. The contributions from the two routes could be separated and used to evaluate effective diffusion coefficients. Most of the profiles were obtained from steel samples carburised in small sealed capsules. Constant carbon activities in sodium were ensured by the use of suitable sources, mainly couples consisting of a metal and one of its carbides or two carbides of the same metal. The profiles were mainly obtained from the metal by Glow Discharge Optical Spectroscopy. Work on samples obtained from two flowing sodium loops is reported, and are compared with other profiling techniques. (author)

  9. Standard test method for electrochemical critical pitting temperature testing of stainless steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This test method covers a procedure for the evaluation of the resistance of stainless steel and related alloys to pitting corrosion based on the concept of the determination of a potential independent critical pitting temperature (CPT). 1.2 This test methods applies to wrought and cast products including but not restricted to plate, sheet, tubing, bar, forgings, and welds, (see Note 1). Note 1—Examples of CPT measurements on sheet, plate, tubing, and welded specimens for various stainless steels can be found in Ref (1). See the research reports (Section 14). 1.3 The standard parameters recommended in this test method are suitable for characterizing the CPT of austenitic stainless steels and other related alloys with a corrosion resistance ranging from that corresponding to solution annealed UNS S31600 (Type 316 stainless steel) to solution annealed UNS S31254 (6 % Mo stainless steel). 1.4 This test method may be extended to stainless steels and other alloys related to stainless steel that have a CPT...

  10. Evaluation of weld defects in stainless steel 316L pipe using guided wave

    International Nuclear Information System (INIS)

    Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

  11. Evaluation of weld defects in stainless steel 316L pipe using guided wave

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Lee, Jin Kyung [Dept. of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of)

    2015-02-15

    Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

  12. Experimental and Theoretical Investigations of Hot Isostatically Pressed-Produced Stainless Steel/High Alloy Tool Steel Compound Materials

    Science.gov (United States)

    Lindwall, Greta; Flyg, Jesper; Frisk, Karin; Sandberg, Odd

    2011-05-01

    Consolidation of tool steel powders and simultaneous joining to a stainless 316L steel are performed by hot isostatic pressing (HIP). Two tool steel grades are considered: a high vanadium alloyed carbon tool steel, and a high vanadium and chromium alloyed nitrogen tool steel. The boundary layer arising during diffusion bonding is in focus and, in particular, the diffusion of carbon and nitrogen over the joint. Measurements of the elemental concentration profiles and corrosion tests by the double loop-electrochemical potentiokinetic reactivation (DL-EPR) method are performed. Comparative calculations with the DICTRA software are performed and are found to be in agreement with the experimental results. It is found that the carbon tool steel grade has a more critical influence on the corrosion resistance of the stainless 316L steel in comparison to the nitrogen tool steel grade.

  13. Production of Ti-containing 316L stainless steel in a crucible induction furnace

    International Nuclear Information System (INIS)

    The production of type 316L stainless steel with titanium was studied. The stainless steel was produced in an induction furnace using 1010 steel as starting material. The carbon and impurities contents of the steel were lowered by means of the addition of iron oxide and lime respectively. Finally, the last slag was removed before adding nickel and ferroalloys. Experimental results showed the wear resistance of the crucibles with different contents of magnamix 363 and the corrosion resistance of the steel obtained caused by a solution of sulfuric acid. (author)

  14. Effect of Grain Size on Mechanical Properties of Nickel-Free High Nitrogen Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    LI Hua-bing; JIANG Zhou-hua; ZHANG Zu-rui; YANG Yan

    2009-01-01

    The fine grained structures of nickel-free high nitrogen austenitic stainless steels had been obtained by means of cold rolling and subsequent annealing.The relationship between microstructure and mechanical properties and gain size of nickel-free high nitrogen austenitic stainless steels was examined.High strength and good ductility of the steel were found.In the grain size range,the Hall-Petch dependency for yield stress,tensile strength,and hardness was valid for grain size ranges for the nickel-free high nitrogen austenitic stainless steel.In the present study,the ductility of cold rolled nickel-free high nitrogen austenitic stainless steel decreased with annealing time when the grain size was refined.The fracture surfaces of the tensile specimens in the grain size range were covered with dimples as usually seen in a ductile fracture mode.

  15. Grain size distribution after similar and dissimilar gas tungsten arc welding of a ferritic stainless steel

    Directory of Open Access Journals (Sweden)

    Ranjbarnodeh E.

    2015-01-01

    Full Text Available In this study, gas tungsten arc welding of ferritic stainless steel and grain size distribution in heat affected zone of the welded samples were investigated. Both similar and dissimilar arc welding operations were considered where in dissimilar welding joining of stainless steel to mild steel was examined. In the first stage, a three-dimensional model was developed to evaluate temperature field during and after arc welding while the model was performed using finite element software, ANSYS. Then, the effects of welding heat input and dissimilarity of the joint on the weld pool shape and grain growth in HAZ of stainless steel was investigated by means of model predictions and experimental observations. The results show that the similar joint produces wider HAZ and considerably larger grain size structure while in the dissimilar welds, the low carbon part acts as an effective heat sink and prevents the grain growth in the stainless steel side as well reduces the welding maximum temperature.

  16. Research on High-Speed Drilling Performances of Austenitic Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    J.W.Zhong; Y.P.Ma; F.H.Sun; M.Chen

    2004-01-01

    Due to specific properties arising from their structure (high ductility, high toughness,strong tenacious and low heat conductivity), the stainless steels have poor machinability. The drilling of the stainless steels becomes the machining difficulty for their serious work-hardening and abrasion of tools. In this paper, the austenitic stainless steel is used as the work-piece to perform the contrastive experiments with the TiN coated and TiAlN-coated high-speed steel drills. The cutting force, torque, cutting temperature, and the abrasion of drills and tool life are tested and analyzed in the process of high-speed drilling. Experiment results show the effect of drilling speed on cutting force, cutting temperature, and drill wear. TiAlN-coated drills demonstrate better performances in high speed drilling. The research results will be of great benefit in the selection of drills and in the control of tool wear in high speed drilling of stainless steels.

  17. Martensitic stainless steel seamless linepipe with superior weldability and CO{sub 2} corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Y.; Kimura, M.; Koseki, T.; Toyooka, T.; Murase, F. [Kawasaki Steel Corp., Handa, Aichi (Japan)

    1997-08-01

    Two types of new martensitic stainless steel with good weldability and superior corrosion resistance have been developed for line pipe application. Both steels are suitable for welding without preheating owing to lowering C and N contents, and they show good low temperature toughness in welds without PWHT. One is applied to sweet environments. It gives better resistance to CO{sub 2} corrosion than the 13Cr martensitic stainless steel for OCTG. Lowering C and addition of Ni contribute to reduction of general corrosion rate in the CO{sub 2} environment. The addition of Cu improves the pitting resistance. The other is applied to light sour environments. It gives good SSC resistance in welds owing to the improvement of the pitting resistance due to Mo addition. The seamless pipes of these martensitic stainless steels are applicable as substitutes for a part of duplex stainless steel flow lines.

  18. The adhesion of hot-filament CVD diamond films on AISI type 316 austenitic stainless steel

    NARCIS (Netherlands)

    Buijnsters, J.G.; Shankar, P.; Enckevort, W.J.P. van; Schermer, J.J.; Meulen, J.J. ter

    2004-01-01

    Steel ball indentation and scratch adhesion testing of hot filament chemical vapour deposited diamond films onto AISI type 316 austenitic stainless steel substrates using two different interlayer systems, namely chromium nitride and borided steel, have been investigated. In order to compare the adhe

  19. The influence of texture on phase transformation in metastable austenitic stainless steel

    NARCIS (Netherlands)

    Hilkhuijsen, P.

    2013-01-01

    Metastable austenitic stainless steels are used in many applications, from shavers and kitchen sinks to various applications in the food industry. The diversity in applications of this type of steels is possible due to the many positive properties of the steel. It is not only esthetically pleasing,

  20. Characterisation of boric acid aerosol behaviour and interactions with stainless steel

    International Nuclear Information System (INIS)

    Experiments have been conducted to determine the physical characteristics of boric acid aerosol. Aqueous solutions of boric acid (either 200 or 2000 ppm boron) were injected at a controlled rate onto a 304 stainless steel cone held at 1000oC. The transport and deposition of the resulting aerosol was studied through a system including pipework and a dilution chamber. Work was also undertaken to characterise the interaction between boric acid and stainless steel. Boric acid was vaporized in steam-argon atmospheres at 300oC and passed over 304 stainless steel coupons held at temperatures between 400 and 1000oC. (author)

  1. Tool degradation during sheet metal forming of three stainless steel alloys

    DEFF Research Database (Denmark)

    Wadman, Boel; Nielsen, Peter Søe; Wiklund, Daniel;

    2010-01-01

    To evaluate if changes in tool design and tool surface preparation are needed when low-Ni stainless steels are used instead of austenitic stainless steels, the effect on tool degradation in the form of galling was investigated with three different types of stainless steel. The resistance to tool...... degradation was analysed by the strip reduction test, simulating resistance to galling during ironing. It was shown that the surface condition of both the tools and the sheet metal was of importance to the galling resistance. Numerical simulations of the experimental tests were compared with the experimental...

  2. Electrochemical Behavior of 2205 Duplex Stainless Steel in NaCl Solution with Different Chromate Contents

    Science.gov (United States)

    Luo, H.; Dong, C. F.; Cheng, X. Q.; Xiao, K.; Li, X. G.

    2012-07-01

    The electrochemical behavior of 2205 duplex stainless steel in NaCl solution with different chromate contents were investigated by potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and scanning electron microscope (SEM). The effect of chromate on passivity and pitting behavior of stainless steel was also studied. The results showed that pitting susceptibility as well as semiconducting properties of passive film is heavily dependent on the chromate concentration. There exists a critical chromate value (about 0.03 M in 1 M NaCl solutions) below which the pitting corrosion on the stainless steel would be inhibited and above which it would be accelerated.

  3. Characterisation of boric acid aerosol behaviour and interactions with stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A.B.; Beard, A.M.; Bennett, P.J.; Benson, C.G.

    1991-03-01

    Experiments have been conducted to determine the physical characteristics of boric acid aerosol. Aqueous solutions of boric acid (either 200 or 2000 ppm boron) were injected at a controlled rate onto a 304 stainless steel cone held at 1000{sup o}C. The transport and deposition of the resulting aerosol was studied through a system including pipework and a dilution chamber. Work was also undertaken to characterise the interaction between boric acid and stainless steel. Boric acid was vaporized in steam-argon atmospheres at 300{sup o}C and passed over 304 stainless steel coupons held at temperatures between 400 and 1000{sup o}C. (author).

  4. An Electrochemical Study on the Corrosion Inhibition of Stainless Steel by Polyaniline Film

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Lin NIU; Qiu Hong LI; Su Xiang WU; Feng Hua WEI

    2004-01-01

    Polyaniline(PANI) film was electrosynthesized on 304 stainless steel by cyclic voltammetry using aqueous oxalic acid as supporting electrolyte. The potential sweep rates were changed to achieve the PANI film with different thickness and structures. Protective properties of the PANI film for corrosion of stainless steel in 3% NaCl aqueous solution were investigated by monitoring potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS).The results showed that the PANI film which was formed with lower sweep rate led to more positive shift of corrosion potential and greater charge transfer resistance, reflecting higher inhibition for corrosion of the stainless steel.

  5. Electromagnetic non-destructive technique for duplex stainless steel characterization

    Science.gov (United States)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  6. The low pressure injection moulding of stainless steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Ikegami, R.A.; M. Purquerio, B. de [Dept. de Engenharia Mecanical-LAMAFE, USP-EESC, Sao Carlos SP (Brazil)

    2001-07-01

    The technology of the metallic powder injection (PIM) is being developed in some aspects, particularly those related to the low pressure injection itself, the debinding of the organic vehicle and the sintering improvement. The relevance of the PIM is most certainly due to its actual technological competitiveness, part design and process automation easiness, and mainly to the forming of small dimension parts with complex shapes possibility. This work intends to show, applying similar principles of the polymer injection technology, the results of an investigation on low pressure injection moulding of 316L stainless steel powder, presenting some results and a methodology related to the preparation of the feed stock, the debinding process and the part sintering. (orig.)

  7. Residual stresses of water-jet peened austenitic stainless steel

    International Nuclear Information System (INIS)

    The specimen material was austenitic stainless steel, SUS316L. The residual stress was induced by water-jet peening. The residual stress was measured using the 311 diffraction with conventional X-rays. The measured residual stress showed the equi-biaxial stress state. To investigate thermal stability of the residual stress, the specimen was aged thermally at 773K in air to 1000h. The residual stress kept the equi-biaxial stress state against the thermal aging. Lattice plane dependency of the residual stress induced by water-jet peening was evaluated using hard synchrotron X-rays. The residual stress measured by the soft lattice plane showed the equi-biaxial stress state, but the residual stress measured by the hard lattice plane did not. In addition, the distributions of the residual stress in the depth direction were measured using a strain scanning method with hard synchrotron X-rays and neutrons. (author)

  8. Cutting of Stainless Steel With Fiber and Disk Laser

    DEFF Research Database (Denmark)

    Wandera, Catherine; Salminen, Antti; Olsen, Flemming Ove;

    2006-01-01

    Laser cutting is a major application of laser materials processing. The cutting is usually performed with CO2-laser due to its good beam quality and its relatively low costs of ownership. Ever since entering the market the high power solid state lasers have been expected to achieve a dominating...... role also in cutting applications. This has not happened mainly due to the fact that beam quality has not been sufficient. The introduction of new generation of solid state lasers has raised the interest of use of them in cutting application. This study was concentrated on use of fiber and disk lasers......, the new laser types with a high beam quality, in cutting of austenitic stainless steel. The performance of these new lasers at power level of 4 kW was compared with CO2-laser in respect of cutting speed, kerf width, kerf edge roughness and perpendicularity (squarness) in order to validate the potential...

  9. Laser cladding of Ni-based alloy on stainless steel

    Institute of Scientific and Technical Information of China (English)

    XUE Chun-fang; TIAN Xin-li; TAN Yong-sheng; WU Zhi-yuan

    2004-01-01

    The coatings on a stainless steel substrate were conducted by laser cladding of Ni-based alloy, using a 5 kW continuous wave CO2 flow transverse laser. SEM, EDX and X-ray diffraction were used to analyze the microstructure and constituent phases of the obtained coatings by laser cladding with direct injection of the powder into the melt pool. Solidification planar, cellular and dendrite structures were observed in Ni-based alloy coating. There exists an optimum metallurgical bond between Ni-based laser cladding layer and the base material. The high hardness of the Ni-based alloy coating is attributed to the presence of M7C3-type carbides (essentially chromium-riched carbide) dispersed in the γ(Ni,Fe) phase matrix.

  10. Ultrasound treatment of centrifugally atomized 316 stainless steel powders

    Science.gov (United States)

    Rawers, James C.; McCune, Robert A.; Dunning, John S.

    1991-12-01

    The Bureau of Mines is studying the surface characteristics of rapidly solidified powders and the potential for surface modification of fine powders prior to consolidation. The surface modification and work hardening of fine powders were accomplished by applying high-energy ultrasound to centrifugally atomized austenitic 316 stainless steel powders suspended in liquid media. Cavitation implosion changed the surface morphology, hammering the surface and occasionally fretting off microchips of work-hardened metal. Ultrasound-cavitation work-hardened metal powder surfaces producing a strained, duplex austenite face-centered cubic (fcc)-martensite body-centered tetragonal (bct) phase structure. The amount of work hardening depended upon the quantity of ultrasound energy used, considering both power level and experimental time. Work hardening was relatively independent of the liquid media used.

  11. Activating Flux Design for Laser Welding of Ferritic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    马立; 胡绳荪; 胡宝; 申俊琦; 王勇慧

    2014-01-01

    The behaviors of YAG laser welding process of ferritic stainless steel with activating fluxes were investi-gated in this study. Some conventional oxides, halides and carbonates were applied in laser welding. The results showed that the effect of oxides on the penetration depth was more remarkable. Most activating fluxes improved the penetration more effectively at low power than that at high power. The uniform design was adopted to arrange the formula of multicomponent activating fluxes, showing that the optimal formula can make the penetration depth up to 2.23 times as large as that without flux, including 50%ZrO2, 12.09%CaCO3, 10.43%CaO and 27.48%MgO. Through the high-speed photographs of welding process, CaF2 can minimize the plasma volume but slightly improve the pene-tration capability.

  12. Thermal deformation behavior and microstructure of nuclear austenitic stainless steel

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Gleeble-1500D thermal simulation tester was employed in the hot-compression investigation of as-cast nuclear 304 austenitic stainless steel under conditions: deformation temperature 950―1200℃; deformations 30% and 50%; deformation rates 0.01 and 0.1 s?1. The results show that the flow stress decreases with temperature rise under the same strain rate and deformation, that the flow stress increases with deformation under the same temperature and strain rate, and that the flow stress increases with strain rate under the same temperature condition, i.e., work hardening becomes distinct. Materials exhibit better strength-toughness when the strain rate is 0.01 s-1, the deformation is 50%, and the temperature is 1050℃.

  13. Fracture properties evaluation of stainless steel piping for LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.J.; Seok, C.S.; Chang, Y.S. [Sung Kyun Kwan Univ., Suwon (Korea, Republic of)

    1997-04-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal.

  14. Interface nanochemistry effects on stainless steel diffusion bonding

    Science.gov (United States)

    Cox, M. J.; Carpenter, R. W.; Kim, M. J.

    2002-02-01

    The diffusion-bonding behavior of single-phase austenitic stainless steel depends strongly on the chemistry of the surfaces to be bounded. We found that very smooth (0.5 nm root-mean-square (RMS) roughness), mechanically polished and lapped substrates would bond completely in ultrahigh vacuum (UHV) in 1 hour at 1000 °C under 3.5 MPa uniaxial pressure, if the native oxide on the substrates was removed by ion-beam cleaning, as shown by in-situ Auger analysis. No voids were observed in these bonded interfaces by transmission electron microscopy (TEM), and the strength was equal to that of the unbounded bare material. No bond formed between the substrates if in-situ ion cleaning was not used. The rougher cleaned substrates partially bonded, indicating that roughness, as well as native oxides, reduced the bonding kinetics.

  15. Shape retention of injection molded stainless steel compacts

    Institute of Scientific and Technical Information of China (English)

    LI Yi-min; K.A.Khalil; HUANG Bai-yun

    2005-01-01

    The effects of the binder composition, the powder loading, the thermal properties of feedstocks, and the injection molding parameters on the compact shape retention for metal injection molding 17-4PH stainless steel were investigated. The high-density polyethylene is more effective than ethylene vinyl acetate as a second component of the wax-based binder to retain compact shape due to its higher pyrolytic temperature and less heat of fusion. The compact distortion decreases with increasing the powder loading, molding pressure and molding temperature. There exists an optimal process combination including the powder loading of 68%, molding pressure of 120 MPa and molding temperature of 150 ℃. Under this process condition, the percentage of distorted compacts is the lowest.

  16. XPS study of duplex stainless steel oxidized by oxygen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Donik, Crtomir [Institute of Metals and Technology, Lepi pot 11, SI-1000 Ljubljana (Slovenia)], E-mail: crtomir.donik@imt.si; Kocijan, Aleksandra [Institute of Metals and Technology, Lepi pot 11, SI-1000 Ljubljana (Slovenia); Grant, John T. [Research Institute, University of Dayton, 300 College Park, Dayton OH 45469-0051 (United States); Jenko, Monika [Institute of Metals and Technology, Lepi pot 11, SI-1000 Ljubljana (Slovenia); Drenik, Aleksander [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pihlar, Boris [Faculty of Chemistry and Chemical Technology, Askerceva 5, SI-1000 Ljubljana (Slovenia)

    2009-04-15

    Surface oxidation of the duplex stainless steel DSS alloy 2205 was studied by X-ray photoelectron spectroscopy (XPS) and SEM imaging. The experiments were performed on the alloy after controlled oxidation with oxygen atoms created in an inductively coupled plasma. Experiments were performed at temperatures from room temperature up to 700 deg. C. Compositions of the modified oxidized surfaces were obtained from XPS survey scans, and the chemistries of selected elements from higher energy resolution scans of appropriate peaks. The morphologies of the surfaces were obtained using field emission scanning electron microscopy at different magnifications, up to 10,000x. Different Fe/Cr/Mn oxidized layers and different oxide thicknesses were observed and correlated with temperature.

  17. Laser surface modification of stainless steels for cavitation erosion resistance

    Science.gov (United States)

    Kwok, Chi Tat

    1999-12-01

    Austenitic stainless steel UNS S31603 (Fe -17.6Cr -11.2Ni -2.5Mo -1.4Mn -0.4Si -0.03C) has higher pitting corrosion resistance but lower cavitation erosion resistance than that of UNS S30400. This is because of its lower tendency for strain induced martensitic transformation and higher stacking fault energy as compared with those of UNS S30400. In order to improve its cavitation erosion resistance, surface modification of S31603 was performed by laser surface melting and laser surface alloying using a 2-kW CW Nd-YAG laser and a 3-kW CW CO2 laser. For laser surface melting, austenitic stainless steel UNS S30400, super duplex stainless steel UNS S32760 and martensitic stainless steel UNS S42000 were also investigated for comparison purpose. For laser surface alloying, alloying materials including various elements (Co, Cr, Ni, Mo, Mn, Si & C), alloys (AlSiFe & NiCrSiB), ceramics (Si3N 4, SiC, Cr3C2, TiC, CrB & Cr2O 3) and alloys-ceramics (Co-WC, Ni-WC, Ni-Al2O3, Ni-Cr2C3) were used to modify the surface of S31603. The alloyed surface was achieved first by flame spraying or pre-placing of the alloy powder on the S31603 surface and then followed by laser surface remelting. The cavitation erosion characteristics of laser surface modified specimens in 3.5% NaCl solution at 23°C were studied by means of a 20-kHz ultrasonic vibrator at a peak-to-peak amplitude of 30 mum. In addition, their pitting corrosion behaviour was evaluated by electrochemical techniques. The microstructures, compositions, phase changes and damage mechanisms under cavitation erosion were investigated by optical microscopy, SEM, EDAX and X-ray diffractometry. Mechanical properties such as microhardness profile were also examined. The cavitation erosion resistance Re (reciprocal of the mean depth of penetration rate) of laser surface melted S31603 was found to be improved by 22% and was attributed to the existence of tensile residual stress. Improvement on the Re of S42000 was found to be 8.5 times

  18. Weld oxide formation on lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Westin, E.M. [Outokumpu Stainless, Avesta Research Centre, P.O. Box 74, SE-774 22 Avesta (Sweden)], E-mail: elin.westin@outokumpu.com; Olsson, C.-O.A. [Outokumpu Stainless, Avesta Research Centre, P.O. Box 74, SE-774 22 Avesta (Sweden); Hertzman, S. [Outokumpu Stainless Research Foundation, Brinellvaegen 23, SE-100 44 Stockholm (Sweden)

    2008-09-15

    Weld oxides have a strong influence on corrosion resistance, but have hitherto only been studied to a limited extent for duplex stainless steels. X-ray photoelectron spectroscopy (XPS) has here been used to study heat tint formed on gas tungsten arc (GTA) welds on the commercial duplex grades LDX 2101 (EN 1.4162/UNS S32101) and 2304 (EN 1.4362/UNS S32304) welded with and without nitrogen additions to the shielding gas. The process of heat tint formation is discussed in terms of transport phenomena to explain the effect of atmosphere, temperature and composition. The oxides formed were found to be enriched in manganese and corrosion testing shows that nitrogen has a strong influence on the weld oxide. A mechanism is proposed including evaporation from the weld pool and subsequent redeposition.

  19. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    Science.gov (United States)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  20. Purity of food cooked in stainless steel utensils.

    Science.gov (United States)

    Flint, G N; Packirisamy, S

    1997-01-01

    An extensive programme of cooking operations, using household recipes, has shown that, apart from aberrant values associated with new pans on first use, the contribution made by 19% Cr/9% Ni stainless steel cooking utensils to chromium and nickel in the diet is negligible. New pans, if first used with acid fruits, showed a greater pick-up of chromium and nickel, ranging from approximately 1/20 to 1/3 and 1/20 to 1/2 of the normal daily intake of chromium and nickel respectively. This situation did not recur in subsequent usage, even after the pan had been cleaned by abrasion. A higher rate of chromium and nickel release in new pans on first use was observed on products from four manufactures and appears to be related to surface finish, since treatment of the surface of a new pan was partly, and in the case of electropolishing, wholly effective in eliminating their initial high release. PMID:9102344

  1. The stainless steel crown debate: friend or foe?

    Science.gov (United States)

    Uston, Karen A; Estrella, Maria Regina P

    2011-01-01

    In this article, we will explore the use of the stainless steel crown (SSC) in dentistry today. For the pediatric population, many factors can affect the choice of restoration, such as the variations between primary and permanent tooth morphology, oral environment, and patient selection. The current literature and dentistry guidelines encourage dentists to make an informed decision when determining the restoration recommended for a carious primary molar. To further help educate dental providers on the topic of SSCs the following items will be reviewed: the indications; techniques for placement; advantages; and drawbacks when compared to alternative restorative materials. Regardless of personal opinion, the SSC should continue to be recognized for its efficiency, cost-effectiveness, and successful treatment modality.

  2. Electrochemical Evaluation of Corrosion Inhibitors to Austenistic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Yosmari Adames Montero

    2014-03-01

    Full Text Available The use of corrosion inhibitors is one of the most universal methods, and diffused for the protection ofmetals, because they reduce substantially the corrosion losses when they are added in smallconcentrations. At the present work it was carried out the electrochemical tests evaluation of twoinhibitors, A and B, to be used in the chemical cleanings for trays of heat interchanger, which aresuffering thickness losses until its perforation. By the chemical composition analysis, it wasdemonstrated that the metal is an austenistic stainless steel and by electrochemical tests of linearpolarization resistance, electrochemical noise and cyclic sweep, were demonstrated the localizedcorrosion. The best efficiency of the inhibitor A was obtained with one and two percent concentration,while the inhibitor B shows values efficiency near 95% with two percent concentration.

  3. Mechanized welding of austenitic precision stainless steel tubes

    International Nuclear Information System (INIS)

    Austenitic stainless steel tubes of material no. 1,4541 and 1,4550 are used for the tube systems to transport active and inactive gases in reactor experiments. A fully mechanical method was developed for the joining of these tubes by welding which makes use of an electrode holder with surrounding W electrode. This method, whose application is described here, enables the joining of the tubes in all welding positions. A pulsating direct current is used as welding current. Breaking tests on the welded samples gave values corresponding to the strength of the materials mentioned. The welded seams are subjected to the helium leak test and to the X-ray test. (GSCH/LH)

  4. Influence of ultrasonic cavitation on passive film of stainless steel.

    Science.gov (United States)

    Wang, Bao-Cheng; Zhu, Jin-hua

    2008-03-01

    The electrochemical behaviors of passive film of stainless steel 0Cr13Ni5Mo under the condition of static state (quiescence) and ultrasonic cavitation in the HCl solution have been studied by means of polarization curve, electrochemical impedance spectroscopy (EIS) and capacitance potential measurement. The results indicate that the passive film shows a multi layer structure distribution, and presents a p-type semiconductor property under the condition of quiescence. The stability of passive film decreases, the semiconducting property changes to an n-type semiconductor in the presence of cavitation. The amount of transition electrons from valence band because of cavitation is related to the height of Fermi level of passive film semiconductor. PMID:17584517

  5. Electrochemical noise measurements of stainless steel in high temperature water

    International Nuclear Information System (INIS)

    Corrosion in a high purity aqueous environment simulating a boiling water reactor (BWR) is addressed in this work. This condition necessitates autoclave experiments under high pressure and temperature. Long-term electrochemical noise measurements were explored as a mean to detect and monitor stress corrosion cracking phenomenon. An experimental set up, designed to insulate the working electrode from external interference, made possible to detect and monitor stress corrosion cracking in slow strain rate tests for sensitized and solution annealed 304 stainless steel at 288 oC. Time-series analysis showed variations in the signature of the current density series due to transgranular stress corrosion cracking (TGSCC) and intergranular stress corrosion cracking (IGSCC)

  6. Anomalous kinetics of lath martensite formation in stainless steel

    DEFF Research Database (Denmark)

    Villa, Matteo; Hansen, Mikkel Fougt; Pantleon, Karen;

    2015-01-01

    isochronal cooling that transformation rate maxima occur, which are interrupted by virtually transformation free temperature regions. Microscopy confirms martensite formation after athermal nucleation of clusters followed by their time dependent growth. The observations are interpreted in terms of time...... dependent autocatalytic lath martensite formation followed by mechanical stabilisation of austenite during the transformation process.......The kinetics of lath martensite formation in Fe-17.3 wt-%Cr-7.1 wt-%Ni-1.1 wt-%Al-0.08 wt-%C stainless steel was investigated with magnetometry and microscopy. Lath martensite forms during cooling, heating and isothermally. For the first time, it is shown by magnetometry during extremely slow...

  7. Performance of stainless steel treated by plasma niobium alloying

    International Nuclear Information System (INIS)

    Nb alloyed layer was prepared by plasma surface alloying technology on surface of stainless steel substrates. Microstructure morphology, depth profiling of the elemental composition and phase structure of the alloyed layer were analyzed. Corrosion performance of the Nb alloyed layer was investigated. The results show that the optimum parameters were: temperature, 1100 degree C; air pressure, 80 Pa, holding time 3 h, source voltage, 900-700 V; and cathode voltage, 600-450 V. The thickness of Nb alloyed layer was about 60 μm. The alloyed layer was mainly composed of NbC and Nb6C5, Cr2Nb and Fe2Nb. The surface Nb content was 50%, which decreased sharply in the first several microns of depths and then gradually in further depths. The Nb alloyed layer has improved resistance to intergranular corrosion and uniform corrosion. (authors)

  8. Low pressure powder injection moulding of stainless steel powders

    Energy Technology Data Exchange (ETDEWEB)

    Zampieron, J.V.; Soares, J.P.; Mathias, F.; Rossi, J.L. [Powder Processing Center CCP, Inst. de Pesquisas Energeticas e Nucleares, Sao Paulo, SP (Brazil); Filho, F.A. [IPEN, Inst. de Pesquisas Energeticas e Nucleares, Cidade Univ., Sao Paulo, SP (Brazil)

    2001-07-01

    Low-pressure powder injection moulding was used to obtain AISI 316L stainless steel parts. A rheological study was undertaken using gas-atomised powders and binders. The binders used were based on carnauba wax, paraffin, low density polyethylene and microcrystalline wax. The metal powders were characterised in terms of morphology, particle size distribution and specific surface area. These results were correlated to the rheological behaviour. The mixture was injected in the shape of square bar specimens to evaluate the performance of the injection process in the green state, and after sintering. The parameters such as injection pressure, viscosity and temperature were analysed for process optimisation. The binders were thermally removed in low vacuum with the assistance of alumina powders. Debinding and sintering were performed in a single step. This procedure shortened considerably the debinding and sintering time. (orig.)

  9. Structural response of superaustenitic stainless steel to friction stir welding

    International Nuclear Information System (INIS)

    Highlights: → Grain structure evolution was mainly governed by discontinuous recrystallization. → The recrystallization was static in nature and occurred during weld cooling cycle. → Material flow was mainly induced by the tool shoulder. → The texture was a superposition of {1 1 1} and {h k l} partial simple-shear fibers. - Abstract: Electron backscattering diffraction was employed to study grain structure development and texture evolution during friction stir welding (FSW) of a low stacking fault energy material, S31254 superaustenitic stainless steel. Formation of the final stir zone (SZ) microstructure was deduced to be primarily governed by discontinuous recrystallization occurring during the FSW cooling cycle. The textural pattern formed in the SZ was interpreted in the terms of {1 1 1} and {h k l} partial simple shear fiber textures.

  10. The Study of Plasma Nitriding of AISI304 Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; JI Shi-jun; GAO Yu-zhou; SUN Jun-cai

    2004-01-01

    This paper presents results on the plasma nitriding of AISI 304 stainless steel at different temperatures in NH 3 gas. The working pressure was 100~200 Pa and the discharge voltage was 700~800V. The phase of nitrided layer formed on the surface was confirmed by X-ray diffraction. The hardness of the samples was measured by using a Vickers microhardness tester with the load of 50g. After nitriding at about 400 ℃ for two hours a nitrided layer consisting of single γN phase with thickness of 5μm was obtained. Microhardness measurements showed significant increase in the hardness from 240 HV (for untreated samples) up to 950 HV (for nitrided samples at temperature of 420℃). The phase composition, the thickness, the microstructure and the surface topography of the nitrided layer as well as its properties depend essentially on the process parameters.

  11. Electrodeposition of dicalcium phosphate dihydrate coatings on stainless steel substrates

    Indian Academy of Sciences (India)

    Belavalli E Prasad; P Vishnu Kamath

    2013-06-01

    Cathodic reduction of an aqueous solution containing dissolved calcium and phosphate ions results in the deposition of micrometer thick CaHPO4.2H2O (dicalcium phosphate dihydrate) coatings on stainless steel substrates. The coating obtained at a low deposition current (8 mA cm-2) comprises lath-like crystallites oriented along 020. The 020 crystal planes are non-polar and have a low surface energy. At a high deposition current (12 mA cm-2), platelets oriented along 12$\\bar{1}$ are deposited. CaHPO4.2H2O is an important precursor to the nucleation of hydroxyapatite, the inorganic component of bones. Differently oriented CaHPO4.2H2Ocoatings transform to hydroxyapatite with different kinetics, the transformation being more facile when the coating is oriented along 12$\\bar{1}$. These observations have implications for the development of electrodeposited biocompatible coatings for metal endoprostheses for medical applications.

  12. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  13. Acid neutralisation capacity of accelerated carbonated stainless steel slag.

    Science.gov (United States)

    Johnson, D C; MacLeod, C L; Hills, C D

    2003-05-01

    The acid neutralisation capacity test is widely used to assess the long-term performance of waste materials prior to disposal. Samples of fixed mass are exposed to increasing additions of nitric add in sealed containers and the resultant pH is plotted as a titration curve. In this work, the add neutralisation capacity test was used in the assessment of an accelerated carbonated stainless steel slag. Difficulties arose in applying the test procedure to this material. This was largely because of the raised pressure from significant volumes of released carbon dioxide trapped in the sealed sample containers, causing an alteration to leachate pH values. Consequently, the add neutralisation capacity test was modified to enable testing of samples in equilibrium with the atmosphere. No adverse effects on the results from testing of a carbonate free material were recorded. PMID:12803247

  14. Corrosion resistance of kolsterised austenitic 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Abudaia, F. B., E-mail: fabudaia@yahoo.com; Khalil, E. O., E-mail: ekhalil9@yahoo.com; Esehiri, A. F., E-mail: Hope-eseheri@hotmail.co.uk; Daw, K. E., E-mail: Khawladaw@yahoo.com [University of Tripoli Department of Materials and Metallurgical Eng, Tripoli-Libya P.O.Box13589 (Libya)

    2015-03-30

    Austenitic stainless suffers from low wear resistance in applications where rubbing against other surfaces is encountered. This drawback can be overcome by surface treatment such as coating by hard materials. Other treatments such as carburization at relatively low temperature become applicable recently to improve hardness and wear resistance. Carburization heat treatment would only be justified if the corrosion resistance is unaffected. In this work samples of 304 stainless steels treated by colossal supersaturation case carburizing (known as Kolsterising) carried out by Bodycote Company was examined for pitting corrosion resistance at room temperature and at 50 °C. Comparison with results obtained for untreated samples in similar testing conditions show that there is no deterioration in the pitting resistance due to the Kolsterising heat treatment. X ray diffraction patterns obtained for Kolsterising sample showed that peaks correspond to the austenite phase has shifted to lower 2θ values compared with those of the untreated sample. The shift is an indication for expansion of austenite unit cells caused by saturation with diffusing carbon atoms. The XRD of Kolsterising samples also revealed additional peaks appeared in the patterns due to formation of carbides in the kolsterised layer. Examination of these additional peaks showed that these peaks are attributed to a type of carbide known as Hagg carbide Fe{sub 2}C{sub 5}. The absence of carbides that contain chromium means that no Cr depletion occurred in the layer and the corrosion properties are maintained. Surface hardness measurements showed large increase after Kolsterising heat treatment.

  15. Impact Tensile Testing of Stainless Steels at Various Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    D. K. Morton

    2008-03-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  16. Laser resistant stainless steel endotracheal tube: experimental and clinical evaluation.

    Science.gov (United States)

    Fried, M P; Mallampati, S R; Liu, F C; Kaplan, S; Caminear, D S; Samonte, B R

    1991-01-01

    A fire due to endotracheal tube (ET) ignition is a catastrophic event that may occur during laser surgery of the upper airway, regardless of the wavelength utilized. Although methods exist that permit laser surgery without an ET, this is frequently not feasible. The current investigation was undertaken to evaluate the efficacy of a double-cuffed stainless steel ET, first in the laboratory and subsequently in a clinical setting. Bench testing was performed using CO2 (both standard and milliwatt) and KTP/532 lasers. Only the distal polyvinyl chloride cuffed end of the tube was potentially ignitable, however, the appropriate use of saline to fill the cuffs allowed only for cuff perforation without ignition. Canine testing was performed in 10 animals: 4 dogs were intubated from 3 to 4.5 hours with the laser resistant stainless steel endotracheal tube (LRSS-ET) (Laser-Flex Tracheal Tube; Mallinckrodt Anesthesia Products, St. Louis, MO) and 2 with an aluminum tape wrapped red rubber ET. Visual and histological examination were performed in both groups at 3 and 7 days. Four dogs underwent CO2 laser laryngeal surgery with visual and histological examination performed at 7 days postoperatively. No untoward effects could be demonstrated due to the LRSS-ET. A clinical study was then performed in 24 patients who underwent laser surgery of the upper aerodigestive tract with either a CO2 or KTP/532 laser. In all cases ventilation was adequate, the shaft of the LRSS-ET proved impervious to the laser, and the distal end of the tube protected the tracheobronchial tree safely.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1861569

  17. Forming limit and fracture mechanism of ferritic stainless steel sheets

    International Nuclear Information System (INIS)

    Research highlights: → Forming limit curves of two ferritic stainless steel sheets were well predicted. → Failure occurs by necking in uniaxial and plane strain tension for both materials. → Failure occurs by shearing in balanced biaxial tension for both materials. → Strain rate sensitivity does not affect the limit strains a lot for both materials. → Strain rate sensitivity likely influences the failure mode for both materials. - Abstract: In this work, the forming limit curves (FLCs) of two ferritic stainless steel sheets, AISI409L and AISI430, were predicted with the Marciniak-Kuczynski (MK) and Bressan-William-Hill (BWH) models, combined with the Yld2000-2d yield function and the Swift hardening law. Uniaxial tension, disk compression and hydraulic bulge tests were performed to determine the yield loci and hardening curves of both materials. Meanwhile, the strain rate sensitivity (SRS) coefficient was measured through uniaxial tension tests carried out at different strain rates. Out-of-plane stretching tests were conducted in sheet specimens to obtain the surface limit strains under different linear strain paths. Micrographs of the specimens fractured in different stress states were obtained by optical and scanning electron microscopy. The overall results show that the BWH model can predict the FLC better than the MK model, and that the SRS does not have much effect on the limit strains for both materials. The predicted FLCs and micrograph analysis both indicate that failure occurs by surface localized necking in uniaxial and plane strain tension states, whereas it occurs by localized shearing in the through thickness direction in balanced biaxial tension state.

  18. Documentation of Stainless Steel Lithium Circuit Test Section Design

    Science.gov (United States)

    Godfroy, T. J.; Martin, J. J.; Stewart, E. T.; Rhys, N. O.

    2010-01-01

    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005.

  19. Study on thermal aging mechanism of cast duplex stainless steel

    International Nuclear Information System (INIS)

    Cast duplex stainless steel is used for reactor coolant piping in pressurized water reactors. However, its toughness is reduced by aging after long time operation. R and D on non-destructive techniques for evaluating the level of aging during in-service inspections has been carried out. A practical technique to evaluate accuracy has not, however, been developed yet. This is because the relationship between microstructural changes and mechanical property changes has not been clearly identified. The aim of this study is to clarify the relationship between the microstructural and mechanical property changes due to aging by examining the process of generation of precipitates. The specimens used in this study were SCS 14 A centrifuged cast stainless steel with three different ferrite content types of 8, 15 and 23%. They were aged at temperatures of 350degC and 400degC for up to 10,000 hours. The mechanical properties were investigated with Charpy impact testing and Vickers hardness testing, and microstructural changes studied with a transmission electron microscope, atom probe analysis and Moessbauer spectroscopy. As a result, the Charpy impact value of the specimen with larger ferrite content decreased the most. The hardness of the austenite phase remained almost unchanged while the hardness of the ferrite phase significantly increased. The ferrite hardness increase and the phase decomposition rate were almost the same among the three specimens with different ferrite contents. G phase precipitation was observed for the ferrite materials of 15% and 23% after the long period of thermal aging. In conclusion, the thermal aging degradation can be evaluated by detecting the ferrite phase decomposition rate, the ferrite content and the G phase precipitation. (author)

  20. Numerical simulation and experimental investigation of laser dissimilar welding of carbon steel and austenitic stainless steel

    Science.gov (United States)

    Nekouie Esfahani, M. R.; Coupland, J.; Marimuthu, S.

    2015-07-01

    This study reports an experimental and numerical investigation on controlling the microstructure and brittle phase formation during laser dissimilar welding of carbon steel to austenitic stainless steel. The significance of alloying composition and cooling rate were experimentally investigated. The investigation revealed that above a certain specific point energy the material within the melt pool is well mixed and the laser beam position can be used to control the mechanical properties of the joint. The heat-affected zone within the high-carbon steel has significantly higher hardness than the weld area, which severely undermines the weld quality. A sequentially coupled thermo-metallurgical model was developed to investigate various heat-treatment methodology and subsequently control the microstructure of the HAZ. Strategies to control the composition leading to dramatic changes in hardness, microstructure and service performance of the dissimilar laser welded fusion zone are discussed.

  1. Lung cancer mortality in stainless steel and mild steel welders: a nested case-referent study

    DEFF Research Database (Denmark)

    Lauritsen, Jens; Hansen, K S

    1996-01-01

    . Analysis was based on 439 deceased referents and 94 deceased cases. There was a 70% excess of lung cancer associated with "welding exposure ever" (OR +/- 95% C.I.: 1.68, 1.02-2.78). Overall OR for "mild steel (MS) welding ever" was 1.64, 0.99-2.72. The risk estimates for welding exposures showed...... an increasing tendency up to 15 years of exposure. The pattern of stainless steel (SS) welding resembles that of mild steel with an estimated OR of 1.65, 0.88-3.0. The general conclusion is that MS welding as well as SS welding seems to be associated with an increased risk of lung cancer. Further followup...

  2. Microstructure and Mechanical Properties of Plasma Arc Brazed AISI 304L Stainless Steel and Galvanized Steel Plates

    Science.gov (United States)

    Jin, Yajuan; Li, Ruifeng; Yu, Zhishui; Wang, Yu

    2016-04-01

    Plasma arc brazing is used to join the AISI 304L stainless steel and galvanized steel plate butt joints with the CuSi3Mn1 filler wire. The effect of parameters on weld surface appearance, interfacial microstructure, and composition distribution in the joint was studied. The microhardness and mechanical tests were conducted to determine the mechanical properties of the welded specimens. The results indicated that good appearance, bead shape, and sufficient metallurgical bonding could be obtained when the brazing process was performed with a wire feeding speed of 0.8 m/min, plasma gas flow rate of 3.0 l/min, welding current of 100 A, and welding speed of 27 cm/min. During plasma arc brazing process, the top corner of the stainless steel and galvanized steel plate were heated and melted, and the melted quantity of stainless steel was much more than that of the galvanized steel due to the thermal conductivity coefficient difference between the dissimilar materials. The microhardness test results shows that the microhardness value gradually increased from the side of the galvanized steel to the stainless steel in the joint, and it is good for improving the mechanical properties of joint. The tensile strength was a little higher than that of the brazing filler, and the fracture position of weld joint was at the base metal of galvanized steel plate.

  3. Effects of Cr2N Precipitation on the Antibacterial Properties of AISI 430 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Je-Kang Du

    2016-03-01

    Full Text Available Based on their mechanical properties and good corrosion resistance, some commercial Ni-Cr stainless steels have been widely applied as biomaterials, including the austenitic 304 stainless steel, the austenitic 316 stainless steel, the duplex 2205 stainless steel, and the ferritic 430 stainless steel. In order to reduce the occurrence of infections resulting from biomaterial implants, instruments, and medical devices, Cu2+ and Ag2+ ions have been added onto biomaterials for increasing the antibacterial properties, but they are known to damage biofilm. The occurrence of nanoparticles can also improve the antibacterial properties of biomaterials through various methods. In this study, we used Escherichia coli and analyzed the microstructures of American Iron and Steel Institute (AISI 430 stainless steel with a 0.18 mass % N alloy element. During a lower temperature aging, the microstructure of the as-quenched specimen is essentially a ferrite and martensite duplex matrix with some Cr2N precipitates formed. Additionally, the antibacterial properties of the alloy for E. coli ranged from 3% to 60%, consistent with the presence of Cr2N precipitates. When aged at a lower temperature, which resulted in nano-Cr2N precipitation, the specimen possessed the highest antibacterial activity.

  4. Chromium depletion from stainless steels during vacuum annealing

    International Nuclear Information System (INIS)

    The behaviour of chromium during selective evaporation by high temperature vacuum annealing has been investigated by means of energy dispersive X-ray analysis and by neutron activation analysis. It was established that the rate of chromium loss from austenitic stainless steels 316 and 321 is controlled by chromium inter-diffusion rather than tracer diffusion in the alloy. Two important parameters in selective removal of chromium from alloy steels are the variation in the chromium surface concentration with time and the depletion profile in the alloy. The present work gives support for the model in which loss of chromium is dependent on its diffusivity in the alloy and on an interface transfer coefficient. The results showed that the surface concentration of chromium decreased with increasing vacuum annealing time. The chromium depletion profile in the metal was in accord with the previous derived model, apart from an anomalous near surface region. Here the higher resolution of a neutron activation technique indicated a region within approximately 2 microns of the surface where the chromium concentration decreased more steeply than expected. (author)

  5. Corrosion of an austenite and ferrite stainless steel weld

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2011-07-01

    Full Text Available Dissimilar metal connections are prone to frequent failures. These failures are attributed to the difference in the mechanical properties across the weld, the coefficients of thermal expansion of the two types of steels and the resulting creep at the interface. For the weld analyzed in this research, it was shown that corrosion measurements can be used for a proper evaluation of the quality of weld material and for the prediction of whether or not the material, after the applied welding process, can be in service without failures. It was found that the corrosion of the weld analyzed in this research resulted from the simultaneous activity of different types of corrosion. In this study, electrochemical techniques including polarization and metallographic analysis were used to analyze the corrosion of a weld material of ferrite and austenitic stainless steels. Based on surface, chemical and electrochemical analyses, it was concluded that corrosion occurrence was the result of the simultaneous activity of contact corrosion (ferrite and austenitic material conjuction, stress corrosion (originating from deformed ferrite structure and inter-granular corrosion (due to chromium carbide precipitation. The value of corrosion potential of –0.53 V shows that this weld, after the thermal treatment, is not able to repassivate a protective oxide film.

  6. Stress corrosion cracking of austenitic stainless steel core internal welds.

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. M.; Park, J.-H.; Ruther, W. E.; Sanecki, J. E.; Strain, R. V.; Zaluzec, N. J.

    1999-04-14

    Microstructural analyses by several advanced metallographic techniques were conducted on austenitic stainless steel mockup and core shroud welds that had cracked in boiling water reactors. Contrary to previous beliefs, heat-affected zones of the cracked Type 304L, as well as 304 SS core shroud welds and mockup shielded-metal-arc welds, were free of grain-boundary carbides, which shows that core shroud failure cannot be explained by classical intergranular stress corrosion cracking. Neither martensite nor delta-ferrite films were present on the grain boundaries. However, as a result of exposure to welding fumes, the heat-affected zones of the core shroud welds were significantly contaminated by oxygen and fluorine, which migrate to grain boundaries. Significant oxygen contamination seems to promote fluorine contamination and suppress thermal sensitization. Results of slow-strain-rate tensile tests also indicate that fluorine exacerbates the susceptibility of irradiated steels to intergranular stress corrosion cracking. These observations, combined with previous reports on the strong influence of weld flux, indicate that oxygen and fluorine contamination and fluorine-catalyzed stress corrosion play a major role in cracking of core shroud welds.

  7. Study of Ce-modified antibacterial 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Yuan Junping

    2012-11-01

    Full Text Available 316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin-film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.

  8. Fuzzy Modeling of Prediction Ms Temperature for Martensitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    JIANG Yue; YIN Zhong-da; KANG Peng-chao; LIU Yong

    2004-01-01

    A method of fuzzy modeling based on fuzzy clustering and Kalman filtering was proposed for predicting Ms temperature from chemical composition for martensitic stainless steel. The membership degree of each sample was calculated by the fuzzy clustering algorithm. Kalman filtering was used to identify the consequent parameters. Only Grade 95 steel are available for training and validation, and the fuzzy model is valid for the following element concentration ranges (wt%): 0.01

  9. Effect of shot peening on metastable austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Fargas, G., E-mail: gemma.fargas@upc.edu [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Roa, J.J.; Mateo, A. [CIEFMA - Departament de Ciència dels Materials i Enginyeria Metallúrgica, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); CRnE, Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)

    2015-08-12

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor.

  10. Hot Forging of Nitrogen Alloyed Duplex Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    P.Chandramohan; S.S. Mohamed Nazirudeen; S.S. Ramakrishnan

    2007-01-01

    Duplex stainless steels are gaining global importance because of the need for a high strength corrosion resistant material. Three compositions of this group were selected with three different nitrogen contents viz, 0.15 wt pct (alloy 1), 0.23 wt pct (alloy 2) and 0.32 wt pct (alloy 3). The steels were melted in a high frequency induction furnace and hot forged to various reductions from 16% to 62%. In this work, the effect of hot forging on the ferrite content, hardness, yield strength, impact strength and grain orientation (texture) were studied. Fracture analysis on all the forged specimens using SEM reveals that a size reduction of 48% results in maximum ductility and impact strength as well as minimal ferrite content and grain size. Thus the mechanical properties are found to have a direct correlation to ferrite content and grain size. The highest impact strength was observed in specimens with the smallest grain size, which was observed in specimens forged to 48% reduction in size.

  11. Effect of shot peening on metastable austenitic stainless steels

    International Nuclear Information System (INIS)

    In this work, shot peening was performed in a metastable austenitic stainless steel EN 1.4318 (AISI 301LN) in order to evaluate its effect on austenite to martensite phase transformation and also the influence on the fatigue limit. Two different steel conditions were considered: annealed, i.e., with a fully austenitic microstructure, and cold rolled, consisting of a mixture of austenite and martensite. X-ray diffraction, electron back-scattered diffraction and focus ion beam, as well as nanoindentation techniques, were used to elucidate deformation mechanisms activated during shot peening and correlate with fatigue response. Results pointed out that extensive plastic deformation and phase transformation developed in annealed specimens as a consequence of shot peening. However, the increase of roughness and the generation of microcracks led to a limited fatigue limit improvement. In contrast, shot peened cold rolled specimens exhibited enhanced fatigue limit. In the latter case, the main factor that determined the influence on the fatigue response was the distance from the injector, followed successively by the exit speed of the shots and the coverage factor

  12. Effect of microstructure on impact toughness of duplex and superduplex stainless steels

    Directory of Open Access Journals (Sweden)

    S. Topolska

    2009-10-01

    Full Text Available Purpose: of this paper is to study the effect of heat treatments and resulting changes in microstructure on mechanical properties, mainly impact toughness, of commercial 2205 duplex stainless steel and higher alloy superduplex 2507 grade.Design/methodology/approach: Both steels were submitted to ageing treatments in the temperature range of 500-900 °C with exposure time periods 6 minutes, 1 hour and 10 hours. Light microscope examinations, hardness measurements and impact toughness tests were performed in order to reveal microstructure and changes in mechanical properties.Findings: Obtained results confirm that high temperature service of duplex stainless steels should be avoided. Precipitations of secondary phases (mainly σ phase strongly deteriorate mechanical properties of steels but some amounts of these phases could be acceptable in the microstructure depending upon the application of the steel.Research limitations/implications: Presence of secondary phases in duplex stainless steel microstructure can be very harmful for its corrosion resistance. This phenomenon is not considered in this study.Practical implications: The accidents during exploitation and errors in processing of duplex stainless steels can result in undesired temperature growth over 500°C. Such events brings question whether the steel can be still exploited or not. The aim of present study is to reveal the effect of thermal cycles on structural changes and mechanical properties of duplex stainless steel and establish the highest acceptable time-temperature conditions for safe operation of the steel.Originality/value: Information available in literature does not clearly indicate what amount of secondary phases existing in duplex stainless steel microstructure can be acceptable. The current study shows that duplex 2205 steel affected by thermal cycles and containing about 10% of sigma phase still exhibit acceptable mechanical properties.

  13. The effects of grain boundary precipitates on cryogenic properties of aged 316-type stainless steels

    International Nuclear Information System (INIS)

    It is documented that sensitization in stainless steels results from the formation of grain boundary carbides that deplete the Cr in the vicinities of the grain boundaries. Sensitized austenitic stainless steels become brittle at cryogenic temperatures. Low carbon stainless steels are considered to be resistant to aging embrittlement. Our study of low carbon stainless steels demonstrates that aging at sensitization temperatures results in the formation of grain boundary intermetallic compounds or nitrides instead of carbides. The aging marginally change the 4 K yield strength, but decreases the 4 K stress intensity factor. The change of the yield strength is related to the pinning of the dislocations by solute atoms. The reduction of the stress intensity factor is attributed to the formation of the grain boundary precipitates. The sizes and amount of the grain boundary precipitate are so small that the 4 K crack growth rate at small ΔK is not affected.

  14. Laser Surface Thermal Treatment Applied to Stainless Steel X5 CrNi 18 10

    Directory of Open Access Journals (Sweden)

    Daniel Amariei

    2006-10-01

    Full Text Available The paper propose to mark out the influence of different control parameters of laser beam light over the entire surface thermal treatment applied and, also, the physical and technological proprieties of the stainless steel obtained layer

  15. Laser Surface Thermal Treatment Applied to Stainless Steel X5 CrNi 18 10

    OpenAIRE

    Daniel Amariei; Florin Breaban; Constantin Marta

    2006-01-01

    The paper propose to mark out the influence of different control parameters of laser beam light over the entire surface thermal treatment applied and, also, the physical and technological proprieties of the stainless steel obtained layer

  16. Unexpected corrosion of stainless steel in low chloride waters – microbial aspects

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Carpén, Leena; Møller, Per;

    2009-01-01

    of iron facilitates the growth of iron oxidising bacteria. A number of failure cases from Danish and Finnish stainless steel installations are discussed with the objective to identify key parameters, suggest possible mechanisms and discuss whether prediction is possible. The paper includes a short......Abstract Stainless steels EN 1.4301 and 1.4401/1.4404 are normally considered corrosion resistant in low chloride natural waters like drinking water. However, a number of corrosion failures have been observed in e.g. fire extinguisher systems and drinking water installations, where stagnant...... stains on the outside of the installation. Corrosion may occur in water qualities with rather low chloride contents and fairly low conductivity, which would usually not be considered especially corrosive towards stainless steel. One key parameter is the ennoblement documented on stainless steel...

  17. Cumulative creep damage and its control in the stainless steel AISI 304

    International Nuclear Information System (INIS)

    The possibility to obtain the regression or inhibition of the cumulative creep damage process through heat treatment of type 304 austenitic stainless steel mechanical components for high temperature services is discussed. (Author)

  18. The influence of aging on the intergranular corrosion of 22 chromium-5 nickel duplex stainless steel

    International Nuclear Information System (INIS)

    Duplex stainless steels are widely used in severe corrosion environments because of their good corrosion performance. This paper deals with the influence of aging treatments on the intergranular corrosion (IGC) resistance of a commercial duplex stainless steel, SAF 2205. Duplex stainless steel was given aging treatments in the range 773-1173 K for time periods ranging from 6 min to 100 h. Optical microscopy and XRD was carried out on the aged stainless steels for the microstructural study. The aged samples were evaluated for the IGC susceptibility with the ASTM standard practices. Potentiodynamic cyclic polarization studies were also carried out to investigate the influence of aging treatments on the passivity breakdown. The results indicate that the sigma phase gets precipitated and is responsible for grain boundary attack. (author)

  19. Nanosized controlled surface pretreatment of biometallic alloy 316L stainless steel.

    Science.gov (United States)

    Abdel-Fattah, Tarek M; Loftis, Derek; Mahapatro, Anil

    2011-12-01

    Stainless steel (AISI 316L) is a medical grade stainless steel alloy used extensively in medical devices and in the biomedical field. 316L stainless steel was successfully electropolished via an ecologically friendly and biocompatible ionic liquid (IL) medium based on Vitamin B4 (NB4) and resulting in nanosized surface roughness and topography. Voltammetry and chronoamperometry tests determined optimum polishing conditions for the stainless steel alloy while atomic force microscopy (AFM) and scanning electron microscopy (SEM) provided surface morphology comparisons to benchmark success of each electropolishing condition. Energy dispersive X-ray analysis (EDX) combined with SEM revealed significantly smoother surfaces for each alloy surface while indicating that the constituent metals comprising each alloy effectively electropolished at uniform rates. PMID:22416578

  20. A delayed hypersensitivity reaction to a stainless steel crown: a case report.

    Science.gov (United States)

    Yilmaz, A; Ozdemir, C E; Yilmaz, Y

    2012-01-01

    Stainless steel crowns are commonly used to restore primary or permanent teeth in pediatric restorative dentistry. Here, we describe a case of a delayed hypersensitivity reaction, which manifested itself as perioral skin eruptions, after restoring the decayed first permanent molar tooth of a 13-year-old Caucasian girl with a preformed stainless steel crown. The eruptions completely healed within one week after removal of the stainless steel crown. The decayed tooth was then restored with a bis-acryl crown and bridge. Since no perioral skin eruptions occurred during the six-month follow-up, we presume that the cause of the perioral skin eruptions was a delayed hypersensitivity reaction, which was triggered by the nickel in the stainless steel crown.

  1. HYDROGEN-ASSISTED FRACTURE IN FORGED TYPE 304L AUSTENITIC STAINLESS STEEL

    Energy Technology Data Exchange (ETDEWEB)

    Switzner, Nathan; Neidt, Ted; Hollenbeck, John; Knutson, J.; Everhart, Wes; Hanlin, R. [University of Missouri-Kansas City; Bergen, R. [Precision Metal Products; Balch, D. K. [Sandia Natl Laboratory

    2012-09-06

    Austenitic stainless steels generally have good resistance to hydrogen-assisted fracture; however, structural designs for high-pressure gaseous hydrogen are constrained by the low strength of this class of material. Forging is used to increase the low strength of austenitic stainless steels, thus improving the efficiency of structural designs. Hydrogen-assisted racture, however, depends on microstructural details associated with manufacturing. In this study, hydrogen-assisted fracture of forged type 304L austenitic stainless steel is investigated. Microstructural variation in multi-step forged 304L was achieved by forging at different rates and temperatures, and by process annealing. High internal hydrogen content in forged type 304L austenitic stainless steel is achieved by thermal precharging in gaseous hydrogen and results in as much as 50% reduction of tensile ductility.

  2. Welding of stainless steel pool of pressurized water reactor nuclear power station

    International Nuclear Information System (INIS)

    The construction of stainless steel lining of million kilowatt grade pressurized water reactor nuclear power station is a new technology. The author introduces its welding method, parameter verification measure and key factors of construction quality control and so on

  3. On the Plasma (ion) Carburized Layer of High Nitrogen Austenitic Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Y. Ueda; N. Kanayama; K. Ichii; T. Oishi; H. Miyake

    2004-01-01

    The manganese concentration of austenitic stainless steel decreases from the inner layer towards the surface of the plasma (ion) carburized layer due to the evaporation of manganese from the specimen surface. The carbon concentration in the carburized layer is influenced by alloyed elements such as Ct, Ni, Si, and Mo, as well as Nitrogen. This study examined the effects of nitrogen on the properties of the carburized layer of high nitrogen stainless steel. Plasma (ion)carburizing was carried out for 14.4 ks at 1303 K in an atmosphere of CH4+H2 gas mixtures under a pressure of 350 Pa. The plasma carburized layer of the high nitrogen stainless steel was thinner than that of an austentric stainless steel containing no nitrogen. This suggested that the nitrogen raised the activity of carbon in the plasma carburized layer, GDOES measurement indicated that the nitrogen level in the layer did not vary after plasma (ion) carburizing.

  4. Intergranular oxidation of austenistic stainless steels in steam at 6000C

    International Nuclear Information System (INIS)

    The oxidation kinetics of a 17.13 bicrystalline and polycrystalline stainless steel was determined at 6000C in the presence of steam. The appearance, structure and composition of the oxides at the grain boundaries were particularly studied

  5. The precision cutting control research of automotive stainless steel thin wall pipe

    Directory of Open Access Journals (Sweden)

    Jin Lihong

    2015-01-01

    Full Text Available Stainless steel thin-walled tube are widely used in automobile industry at present, but as a result of thin wall pipe is poor strength and poor rigidity,which lead to deformation, shaped differencer and other problems in the process, it is hard to ensure the processing quality of parts. This paper proposes a method of thin stainless steel thin wall pipe cutting process in vehicle, greatly improved the problems and technical difficulties in the traditional process, the main research is about the cutting system and the hydraulic fixture design, obtained under low cost circumstances, it can realize high precision stainless steel pipes, high degree of automation to automatic cutting,simplified operation steps at the same time, increased the applicability of the system, provided a kind of advanced stainless steel thin wall pipe cutting device for the small and medium-sized enterprises.

  6. A Study on Atmospheric Corrosion of 304 Stainless Steel in a Simulated Marine Atmosphere

    Science.gov (United States)

    Lv, Wangyan; Pan, Chen; Su, Wei; Wang, Zhenyao; Liu, Shinian; Wang, Chuan

    2015-07-01

    The atmospheric corrosion behavior of 304 stainless steel in a simulated marine atmosphere has been investigated using scanning electron microscope, optical microscope, x-ray photoelectron spectroscopy (XPS), and electrochemical measurements. The experimental results indicate that the main corrosion type of 304 stainless steel in a simulated marine atmosphere is pitting corrosion and the initiation of pits is associated with the dissolution of MnS inclusion. The maximum pit depth of 304 stainless steel increased in linear relationship with the extension of corrosion time. XPS results reveal that the corrosion products possess more hydroxide, and the ratio of [Cr]/{[Cr]+[Fe]} in the corrosion products gradually increases with the increasing time. The protective ability of corrosion products formed on 304 stainless steel has also been discussed.

  7. Wear resistance and corrosion resistance of VCp particle reinforced stainless steel composites

    Institute of Scientific and Technical Information of China (English)

    YAO Xiu-rong; HAN Jie-cai; ZUO Hong-bo; LIU Zhao-jing; LI Feng-zhen; REN Shan-zhi

    2005-01-01

    The VCp reinforced stainless steel composite was produced by in-situ reaction casting. The composite was tested for its wear resistance under the wet abrasive condition and corrosion resistance, compared with the wear-resistant white iron and stainless steel. The results show that the wear resistance of the composite is slightly inferior to that of the white iron, but much better than that of the stainless steel under the wet grinding abrasive condition. The corrosion resistance of the composite is much better than that of the white iron in the acid medium,and a little worse than that of the stainless steel. Thus the composite exhibits superior properties of wear resistance and corrosion resistance.

  8. Development of Pack Cementation Aluminizing Process on Inner Surface of 316L Stainless Steel Tube

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>In order to form the FeAl coatings on the inner surface of the 316L stainless steel tube,the pack cementation aluminizing process is introduced in this paper. The outside diameter,wall thickness and

  9. Stainless steels and special grades for specific applications; Aciers inoxydables et nuances speciales pour applications specifiques

    Energy Technology Data Exchange (ETDEWEB)

    Dupoiron, F.; Verneau, M. [Societe des Forges et Ateliers du Creusot (SFAC), 75 - Paris (France)

    1994-12-31

    The development of special steels grades with a composition between stainless steels and nickel alloys for localised corrosion resistance applications (steam condenser, combustion products de-pollution...) are shortly presented by family (austenitic and super-austenitic stainless steels of the URANUS family with or without nitrogen additions, austeno-ferritic steels), with electrochemistry corrosion tests evaluation : in standard medium (30 g/l NaCl + 6% FeCl{sub 3}) or in real medium. (A.B.). 6 refs., 12 figs., 2 tabs.

  10. Influence of phase transformation on the hardening of austenitic stainless steels

    International Nuclear Information System (INIS)

    The influence of phase transformation on the true stress-true strain curves of austenitic stainless steels was studied. This investigation was carried on one type of AISI 302 steel and one AISI 316 steel. The temperature range varied from -1960C to room temperature. A model for the workhardening of metaestable austenitic stainless steel is proposed. It was concluded that stress induced martensite epsilon may be responsible for the lowering of yield strength as well as the initial plateau on workhardening in these materials. (Author)

  11. Influence of Trace Alloying Elements on Corrosive Resistance of Cast Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    DUAN Han-qiao; YAN Xiang; WEI Bo-kang; LIN Han-tong

    2005-01-01

    The influences of trace alloying elements niobium, vanadium and zirconium on the corrosive resistance of 18-8 type cast stainless steel have been studied in deta() orthogonal design experiments. The results show that zirconium is mainly in the form of compound inclusions, which is unfavorable to promote the corrosive resistance of the cast stainless steel. It can alleviate the disadvantageous influence of carbon addition on corrosive resistance when some elements such as vanadium and niobium exist in the steel, and niobium has a remarkable influence on the intergranular corrosive resistance but unobvious on the pitting corrosion, and vanadium has a slightly favorable influence on the corrosive resistance of the steel.

  12. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, R.E.

    1987-12-01

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.

  13. Microstructural evolution in fast-neutron-irradiated austenitic stainless steels

    International Nuclear Information System (INIS)

    The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and altered mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs

  14. 78 FR 31574 - Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam; Institution of...

    Science.gov (United States)

    2013-05-24

    ... the Commission's Handbook on Filing Procedures, 76 FR 62092 (Oct. 6, 2011), available on the... COMMISSION Welded Stainless Steel Pressure Pipe From Malaysia, Thailand, and Vietnam; Institution of... materially retarded, by reason of imports from Malaysia, Thailand, and Vietnam of welded stainless...

  15. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    DEFF Research Database (Denmark)

    Wadman, Boel; Madsen, Erik; Bay, Niels;

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost....

  16. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai;

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...

  17. Antibacterial Properties of an Austenitic Antibacterial Stainless Steel and Its Security for Human Body

    Institute of Scientific and Technical Information of China (English)

    Ke YANG; Manqi L(U)

    2007-01-01

    An austenitic antibacterial stainless steel is reported in this paper. The very fine and dispersive ε-Cu precipitations in the matrix of the antibacterial steel after the antibacterial treatment endow the steel with antibacterial function. The antibacterial function is strong, long-term and broad-spectrum, and can be maintained even after repeated wear and long time dipping in water. The steel is safe for human body and could be used widely in daily application.

  18. Skin pass mill tension leveling facility for stainless steel sheets; Stainless kobanyo sukinpasumiru tension leveling setsubi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-20

    This facility was delivered to Acerinox S.A. (Spain) for surface property improvement, mechanical property improvement and shape correction of bright annealed materials in the end facility of No.3 BAL. Main specifications: (1) Material to be handled: stainless steel sheet (bright annealed cold-rolled steel sheet), (2) Sheet thickness and width: 0.15-2.0mm x 600-1,300mm, (3) Processing speed: 90m/min maximum, (4) Rolling mill: 4 Hi hydraulic depression system, (5) Tension leveler: 6 Hi wet system. Features: (1) Some degree of a flatness only by a skin pass mill through automatic flatness control by work roll bender, 4 Hi skin pass mill with a variable crown backup roll, and shape meter, (2) Stable dead flatness of 0.1% in elongation rate by adding a tension leveler, (3) High-quality bright annealing without any pressed flaw and roll mark by applying an advanced wiper to a skin pass mill, and applying switching control during traveling of welding points to wet leveling and skin pass leveler rolling. (translated by NEDO)

  19. Experimental Test of Stainless Steel Wire Mesh and Aluminium Alloy With Glass Fiber Reinforcement Hybrid Composite

    OpenAIRE

    Ranga Raj R.,; Velmurugan R

    2015-01-01

    At present, composite materials are mostly used in aircraft structural components, because of their excellent properties like lightweight, high strength to weight ratio, high stiffness, and corrosion resistance and less expensive. In this experimental work, the mechanical properties of laminate, this is reinforced with stainless steel wire mesh, aluminum sheet metal, perforated aluminum sheet metal and glass fibers to be laminate and investigated. The stainless steel wire mesh and...

  20. Neutron irradiation test of copper alloy/stainless steel joint materials

    OpenAIRE

    山田 弘一; 河村 弘

    2006-01-01

    As a study about the joint technology of copper alloy and stainless steel for utilization as cooling piping in International Thermonuclear Experimental Reactor (ITER), Al2O3-dispersed strengthened copper or CuCrZr was joined to stainless steel by three kinds of joint methods (casting joint, brazing joint and friction welding method) for the evaluation of the neutron irradiation effect on joints. A neutron irradiation test was performed to three types of joints and each copper alloy. The avera...

  1. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution

    OpenAIRE

    Marcelin, Sabrina; Pébère, Nadine; Régnier, Sophie

    2013-01-01

    International audience; This paper focuses on the characterisation of the electrochemical behaviour of a martensitic stainless steel in 0.1 M NaCl + 0.04 M Na2SO4 solution and is a part of a study devoted to crevice corrosion resistance of stainless steels. Polarisation curves and electrochemical impedance measurements were obtained for different experimental conditions in bulk electrolyte. X-ray photoelectron spectroscopy (XPS) was used to analyse the passive films. At the corrosion potentia...

  2. Electrochemical investigations on crevice corrosion of a martensitic stainless steel in a thin-layer cell

    OpenAIRE

    Marcelin, Sabrina; Pébère, Nadine; Régnier, Sophie

    2015-01-01

    International audience; This paper focuses on crevice corrosion resistance of a martensitic stainless steel. First, electrochemical measurements were performed in deaerated bulk electrolytes for different chloride concentrations and different values of the pH to determine the critical parameters leading to dissolution or breakdown of the passive film. Then, a thin-layer cell was designed to confine the electrolyte between two parallel stainless steel planes. Impedance measurements obtained fo...

  3. The Effect of Welding Current and Composition of Stainless steel on the Panetration in GTAW

    OpenAIRE

    Ramazan Yılmaz; Turgay Tehçi

    2012-01-01

    In this study, welding was performed on the plates of two different types of AISI 316 and AISI 316Ti austenitic stainless steels by GTAW (Gas Tungsten Arc Welding) without using welding consumable in flat position. Automatic GTAW welding machine was used to control and obtain the exact values. The effects of welding currents used in welding process and the compositions of the stainless steels materials on the penetration were investigated. Weld bead size and shape such as bead width and dept ...

  4. Stress corrosion cracking behaviour of gas tungsten arc welded super austenitic stainless steel joints

    OpenAIRE

    M. Vinoth Kumar; Balasubramanian, V.; S. RAJAKUMAR; Shaju K. Albert

    2015-01-01

    Super 304H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of t...

  5. Pitting and Crevice Corrosion of Super Duplex Stainless Steels in Seawater - Effect of Tungsten

    OpenAIRE

    Bjørge Haugan, Eirik

    2015-01-01

    The need for low cost and lighter materials with higher mechanical and chemical properties has lead to more frequently usage of SDSS because of their increased mechanical and superior corrosion properties compared to other stainless steels. SDSS is also relatively less expensive compared to austenitic stainless steels (ASS) due to lower nickel content. This has lead to an increased hunger for knowledge about every aspect of different alloy elements effect on different parameters for the best ...

  6. Experimental study on ferritic stainless steel simply supported and continuous beams

    OpenAIRE

    Arrayago Luquin, Itsaso; Real Saladrigas, Esther

    2015-01-01

    Development of efficient design guidance for stainless steel structures is key for the increased use of this corrosion-resistant material by considering both nonlinear behaviour and strain hardening into resistance prediction expressions, together with the moment redistribution in indeterminate structures. With the aim of analysing the bending moment redistribution capacity of ferritic stainless steel beams, a comprehensive experimental programme on continuous beams is presented. These tests ...

  7. Influence of sintering parameters on the properties of duplex stainless steel

    OpenAIRE

    L.A. Dobrzański; Z. Brytan; M. Actis Grande; M. Rosso

    2007-01-01

    Purpose: of this paper was to examine the influence of sintering parameters like time, temperature, atmosphereand gas pressure under cooling stage on the mechanical properties of duplex stainless steels.Design/methodology/approach: In presented study duplex stainless steels were obtained through powdermetallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements,such as Cr, Ni, Mo and Cu. In the studies behind the preparation of mixes, Schaeffler’s ...

  8. Tests on ferritic stainless steel simply supported and continuous SHS and RHS beams

    OpenAIRE

    Arrayago Luquin, Itsaso; Real Saladrigas, Esther; Mirambell Arrizabalaga, Enrique

    2015-01-01

    Development of efficient design guidance for stainless steel structures is key for the spreading of this corrosion-resistant material by considering both nonlinear behavior and strain hardening into predicting expressions, together with allowing the consideration of moment redistribution in indeterminate structures. With the aim of analyzing the bending moment redistribution capacity in ferritic stainless steel beams (RHS and SHS), an experimental programme is presented. The tests contribute ...

  9. OBSERVATIONS OF STRESS CORROSION CRACKING BEHAVIOUR IN SUPER DUPLEX STAINLESS STEEL

    OpenAIRE

    Al-Rabie, Mohammed

    2011-01-01

    The new generation of highly alloyed super duplex stainless steels such as Zeron 100 are preferable materials for industrial applications demanding high strength, toughness and superior corrosion resistance, especially against stress corrosion cracking (SCC). SCC is an environmentally assisted failure mechanism that occurs due to exposure to an aggressive environment while under a tensile stress. The mechanism by which SCC of duplex stainless steel is expected to suffer depends on the combina...

  10. Corrosion resistance of sintered duplex stainless steel evaluated by electrochemical method

    OpenAIRE

    L.A. Dobrzański; Z. Brytan; M. Actis Grande; M. Rosso

    2006-01-01

    Purpose: Purpose of this paper was to examine the corrosion resistance of duplex stainless steels using electrochemical methods in 1M NaCl solution. The influence of powder mixes preparation and cooling cycle after sintering on corrosion properties was evaluated.Design/methodology/approach: In presented study duplex stainless steels were obtained through powder metallurgy starting from austenitic, martensitic base powders by controlled addition of alloying elements. In the studies behind the ...

  11. Microstructure and properties of laser surface alloyed PM austenitic stainless steel

    OpenAIRE

    Z. Brytan; M. Bonek; L.A. Dobrzański

    2010-01-01

    Purpose: The purpose of this paper is to analyse the effect of laser surface alloying with chromium on the microstructural changes and properties of vacuum sintered austenitic stainless steel type AISI 316L (EN 1.4404).Design/methodology/approach: Surface modification of AISI 316L sintered austenitic stainless steel was carried out by laser surface alloying with chromium powder using high power diode laser (HPDL). The influence of laser alloying conditions, both laser beam power (between 0.7 ...

  12. Structure and properties of the Stainless steel AISI 316 nitrided with microwave plasma

    International Nuclear Information System (INIS)

    In this work were presented the results obtained by nitridation on stainless steel AISI 316 using a plasma generated through a microwave discharge with an external magnetic field using several moistures hydrogen / nitrogen to form a plasma. The purpose of nitridation was to increase the surface hardness of stainless steel through a phase formation knew as γN which has been reported that produces such effect without affect the corrosion resistance proper of this material. (Author)

  13. Effects of recycling and bonding agent application on bond strength of stainless steel orthodontic brackets

    OpenAIRE

    Bahnasi, Faisal-Ismail; Abd-Rahman, Aida-Nur-Ashikin; Abu-Hassan, Mohamed-Ibrahim

    2013-01-01

    Objectives: 1) to assess different methods of recycling orthodontic brackets, 2) to evaluate Shear Bond Strength (SBS) of (a) new, (b) recycled and (c) repeated recycled stainless steel brackets (i) with and (ii) without bracket base primer. Study Design: A total of 180 extracted human premolar teeth and 180 premolar stainless steel brackets were used. One hundred teeth and 100 brackets were divided into five groups of 20-teeth each. Four methods of recycling orthodontic brackets were used in...

  14. UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides

    OpenAIRE

    Kuang-Hung Tseng; Po-Yu Lin

    2014-01-01

    The purpose of this study was to investigate the difference between tungsten inert gas (TIG) welding of austenitic stainless steel assisted by microparticle oxides and that assisted by nanoparticle oxides. SiO2 and Al2O3 were used to investigate the effects of the thermal stability and the particle size of the activated compounds on the surface appearance, geometric shape, angular distortion, delta ferrite content and Vickers hardness of the UNS S31603 stainless steel TIG weld. The results sh...

  15. The fracture mechanisms in duplex stainless steels at sub-zero temperatures

    OpenAIRE

    Pilhagen, Johan

    2013-01-01

    The aim of the thesis was to study the susceptibility for brittle failures and the fracture process of duplex stainless steels at sub-zero temperatures (°C). In the first part of the thesis plates of hot-rolled duplex stainless steel with various thicknesses were used to study the influence of delamination (also known as splits) on the fracture toughness. The methods used were impact and fracture toughness testing. Light optical microscopy and scanning electron microscopy were used to investi...

  16. Relativenobility of precipitated phases in stainless steels : Evaluation with a combination of local probing techniques

    OpenAIRE

    Sathirachinda, Namurata

    2010-01-01

    Stainless steels often exhibit complex transformation and precipitation behaviour due to a high content of alloying elements. Secondary phases can be formed in the temperature range of 300-1000°C and are generally undesirable due to their detrimental effect on mechanical properties and corrosion resistance of stainless steels. Of all precipitate types, sigma phase is the major concern due to its effect on both toughness and resistance to corrosion. However, the effect of the phase itself cann...

  17. Plasma Nitriding of Austenitic Stainless Steel with Severe Surface Deformation Layer

    Institute of Scientific and Technical Information of China (English)

    JI Shi-jun; GAO Yu-zhou; WANG Liang; SUN Jun-cai; HEI Zu-kun

    2004-01-01

    The dc glow discharge plasma nitriding of austenite stainless steel with severe surface deformation layer is used to produce much thicker surface modified layer. This kind of layers has useful properties such as a high surface hardness of about 1500 Hv 0.1 and high resistance to frictional wear. This paper presents the structures and properties of low temperature plasma nitrided austenitic stainless steel with severe surface deformation layer.

  18. A Study on Stainless Steel 316L Annealed Ultrasonic Consolidation and Linear Welding Density Estimation

    OpenAIRE

    Gonzalez, Raelvim

    2010-01-01

    Ultrasonic Consolidation of stainless steel structures is being investigated for potential applications. This study investigates the suitability of Stainless Steel 316L annealed (SS316L annealed) as a building material for Ultrasonic Consolidation (UC), including research on Linear Welding Density (LWD) estimation on micrographs of samples. Experiment results are presented that include the effect of UC process parameters on SS316L annealed UC, optimum levels of these parameters, and bond qual...

  19. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    Science.gov (United States)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  20. AN ELECTROCHEMICAL PROCESSING STRATEGY FOR IMPROVING TRIBOLOGICAL PERFORMANCE OF AISI 316 STAINLESS STEEL UNDER GREASE LUBRICATION

    OpenAIRE

    JIAOJUAN ZOU; MAOLIN LI; NAIMING LIN; XIANGYU ZHANG; LIN QIN; BIN TANG

    2014-01-01

    In order to improve the tribological performance of AISI 316 stainless steel (316 SS) under grease lubrication, electrochemical processing was conducted on it to obtain a rough (surface texturing-like) surface by making use of the high sensitivity of austenitic stainless steel to pitting corrosion in Cl--rich environment. Numerous corrosion pits or micro-ditches acted as micro-reservoirs on the obtained surface. While the grease could offer consistent lubrication, and then improve the tribolo...