WorldWideScience

Sample records for 120-220 nm spectral

  1. Quantum efficiency of cesium iodide photocathodes in the 120-220 nm spectral range traceable to a primary detector standard

    CERN Document Server

    Rabus, H; Richter, M; Ulm, G; Friese, J; Gernhäuser, R; Kastenmüller, A; Maier-Komor, P; Zeitelhack, K

    1999-01-01

    Differently prepared CsI samples have been investigated in the 120-220 nm spectral range for their quantum efficiency, spatial uniformity and the effect of radiation aging. The experiments were performed at the PTB radiometry laboratory at the Berlin synchrotron radiation facility BESSY. A calibrated GaAsP Schottky photodiode was used as transfer detector standard to establish traceability to the primary detector standard, because this type of photodiode - unlike silicon p-on-n photodiodes - proved to be of sufficiently stable response when exposed to vacuum ultraviolet radiation. The paper reviews the experimental procedures that were employed to characterize and calibrate the GaAsP photodiode and reports the results that were obtained on the investigated CsI photocathodes.

  2. Total spectral radiant flux measurements on Xe excimer lamps from 115 nm to 1000 nm

    Science.gov (United States)

    Trampert, Klaus E.; Paravia, Mark; Daub, Rüdiger; Heering, Wolfgang

    2007-06-01

    Xe excimer lamps are used as VUV source for industrial application like surface cleaning. To determine the VUV efficiency of the lamp the radiant flux need to be known. Due to the difficulties of VUV measurements, it is often determined by interpolation from a value of a fixed angle, which results in large uncertainties. Here a goniometric setup is presented to measure the radiant flux of VUV sources like Xe excimer lamps which emit a narrow spectral band in the VUV range between λ = 147 nm and 200 nm with a peak at 172 nm and spectral lines in NIR. By the use of two monochromators, we measure the spectral resolved radiant flux from 120 nm to 1000 nm. The measurement uncertainty of 9.7 % is rather low for the VUV spectral range and depends mainly on the uncertainty of the used deuterium calibration standard from PTB (7%). Due to the strong temperature dependence of the transmission edge of silica used for the lamp vessel, the measurements are done in nitrogen atmosphere to ensure the convection cooling of the lamp. We measured the radiance distribution curve and radiant flux of Xe excimer lamps and could show the angle dependence of the spectrum. The measured correlation between the VUV band and the NIR lines gives us a better understanding of the plasma kinetics, which is used to optimize the pulsed excitation of the lamp.

  3. Numerical Simulation of Spectral Response for 650 nm Silicon Photodetector

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The theoretical spectral response formula of the N+-N-I-P+ silicon photodetector with high/low emission junction is given. At the same time, considering the process requirements, the optimum structure parameters of silicon photodetector are obtained by numerical calculation and simulation. Under the condition of these optimum structure parameters, the responsivity of the silicon photodetector will be 0.48A/W at 650nm.

  4. Spectral narrowing of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Gaëlle

    2011-01-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope...... in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has...... been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order...

  5. Broadband light generation at ~1300 nm through spectrally recoiled solitons and dispersive waves

    DEFF Research Database (Denmark)

    Falk, Peter Andreas; Frosz, Michael Henoch; Bang, Ole

    2008-01-01

    We experimentally study the generation of broadband light at ~1300 nm from an 810 nm Ti:sapphire femtosecond pump laser. We use two photonic crystal fibers with a second infrared zero-dispersion wavelength (λZ2) and compare the efficiency of two schemes: in one fiber λZ2=1400 nm and the light...... at 1300 nm is composed of spectrally recoiled solitons; in the other fiber λZ2=1200 nm and the light at 1300 nm is composed of dispersive waves....

  6. InGaN light emitting diodes for 415 nm-520 nm spectral range by plasma assisted MBE

    Energy Technology Data Exchange (ETDEWEB)

    Szankowska, M.L.; Smalc-Koziorowska, J.; Cywinski, G.; Grzanka, S.; Grzegory, I.; Lucznik, B. [Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warszawa (Poland); Feduniewicz-Zmuda, A. [TopGaN Ltd, ul Sokolowska 29/37, 01-142 Warszawa (Poland); Wasilewski, Z.R. [Institute for Microstructural Sciences, National Research Council, Ottawa (Canada); Porowski, S.; Skierbiszewski, C. [Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warszawa (Poland); TopGaN Ltd, ul Sokolowska 29/37, 01-142 Warszawa (Poland); Siekacz, M

    2009-06-15

    In this work we study the growth of the Light Emitting Diodes (LEDs) by Plasma Assisted MBE (PAMBE). The active LEDs region was grown to cover the spectral range spanning from 415 nm to 520 nm. We demonstrate efficient LEDs with the highest optical power output of 1.5 mW and 20 mA for 415 nm. For longer wavelengths we observe a drop of the optical power. The reduction of the quantum efficiency for green emission can be related to the presence of strong built-in piezoelectric fields or increased number of nonradiative recombination centers. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V [OOO ' Opton' , Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Chamorovsky, A Yu [Superlum Ltd., Unit B3, Fota Point Enterprise Park, Carrigtwohill, Co Cork (Ireland); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  8. A reflectivity profilometer for the optical characterisation of grade reflectivity mirrors in the 250 nm - 1100 nm spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Alessandro; Nichelatti, Enrico [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1998-04-01

    It`s developed the prototype of an instrument that can be used for the optical characterisation of graded reflectivity mirrors at any wavelength in the spectral region from 250 nm to 1100 nm. The instrument utilises a high-pressure Xe arc lamp as light source. Light is spectrally filtered by means of a grating monochromator. The sample is illuminated with an image of the monochromator exit slit. After reflection from the sample, this image is projected onto a 1024-elements charge-coupled device linear array driven by a digital frame board and interfaced with a personal computer. It`s tested the instrument accuracy by comparing measurement results with the corresponding ones obtained by means of a laser scanning technique. Measurement Rms repeatability has been estimated to be approximately of 0.8%. [Italiano] E` stato sviluppato il prototipo di uno strumento per la catatterizzazione ottica di specchi a riflettivita` variabile, operante a qualsiasi lunghezza d`onda nell`intervallo spettrale da 250 nm a 1100 nm. La sorgente dello strumento e` una lampada ad arco allo Xenon ad alta pressione. La luce e` filtrata spettralmente per mezzo di un monocromatore a reticolo. Il campione viene illuminato da un`immagine della fenditura d`uscita del monocromatore. Dopo essere stata riflessa dal campione, questa immagine viene proiettata su un array CCD lineare a 1024 elementi, connesso elettronicamente a una scheda digitale e interfacciato a un personal computer. L`accuratezza dello strumento e` stata verificata confrontando alcune misure con le corrispondenti misure ottenute mediante una tecnica a scansione laser. La ripetibilita` RMS delle misure e` stata stimata essere circa dello 0.8%.

  9. Improved spectral characteristics of 980 nm broad area slotted Fabry-Perot diode lasers

    Institute of Scientific and Technical Information of China (English)

    Gao Zhuo; Wang Jun; Xiong Cong; Liu Yuanyuan; Liu Suping; Ma Xiaoyu

    2012-01-01

    A novel broad area slotted Fabry-Perot diode laser is designed and fabricated.Using a new semianalytical method,we introduce effective refractive index perturbations in the form of etched slot features into a conventional 980 nm broad area Fabry-Perot cavity,and the spectral characteristics of the device are expected to be noticeably improved.A low density of slot features is formed by using standard optical lithography and inductively coupled plasma dry etching.The experimental results show that the full spectral width at half-maximum is less than 0.4 nm,meanwhile,the thermal shift of the emission spectrum is decreased from 0.26 to 0.07 nm/℃ over a temperature range of 10 to 60 ℃.The improved spectral characteristics of the device are proved to be attributed to such slotted Fabry-Perot laser structures.

  10. Solar Spectral Irradiance at 782 nm as Measured by the SES Sensor Onboard Picard

    Science.gov (United States)

    Meftah, M.; Hauchecorne, A.; Irbah, A.; Cessateur, G.; Bekki, S.; Damé, L.; Bolsée, D.; Pereira, N.

    2016-04-01

    Picard is a satellite dedicated to the simultaneous measurement of the total and solar spectral irradiance, the solar diameter, the solar shape, and to the Sun's interior through the methods of helioseismology. The satellite was launched on June 15, 2010, and pursued its data acquisitions until March 2014. A Sun Ecartometry Sensor (SES) was developed to provide the stringent pointing requirements of the satellite. The SES sensor produced an image of the Sun at 782 ± 2.5 nm. From the SES data, we obtained a new time series of the solar spectral irradiance at 782 nm from 2010 to 2014. During this period of Solar Cycle 24, the amplitude of the changes has been of the order of ± 0.08 %, corresponding to a range of about 2× 10^{-3} W m^{-2} nm^{-1}. SES observations provided a qualitatively consistent evolution of the solar spectral irradiance variability at 782 nm. SES data show similar amplitude variations with the semi-empirical model Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S), whereas the Spectral Irradiance Monitor instrument (SIM) onboard the SOlar Radiation and Climate Experiment satellite (SORCE) highlights higher amplitudes.

  11. Spectral beam combining of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Ostendorf, Ralf;

    2010-01-01

    We demonstrate spectral beam combining of a 980 nm tapered diode laser bar. The combined beam from 12 tapered emitters on the bar yielded an output power of 9.3 W at 30 A of operating current. An M2 value of 5.3 has been achieved along the slow axis. This value is close to that of a free running...

  12. Comparison of Molecular Iodine Spectral Properties at 514.7 and 532 nm Wavelengths

    Directory of Open Access Journals (Sweden)

    Hrabina J.

    2014-08-01

    Full Text Available We present results of investigation and comparison of spectral properties of molecular iodine transitions in the spectral region of 514.7 nm that are suitable for laser frequency stabilization and metrology of length. Eight Doppler-broadened transitions that were not studied in detail before were investigated with the help of frequency doubled Yb-doped fiber laser, and three of the most promising lines were studied in detail with prospect of using them in frequency stabilization of new laser standards. The spectral properties of hyperfine components (linewidths, signal-to-noise ratio were compared with transitions that are well known and traditionally used for stabilization of frequency doubled Nd:YAG laser at the 532 nm region with the same molecular iodine absorption. The external frequency doubling arrangement with waveguide crystal and the Yb-doped fiber laser is also briefly described together with the observed effect of laser aging.

  13. CCPR-S1 Supplementary comparison for spectral radiance in the range of 220 nm to 2500 nm

    Science.gov (United States)

    Khlevnoy, Boris; Sapritsky, Victor; Rougie, Bernard; Gibson, Charles; Yoon, Howard; Gaertner, Arnold; Taubert, Dieter; Hartmann, Juergen

    2009-08-01

    In 1997, the Consultative Committee for Photometry and Radiometry (CCPR) initiated a supplementary comparison of spectral radiance in the wavelength range from 220 nm to 2500 nm (CCPR-S1) using tungsten strip-filament lamps as transfer standards. Five national metrology institutes (NMIs) took part in the comparison: BNM/INM (France), NIST (USA), NRC (Canada), PTB (Germany) and VNIIOFI (Russia), with VNIIOFI as the pilot laboratory. Each NMI provided the transfer lamps that were used to transfer their measurements to the pilot laboratory. The intercomparison sequence began with the participant measurements, then the pilot measurements, followed by a second set of measurements by the participant laboratory. The measurements were carried out from 1998 to 2002, with the final report completed in 2008. This paper presents the descriptions of measurement facilities and uncertainties of the participants, as well as the comparison results that were analysed in accordance with the Guidelines for CCPR Comparisons Report Preparation, and a re-evaluation of the results taking into account the instability of some of the transfer lamps. Excluding a few wavelengths, all participants agree with each other within ±1.5%. The disagreement decreases to approximately ±1.0% when the anomalous data are excluded from the analysis.

  14. Final report on EUROMET PR-K2.b: Comparison on spectral responsivity (300 nm to 1000 nm)

    Science.gov (United States)

    Campos, Joaquin; Pons, Alicia; Blattner, Peter; Dubard, Jimmy; Bastie, Jean; Litwiniuk, Lukasz; Pietrzykowski, Jerzy; Smid, Marek; Mihai, Sim; Bos, Daniel; Gran, Jarle; Bazkir, Ozcan; Fäldt, Anne A.

    2013-01-01

    This report contains the results of the regional comparison EUROMET PR-K2.b (registered in the KCDB under the identifier EURAMET.PR-K2.b). Ten laboratories took part in it, including the pilot. In general the results are consistent, with a few exceptions as explained in the report. The comparison gives international linkage in spectral responsivity from 300 nm to 1000 nm to seven European laboratories: Bundesamt für Metrologie und Akkreditierung (METAS), Norwegian Metrology and Accreditation Service (Justervesenet), Central Office of Measures (GUM), National Institute of Metrology (INM-Romania), Optics Laboratory of TUBITAK-UME (UME), Czech Metrology Institute (CMI) and Swedish National Testing and Research Institute (SP). Three laboratories provided the link to CCPR-K2.b: Bureau National de Metrologie (BNM-INM/CNAM), Instituto de Optica 'Daza de Valdés' (IO-CSIC, acting as pilot) and NMi Van Swinden Laboratorium BV (NMi-VSL). Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCPR, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  15. Nanocrystalline germanium nip solar cells with spectral sensitivities extending into 1450 nm

    Science.gov (United States)

    Li, Chang; Ni, Jian; Sun, Xiaoxiang; Wang, Xinyu; Li, Zhenglong; Cai, Hongkun; Li, Juan; Zhang, Jianjun

    2017-02-01

    To absorb the infrared part of the solar spectrum more efficiently, narrow bandgap hydrogenated nanocrystalline germanium (nc-Ge:H) thin films were fabricated by radio frequency plasma enhanced chemical vapor deposition at a low temperature of 180 °C. While the incubation layer of the nc-Ge:H was reduced to less than 5 nm by using the ultra-high hydrogen dilution, the negative photoconductivity behavior was still observed as the thickness of nc-Ge:H up to 30 nm. Therefore, as the best candidate for solar cells application, the nc-Ge:H (20 nm)/nc-Si:H (10 nm) periodic multilayer structure was prepared and used as the absorption layer of nc-Ge:H nip solar cells. More importantly, the spectral sensitivities extending into the wavelength of 1450 nm were achieved in the nc-Ge:H nip solar cells. In addition, the annealing for the nc-Ge:H nip solar cells was carried out. While the overall short circuit current density of the device is improved after 500 °C annealing, the spectral sensitivities in the infrared region is decreased due to the the coalescence of Ge crystallites.

  16. Temperature Dependence of Stark Width of the 463.054 nm NII Spectral Line

    OpenAIRE

    Milosavljevic, Vladimir; Konjevic, Ruzica; Djenize, Stevan

    1999-01-01

    Stark width of the 463.054 nm singly ionized nitrogen spectral line, that belong to transition, have been measured in a linear pulsed, low pressure, arc discharge. The working gas was helium-nitrogen-oxygen mixture. Electron densities of 0.751023 to 1.451023 were determined in the electron temperature range between 30000 K - 38000 K. The measured values have been compared with our calculated data, using the modified semiempirical approximation. On the basis of the agreement among experimental...

  17. Far ultraviolet imaging from the IMAGE spacecraft. 3. Spectral imaging of Lyman-alpha and OI 135.6 nm

    OpenAIRE

    Mende, S. B.; Heetderks, H.; H. U. Frey; Stock, J. M.; Lampton, M.; Geller, S. P.; Abiad, R.; Siegmund, O. H. W.; Habraken, Serge; Renotte, Etienne; Jamar, Claude; Rochus, Pierre; Gérard, Jean-Claude; Sigler, R.; Lauche, H.

    2000-01-01

    Two FUV Spectral imaging instruments, the Spectrographic Imager (SI) and the Geocorona Photometer (GEO) provide IMAGE with simultaneous global maps of the hydrogen (121.8 nm) and oxygen 135.6 nm components of the terrestrial aurora and with observations of the three dimensional distribution of neutral hydrogen in the magnetosphere (121.6 nm). The SI is a novel instrument type, in which spectral separation and imaging functions are independent of each other. In this instrument, two-dimensional...

  18. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology

    NARCIS (Netherlands)

    Mandai, S.; Fishburn, M.W.; Maruyama, Y.; Charbon, E.

    2012-01-01

    We present a single-photon avalanche diode (SPAD) with a wide spectral range fabricated in an advanced 180 nm CMOS process. The realized SPAD achieves 20 % photon detection probability (PDP) for wavelengths ranging from 440 nm to 820 nm at an excess bias of 4V, with 30 % PDP at wavelengths from 520

  19. A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology

    NARCIS (Netherlands)

    Mandai, S.; Fishburn, M.W.; Maruyama, Y.; Charbon, E.

    2012-01-01

    We present a single-photon avalanche diode (SPAD) with a wide spectral range fabricated in an advanced 180 nm CMOS process. The realized SPAD achieves 20 % photon detection probability (PDP) for wavelengths ranging from 440 nm to 820 nm at an excess bias of 4V, with 30 % PDP at wavelengths from 520

  20. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Lobintsov, A A; Shramenko, M V [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A [' Sigm Plyus' Ltd, Moscow (Russian Federation); Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-11-30

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  1. Broadband semiconductor optical amplifiers of the spectral range 750 - 1100 nm

    Science.gov (United States)

    Andreeva, E. V.; Il'chenko, S. N.; Ladugin, M. A.; Lobintsov, A. A.; Marmalyuk, A. A.; Shramenko, M. V.; Yakubovich, S. D.

    2013-11-01

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of -10 dB reach 50 - 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented.

  2. Spectral emission properties of a LPP light source in the sub-200nm range for wafer inspection applications

    Science.gov (United States)

    Gambino, Nadia; Rollinger, Bob; Hudgins, Duane; Abhari, Reza; Abreau, F.

    2015-03-01

    In this work, the spectral emission proprieties of a droplet-based laser-produced plasma are investigated in the VUV range. These studies are performed with a spectrograph operating from 30 nm to 180 nm at a spectral resolution of 0.1 nm. The emission spectra are recorded for different droplet-based metal fuels such as tin, indium and gallium in the presence of different background gas pressure levels. The experimental results are relevant for alternative light sources that would be needed for future wafer inspection tools. In addition, the experimental results help to determine the Out- Of-Band (OOB) radiation emission of the EUV source. By tuning the type of fuel, the laser energies and the background gas, the LPP light source shows good capabilities to be operated as a tunable light source that covers a spectral emission range from the EUV to the sub-200 nm range.

  3. Improved spectral fitting of nitrogen dioxide from OMI in the 405-465 nm window

    Science.gov (United States)

    van Geffen, J. H. G. M.; Boersma, K. F.; Van Roozendael, M.; Hendrick, F.; Mahieu, E.; De Smedt, I.; Sneep, M.; Veefkind, J. P.

    2015-04-01

    An improved nitrogen dioxide (NO2) slant column density retrieval for the Ozone Monitoring Instrument (OMI) in the 405-465 nm spectral region is presented. Since the launch of OMI on board NASA's EOS-Aura satellite in 2004, differential optical absorption spectroscopy (DOAS) retrievals of NO2 slant column densities have been the starting point for the KNMI DOMINO and NASA SP NO2 vertical column data as well as the OMI NO2 data of some other institutes. However, recent intercomparisons between NO2 retrievals from OMI and other UV/Vis and limb spectrometers, as well as ground-based measurements, suggest that OMI stratospheric NO2 is biased high. This study revises and, for the first time, fully documents the OMI NO2 retrieval in detail. The representation of the OMI slit function to convolve high-resolution reference spectra onto the relevant spectral grid is improved. The window used for the wavelength calibration is optimised, leading to much-reduced fitting errors. Ozone and water vapour spectra used in the fit are updated, reflecting the recently improved knowledge of their absorption cross section in the literature. The improved spectral fit also accounts for absorption by the O2-O2 collision complex and by liquid water over clear-water areas. The main changes in the improved spectral fitting result from the updates related to the wavelength calibration: the RMS error of the fit is reduced by 23% and the NO2 slant column by 0.85 × 1015 molec cm-2, independent of latitude, solar zenith angle and NO2 value. Including O2-O2 and liquid water absorption and updating the O3 and water vapour cross-section spectra further reduces NO2 slant columns on average by 0.35 × 1015 molec cm-2, accompanied by a further 9% reduction in the RMS error of the fit. The improved OMI NO2 slant columns are consistent with independent NO2 retrievals from other instruments to within a range that can be explained by photochemically driven diurnal increases in stratospheric NO2 and by

  4. The relationship of Hyper-spectral Vegetation Indices with LAI over the growth cycle of Wheat and Chickpea at 3nm spectral resolution

    Science.gov (United States)

    Gupta, R.; Vijayan, D.; Prasad, T.

    Using 3 nm observations over wheat and chickpea, hyperspectral indices, hNDVI= [(R 774-R677)/(R774+R677)], hRVI=R7 7 4/R 677 and TM bandwidths based NDVI, RVI and SAVI were computed. Pigment specific ratios (PSR) with reflectance at 800 nm (R800) as numerator were computed for Chlorophyll-a (PSR a= R800 /R 680 ) , Chlorophyll-b (PSR b = R800 /R 635) and Chlorophyll- Carotenoid (PSRc= R800 /R 470 ) . Structure intensive pigment indices (SIPI) given by SIPIa=(R 800 -R 445)/(R 800 -R6 8 0) and SIPIb =[(R 800 -R445)/(R 680 -R4 4 5)] were computed. Acceptable confidence level (r2 in 0.90-0.96 and 0.86-0.91 for all the above mentioned ratios and normalized difference indices, respectively) in correlation of these indices with LAI for wheat was observed when LAI for growth and decline phases were regressed separately; for ratio and normalized indices for chickpea, the r2 (for relationship with LAI) was in 0.85-0.97 range for growth phase and in 0.64-0.85 range for decline phase. In case of chickp ea, the leaves becoming yellow do not fall or undergo change in interaction cross-section to incident light; thus, LAI does not change though spectral indices will change. The r2 for the correlations of LAI for wheat, with TMRVI, PSR a, PSR b , PSRc were in 0.92-0.96 range; with TM NDVI and TM SAVI r 2 were in 0.90-0.91 range and with SIPIa and SIPIb r2 were in 0.67-0.78 range. Correlations were also computed for LAI with all possible ratio indices as well as normalized indices using 3 nm bandwidths dat a sets in 368 to 950 nm region. The correlation coefficients of LAI, for wheat, with ratios of 729-950 nm spectral region to 564-693 nm spectral region were in 0.95-0.99 range for growth phase (of LAI) and in 0.96-0.968 range during declining phase (of LAI) while for chickpea the correlations were in 0.86-0.90 range for growth phase (of LAI) and 0.91-0.96 range during declining phase (of LAI) for the ratios of 711-798 nm spectral region to 673 - 685 nm (growth phase)/693-708 nm

  5. Application of spectral models to experimental measurements of spectral solar irradiance with broadband (250-2500 nm.) spectro radiometer; Aplicacion de modelos espectrales a medidas experimentales de irradiancia solar espectral con espectrodiometro de banda ancha (250-2500 nm.).

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, J. J.; Fabero, F.; Chenlo, F.

    2004-07-01

    In this work, experimental measurements of solar spectral radiation are presented. The measurements were made with a broadband (250-2500 nm.) spectro radiometer in Madrid on a horizontal surface. The comparison with data from some spectral solar radiation models (SMARTS, ESPECTRO y SEDES 2) is also presented. The best fitting of these results corresponds the SMARTS 2.9.2 model that have a great accuracy in the visible part of the solar spectrum. This part is very important for PV devices. In this wavelength range the model SMARTS shows a deviation lower than 0.1 %. Graphs for the three models are shown for a better comparison. The range of wavelengths with the worst fitting is the infrared ( >700 nm.). In this range PV materials are generally also very active. (Author)

  6. Solar Irradiance from 165 to 400 nm in 2008 and UV Variations in Three Spectral Bands During Solar Cycle 24

    Science.gov (United States)

    Meftah, M.; Bolsée, D.; Damé, L.; Hauchecorne, A.; Pereira, N.; Irbah, A.; Bekki, S.; Cessateur, G.; Foujols, T.; Thiéblemont, R.

    2016-12-01

    Accurate measurements of the solar spectral irradiance (SSI) and its temporal variations are of primary interest to better understand solar mechanisms, and the links between solar variability and Earth's atmosphere and climate. The SOLar SPECtrum (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to carry out SSI measurements from 165 to 3088 nm. We focus here on the ultraviolet (UV) part of the measured solar spectrum (wavelengths less than 400 nm) because the UV part is potentially important for understanding the solar forcing of Earth's atmosphere and climate. We present here SOLAR/SOLSPEC UV data obtained since 2008, and their variations in three spectral bands during Solar Cycle 24. They are compared with previously reported UV measurements and model reconstructions, and differences are discussed.

  7. Geographic mapping of choroidal thickness in myopic eyes using 1050-nm spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Qinqin Zhang

    2015-07-01

    Full Text Available Purpose: To provide a geographical map of choroidal thickness (CT around the macular region among subjects with low, moderate and high myopia. Methods: 20 myopic subjects (n = 40 eyes without other identified pathologies participated in this study: 20 eyes of ≤ 3 diopters (D (low myopic, 10 eyes between -3 and -6D (moderate myopic, and 10 eyes of ≥ 6D (high myopic. The mean age of subjects was 30.2 years (± 7.6 years; range, 24 to 46 years. A 1050 nm spectral-domain optical coherence tomography (SD-OCT system, operating at 120 kHz imaging rate, was used in this study to simultaneously capture 3D anatomical images of the choroid and measure intraocular length (IOL in the subject. The 3D OCT images of the choroid were segmented into superior, inferior, nasal and temporal quadrants, from which the CT was measured, representing radial distance between the outer retinal pigment epithelium (RPE layer and inner scleral border. Measurements were made within concentric regions centered at fovea centralis, extended to 5 mm away from fovea at 1 mm intervals in the nasal and temporal directions. The measured IOL was the distance from the anterior cornea surface to the RPE in alignment along the optical axis of the eye. Statistical analysis was performed to evaluate CT at each geographic region and observe the relationship between CT and the degree of myopia. Results: For low myopic eyes, the IOL was measured at 24.619 ± 0.016 mm. The CT (273.85 ± 49.01 μm was greatest under fovea as is in the case of healthy eyes. Peripheral to the fovea, the mean CT decreased rapidly along the nasal direction, reaching a minimum of 180.65 ± 58.25μm at 5 mm away from the fovea. There was less of a change in thickness from the fovea in the temporal direction reaching a minimum of 234.25 ± 42.27 μm. In contrast to the low myopic eyes, for moderate and high myopic eyes, CTs were thickest in temporal region (where CT = 194.94 ± 27.28 and 163 ± 34.89

  8. A upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list

    Directory of Open Access Journals (Sweden)

    A. J. L. Shillings

    2010-10-01

    Full Text Available The absorption of solar radiation by water dimer molecules in the Earth's atmosphere can potentially act as a positive feedback effect for climate change. There seems little doubt from the results of previous laboratory and theoretical studies that significant concentrations of the water dimer should be present in the atmosphere, yet attempts to detect water dimer absorption signatures in atmospheric field studies have so far yielded inconclusive results. Here we report spectral measurements in the near-infrared in the expected region of the third overtone of the water dimer hydrogen-bonded OHb stretching vibration around 750 nm. The results were obtained using broadband cavity ringdown spectroscopy (BBCRDS, a methodology that allows absorption measurements to be made under controlled laboratory conditions but over absorption path lengths representative of atmospheric conditions. In order to account correctly and completely for overlapping absorption of monomer molecules in the same spectral region, we have also constructed a new list of spectral data (UCL08 for the water monomer in the 750–20 000 cm−1 (13 μm–500 nm range.

    Our results show that the additional lines included in the UCL08 spectral database provide a substantially improved representation of the measured water monomer absorption in the 750 nm region, particularly at wavelengths dominated by weak monomer absorption features. No absorption features which could not be attributed to the water monomer were detected in the BBCRDS experiments up to water mixing ratios more than an order of magnitude greater than those in the ambient atmosphere. The absence of detectable water dimer features leads us to conclude that, in the absence of significant errors in calculated dimer oscillator strengths or monomer/dimer equilibrium constants, the widths of water dimer features present around 750 nm must be substantially greater (~100 cm−1 HWHM than

  9. The relationship of hyper-spectral vegetation indices with leaf area index (LAI) over the growth cycle of wheat and chickpea at 3 nm spectral resolution

    Science.gov (United States)

    Gupta, R. K.; Vijayan, D.; Prasad, T. S.

    2006-01-01

    Hyperspectral ratio and normalized difference vegetation indices were computed from the 3 nm bandwidth ground-based spectral data taken in 400-950 nm wave length region over the crop growth cycle (CGC) of wheat and chickpea. Synthesized broad band Landsat TM-RVI, TM-NDVI and TM-SAVI were also computed using this narrow bandwidth spectral observations. Regression analysis was carried out for these indices with leaf area index (LAI) for wheat and chickpea over CGC and the r2 values were found poor in 0.2-0.53 range for wheat and in 0.41-0.82 range for chickpea. Significant relationship with LAI were found for wheat ( r2 in 0.86-0.97 range) when growth and decline phases were analyzed independently. Here, r2 values for chickpea were less than that for wheat. The high difference in rate of change of slope for hRVI is a good discriminator for high ET (wheat) and low ET (chickpea) crops. To find out the potential hyperspectral ratios and normalized difference indices that could provide strong relationship with LAI, a correlation-based analysis was carried out for LAI with all the possible combinations of ratios and normalized difference indices in 400-950 nm region (at 3 nm spectral interval) independently for growth and decline phases of LAI and found that in addition to traditional near-IR and red pairs, the pairs within near-IR, near-IR and visible extending to near-IR were also significantly related to LAI.

  10. Spectral radiance calibrations between 165-300 nm - An interlaboratory comparison

    Science.gov (United States)

    Bridges, J. M.; Ott, W. R.; Pitz, E.; Schulz, A.; Einfeld, D.; Stuck, D.

    1977-01-01

    The spectral radiance of deuterium lamps calibrated by the Max-Planck-Institut fuer Astronomie (MPI), by the U.S. National Bureau of Standards (NBS), and by the Physikalisch-Technische Bundesanstalt (PTB) are compared to check the agreement of UV radiometric scales. The NBS group used the optically thin continuum radiation from a wall-stabilized hydrogen arc as its fundamental radiometric standard, while the MPI and PTB groups used the synchrotron radiation facility in DESY. It is found that the spectral radiance scales based upon the DESY synchrotron and the NBS hydrogen arc are consistent, at least for one wavelength relative to another.

  11. Compression of 1030-nm femtosecond pulses after nonlinear spectral broadening in Corning® HI 1060 fiber: Theory and experiment

    Directory of Open Access Journals (Sweden)

    Michael E. Reilly

    2015-12-01

    Full Text Available We present the design and implementation of femtosecond pulse compression at 1030 nm based on spectral broadening in single-mode fiber, followed by dispersion compensation using an optimized double-pass SF11 prism pair. The source laser produced 1030-nm 144-fs pulses which were coupled into Corning® HI 1060 fiber, whose length was chosen to be 40 cm by using a pulse propagation model based on solving the generalized nonlinear Schrödinger equation. A maximum broadening to 60-nm bandwidth was obtained, following which compression to 60 ± 3 fs duration was achieved by using a prism-pair separation of 1025 ± 5 mm.

  12. External quantum efficiency of Pt/n-GaN Schottky diodes in the spectral range 5-500nm

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, Shahid [Raytheon ITSS, 4400 Forbes Boulevard, Lanham, MD 20706 (United States) and Goddard Space Flight Center, NASA, Bld. 11, Rm E015, Greenbelt, MD 20771 (United States)]. E-mail: saslam@pop200.gsfc.nasa.gov; Vest, Robert E. [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899 (United States); Franz, David [Raytheon ITSS, 4400 Forbes Boulevard, Lanham, MD 20706 (United States); Goddard Space Flight Center, NASA, Bld. 11, Rm E015, Greenbelt, MD 20771 (United States); Yan Feng [Raytheon ITSS, 4400 Forbes Boulevard, Lanham, MD 20706 (United States); Goddard Space Flight Center, NASA, Bld. 11, Rm E015, Greenbelt, MD 20771 (United States); Zhao Yuegang [Keithley Instruments, Inc., 30500 Bainbridge Rd., Cleveland, OH 44139-2216 (United States); Mott, Brent [Goddard Space Flight Center, NASA, Bld. 11, Rm E015, Greenbelt, MD 20771 (United States)

    2005-02-21

    The external quantum efficiency in the spectral wavelength range 5-500nm of a large active area Pt/n-type GaN Schottky photodiode that exhibits low reverse bias leakage current, is reported. The Schottky photodiodes were fabricated from n{sup -}/n{sup +} epitaxial layers grown by low pressure metalorganic vapour phase epitaxy on single crystal c-plane sapphire. The current-voltage (I-V) characteristics of several 0.25cm{sup 2} devices are presented together with the capacitance-voltage (C-V) characteristics of one of these devices. A leakage current as low as 14 pA at 0.5V reverse bias is reported, for a 0.25cm{sup 2} diode. The ultraviolet quantum efficiency measurements show that the diodes can be used as radiation hard detectors for the 5-365nm spectral range without the use of visible blocking filters. A peak responsivity of 77.5mA/W at 320nm is reported for one of the fabricated devices, corresponding to a spectral detectivity, D*=1.5x10{sup 14}cmHz{sup 1/2}W{sup -1}. The average detectivity between 250 and 350nm, for the same device, is reported to be D-bar*=1.3x10{sup 14}cmHz{sup 1/2}W{sup -1}. The spatial responsivity uniformity variation was established, using H{sub 2} Lyman-{alpha} radiation, to be +/-3% across the surface of a typical 0.25cm{sup 2} diode.

  13. Chromospheric polarimetry through multiline observations of the 850-nm spectral region

    Science.gov (United States)

    Quintero Noda, C.; Shimizu, T.; Katsukawa, Y.; de la Cruz Rodríguez, J.; Carlsson, M.; Anan, T.; Oba, T.; Ichimoto, K.; Suematsu, Y.

    2017-02-01

    Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. focused on the infrared Ca II 8542 Å line and we concluded that it is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth trying to improve the results produced by this line observing additional spectral lines. In that regard, we examined the neighbourhood solar spectrum looking for spectral lines which could increase the sensitivity to the atmospheric parameters. Interestingly, we discovered several photospheric lines which greatly improve the photospheric sensitivity to the magnetic field vector. Moreover, they are located close to a second chromospheric line which also belongs to the Ca II infrared triplet, i.e. the Ca II 8498 Å line, and enhances the sensitivity to the atmospheric parameters at chromospheric layers. We conclude that the lines in the vicinity of the Ca II 8542 Å line not only increase its sensitivity to the atmospheric parameters at all layers, but also they constitute an excellent spectral window for chromospheric polarimetry.

  14. Simulation of broad spectral bandwidth emitters at 1060 nm for optical coherence tomography

    Science.gov (United States)

    Tooley, I. G.; Childs, D. T. D.; Stevens, B. J.; Groom, K. M.; Hogg, R. A.

    2016-03-01

    The simulation of broad spectral bandwidth light sources (semiconductor optical amplifiers (SOA) and superluminescent diodes (SLD)) for application in ophthalmic optical coherence tomography is reported. The device requirements and origin of key device parameters are outlined, and a range of single and double InGaAs/GaAs quantum well (QW) active elements are simulated with a view to application in different OCT embodiments. We confirm that utilising higher order optical transitions is beneficial for single QW SOAs, but may introduce deleterious spectral modulation in SLDs. We show how an addition QW may be introduced to eliminate this spectral modulation, but that this results in a reduction of the gain spectrum width. We go on to explore double QW structures where the roles of the two QWs are reversed, with the narrow QW providing long wavelength emission and gain. We show how this modification in the density of states results in a significant increase in gain-spectrum width for a given current.

  15. Full Stokes observations in the He I 1083 nm spectral region covering an M3.2 flare

    CERN Document Server

    Kuckein, C; Sainz, R Manso; Ramos, A Asensio

    2015-01-01

    We present an exceptional data set acquired with the Vacuum Tower Telescope (Tenerife, Spain) covering the pre-flare, flare, and post-flare stages of an M3.2 flare. The full Stokes spectropolarimetric observations were recorded with the Tenerife Infrared Polarimeter in the He I 1083.0 nm spectral region. The object under study was active region NOAA 11748 on 2013 May 17. During the flare the chomospheric He I 1083.0 nm intensity goes strongly into emission. However, the nearby photospheric Si I 1082.7 nm spectral line profile only gets shallower and stays in absorption. Linear polarization (Stokes Q and U) is detected in all lines of the He I triplet during the flare. Moreover, the circular polarization (Stokes V) is dominant during the flare, being the blue component of the He I triplet much stronger than the red component, and both are stronger than the Si I Stokes V profile. The Si I inversions reveal enormous changes of the photospheric magnetic field during the flare. Before the flare magnetic field conc...

  16. Diode lasers with asymmetric barriers for 850 nm spectral range: experimental studies of power characteristics

    OpenAIRE

    Zubov, F. I.; Zhukov, A. E.; Shernyakov, Yu. M.; M. V. Maximov; Semenova, Elizaveta; Asryan, L. V.

    2015-01-01

    It is demonstrated that the use of asymmetric barrier layers in a waveguide of a diode laser suppress non-linearity of light-current characteristic and thus improve its power characteristics under high current injection. The results are presented for 850-nm AlGaAs/GaAs broad-area lasers with GaInP and AlInGaAs asymmetric barriers.

  17. A spectral line survey from 17.5-250 nm of plasmas created in a magnetic confinement device

    Science.gov (United States)

    McCarthy, K. J.; Zurro, B.; Hollmann, E. M.; Hernández Sánchez, J.; TJ-II Team1, the

    2016-11-01

    Spectral emission lines continue to be a powerful tool for studying astrophysical, process, laser-produced, and magnetically confined plasmas, among others. Hence, numerous spectroscopy-based plasma diagnostics, from the x-ray to the infrared, make use of the relative intensity, width, displacement in wavelength, or temporal evolution of such emission lines emitted by the atoms and ions present in such plasmas. In this work, a spectral line survey, from 17.5-250 nm, is presented for electron cyclotron resonance heated (ECRH) and neutral beam injection (NBI) heated plasmas created and maintained in the TJ-II stellarator, a medium-sized magnetically confined plasma device. In these plasmas, for which hydrogen, deuterium or helium have been used as the working gas, central electron temperatures and densities up to 1 keV and 5 × 1019 m-3, respectively, are achieved. This work is a compilation of the identified spectral emission lines emitted by the working gas as well by the intrinsic and injected impurity ions in the above wavelength range. For this, spectra were recorded, over the past fifteen years of TJ-II operation, using a 1 m focal length normal incidence spectrometer equipped with a charge-coupled detector at its output focal plane. In total, almost 400 spectral emission lines from eighteen different elements have been identified using a number of atomic line emission databases.

  18. Chromospheric polarimetry through multi-line observations of the 850 nm spectral region

    CERN Document Server

    Noda, C Quintero; Katsukawa, Y; Rodriguez, J de la Cruz; Carlsson, M; Anan, T; Oba, T; Ichimoto, K; Suematsu, Y

    2016-01-01

    Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. (2016) focused on the infrared Ca II 8542 A line and we concluded that is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth to try improving the results produced by this line observing additional spectral lines. In that regard, we examined the neighbour solar spectrum looking for spectral lines that could increase the sensitivity to the atmospheric parameters. Interestingly, we discovered several photospheric lines that greatly improve the photospheric sensitivity to the magnetic field vector. Moreover, they are located close to a second chromospheric line that also belongs to the Ca II infrared triplet, i.e. the Ca II 8498 A line, and enhances the sensitivity to the atmospheric parameters at chromospheric layers. We conc...

  19. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list

    Directory of Open Access Journals (Sweden)

    A. J. L. Shillings

    2011-05-01

    Full Text Available Absorption of solar radiation by water dimer molecules in the Earth's atmosphere has the potential to act as a positive feedback effect for climate change. There seems little doubt from the results of previous laboratory and theoretical studies that significant concentrations of the water dimer should be present in the atmosphere, yet attempts to detect water dimer absorption signatures in atmospheric field studies have so far yielded inconclusive results. Here we report spectral measurements in the near-infrared around 750 nm in the expected region of the | 0〈f | 4〉b|0 〉 overtone of the water dimer's hydrogen-bonded OH stretching vibration. The results were obtained using broadband cavity ringdown spectroscopy (BBCRDS, a methodology that allows absorption measurements to be made under controlled laboratory conditions but over absorption path lengths representative of atmospheric conditions. In order to account correctly and completely for the overlapping absorption of monomer molecules in the same spectral region, we have also constructed a new list of spectral data (UCL08 for the water monomer in the 750–20 000 cm−1 (13 μm–500 nm range.

    Our results show that the additional lines included in the UCL08 spectral database provide an improved representation of the measured water monomer absorption in the 750 nm region. No absorption features other than those attributable to the water monomer were detected in BBCRDS experiments performed on water vapour samples containing dimer concentrations up to an order of magnitude greater than expected in the ambient atmosphere. The absence of detectable water dimer features leads us to conclude that, in the absence of significant errors in calculated dimer oscillator strengths or monomer/dimer equilibrium constants, the widths of any water dimer absorption features present around 750 nm are of the order of 100 cm−1 HWHM, and certainly greater

  20. In vivo functional imaging of embryonic chick heart using ultrafast 1310nm-band spectral domain optical coherence tomography

    Science.gov (United States)

    Li, Peng; Yin, Xin; Wang, Ruikang K.

    2013-02-01

    During the cardiac development, the cardiac wall and the blood flow actively interact with each other, and determine the biomechanical environment to which the embryonic heart exposes. Employing an ultrafast 1310nm-band dual-camera spectral domain optical coherence tomography (SDOCT), the radial strain rate of the myocardial wall can be extracted with high signal-to-noise ratio, at the same time the Doppler velocity of the blood flow can also be displayed. The ability to simultaneously characterize these two cardiac tissues provides a powerful approach to better understand the interaction between the cardiac wall and the blood flow, which is important to the investigation of cardiac development.

  1. Spectral properties of second-harmonic generation at 800 nm in a BiB(3)O(6) crystal.

    Science.gov (United States)

    Harimoto, Tetsuo; Takeuchi, Yasuki; Fujita, Masayuki

    2004-03-08

    We have investigated spectral distribution and walk-off effect of second-harmonic generation in a 3-mm-long type I BiB(3)O(6) crystal. Linearly turning ability of the BiB(3)O(6) crystal is confirmed for wavelengths around 800 nm. In addition, the walk-off effect of fundamental beams is quantitatively measured by introducing a little vertical polarization component into pumping fundamental pulses. A conversion efficiency of 28% from fundamental to second harmonic is achieved at a 3.2-GW/cm(2) fundamental intensity.

  2. Ytterbium‐doped distributed spectral filtering photonic crystal fibers for use at wavelengths above 1100 nm

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Lægsgaard, Jesper

    can reach the yellow‐orange light regime through frequency doubling. Yellow‐orange light has applications within the medical industry, high‐resolution spectroscopy and for laser‐guide stars [2]. To achieve amplification at these wavelengths, the larger gain at shorter wavelengths must be suppressed...... to avoid parasitic lasing due to Amplified Spontaneous Emission (ASE) build‐up. Nonlinear effects, such as stimulated Raman scattering, stimulated Brillouin scattering and four‐wave mixing, set the upper limit for achievable powers in fiber amplifiers. To increase the nonlinear threshold, Large...... to a large degree be controlled through index guidance by tuning the air hole diameter. Suppression of unwanted spectral components is realized through bandgap guidance by tailoring the high‐index inclusions. A filter of ASE is thereby incorporated in the PCF cladding. Furthermore the inclusions on one side...

  3. Novel SO2 spectral evaluation scheme using the 360–390 nm wavelength range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2010-03-01

    Full Text Available Differential Optical Absorption Spectroscopy (DOAS is a well established spectroscopic method to determine trace gases in the atmosphere. During the last decade, passive DOAS, which uses solar radiation scattered in the atmosphere as a light source, has become a standard tool to determine SO2 column densities and emission fluxes from volcanoes and other large sources by ground based as well as satellite measurements. For the determination of SO2 column densities, the structured absorption of the molecule in the 300–330 nm region (due to the A1B1←X1A1 transition is used. However, there are several problems limiting the accuracy of the technique in this particular application. Here we propose to use an alternative wavelength region (360–390 nm due to the spin-forbidden a3B2←X1A1 transition for the DOAS evaluation of SO2 in conditions where high SO2 column densities prevail. We show this range to have considerable advantages in such cases, in particular when the particle content of the plume is high and when measurements are performed at large distances from the area of interest.

  4. Novel SO2 spectral evaluation scheme using the 360–390 nm wavelength range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2010-07-01

    Full Text Available Differential Optical Absorption Spectroscopy (DOAS is a well established spectroscopic method to determine trace gases in the atmosphere. During the last decade, passive DOAS, which uses solar radiation scattered in the atmosphere as a light source, has become a standard tool to determine SO2 column densities and emission fluxes from volcanoes and other large sources by ground based as well as satellite measurements. For the determination of SO2 column densities, the structured absorption of the molecule in the 300–330 nm region (due to the A1B1 ← X1A1 transition is used. However, there are several problems limiting the accuracy of the technique in this particular application. Here we propose to use an alternative wavelength region (360–390 nm due to the spin-forbidden a3B2 ← X1A1 transition for the DOAS evaluation of SO2 in conditions where high SO2 column densities prevail. We show this range to have considerable advantages in such cases, in particular when the particle content of the plume is high and when measurements are performed at large distances from the area of interest.

  5. PMMA-based resists for a spectral range near 13 nm

    CERN Document Server

    Bulgakova, S A; Luchin, V I; Mazanova, L M; Molodnjakov, S A; Salashchenko, N N

    2000-01-01

    A number of poly(meth)acrylates positive resists of various chemical structures were synthesized and the sensitivity of 0.2 mu m resists films to soft X-ray radiation of a laser plasma source at a wavelength of 13 nm was investigated. We found that the sensitivity of methylmethacrylate (MMA) copolymers depending on the nature of comonomers changes within the limits of 12.3-1.7 mJ/cm sup 2 in a combination with the contrast gamma=5.4-1.0. This sensitivity is higher than that of PMMA, which changes from 12 to 45 mJ/cm sup 2 at the contrast gamma=2.6-8.0 depending on the developer composition of methylethylketone (MEK)/isopropyl alcohol (IPA).

  6. Using spectral characteristics to interpret auroral imaging in the 731.9 nm O+ line

    Directory of Open Access Journals (Sweden)

    A. Strømme

    2008-07-01

    Full Text Available Simultaneous observations were made of dynamic aurora during substorm activity on 26 January 2006 with three high spatial and temporal resolution instruments: the ASK (Auroral Structure and Kinetics instrument, SIF (Spectrographic Imaging Facility and ESR (EISCAT Svalbard Radar, all located on Svalbard (78° N, 16.2° E. One of the narrow field of view ASK cameras is designed to detect O+ ion emission at 731.9 nm. From the spectrographic data we have been able to determine the amount of contaminating N2 and OH emission detected in the same filter. This is of great importance to further studies using the ASK instrument, when the O+ ion emission will be used to detect flows and afterglows in active aurora. The ratio of O+ to N2 emission is dependent on the energy spectra of electron precipitation, and was found to be related to changes in the morphology of the small-scale aurora. The ESR measured height profiles of electron densities, which allowed estimates to be made of the energy spectrum of the precipitation during the events studied with optical data from ASK and SIF. It was found that the higher energy precipitation corresponded to discrete and dynamic features, including curls, and low energy precipitation corresponded to auroral signatures that were dominated by rays. The evolution of these changes on time scales of seconds is of importance to theories of auroral acceleration mechanisms.

  7. Far ultraviolet imaging from the IMAGE spacecraft. 3. Spectral imaging of Lyman-α and OI 135.6 nm

    Science.gov (United States)

    Mende, S. B.; Heetderks, H.; Frey, H. U.; Stock, J. M.; Lampton, M.; Geller, S. P.; Abiad, R.; Siegmund, O. H. W.; Habraken, S.; Renotte, E.; Jamar, C.; Rochus, P.; Gerard, J.-C.; Sigler, R.; Lauche, H.

    2000-01-01

    Two FUV Spectral imaging instruments, the Spectrographic Imager (SI) and the Geocorona Photometer (GEO) provide IMAGE with simultaneous global maps of the hydrogen (121.8 nm) and oxygen 135.6 nm components of the terrestrial aurora and with observations of the three dimensional distribution of neutral hydrogen in the magnetosphere (121.6 nm). The SI is a novel instrument type, in which spectral separation and imaging functions are independent of each other. In this instrument, two-dimensional images are produced on two detectors, and the images are spectrally filtered by a spectrograph part of the instrument. One of the two detectors images the Doppler-shifted Lyman-α while rejecting the geocoronal `cold' Ly-α, and another detector images the OI 135.6 nm emission. The spectrograph is an all-reflective Wadsworth configuration in which a grill arrangement is used to block most of the cold, un-Doppler-shifted geocoronal emission at 121.567 nm. The SI calibration established that the upper limit of transmission at cold geocoronal Ly-α is less than 2%. The measured light collecting efficiency was 0.01 and 0.008 cm^2 at 121.8 and at 135.6 nm, respectively. This is consistent with the size of the input aperture, the optical transmission, and the photocathode efficiency. The expected sensitivity is 1.8x10^-2 and 1.3x10^-2 counts per Rayleigh per pixel for each 5 s viewing exposure per satellite revolution (120 s). The measured spatial resolution is better than the 128x128 pixel matrix over the 15 degx15 deg field of view in both wavelength channels. The SI detectors are photon counting devices using the cross delay line principle. In each detector a triple stack microchannel plate (MCP) amplifies the photo-electronic charge which is then deposited on a specially configured anode array. The position of the photon event is measured by digitizing the time delay between the pulses detected at each end of the anode structures. This scheme is intrinsically faster than systems

  8. Design concepts of monolithic metamorphic vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Karachinsky, L. Ya.; Novikov, I. I.; Babichev, A. V.; Nevedomskiy, V. N. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Bugrov, V. E. [ITMO University (Russian Federation)

    2015-11-15

    Possible design concepts for long-wavelength vertical-cavity surface-emitting lasers for the 1300–1550 nm spectral range on GaAs substrates are suggested. It is shown that a metamorphic GaAs–InGaAs heterostructure with a thin buffer layer providing rapid transition from the lattice constant of GaAs to that of In{sub x}Ga{sub 1–x}As with an indium fraction of x < 0.3 can be formed by molecular-beam epitaxy. Analysis by transmission electron microscopy demonstrated the effective localization of mismatch dislocations in the thin buffer layer and full suppression of their penetration into the overlying InGaAs metamorphic layer.

  9. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging

    Science.gov (United States)

    Yamanaka, Masahito; Teranishi, Tatsuhiro; Kawagoe, Hiroyuki; Nishizawa, Norihiko

    2016-08-01

    Optical coherence microscopy (OCM) is a label-free, high-resolution, three-dimensional (3D) imaging technique based on optical coherence tomography (OCT) and confocal microscopy. Here, we report that the 1700-nm spectral band has the great potential to improve the imaging depth in high-resolution OCM imaging of animal tissues. Recent studies to improve the imaging depth in OCT revealed that the 1700-nm spectral band is a promising choice for imaging turbid scattering tissues due to the low attenuation of light in the wavelength region. In this study, we developed high-resolution OCM by using a high-power supercontinuum source in the 1700-nm spectral band, and compared the attenuation of signal-to-noise ratio between the 1700-nm and 1300-nm OCM imaging of a mouse brain under the condition of the same sensitivity. The comparison clearly showed that the 1700-nm OCM provides larger imaging depth than the 1300-nm OCM. In this 1700-nm OCM, the lateral resolution of 1.3 μm and the axial resolution of 2.8 μm, when a refractive index was assumed to be 1.38, was achieved.

  10. Detection of wine grape nutrient levels using visible and near infrared 1nm spectral resolution remote sensing

    Science.gov (United States)

    Anderson, Grant; van Aardt, Jan; Bajorski, Peter; Vanden Heuvel, Justine

    2016-05-01

    The grape industry relies on regular crop assessment to aid in the day-to-day and seasonal management of their crop. More specifically, there are six key nutrients of interest to viticulturists in the growing of wine grapes, namely nitrogen, potassium, phosphorous, magnesium, zinc and boron. Traditional methods of determining the levels of these nutrients are through collection and chemical analysis of petiole samples from the grape vines themselves. We collected ground-level observations of the spectra of the grape vines, using a hyperspectral spectrometer (0.4-2.5um), at the same time that petioles samples were harvested. We then interpolated the data into a consistent 1 nm spectral resolution before comparing it to the nutrient data collected. This nutrient data came from both the industry standard petiole analysis, as well as an additional leaf-level analysis. The data were collected for two different grape cultivars, both during bloom and veraison periods to provide variability, while also considering the impact of temporal/seasonal change. A narrow-band NDI (Normalized Difference Index) approach, as well as a simple ratio index, was used to determine the correlation of the reflectance data to the nutrient data. This analysis was limited to the silicon photodiode range to increase the utility of our approach for wavelength-specific cameras (via spectral filters) in a low cost drone platform. The NDI generated correlation coefficients were as high as 0.80 and 0.88 for bloom and veraison, respectively. The ratio index produced correlation coefficient results that are the same at two decimal places with 0.80 and 0.88. These results bode well for eventual non-destructive, accurate and precise assessment of vineyard nutrient status.

  11. Preparation of dental amalgam and spectral diagnosis of mercury in plasmas-laser in the region of 250 nm - 850 nm

    Science.gov (United States)

    De la Ossa, A.; Pacheco, P.; Sarmiento, R.

    2013-11-01

    In this paper we presents results of the spectral study of plasmas-laser of dental amalgam by technique Laser-induced Breakdown Spectroscopy (LIBS). Plasmas were generated focusing the beam of a Nd: YAG laser on the matrix of the mixture Ag-Sn-Cu and on amalgams with different proportions of mercury (3:2, 5:2, 6:2). Based on the spectral results and reported atomic parameters, became estimation of electron temperature plasmas- laser and their behavior with the concentration of Hg. The estimated values of the electron temperature for the respective proportions were 20 846 K, 19 139 K and 16 872 K, using the distribution of population of Boltzmann energy levels associated with spectral lines, considering conditions Local Thermodinamic Equilibrium (LTE) of plasmas.

  12. Relationship of 2 100-2 300 nm Spectral Characteristics of Wheat Canopy to Leaf Area Index and Leaf N as Affected by Leaf Water Content

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chun-Jiang; WANG Ji-Hua; LIU Liang-Yun; HUANG Wen-Jiang; ZHOU Qi-Fa

    2006-01-01

    The effects of leaf water status in a wheat canopy on the accuracy of estimating leaf area index (LAI) and N were determined in this study using extracted spectral characteristics in the 2 000-2 300 nm region of the short wave infrared (SWI) band. A newly defined spectral index, relative adsorptive index in the 2 000-2 300 nm region (RAI2000-2300), which can be calculated by RAI2000-2300 = (R2224 - R2054) (R2224 + R2054)-1 with R being the reflectance at 2 224 or2 054 nm, was utilized. This spectral index, RAI2000-2300, was significantly correlated (P < 0.01) with green LAI and leaf N concentration and proved to be potentially valuable for monitoring plant green LAI and leaf N at the field canopy scale. Moreover, plant LAI could be monitored more easily and more successfully than plant leaf N. The study also showed that leaf water had a strong masking effect on the 2 000-2 300 nm spectral characteristics and both the coefficient between RAI2000-2300 and green LAI and that between RAI2000-2300 and leaf N content decreased as leaf water content increased.

  13. Realization of a spectral radiance scale in the 40-250 nm spectral region based on a TROLL-type synchrotron

    Science.gov (United States)

    Anevsky, Sergey I.; Vernyi, Alexander E.; Khromchenko, Vladimir B.; Panasyuk, Vadim S.; Sapritsky, Victor I.

    1994-08-01

    An air and vacuum ultraviolet spectral radiance scale based on specialized table-top synchrotron radiation sources of the TROLL-type is described. The scale can be used to calibrate secondary-standard sources and receivers in a wide ultraviolet spectral range.

  14. Spectral emission properties of a laser-produced plasma light source in the sub-200 nm range for wafer inspection applications

    Science.gov (United States)

    Gambino, Nadia; Rollinger, Bob; Hudgins, Duane; Abhari, Reza S.

    2015-07-01

    The spectral emission properties of a droplet-based laser-produced plasma are investigated in the vacuum ultraviolet (VUV) range. Measurements are performed with a spectrograph that operates from 30 to 180 nm with a spectral resolution of 0.1 nm. The emission spectra are recorded for different metal droplet targets, namely tin, indium, and gallium. Measurements were performed at different pressure levels of the background gas. Several characteristic emission lines are observed. The spectra are also calibrated in intensity in terms of spectral radiance to allow absolute emission power estimations from the light source in the VUV region. The presented experimental results are relevant for alternative light sources that would be needed for future wafer inspection tools. In addition, the experimental results help to determine the out-of-band radiation emission of a tin-based extreme ultraviolet (EUV) source. By tuning the type of fuel, the laser energies, and the background gas, the laser-produced plasma light source shows good capabilities to be operated as a light source that covers a spectral emission range from the EUV to the sub-200 nm range.

  15. Design of a sun tracker for the automatic measurement of spectral irradiance and construction of an irradiance database in the 330-1100 nm range

    Energy Technology Data Exchange (ETDEWEB)

    Canada, J.; Maj, A. [Departamento de Termodinamica Aplicada, Universidad Politecnica de Valencia, Camino de Vera, s/n. 46022 Valencia (Spain); Utrillas, M.P.; Martinez-Lozano, J.A.; Pedros, R.; Gomez-Amo, J.L. [Departamento de Fisica de la Tierra y Termodinamica, Facultat de Fisica, Universitat de Valencia, 46100 Burjassot (Valencia) (Spain)

    2007-10-15

    An automatic global and direct solar spectral irradiance system has been designed based on two LICOR spectro radiometers equipped with fibre optics and remote cosine sensors. To measure direct irradiance a sun tracker based on step motors has been developed. The whole system is autonomous and works continuously. From the measurements provided by this system a spectral irradiance database in the 330-1100 nm range has been created. This database contains normal direct and global horizontal irradiances as well as diffuse irradiance on a horizontal plane, together with total atmospheric optical thickness and aerosol optical depth. (author)

  16. Spectral studies of SiCl4 + N2O + Ar and SiH4 + Ar mixtures in a shock tube in 160-550 nm range

    Science.gov (United States)

    Park, C.; Fujiwara, T.

    1978-01-01

    Gases containing SiO, SiO2, SiH, and Si2 were produced in the reflected-shock region of a shock tube by heating SiCl4 + N2O + Ar and SiH4 + Ar mixtures with shock waves. Spectral absorption characteristics were measured in the 160-550 nm wavelength range and in the 2800-3600 K temperature range and compared to calculated values. The sums of the squares of electronic transition moments at equilibrium separation were derived. It was found that absorption by SiO2 and other known bands of SiO, SiH, and Si2 were too weak to be measured. The cross section of absorption by a continuum, believed due to SiH, varied from 2.5 x 10 to the -17th sq cm at 280 nm to 1.6 x 10 to the -18th sq cm at 440 nm.

  17. Development of a unique laboratory standard: Indium gallium arsenide detector for the 500-1700 nm spectral region

    Science.gov (United States)

    1987-01-01

    A planar (5 mm diameter) indium gallium arsenide detector having a high (greater than 50 pct) quantum efficiency from the visible into the infrared spectrum (500 to 1700 nm) was fabricated. Quantum efficiencies as high as 37 pct at 510 nm, 58 pct at 820 nm and 62 pct at 1300 nm and 1550 nm were measured. A planar InP/InGaAs detector structure was also fabricated using vapor phase epitaxy to grow device structures with 0, 0.2, 0.4 and 0.6 micrometer thick InP caps. Quantum efficiency was studied as a function of cap thickness. Conventional detector structures were also used by completely etching off the InP cap after zinc diffusion. Calibrated quantum efficiencies were measured. Best results were obtained with devices whose caps were completely removed by etching. Certain problems still remain with these detectors including non-uniform shunt resistance, reproducibility, contact resistance and narrow band anti-reflection coatings.

  18. Photolysis of NO2 at multiple wavelengths in the spectral region 200-205 nm - A velocity map imaging study

    NARCIS (Netherlands)

    Coroiu, A.M.; Parker, D.H.; Groenenboom, G.C.; Barr, J.; Novalbos, I.T.; Whitaker, B.J.

    2006-01-01

    A study of the photodissociation dynamics of NO2 in the 200-205 nm region using resonance enhanced multiphoton ionization (REMPI) in conjunction with the velocity map imaging technique is presented. We chose this region because it allowed the use of a single laser to photodissociate the NO2 molecule

  19. The potential for extending the spectral range accessible to the European XFEL down to 0.05 nm

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2010-01-01

    Specifications of the European XFEL cover a range of wavelengths down to 0.1 nm. The baseline design of the European XFEL assumes standard (SASE) FEL mode for production of radiation i.e. only one photon beam at one fixed wavelength from each baseline undulator with tunable gap. Recent developments in the field of FEL physics and technology form a reliable basis for an extensions of the mode of operation of XFEL facilities. This paper explores how the wavelength of the output radiation can be decreased well beyond the European XFEL design, down to 0.05 nm. In the proposed scheme, which is based on the use "fresh bunch" technique, simultaneous operation at two different wavelengths possible. It is shown that one can generate simultaneously, in the same baseline undulator with tunable gap, high intensity radiation at 0.05 nm at saturation, and high intensity radiation around 0.15 nm according to design specifications. We present a feasibility study and we make exemplifications with the parameters of SASE2 line ...

  20. New laboratory intercomparison of the ozone absorption coefficients in the mid-infrared (10 μm) and ultraviolet (300-350 nm) spectral regions.

    Science.gov (United States)

    Gratien, A; Picquet-Varrault, B; Orphal, J; Doussin, J-F; Flaud, J-M

    2010-09-23

    Knowing the ozone absorption cross sections in the ultraviolet and infrared spectral range, with an accuracy of better than 1%, is of the utmost importance for atmospheric remote-sensing applications. For this reason, various ozone intensity intercomparisons and measurements have been published these last years. However, the corresponding results proved not to be consistent and thus have raised a controversial discussion in the community of atmospheric remote-sensing. This study, where great care has been taken to avoid any possible error, reports a new laboratory intercomparison of the ozone absorption coefficients in the mid-infrared (10 μm) and ultraviolet (300-350 nm) spectral regions. It gives a new piece of information to the puzzling problem concerning the ozone IR and UV cross sections and confirms that the IR and UV cross sections recommended in the literature are in disagreement of about 4%.

  1. UAS-based soil carbon mapping using VIS-NIR (480–1000 nm) multi-spectral imaging: Potential and limitations

    DEFF Research Database (Denmark)

    Aldana Jague, Emilien; Heckrath, Goswin; Macdonald, Andy

    2016-01-01

    Traditional methods to assess the soil organic carbon (SOC) content based on soil sampling and analysis are time consuming and expensive, and the results are influenced by the sampling design. The aim of this study was to investigate the potential of UAS (Unmanned Aerial Systems) multi-spectral i......Traditional methods to assess the soil organic carbon (SOC) content based on soil sampling and analysis are time consuming and expensive, and the results are influenced by the sampling design. The aim of this study was to investigate the potential of UAS (Unmanned Aerial Systems) multi...... practices, provide a valuable resource to evaluate this approach. We acquired images (wavelength: 480–550–670–780–880–1000 nm) at an altitude of 120 m over an area of 2 ha using a multi-spectral camera mounted on an UAS. The high-resolution images captured smallscale variations at the soil surface (e...

  2. Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar

    Directory of Open Access Journals (Sweden)

    R. R. Rogers

    2011-02-01

    Full Text Available The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO spacecraft has provided global, high-resolution vertical profiles of aerosols and clouds since it became operational on 13 June 2006. On 14 June 2006, the NASA Langley Research Center (LaRC High Spectral Resolution Lidar (HSRL was deployed aboard the NASA Langley B-200 aircraft for the first of a series of 86 underflights of the CALIPSO satellite to provide validation measurements for the CALIOP data products. To better assess the range of conditions under which CALIOP data products are produced, these validation flights were conducted under both daytime and nighttime lighting conditions, in multiple seasons, and over a large range of latitudes and aerosol and cloud conditions. This paper presents a quantitative assessment of the CALIOP 532 nm calibration (through the 532 nm total attenuated backscatter using internally calibrated airborne HSRL underflight data and is the most extensive study of CALIOP 532 nm calibration. Results show that HSRL and CALIOP 532 nm total attenuated backscatter agree on average within 2.7% ± 2.1% (CALIOP lower at night and within 2.9% ± 3.9% (CALIOP lower during the day, demonstrating the accuracy of the CALIOP 532 nm calibration algorithms. Additionally, comparisons with HSRL show consistency of the CALIOP calibration before and after the laser switch in 2009 as well as improvements in the daytime version 3.01 calibration scheme compared with the version 2 calibration scheme. Potential biases and uncertainties in the methodology relevant to validating satellite lidar measurements with an airborne lidar system are discussed and found to be less than 4.5% ± 3.2% for this validation effort with HSRL. Results from this study are also compared with prior assessments of the CALIOP 532 nm attenuated backscatter calibration.

  3. Airborne differential absorption lidar for water vapour measurements in the upper troposphere and lower stratosphere in the spectral region around 940 nm

    Energy Technology Data Exchange (ETDEWEB)

    Poberaj, G.

    2000-07-01

    Two all-solid-state laser systems were developed and studied in detail to optimise their performance for an airborne water vapour differential absorption lidar (DIAL). Their special features are high average output powers and excellent spectral properties in the 940-nm spectral region relevant for monitoring very low water vapour contents in the upper troposphere and lower stratosphere. One system is an injection-seeded pulsed Ti:sapphire ring laser with a spectral bandwidth of 105 MHz and an average power of 1.1 W. The other system is an injection-seeded optical parametric oscillator (OPO) in a ring configuration. Using KTP as nonlinear crystal, a signal output with a spectral bandwidth of 140 MHz and an average power of 1.2 W was achieved. Both systems, the Ti:sapphire ring laser and the KTP OPO, possess spectral purity values higher than 99%. The pump source for these systems is a frequency doubled diode-pumped Nd:YAG laser operating at a repetition rate of 100 Hz. The KTP OPO system has been used as a transmitter in a new airborne water vapour DIAL instrument. For the first time, measurements of two-dimensional water vapour distributions with a high vertical (500 m) and horizontal (20 km) resolution across several potential vorticity streamers were performed. Very low water vapour mixing ratios (10-50 ppmv) and strong gradients were observed in the tropopause region. The sensitivity of the DIAL instrument in the centre of a stratospheric intrusion ranges from 3% in the near field to 12% in the far field (4 km). The first comparison experiments with in situ measuring instruments show a good agreement. Considerable differences are found between DIAL measurements and data obtained from the ECMWF operational analyses and a mesoscale numerical model. (orig.)

  4. Metamorphic distributed Bragg reflectors for the 1440–1600 nm spectral range: Epitaxy, formation, and regrowth of mesa structures

    Energy Technology Data Exchange (ETDEWEB)

    Egorov, A. Yu., E-mail: anton@beam.ioffe.ru; Karachinsky, L. Ya.; Novikov, I. I.; Babichev, A. V. [Ioffe Institute (Russian Federation); Berezovskaya, T. N. [Russian Academy of Sciences, Saint Petersburg National Research Academic University (Russian Federation); Nevedomskiy, V. N. [Ioffe Institute (Russian Federation)

    2015-10-15

    It is shown that metamorphic In{sub 0.3}Ga{sub 0.7}As/In{sub 0.3}Al{sub 0.7}As distributed Bragg reflectors (DBRs) with a reflection band at 1440–1600 nm and a reflectance of no less than 0.999 can be fabricated by molecular beam epitaxy (MBE) on a GaAs substrate. It is demonstrated that mesa structures formed from metamorphic DBRs on a GaAs substrate can be regrown by MBE and microcavities can be locally formed in two separate epitaxial processes. The results obtained can find wide application in the fabrication of vertical-cavity surface-emitting lasers (VCSELs) with a buried tunnel junction.

  5. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm

    Science.gov (United States)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-07-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  6. Shock-tube studies of atomic silicon emission in the spectral range 180 to 300 nm. [environment simulation for Jupiter probes

    Science.gov (United States)

    Prakash, S. G.; Park, C.

    1978-01-01

    Emission spectroscopy of shock-heated atomic silicon was performed in the spectral range 180 to 300 nm, in an environment simulating the ablation layer expected around a Jovian entry probe with a silica heat shield. From the spectra obtained at temperatures from 6000 to 10,000 K and electron number densities from 1 quadrillion to 100 quadrillion per cu cm, the Lorentzian line-widths were determined. The results showed that silicon lines are broadened significantly by both electrons (Stark broadening) and hydrogen atoms (Van der Waals broadening), and the combined line-widths are much larger than previously assumed. From the data, the Stark and the Van der Waals line-widths were determined for 34 silicon lines. Radiative transport through a typical shock layer was computed using the new line-width data. The computations showed that silicon emission in the hot region is large, but it is mostly absorbed in the colder region adjacent to the wall.

  7. Flat-Topped Emission with Spectral Width above 500 nm from InAs/InP Quantum Dot Waveguide Array Light-Emitting Diode

    Science.gov (United States)

    Yoshikawa, Shohei; Saegusa, Tomomitsu; Iwane, Yuto; Yamauchi, Masayuki; Shimomura, Kazuhiko

    2012-09-01

    Flat-topped emission with a spectral width greater than 500 nm was obtained from self-assembled Stranski-Krastanov (SK) InAs/InP quantum dots (QDs) grown by selective area low-pressure metal organic vapor phase epitaxy using a double-capping procedure. Selective area growth using an SiO2 mask with narrow stripes was carried out to tailor a wide emission range for the QDs in sixteen arrayed waveguides. Each waveguide core contained three stacked QD layers with different QD heights and Ga content in the GaInAs buffer layer. An investigation was carried out into the optimum Ga content and QD height for increasing the emission intensity and obtaining equal intensity from each QD layer.

  8. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm.

    Science.gov (United States)

    Nasouri, Babak; Murphy, Thomas E; Berberoglu, Halil

    2014-01-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  9. Spectral kinetic modeling and long-term behavior assessment of Arthrospira platensis growth in photobioreactor under red (620 nm) light illumination.

    Science.gov (United States)

    Farges, Bérangère; Laroche, Céline; Cornet, Jean-François; Dussap, Claude-Gilles

    2009-01-01

    The ability to cultivate the cyanobacterium Arhtrospira platensis in artificially lightened photobioreactors using high energetic efficiency (quasi-monochromatic) red LED was investigated. To reach the same maximal productivities as with the polychromatic lightening control conditions (red + blue, P/2e(-) = 1.275), the need to work with an optimal range of wavelength around 620 nm was first established on batch and continuous cultures. The long-term physiological and kinetic behavior was then verified in a continuous photobioreactor illuminated only with red (620 nm) LED, showing that the maximum productivities can be maintained over 30 residence times with only minor changes in the pigment content of the cells corresponding to a well-known adaptation mechanism of the photosystems, but without any effect on growth and stoichiometry. For both poly and monochromatic incident light inputs, a predictive spectral knowledge model was proposed and validated for the first time, allowing the calculation of the kinetics and stoichiometry observed in any photobioreactor cultivating A. platensis, or other cyanobacteria if the parameters were updated. It is shown that the photon flux (with a specified wavelength) must be used instead of light energy flux as a relevant control variable for the growth. The experimental and theoretical results obtained in this study demonstrate that it is possible to save the energy consumed by the lightening device of photobioreactors using red LED, the spectral range of which is defined according to the action spectrum of photosynthesis. This appears to be crucial information for applications in which the energy must be rationalized, as it is the case for life support systems in closed environments like a permanent spatial base or a submarine.

  10. Direct spectral analysis of tea samples using 266 nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS.

    Science.gov (United States)

    Gondal, M A; Habibullah, Y B; Baig, Umair; Oloore, L E

    2016-05-15

    Tea is one of the most common and popular beverages spanning vast array of cultures all over the world. The main nutritional benefits of drinking tea are its anti-oxidant properties, presumed protection against certain cancers, inhibition of inflammation and possible protective effects against diabetes. Laser induced breakdown spectrometer (LIBS) was assembled as a powerful tool for qualitative and quantitative analysis of various brands of tea samples using 266 nm pulsed UV laser. LIBS spectra for six brands of tea samples in the wavelength range of 200-900 nm was recorded and all elements present in our tea samples were identified. The major toxic elements detected in several brands of tea samples were bromine, chromium and minerals like iron, calcium, potassium and silicon. The spectral assignment was conducted prior to the determination of concentration of each element. For quantitative analysis, calibration curves were drawn for each element using standard samples prepared in known concentration in the tea matrix. The plasma parameters (electron temperature and electron density) were also determined prior to the tea samples spectroscopic analysis. The concentration of iron, chromium, potassium, bromine, copper, silicon and calcium detected in all tea samples was between 378-656, 96-124, 1421-6785, 99-1476, 17-36, 2-11 and 92-130 mg L(-1) respectively. The limits of detection estimated for Fe, Cr, K, Br, Cu, Si, Ca in tea samples were 22, 12, 14, 11, 6, 1 and 12 mg L(-1) respectively. To further confirm the accuracy of our LIBS results, we determined the concentration of each element present in tea samples by using standard analytical technique like ICP-MS. The concentrations detected with our LIBS system are in excellent agreement with ICP-MS results. The system assembled for spectral analysis in this work could be highly applicable for testing the quality and purity of food and also pharmaceuticals products. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Graphics processing unit aided highly stable real-time spectral-domain optical coherence tomography at 1375 nm based on dual-coupled-line subtraction

    Science.gov (United States)

    Kim, Ji-hyun; Han, Jae-Ho; Jeong, Jichai

    2013-04-01

    We have proposed and demonstrated a highly stable spectral-domain optical coherence tomography (SD-OCT) system based on dual-coupled-line subtraction. The proposed system achieved an ultrahigh axial resolution of 5 μm by combining four kinds of spectrally shifted superluminescent diodes at 1375 nm. Using the dual-coupled-line subtraction method, we made the system insensitive to fluctuations of the optical intensity that can possibly arise in various clinical and experimental conditions. The imaging stability was verified by perturbing the intensity by bending an optical fiber, our system being the only one to reduce the noise among the conventional systems. Also, the proposed method required less computational complexity than conventional mean- and median-line subtraction. The real-time SD-OCT scheme was implemented by graphics processing unit aided signal processing. This is the first reported reduction method for A-line-wise fixed-pattern noise in a single-shot image without estimating the DC component.

  12. Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm

    Science.gov (United States)

    Dinh, Thanh Hung; Kondo, Yoshiki; Tamura, Toshiki; Ono, Yuichi; Hara, Hiroyuki; Oikawa, Hiroki; Yamamoto, Yoichi; Ishino, Masahiko; Nishikino, Masaharu; Makimura, Tetsuya; Dunne, Padraig; O'Sullivan, Gerry; Ohta, Shigeru; Kitano, Ken; Ejima, Takeo; Tadashi, Hatano; Higashiguchi, Takeshi

    2016-12-01

    A flat-field grazing incidence spectrometer operating on the spectral region from 1 to 10 nm was built for research on physics of high temperature and high energy density plasmas. It consists of a flat-field grating with 2400 lines/mm as a dispersing element and an x-ray charged coupled device (CCD) camera as the detector. The diffraction efficiency of the grating and the sensitivity of the CCD camera were directly measured by use of synchrotron radiation at the BL-11D beamline of the Photon Factory (PF). The influence of contamination to the spectrometer also was characterized. This result enables us to evaluate the absolute number of photons in a wide range wavelength between 1 and 10 nm within an acquisition. We obtained absolutely calibrated spectra from highly charged ion plasmas of Gd, from which a maximum energy conversion efficiency of 0.26% was observed at a Nd:YAG laser intensity of 3 × 1012 W/cm2.

  13. Aerosol height retrieval from satellite visible measurements: application to OMI 477 nm O2-O2 spectral band, based on Neural Networks

    Science.gov (United States)

    Chimot, Julien; Veefkind, Pepijn; Vlemmix, Tim; Levelt, Pieternel

    2017-04-01

    The ability to monitor air quality and climate from UltraViolet-Visible (UV-Vis) satellite spectral measurements relies on accurate trace gas (e.g. NO2, SO2, HCHO, O3) columns combined with aerosol properties and vertical distribution. In the absence of clouds, the most important error source on the observations of trace gases in the troposphere are aerosols, since their scattering and absorbing properties modify the average light path followed by the detected photons. Large impacts due to their vertical distribution uncertainties remain when retrieving vertical column densities of trace gases from UV-Vis air quality space-borne sensors [Krotkov et al., 2008; Boersma et al., 2011; Barkley et al., 2012; Hewson et al., 2015; Castellanos et al., 2015; Chimot et al., 2016a]. Aerosols and trace gases share, over urban and industrialized areas, similar anthropogenic sources, and their concentrations, as shown by the satellite observations, often present significant correlations [Veefkind et al., 2011]. We have recently developed a Multilayer Perceptron Neural Network (NN) algorithm to retrieve Aerosol Layer Height (ALH) from the OMI 477 nm O2-O2 absorption band [Chimot et al., 2016b]. This algorithm represents aerosols in the troposphere as a single scattering layer defined by its mean altitude and homogeneous optical properties. This algorithm enables the link between the OMI O2-O2 slant column density derived from the 477 nm spectral measurements and the aerosol layer altitude. A prior information about the Aerosol Optical Thickness (AOT) is needed to distinguish the effects due to the amount of fine particles and their altitude. Therefore, the ALH retrieval strongly benefits from a synergy between OMI 477 nm O2-O2 spectral measurements and MODIS AOT product. Aerosol layer heights are currently retrieved with an uncertainty in the range of 260-800 m for scenes with AOT larger than 1. Improvement of these retrievals can be expected by improving assumptions on the

  14. The spectral absorption coefficient at 254 nm as a real-time early warning proxy for detecting faecal pollution events at alpine karst water resources.

    Science.gov (United States)

    Stadler, H; Klock, E; Skritek, P; Mach, R L; Zerobin, W; Farnleitner, A H

    2010-01-01

    Because spring water quality from alpine karst aquifers can change very rapidly during event situations, water abstraction management has to be performed in near real-time. Four summer events (2005-2008) at alpine karst springs were investigated in detail in order to evaluate the spectral absorption coefficient at 254 nm (SAC254) as a real-time early warning proxy for faecal pollution. For the investigation Low-Earth-Orbit (LEO) Satellite-based data communication between portable hydrometeorological measuring stations and an automated microbiological sampling device was used. The method for event triggered microbial sampling and analyzing was already established and described in a previous paper. Data analysis including on-line event characterisation (i.e. precipitation, discharge, turbidity, SAC254) and comprehensive E. coli determination (n>800) indicated that SAC254 is a useful early warning proxy. Irrespective of the studied event situations SAC254 always increased 3 to 6 hours earlier than the onset of faecal pollution, featuring different correlation phases. Furthermore, it seems also possible to use SAC254 as a real-time proxy parameter for estimating the extent of faecal pollution after establishing specific spring and event-type calibrations that take into consideration the variability of the occurrence and the transferability of faecal material It should be highlighted that diffuse faecal pollution from wildlife and live stock sources was responsible for spring water contamination at the investigated catchments. In this respect, the SAC254 can also provide useful information to support microbial source tracking efforts where different situations of infiltration have to be investigated.

  15. The spectral absorption coefficient at 254nm as a real-time early warning proxy for detecting faecal pollution events at alpine karst water resources

    Science.gov (United States)

    Stadler, H.; Klock, E.; Skritek, P.; Mach, R.L.; Zerobin, W.; Farnleitner, A.H.

    2011-01-01

    Because spring water quality from alpine karst aquifers can change very rapidly during event situations, water abstraction management has to be performed in near real-time. Four summer events (2005-2008) at alpine karst springs were investigated in detail in order to evaluate the spectral absorption coefficient at 254nm (SAC254) as a real-time early warning proxy for faecal pollution. For the investigation Low-Earth-Orbit (LEO) Satellite-based data communication between portable hydrometeorological measuring stations and an automated microbiological sampling device was used. The method for event triggered microbial sampling and analyzing was already established and described in a previous paper (Stadler et al., Wat. Sci. Technol. 58(4): 899-909, 2008). Data analysis including on-line event characterisation (i.e. precipitation, discharge, turbidity, SAC254) and comprehensive E. coli determination (n > 800) indicated that SAC254 is a useful early warning proxy. Irrespective of the studied event situations SAC254 always increased 3 to 6 hours earlier than the onset of faecal pollution, featuring different correlation phases. Furthermore, it seems also possible to use SAC254 as a real-time proxy parameter for estimating the extent of faecal pollution after establishing specific spring and event-type calibrations that take into consideration the variability of the occurrence and the transferability of faecal material It should be highlighted that diffuse faecal pollution from wildlife and live stock sources was responsible for spring water contamination at the investigated catchments. In this respect, the SAC254 can also provide useful information to support microbial source tracking efforts where different situations of infiltration have to be investigated. PMID:20962406

  16. 1.2W laser amplification at 1427nm on the 4Fsub>3/2sub> to 4Isub>13/2sub> spectral line in an Nd3+ doped fused silica optical fiber.

    Science.gov (United States)

    Dawson, Jay W; Pax, Paul H; Allen, Graham S; Drachenberg, Derrek R; Khitrov, Victor V; Schenkel, Nick; Messerly, Michael J

    2016-12-12

    A 9.3dB improvement in optical gain and a 100x improvement in total optical power over prior published experimental results from the 4Fsub>3/2sub> to 4Isub>13/2sub> transition in an Nd3+ doped fused silica optical fiber is demonstrated. This is enabled via an optical fiber waveguide design that creates high spectral attenuation in the 1050-1120nm-wavelength range, a continuous spectral filter for the primary 4Fsub>3/2sub> to 4Isub>11/2sub> optical transition. A maximum output power at 1427nm of 1.2W was attained for 43mW coupled seed laser power and 22.2W of coupled pump diode laser power at 880nm a net optical gain of 14.5dB. Reducing the coupled seed laser power to 2.5mW enabled the system to attain 19.3dB of gain for 16.5W of coupled pump power. Four issues limited results; non-optimal seed laser wavelength, amplified spontaneous emission on the 4Fsub>3/2sub> to 4Isub>9/2sub> optical transition, low absorption of pump light from the cladding and high spectral attenuation in the 1350-1450nm range. Future fibers that mitigate these issues should lead to significant improvements in the efficiency of the laser amplifier, though the shorter wavelength region of the transition from 1310nm to >1350nm is still expected to be limited by excited state absorption.

  17. Realization of band gap shrinkage to the spectral characteristics of high-luminous-efficiency 658 nm AlGaInP/GaInP multiple quantum well lasers at room temperatures

    Science.gov (United States)

    Chackrabarti, Santosh; Zargar, Rayees A.; Bansal, Jyoti; Zaker, Tho-alfiqar A.; Hafiz, A. K.

    2016-08-01

    The temperature dependent spectral shifts in 658 nm AlGaInP multiple quantum well (MQW) red laser diodes due to band gap narrowing at room temperatures (5 °Csbnd 45 °C) is reported. The density of states effective mass approximation and the conduction band effective mass approximation are employed to formulate the carrier concentrations. The spectral shift mechanism is explored with a threshold current density of 42.28 kA/cm2 and a good characteristic temperature of 149 K. The photoluminescence (PL) peak intensity shifts towards the higher wavelength(red shift) and the full width at half maximum (FWHM) increases with the increase in temperature. The band gap narrowing value determined by a simple formula amounts to 67.4 meV and displays N1/3 dependence at higher densities. The carrier density dependence conveys that the red shift of the spectral emission is due to band gap narrowing.

  18. Ultraviolet-visible light spectral transmittance of rabbit corneas after riboflavin/ultraviolet-A (365 nm) corneal collagen cross-linking.

    Science.gov (United States)

    Hwang, Ho Sik; Kim, Man Soo

    2013-01-01

    To determine the effect of riboflavin/ultraviolet-A (365 nm) corneal collagen cross-linking on the transmission of the ultraviolet-visible (UV-VIS) light spectrum through the cornea. Twelve New Zealand white male rabbits were used in this research. Cross-linking was performed unilaterally on the right eyes of the animals while only the epithelium was removed on the left eyes as the control. Seven weeks after cross-linking, the animals were euthanized, and the enucleated eyes were processed for transmission spectroscopy. To confirm that the cross-linking procedures was done successfully on the right corneas, the tensile force-extension relationship was measured using six corneas from three of the rabbits after the transmission spectrum was determined. Seven weeks after cross-linking, ten of the 12 rabbits had clear corneas in the cross-linked and control eyes. The two rabbits with neovascularization and granular opacities in the right corneas were not included in subsequent measurements. In the cross-linked corneas, transmittance was 87.57% at 650 nm, and decreased continuously as the wavelength shortened. From 315 nm, the transmittance rapidly decreased and was 35.52% at 300 nm. In the control corneas, transmittance was 95.95% at 650 nm and decreased continuously as the wavelength shortened. Below 315 nm, the transmittance rapidly decreased, to 40.29% at 300 nm. The transmittance of the cross-linking corneas was 10%-20% lower than that of the control corneas. The difference was 8.38% at 650 nm and increased as the wavelength shortened, reaching a maximum of 20.59% at 320 nm, and decreased rapidly to 4.77% at 300 nm. The tensile force-extension relationship showed that a greater force was necessary to extend the cross-linking corneas over 500 µm than that of the control corneas. The transmittance of the cross-linked corneas was 10%-20% lower than that of the control corneas. The difference increased as the wavelength decrease, reaching a maximum at 320 nm and then

  19. Spectral characterization and white light generation by yttrium silicate nanopowders undoped and doped with Ytterbium(III) at different concentrations when excited by a laser diode at 975 nm

    Science.gov (United States)

    Cinkaya, Hatun; Eryurek, Gonul; Bilir, Gokhan; Collins, John; Di Bartolo, Baldassare

    2017-01-01

    We have studied nanophosphors of yttrium silicate (YSO) undoped and doped with different concentration of ytterbium (Yb3+) synthesized by using the sol-gel method. Structural and luminescence properties of the nanophosphors were studied experimentally by using different analytical techniques. For the structural analysis, we performed X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectrometry (EDS) measurements. Upconversion (UC) and the white light (WL) emission properties were investigated by using the near infrared cw laser excitation of 975 nm. The spectral properties have been found to depend on several physical parameters.

  20. Thermal coagulation-induced changes of the optical properties of normal and adenomatous human colon tissues in vitro in the spectral range 400-1100 nm

    Energy Technology Data Exchange (ETDEWEB)

    Ao Huilan; Xing Da; Wei Huajiang; Gu Huaimin [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, ina Normal University, Guangzhou 510631 (China); Wu Guoyong; Lu Jianjun [Department of Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080 (China)], E-mail: xingda@scnu.edu.cn

    2008-04-21

    The absorption coefficients, the reduced scattering coefficients and the optical penetration depths for native and coagulated human normal and adenomatous colon tissues in vitro were determined over the range of 400-1100 nm using a spectrophotometer with an internal integrating sphere system, and the inverse adding-doubling method was applied to calculate the tissue optical properties from diffuse reflectance and total transmittance measurements. The experimental results showed that in the range of 400-1100 nm there were larger absorption coefficients (P < 0.01) and smaller reduced scattering coefficients (P < 0.01) for adenomatous colon tissues than for normal colon tissues, and there were smaller optical penetration depths for adenomatous colon tissues than for normal colon tissues, especially in the near-infrared wavelength. Thermal coagulation induced significant increase of the absorption coefficients and reduced scattering coefficients for the normal and adenomatous colon tissues, and significantly reduced decrease of the optical penetration depths for the normal and adenomatous colon tissues. The smaller optical penetration depth for coagulated adenomatous colon tissues is a disadvantage for laser-induced thermotherapy (LITT) and photodynamic therapy (PDT). It is necessary to adjust the application parameters of lasers to achieve optimal therapy.

  1. Simultaneous quantum dash-well emission in a chirped dash-in-well superluminescent diode with spectral bandwidth >700 nm

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-10-01

    We report on the quantitative evidence of simultaneous amplified spontaneous emission from the AlGaInAs/InAs/ InP-based quantum-well (Qwell) and quantum-dashes (Qdash) in a multistack dash-in-an-asymmetric-well superluminescent diode heterostructure. As a result, an emission bandwidth (full width at half-maximum) of 700 nm is achieved, covering entire O-E-S-C-L-U communication bands, and a maximum continuous wave output power of 1.3 mW, from this device structure. This demonstration paves a way to bridge entire telecommunication bands through proper optimization of device gain region, bringing significant advances and impact to a variety of cross-disciplinary field applications. © 2013 Optical Society of America.

  2. Spectral Differentiation of Trace Concentrations of NO(2) from NO by Laser Photofragmentation with Fragment Ionization at 226 and 452 nm: Quantitative Analysis of NO-NO(2) Mixtures.

    Science.gov (United States)

    Pastel, R L; Sausa, R C

    2000-05-20

    Laser-induced photofragmentation with fragment ionization is used to detect and spectrally differentiate trace concentrations of NO(2) from NO in NO-NO(2) mixtures. A laser operating near 226 or 452 nm ionizes the target molecules, and the resulting electrons are collected with miniature electrodes. NO is detected by (1 + 1) resonance-enhanced multiphoton ionization by means of its A (2)?(+) ? X (2)? (0, 0) transitions near 226 nm, whereas NO(2) is detected near 226 nm by laser photofragmentation with subsequent NO fragment ionization by means of both its A (2)?(+) ? X (2)? (0, 0) and (1, 1) transitions. The NO fragment generated from the photolysis of NO(2) is produced rovibrationally excited with a significant population in the first vibrational level of the ground electronic state (X (2)?, upsilon? = 1). In contrast, ambient NO has a room-temperature, Boltzmann population distribution favoring the lowest ground vibrational level (X (2)?, upsilon? = 0). Thus discrimination is possible when the internal energy distributions of both fragment NO and ambient NO are probed. We also demonstrate this approach using visible radiation, further simplifying the experimental apparatus because frequency doubling of the laser radiation is not required. We measured up to three decades of NO-NO(2) mixtures with limits of detection (signal-to-noise ratio of 3) in the low parts per billion for both NO and NO(2) for a 10-s integration time using both ultraviolet or visible radiation.

  3. 1310 nm波长谱域OCT用于睫状肌成像的可行性探讨%The visualization of the ciliary muscle using 1 310 nm wavelength spectral domain optical coherence tomography

    Institute of Scientific and Technical Information of China (English)

    李明; 崔乐乐; 朱德喜; 沈梅晓; 王建华; 吕帆

    2014-01-01

    Objective To demonstrate the feasibility of visualizing the ciliary muscle using 1 310 nm wavelength spectral domain optical coherence tomography (OCT).Methods Experimental study.Three normal prepresbyopic subjects were recruited.1 310 nm spectral domain OCT was used to image the temporal ciliary muscles of the left eyes in relaxed-accommodative and maximumaccommodative states.Custom software was used to correct and process OCT images.The thicknesses of the ciliary muscle 1 mm,2 mm and 3 mm posterior to the scleral spur (CMT1,CMT2,CMT3) and the maximum thickness of the ciliary muscle (CMTM) were measured.The area of the ciliary muscle anterior to the CMT1 line served as CMA1.Similarly,the areas of the ciliary muscle between the CMT1 and CMT2 lines and between the CMT2 and CMT3 lines were defined as CMA2 and CMA3,respectively.Results The high-resolution images of ciliary muscles were clearly captured in two different accommodative states.The boundaries of the cilairy muscle were easily visualized,and the c ustom software was feasible for the correction and analysis of the images.CMTM,CMT1 and CMT2 in the relaxed-accommodative state were thinner than in the maximum-accommodative state.In contrast,CMT3 in the relaxed-accommodative state was thicker than in the maximum-accommodative state.Similarly,CMA1 and CMA2,but not CMA3,were decreased in the relaxed-accommodative state as compared to the maximum-accommodative state.Conclusion 1 310 nm spectral domain OCT is a potentially promising technique for non-contact,non-invasive,real-time and high-resolution imaging of the ciliary muscle in human eyes.%目的 探测1 310 nm波长谱域OCT对人眼睫状肌成像的可行性.方法 前瞻性实验研究.本实验收集了3位非老视健康受检者.采用1 310 nm波长谱域OCT来测量受检者调节放松和最大调节状态下的左眼颞侧睫状肌.然后采用自行设计的软件对OCT图像进行矫正和数据分析.实验得到的睫状体

  4. Advances in 750 nm VECSELs (Conference Presentation)

    Science.gov (United States)

    Saarinen, Esa J.; Ranta, Sanna; Lyytikäinen, Jari; Saarela, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Guina, Mircea

    2017-03-01

    Lasers operating in the transmission window of tissue at wavelengths between 700 and 800 nm are needed in numerous medical and biomedical applications, including photodynamic therapy and fluorescence microscopy. However, the performance of diode lasers in this spectral range is limited by the lack of appropriate compound semiconductors. Here, we review our recent research on 750 nm VECSELs. Two approaches to reaching the 750 nm wavelength will be discussed. The first approach relies on intra-cavity frequency doubling a wafer-fused 1500 nm VECSEL. The VECSEL gain chip comprises a GaAs-based DBR and an InP-based gain section, which allows for optical pumping with low-cost commercial diodes at 980 nm. With this scheme we have achieved watt-level output powers and tuning of the laser wavelength over a 40 nm band at around 750 nm. The second approach is direct emission at 750 nm using the AlGaAs/GaAs material system. In this approach visible wavelengths are required for optical pumping. However, the consequent higher costs compared to pumping at 980 nm are mitigated by the more compact laser setup and prospects of doubling the frequency to the ultraviolet range.

  5. External cavity diode laser around 657 nm

    Institute of Scientific and Technical Information of China (English)

    Desheng Lǖ (吕德胜); Kaikai Huang (黄凯凯); Fengzhi Wang (王凤芝); DonghaiYang (杨东海)

    2003-01-01

    Operating a laser diode in an external cavity, which provides frequency-selective feedback, is a very effective method to tune the laser frequency to a range far from its free running frequency. For the Ca atomic Ramsey spectroscopy experiment, we have constructed a 657-nm laser system based on the LittmanMetcalf configuration with a 660-nm commercial laser diode. Continuously 10-GHz tuning range was achieved with about 100-kHz spectral linewidth, measured with beat-note spectrum of two identical laser systems.

  6. Spectral Methods

    CERN Document Server

    Shen, Jie; Wang, Li-Lian

    2011-01-01

    Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large

  7. Albuquerque, NM, USA

    Science.gov (United States)

    1991-01-01

    Albuquerque, NM (35.0N, 106.5W) is situated on the edge of the Rio Grande River and flood plain which cuts across the image. The reddish brown surface of the Albuquerque Basin is a fault depression filled with ancient alluvial fan and lake bed sediments. On the slopes of the Manzano Mountains to the east of Albuquerque, juniper and other timber of the Cibola National Forest can be seen as contrasting dark tones of vegetation.

  8. 167 W, 1178 nm Ytterbium-Doped Photonic Bandgap Fiber Amplifier with Power Scalability

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, Akira; Chen, Meishin

    2010-01-01

    We have generated 167 W of output power at 1178 nm using an ytterbium-doped photonic bandgap fiber. Distributed spectral filtering efficiently suppresses amplified spontaneous emission at shorter wavelengths and enables power scalable amplification at 1178nm.......We have generated 167 W of output power at 1178 nm using an ytterbium-doped photonic bandgap fiber. Distributed spectral filtering efficiently suppresses amplified spontaneous emission at shorter wavelengths and enables power scalable amplification at 1178nm....

  9. Spectral Analysis

    CERN Document Server

    Cecconi, Jaures

    2011-01-01

    G. Bottaro: Quelques resultats d'analyse spectrale pour des operateurs differentiels a coefficients constants sur des domaines non bornes.- L. Garding: Eigenfuction expansions.- C. Goulaouic: Valeurs propres de problemes aux limites irreguliers: applications.- G. Grubb: Essential spectra of elliptic systems on compact manifolds.- J.Cl. Guillot: Quelques resultats recents en Scattering.- N. Schechter: Theory of perturbations of partial differential operators.- C.H. Wilcox: Spectral analysis of the Laplacian with a discontinuous coefficient.

  10. A New Solar Spectrum from 656 to 3088 nm

    Science.gov (United States)

    Meftah, M.; Damé, L.; Bolsée, D.; Pereira, N.; Sluse, D.; Cessateur, G.; Irbah, A.; Sarkissian, A.; Djafer, D.; Hauchecorne, A.; Bekki, S.

    2017-08-01

    The solar spectrum is a key parameter for different scientific disciplines such as solar physics, climate research, and atmospheric physics. The SOLar SPECtrometer (SOLSPEC) instrument of the Solar Monitoring Observatory (SOLAR) payload onboard the International Space Station (ISS) has been built to measure the solar spectral irradiance (SSI) from 165 to 3088 nm with high accuracy. To cover the full wavelength range, three double-monochromators with concave gratings are used. We present here a thorough analysis of the data from the third channel/double-monochromator, which covers the spectral range between 656 and 3088 nm. A new reference solar spectrum is therefore obtained in this mainly infrared wavelength range (656 to 3088 nm); it uses an absolute preflight calibration performed with the blackbody of the Physikalisch-Technische Bundesanstalt (PTB). An improved correction of temperature effects is also applied to the measurements using in-flight housekeeping temperature data of the instrument. The new solar spectrum (SOLAR-IR) is in good agreement with the ATmospheric Laboratory for Applications and Science (ATLAS 3) reference solar spectrum from 656 nm to about 1600 nm. However, above 1600 nm, it agrees better with solar reconstruction models than with spacecraft measurements. The new SOLAR/SOLSPEC measurement of solar spectral irradiance at about 1600 nm, corresponding to the minimum opacity of the solar photosphere, is 248.08 ± 4.98 mW m-2 nm-1 (1 σ), which is higher than recent ground-based evaluations.

  11. Spectral beam combining of diode lasers with high efficiency

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin;

    2012-01-01

    Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation.......Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation....

  12. Spectral Ranking

    CERN Document Server

    Vigna, Sebastiano

    2009-01-01

    This note tries to attempt a sketch of the history of spectral ranking, a general umbrella name for techniques that apply the theory of linear maps (in particular, eigenvalues and eigenvectors) to matrices that do not represent geometric transformations, but rather some kind of relationship between entities. Albeit recently made famous by the ample press coverage of Google's PageRank algorithm, spectral ranking was devised more than fifty years ago, almost exactly in the same terms, and has been studied in psychology and social sciences. I will try to describe it in precise and modern mathematical terms, highlighting along the way the contributions given by previous scholars.

  13. Spectral Tagging

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Laboratories (United States)

    2003-05-01

    This research examines the feasibility of spectral tagging, which involves modifying the spectral signature of a target, e.g. by mixing an additive with the target's paint. The target is unchanged to the human eye, but the tag is revealed when viewed with a spectrometer. This project investigates a layer of security that is not obvious, and therefore easy to conceal. The result is a tagging mechanism that is difficult to counterfeit. Uniquely tagging an item is an area of need in safeguards and security and non-proliferation. The powdered forms of the minerals lapis lazuli and olivine were selected as the initial test tags due to their availability and uniqueness in the visible to near-infrared spectral region. They were mixed with paints and applied to steel. In order to verify the presence of the tags quantitatively, the data from the spectrometer was input into unmixing models and signal detection algorithms. The mixture with the best results was blue paint mixed with lapis lazuli and olivine. The tag had a 0% probability of false alarm and a 100% probability of detection. The research proved that spectral tagging is feasible, although certain tag/paint mixtures are more detectable than others.

  14. Active spectral imaging nondestructive evaluation (SINDE) camera

    Energy Technology Data Exchange (ETDEWEB)

    Simova, E.; Rochefort, P.A., E-mail: eli.simova@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    A proof-of-concept video camera for active spectral imaging nondestructive evaluation has been demonstrated. An active multispectral imaging technique has been implemented in the visible and near infrared by using light emitting diodes with wavelengths spanning from 400 to 970 nm. This shows how the camera can be used in nondestructive evaluation to inspect surfaces and spectrally identify materials and corrosion. (author)

  15. Spectral Predictors

    Energy Technology Data Exchange (ETDEWEB)

    Ibarria, L; Lindstrom, P; Rossignac, J

    2006-11-17

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  16. Spectral Reconstruction for Obtaining Virtual Hyperspectral Images

    Science.gov (United States)

    Perez, G. J. P.; Castro, E. C.

    2016-12-01

    Hyperspectral sensors demonstrated its capabalities in identifying materials and detecting processes in a satellite scene. However, availability of hyperspectral images are limited due to the high development cost of these sensors. Currently, most of the readily available data are from multi-spectral instruments. Spectral reconstruction is an alternative method to address the need for hyperspectral information. The spectral reconstruction technique has been shown to provide a quick and accurate detection of defects in an integrated circuit, recovers damaged parts of frescoes, and it also aids in converting a microscope into an imaging spectrometer. By using several spectral bands together with a spectral library, a spectrum acquired by a sensor can be expressed as a linear superposition of elementary signals. In this study, spectral reconstruction is used to estimate the spectra of different surfaces imaged by Landsat 8. Four atmospherically corrected surface reflectance from three visible bands (499 nm, 585 nm, 670 nm) and one near-infrared band (872 nm) of Landsat 8, and a spectral library of ground elements acquired from the United States Geological Survey (USGS) are used. The spectral library is limited to 420-1020 nm spectral range, and is interpolated at one nanometer resolution. Singular Value Decomposition (SVD) is used to calculate the basis spectra, which are then applied to reconstruct the spectrum. The spectral reconstruction is applied for test cases within the library consisting of vegetation communities. This technique was successful in reconstructing a hyperspectral signal with error of less than 12% for most of the test cases. Hence, this study demonstrated the potential of simulating information at any desired wavelength, creating a virtual hyperspectral sensor without the need for additional satellite bands.

  17. Spectral Image Analysis for Measuring Ripeness of Tomatoes

    NARCIS (Netherlands)

    Polder, G.; Heijden, van der G.W.A.M.; Young, I.T.

    2002-01-01

    In this study, spectral images of five ripeness stages of tomatoes have been recorded and analyzed. The electromagnetic spectrum between 396 and 736 nm was recorded in 257 bands (every 1.3 nm). Results show that spectral images offer more discriminating power than standard RGB images for measuring r

  18. Solar irradiance models and measurements: a comparison in the 220 nm to 240 nm wavelength band

    CERN Document Server

    Unruh, Yvonne C; Krivova, Natalie A

    2011-01-01

    Solar irradiance models that assume solar irradiance variations to be due to changes in the solar surface magnetic flux have been successfully used to reconstruct total solar irradiance on rotational as well as cyclical and secular time scales. Modelling spectral solar irradiance is not yet as advanced, and also suffers from a lack of comparison data, in particular on solar-cycle time scales. Here we compare solar irradiance in the 220 nm to 240 nm band as modelled with SATIRE-S and measured by different instruments on the UARS and SORCE satellites. We find good agreement between the model and measurements on rotational time scales. The long-term trends, however, show significant differences. Both SORCE instruments, in particular, show a much steeper gradient over the decaying part of cycle 23 than the modelled irradiance or that measured by UARS/SUSIM.

  19. Solar spectral irradiance changes during cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, S. V.; DeLand, M. T. [Also at NASA/Goddard Space Flight Center, Greenbelt, MD, USA. (United States)

    2014-07-10

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ∼0.6% ± 0.2% around 265 nm. These changes gradually diminish to 0.15% ± 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar 'continuum'. Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar 'continuum', the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at λ ≳ 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  20. 308-nm excimer laser in endodontics

    Science.gov (United States)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  1. Characterization of LANDSAT Panels Using the NIST BRDF Scale from 1100 nm to 2500 nm

    Science.gov (United States)

    Markham, Brian; Tsai, Benjamin K.; Allen, David W.; Cooksey, Catherine; Yoon, Howard; Hanssen, Leonard; Zeng, Jinan; Fulton, Linda; Biggar, Stuart; Markham, Brian

    2010-01-01

    Many earth observing sensors depend on white diffuse reflectance standards to derive scales of radiance traceable to the St Despite the large number of Earth observing sensors that operate in the reflective solar region of the spectrum, there has been no direct method to provide NIST traceable BRDF measurements out to 2500 rim. Recent developments in detector technology have allowed the NIST reflectance measurement facility to expand the operating range to cover the 250 nm to 2500 nm range. The facility has been modified with and additional detector using a cooled extended range indium gallium arsenide (Extended InGaAs) detector. Measurements were made for two PTFE white diffuse reflectance standards over the 1100 nm to 2500 nm region at a 0' incident and 45' observation angle. These two panels will be used to support the OLI calibration activities. An independent means of verification was established using a NIST radiance transfer facility based on spectral irradiance, radiance standards and a diffuse reflectance plaque. An analysis on the results and associated uncertainties will be discussed.

  2. A spectral invariant representation of spectral reflectance

    Science.gov (United States)

    Ibrahim, Abdelhameed; Tominaga, Shoji; Horiuchi, Takahiko

    2011-03-01

    Spectral image acquisition as well as color image is affected by several illumination factors such as shading, gloss, and specular highlight. Spectral invariant representations for these factors were proposed for the standard dichromatic reflection model of inhomogeneous dielectric materials. However, these representations are inadequate for other characteristic materials like metal. This paper proposes a more general spectral invariant representation for obtaining reliable spectral reflectance images. Our invariant representation is derived from the standard dichromatic reflection model for dielectric materials and the extended dichromatic reflection model for metals. We proof that the invariant formulas for spectral images of natural objects preserve spectral information and are invariant to highlights, shading, surface geometry, and illumination intensity. It is proved that the conventional spectral invariant technique can be applied to metals in addition to dielectric objects. Experimental results show that the proposed spectral invariant representation is effective for image segmentation.

  3. DNA and protein change in tissues probed by Kubelka-Munk spectral function

    Science.gov (United States)

    Yang, Yuanlong; Celmer, Edward J.; Koutcher, Jason A.; Alfano, Robert R.

    2000-04-01

    Normal, fibroadenoma, malignant, and adipose breast tissues were investigated using Kubelka-Munk Spectral Function (KMSF). The spectral features in KMSF were identified and compared with absorption spectra determined by transmission measurements. A specified spectral feature measured in adipose tissue was assigned to (beta) -carotene, which can be used to separate fat form other molecular components in breast tissues. The peaks of (KMF) at 260nm and 280nm were attributed to DNA and proteins. The signal amplitude over 255nm to 265nm and 275nm to 285nm were found to be different for malignant fibroadenoma, and normal tissues.

  4. VUV radiometry below 100 nm: the high-power hydrogen arc as a standard source of continuum radiation between 53 nm and 92 nm.

    Science.gov (United States)

    Behringer, K; Thoma, P

    1979-08-01

    A stationary hydrogen arc discharge may be used as a standard source of radiation in the VUV below 100 nm. The Lyman resonance continuum is used, the cross sections of which are theoretically well known. The method described is based on optically thin radiation, requiring high plasma temperatures and an effective helium gas separation in the arc. The investigations demonstrate that, in appropriate experimental conditions, the plasma is indeed transparent down to the onset of the He ground-state absorption. Above that, the VUV spectral radiance can be predicted within less than 15% uncertainty from conventional plasma diagnostics. For a first application, the He continuum has been measured between 65 nm and 92 nm. The consistency of these results with theoretical calculations confirms the validity of the concept presented.

  5. 750 nm 1.5 W frequency-doubled semiconductor disk laser with a 44 nm tuning range.

    Science.gov (United States)

    Saarinen, Esa J; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G

    2015-10-01

    We demonstrate 1.5 W of output power at the wavelength of 750 nm by intracavity frequency doubling a wafer-fused semiconductor disk laser diode-pumped at 980 nm. An optical-to-optical efficiency of 8.3% was achieved using a bismuth borate crystal. The wavelength of the doubled emission could be tuned from 720 to 764 nm with an intracavity birefringent plate. The beam quality parameter M2 of the laser output was measured to be below 1.5 at all pump powers. The laser is a promising tool for biomedical applications that can take advantage of the large penetration depth of light in tissue in the 700-800 nm spectral range.

  6. Characteristics of THz Emission from GaAs Crystal Excited by 400 nm and 800 nm Optical Pulses

    Institute of Scientific and Technical Information of China (English)

    YANG Yu-Ping; XU Xin-Long; YAN Wei; WANG Li

    2005-01-01

    @@ THz emission spectroscopy is used to study the generation mechanism dependent behaviour of terahertz (THz) electromagnetic waves from the GaAs crystal under excitation by 400 nm and 800 nm femtosecond (fs) pulses,respectively. The wavelength dependence of the emission spectrum under two types of THz generation mechanisms is analysed. Under the optical rectification mechanism, a slight enhancement of the spectral amplitude in the high-frequency regime is observed in a GaAs(110) crystal by the excitation of a 400-nm optical pulse compared with that of 800nm. Whereas an obvious red shift of the amplitude spectrum occurs in the GaAs(100) sample under the transient photoconduction mechanism. These phenomena are explained in detail by the duration of the optical pump pulse and the band structure of GaAs, respectively.

  7. Precise acquisition and unsupervised segmentation of multi-spectral images

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Clemmensen, Line Katrine Harder; Ersbøll, Bjarne Kjær

    2007-01-01

    In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral images and a novel multi-spectral image segmentation algorithm are proposed. The system collects up to 20 different spectral bands within a range that vary from 395 nm to 970 nm. The system is designed...... to acquire geometrically and chromatically corrected images in homogeneous and diffuse illumination, so images can be compared over time. The proposed segmentation algorithm combines the information provided by all the spectral bands to segment the different regions of interest. Three experiments...

  8. Reflectance Spectral Characteristics of Lunar Surface Materials

    Institute of Scientific and Technical Information of China (English)

    Yong-Liao Zou; Jian-Zhong Liu; Jian-Jun Liu; Tao Xu

    2004-01-01

    Based on a comprehensive analysis of the mineral composition of major lunar rocks (highland anorthosite, lunar mare basalt and KREEP rock), we investigate the reflectance spectral characteristics of the lunar rock-forming minerals, including feldspar, pyroxene and olivine. The affecting factors, the variation of the intensity of solar radiation with wavelength and the reflectance spectra of the lunar rocks are studied. We also calculate the reflectivity of lunar mare basalt and highland anorthosite at 300 nm, 415 nm, 750 nm, 900 nm, 950 nm and 1000 nm.It is considered that the difference in composition between lunar mare basalt and highland anorthosite is so large that separate analyses are needed in the study of the reflectivity of lunar surface materials in the two regions covered by mare basalt and highland anorthosite, and especially in the region with high Th contents, which may be the KREEP-distributed region.

  9. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  10. The electronic spectral properties of gallic acid

    Science.gov (United States)

    Fink, David W.; Stong, John D.

    The electronic spectral properties of gallic acid (3,4,5-trihydroxybenzoic acid), a chemiluminescence reagent which is unstable in oxygenated aqueous solution, have been determined under conditions regulated to retard decomposition. The characteristic blue and red shifts in the u.v. absorption spectra which accompany carboxyl and phenol dissociation, respectively, are in accord with the trends usually observed for these functional groups. The dianionic species exhibits a fluorescence emission band with a peak at 370 nm under 300-nm excitation.

  11. Angle of arrival estimation using spectral interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Krishna Mohan, R., E-mail: krishna@spectrum.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  12. Study of the emission spectra of a 1320-nm semiconductor disk laser and its second harmonic

    Science.gov (United States)

    Gochelashvili, K. S.; Derzhavin, S. I.; Evdokimova, O. N.; Zolotovskii, I. O.; Podmazov, S. V.

    2016-03-01

    The spectral characteristics of an optically pumped external-cavity semiconductor disk laser near λ = 1320 nm are studied experimentally. Intracavity second harmonic generation is obtained using an LBO nonlinear crystal. The output power at a wavelength of 660 nm in the cw regime was 620 mW, and the peak power in the pulsed regime was 795 mW.

  13. 65 nm CMOS Sensors Applied to Mathematically Exact Colorimetric Reconstruction

    CERN Document Server

    Mayr, C; Krause, A; Schlüßler, J -U; Schüffny, R

    2014-01-01

    Extracting colorimetric image information from the spectral characteristics of image sensors is a key issue in accurate image acquisition. Technically feasible filter/sensor combinations usually do not replicate colorimetric responses with sufficient accuracy to be directly applicable to color representation. A variety of transformations have been proposed in the literature to compensate for this. However, most of those rely on heuristics and/or introduce a reconstruction dependent on the composition of the incoming illumination. In this work, we present a spectral reconstruction method that is independent of illumination and is derived in a mathematically strict way. It provides a deterministic method to arrive at a least mean squared error approximation of a target spectral characteristic from arbitrary sensor response curves. Further, we present a new CMOS sensor design in a standard digital 65nm CMOS technology. Novel circuit techniques are used to achieve performance comparable with much larger-sized spe...

  14. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    Science.gov (United States)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  15. Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064 nm, 532 nm and 355 nm radiation wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Binetti, Simona [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Le Donne, Alessia, E-mail: alessia.ledonne@mater.unimib.it [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Rolfi, Andrea [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Jäggi, Beat; Neuenschwander, Beat [Bern University of Applied Sciences, Engineering and Information Technology, Institute for Applied Laser, Photonics and Surface Technologies ALPS, Pestalozzistrasse 20, CH-3400 Burgdorf (Switzerland); Busto, Chiara [ENI Spa, Via Giacomo Fauser, 4, 28100 Novara (Italy); Frigeri, Cesare [CNR-IMEM Institute, Parco Area Delle Scienze 37/A, Fontanini, 43010 Parma (Italy); Scorticati, Davide; Longoni, Luca; Pellegrino, Sergio [Laserpoint Srl, Via Della Burrona 51, 20090 Vimodrone, Milano (Italy)

    2016-05-15

    Highlights: • Self-organized surface structures were produced by picosecond laser pulses on mc-Si. • Three laser wavelengths were used which effectively reduce Si reflectivity up to 8%. • The subsurface damage induced by the three lasers was studied in detail. • μ-Raman, PL and TEM proved that UV laser provides the lowest subsurface damage. • UV laser induced damage is located above the depletion region of the p–n junction. - Abstract: Self-organized surface structures were produced by picosecond laser pulses on multi-crystalline silicon for photovoltaic applications. Three different laser wavelengths were employed (i.e. 1064 nm, 532 nm and 355 nm) and the resulting morphologies were observed to effectively reduce the reflectivity of the samples after laser irradiation. Besides, a comparative study of the laser induced subsurface damage generated by the three different wavelengths was performed by confocal micro-Raman, photoluminescence and transmission electron microscopy. The results of both the structural and optical characterization showed that the mc-Si texturing performed with the laser at 355 nm provides surface reflectivity between 11% and 8% over the spectral range from 400 nm to 1 μm, while inducing the lowest subsurface damage, located above the depletion region of the p–n junction.

  16. 65-nm Cyclone Ⅲ FPGA

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Altera公司低功耗、低成本Cyclone Ⅲ系列65nm FPGA所有8个型号的产品级芯片实现量产,Cyclone Ⅲ系列产品已迅速应用于无线、军事、显示、汽车和工业市场的大量客户系统中。

  17. 2 nm continuously tunable 488nm micro-integrated diode-laser-based SHG light source for Raman spectroscopy

    Science.gov (United States)

    Braune, M.; Maiwald, M.; Sumpf, B.; Tränkle, G.

    2016-04-01

    Raman spectroscopy in the visible spectral range is of great interest due to resonant Raman effects. Nevertheless, fluorescence and ambient light can mask the weak Raman lines. Shifted excitation Raman difference spectroscopy is a demonstrated tool to overcome this drawback. To apply this method, a light source with two alternating wavelengths is necessary. The spectral distance between these two wavelengths has to be adapted to the width of the Raman signal. According to the sample under investigation the width of the Raman signal could be in the range of 3 cm-1 - 12 cm-1. In this work, a micro-integrated light source emitting at 488 nm with a continuous wavelength tuning range up to 2 nm (83 cm-1) is presented. The pump source, a DFB laser emitting at 976 nm, and a periodically poled lithium niobate (PPLN) ridge waveguide crystal is used for the second harmonic generation (SHG). Both components are mounted on a μ-Peltier-element for temperature control. Here, a common wavelength tuning of the pump wavelength and the acceptance bandwidth of the SHG crystal via temperature is achieved. With the results the light source is suitable for portable Raman and SERDS experiments with a flexible spectral distance between both excitation wavelengths for SERDS with respect to the sample under investigation.

  18. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  19. Quantum Spectral Symmetries

    Science.gov (United States)

    Hamhalter, Jan; Turilova, Ekaterina

    2017-02-01

    Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.

  20. 200 nm-1000 nm spectra of light emitted in the impact of 40Ar10+ upon Al and Si solid surfaces

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaoan; (张小安); ZHAO; Yongtao; (赵永涛); LI; Fuli; (李福利); YANG; Zhihu(杨治虎); XIAO; Guoqing(肖国青); ZHAN; Wenlong(詹文龙)

    2003-01-01

    This paper reports the measured results of the 200 nm-1000 nm characteristic spectral lines of Al, Si and Ar atoms when highly charged ions 40Ar10+ are incident upon Al and P-type Si surfaces. The ion 40Ar10+ is provided by the ECR ion source of the National Laboratory of the Heavy Ion Accelerator in Lanzhou. The results show that when the low-speed ions in the highly charged state interact with the solid surfaces, the characteristic spectral lines of the target atoms and ions spurted from the surfaces can be effectively excited. Moreover, because of the competition of the non-radiation de-excitation of the hollow atom by emitting secondary electrons with the de-excitation process by radiating photons, the spectral intensity of the characteristic spectral lines of Ar atoms on the P-type Si surface is, as a whole, greater than that of Ar atoms on the Al surface.

  1. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  2. The Spectral Shift Function and Spectral Flow

    Science.gov (United States)

    Azamov, N. A.; Carey, A. L.; Sukochev, F. A.

    2007-11-01

    At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non

  3. 785nm dual-wavelength Y-branch DBR-RW diode laser with electrically adjustable wavelength distance between 0 nm and 2 nm

    Science.gov (United States)

    Sumpf, Bernd; Kabitzke, Julia; Fricke, Jörg; Ressel, Peter; Müller, André; Maiwald, Martin; Tränkle, Günther

    2017-02-01

    Shifted excitation Raman difference spectroscopy is a powerful tool to separate the weak Raman lines from disturbing background light like fluorescence, day light or artificial light. When exciting the sample alternatingly with two slightly shifted wavelengths, the Raman lines follow the change whereas the background remains unchanged. Therefore, background free Raman spectra can be obtained measuring the two Raman spectra, subtracting the two signals and applying a reconstruction algorithm. When the spectral distance between the two wavelengths is the width of the Raman lines under study best signal-to-noise ratios can be achieved. In this work, monolithic dual wavelength Y-branch DBR ridge waveguide diode lasers with resistor heaters over the DBR gratings will be presented. The devices have a total length of 3 mm and a RW stripe width of 2.2 μm. The wavelengths are defined and stabilized using 500 μm long 10th order gratings with a designed spectral distance of 0.62 nm. Using the resistor heaters, this distance can be adjusted. The monolithic devices reach optical output powers up to 180 mW. Over the full range, they operate in single mode. The emission width is smaller than 13 pm (FWHM). At an output power of 50 mW the conversion efficiency is 0.22, which only slightly decreases down to 0.18 at maximal power. At an output power of 100 mW and with heater currents smaller than 600 mA, the spectral distance can be tuned from 0 nm up to 2 nm. The spectra remain single mode.

  4. Spectral luminescence analysis of amniotic fluid

    Science.gov (United States)

    Slobozhanina, Ekaterina I.; Kozlova, Nataly M.; Kasko, Leonid P.; Mamontova, Marina V.; Chernitsky, Eugene A.

    1997-12-01

    It is shown that the amniotic fluid has intensive ultra-violet luminescence caused by proteins. Along with it amniotic fluid radiated in the field of 380 - 650 nm with maxima at 430 - 450 nm and 520 - 560 nm. The first peak of luminescence ((lambda) exc equals 350 nm; (lambda) em equals 430 - 440 nm) is caused (most probably) by the presence in amniotic fluid of some hormones, NADH2 and NADPH2. A more long-wave component ((lambda) exc equals 460 nm; (lambda) em equals 520 - 560 nm) is most likely connected with the presence in amniotic fluid pigments (bilirubin connected with protein and other). It is shown that intensity and maximum of ultra-violet luminescence spectra of amniotic fluid in normality and at pathology are identical. However both emission spectra and excitation spectra of long-wave ((lambda) greater than 450 nm) luminescence of amniotic fluid from pregnant women with such prenatal abnormal developments of a fetus as anencephaly and spina bifida are too long-wave region in comparison with the norm. Results of research testify that spectral luminescent analysis of amniotic fluid can be used for screening of malformations of the neural tube. It is very difficult for a practical obstetrician to reveal pregnant women with a high risk of congenital malformations of the fetus. Apart from ultrasonic examination, cytogenetic examination of amniotic fluid and defumination of concentrations of alpha-fetoprotein and acetylcholin-esterases in the amniotic fluid and blood plasma are the most widely used diagnostic approaches. However, biochemical and cytogenetic diagnostic methods are time-consuming. In the present work spectral luminescence properties of the amniotic fluid are investigated to determine spectral parameters that can be used to reveal pregnant women with a high risk of congenital malformations of their offsprings.

  5. Spectral calibration for convex grating imaging spectrometer

    Science.gov (United States)

    Zhou, Jiankang; Chen, Xinhua; Ji, Yiqun; Chen, Yuheng; Shen, Weimin

    2013-12-01

    Spectral calibration of imaging spectrometer plays an important role for acquiring target accurate spectrum. There are two spectral calibration types in essence, the wavelength scanning and characteristic line sampling. Only the calibrated pixel is used for the wavelength scanning methods and he spectral response function (SRF) is constructed by the calibrated pixel itself. The different wavelength can be generated by the monochromator. The SRF is constructed by adjacent pixels of the calibrated one for the characteristic line sampling methods. And the pixels are illuminated by the narrow spectrum line and the center wavelength of the spectral line is exactly known. The calibration result comes from scanning method is precise, but it takes much time and data to deal with. The wavelength scanning method cannot be used in field or space environment. The characteristic line sampling method is simple, but the calibration precision is not easy to confirm. The standard spectroscopic lamp is used to calibrate our manufactured convex grating imaging spectrometer which has Offner concentric structure and can supply high resolution and uniform spectral signal. Gaussian fitting algorithm is used to determine the center position and the Full-Width-Half-Maximum(FWHM)of the characteristic spectrum line. The central wavelengths and FWHMs of spectral pixels are calibrated by cubic polynomial fitting. By setting a fitting error thresh hold and abandoning the maximum deviation point, an optimization calculation is achieved. The integrated calibration experiment equipment for spectral calibration is developed to enhance calibration efficiency. The spectral calibration result comes from spectral lamp method are verified by monochromator wavelength scanning calibration technique. The result shows that spectral calibration uncertainty of FWHM and center wavelength are both less than 0.08nm, or 5.2% of spectral FWHM.

  6. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  7. Spectral theory of ordinary differential operators

    CERN Document Server

    Weidmann, Joachim

    1987-01-01

    These notes will be useful and of interest to mathematicians and physicists active in research as well as for students with some knowledge of the abstract theory of operators in Hilbert spaces. They give a complete spectral theory for ordinary differential expressions of arbitrary order n operating on -valued functions existence and construction of self-adjoint realizations via boundary conditions, determination and study of general properties of the resolvent, spectral representation and spectral resolution. Special attention is paid to the question of separated boundary conditions, spectral multiplicity and absolutely continuous spectrum. For the case nm=2 (Sturm-Liouville operators and Dirac systems) the classical theory of Weyl-Titchmarch is included. Oscillation theory for Sturm-Liouville operators and Dirac systems is developed and applied to the study of the essential and absolutely continuous spectrum. The results are illustrated by the explicit solution of a number of particular problems including th...

  8. Spectral Light Measurements in Microbenthic Phototrophic Communities with a Fiberoptic Microprobe Coupled to a Sensitive Diode-Array Detector Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    extinction maxima in measured radiance spectra at 430-550 nm (Chl a and carotenoids), 620-625 nm (phycocyanin), 675 nm (Chl a), 745-750 nm (BChl c), 800-810 nm, and 860-880 nm (BChl a). Scalar irradiance spectra exhibited a different spectral composition and a higher light intensity at the sediment surface...

  9. Broad spectral range synchronized flat-top arrayed waveguide grating

    NARCIS (Netherlands)

    Akca, B. Imran; Doerr, Christopher R.; Pollnau, Markus; Ridder, de René M.

    2012-01-01

    A broad-band Mach-Zehnder-interferometer-synchronized flat-top arrayed waveguide grating is presented with a 0.5-dB bandwidth of 12 nm over 90 nm of spectral range and a central excess loss value of -0.5 dB.

  10. Test and analysis of spectral response for UV image intensifier

    Science.gov (United States)

    Qian, Yunsheng; Liu, Jian; Feng, Cheng; Lv, Yang; Zhang, Yijun

    2015-10-01

    The UV image intensifier is one kind of electric vacuum imaging device based on principle of photoelectronic imaging. To achieve solar-blind detection, its spectral response characteristic is extremely desirable. A broad spectrum response measurement system is developed. This instrument uses EQ-99 laser-driven light source to get broad spectrum in the range of 200 nm to 1700 nm. A special preamplifier as well as a test software is work out. The spectral response of the image intensifier can be tested in the range of 200~1700 nm. Using this spectrum response measuring instrument, the UV image intensifiers are tested. The spectral response at the spectral range of 200 nm to 600 nm are obtained. Because of the quantum efficiency of Te-Cs photocathode used in image intens ifier above 280nm wavelength still exists, especially at 280 nm to 320nm.Therefore, high-performance UV filters is required for solar blind UV detection. Based on two sets of UV filters, the influence of solar radiation on solar blind detection is calculated and analyzed.

  11. Laser produced spectrum of Si(2) molecule in the region of 540-1010 nm.

    Science.gov (United States)

    Ojha, K S; Gopal, R

    2008-12-01

    The laser produced spectrum of Si(2) molecule is recorded for the first time using laser ablation technique in the region of 540-1010 nm. About 110 bands are observed in the entire spectral region and all these bands are classified into three band systems, viz. E-X, F-X and G-X of Si(2) molecule lying in the region of 814-1010 nm, 630-900 nm and 546-710 nm, respectively. All these electronic transitions take place from ground state X(3)Sigma(g)(-) state. The molecular constants of all these states have been determined.

  12. Vanadium dioxide spatial light modulator for applications beyond 1200 nm

    Science.gov (United States)

    Anh Do, Phuong; Hendaoui, Ali; Mortazy, Ebrahim; Chaker, Mohamed; Haché, Alain

    2013-02-01

    Spatial light modulators based on vanadium dioxide are used to demonstrate all-optical spectral filtering in the near infrared, up to 1700 nm, with potential to application into the mid-infrared. By spectrally dispersing the shaped beam and transmitting the beam through a vanadium dioxide thin film, the transmission is modified by optically pumping the film locally with a laser beam. Heating causes the film to undergo an insulator-to-metal transition, along with a drop in transmission. The spectrum can be shaped by pumping with a beam at different location and/or different intensity profiles. The method is promising for longer wavelength since the film is more efficient further in the infrared.

  13. Dual-wavelength diode laser with electrically adjustable wavelength distance at 785  nm.

    Science.gov (United States)

    Sumpf, Bernd; Kabitzke, Julia; Fricke, Jörg; Ressel, Peter; Müller, André; Maiwald, Martin; Tränkle, Günther

    2016-08-15

    A spectrally adjustable monolithic dual-wavelength diode laser at 785 nm as an excitation light source for shifted excitation Raman difference spectroscopy (SERDS) is presented. The spectral distance between the two excitation wavelengths can be electrically adjusted between 0 and 2.0 nm using implemented heater elements above the distributed Bragg reflector (DBR) gratings. Output powers up to 180 mW at a temperature of 25°C were measured. The spectral width is smaller than 13 pm, limited by the spectrum analyzer. The device is well-suited for Raman spectroscopy, and the flexible spectral distance allows a target-specific adjustment of the excitation light source for shifted excitation Raman difference spectroscopy (SERDS).

  14. Delayed fluorescence spectroscopy and mechanism of the 730 nm component of chloroplast

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-long; XING Da; FAN Duo-wang; QIAN Long; LU Mai

    2006-01-01

    Charge recombination in reaction center (RC) of photosystem Ⅱ(PS Ⅱ)is regarded as the location of 685 nm delayed fluorescence (DF). The mechanism of 730 nm component appearing in the DF spectrum for chloroplast was studied by various spectral analysis methods. Experimental results of the DF spectrum at different chloroplast concentration show that the intensity of peaks at 685nm and 730 nm ascends with the chloroplast concentration increasing when the concentration is relatively low. When the concentration increases to the level of 7.8 μg/ml, a maximum intensity of the peak at 685 nm appears but the intensity of 730 nm peak still increases. The peak at 730 nm finally reaches a maximum intensity at the chloroplast concentration of 31.2 μg/ml while the intensity of the 685 nm peak has apparently fallen down. The results of absorption spectrum show that the ratios of A685 to A730 keep almost constant with the increasing of chloroplast concentration. Furthermore, the excitation spectrum for 730 nm fluorescence shows that the 685nm light has high excitation efficiency.These results indicate that the 730nm component of DF spectrum is the fluorescence of chlorophyll in PS Ⅰ RC excited by 685 nm DF. Meanwhile, this can be further verified by the invariability of DF spectrum at different delay time (1 second~9 seconds).

  15. Simultaneous sampling technique for two spectral sources

    Science.gov (United States)

    Jarrett, Olin, Jr.

    1987-01-01

    A technique is described that uses a bundle of fiber optics to simultaneously sample a dye laser and a spectral lamp. By the use of a real-time display with this technique, the two signals can be superimposed, and the effect of any spectral adjustments can be immediately accessed. In the NASA's CARS system used for combustion diagnostics, the dye laser mixes with a simultaneously pulsed Nd:YAG laser at 532 nm to probe the vibrational levels of nitrogen. An illustration of the oscilloscopic display of the system is presented.

  16. Lasering in a Waveguide with Scatterers in Diameter 20 nm

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-Xu; LIU Jun-Ye; ZHANG Jia-Hua; DOU Kai

    2004-01-01

    We report random lasing achieved in a MEH-PPV/glass waveguide with the TiO2 scatterers in diameter 20nm that is significantly smaller than submicrometre of TiO2 scatterers in the films or suspensions previously reported on random lasing. The spectral lines are dramatically narrowed by almost two orders of magnitude compared with those excited by a xenon lamp. The amplified spontaneous emission is identified as the dominant mechanism in our system. Light localization might be achieved in a broad class of random materials based on the features of the mean free path l* = 5.4 × 105 nm, kl* > 1 and the Thouless number 6.73 × 10-5 with k being the wave number.

  17. Extended short-wavelength spectral response from InGaAs focal plane arrays

    Science.gov (United States)

    Hoelter, Theodore R.; Barton, Jeffrey B.

    2003-09-01

    InGaAs detector material used in near infrared focal plane arrays (NIR FPAs) has typically been limited in spectral response to a range from approximately 900 nm to 1700 nm. Through special processing techniques, the spectral response can be extended down through the visible spectrum and into the ultraviolet. Test results showing preliminary spectral response from 350nm to 1700 nm, responsivity, sensitivity, corrected uniformity and simultaneous imaging of NIR and visible signals will be presented along with a discussion of anticipated applications for this new sensor technology.

  18. Observation of Quiet Limb in He I 1083.0 nm, H Paschen alpha1281.8 nm and H Brackett gamma 2166.1 nm lines

    Science.gov (United States)

    Prasad Choudhary, Debi

    2016-05-01

    In this paper, we shall present the results of an observational study of the quiet solar limb in the near infrared lines using the New IR Array Camera (NAC) and the vertical spectrograph at the focal plane of McMath-Pierce telescope. The NAC, at the exit port of the spectrograph, was used to record the limb spectrum in HeI 1083.0 nm, Hydrogen Paschen 1281.8 nm and Brackett 2165.5 nm wavelength regions. The NAC is a 1024x1024 InSb Alladin III Detector operating over 1-5 micron range with high density sampling at 0.018 arc second/pixel. The all-reflective optical train minimizes number of surfaces and eliminates ghosts leading to low scatter, ghost-free optics. The close-cycle cryogenic provides a stable cooling environment over six hour period with an accuracy of 0.01K leading to low dark current. The low read out noise combined with low scattered light and dark current makes NAC an ideal detector for making high quality infrared spectral observations of solar limb. The limb spectrums were obtained by placing the spectrograph slit perpendicular to the limb at an interval of 10 degrees around the solar disk. We shall report the intensity profile, line-of-sight velocity and line width distribution around the sun derived from the spectra along the slit.

  19. Spectral ultraviolet measurements by a multichannel monitor and a brewer spectroradiometer: a field study.

    Science.gov (United States)

    Di Menno, I; Moriconi, M L; Di Menno, M; Casale, G R; Siani, A M

    2002-01-01

    Two different instruments for measuring the spectral UV irradiance were used in a field comparison study in July 2000 in Rome, Italy: a Brewer spectrophotometer and a moderate-bandwidth filter radiometer (GUV-511C). The Brewer is designed to measure the solar spectral irradiances in the region from 290 nm to 325 nm with a spectral resolution of 0.5 nm. The GUV-511C measures hand-averaged spectral irradiance at four wavelengths: 305, 320, 340 and 380 nm with a bandwidth depending on the filter type for each channel (about 10 nm full width half maximum, FWHM). Comparisons between the two instruments were made for 5 days for the two wavelengths 305 and 320 nm under different meteorological conditions with the Brewer taken as the reference.

  20. Compressive Spectral Renormalization Method

    CERN Document Server

    Bayindir, Cihan

    2016-01-01

    In this paper a novel numerical scheme for finding the sparse self-localized states of a nonlinear system of equations with missing spectral data is introduced. As in the Petviashivili's and the spectral renormalization method, the governing equation is transformed into Fourier domain, but the iterations are performed for far fewer number of spectral components (M) than classical versions of the these methods with higher number of spectral components (N). After the converge criteria is achieved for M components, N component signal is reconstructed from M components by using the l1 minimization technique of the compressive sampling. This method can be named as compressive spectral renormalization (CSRM) method. The main advantage of the CSRM is that, it is capable of finding the sparse self-localized states of the evolution equation(s) with many spectral data missing.

  1. Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Qiang; Guo, Zhengru; Zhang, Qingshan [Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093 (China); Liu, Yang; Li, Wenxue [State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062 (China); Zeng, Heping, E-mail: hpzeng@phy.ecnu.edu.cn [Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System (Ministry of Education), School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093 (China); State Key Laboratory of Precision Spectroscopy, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062 (China)

    2014-05-19

    Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth. This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.

  2. The other spectral flow

    CERN Document Server

    Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio

    1995-01-01

    Recently we showed that the spectral flow acting on the N=2 twisted topological theories gives rise to a topological algebra automorphism. Here we point out that the untwisting of that automorphism leads to a spectral flow on the untwisted N=2 superconformal algebra which is different from the usual one. This "other" spectral flow does not interpolate between the chiral ring and the antichiral ring. In particular, it maps the chiral ring into the chiral ring and the antichiral ring into the antichiral ring. We discuss the similarities and differences between both spectral flows. We also analyze their action on null states.

  3. In-vivo multi-spectral confocal microscopy

    Science.gov (United States)

    Rouse, Andrew R.; Udovich, Joshua A.; Gmitro, Arthur F.

    2005-03-01

    A multi-spectral confocal microendoscope (MCME) for in-vivo imaging has been developed. The MCME employs a flexible fiber-optic catheter coupled to a slit-scan confocal microscope with an imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The focus mechanism allows for imaging to a maximum tissue depth of 200 microns. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3 micron lateral resolution and 30 micron axial resolution. The system incorporates two laser sources and is therefore capable of simultaneous acquisition of spectra from multiple dyes using dual excitation. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 8nm to 16nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersion characteristics of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. In-vitro, and ex-vivo multi-spectral results are presented.

  4. Measurements of spectral snow albedo at Neumayer, Antarctica

    Directory of Open Access Journals (Sweden)

    S. Wuttke

    2006-03-01

    Full Text Available Spectral albedo in high resolution, from 290 to 1050 nm, has been measured at Neumayer, Antarctica, (70°39' S, 8°15' W during the austral summer 2003/2004. At 500 nm, the spectral albedo nearly reaches unity, with slightly lower values below and above 500 nm. Above 600 nm, the spectral albedo decreases to values between 0.45 and 0.75 at 1000 nm. For one cloudless case an albedo up to 1.01 at 500 nm could be determined. This can be explained by the larger directional component of the snow reflectivity for direct incidence, combined with a slightly mislevelled sensor and the snow surface not being perfectly horizontal. A possible explanation for an observed decline in albedo is an increase in snow grain size. The theoretically predicted increase in albedo with increasing solar zenith angle (SZA could not be observed. This is explained by the small range of SZA during albedo measurements, combined with the effect of changing snow conditions outweighing the effect of changing SZA. The measured spectral albedo serves as input for radiative transfer models, describing radiation conditions in Antarctica.

  5. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between...

  6. Spectral geometry of spacetime

    CERN Document Server

    Kopf, T

    2000-01-01

    Spacetime, understood as a globally hyperbolic manifold, may be characterized by spectral data using a 3+1 splitting into space and time, a description of space by spectral triples and by employing causal relationships, as proposed earlier. Here, it is proposed to use the Hadamard condition of quantum field theory as a smoothness principle.

  7. Hydrocarbon Spectral Database

    Science.gov (United States)

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  8. Spectral Geometry and Causality

    CERN Document Server

    Kopf, T

    1996-01-01

    For a physical interpretation of a theory of quantum gravity, it is necessary to recover classical spacetime, at least approximately. However, quantum gravity may eventually provide classical spacetimes by giving spectral data similar to those appearing in noncommutative geometry, rather than by giving directly a spacetime manifold. It is shown that a globally hyperbolic Lorentzian manifold can be given by spectral data. A new phenomenon in the context of spectral geometry is observed: causal relationships. The employment of the causal relationships of spectral data is shown to lead to a highly efficient description of Lorentzian manifolds, indicating the possible usefulness of this approach. Connections to free quantum field theory are discussed for both motivation and physical interpretation. It is conjectured that the necessary spectral data can be generically obtained from an effective field theory having the fundamental structures of generalized quantum mechanics: a decoherence functional and a choice of...

  9. Snapshot spectral imaging system

    Science.gov (United States)

    Arnold, Thomas; De Biasio, Martin; McGunnigle, Gerald; Leitner, Raimund

    2010-02-01

    Spectral imaging is the combination of spectroscopy and imaging. These fields are well developed and are used intensively in many application fields including industry and the life sciences. The classical approach to acquire hyper-spectral data is to sequentially scan a sample in space or wavelength. These acquisition methods are time consuming because only two spatial dimensions, or one spatial and the spectral dimension, can be acquired simultaneously. With a computed tomography imaging spectrometer (CTIS) it is possible to acquire two spatial dimensions and a spectral dimension during a single integration time, without scanning either spatial or spectral dimensions. This makes it possible to acquire dynamic image scenes without spatial registration of the hyperspectral data. This is advantageous compared to tunable filter based systems which need sophisticated image registration techniques. While tunable filters provide full spatial and spectral resolution, for CTIS systems there is always a tradeoff between spatial and spectral resolution as the spatial and spectral information corresponding to an image cube is squeezed onto a 2D image. The presented CTIS system uses a spectral-dispersion element to project the spectral and spatial image information onto a 2D CCD camera array. The system presented in this paper is designed for a microscopy application for the analysis of fixed specimens in pathology and cytogenetics, cell imaging and material analysis. However, the CTIS approach is not limited to microscopy applications, thus it would be possible to implement it in a hand-held device for e.g. real-time, intra-surgery tissue classification.

  10. DFB Lasers Between 760 nm and 16 μm for Sensing Applications

    Science.gov (United States)

    Zeller, Wolfgang; Naehle, Lars; Fuchs, Peter; Gerschuetz, Florian; Hildebrandt, Lars; Koeth, Johannes

    2010-01-01

    Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 μm and 16 μm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper. PMID:22319259

  11. A Cryogenic Radiometry Based Spectral Responsivity Scale at the National Metrology Centre

    Science.gov (United States)

    Xu, Gan; Huang, Xuebo

    This paper describes the spectral responsivity scale established at the National Metrology Centre (NMC) based on cryogenic radiometry. A primary standard - a mechanically pumped cryogenic radiometer together with a set of intensity-stabilised lasers provides traceability for optical power measurement with an uncertainty in the order of 10-4 at 14 discrete wavelengths in the spectral range from 350 nm to 800 nm. A silicon trap detector, with its absolute responsivity calibrated against the cryogenic radiometer is used as a transfer standard for the calibration of other detectors using a specially built spectral comparator. The relative spectral responsivity of a detector at other wavelengths can be determined through the use of a cavity pyroelectric detector and the extrapolation technique. With this scale, NMC is capable to calibrate the spectral responsivity of different type of photo detectors from 250 nm to 1640 nm with an uncertainty range from 3.7% to 0.3%.

  12. Validation of spectral sky radiance derived from all-sky camera images – a case study

    Directory of Open Access Journals (Sweden)

    K. Tohsing

    2014-01-01

    Full Text Available Spectral sky radiance (380–760 nm is derived from measurements with a Hemispherical Sky Imager (HSI system. The HSI consists of a commercial compact CCD (charge coupled device camera equipped with a fish-eye lens and provides hemispherical sky images in three reference bands such as red, green and blue. To obtain the spectral sky radiance from these images non-linear regression functions for various sky conditions have been derived. The camera-based spectral sky radiance was validated by spectral sky radiance measured with a CCD spectroradiometer. The spectral sky radiance for complete distribution over the hemisphere between both instruments deviates by less than 20% at 500 nm for all sky conditions and for zenith angles less than 80°. The reconstructed spectra of the wavelength 380 nm to 760 nm between both instruments at various directions deviate by less then 20% for all sky conditions.

  13. Spectral analysis of Cu2+ and Mn2+ ions doped borofluorophosphate glasses

    Indian Academy of Sciences (India)

    B Sudhakar Reddy; S Buddhudu

    2007-10-01

    We report here on the development and spectral analysis of Cu2+ (0.5 mol%) and Mn2+ (0.5 mol%) ions doped in two new series of glasses. The visible absorption spectra of Cu2+ and Mn2+ glasses have shown broad absorption bands at 820 nm and 495 nm, respectively. For Cu2+ BFP glasses, excitation at 380 nm, a blue emission at 441 nm and also a weak emission at 418 nm ions have been observed. For Mn2+ ions doped BFP glasses, excitation at 410 nm and a red shift at 605 nm emission have been observed.

  14. Large-mode-area hybrid photonic crystal fiber amplifier at 1178 nm

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Chen, Mingchen; Shirakawa, Akira

    2015-01-01

    Amplification of 1178 nm light is demonstrated in a large-mode-area single-mode ytterbium-doped hybrid photonic crystal fiber, relying on distributed spectral filtering of spontaneous emission at shorter wavelengths. An output power of 53 W is achieved with 29 dB suppression of parasitic lasing...

  15. Femtosecond stimulated Raman spectrometer in the 320-520nm range.

    Science.gov (United States)

    Pontecorvo, E; Kapetanaki, S M; Badioli, M; Brida, D; Marangoni, M; Cerullo, G; Scopigno, T

    2011-01-17

    Multi-µJ narrow-bandwidth (≈ 10 cm(-1)) picosecond pulses, broadly tunable in the visible-UV range (320-520 nm), are generated by spectral compression of femtosecond pulses emitted by an amplified Ti:sapphire system. Such pulses provide the ideal Raman pump for broadband femtosecond stimulated Raman spectroscopy, as here demonstrated on a heme protein.

  16. Narrow line width operation of a 980 nm gain guided tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Barrientos-Barria, Jessica;

    2011-01-01

    We demonstrate two different schemes for the spectral narrowing of a 12 emitter 980 nm gain guided tapered diode laser bar. In the first scheme, a reflective grating has been used in a Littman Metcalf configuration and the wavelength of the laser emission could be narrowed down from more than 5.5...

  17. Hypersensitisation using 266nm Laser Light

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Kristensen, Martin

    UV-hypersensitisation using 266nm VW-light on hydrogenated Ge-doped fibre is reported. The optimum fluence to be between 5 to 10 kJ/cm2, coinciding with results obtained using 355nm light, indicating same end-process in both reactions.......UV-hypersensitisation using 266nm VW-light on hydrogenated Ge-doped fibre is reported. The optimum fluence to be between 5 to 10 kJ/cm2, coinciding with results obtained using 355nm light, indicating same end-process in both reactions....

  18. Hypersensitisation using 266nm Laser Light

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Kristensen, Martin

    UV-hypersensitisation using 266nm VW-light on hydrogenated Ge-doped fibre is reported. The optimum fluence to be between 5 to 10 kJ/cm2, coinciding with results obtained using 355nm light, indicating same end-process in both reactions.......UV-hypersensitisation using 266nm VW-light on hydrogenated Ge-doped fibre is reported. The optimum fluence to be between 5 to 10 kJ/cm2, coinciding with results obtained using 355nm light, indicating same end-process in both reactions....

  19. Lithography strategy for 65-nm node

    Science.gov (United States)

    Borodovsky, Yan A.; Schenker, Richard E.; Allen, Gary A.; Tejnil, Edita; Hwang, David H.; Lo, Fu-Chang; Singh, Vivek K.; Gleason, Robert E.; Brandenburg, Joseph E.; Bigwood, Robert M.

    2002-07-01

    Intel will start high volume manufacturing (HVM) of the 65nm node in 2005. Microprocessor density and performance trends will continue to follow Moore's law and cost-effective patterning solutions capable of supporting it have to be found, demonstrated and developed during 2002-2004. Given the uncertainty regarding the readiness and respective capabilities of 157nm and 193nm lithography to support 65nm technology requirements, Intel is developing both lithographic options and corresponding infrastructure with the intent to use both options in manufacturing. Development and use of dual lithographic options for a given technology node in manufacturing is not a new paradigm for Intel: whenever introduction of a new exposure wavelength presented excessive risk to the manufacturing schedule, Intel developed parallel patterning approaches in time for the manufacturing ramp. Both I-line and 248nm patterning solutions were developed and successfully used in manufacturing of the 350nm node at Intel. Similarly, 248nm and 193nm patterning solutions were fully developed for 130nm node high volume manufacturing.

  20. Spectral properties of different phase composition TiO2

    Science.gov (United States)

    Shymanovska, Valentyna V.; Bezrodna, Tamara V.; Melnyk, Vladimir I.; Manzhara, Viktor S.; Khalyavka, Tatjana A.; Viktorova, Tatjana I.; Baran, Jan

    2004-07-01

    Characteristic scattering band in the spectral region of 280-380 rim with the maximum of 300-3 10 nm is observed in the spectra of diffuse scattering for rutile, contrary to anatase sample. Spectral parameters of this band depend on the treatment temperature. Doping of Ti02 samples with Cu, Fe, Co, Cr atoms does not affect the spectral position of the band wing in their diffuse scattering. Luminescence spectra of rutile have only short-wavelength components. Anatase has both fluorescence and phosphorescence at T=4.2 K. At room temperature there is no luminescence detected. Cation-doped anatase does not luminescence at all studied temperatures. Their absorption spectra have a new band in the region of 325-405 nm, which spectral parameters depend on the type ofdoping cation.

  1. Dust Explosion Characteristics of Agglomerated 35 nm and 100 nm Aluminum Particles

    Directory of Open Access Journals (Sweden)

    Hong-Chun Wu

    2010-01-01

    Full Text Available In the experiment, nanoparticles of 35 nm Al and 100 nm Al powders, respectively, formed particles with average sizes of 161 nm and 167 nm in agglomeration. The characteristics of dust cloud explosions with the two powder sizes, 35 nm and 100 nm, revealed considerable differences, as shown here: (dp/dtmax-35 nm = 1254 bar/s, (dp/dtmax-100 nm = 1105 bar/s; Pmax-35 nm = 7.5 bar, Pmax-100 nm = 12.3 bar, and MEC-35 nm = 40 g/m3, MEC-100 nm = 50 g/m3. The reason of Pmax-35 nm value is smaller than Pmax-100 nm may be due to agglomeration. From an analysis of the explosive residue, the study found that nanoparticles of 35 nm Al powder became filamentous strands after an explosion, where most of 100 nm Al nanoparticles maintained a spherical structure, This may be because the initial melting temperature of 35 nm Al is 435.71°C, while that for 100 nm Al is 523.58°C, higher by 87.87°C. This study discovered that explosive property between the 35 nm Al and 100 nm Al powders after agglomeration were different.

  2. Spectral signatures of hydrilla from a tank and field setting

    Institute of Scientific and Technical Information of China (English)

    Alfonso BLANCO; John J.QU; William E.ROPER

    2012-01-01

    The invasion of hydrilla in many waterways has caused significant problems resulting in high maintenance costs for eradicating this invasive aquatic weed.Present identification methods employed for detecting hydrilla invasions such as aerial photography and videos are difficult,costly,and time consuming.Remote sensing has been used for assessing wetlands and other aquatic vegetation,but very little information is available for detecting hydrilla invasions in coastal estuaries and other water bodies.The objective of this study is to construct a library of spectral signatures for identifying and classifying hydrilla invasions.Spectral signatures of hydrilla were collected from an experimental tank and field locations in a coastal estuary in the upper Chesapeake Bay.These measurements collected from the experimental tank,resulted in spectral signatures with an average peak surface reflectance in the near-infrared (NIR) region of 16% at a wavelength of 818 nm.However,the spectral measurements,collected in the estuary,resulted in a very different spectral signature with two surface reflectance peaks of 6% at wavelengths of 725 nm and 818 nm.The difference in spectral signatures between sites are a result of the components in the water column in the estuary because of increased turbidity (e.g.,nutrients,dissolved matter and suspended matter),and canopy being lower (submerged) in the water column.Spectral signatures of hydrilla observed in the tank and the field had similar characteristics with low reflectance in visible region of the spectrum from 400 to 700 nm,but high in the NIR region from 700 to 900 nm.

  3. Spectral characteristics analysis of red tide water in mesocosm experiment

    Science.gov (United States)

    Cui, Tingwei; Zhang, Jie; Zhang, Hongliang; Ma, Yi; Gao, Xuemin

    2003-05-01

    Mesocosm ecosystem experiment with seawater enclosed of the red tide was carried out from July to September 2001. We got four species of biology whose quantities of bion are dominant in the red tide. During the whole process from the beginning to their dying out for every specie, in situ spectral measurements were carried out. After data processing, characteristic spectra of red tide of different dominant species are got. Via comparison and analysis of characteristics of different spectra, we find that in the band region between 685 and 735 nanometers, spectral characteristics of red tide is apparently different from that of normal water. Compared to spectra of normal water, spectra of red tide have a strong reflectance peak in the above band region. As to spectra of red tide dominated by different species, the situations of reflectance peaks are also different: the second peak of Mesodinium rubrum spectrum lies between 726~732 nm, which is more than 21nm away from the other dominant species spectra"s Leptocylindrus danicus"s second spectral peak covers 686~694nm; that of Skeletonema costatum lies between 691~693 nm. Chattonella marina"s second spectral peak lies about 703~705 nm. Thus we can try to determine whether red tide has occurred according to its spectral data. In order to monitor the event of red tide and identify the dominant species by the application of the technology of hyperspectral remote sensing, acquiring spectral data of different dominant species of red tide as much as possible becomes a basic work to be achieved for spectral matching, information extraction and so on based on hyperspectral data.

  4. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  5. Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar

    Science.gov (United States)

    Burton, S. P.; Hair, J. W.; Kahnert, M.; Ferrare, R. A.; Hostetler, C. A.; Cook, A. L.; Harper, D. B.; Berkoff, T. A.; Seaman, S. T.; Collins, J. E.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    Linear particle depolarization ratio is presented for three case studies from the NASA Langley airborne High Spectral Resolution Lidar-2 HSRL-2). Particle depolarization ratio from lidar is an indicator of non-spherical particles and is sensitive to the fraction of non-spherical particles and their size. The HSRL-2 instrument measures depolarization at three wavelengths: 355, 532, and 1064 nm. The three measurement cases presented here include two cases of dust-dominated aerosol and one case of smoke aerosol. These cases have partial analogs in earlier HSRL-1 depolarization measurements at 532 and 1064 nm and in literature, but the availability of three wavelengths gives additional insight into different scenarios for non-spherical particles in the atmosphere. A case of transported Saharan dust has a spectral dependence with a peak of 0.30 at 532 nm with smaller particle depolarization ratios of 0.27 and 0.25 at 1064 and 355 nm, respectively. A case of aerosol containing locally generated wind-blown North American dust has a maximum of 0.38 at 1064 nm, decreasing to 0.37 and 0.24 at 532 and 355 nm, respectively. The cause of the maximum at 1064 nm is inferred to be very large particles that have not settled out of the dust layer. The smoke layer has the opposite spectral dependence, with the peak of 0.24 at 355 nm, decreasing to 0.09 and 0.02 at 532 and 1064 nm, respectively. The depolarization in the smoke case may be explained by the presence of coated soot aggregates. We note that in these specific case studies, the linear particle depolarization ratio for smoke and dust-dominated aerosol are more similar at 355 nm than at 532 nm, having possible implications for using the particle depolarization ratio at a single wavelength for aerosol typing.

  6. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band

    Science.gov (United States)

    Firstov, Sergei V.; Alyshev, Sergey V.; Riumkin, Konstantin E.; Khopin, Vladimir F.; Guryanov, Alexey N.; Melkumov, Mikhail A.; Dianov, Evgeny M.

    2016-06-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150–1530 nm) and longer wavelength (1600–1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640–1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique.

  7. [Study on spectral reflectance characteristics of hemp canopies].

    Science.gov (United States)

    Tian, Yi-Chen; Jia, Kun; Wu, Bing-Fang; Li, Qiang-Zi

    2010-12-01

    Hemp (Cannabis sativa L.) is a special economic crop and widely used in many field. It is significative for the government to master the information about planting acreage and spatial distribution of hemp for hemp industrial policy decision in China. Remote sensing offers a potential way of monitoring large area for the cultivation of hemp. However, very little study on the spectral properties of hemp is available in the scientific literature. In the present study, the spectral reflectance characteristics of hemp canopy were systematically analyzed based on the spectral data acquired with ASD FieldSpec portable spectrometer. The wavebands and its spectral resolution for discriminating hemp from other plants were identified using difference analysis. The major differences in canopy reflectance of hemp and other plants were observed near 530, 552, 734, 992, 1 213, 1 580 and 2 199 nm, and the maximal difference is near 734 nm. The spectral resolution should be 30 nm or less in visible and near infrared regions, and 50 nm or less in middle infrared regions.

  8. The Spectral VEP in Normal Subjects and Dichromats

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    The spectral VEP in 13 normal subjects(25 eyes),four cases(8eyes)of protanopes and 8 cases(15 eyes)of deuteranopes were tested.Innormal subjects,the shortest latencies of N1,P1,N2 were in 560 nm and thegreatest amplitudes of N1-P1 and P1-N2 were in 560-570 nm,around which thelatencies were delayed and the amplitudes were decreased as the wave-lengthes of stimulative light increased or decreased gradually.The spectralVEP pattern of deuteranopes was similar to the normal subjects.In theprotanopes,the shor...

  9. Diffuse optical characterization of collagen absorption from 500 to 1700 nm

    Science.gov (United States)

    Sekar, Sanathana Konugolu Venkata; Bargigia, Ilaria; Mora, Alberto Dalla; Taroni, Paola; Ruggeri, Alessandro; Tosi, Alberto; Pifferi, Antonio; Farina, Andrea

    2017-01-01

    Reduction in scattering, high absorption, and spectral features of tissue constituents above 1000 nm could help in gaining higher spatial resolution, penetration depth, and specificity for in vivo studies, opening possibilities of near-infrared diffuse optics in tissue diagnosis. We present the characterization of collagen absorption over a broadband range (500 to 1700 nm) and compare it with spectra presented in the literature. Measurements were performed using a time-domain diffuse optical technique. The spectrum was extracted by carefully accounting for various spectral distortion effects, due to sample and system properties. The contribution of several tissue constituents (water, lipid, collagen, oxy, and deoxy-hemoglobin) to the absorption properties of a collagen-rich in vivo bone location, such as radius distal in the 500- to 1700-nm wavelength region, is also discussed, suggesting bone diagnostics as a potential area of interest.

  10. Unmixing of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available -bearing oxide/hydroxide/sulfate minerals in complex mixtures be obtained using hyperspectral data? Debba (CSIR) Unmixing of spectrally similar minerals MERAKA 2009 3 / 18 Method of spectral unmixing Old method: problem Linear Spectral Mixture Analysis (LSMA...

  11. Laser hypersensitisation using 266nm light

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, J.; Kristensen, Martin

    2005-01-01

    UV hypersensitisation using CW 266 nm light on hydrogenated Ge-doped fibre is reported. The optimum sensitisation fluence is found to be in the range of 5 to 10 kJ/cm2, coinciding with previous results obtained using 355 nm light, indicating the same end-process used in the photochemical reaction...

  12. Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs.

    Science.gov (United States)

    Brown, M

    1998-10-15

    The fourth-harmonic generation of broadband 243-nm radiation is reported. The broadband radiation is achieved by implementation of a multicrystal design to overcome spectral bandwidth limitations, and a plane-wave analysis is developed that shows increased spectral bandwidths for these designs. The fourth harmonic of a Cr:LiSAF laser operating at 972 nm is generated in beta-barium borate (BBO). The results demonstrate a spectral bandwidth at 243 nm more than five times broader than that which is expected from a single BBO crystal of equivalent length.

  13. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  14. Temporal Lorentzian spectral triples

    Science.gov (United States)

    Franco, Nicolas

    2014-09-01

    We present the notion of temporal Lorentzian spectral triple which is an extension of the notion of pseudo-Riemannian spectral triple with a way to ensure that the signature of the metric is Lorentzian. A temporal Lorentzian spectral triple corresponds to a specific 3 + 1 decomposition of a possibly noncommutative Lorentzian space. This structure introduces a notion of global time in noncommutative geometry. As an example, we construct a temporal Lorentzian spectral triple over a Moyal-Minkowski spacetime. We show that, when time is commutative, the algebra can be extended to unbounded elements. Using such an extension, it is possible to define a Lorentzian distance formula between pure states with a well-defined noncommutative formulation.

  15. Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants.

    Science.gov (United States)

    Ogawa, Yuri; Falkowski, Marcin; Narendra, Ajay; Zeil, Jochen; Hemmi, Jan M

    2015-06-07

    Ants are thought to be special among Hymenopterans in having only dichromatic colour vision based on two spectrally distinct photoreceptors. Many ants are highly visual animals, however, and use vision extensively for navigation. We show here that two congeneric day- and night-active Australian ants have three spectrally distinct photoreceptor types, potentially supporting trichromatic colour vision. Electroretinogram recordings show the presence of three spectral sensitivities with peaks (λmax) at 370, 450 and 550 nm in the night-active Myrmecia vindex and peaks at 370, 470 and 510 nm in the day-active Myrmecia croslandi. Intracellular electrophysiology on individual photoreceptors confirmed that the night-active M. vindex has three spectral sensitivities with peaks (λmax) at 370, 430 and 550 nm. A large number of the intracellular recordings in the night-active M. vindex show unusually broad-band spectral sensitivities, suggesting that photoreceptors may be coupled. Spectral measurements at different temporal frequencies revealed that the ultraviolet receptors are comparatively slow. We discuss the adaptive significance and the probability of trichromacy in Myrmecia ants in the context of dim light vision and visual navigation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Spectral recognition of graphs

    Directory of Open Access Journals (Sweden)

    Cvetković Dragoš

    2012-01-01

    Full Text Available At some time, in the childhood of spectral graph theory, it was conjectured that non-isomorphic graphs have different spectra, i.e. that graphs are characterized by their spectra. Very quickly this conjecture was refuted and numerous examples and families of non-isomorphic graphs with the same spectrum (cospectral graphs were found. Still some graphs are characterized by their spectra and several mathematical papers are devoted to this topic. In applications to computer sciences, spectral graph theory is considered as very strong. The benefit of using graph spectra in treating graphs is that eigenvalues and eigenvectors of several graph matrices can be quickly computed. Spectral graph parameters contain a lot of information on the graph structure (both global and local including some information on graph parameters that, in general, are computed by exponential algorithms. Moreover, in some applications in data mining, graph spectra are used to encode graphs themselves. The Euclidean distance between the eigenvalue sequences of two graphs on the same number of vertices is called the spectral distance of graphs. Some other spectral distances (also based on various graph matrices have been considered as well. Two graphs are considered as similar if their spectral distance is small. If two graphs are at zero distance, they are cospectral. In this sense, cospectral graphs are similar. Other spectrally based measures of similarity between networks (not necessarily having the same number of vertices have been used in Internet topology analysis, and in other areas. The notion of spectral distance enables the design of various meta-heuristic (e.g., tabu search, variable neighbourhood search algorithms for constructing graphs with a given spectrum (spectral graph reconstruction. Several spectrally based pattern recognition problems appear in many areas (e.g., image segmentation in computer vision, alignment of protein-protein interaction networks in bio

  17. Airborne hyperspectral imaging in the visible-to-mid wave infrared spectral range by fusing three spectral sensors

    Science.gov (United States)

    Jakovels, Dainis; Filipovs, Jevgenijs; Erinš, Gatis; Taskovs, Juris

    2014-10-01

    Airborne hyperspectral imaging is widely used for remote sensing of environment. The choice of spectral region usually depends on the availability and cost of the sensor. Visible-to-near infrared (400-1100 nm) spectral range corresponds to spectral sensitivity of relatively cheap Si detectors therefore it is the most commonly used. The implementation of shortwave infrared (1100-3000 nm) requires more expensive solutions, but can provide valuable information about the composition of the substance. Mid wave infrared (3000-8000 nm) is rarely used for civilian applications, but it provides information on the thermal emission of materials. The fusion of different sensors allows spectral analysis of a wider spectral range combining and improving already existing algorithms for the analysis of chemical content and classification. Here we introduce our Airborne Surveillance and Environmental Monitoring System (ARSENAL) that was developed by fusing seven sensors. The first test results from the fusion of three hyperspectral imaging sensors in the visible-to-mid wave infrared (365-5000 nm) are demonstrated. Principal component analysis (PCA) is applied to test correlation between principal components (PCs) and common vegetation indices.

  18. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  19. Thermophotovoltaic Spectral Control

    Energy Technology Data Exchange (ETDEWEB)

    DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman

    2004-06-09

    Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.

  20. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this NASA SBIR Phase I proposal is to develop a novel type of high resolving power diffraction gratings based on volume Bragg gratings technology. The...

  1. High Resolving Power Volume Diffractive Gratings for 400-2700 nm Spectral Range Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main purpose of this NASA SBIR Phase II proposal is development of a novel type of high resolving power diffraction gratings based on volume Bragg gratings...

  2. Solar spectral irradiance variability in cycle 24: observations and models

    Directory of Open Access Journals (Sweden)

    Marchenko Sergey V.

    2016-01-01

    Full Text Available Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI, we characterize both short-term (solar rotation and long-term (solar cycle changes of the solar spectral irradiance (SSI between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2 and Solar Radiation and Climate Experiment (SORCE instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2 and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S models.

  3. Rapid spectral analysis for spectral imaging.

    Science.gov (United States)

    Jacques, Steven L; Samatham, Ravikant; Choudhury, Niloy

    2010-07-15

    Spectral imaging requires rapid analysis of spectra associated with each pixel. A rapid algorithm has been developed that uses iterative matrix inversions to solve for the absorption spectra of a tissue using a lookup table for photon pathlength based on numerical simulations. The algorithm uses tissue water content as an internal standard to specify the strength of optical scattering. An experimental example is presented on the spectroscopy of portwine stain lesions. When implemented in MATLAB, the method is ~100-fold faster than using fminsearch().

  4. Final report on the torque comparison EURAMET.M.T-S2, measurand torque: 10 N.m, 20 N.m, 40 N.m, 60 N.m, 80 N.m, and 100 N.m

    Science.gov (United States)

    Röske, Dirk

    2017-01-01

    The purpose of the EURAMET comparison EURAMET.M.T-S2 was to compare the measuring capabilities up to 100 N.m of a reference-type torque calibration machine of ZAG, Slovenia, with the torque standard machine of the Physikalisch-Technische Bundesanstalt (PTB, Braunschweig, Germany) acting as pilot laboratory. A very stable TT1 torque transducer with well-known properties and two torque measuring bridges was used as travelling standard. According to the technical protocol, torque steps of at least 10 N.m, 20 N.m, 40 N.m, 60 N.m, 80 N.m, and 100 N.m had to be measured both in clockwise and anticlockwise directions. For each of the torque steps and both senses of direction of the torque vector, En values were calculated. The results are in general in good agreement with the claimed measurement uncertainties except for the very first measurement at ZAG with additional support and four plate couplings. It seems to be sufficient in a vertical set-up (vertical torque axis) to use only two flexible couplings and there is no need for a further support between the transducers. The measurements with two couplings fulfill the requirement to the En value and support ZAG's claimed uncertainties of measurement. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Studies on nanosecond 532nm and 355nm and ultrafast 515nm and 532nm laser cutting super-hard materials

    Science.gov (United States)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2017-02-01

    In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.

  6. Spectral Signatures of Surface Materials in Pig Buildings

    DEFF Research Database (Denmark)

    Zhang, GuoQiang; Strøm, Jan; Blanke, Mogens

    2006-01-01

    and after high-pressure water cleaning. The spectral signatures of the surface materials and dirt attached to the surfaces showed that it is possible to make discrimination and hence to classify areas that are visually clean. When spectral bands 450, 600, 700 and 800 nm are chosen, there are at least two...... the cleaning process and to minimise the amount of water and electricity consumed. This research is aimed at utilising a spectral imaging method for cleanliness detection. Consequently, information on the reflectance of building materials and contamination in different spectral ranges is important...... in the investigation. Reflectance data were sampled under controlled lighting conditions using a spectrometer communicating with a portable computer. The measurements were performed in a laboratory with materials used in a pig house for 4-5 weeks. The spectral data were collected for the surfaces before, during...

  7. Compact multispectral fluorescence imaging system with spectral multiplexed volume holographic grating

    Science.gov (United States)

    Lv, Yanlu; Cai, Chuangjian; Bai, Jing; Luo, Jianwen

    2016-12-01

    Traditional spectral imaging systems mainly rely on spatial scanning or spectral scanning methods to acquire spatial and spectral features. The acquisition is time-consuming and cannot fully satisfy the need of monitoring dynamic phenomenon and observing different structures of the specimen simultaneously. To overcome these barriers, we develop a video-rate simultaneous multispectral imaging system built with a spectral multiplexed volume holographic grating (VHG) and few optical components. Four spectral multiplexed volume holograms optimized for four discrete spectral bands (centered at 488 nm, 530 nm, 590 nm and 620 nm) are recorded into an 8×12 mm photo-thermal refractive glass. The diffraction efficiencies of all the holograms within the multiplexed VHG are greater than 80%. With the high throughout multiplexed VHG, the system can work with both reflection and fluorescence modes and allow simultaneous acquisition of spectral and spatial information with a single exposure. Imaging experiments demonstrate that the multispectral images of the target illuminated with white light source can be obtained. Fluorescence images of multiple fluorescence objects (two glass beads filled with 20 uL 1.0 mg/mL quantum dots solutions that emit 530 +/- 15 nm and 620 +/- 15 nm fluorescence, respectively) buried 3 mm below the surface of a tissue mimicking phantom are acquired. The results demonstrate that the system can provide complementary information in fluorescence imaging. The design diagram of the proposed system is given to explain the advantage of compactness and flexibility in integrating with other imaging platforms.

  8. Applicability of spectral indices on thickness identification of oil slick

    Science.gov (United States)

    Niu, Yanfei; Shen, Yonglin; Chen, Qihao; Liu, Xiuguo

    2016-10-01

    Hyperspectral remote sensing technology has played a vital role in the identification and monitoring of oil spill events, and amount of spectral indices have been developed. In this paper, the applicability of six frequently-used indices is analyzed, and a combination of spectral indices in aids of support vector machine (SVM) algorithm is used to identify the oil slicks and corresponding thickness. The six spectral indices are spectral rotation (SR), spectral absorption depth (HI), band ratio of blue and green (BG), band ratio of BG and shortwave infrared index (BGN), 555nm and 645nm normalized by the blue band index (NB) and spectral slope (ND). The experimental study is conducted in the Gulf of Mexico oil spill zone, with Airborne Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery captured in May 17, 2010. The results show that SR index is the best in all six indices, which can effectively distinguish the thickness of the oil slick and identify it from seawater; HI index and ND index can obviously distinguish oil slick thickness; BG, BGN and NB are more suitable to identify oil slick from seawater. With the comparison among different kernel functions of SVM, the classify accuracy show that the polynomial and RBF kernel functions have the best effect on the separation of oil slick thickness and the relatively pure seawater. The applicability of spectral indices of oil slick and the method of oil film thickness identification will in aids of oil/gas exploration and oil spill monitoring.

  9. Status of MODIS spatial and spectral characterization and performance

    Science.gov (United States)

    Link, Dan; Wang, Zhipeng; Xiong, Xiaoxiong

    2016-05-01

    Since launch, both Terra and Aqua MODIS instruments have continued to operate and make measurements of the earth's top of atmospheric (TOA) radiances and reflectance. MODIS collects data in 36 spectral bands covering wavelengths from 0.41 to 14.4 μm. These spectral bands and detectors are located on four focal plane assemblies (FPAs). MODIS on-board calibrators (OBC) include a spectro-radiometric calibration assembly (SRCA), which was designed to characterize and monitor sensor spatial and spectral performance, such as on-orbit changes in the band-to-band registration (BBR), modulation transfer function (MTF), spectral band center wavelengths (CW) and bandwidths (BW). In this paper, we provide a status update of MODIS spatial and spectral characterization and performance, following a brief description of SRCA functions and on-orbit calibration activities. Sensor spatial and spectral performance parameters derived from SRCA measurements are introduced and discussed. Results show that on-orbit spatial performance has been very stable for both Terra and Aqua MODIS instruments. The large BBR shifts in Aqua MODIS, an issue identified pre-launch, have remained the same over its entire mission. On-orbit changes in CW and BW are less than 0.5 nm and 1 nm, respectively, for most VIS/NIR spectral bands of both instruments.

  10. Laser Damage Growth in Fused Silica with Simultaneous 351 nm and 1053 nm irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Norton, M A; Carr, A V; Carr, C W; Donohue, E E; Feit, M D; Hollingsworth, W G; Liao, Z; Negres, R A; Rubenchik, A M; Wegner, P J

    2008-10-24

    Laser-induced growth of optical damage often determines the useful lifetime of an optic in a high power laser system. We have extended our previous work on growth of laser damage in fused silica with simultaneous 351 nm and 1053 nm laser irradiation by measuring the threshold for growth with various ratios of 351 nm and 1053 nm fluence. Previously we reported that when growth occurs, the growth rate is determined by the total fluence. We now find that the threshold for growth is dependent on both the magnitude of the 351 nm fluence as well as the ratio of the 351 nm fluence to the 1053 nm fluence. Furthermore, the data suggests that under certain conditions the 1053 nm fluence does not contribute to the growth.

  11. How close to detailed spectral calculations is the

    Directory of Open Access Journals (Sweden)

    William Wandji Nyamsi

    2014-12-01

    Full Text Available The k$k$-distribution method and the correlated-k$k$ approximation of Kato et al. (1999 is a smart approach originally designed for broadband calculations of the solar radiation at ground level by dividing the solar spectrum in 32 spectral bands. The approach is a priori not suited for calculation of spectral irradiance. Nevertheless, this paper evaluates its performance when compared to more detailed spectral calculations serving as references for the spectral intervals no. 3 [283, 307] nm to 26 [1613, 1965] nm for clear and cloudy situations. The evaluation is based on numerical simulations. The clearer the sky, the greater the root mean square error (RMSE in all bands. In the spectral intervals no. 3 and 4 [307, 328] nm, the irradiance is underestimated by large – approximately −90 % and −17 % in relative value - because the wavelength interval is large with respect to the absorption by ozone and a single value of ozone cross section is not enough for each interval. For each spectral interval from no. 5 [328, 363] nm to no. 18 [743, 791] nm, and for both global and direct radiation, the bias and the RMSE are less than 1.5 % of the irradiance in the corresponding interval under clear skies and may amount to 3 % in cloudy conditions. For greater wavelength intervals no. 19 to no. 26, the relative bias and RMSE show a tendency to increase with wavelength and may reach 8 % and 7 % for global and direct under clear skies respectively, and 11 % and 15 % under cloudy skies.

  12. DPAL pump system exceeding 3kW at 766nm and 30 GHz bandwidth

    Science.gov (United States)

    Koenning, Tobias; McCormick, Dan; Irwin, David; Stapleton, Dean; Guiney, Tina; Patterson, Steve

    2016-03-01

    Due to their low quantum defect, diode pumped alkali metal vapor lasers (DPALs) offer the promise of scalability to very high average power levels while maintaining excellent beam quality. Research on DPALs has progressed to ever increasing power levels across multiple gain media species over the last years, necessitating pump power in the kW range. Each material requires a specific pump wavelength: near 852nm for cesium, 780nm for rubidium, 766nm for potassium, and 670nm for lithium atoms. The shorter pump wavelength below 800nm are outside the typical wavelength range for pump diodes developed for diode pumped solid state lasers (DPSS). The biggest challenge in pumping these materials efficiently is the need for maintaining the narrow gain media absorption band of approximately 0.01nm while greatly increasing power. Typical high power diode lasers achieve spectral widths around 3nm (FWHM) in the near infrared spectrum, but optical gratings may be used internal or external to the cavity to reduce the spectral width. Recently, experimental results have shown yet narrower line widths ranging from picometers at very low power levels to sub-100 picometers for water cooled stacks around 1kW of output power. The focus of this work is the development of a fiber-based pump system for potassium DPAL. The individual tasks are the development of high power 766nm chip material, a fiber-coupled module as a building block, and a scalable system design to address power requirements from hundreds of watts to tens of kilowatts. Results for a 3kW system achieving ~30GHz bandwidth at 766nm will be shown. Approaches for power-scaling and size reduction will be discussed.

  13. [Study on the arc spectral information for welding quality diagnosis].

    Science.gov (United States)

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  14. High-q microring resonator with narrow free spectral range for pulse repetition rate multiplication

    DEFF Research Database (Denmark)

    Pu, Minhao; Ji, Hua; Frandsen, Lars Hagedorn

    2009-01-01

    We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz.......We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz....

  15. Bipolar spectral associative memories.

    Science.gov (United States)

    Spencer, R G

    2001-01-01

    Nonlinear spectral associative memories are proposed as quantized frequency domain formulations of nonlinear, recurrent associative memories in which volatile network attractors are instantiated by attractor waves. In contrast to conventional associative memories, attractors encoded in the frequency domain by convolution may be viewed as volatile online inputs, rather than nonvolatile, off-line parameters. Spectral memories hold several advantages over conventional associative memories, including decoder/attractor separability and linear scalability, which make them especially well suited for digital communications. Bit patterns may be transmitted over a noisy channel in a spectral attractor and recovered at the receiver by recurrent, spectral decoding. Massive nonlocal connectivity is realized virtually, maintaining high symbol-to-bit ratios while scaling linearly with pattern dimension. For n-bit patterns, autoassociative memories achieve the highest noise immunity, whereas heteroassociative memories offer the added flexibility of achieving various code rates, or degrees of extrinsic redundancy. Due to linear scalability, high noise immunity and use of conventional building blocks, spectral associative memories hold much promise for achieving robust communication systems. Simulations are provided showing bit error rates for various degrees of decoding time, computational oversampling, and signal-to-noise ratio.

  16. Noncomputable Spectral Sets

    CERN Document Server

    Teutsch, J

    2007-01-01

    It is possible to enumerate all computer programs. In particular, for every partial computable function, there is a shortest program which computes that function. f-MIN is the set of indices for shortest programs. In 1972, Meyer showed that f-MIN is Turing equivalent to 0'', the halting set with halting set oracle. This paper generalizes the notion of shortest programs, and we use various measures from computability theory to describe the complexity of the resulting "spectral sets." We show that under certain Godel numberings, the spectral sets are exactly the canonical sets 0', 0'', 0''', ... up to Turing equivalence. This is probably not true in general, however we show that spectral sets always contain some useful information. We show that immunity, or "thinness" is a useful characteristic for distinguishing between spectral sets. In the final chapter, we construct a set which neither contains nor is disjoint from any infinite arithmetic set, yet it is 0-majorized and contains a natural spectral set. Thus ...

  17. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity configurat......We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...... configuration instead of the extended cavity configuration can bring 130-nm tuning range around 1330-nm wavelength. The air-coupled cavity is known to reduce the quantum confinement factor in VCSELs, increasing threshold. In our air-coupled cavity HCG VCSEL case, the very short power penetration length...

  18. Design of an 1800 nm Raman Amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    , also extended band amplifiers are required. As a solution to the latter challenge, Raman amplifiers are suggested as promising candidates. The main hurdle when designing a long wavelength Raman amplifier is the increased intrinsic fiber attenuation which as a consequence leads to an increase...... in the pump power requirement and deteriorated noise properties. Here we demonstrate a Raman amplifier designed for signal wavelengths around 1800 nm. The amplification fiber is an OFS PM Raman fiber, and is pumped by a Raman fiber laser emitting at 1680 nm [4]. The amplifier was pumped co......-polarized and backward, with respect to the singal. In Fig. 2 a measured Raman on/off gain exceeding 9 dB for 285 mW of injected pump power is obtained in a 4.35 km long fiber. A broadband supercontinuum source was used as a signal from 1700 nm to 1900 nm....

  19. Laser hypersensitisation using 266nm light

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, J.; Kristensen, Martin

    2005-01-01

    UV hypersensitisation using CW 266 nm light on hydrogenated Ge-doped fibre is reported. The optimum sensitisation fluence is found to be in the range of 5 to 10 kJ/cm2, coinciding with previous results obtained using 355 nm light, indicating the same end-process used in the photochemical reaction....... We also report the observation of type IA behaviour using this wavelength....

  20. Cascaded quadratic soliton compression at 800 nm

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Moses, Jeffrey;

    2007-01-01

    We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion.......We study soliton compression in quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....

  1. A novel 852-nm tunable fiber laser

    Institute of Scientific and Technical Information of China (English)

    Yanlong Shen; Chun Gu; LixinXu; Anting Wang; Hai Ming; Yang Liu; Xiaobing Wang

    2009-01-01

    @@ We report a novel fiber laser operating at 850-nm band by using semiconductor optical amplifier and fiber grating.The laser system is stable, compact, and the operating wavelength can be tuned continuously from about 851 to 854 nm for Cs atomic clock system by stretching the fiber grating.An output power up to 20 mW is obtained with a signal-to-background ratio beyond 30 dB.

  2. PM Raman fiber laser at 1679 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2012-01-01

    We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth.......We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth....

  3. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  4. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  5. Fabrication of sub-10 nm metal nanowire arrays with sub-1 nm critical dimension control

    Science.gov (United States)

    Pi, Shuang; Lin, Peng; Xia, Qiangfei

    2016-11-01

    Sub-10 nm metal nanowire arrays are important electrodes for building high density emerging ‘beyond CMOS’ devices. We made Pt nanowire arrays with sub-10 nm feature size using nanoimprint lithography on silicon substrates with 100 nm thick thermal oxide. We further studied the critical dimension (CD) evolution in the fabrication procedure and achieved 0.4 nm CD control, providing a viable solution to the imprint lithography CD challenge as specified by the international technology roadmap for semiconductors. Finally, we fabricated Pt/TiO2/Pt memristor crossbar arrays with the 8 nm electrodes, demonstrating great potential in dimension scaling of this emerging device.

  6. Comparison of Nd:YAG Ceramic Laser Pumped at 885 nm and 808 nm

    Institute of Scientific and Technical Information of China (English)

    ZONG Nan; ZHANG Xiao-Fu; MA Qing-Lei; WANG Bao-Shan; CUI Da-Fu; PENG Qin-Jun; XU Zu-Yan; PAN Yu-Bai; FENG Xi-Qi

    2009-01-01

    Laser performance of 1064 nm domestic Nd: YA G ceramic lasers for 885 nm direct pumping and 808 nm traditional pumping are compared. Higher slope efficiency of 34% and maximum output power of 16.5 W are obtained for the 885nm pump with a 6ram length 1 at% Nd:YAG ceramic. The advantages for 885nm direct pumping are discussed in detail. This pumping scheme for highly doping a Nd:YAG ceramic laser is considered as an available way to generate high power and good beam quality simultaneously.

  7. Laser induced incandescence determination of the ratio of the soot absorption functions at 532 nm and 1064 nm in the nucleation zone of a low pressure premixed sooting flame

    Science.gov (United States)

    Cléon, G.; Amodeo, T.; Faccinetto, A.; Desgroux, P.

    2011-08-01

    In this work, the two-excitation wavelength laser induced incandescence (LII) method has been applied in a low-pressure premixed methane/oxygen/nitrogen flame (equivalence ratio 2.32) to determine the variation of the ratio of the soot absorption functions at 532 nm and 1064 nm E( m,532 nm)/ E( m,1064 nm) along the flame. This method relies on the comparison of LII signals measured upon two different excitation wavelengths (here 532 nm and 1064 nm) and with laser fluences selected in such a way that the soot particles are equally laser-heated. The comparison of the laser fluences at 532 nm and 1064 nm leads to an easy determination of E( m,532 nm)/ E( m,1064 nm). The reliability of the method is demonstrated for the first time in a low pressure flame in which the soot nucleation zone can be spatially resolved and which contains soot particles acting differently with the laser fluence according to their residence time in the flame. The method is then applied to determine the profile of E( m,532 nm)/ E( m,1064 nm) along the flame. A very important decrease of this ratio is observed in the region of nascent soot, while the ratio remains constant at high distance above the burner. Implication on temperature determination from spectrally resolved measurement of flame emission is studied.

  8. Validation of spectral sky radiance derived from all-sky camera images – a case study

    Directory of Open Access Journals (Sweden)

    K. Tohsing

    2014-07-01

    Full Text Available Spectral sky radiance (380–760 nm is derived from measurements with a hemispherical sky imager (HSI system. The HSI consists of a commercial compact CCD (charge coupled device camera equipped with a fish-eye lens and provides hemispherical sky images in three reference bands such as red, green and blue. To obtain the spectral sky radiance from these images, non-linear regression functions for various sky conditions have been derived. The camera-based spectral sky radiance was validated using spectral sky radiance measured with a CCD spectroradiometer. The spectral sky radiance for complete distribution over the hemisphere between both instruments deviates by less than 20% at 500 nm for all sky conditions and for zenith angles less than 80°. The reconstructed spectra of the wavelengths 380–760 nm between both instruments at various directions deviate by less than 20% for all sky conditions.

  9. The properties of ITE's silicon avalanche photodiodes within the spectral range used in scintillation detection

    CERN Document Server

    Wegrzecka, I

    1999-01-01

    The design and properties of 3 mm silicon avalanche photodiodes developed at ITE are presented. Their performance parameters within the spectral range applicable in scintillation detection (400-700 nm) are discussed and compared to those for near infrared radiation.

  10. Investigations of OCT imaging performance using a unique source providing several spectral wavebands

    Science.gov (United States)

    Cernat, Ramona; Dobre, George M.; Trifanov, Irina; Neagu, Liviu; Bradu, Adrian; Hughes, Michael; Podoleanu, Adrian Gh.

    2008-02-01

    The authors report investigations into the suitability of a broadband supercontinuum fiber laser (SCFL) for use in Optical Coherence Tomography (OCT). The supercontinuum of light extending from 400 nm to 1800 nm can be used selectively in several spectral wavebands from 600 nm to 1700 nm in order to characterize the performance of single mode (SM) fiber OCT systems through spectral and auto-correlation measurements, dispersion measurements and image acquisition. Spectral selection and tailoring is made possible through a combination of bandpass optical filters. In addition, for the first time, given the optical bandwidth available, we perform evaluation of effective noise bandwidths which take into consideration the spectral behavior of the optical splitter in the balanced detection receiver.

  11. A Flat Spectral Response AWG Demultiplexer Composed of Slabs with Islands and Peninsulas

    Institute of Scientific and Technical Information of China (English)

    Yutaka; Natsume; Junji; Yamauchi; Ryoichi; Tazawa; Koji; Ishikawa; Shigeru; Kawaguchi; Yuichi; Yamamoto; Hisamatsu; Nakano

    2003-01-01

    Phase adjustment elements called islands and peninsulas are introduced to obtain an AWG demultiplexer with a flat spectral response. Use of the peninsulas enables us to achieve a IdB bandwidth of 0.5 nm.

  12. A Flat Spectral Response AWG Demultiplexer Composed of Slabs with Islands and Peninsulas

    Institute of Scientific and Technical Information of China (English)

    Yutaka Natsume; Junji Yamauchi; Ryoichi Tazawa; Koji Ishikawa; Shigeru Kawaguchi; Yuichi Yamamoto; Hisamatsu Nakano

    2003-01-01

    Phase adjustment elements called islands and peninsulas are introduced to obtain an AWG demultiplexer with a flat spectral response. Use of the peninsulas enables us to achieve a 1dB bandwidth of 0.5 nm.

  13. Low-Cost Spectral Sensor Development Description.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  14. Spectral Networks and Snakes

    CERN Document Server

    Gaiotto, Davide; Neitzke, Andrew

    2012-01-01

    We apply and illustrate the techniques of spectral networks in a large collection of A_{K-1} theories of class S, which we call "lifted A_1 theories." Our construction makes contact with Fock and Goncharov's work on higher Teichmuller theory. In particular we show that the Darboux coordinates on moduli spaces of flat connections which come from certain special spectral networks coincide with the Fock-Goncharov coordinates. We show, moreover, how these techniques can be used to study the BPS spectra of lifted A_1 theories. In particular, we determine the spectrum generators for all the lifts of a simple superconformal field theory.

  15. The use of hyperspectral imaging in the VNIR (400-1000nm) and SWIR range (1000-2500nm) for detecting counterfeit drugs with identical API composition.

    Science.gov (United States)

    Wilczyński, Sławomir; Koprowski, Robert; Marmion, Mathieu; Duda, Piotr; Błońska-Fajfrowska, Barbara

    2016-11-01

    The risk of death from taking counterfeit drugs is now greater than the probability of dying from malaria and AIDS combined (at least half a million deaths each year). At the same time, counterfeit medicines are falsified more and more "skillfully". According to WHO about 10% of counterfeit drugs are copies of original products. The methods of hyperspectral imaging and image analysis and processing were used to detect counterfeit drugs. Original Viagra® (Pfizer) and counterfeit tablets were compared. Hyperspectral imaging was used to acquire hyperspectral data cubes from both original and counterfeit tablets in the spectral range of 400-2500nm. Spectral parameters for both the original Viagra® and counterfeit drugs were compared. Grey-Level Co-Occurrence Matrix (GLCM) analysis and Principal Component Analysis (PCA) were performed. Hyperspectral analysis of the surface of the original Viagra® and counterfeit tablets demonstrates significant differences in reflectance (maximum difference for 1619.75nm). The GLCM contrast for the falsified drug is on average higher than for the original one 16±4%. GLCM contrast analysis enables to quantify homogeneity of distribution of tablet ingredients and enables to distinguish tablets with identical chemical composition. SWIR (1000-2500nm) hyperspectral imaging has a definite advantage over imaging in VNIR (400-1000nm) - higher wavelength is less sensitive to non-uniform illumination.

  16. Spectral tunability of realistic plasmonic nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Portela, Alejandro; Matsui, Hiroaki; Tabata, Hitoshi, E-mail: tabata@bioeng.t.u-tokyo.ac.jp [Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yano, Takaaki; Hayashi, Tomohiro; Hara, Masahiko [Department of Electronic Chemistry, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa 226-8502 (Japan); Santschi, Christian; Martin, Olivier J. F. [Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne, Lausanne CH-1015 (Switzerland)

    2014-09-01

    Single nanoantenna spectroscopy was carried out on realistic dipole nanoantennas with various arm lengths and gap sizes fabricated by electron-beam lithography. A significant difference in resonance wavelength between realistic and ideal nanoantennas was found by comparing their spectral response. Consequently, the spectral tunability (96 nm) of the structures was significantly lower than that of simulated ideal nanoantennas. These observations, attributed to the nanofabrication process, are related to imperfections in the geometry, added metal adhesion layer, and shape modifications, which are analyzed in this work. Our results provide important information for the design of dipole nanoantennas clarifying the role of the structural modifications on the resonance spectra, as supported by calculations.

  17. Spectral library searching in proteomics.

    Science.gov (United States)

    Griss, Johannes

    2016-03-01

    Spectral library searching has become a mature method to identify tandem mass spectra in proteomics data analysis. This review provides a comprehensive overview of available spectral library search engines and highlights their distinct features. Additionally, resources providing spectral libraries are summarized and tools presented that extend experimental spectral libraries by simulating spectra. Finally, spectrum clustering algorithms are discussed that utilize the same spectrum-to-spectrum matching algorithms as spectral library search engines and allow novel methods to analyse proteomics data.

  18. Optical lithography at a 126-nm wavelength

    Science.gov (United States)

    Kang, Hoyoung; Bourov, Anatoly; Smith, Bruce W.

    2001-08-01

    There is a window of opportunity for optical lithography between wavelengths of 100 nm and 157 nm that warrants exploration as a next generation technology. We will present activities underway to explore the feasibility of VUV optical lithography in this region with respect to source, optical design, materials, processes, masks, resolution enhancement, and compatibility with existing technologies. We have constructed a small field prototype lithography system using the second continuum 126nm emission wavelength of the Argon excimer. This has been accomplished using a small dielectric barrier discharge lamp with output on the order of 10mW/cm2 and small field catoptric imaging systems based on a modified Cassegrain system. Capacitance focus gauge and piezo electric stage has been installed for fine focusing. In order to achieve sub-half wavelength resolution that would be required to compete with 157nm lithography and others, we have started exploring the feasibility of using liquefied noble gas immersion fluids to increase effective value of lens numerical aperture by factors approaching 1.4x. Conventional silylation process works well with 126nm with high sensitivity. Chemically amplified DUV negative resist looks very good material for 126 nm. Initial contact printing image shows good selectivity and process control. An effort is also underway to explore the use of inorganic resist materials, as silver halide material for instance, to replace the conventional polymeric imaging systems that are currently employed at longer wavelengths, but may be problematic at these VUV wavelengths. Early accomplishments are encouraging. Prototype optical research tools can be used to reveal issues involved with 126nm lithography and solve initial problems. Though many challenges do exist at this short wavelength, it is quite feasible that lithography at this wavelength could meet the part of the needs of future device generations.

  19. Blue spectral inflation

    CERN Document Server

    Schunck, Franz E

    2008-01-01

    We reconsider the nonlinear second order Abel equation of Stewart and Lyth, which follows from a nonlinear second order slow-roll approximation. We find a new eigenvalue spectrum in the blue regime. Some of the discrete values of the spectral index n_s have consistent fits to the cumulative COBE data as well as to recent ground-base CMB experiments.

  20. Large Spectral Library Problem

    Energy Technology Data Exchange (ETDEWEB)

    Chilton, Lawrence K.; Walsh, Stephen J.

    2008-10-03

    Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra can be used to identify materials present in the image. In some cases, spectral libraries representing atmospheric chemicals or ground materials are available. The challenge is to determine if any of the library chemicals or materials exist in the hyperspectral image. The number of spectra in these libraries can be very large, far exceeding the number of spectral channels collected in the ¯eld. Suppose an image pixel contains a mixture of p spectra from the library. Is it possible to uniquely identify these p spectra? We address this question in this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to determine if unique identi¯cation is possible for any given library. We also show that if p is small compared to the number of spectral channels, it is very likely that unique identi¯cation is possible. We show that unique identi¯cation becomes less likely as p increases.

  1. Quarkonium Spectral Functions

    Energy Technology Data Exchange (ETDEWEB)

    Mocsy, Agnes [Department of Mathematics and Science, Pratt Institute, Brooklyn, NY 11205 (United States)

    2009-11-01

    In this talk I summarize the progress achieved in recent years on the understanding of quarkonium properties at finite temperature. Theoretical studies from potential models, lattice QCD, and effective field theories are discussed. I also highlight a bridge from spectral functions to experiment.

  2. Spectral representation of fingerprints

    NARCIS (Netherlands)

    Xu, Haiyun; Bazen, Asker M.; Veldhuis, Raymond N.J.; Kevenaar, Tom A.M.; Akkermans, Anton H.M.

    2007-01-01

    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and directions suffering from various deformations such as translation, rotation and scaling. The spectral minutiae representation introduced in this paper is a novel m

  3. Compact multi-spectral imaging system for dermatology and neurosurgery

    Science.gov (United States)

    Noordmans, Herke Jan; de Roode, Rowland; Verdaasdonk, Rudolf

    2007-03-01

    A compact multi-spectral imaging system is presented as diagnostic tool in dermatology and neurosurgery. Using an electronically tunable filter, a sensitive high resolution digital camera, 140 spectral images from 400 nm up to 720 nm are acquired in 40 s. Advanced image processing algorithms are used to enable interactive acquisition, viewing, image registration and image analysis. Experiments in the department of dermatology and neurosurgery show that multispectral imaging reveals much more detail than conventional medical photography or a surgical microscope, as images can be reprocessed to enhance the view on e.g. tumor boundaries. Using a hardware-based interactive registration algorithm, multi-spectral images can be aligned to correct for motion occurred during image acquisition or to compare acquisitions from different moments in time. The system shows to be a powerful diagnostics tool for medical imaging in the visual and near IR range.

  4. Spectral Resolution Improvement of Mo/Si Multilayers

    Institute of Scientific and Technical Information of China (English)

    WU Wen-Juan; WANG Zhan-Shan; ZHU Jing-Tao; ZHANG Zhong; WANG Feng-Li; CHEN Ling-Yan; ZHOU Hong-Jun; HUO Tong-Lin

    2011-01-01

    @@ Theoretically, the spectral resolution of a multilayer can be improved through a combination of utilizing high reflectance orders and by decreasing the thickness of the scattering layer.We fabricate Mo/Si multilayers in the first, second, third, fourth and fifth reflectance orders with Mo layer thicknesses of 3.Onm and 2.0nm,respectively, using direct current magnetron sputtering.The structure of the multilayers is characterized with a grazing angle x-ray diffractometer(XRD).Then the reflectivity of the multilayers is measured in a synchrotron radiation facility.The results show that the spectral resolution increases with the increasing reflectance order and with the decreasing Mo layer thickness.The highest spectral resolution is improved to 117.5 in the 5th order for dm.=2 nm, where the reflectivity is 18%.

  5. Radiation Failures in Intel 14nm Microprocessors

    Science.gov (United States)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; Ingalls, James D.

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  6. SPECTRAL FILTRATION OF IMAGES BY MEANS OF DISPERSIVE SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. M. Gulis

    2016-01-01

    Full Text Available Instruments for spectral filtration of images are an important element of the systems used in remote sensing, medical diagnostics, in-process measurements. The aim of this study is analysis of the functional features and characteristics of the proposed two image monochromator versions which are based on dispersive spectral filtering. The first is based on the use of a dispersive monochromator, where collimating and camera lenses form a telescopic system, the dispersive element of which is within the intermediate image plane. The second version is based on an imaging double monochromator with dispersion subtraction by back propagation. For the telescopic system version, the spectral and spatial resolutions are estimated, the latter being limited by aberrations and diffraction from the entrance slit. The device has been numerically simulated and prototyped. It is shown that for the spectral bandwidth 10 nm (visible spectral range, the aberration-limited spot size is from 10–20 μm at the image center to about 30 μm at the image periphery for the image size 23–27 mm. The monochromator with dispersion subtraction enables one to vary the spectral resolution (up to 1 nm and higher by changing the intermediate slit width. But the distinctive feature is a significant change in the selected central wavelength over the image field. The considered designs of dispersive image monochromators look very promising due to the particular advantages over the systems based on tunable filters as regards the spectral resolution, fast tuning, and the spectral contrast. The monochromator based on a telescopic system has a simple design and a rather large image field but it also has a limited light throughput due to small aperture size. The monochromator with dispersion subtraction has higher light throughput, can provide high spectral resolution when recording a full data cube in a series of measuring acts for different dispersive element positions. 

  7. SPECTRAL CHARACTERISTICS OF SELECTED HERMATYPIC CORALS FROM GULF OF KACHCHH, INDIA

    Directory of Open Access Journals (Sweden)

    N. Ray Chaudhury

    2012-07-01

    Full Text Available Hermatypic, scleractinian corals are the most important benthic substrates in a coral reef ecosystem. The existing, high (spatial resolution, broad-band, multi-spectral, space-borne sensors have limited capability to spatially detect and spectrally discriminate coral substrates. In situ hyperspectral signatures of eight coral targets were collected with the help of Analytical Spectral Devices FieldSpec spectroradiometer from Paga and Laku Point reefs of Gulf of Kachchh, India to study the spectral behaviour of corals. The eight coral targets consisted of seven live corals representing four distinct colony morphologies and one bleached coral target. The coral spectra were studied over a continuous range of 350 to 1350 nm. The corals strongly reflected in the NIR and MIR regions with regional central maximas located at 820 and 1070 nm respectively. In the visible region the live coral spectra conformed to "brown mode" of coral reflectance with triple-peaked pattern at 575, 600 and 650 nm. All coral spectra are characterized with two distinct absorption features: chlorophyll absorption at 675 nm and water absorption at 975 nm. The live and the bleached corals get distinguished in the visible region over 400 to 600 nm region. Water column over the targets modifies the spectral shape and magnitude. First and second-order derivatives help in identifying spectral windows to distinguish live and bleached corals.

  8. Spectral-collocation variational integrators

    Science.gov (United States)

    Li, Yiqun; Wu, Boying; Leok, Melvin

    2017-03-01

    Spectral methods are a popular choice for constructing numerical approximations for smooth problems, as they can achieve geometric rates of convergence and have a relatively small memory footprint. In this paper, we introduce a general framework to convert a spectral-collocation method into a shooting-based variational integrator for Hamiltonian systems. We also compare the proposed spectral-collocation variational integrators to spectral-collocation methods and Galerkin spectral variational integrators in terms of their ability to reproduce accurate trajectories in configuration and phase space, their ability to conserve momentum and energy, as well as the relative computational efficiency of these methods when applied to some classical Hamiltonian systems. In particular, we note that spectrally-accurate variational integrators, such as the Galerkin spectral variational integrators and the spectral-collocation variational integrators, combine the computational efficiency of spectral methods together with the geometric structure-preserving and long-time structural stability properties of symplectic integrators.

  9. Diode laser (980nm) cartilage reshaping

    Science.gov (United States)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  10. Spectral Tuning of Deep Red Cone Pigments†

    Science.gov (United States)

    Amora, Tabitha L.; Ramos, Lavoisier S.; Galan, Jhenny F.; Birge, Robert R.

    2008-01-01

    Visual pigments are G-protein-coupled receptors that provide a critical interface between organisms and their external environment. Natural selection has generated vertebrate pigments that absorb light from the far-UV (360 nm) to the deep red (630 nm) while using a single chromophore, in either the A1 (11-cis-retinal) or A2 (11-cis-3,4-dehydroretinal) form. The fact that a single chromophore can be manipulated to have an absorption maximum across such an extended spectral region is remarkable. The mechanisms of wavelength regulation remain to be fully revealed, and one of the least well-understood mechanisms is that associated with the deep red pigments. We investigate theoretically the hypothesis that deep red cone pigments select a 6-s-trans conformation of the retinal chromophore ring geometry. This conformation is in contrast to the 6-s-cis ring geometry observed in rhodopsin and, through model chromophore studies, the vast majority of visual pigments. Nomographic spectral analysis of 294 A1 and A2 cone pigment literature absorption maxima indicates that the selection of a 6-s-trans geometry red shifts M/LWS A1 pigments by ~1500 cm−1 (~50 nm) and A2 pigments by ~2700 cm−1 (~100 nm). The homology models of seven cone pigments indicate that the deep red cone pigments select 6-s-trans chromophore conformations primarily via electrostatic steering. Our results reveal that the generation of a 6-s-trans conformation not only achieves a significant red shift but also provides enhanced stability of the chromophore within the deep red cone pigment binding sites. PMID:18370404

  11. Spectral tuning of deep red cone pigments.

    Science.gov (United States)

    Amora, Tabitha L; Ramos, Lavoisier S; Galan, Jhenny F; Birge, Robert R

    2008-04-22

    Visual pigments are G-protein-coupled receptors that provide a critical interface between organisms and their external environment. Natural selection has generated vertebrate pigments that absorb light from the far-UV (360 nm) to the deep red (630 nm) while using a single chromophore, in either the A1 (11- cis-retinal) or A2 (11- cis-3,4-dehydroretinal) form. The fact that a single chromophore can be manipulated to have an absorption maximum across such an extended spectral region is remarkable. The mechanisms of wavelength regulation remain to be fully revealed, and one of the least well-understood mechanisms is that associated with the deep red pigments. We investigate theoretically the hypothesis that deep red cone pigments select a 6- s- trans conformation of the retinal chromophore ring geometry. This conformation is in contrast to the 6- s- cis ring geometry observed in rhodopsin and, through model chromophore studies, the vast majority of visual pigments. Nomographic spectral analysis of 294 A1 and A2 cone pigment literature absorption maxima indicates that the selection of a 6- s- trans geometry red shifts M/LWS A1 pigments by approximately 1500 cm (-1) ( approximately 50 nm) and A2 pigments by approximately 2700 cm (-1) ( approximately 100 nm). The homology models of seven cone pigments indicate that the deep red cone pigments select 6- s- trans chromophore conformations primarily via electrostatic steering. Our results reveal that the generation of a 6- s- trans conformation not only achieves a significant red shift but also provides enhanced stability of the chromophore within the deep red cone pigment binding sites.

  12. Photopic spectral sensitivities of the red and the yellow field of the pigeon retina

    NARCIS (Netherlands)

    Wortel, J.F.; Wubbels, R.J.; Nuboer, J.F.W.

    1984-01-01

    The spectral sensitivities of the red field and the yellow field in the retina of the homing pigeon (Columba Livia) were determined on the basis of ERG responses. Between 450 and 550 nm the relative spectral sensitivity of the yellow field turned out to be higher than that of the red field. The resu

  13. Spectral measurement with a linear variable filter using a LMS algorithm

    NARCIS (Netherlands)

    Emadi, A.; Grabarnik, S.; Wu, H.; De Graaf, R.F.; Wolffenbuttel, R.F.

    2010-01-01

    This paper presents spectral measurements using a linear variable optical filter. A LVOF has been developed for operation in the 530 nm–720 nm spectral band and has been fabricated in an IC-compatible process. The LVOF has been mounted on a CMOS camera. A Least Mean Square algorithm has been

  14. 167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178nm

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Shirakawa, A.; Chen, M.

    2010-01-01

    An ytterbium-doped photonic bandgap fiber amplifier operating at the long wavelength edge of the ytterbium gain band is investigated for high power amplification. The spectral filtering effect of the photonic bandgap efficiently suppresses amplified spontaneous emission at the conventional...... ytterbium gain wavelengths and thus enables high power amplification at 1178 nm. A record output power of 167 W, a slope efficiency of 61% and 15 dB saturated gain at 1178 nm have been demonstrated using the ytterbium-doped photonic bandgap fiber....

  15. Liquid Carbon Reflectivity at 19 nm

    Directory of Open Access Journals (Sweden)

    Riccardo Mincigrucci

    2015-01-01

    Full Text Available We hereby report on a pump-probe reflectivity experiment conducted on amorphous carbon, using a 780 nm laser as a pump and a 19 nm FEL emission as probe. Measurements were performed at 50 degrees with respect to the surface normal to have an un-pumped reflectivity higher than 0.5%. A sub-10 fs time synchronization error could be obtained exploiting the nearly jitter-free capabilities of FERMI. EUV FEL-based experiments open the way to study the behaviour of a liquid carbon phase being unaffected by plasma screening.

  16. 1550-nm wavelength-tunable HCG VCSELs

    Science.gov (United States)

    Chase, Christopher; Rao, Yi; Huang, Michael; Chang-Hasnain, Connie

    2014-02-01

    We demonstrate wavelength-tunable VCSELs using high contrast gratings (HCGs) as the top output mirror on VCSELs, operating at 1550 nm. Tunable HCG VCSELs with a ~25 nm mechanical tuning range as well as VCSELs with 2 mW output power were realized. Error-free operation of an optical link using directly-modulated tunable HCG VCSELs transmitting at 1.25 Gbps over 18 channels spaced by 100 GHz and transmitted over 20 km of single mode fiber is demonstrated, showing the suitability of the HCG tunable VCSEL as a low cost source for WDM communications systems.

  17. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...

  18. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  19. Miniaturized spectral imager for Aalto-1 nanosatellite

    Science.gov (United States)

    Mannila, Rami; Näsilä, Antti; Praks, Jaan; Saari, Heikki; Antila, Jarkko

    2011-11-01

    The Aalto-1 is a 3U-cubesat project coordinated by Aalto University. The satellite, Aalto-1, will be mainly built by students as project assignments and thesis works. VTT Technical Research Centre of Finland will develop the main Earth observation payload, a miniaturized spectral imager, for the satellite. It is a novel highly miniaturized tunable filter type spectral imager. Mass of the spectral imager will be less than 400 grams, and dimensions will be approximately 80 mm x 80 mm x 45 mm. The spectral imager is based on a tunable Fabry-Pérot interferometer (FPI) accompanied by an RGB CMOS image sensor. The FPI consists of two highly reflective surfaces separated by a tunable air gap and it is based either on a microelectromechanical (MEMS) or piezo-actuated structure. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force. Benefits of the MEMS FPI are low mass and small size. However, large aperture (2-10 mm) MEMS FPIs are currently under development, thus it is not yet known if their performance is adequate. The piezo-actuated FPI uses three piezo-actuators and is controlled in a closed capacitive feedback loop. The drawback of the piezo-actuated FPI is its higher mass. However, it has a large aperture which enables a shorter exposure times. Selection of the FPI type will be done after thorough evaluation. Depending on the selected FPI type, the spectral resolution of the imager will be 5 - 10 nm at full width at half maximum and it will operate in the visible and/or near infrared range.

  20. Design of the interferometric spectral discrimination filters for a three-wavelength high-spectral-resolution lidar.

    Science.gov (United States)

    Luo, Jing; Liu, Dong; Zhang, Yupeng; Cheng, Zhongtao; Liu, Chong; Bai, Jian; Shen, Yibing; Yang, Yongying; Zhou, Yudi; Tang, Peijun; Liu, Qun; Xu, Peituo; Su, Lin; Zhang, Xiaoyu; Yang, Liming

    2016-11-28

    We address design of the interferometric spectral discrimination (ISD) filters for a specific three-wavelength high-spectral-resolution lidar (HSRL) in this paper. Taking into account the strong dependence of the transmittance of the ISD filters on the incident angle of light ray, the optical path of the receiving channel with an ISD filter in HSRL is analyzed. We derive the lidar equation with the angular distribution of backscatter signal, through which Monte Carlo (MC) simulations are then carried out to obtain the optimal parameters of the ISD filters for the HSRL at 1064 nm, 532 nm and 355 nm, respectively. Comparing the retrieval errors of the MC simulations based on different ISD filters, the configuration and parameters of the best ISD filter at each wavelength are determined. This paper can be employed as a theoretical guidance during the design of a three-wavelength HSRL with ISD filters.

  1. MEPHISTO spectromicroscope reaches 20 nm lateral resolution

    Science.gov (United States)

    De Stasio, Gelsomina; Perfetti, Luca; Gilbert, B.; Fauchoux, O.; Capozi, M.; Perfetti, P.; Margaritondo, G.; Tonner, B. P.

    1999-03-01

    The recently described tests of the synchrotron imaging photoelectron spectromicroscope MEPHISTO (Microscope à Emission de PHotoélectrons par Illumination Synchrotronique de Type Onduleur) were complemented by further resolution improvements and tests, which brought the lateral resolution down to 20 nm. Images and line plot profiles demonstrate such performance.

  2. Comparative study of the photopic spectral sensitivity of domestic ducks (Anas platyrhynchos domesticus), turkeys (Meleagris gallopavo gallopavo) and humans.

    Science.gov (United States)

    Barber, C L; Prescott, N B; Jarvis, J R; Le Sueur, C; Perry, G C; Wathes, C M

    2006-06-01

    1. The photopic spectral sensitivity of domestic ducks and turkeys was determined using an operant psychophysical technique. Spectral sensitivity was determined over a range of specified wavelengths, including UVA, between 326 < lambda < 694 nm and the results were directly compared with human spectral sensitivity measured under similar experimental conditions. 2. Domestic ducks and turkeys had similar spectral sensitivities to each other, and could perceive UVA radiation, although turkeys were more sensitive to UVA than ducks. For both species, peak sensitivity was between 544 < lambda < 577 nm, with reduced sensitivity at lambda = 508 and 600 nm. Both ducks and turkeys had a very different and broader range of spectral sensitivity than the human subjects tested. 3. Spectral sensitivity and UVA perception in these avian species are discussed in relation to their visual ecology and the mechanisms controlling neural processing of colour information.

  3. Recubrimientos ópticos en el rango espectral entre 50 y 200 nm

    OpenAIRE

    Fernández Perea, Mónica; Méndez, José Antonio; Larruquert, Juan Ignacio; Aznárez, José Antonio

    2006-01-01

    The development of efficient optical coatings in the spectral region between 50 and 200 nm (EUV-FUV) is an important challenge due to the great absortion and low reflectance that most of the materials present in this region. In addition, these coatings are an important element in the advance of many fields like astronomical abservations, plasma diagnosis and lithography. In this work we describe some of the optical coatings developed by the Research Group in Thin Film Coatings (GOLD), whic...

  4. Context Dependent Spectral Unmixing

    Science.gov (United States)

    2014-08-01

    International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa , July 2009. HONORS AND AWARDS: 1. IEEE Outstanding CECS Student Award...COMMEND on the Usgs1C2M3 data across the 25 runs and at all noise levels: (a) SME , (b) SMAE, (c) AME. . . . . . . . . . . . . . 59 6.10 True (solid lines...identifying multiple sets of endmembers. In other words, the unmixing process is adapted to different regions of the spectral space. Another challenge with most

  5. How far can a single hydrogen bond tune the spectral properties of the GFP chromophore?

    DEFF Research Database (Denmark)

    Kiefer, Hjalte; Lattouf, Elie; Persen, Natascha Wardinghus;

    2015-01-01

    absorption spectrum is measured. Our theoretical account of the spectral shape reveals that the anionic 0–0 transition (464 nm) is blue-shifted compared to that of the wild-type protein (478 nm) due to the stronger H-bond in the dimer, and represents an upper bound for that of the isolated anion. At the same...

  6. SPECTRAL CHARACTERISTICS OF ELECTRORETINOGRAM IN X-LINKED DICHROMATS-A PRELIMINARY STUDY

    Institute of Scientific and Technical Information of China (English)

    1991-01-01

    Spectral characteristics of X-linked Dichromats(13 protanopes, 20 deuteranopes) were studied with spectral ERG. The results are as follows: The maximal spectral response of the b-wave in protanopes tended to shift toward the short wavelength side and the sensitivity to long wavelengths decreased obviously. The ratio value of the amplitude in 500nm and in 620nm(500/620) was greater in the protanope than that in the normal subject. Like the normals, the maximal response of the b-wave in deuteranopes appea...

  7. Spectral Identification of Lighting Type and Character

    Directory of Open Access Journals (Sweden)

    Christopher D. Elvidge

    2010-04-01

    Full Text Available We investigated the optimal spectral bands for the identification of lighting types and the estimation of four major indices used to measure the efficiency or character of lighting. To accomplish these objectives we collected high-resolution emission spectra (350 to 2,500 nm for forty-three different lamps, encompassing nine of the major types of lamps used worldwide. The narrow band emission spectra were used to simulate radiances in eight spectral bands including the human eye photoreceptor bands (photopic, scotopic, and “meltopic” plus five spectral bands in the visible and near-infrared modeled on bands flown on the Landsat Thematic Mapper (TM. The high-resolution continuous spectra are superior to the broad band combinations for the identification of lighting type and are the standard for calculation of Luminous Efficacy of Radiation (LER, Correlated Color Temperature (CCT and Color Rendering Index (CRI. Given the high cost that would be associated with building and flying a hyperspectral sensor with detection limits low enough to observe nighttime lights we conclude that it would be more feasible to fly an instrument with a limited number of broad spectral bands in the visible to near infrared. The best set of broad spectral bands among those tested is blue, green, red and NIR bands modeled on the band set flown on the Landsat Thematic Mapper. This set provides low errors on the identification of lighting types and reasonable estimates of LER and CCT when compared to the other broad band set tested. None of the broad band sets tested could make reasonable estimates of Luminous Efficacy (LE or CRI. The photopic band proved useful for the estimation of LER. However, the three photoreceptor bands performed poorly in the identification of lighting types when compared to the bands modeled on the Landsat Thematic Mapper. Our conclusion is that it is feasible to identify lighting type and make reasonable estimates of LER and CCT using four or

  8. Photoresist outgassing at 157 nm exposure

    Science.gov (United States)

    Hien, Stefan; Angood, Steve; Ashworth, Dominic; Basset, Steve; Bloomstein, Theodore M.; Dean, Kim R.; Kunz, Roderick R.; Miller, Daniel A.; Patel, Shashikant; Rich, Georgia K.

    2001-08-01

    Contamination of optical elements during photoresist exposure is a serious issue in optical lithography. The outgassing of photoresist has been identified as a problem at 248nm and 193nm in production because the organic films that can be formed on an exposure lens can cause transmission loss and sever image distortion. At these exposure energies, the excitation of the photo acid generator, formation of acid, and cleavage of the protecting group are highly selective processes. At 157nm, the exposure energy is much higher (7.9 eV compared to 6.4 eV at 193nm) and it is known from laser ablation experiments that direct laser cleavage of sigma bonds occurs. The fragments formed during this irradiation can be considered as effective laser deposition precursors even in the mid ppb level. In this study, methods to quantify photoresist outgassing at 157 nm are discussed. Three criteria have been set up at International SEMATECH to protect lens contamination and to determine the severity of photoresist outgassing. First, we measured film thickness loss as a function of exposure dose for a variety of materials. In a second test we studied the molecular composition of the outgassing fragments with an exposure chamber coupled to a gas chromatograph and a mass spectrometer detector. Our third method was a deposition test of outgassing vapors on a CaF2 proof plate followed by analysis using VUV and X-ray photoelectron spectroscopies (XPS). With this technique we found deposits for many different resists. Our main focus is on F- and Si- containing resists. Both material classes form deposits especially if these atoms are bound to the polymer side chains. Whereas the F-containing films can be cleaned off under 157nm irradiation, cleaning of Si-containing films mainly produces SiO2. Our cleaning studies of plasma deposited F-containing organic films on SiO2 did not indicate damage of this surface by the possible formation of HF. Despite that we strongly recommend engineering

  9. Spectral beam combining of multi-single emitters

    Science.gov (United States)

    Wang, Baohua; Guo, Weirong; Guo, Zhijie; Xu, Dan; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Chen, Xiaohua

    2016-03-01

    Spectral beam combination expands the output power while keeps the beam quality of the combined beam almost the same as that of a single emitter. Spectral beam combination has been successfully achieved for high power fiber lasers, diode laser arrays and diode laser stacks. We have recently achieved the spectral beam combination of multiple single emitter diode lasers. Spatial beam combination and beam transformation are employed before beams from 25 single emitter diode lasers can be spectrally combined. An average output power about 220W, a spectral bandwidth less than 9 nm (95% energy), a beam quality similar to that of a single emitter and electro-optical conversion efficiency over 46% are achieved. In this paper, Rigorous Coupled Wave analysis is used to numerically evaluate the influence of emitter width, emitter pitch and focal length of transform lens on diffraction efficiency of the grating and spectral bandwidth. To assess the chance of catastrophic optical mirror damage (COMD), the optical power in the internal cavity of a free running emitter and the optical power in the grating external cavity of a wavelength locked emitter are theoretically analyzed. Advantages and disadvantages of spectral beam combination are concluded.

  10. Temporary spectral analysis of a laser plasma of mineral coal

    Science.gov (United States)

    Rebolledo, P.; Pacheco, P.; Sarmiento, R.; Cabanzo, R.; Mejía-Ospino, E.

    2013-11-01

    In this work we present results of the temporal spectral study of a plasma laser of mineral coal using the Laser-induced Breakdown Spectroscopy (LIBS) technique. The plasma was generated by focusing a laser beam of Nd:YAG laser emitting at 532 nm with energy per pulse of 35 mJ on coal target pellets. The plasma radiation was conducted by an optical fiber to the entrance slit of a spectrograph of 0.5 m, equipped with a 1200 and 2400 grooves/mm diffraction grating and an ICCD camera for registration with different delay times of the spectra in the spectral range from 250 nm to 900 nm. The temporal spectral analysis allowed the identification of the elements Al, Fe, Ca, Mg, K, and Si, and CN and C2 molecules present in natural coals. The characteristics of the spectral lines and bands were studied at different delay times obtaining the calculation of the evolution of electron temperature, electron density, and vibrational temperature of plasmas in the time. The delay times used were between 0.5 μs and 5 μs, calculating the electron temperature ranged between 5 000 K and 1 000 K.

  11. Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Erbert, Gotz;

    2011-01-01

    of 1.0 W. The laser system B based on device B is tunable from 666 to 685 nm. As high as 1.05 W output power is obtained around 675.67 nm. The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M2 is 1.13 at an output power of 0.93 W. The laser...

  12. Photochemistry of acrylates at 222 nm

    Science.gov (United States)

    Knolle, Wolfgang; Naumov, Sergej; Madani, Mohamed; von Sonntag, Clemens

    2005-07-01

    Excimer lamps as monochromatic UV sources with an intense short-wavelength emission (especially KrCl∗, 222 nm) allow a photoinitiator-free initiation of the acrylate polymerisation. Laser photolysis (KrCl∗ excimer laser, pulse width 20 ns, up to 5 mJ per pulse) gives rise to similar transient spectra (λmax ≈ 280 nm) for all acrylates studied. As the rather unspecific spectra do not allow conclusions as to the main reaction channel, a product study has been performed by GC-MS following steady-state photolysis of acrylate solutions in acetonitrile, methanol and n-hexane. Somewhat unexpected, α-cleavage seems to be a main reaction channel, and quantum chemical calculations show that such a reaction can occur from either the excited singlet state or the unrelaxed triplet state, but not from the relaxed triplet state that is observed spectroscopically. A reaction scheme accounting for the observed products is presented.

  13. Actively Pumped Optical Filters at 532 nm

    Science.gov (United States)

    Billmers, Richard I.; Gayen, S. K.; Contarino, Vincent M.; Scharpf, William J.; Squicciarini, Martin F.; Allocca, David A.

    1995-01-01

    The operation of two narrow-band optical filters at 532.33 nm is presented. Both of these filters operate on the 4P(sub 1/2) to 8S(sub 1/2) excited-state transition in potassium vapor. One of the filters is based on excited-state Faraday effect, and requires the application of an external axial magnetic field. The peak transmission of this filter is approximately 3.5% with a linewidth of less than 10 GHz. The second filter does not require a magnetic field for its operation, but readily attains peak transmissions of 25-30%. The 4P(sub 1/2) state is excited by a 769.9 nm light pulse which is linearly polarized for the first scheme and circularly polarized for the second.

  14. Radiation Status of Sub-65 nm Electronics

    Science.gov (United States)

    Pellish, Jonathan A.

    2011-01-01

    Ultra-scaled complementary metal oxide semiconductor (CMOS) includes commercial foundry capabilities at and below the 65 nm technology node Radiation evaluations take place using standard products and test characterization vehicles (memories, logic/latch chains, etc.) NEPP focus is two-fold: (1) Conduct early radiation evaluations to ascertain viability for future NASA missions (i.e. leverage commercial technology development). (2) Uncover gaps in current testing methodologies and mechanism comprehension -- early risk mitigation.

  15. The photopic spectral sensitivity of a dichromatic teleost fish (Perca fluviatilis).

    Science.gov (United States)

    Cameron, N E

    1982-01-01

    Spectral sensitivity curves for the freshwater perch were measured using an operant procedure. Sensitivity peaks were found at 530-560 nm and 660-680 nm. Compared with perch cone pigments (P530(2) and P617(2)), the red-shift of the maximum long wave length sensitivity suggested that opponent interactions between the cone types were responsible for the shape of the curve. The absorptions of the lens and yellow cornea were measured, and used to correct the sensitivity curve. It is suggested that the yellow cornea's function depends on its spectral selectivity. Like goldfish, perch show some aberrant high sensitivity around 400 nm.

  16. Shock-Accelerated Flying Foil Diagnostic with a Chirped Pulse Spectral Interferometry

    Institute of Scientific and Technical Information of China (English)

    陈建平; 李儒新; 曾志男; 王兴涛; 程传福; 徐至展

    2003-01-01

    A shock-accelerated flying foil is diagnosed with a chirped pulse spectral interferometry. The shock is pumped by a 1.2ps chirped laser pulse with a power of~1014 W/cm2 at 785nm irradiating on a 500nm aluminium film and detected by a probe pulse split from the pump based on a Michelson spectral interferometry. A flying foil of~5.595×10-6 g in~400 μm diameter was accelerated to~165 nm away from the initial target rear surface at~1.83 km/s before ablation.

  17. Generation of Spectral Clusters in a Mixture of Noble and Raman-Active Gases

    CERN Document Server

    Hosseini, Pooria; Russell, Philip St J

    2016-01-01

    We report a novel scheme for the generation of dense clusters of Raman sidebands. The scheme uses a broadband-guiding hollow-core photonic crystal fiber (HC-PCF) filled with a mixture of H2, D2, and Xe for efficient interaction between the gas mixture and a green laser pump pulse (532 nm, 1 ns) of only 5 uJ energy. This results in the generation from noise of more than 135 ro-vibrational Raman sidebands covering the visible spectral region with an average spacing of only 2 THz. Such a spectrally dense and compact fiber-based source is ideal for applications where closely spaced narrow-band laser lines with high spectral power density are required, such as in spectroscopy and sensing. When the HC-PCF is filled with a H2-D2 mixture the Raman comb spans the spectral region from the deep UV (280 nm) to the near infrared (1000 nm).

  18. Generation of spectral clusters in a mixture of noble and Raman-active gases.

    Science.gov (United States)

    Hosseini, Pooria; Abdolvand, Amir; St J Russell, Philip

    2016-12-01

    We report a novel scheme for the generation of dense clusters of Raman sidebands. The scheme uses a broadband-guiding hollow-core photonic crystal fiber (HC-PCF) filled with a mixture of H2, D2, and Xe for efficient interaction between the gas mixture and a green laser pump pulse (532 nm, 1 ns) of only 5 μJ of energy. This results in the generation from noise of more than 135 rovibrational Raman sidebands covering the visible spectral region with an average spacing of only 2.2 THz. Such a spectrally dense and compact fiber-based source is ideal for applications where closely spaced narrow-band laser lines with high spectral power density are required, such as in spectroscopy and sensing. When the HC-PCF is filled with a H2-D2 mixture, the Raman comb spans the spectral region from the deep UV (280 nm) to the near infrared (1000 nm).

  19. Double-pulse laser ablation sampling: Enhancement of analyte emission by a second laser pulse at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Bruno Yue [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China); Mao, Xianglei [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hou, Huaming [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Ocean University of China, Qingdao (China); Zorba, Vassilia; Russo, Richard E. [Laser Technologies Group, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Cheung, Nai-Ho, E-mail: nhcheung@hkbu.edu.hk [Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (China)

    2015-08-01

    For the purpose of devising methods for minimally destructive multi-element analysis, we compare the performance of a 266 nm–213 nm double-pulse scheme against that of the single 266 nm pulse scheme. The first laser pulse at 266 nm ablates a mica sample. Ten ns later, the second pulse at 213 nm and 64 mJ cm{sup −2} orthogonally intercepts the gas plume to enhance the analyte signal. Emissions from aluminum, silicon, magnesium and sodium are simultaneously observed. At low 266 nm laser fluence when only sub-ng of sample mass is removed, the signal enhancement by the 213 nm pulse is especially apparent. The minimum detectable amount of aluminum is about 24 fmol; it will be a hundred times higher if the sample is analyzed by the 266 nm pulse alone. The minimum detectable mass for the other analytes is also reduced by about two orders of magnitude when the second pulse at 213 nm is introduced. The spectral and temporal properties of the enhanced signal are consistent with the mechanism of ultra-violet laser excited atomic fluorescence of dense plumes. - Highlights: • We devise a two-laser-pulse scheme to analyze the elemental composition of mica as test samples. • We compare the analytical performance of the single 266 nm pulse scheme against the 266 nm – 213 nm two pulse scheme. • The two pulse scheme improves the absolute LODs of the analytes by about a hundred times. • The spectral and temporal properties of the enhanced signal are consistent with the mechanism.

  20. Enhanced broadband near-IR luminescence and gain spectra of bismuth/erbium co-doped fiber by 830 and 980 nm dual pumping

    Directory of Open Access Journals (Sweden)

    Qiancheng Zhao

    2017-04-01

    Full Text Available A dual 830 and 980 nm pumping scheme is proposed aiming at broadening and flattening the spectral performance of bismuth/erbium codoped multicomponent fiber (BEDF. The spectral properties of distinct Bi active centers (BACs associated with germanium (BAC-Ge, aluminium (BAC-Al, phosphorus (BAC-P and silicon (BAC-Si are characterized under single pumping of 830 and 980 nm, respectively. Based on the emission slope efficiencies of BAC-Al (∼1100 nm and BAC-Si (∼1430 nm under single pumping of 830 and 980 nm, the dual pumping scheme with the optimal pump power ratio of 25 (980 nm VS 830 nm is determined to achieve flat, ultrabroadband luminescence spectra covering the wavelength range 950-1600 nm. The dual pumping scheme is further demonstrated on the on-off gain performance of BEDF. It is found under the pump power ratio of ∼8 (980 VS 830 nm, The gain spectrum has been flattened and broadened over 300 nm (1300-1600 nm with an average gain coefficient of ∼1.5 dBm-1. The spectral coverage is approximately 1.5 and 3 times wider compared to single pumping of 830 and 980 nm pumping, respectively. The energy level diagrams of 830 and 980 nm are also constructed separately in view of the optical characteristic, which further clarifies the advantage for dual pumping. The proposed dual 830 and 980 nm pumping scheme with the multicomponent BEDF shows great potential in various broadband optical applications such as uniform ASE source, broadband amplifier and tuneable laser in NIR band.

  1. 500 nm Continuous Wave Tunable SingleFrequency MidIR Light Source for C–H Spectroscopy

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Jensen, Ole Bjarlin; Dam, Jeppe Seidelin

    2012-01-01

    A computer controlled tunable mid-IR light source, based on single resonant difference frequency generation (DFG), is experimentally investigated. The DFG process is pumped by an external cavity tapered diode laser, tunable over a spectral range of 30 nm. Grating feedback to the single mode channel...... of the tapered diode narrows the spectrum and allows for tuning of the emitted spectrum in the range from 780 to 810 nm. The DFG process takes place intra-cavity in a high finesse diode pumped 1064 nm solid state Nd:YVO4 laser cavity, using periodically poled LiNbO3 as the nonlinear material. Based on this new...

  2. Lasing at 300 nm and below: Optical challenges and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Garzella, D. [Universite de Paris-Sud, Orsay (France); Couprie, M.E. [Universite de Paris-Sud, Orsay (France)]|[CEA DSM DRECAM SPAM, Gif Sur Yvette (France); Billardon, M. [ESPCI, Paris (France)

    1995-12-31

    The FEL experiment in the visible and near UV on the Super ACO storage ring has given, since 1989, important informations on the SRFEL dynamics and, furthermore, a very good beam stability has been achieved. In addition, the operation at 350 nm with this good stability and a long beam lifetime allowed us to perform the first user experiment in biology and to start with a campaign for using the laser as photons source for experiments in other domains, coupling FEL light and the Synchrotron Radiation. For this, FEL starts to be very competitive with respect to the other conventional laser sources, provided that it could oscillate further in the UV, say at 300 nm and below. So, the real challenge is now given by the lasing at shorter wavelengths and, for this, by the optical technology existing nowadays. Since 1992 the efforts have been concentrating to look for every kind of solution allowing us to overcome the problem of having a very low gain. From an optical point of view, in the range of wavelengths explored, there is a lack of transparents dielectric materials for substrates and coatings. Substrates are required at the same time to be relatively not absorbing (a few tens 10{sup -6}), to have a very good surface quality (RMS roughness below 10 {Angstrom}) because of scattering losses dramatically increasing in this spectral range and, due to the thermal load of the undulator emission, to have adequate thermal characteristics. In order to fulfill all these requirements, a good characterisation and modelisation of the substrates is needed, especially to correlate thermal loading and mechanical deformations from one hand, and roughness and scattering losses from the other hand. Coatings must be not absorbing too and, above all, the most amorphous as possible (this could be obtained with IBS deposition technique), in order to insure a good reproduction of the substrate roughness at the interfaces and on the top layer and an higher resistance to the XUV photons load.

  3. Generation of high energy, 30 fs pulses at 527 nm by hollow-fiber compression technique.

    Science.gov (United States)

    Xia, J; Altucci, C; Amoruso, S; Bruzzese, R; Velotta, R; Wang, X

    2008-03-17

    The compression of 300-fs-long, chirp-free laser pulses at 527 nm down to 30 fs is reported. The laser pulses, originated from a frequency-doubled, mode-locked Nd:glass laser, were compressed by a 0.7-m-long, 150-microm-bore-diameter, argon-filled hollow fiber, and a pair of SF10 prisms with a final energy of 160 microJ. These are the shortest, high energy pulses ever produced by direct pulse compression at the central wavelength of 527 nm. The spectral broadening of the pulses propagating inside the hollow fiber was experimentally examined for various filling-gas pressures and input pulse energies. The spectral width of the pulses was broadened up to 25 nm, and 27 nm for argon- and krypton-filled hollow fiber, respectively, at a gas pressure lower than 2 bar. The physical limitations of the hollow-fiber pulse compression technique applied in the visible range are also studied.

  4. Spectral Reconstruction Based on Svm for Cross Calibration

    Science.gov (United States)

    Gao, H.; Ma, Y.; Liu, W.; He, H.

    2017-05-01

    Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR) hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor's passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF), SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE) which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.

  5. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  6. Spectral Variability of FSRQs

    Indian Academy of Sciences (India)

    Minfeng Gu; Y. L. Ai

    2011-03-01

    The optical variability of 29 flat spectrum radio quasars in SDSS Stripe 82 region are investigated by using DR7 released multi-epoch data. All FSRQs show variations with overall amplitude ranging from 0.24 mag to 3.46 mag in different sources. About half of FSRQs show a bluer-when-brighter trend, which is commonly observed for blazars. However, only one source shows a redder-when-brighter trend, which implies it is rare in FSRQs. In this source, the thermal emission may be responsible for the spectral behaviour.

  7. Spectrally encoded confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tearney, G.J.; Webb, R.H.; Bouma, B.E. [Wellman Laboratories of Photomedicine, Massachusetts General Hospital, 50 Blossom Street, BAR 703, Boston, Massachusetts 02114 (United States)

    1998-08-01

    An endoscope-compatible, submicrometer-resolution scanning confocal microscopy imaging system is presented. This approach, spectrally encoded confocal microscopy (SECM), uses a quasi-monochromatic light source and a transmission diffraction grating to detect the reflectivity simultaneously at multiple points along a transverse line within the sample. Since this method does not require fast spatial scanning within the probe, the equipment can be miniaturized and incorporated into a catheter or endoscope. Confocal images of an electron microscope grid were acquired with SECM to demonstrate the feasibility of this technique. {copyright} {ital 1998} {ital Optical Society of America}

  8. Broadly tunable (440-670 nm) solid-state organic laser with disposable capsules

    CERN Document Server

    Mhibik, Oussama; Siove, Alain; Forget, Sebastien; Chenais, Sébastien

    2014-01-01

    An innovative concept of thin-film organic solid-state laser is proposed, with diffraction-limited output and a broad tuning range covering the visible spectrum under UV optical pumping. The laser beam is tunable over 230 nm, from 440 to 670 nm, with a 3 nm full width at half maximum typical spectral width. The structure consists of a compact fixed bulk optical cavity, a polymeric intracavity etalon for wavelength tuning, as well as five different disposable glass slides coated with a dye-doped polymer film, forming a very simple and low-cost gain medium. The use of interchangeable/disposable "gain capsules" is an alternative solution to photodegradation issues, since gain chips can be replaced without realignment of the cavity. The laser lifetime of a single chip in ambient conditions and without encapsulation was extrapolated to be around 107 pulses at a microjoule energy-per-pulse level.

  9. Near infrared imaging of teeth at wavelengths between 1200 and 1600 nm

    Science.gov (United States)

    Chung, Soojeong; Fried, Daniel; Staninec, Michal; Darling, Cynthia L.

    2011-03-01

    Near-IR (NIR) imaging is a new technology that is currently being investigated for the detection and assessment of dental caries without the use of ionizing radiation. Several papers have been published on the use of transillumination and reflectance NIR imaging to detect early caries in enamel. The purpose of this study was to investigate alternative near infrared wavelengths besides 1300-nm in the range from 1200- 1600-nm to determine the wavelengths that yield the highest contrast in both transmission and reflectance imaging modes. Artificial lesions were created on thirty tooth sections of varying thickness for transillumination imaging. NIR images at wavelengths from the visible to 1600-nm were also acquired for fifty-four whole teeth with occlusal lesions using a tungsten halogen lamp with several spectral filters and a Ge-enhanced CMOS image sensor. Cavity preparations were also cut into whole teeth and Z250 composite was used as a restorative material to determine the contrast between composite and enamel at NIR wavelengths. Slightly longer NIR wavelengths are likely to have better performance for the transillumination of occlusal caries lesions while 1300-nm appears best for the transillumination of proximal surfaces. Significantly higher performance was attained at wavelengths that have higher water absorption, namely 1460-nm and wavelengths greater than 1500-nm and these wavelength regions are likely to be more effective for reflectance imaging. Wavelengths with higher water absorption also provided higher contrast of composite restorations.

  10. Performance optimisation of a neon DBD excimer light source operating in the extreme-ultraviolet (84nm)

    Science.gov (United States)

    Carman, Robert; Ward, B. K.; Kane, D. M.

    2009-10-01

    We have investigated the electrical and optical characteristics of a windowless dielectric barrier discharge (DBD) excimer lamp using Neon to generate output at ˜84nm in the extreme-ultraviolet (EUV) spectral range. A detailed comparison of Ne DBD lamp performance for both pulsed and sinusoidal voltage excitation waveforms has been undertaken using otherwise identical operating conditions. Compared to sinusoidal excitation, pulsed operation yields a ˜50% increase in the overall electrical to EUV conversion efficiency, and also allows greater control of parameters associated with the temporal evolution of the EUV pulse shapes (risetime, peak power, pulse width) due to a synchronised breakdown of the discharge gap along the electrode length. The ability to tailor EUV pulse shapes is important for applications in materials processing and surface cleaning. The source is also found to be highly monochromatic with respect to its spectral output at ˜84nm which dominates the spectral emission over the wavelength range 30-550nm. The overall lamp performance, as measured by the EUV output power, electrical to EUV conversion efficiency, and spectral purity at ˜84nm, improves with increasing gas pressure up to 900mb with none of these parameters showing saturation characteristics.

  11. Weak-signal conversion from 1550nm to 532nm with 84% efficiency

    CERN Document Server

    Samblowski, Aiko; Baune, Christoph; Fiurasek, Jaromir; Schnabel, Roman

    2013-01-01

    We report on the experimental frequency conversion of a dim, coherent continuous-wave light field from 1550nm to 532nm with an external photon-number conversion efficiency of (84.4 +/- 1.5)%. We used sum-frequency generation, which was realized in a standing-wave cavity built around a periodically poled type I potassium titanyl phosphate (PPKTP) crystal, pumped by an intense field at 810 nm. Our result is in full agreement with a numerical model. For optimized cavity coupler reflectivities it predicts a conversion efficiency of up to 93% using the same PPKTP crystal.

  12. Near infrared spectral changes of cytochrome aa3 during potentiometric titrations.

    Science.gov (United States)

    Hendler, R W; Harmon, P A; Levin, I W

    1994-12-01

    Singular value decomposition (SVD) was used to deconvolute the spectral changes occurring in the near infrared region during potentiometric titrations of cytochrome aa3. Overall oxidized minus reduced difference spectra revealed a broad absorbance feature centered near 830 nm with an apparent Em near 250 mV. However, SVD did not isolate any spectral species with an absorbance centered near 830 nm. It was found that the spectral changes occurring in the wavelength region from 650 to 950 nm were associated mainly with cytochromes a and a3. It was concluded that the absorbance at 830 nm should not be used as an independent measure of the concentration of CuA in cytochrome aa3.

  13. A Sounding Rocket Mission Concept to Acquire High-Resolution Radiometric Spectra Spanning the 9 nm - 31 nm Wavelength Range

    Science.gov (United States)

    Krause, L. Habash; Cirtain, Jonathan; McGuirck, Michael; Pavelitz, Steven; Weber, Ed.; Winebarger, Amy

    2012-01-01

    When studying Solar Extreme Ultraviolet (EUV) emissions, both single-wavelength, two- dimensional (2D) spectroheliograms and multi-wavelength, one-dimensional (1D) line spectra are important, especially for a thorough understanding of the complex processes in the solar magnetized plasma from the base of the chromosphere through the corona. 2D image data are required for a detailed study of spatial structures, whereas radiometric (i.e., spectral) data provide information on relevant atomic excitation/ionization state densities (and thus temperature). Using both imaging and radiometric techniques, several satellite missions presently study solar dynamics in the EUV, including the Solar Dynamics Observatory (SDO), Hinode, and the Solar-Terrestrial Relations Observatory (STEREO). The EUV wavelengths of interest typically span 9 nm to 31 nm, with the shorter wavelengths being associated with the hottest features (e.g., intense flares and bright points) and the longer wavelengths associated with cooler features (e.g., coronal holes and filaments). Because the optical components of satellite instruments degrade over time, it is not uncommon to conduct sounding rocket underflights for calibration purposes. The authors have designed a radiometric sounding rocket payload that could serve as both a calibration underflight for and a complementary scientific mission to the upcoming Solar Ultraviolet Imager (SUVI) mission aboard the GOES-R satellite (scheduled for a 2015 launch). The challenge to provide quality radiometric line spectra over the 9-31 nm range covered by SUVI was driven by the multilayer coatings required to make the optical components, including mirrors and gratings, reflective over the entire range. Typically, these multilayers provide useful EUV reflectances over bandwidths of a few nm. Our solution to this problem was to employ a three-telescope system in which the optical components were coated with multilayers that spanned three wavelength ranges to cover

  14. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters.

    Science.gov (United States)

    Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert

    2013-04-01

    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  15. The Effects of Water Vapor and Clouds on the Spectral Distribution of Solar Radiation at the...

    Science.gov (United States)

    Pilewskie, P.; Bergstrom, R.; Mariani, P.; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    During the Subsonic Contrail and Cloud Effect Special Study (SUCCESS) a Solar Spectral Flux Radiometer was deployed at the surface in a zenith observing position. The instrument measured the solar spectral downwelling irradiance between 350 and 2500 nm with 10 nm resolution. From April 12 through April 29 approximately 18000 spectra were acquired, under a variety of meteorological conditions including cloud free, cirrus, Stearns, and cumulonimbus clouds. This study focuses on the effect of cirrus and cirrus contrails on the spectral distribution of solar irradiance at the surface and on inferring cirrus properties from their spectral transmittance. The observations have also proven to be useful for comparing the solar spectral irradiance measurements with model predictions, and in particular, for inferring the amount of solar radiation absorbed in the clear and cloudy atmosphere.

  16. Design and preliminary performance evaluation of airborne hyper-spectral imaging spectograph Air-OPUS

    Science.gov (United States)

    Okumura, Shin-ichiro; Suzuki, Makoto; Yoshida, Shigeomi; Sano, Takuki; Watanabe, Masaharu; Ogawa, Toshihiro

    2003-06-01

    Air-OPUS is a hyper spectral imaging spectrograph, with 0.34 nm spectral step, 190-455 nm spectral coverage, and 330 spatial channels covering 15 degrees field of view (FOV). It is designed as an airborne instrument for the demonstration of spaceborne-OPUS. After two-demonstration campaign using the Gulfstream-II aircraft, the performances of AIR-OPUS, such as spectral resolution, signal-to-noise ration (SNR) have been evaluated. It is concluded that the performances have agreed with designed value. This paper describes design, the performance, and the first results of Air-OPUS. Concept of next generation Air-OPUS, with wider FOV and visible/near-IR spectral coverage, will be also briefly presented.

  17. Is There Spectral Variation in the Polarized Reflectance of Leaves?

    Science.gov (United States)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Biehl, L. L.

    2014-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves and is key to understanding the remote sensing process in the optical domain. Here we specifically looked for evidence of fine spectral detail in the polarized portion of the light reflected from the individual leaves of five species of plants measured at Brewsters angle over the wavelength range 450 to 2300nm. Our results show no strong, unambiguous evidence of narrow band spectral variation of the polarized portion of the reflectance factor.

  18. [Full-field and automatic methodology of spectral calibration for PGP imaging spectrometer].

    Science.gov (United States)

    Sun, Ci; Bayanheshig; Cui, Ji-cheng; Pan, Ming-zhong; Li, Xiao-tian; Tang, Yu-guo

    2014-08-01

    In order to analyze spectral data quantitatively which is obtained by prism-grating-prism imaging spectrometer, spectral calibration is required in order to determine spectral characteristics of PGP imaging spectrometer, such as the center wavelength of every spectral channel, spectral resolution and spectral bending. A spectral calibration system of full field based on collimated monochromatic light method is designed. Spherical mirror is used to provide collimated light, and a freely sliding and rotating folding mirror is adopted to change the angle of incident light in order to realize full field and automatic calibration of imaging spectrometer. Experiments of spectral calibration have been done for PGP imaging spectrometer to obtain parameters of spectral performance, and accuracy analysis combined with the structural features of the entire spectral calibration system have been done. Analysis results indicate that spectral calibration accuracy of the calibration system reaches 0.1 nm, and the bandwidth accuracy reaches 1.3%. The calibration system has merits of small size, better commonality, high precision and so on, and because of adopting the control of automation, the additional errors which are caused by human are avoided. The calibration system can be used for spectral calibration of other imaging spectrometers whose structures are similar to PGP.

  19. The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae

    Directory of Open Access Journals (Sweden)

    René Hans-Jürgen Heim

    2015-12-01

    Full Text Available Epidermal structures (ES of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm–2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA based on the spectral data. Subsequently, variable importance (VIP was calculated to identify spectral regions relevant for discriminating our functional types (classes. Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.

  20. Comparative Study of CMOS Op-Amp In 45nm And 180 Nm Technology

    Directory of Open Access Journals (Sweden)

    Siddharth

    2014-07-01

    Full Text Available In this paper we have provided a method for designing a Two Stage CMOS Operational Amplifier which operates at 1.8V power supply using Cadence Virtuoso 45nm CMOS technology. Further, designing the two stage op-amp for the same power supply using Cadence Virtuoso 180nm CMOS Technology, keeping the slew rate of the op-amp same as that 45nm technology. The trade-off curves are computed between various characteristics such as Gain, Phase Margin,GBW,3db Gain etc. and the results obtained for 45n CMOS Technology is compared with those obtained for 180nm CMOS Technology It has been demonstrated that on lowering the technology and keeping the slew rate constant, the Power dissipation decreases.

  1. In-band pumped Q-switched polycrystalline Er:YAG ceramic laser at 1617 and 1634 nm

    Science.gov (United States)

    Wang, Yong; Zhao, Ting; Yang, Xiaofang; Shen, Deyuan; Zhang, Jian; Tang, Dingyuan

    2017-09-01

    We report on the performance of an Er,Yb fiber laser in-band pumped, acousto-optically Q-switched polycrystalline Er:YAG ceramic laser operating at 1617 and 1634 nm wavelength regions. A volume Bragg grating was employed to control the laser oscillating at either 1617 or 1634 nm via adjusting the incidence angle on the VBG of laser beams in the cavity. Spectral bandwidths of less than 0.1 nm were observed for both 1617 and 1634 nm wavelength laser emission. Stable pulses are generated for 0.1-10 kHz repetition rates. Maximum pulse energies of 6 mJ and 2.16 mJ were obtained for 1617 and 1634 nm under100 Hz repetition rate with pulse durations of 72 ns and 142 ns, respectively.

  2. Estimation of spectral distribution of sky radiance using a commercial digital camera.

    Science.gov (United States)

    Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao

    2016-01-10

    Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution.

  3. Optical issues of thin organic pellicles in 45-nm and 32-nm immersion lithography

    Science.gov (United States)

    Lucas, Kevin; Gordon, Joseph S.; Conley, Will; Saied, Mazen; Warrick, Scott; Pochkowski, Mike; Smith, Mark D.; West, Craig; Kalk, Franklin; Kuijten, Jan Pieter

    2006-10-01

    The semiconductor industry will soon be putting >=1.07NA 193nm immersion lithography systems into production for the 45nm device node and in about three years will be putting >=1.30NA systems into production for the 32nm device node. For these very high NA systems, the maximum angle of light incident on a 4X reticle will reach ~16 degrees and ~20 degrees for the 45nm and 32nm nodes respectively. These angles can no longer be accurately approximated by an assumption of normal incidence. The optical diffraction and thin film effects of high incident angles on the wafer and on the photomask have been studied by many different authors. Extensive previous work has also investigated the impact of high angles upon hard (e.g., F-doped silica) thick (>700μm) pellicles for 157nm lithography, e.g.,. However, the interaction of these high incident angles with traditional thin (< 1μm) organic pellicles has not been widely discussed in the literature. In this paper we analyze the impact of traditional thin organic pellicles in the imaging plane for hyper-NA immersion lithography at the 45nm and 32nm nodes. The use of existing pellicles with hyper-NA imaging is shown to have a definite negative impact upon lithographic CD control and optical proximity correction (OPC) model accuracy. This is due to the traditional method of setting organic pellicle thickness to optimize normally incident light transmission intensity. Due to thin film interference effects with hyper-NA angles, this traditional pellicle optimization method will induce a loss of high spatial frequency (i.e., high transmitted angle) intensity which is similar in negative impact to a strong lens apodization effect. Therefore, using simulation we investigate different pellicle manufacturing options (e.g., multi-layer pellicle films) and OPC modeling options to reduce the high spatial frequency loss and its impact.

  4. Spectral derivative analysis of solar spectroradiometric measurements: Theoretical basis

    Science.gov (United States)

    Hansell, R. A.; Tsay, S.-C.; Pantina, P.; Lewis, J. R.; Ji, Q.; Herman, J. R.

    2014-07-01

    Spectral derivative analysis, a commonly used tool in analytical spectroscopy, is described for studying cirrus clouds and aerosols using hyperspectral, remote sensing data. The methodology employs spectral measurements from the 2006 Biomass-burning Aerosols in Southeast Asia field study to demonstrate the approach. Spectral peaks associated with the first two derivatives of measured/modeled transmitted spectral fluxes are examined in terms of their shapes, magnitudes, and positions from 350 to 750 nm, where variability is largest. Differences in spectral features between media are mainly associated with particle size and imaginary term of the complex refractive index. Differences in derivative spectra permit cirrus to be conservatively detected at optical depths near the optical thin limit of ~0.03 and yield valuable insight into the composition and hygroscopic nature of aerosols. Biomass-burning smoke aerosols/cirrus generally exhibit positive/negative slopes, respectively, across the 500-700 nm spectral band. The effect of cirrus in combined media is to increase/decrease the slope as cloud optical thickness decreases/increases. For thick cirrus, the slope tends to 0. An algorithm is also presented which employs a two model fit of derivative spectra for determining relative contributions of aerosols/clouds to measured data, thus enabling the optical thickness of the media to be partitioned. For the cases examined, aerosols/clouds explain ~83%/17% of the spectral signatures, respectively, yielding a mean cirrus cloud optical thickness of 0.08 ± 0.03, which compared reasonably well with those retrieved from a collocated Micropulse Lidar Network Instrument (0.09 ± 0.04). This method permits extracting the maximum informational content from hyperspectral data for atmospheric remote sensing applications.

  5. 248nm silicon photoablation: Microstructuring basics

    Energy Technology Data Exchange (ETDEWEB)

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M. [Advanced Multidisciplinary MEMS-Based Integrated Electronic NCER Centre of Excellent (AMBIENCE), School of Microelectronic Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  6. Harmonic Inverse FEL Interaction at 800nm

    CERN Document Server

    Sears, C M S; Siemann, R; Spencer, J E

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and demonstrated as a premodulator for High Gain Harmonic Generation (HGHG) experiments. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. The harmonic IFEL can add flexibility to HGHG FEL design.

  7. Advanced processes for 193-nm immersion lithography

    CERN Document Server

    Wei, Yayi

    2009-01-01

    This book is a comprehensive guide to advanced processes and materials used in 193-nm immersion lithography (193i). It is an important text for those new to the field as well as for current practitioners who want to broaden their understanding of this latest technology. The book can be used as course material for graduate students of electrical engineering, material sciences, physics, chemistry, and microelectronics engineering and can also be used to train engineers involved in the manufacture of integrated circuits. It provides techniques for selecting critical materials (topcoats, photoresi

  8. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    Science.gov (United States)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup, Birgitte

    2010-04-01

    High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality. By adapting a bar geometry, the output power could be scaled even up to several tens of watts. Unfortunately, the high divergence which is a characteristic feature of the bar geometry could lead to a degradation of the overall beam quality of the laser bar. However, spectral beam combining is an effective solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm between the emitters. An output power of 9 W has been achieved at an operating current of 30 A. The combined beam had an M2 value (1/e2) of 5.3 along the slow axis which is comparable to that of a single tapered emitter on the laser bar. The overall beam combining efficiency was measured to be 63%. The output spectrum of the individual emitters was narrowed considerably. In the free running mode, the individual emitters displayed a broad spectrum of the order of 0.5-1.0 nm while the spectral width has been reduced to 30-100 pm in the spectral beam combining mode.

  9. Tunable GHz pulse repetition rate operation in high-power TEM(00)-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking.

    Science.gov (United States)

    Huang, Y J; Tzeng, Y S; Tang, C Y; Huang, Y P; Chen, Y F

    2012-07-30

    We report on a high-power diode-pumped self-mode-locked Nd:YLF laser with the pulse repetition rate up to several GHz. A novel tactic is developed to efficiently select the output polarization state for achieving the stable TEM(00)-mode self-mode-locked operations at 1053 nm and 1047 nm, respectively. At an incident pump power of 6.93 W and a pulse repetition rate of 2.717 GHz, output powers as high as 2.15 W and 1.35 W are generated for the σ- and π-polarization, respectively. We experimentally find that decreasing the separation between the gain medium and the input mirror not only brings in the pulse shortening thanks to the enhanced effect of the spatial hole burning, but also effectively introduces the effect of the spectral filtering to lead the Nd:YLF laser to be in a second harmonic mode-locked status. Consequently, pulse durations as short as 8 ps and 8.5 ps are obtained at 1053 nm and 1047 nm with a pulse repetition rate of 5.434 GHz.

  10. Aerosol extinction profiles at 525 nm and 1020 nm derived from ACE imager data: comparisons with GOMOS, SAGE II, SAGE III, POAM III, and OSIRIS

    Directory of Open Access Journals (Sweden)

    F. Vanhellemont

    2008-04-01

    Full Text Available The Canadian ACE (Atmospheric Chemistry Experiment mission is dedicated to the retrieval of a large number of atmospheric trace gas species using the solar occultation technique in the infrared and UV/visible spectral domain. However, two additional solar disk imagers (at 525 nm and 1020 nm were added for a number of reasons, including the retrieval of aerosol and cloud products. In this paper, we present first comparison results for these imager aerosol/cloud optical extinction coefficient profiles, with the ones derived from measurements performed by 3 solar occultation instruments (SAGE II, SAGE III, POAM III, one stellar occultation instrument (GOMOS and one limb sounder (OSIRIS. The results indicate that the ACE imager profiles are of good quality in the upper troposphere/lower stratosphere, although the aerosol extinction for the visible channel at 525 nm contains a significant negative bias at higher altitudes, while the relative differences indicate that ACE profiles are almost always too high at 1020 nm. Both problems are probably related to ACE imager instrumental issues.

  11. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.

    2015-02-06

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.

  12. Spectral disentangling with Spectangular

    Science.gov (United States)

    Sablowski, Daniel P.; Weber, Michael

    2017-01-01

    The paper introduces the software Spectangular for spectral disentangling via singular value decomposition with global optimisation of the orbital parameters of the stellar system or radial velocities of the individual observations. We will describe the procedure and the different options implemented in our program. Furthermore, we will demonstrate the performance and the applicability using tests on artificial data. Additionally, we use high-resolution spectra of Capella to demonstrate the performance of our code on real-world data. The novelty of this package is the implemented global optimisation algorithm and the graphical user interface (GUI) for ease of use. We have implemented the code to tackle SB1 and SB2 systems with the option of also dealing with telluric (static) lines. Based in part on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.

  13. Spectral Classification Beyond M

    CERN Document Server

    Leggett, S K; Burgasser, A J; Jones, H R A; Marley, M S; Tsuji, T

    2004-01-01

    Significant populations of field L and T dwarfs are now known, and we anticipate the discovery of even cooler dwarfs by Spitzer and ground-based infrared surveys. However, as the number of known L and T dwarfs increases so does the range in their observational properties, and difficulties have arisen in interpreting the observations. Although modellers have made significant advances, the complexity of the very low temperature, high pressure, photospheres means that problems remain such as the treatment of grain condensation as well as incomplete and non-equilibrium molecular chemistry. Also, there are several parameters which control the observed spectral energy distribution - effective temperature, grain sedimentation efficiency, metallicity and gravity - and their effects are not well understood. In this paper, based on a splinter session, we discuss classification schemes for L and T dwarfs, their dependency on wavelength, and the effects of the parameters T_eff, f_sed, [m/H] and log g on optical and infra...

  14. Spectral Animation Compression

    Institute of Scientific and Technical Information of China (English)

    Chao Wang; Yang Liu; Xiaohu Guo; Zichun Zhong; Binh Le; Zhigang Deng

    2015-01-01

    This paper presents a spectral approach to compress dynamic animation consisting of a sequence of homeomor-phic manifold meshes. Our new approach directly compresses the field of deformation gradient defined on the surface mesh, by decomposing it into rigid-body motion (rotation) and non-rigid-body deformation (stretching) through polar decompo-sition. It is known that the rotation group has the algebraic topology of 3D ring, which is different from other operations like stretching. Thus we compress these two groups separately, by using Manifold Harmonics Transform to drop out their high-frequency details. Our experimental result shows that the proposed method achieves a good balance between the reconstruction quality and the compression ratio. We compare our results quantitatively with other existing approaches on animation compression, using standard measurement criteria.

  15. Spectral disentangling with Spectangular

    CERN Document Server

    Sablowski, Daniel P

    2016-01-01

    The paper introduces the software Spectangular for spectral disentangling via singular value decomposition with global optimisation of the orbital parameters of the stellar system or radial velocities of the individual observations. We will describe the procedure and the different options implemented in our program. Furthermore, we will demonstrate the performance and the applicability using tests on artificial data. Additionally, we use high-resolution spectra of Capella to demonstrate the performance of our code on real-world data. The novelty of this package is the implemented global optimisation algorithm and the graphical user interface (GUI) for ease of use. We have implemented the code to tackle SB1 and SB2 systems with the option of also dealing with telluric (static) lines.

  16. Spectral proper orthogonal decomposition

    CERN Document Server

    Sieber, Moritz; Paschereit, Christian Oliver

    2015-01-01

    The identification of coherent structures from experimental or numerical data is an essential task when conducting research in fluid dynamics. This typically involves the construction of an empirical mode base that appropriately captures the dominant flow structures. The most prominent candidates are the energy-ranked proper orthogonal decomposition (POD) and the frequency ranked Fourier decomposition and dynamic mode decomposition (DMD). However, these methods fail when the relevant coherent structures occur at low energies or at multiple frequencies, which is often the case. To overcome the deficit of these "rigid" approaches, we propose a new method termed Spectral Proper Orthogonal Decomposition (SPOD). It is based on classical POD and it can be applied to spatially and temporally resolved data. The new method involves an additional temporal constraint that enables a clear separation of phenomena that occur at multiple frequencies and energies. SPOD allows for a continuous shifting from the energetically ...

  17. SPECTRAL ANALYSIS OF RADIOXENON

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Matthew W.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; McIntyre, Justin I.; Schrom, Brian T.

    2008-09-23

    Monitoring changes in atmospheric radioxenon concentrations is a major tool in the detection of an underground nuclear explosion. Ground based systems like the Automated Radioxenon Sampler /Analyzer (ARSA), the Swedish Unattended Noble gas Analyzer (SAUNA) and the Automatic portable radiometer of isotopes Xe (ARIX), can collect and detect several radioxenon isotopes by processing and transferring samples into a high efficiency beta-gamma coincidence detector. The high efficiency beta-gamma coincidence detector makes these systems highly sensitive to the radioxenon isotopes 133Xe, 131mXe, 133mXe and 135Xe. The standard analysis uses regions of interest (ROI) to determine the amount of a particular radioxenon isotope present. The ROI method relies on the peaks of interest falling within energy limits of the ROI. Some potential problems inherent in this method are the reliance on stable detector gains and a fixed resolution for each energy peak. In addition, when a high activity sample is measured there will be more interference among the ROI, in particular within the 133Xe, 133mXe, and 131mXe regions. A solution to some of these problems can be obtained through spectral fitting of the data. Spectral fitting is simply the fitting of the peaks using known functions to determine the number and relative peak positions and widths. By knowing this information it is possible to determine which isotopes are present. Area under each peak can then be used to determine an overall concentration for each isotope. Using the areas of the peaks several key detector characteristics can be determined: efficiency, energy calibration, energy resolution and ratios between interfering isotopes (Radon daughters).

  18. Spectral imager based on Fabry-Perot interferometer for Aalto-1 nanosatellite

    Science.gov (United States)

    Mannila, Rami; Näsilä, Antti; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Saari, Heikki

    2013-09-01

    The Aalto-1 is a 3U-cubesat project coordinated by Aalto University. The satellite, Aalto-1, will be mainly built by students as project assignments and thesis works. The Aalto-1 is planned to launch on 2014. VTT Technical Research Centre of Finland is developing the main Earth observation payload, a miniaturized spectral imager unit, for the satellite. The spectral imager unit contains a spectral imager, a visible RGB-camera and control electronics of the cameras. Detailed design of the spectral imager unit has been completed and assembly of the spectral imager unit will be done in the autumn 2013. The spectral imager is based on a tunable Fabry-Perot interferometer (FPI) accompanied by an RGB CMOS image sensor. The FPI consists of two highly reflective surfaces separated by a tunable air gap and it is based on a piezo-actuated structure. The piezo-actuated FPI uses three piezo-actuators and is controlled in a closed capacitive feedback loop. The spectral resolution of the imager will be 8-15 nm at full width at half maximum and it will operate in the wavelength range 500-900 nm. Imaging resolution of the spectral imager is 1024x1024 pixels and the focal length of the optics is 32 mm and F-number is 3.4. Mass of the spectral imager unit is approximately 600 grams, and dimensions are 97 mm x 97 mm x 48 mm.

  19. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available of spectral unmixing 3 End-member spectra and synthetic mixtures 4 Results 5 Conclusions Debba (CSIR) Spectral Unmixing LQM 2009 2 / 22 Background and Research Question If research could be as easy as eating a chocolate cake . . . Figure: Can you guess... the ingredients for this chocolate cake? Debba (CSIR) Spectral Unmixing LQM 2009 3 / 22 Background and Research Question Ingredients Quantity unsweetened chocolate unsweetened cocoa powder boiling water flour baking powder baking soda salt unsalted...

  20. The Sensitivity of Hybrid Differential Stereoscopy for Spectral Imaging

    CERN Document Server

    DeForest, Craig E

    2007-01-01

    Stereoscopic spectral imaging is an observing technique that affords rapid acquisition of limited spectral information over an entire image plane simultaneously. Light from a telescope is dispersed into multiple spectral orders, which are imaged separately, and two or more of the dispersed images are combined using an analogy between the (x,y,\\lambda) spectral data space and conventional (x,y,z) three-space. Because no photons are deliberately destroyed during image acquisition, the technique is much more photon-efficient in some observing regimes than existing techniques such as scanned-filtergraph or scanned-slit spectral imaging. Hybrid differential stereoscopy, which uses a combination of conventional cross-correlation stereoscopy and linear approximation theory to extract the central wavelength of a spectral line, has been used to produce solar Stokes-V (line-of-sight) magnetograms in the 617.34 nm Fe I line, and more sophisticated inversion techniques are currently being used to derive Doppler and line ...

  1. [Study on spectral emissivity of C/C composites].

    Science.gov (United States)

    Zhu, Bo; Cao, Wei-Wei; Jing, Min; Dong, Xing-Guang; Wang, Cheng-Guo

    2009-11-01

    Different types of C/C composites were prepared by conventional molding, and the changes in normal spectral emissivity of samples were tested. The testing results show that spectral emissivity of C/C composite reinforced by short cut carbon fibers is generally higher than the sample reinforced by carbon cloth in the entire 2500-13000nm wavelength region. The structure of short cut carbon fibers is relatively loose and the number of material particles is less than other samples in unit volume, which increases the penetration depth of electromagnetic waves. This is the reason for higher normal spectral emissivity and better heat radiation property. Meanwhile, the test results of normal spectral emissivity for fiber perform and C/C composite samples show that the spectral emissivity of resin carbon is better than fiber carbon because of the difference in microstructure for the two kinds of carbon materials. Laser Raman spectroscopy was employed to analyze the microstructures of different carbon materials, and the results show that because sp3 and sp2 hybrid states of carbon atoms in resin carbon produced more vibration modes, the resin carbon also has higher normal spectral emissivity and better characteristics of heat radiation.

  2. A wide spectral range photoacoustic aerosol absorption spectrometer.

    Science.gov (United States)

    Haisch, C; Menzenbach, P; Bladt, H; Niessner, R

    2012-11-06

    A photoacoustic spectrometer for the measurement of aerosol absorption spectra, based on the excitation of a pulsed nanosecond optical parametrical oscillator (OPO), will be introduced. This spectrometer is working at ambient pressure and can be used to detect and characterize different classes of aerosols. The spectrometer features a spectral range of 410 to 2500 nm and a sensitivity of 2.5 × 10(-7) m(-1) at 550 nm. A full characterization of the system in the visible spectral range is demonstrated, and the potential of the system for near IR measurement is discussed. In the example of different kinds of soot particles, the performance of the spectrometer was assessed. As we demonstrate, it is possible to determine a specific optical absorption per particle by a combination of the new spectrometer with an aerosol particle counter.

  3. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  4. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    Science.gov (United States)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  5. Comparison of 193 nm and 308 nm laser liquid printing by shadowgraphy imaging

    Science.gov (United States)

    Palla-Papavlu, A.; Shaw-Stewart, J.; Mattle, T.; Dinca, V.; Lippert, T.; Wokaun, A.; Dinescu, M.

    2013-08-01

    Over the last years laser-induced forward transfer has emerged as a versatile and powerful tool for engineering surfaces with active compounds. Soft, easily damageable materials can be transferred using a triazene polymer as a sacrificial layer which acts as a pressure generator and at the same time protects the material from direct laser irradiation. To understand and optimize the transfer process of biomolecules in liquid solution by using an intermediate triazene polymer photosensitive layer, shadowgraphy imaging is carried out. Two laser systems i.e. an ArF laser operating at 193 nm and a XeCl laser operating at 308 nm are applied for the transfer. Solutions with 50% v/v glycerol concentration are prepared and the influence of the triazene polymer sacrificial layer thickness (60 nm) on the deposits is studied. The shadowgraphy images reveal a pronounced difference between laser-induced forward transfer using 193 nm or 308 nm, i.e. very different shapes of the ejected liquid.

  6. Solar Spectral Irradiance Variability in Cycle 24: Observations and Models

    CERN Document Server

    Marchenko, S V; Lean, J L

    2016-01-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265-500 nm during the on-going Cycle 24. We supplement the OMI data with concurrent observations from the GOME-2 and SORCE instruments and find fair-to-excellent, depending on wavelength, agreement among the observations and predictions of the NRLSSI2 and SATIRE-S models.

  7. Optical properties of mice skull bone in the 455- to 705-nm range

    Science.gov (United States)

    Haleh, Soleimanzad; Hirac, Gurden; Frédéric, Pain

    2017-01-01

    Rodent brain is studied to understand the basics of brain function. The activity of cell populations and networks is commonly recorded in vivo with wide-field optical imaging techniques such as intrinsic optical imaging, fluorescence imaging, or laser speckle imaging. These techniques were recently adapted to unrestrained mice carrying transcranial windows. Furthermore, optogenetics studies would benefit from optical stimulation through the skull without implanting an optical fiber, especially for longitudinal studies. In this context, the knowledge of bone optical properties is requested to improve the quantitation of the depth and volume of imaged or stimulated tissues. Here, we provide experimental measurements of absorption and reduced scattering coefficients of freshly excised mice skull for wavelengths between 455 and 705 nm. Absorption coefficients from 6 to 8 months mice skull samples range between 1.67±0.28 mm-1 at 455 nm and 0.47±0.07 mm-1 at 705 nm, whereas reduced scattering coefficients were in the range of 2.79±0.26 mm-1 at 455 nm up to 2.29±0.12 mm-1 at 705 nm. In comparison, measurements carried out on 4 to 5 weeks mice showed similar spectral profiles but smaller absorption and reduced scattering coefficients by a factor of about 2 and 1.5, respectively.

  8. Portable Raman spectroscopy using retina-safe (1550 nm) laser excitation

    Science.gov (United States)

    Brouillette, Carl; Smith, Wayne; Donahue, Michael; Huang, Hermes; Shende, Chetan; Sengupta, Atanu; Inscore, Frank; Patient, Michael; Farquharson, Stuart

    2012-06-01

    The use of portable Raman analyzers to identify unknown substances in the field has grown dramatically during the past decade. Measurements often require the laser beam to exit the confines of the sample compartment, which increases the potential of eye or skin damage. This is especially true for most commercial analyzers, which use 785 nm laser excitation. To overcome this safety concern, we have built a portable FT-Raman analyzer using a 1550 nm retina-safe excitation laser. Excitation at 1550 nm falls within the 1400 to 2000 nm retina-safe range, so called because the least amount of damage to the eye occurs in this spectral region. In contrast to wavelengths below 1400 nm, the retina-safe wavelengths are not focused by the eye, but are absorbed by the cornea, aqueous and vitreous humor. Here we compare the performance of this system to measurements of explosives at shorter wavelengths, as well as its ability to measure surface-enhanced Raman spectra of several chemicals, including the food contaminant melamine.

  9. Spectrally resolved visualization of fluorescent dyes permeating into skin

    Science.gov (United States)

    Maeder, Ulf; Bergmann, Thorsten; Beer, Sebastian; Burg, Jan Michael; Schmidts, Thomas; Runkel, Frank; Fiebich, Martin

    2012-03-01

    We present a spectrally resolved confocal imaging approach to qualitatively asses the overall uptake and the penetration depth of fluorescent dyes into biological tissue. We use a confocal microscope with a spectral resolution of 5 nm to measure porcine skin tissue after performing a Franz-Diffusion experiment with a submicron emulsion enriched with the fluorescent dye Nile Red. The evaluation uses linear unmixing of the dye and the tissue autofluorescence spectra. The results are combined with a manual segmentation of the skin's epidermis and dermis layers to assess the penetration behavior additionally to the overall uptake. The diffusion experiments, performed for 3h and 24h, show a 3-fold increased dye uptake in the epidermis and dermis for the 24h samples. As the method is based on spectral information it does not face the problem of superimposed dye and tissue spectra and therefore is more precise compared to intensity based evaluation methods.

  10. Enhancing solar cell efficiency by using spectral converters

    Energy Technology Data Exchange (ETDEWEB)

    Van Sark, W.G.J.H.M. [Department of Science, Technology and Society, Copernicus Institute, Utrecht University, Utrecht (Netherlands); Meijerink, A. [Department of Chemistry of Condensed Matter, Debye Institute, Utrecht University, Utrecht (Netherlands); Schropp, R.E.I. [Department of Surfaces, Interfaces and Devices, Debye Institute, Utrecht University, Utrecht (Netherlands); Van Roosmalen, J.A.M. [ECN Solar Energy, Petten (Netherlands); Lysen, E.H. [Utrecht Centre for Energy research UCE, Utrecht University, Utrecht (Netherlands)

    2005-04-01

    Planar converters containing quantum dots as wavelength-shifting moieties on top of a multi-crystalline silicon and an amorphous silicon solar cell were studied. The highly efficient quantum dots are to shift the wavelengths where the spectral response of the solar cell is low to wavelengths where the spectral response is high, in order to improve the conversion efficiency of the solar cell. It was calculated that quantum dots with an emission at 603 nm increase the multi-crystalline solar cell short-circuit current by nearly 10%. Simulation results for planar converters on hydrogenated amorphous silicon solar cells show no beneficial effects, due to the high spectral response at low wavelength.

  11. Enhancing solar cell efficiency by using spectral converters

    Energy Technology Data Exchange (ETDEWEB)

    Sark, W.G.J.H.M. van [Utrecht University (Netherlands). Copernicus Institute; Meijerink, A.; Schropp, R.E.I. [Utrecht University (Netherlands). Debye Institute; Roosmalen, J.A.M. van [ECN Solar Energy, Petten (Netherlands); Lysen, E.H. [Utrecht University (Netherlands). Centre for Energy Research

    2005-05-01

    Planar converters containing quantum dots as wavelength-shifting moieties on top of a multi-crystalline silicon and an amorphous silicon solar cell were studied. The highly efficient quantum dots are to shift the wavelengths where the spectral response of the solar cell is low to wavelengths where the spectral response is high, in order to improve the conversion efficiency of the solar cell. It was calculated that quantum dots with an emission at 603 nm increase the multi-crystalline solar cell short-circuit current by nearly 10%. Simulation results for planar converters on hydrogenated amorphous silicon solar cells show no beneficial effects, due to the high spectral response at low wavelength. (author)

  12. Research Into a Neon Spectral Line Profile of Dusty Plasma

    CERN Document Server

    Pikalev, Aleksandr

    2014-01-01

    Ordered dusty structures influence plasma conditions. This influence can be revealed, when plasma spectral characteristics change, as dusty particles are injected. For example, a variation in the atomic temperature leads to a variation in the profiles of spectral lines. We studied the profile of a 585 nm neon spectral line in the dusty structures. The structures levitated in a positive column of a glow discharge at a pressure of 50-150 Pa and with a current of 1-9 mA. We scanned the profile with the use of a Fabry-Perot interferometer, by changing the air pressure between the interferometer mirrors. To process the data, a special algorithm was developed. The algorithm is resistant to a noise and a scanning speed instability. We have found an upper bound of the impact of dusty structures on the profile width. The appearance of macroparticles changes the atomic plasma temperature less than by 10 K.

  13. Applications of Rapid Spectral Scanning System (RSSS) in petroleum exploration

    Energy Technology Data Exchange (ETDEWEB)

    Van Gijzel, P. (PVG Microscope Technology, Inc., Houston, TX (USA))

    1989-09-01

    Recently, a new instrument - the rapid spectral scanning system (RSSS) - has been developed. This system allows fast spectral microscope/photometric analysis of geologic materials in transmitted, reflected, or fluorescent illumination. Exact reproducibility, precise calibration, and correct standardization of the RSSS results in a high accuracy of {plus minus}1 nm or 0.3% for the peak wavelength and other spectral parameters. There are numerous applications of the RSSS in petroleum exploration. Examples are shown of thermal maturity analysis of hydrocarbon source rocks (on kerogen in transmitted light, fluorescence); identification of organic matter and certain minerals, such as dolomite and calcite (transmitted light and fluorescence); and characterization of crude oil, solid bitumens, and drilling fluids (fluorescence). One major application of the RSSS is the transmittance color index (TCI) as a new thermal maturity indicator. The RSSS will probably cause a revolution in organic petrology.

  14. Spectral mapping of thermal conductivity through nanoscale ballistic transport.

    Science.gov (United States)

    Hu, Yongjie; Zeng, Lingping; Minnich, Austin J; Dresselhaus, Mildred S; Chen, Gang

    2015-08-01

    Controlling thermal properties is central to many applications, such as thermoelectric energy conversion and the thermal management of integrated circuits. Progress has been made over the past decade by structuring materials at different length scales, but a clear relationship between structure size and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral distribution of energy among heat carriers. Here, we experimentally measure this spectral distribution by probing quasi-ballistic transport near nanostructured heaters down to 30 nm using ultrafast optical spectroscopy. Our approach allows us to quantify up to 95% of the total spectral contribution to thermal conductivity from all phonon modes. The measurement agrees well with multiscale and first-principles-based simulations. We further demonstrate the direct construction of mean free path distributions. Our results provide a new fundamental understanding of thermal transport and will enable materials design in a rational way to achieve high performance.

  15. Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant

    Science.gov (United States)

    Roush, Ted L.; Colaprete, Anthony; Thompson, Sarah; Cook, Amanda; Kleinhenz, Julie

    2014-01-01

    Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.

  16. An Algorithm for In-Flight Spectral Calibration of Imaging Spectrometers

    Directory of Open Access Journals (Sweden)

    Gerrit Kuhlmann

    2016-12-01

    Full Text Available Accurate spectral calibration of satellite and airborne spectrometers is essential for remote sensing applications that rely on accurate knowledge of center wavelength (CW positions and slit function parameters (SFP. We present a new in-flight spectral calibration algorithm that retrieves CWs and SFPs across a wide spectral range by fitting a high-resolution solar spectrum and atmospheric absorbers to in-flight radiance spectra. Using a maximum a posteriori optimal estimation approach, the quality of the fit can be improved with a priori information. The algorithm was tested with synthetic spectra and applied to data from the APEX imaging spectrometer over the spectral range of 385–870 nm. CWs were retrieved with high accuracy (uncertainty <0.05 spectral pixels from Fraunhofer lines below 550 nm and atmospheric absorbers above 650 nm. This enabled a detailed characterization of APEX’s across-track spectral smile and a previously unknown along-track drift. The FWHMs of the slit function were also retrieved with good accuracy (<10% uncertainty for synthetic spectra, while some obvious misfits appear for the APEX spectra that are likely related to radiometric calibration issues. In conclusion, our algorithm significantly improves the in-flight spectral calibration of APEX and similar spectrometers, making them better suited for the retrieval of atmospheric and surface variables relying on accurate calibration.

  17. Quantitative method to assess caries via fluorescence imaging from the perspective of autofluorescence spectral analysis

    Science.gov (United States)

    Chen, Q. G.; Zhu, H. H.; Xu, Y.; Lin, B.; Chen, H.

    2015-08-01

    A quantitative method to discriminate caries lesions for a fluorescence imaging system is proposed in this paper. The autofluorescence spectral investigation of 39 teeth samples classified by the International Caries Detection and Assessment System levels was performed at 405 nm excitation. The major differences in the different caries lesions focused on the relative spectral intensity range of 565-750 nm. The spectral parameter, defined as the ratio of wavebands at 565-750 nm to the whole spectral range, was calculated. The image component ratio R/(G + B) of color components was statistically computed by considering the spectral parameters (e.g. autofluorescence, optical filter, and spectral sensitivity) in our fluorescence color imaging system. Results showed that the spectral parameter and image component ratio presented a linear relation. Therefore, the image component ratio was graded as 1.62 to quantitatively classify sound, early decay, established decay, and severe decay tissues, respectively. Finally, the fluorescence images of caries were experimentally obtained, and the corresponding image component ratio distribution was compared with the classification result. A method to determine the numerical grades of caries using a fluorescence imaging system was proposed. This method can be applied to similar imaging systems.

  18. Spectrally selective solar absorbers in different non-black colours

    Energy Technology Data Exchange (ETDEWEB)

    Crnjak Orel, Z.; Gunde, M. Klanjsek [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Hutchins, M.G. [Oxford Brookes University, Oxford OX3 OBP (United Kingdom)

    2005-01-01

    Silicon paints were prepared from yellow, ochre, dark ochre, green and blue pigments. To improve the solar absorptance, a{sub s}, of these coatings, an existing black paint was admixed in different ratios. The optical properties of the mixed paints thus formed are expressed in terms of the Kubelka-Munk absorption and scattering coefficients in the spectral region 400-17000nm. The scattering coefficient obtained for all paints was essentially equal. In the visible region the absorption coefficient follows the spectral characteristics of each respective colour. In the infrared absorption at circa 9000nm and above 12000nm are seen in all cases which result in a thickness-dependent increase of the thermal emittance, e{sub T}, of the coating. The metric chroma (C{sub ab}{sup *}) and lightness (L{sup *}) in CIELAB colour space were calculated for wide-angle observer in average daylight conditions. A range of non-black spectrally selective solar absorber surfaces with a{sub s}>0.8 and e{sub T}<0.3 have been prepared with L{sup *}<45 and C{sub ab}{sup *}<10.

  19. Spectrally selective solar absorbers in different non-black colours

    Energy Technology Data Exchange (ETDEWEB)

    Orel, Z.C.; Gunde, M.K. [National Institute of Chemistry, Ljubljana (Slovenia); Hutchins, M.G. [Oxford Brookes University, Oxford (United Kingdom)

    2005-01-01

    Silicon paints were prepared from yellow, ochre, dark ochre, green and blue pigments. To improve the solar absorptance, a{sub s}, of these coatings, an existing black paint was admixed in different ratios. The optical properties of the mixed paints thus formed are expressed in terms of the Kubelka-Munk absorption and scattering coefficients in the spectral region 400-17000 nm. The scattering coefficient obtained for all paints was essentially equal. In the visible region the absorption coefficient follows the spectral characteristics of each respective colour. In the infrared absorption at {approx}9000 nm and above 12000 nm are seen in all cases which result in a thickness-dependent increases of the thermal emittance, e{sub T}, of the coating. The metric chroma (C{sub ab}{sup *}) and lightness (L{sup *}) in CIELAB colour space were calculated for wide-angle observer in average daylight conditions. A range of non-black spectrally selective solar absorber surfaces with a{sub s}>0.8 and e{sub T}<0.3 have been prepared with L{sup *}<45 and C{sub ab}{sup *}<10. (author)

  20. DEVELOPMENT AND UTILIZATION OF URBAN SPECTRAL LIBRARY FOR REMOTE SENSING OF URBAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Nurul Ezaty Mohd Nasarudin

    2011-01-01

    Full Text Available Hyperspectral technology is useful for urban studies due to its capability in examining detailed spectral characteristics of urban materials. This study aims to develop a spectral library of urban materials and demonstrate its application in remote sensing analysis of an urban environment. Field measurements were conducted by using ASD FieldSpec 3 Spectroradiometer with wavelength range from 350 to 2500 nm. The spectral reflectance curves of urban materials were interpreted and analyzed. A collection of 22 spectral data was compiled into a spectral library. The spectral library was put to practical use by utilizing the reference spectra for WorldView-2 satellite image classification which demonstrates the usability of such infrastructure to facilitatefurther progress of remote sensing applications in Malaysia.

  1. DEVELOPMENT AND UTILIZATION OF URBAN SPECTRAL LIBRARY FOR REMOTE SENSING OF URBAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Nurul Ezaty Mohd Nasarudin

    2011-06-01

    Full Text Available Hyperspectral technology is useful for urban studies due to its capability in examining detailed spectral characteristics of urban materials. This study aims to develop a spectral library of urban materials and demonstrate its application in remote sensing analysis of an urban environment. Field measurements were conducted by using ASD FieldSpec 3 Spectroradiometer with wavelength range from 350 to 2500 nm. The spectral reflectance curves of urban materials were interpreted and analyzed. A collection of 22 spectral data was compiled into a spectral library. The spectral library was put to practical use by utilizing the reference spectra for WorldView-2 satellite image classification which demonstrates the usability of such infrastructure to facilitate further progress of remote sensing applications in Malaysia.

  2. DFB-ridge laser diodes at 894 nm for Cesium atomic clocks

    Science.gov (United States)

    von Bandel, N.; Garcia, M.; Lecomte, M.; Larrue, A.; Robert, Y.; Vinet, E.; Driss, O.; Parrilaud, O.; Krakowski, M.; Gruet, F.; Matthey, R.; Mileti, G.

    2016-02-01

    Time and frequency applications are in need of high accuracy and high stability clocks. Optically pumped compact industrial Cesium atomic clocks are a promising approach that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of the laser diodes that are used. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for ground applications. This work will provide key experience for further space technology qualification. III-V Lab is in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894 nm (D1 line of Cesium) and 852 nm (D2 line). LTF-Unine is in charge of their spectral characterisation. The use of D1 line for pumping will provide simplified clock architecture compared to the D2 line pumping thanks to simpler atomic transitions and a larger spectral separation between lines in the 894 nm case. Also, D1 line pumping overcomes the issue of unpumped "idle states" that occur with D2 line. The modules should provide narrow linewidth (= 10 Hz and 109 Hz2/Hz @ f >= 10 Hz.

  3. Discrimination of periodontal diseases using diffuse reflectance spectral intensity ratios

    Science.gov (United States)

    Chandra Sekhar, Prasanth; Betsy, Joseph; Presanthila, Janam; Subhash, Narayanan

    2012-02-01

    This clinical study was to demonstrate the applicability of diffuse reflectance (DR) intensity ratio R620/R575 in the quantification and discrimination of periodontitis and gingivitis from healthy gingiva. DR spectral measurements were carried out with white-light illumination from 70 healthy sites in 30 healthy volunteers, and 63 gingivitis- and 58 periodontitis-infected sites in 60 patients. Clinical parameters such as probing pocket depth, clinical attachment level, and gingival index were recorded in patient population. Diagnostic accuracies for discrimination of gingivitis and periodontitis from healthy gingiva were determined by comparison of spectral signatures with clinical parameters. Divergence of average DR spectral intensity ratio between control and test groups was studied using analysis of variance. The mean DR spectrum on normalization at 620 nm showed marked differences between healthy tissue, gingivitis, and periodontitis. Hemoglobin concentration and apparent SO2 (oxygen saturation) were also calculated for healthy, gingivitis, and periodontitis sites. DR spectral intensities at 545 and 575 nm showed a decreasing trend with progression of disease. Among the various DR intensity ratios studied, the R620/R575 ratio provided a sensitivity of 90% and specificity of 94% for discrimination of healthy tissues from gingivitis and a sensitivity of 91% and specificity of 100% for discrimination of gingivitis from periodontitis.

  4. Time-resolved spectral analysis of Radachlorin luminescence in water

    Science.gov (United States)

    Belik, V. P.; Gadzhiev, I. M.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-05-01

    We report results of spectral- and time-resolved study of Radachlorin photosensitizer luminescence in water in the spectral range of 950-1350nm and for determination of the photosensitizer triplet state and the singlet oxygen lifetimes responsible for singlet oxygen generation and degradation. At any wavelength within the explored spectral range the luminescence decay contained two major contributions: a fast decay at the ns time scale and a slow evolution at the μs time scale. The fast decay was attributed to electric dipole fluorescence transitions in photosensitizer molecules and the slow evolution to intercombination phosphorescence transitions in singlet oxygen and photosensitizer molecules. Relatively high-amplitude ns peak observed at all wavelengths suggests that singlet oxygen monitoring with spectral isolation methods alone, without additional temporal resolution can be controversial. In the applied experimental conditions the total phosphorescence signal at any wavelength contained a contribution from the photosensitizer triplet state decay, while at 1274nm the singlet oxygen phosphorescence dominated. The results obtained can be used for optimization of the methods of singlet oxygen monitoring and imaging.

  5. New confocal microscopy hyperspectral imager for NIR-emitting bioprobes: high spectral resolution for a wide spectral range (Conference Presentation)

    Science.gov (United States)

    Marcet, Stéphane; Benayas, Antonio; Quintanilla, Marta; Mangiarini, Francesca; Verhaegen, Marc; Vetrone, Fiorenzo; Blais-Ouellette, Sébastien

    2016-03-01

    Functional nanoscale materials are being extensively investigated for applications in biology and medicine and are ready to make significant contributions in the realization of exciting advancements in diverse areas of diagnostics and therapeutics. Aiming for more accurate, efficient, non-invasive and fast diagnostic tools, the use of near-infrared (NIR) light in the range of the 1st and 2nd biological window (NIR-I: 0.70-0.95 µm; NIR-II: 1.00-1.35 µm) provides deeper penetration depth into biological tissue, better image contrast, reduced phototoxicity and photobleaching. Consequently, NIR-based bioimaging became a quickly emerging field and manifold new NIR-emitting bioprobes have been reported. Since commercially available microscopes are not optimized for this kind of NPs, a new microscopy hyperspectral confocal imager has been developed to cover a broad spectral range (400 to 1700 nm) with high spectral resolution. The smallest spectral variation can be easily monitored thanks to the high spectral resolution (as low as 0.2 nm). This is possible thanks to a combination of an EMCCD and an InGaAs camera with a high resolution spectrometer. An extended number of NPs can be excited with a Ti:Sapphire laser, which provides tunable illumination within 690-1040 nm. Cells and tissues can be mapped in less than 100 ms, allowing in-vivo imaging. As a proof of concept, here we present the preliminary results of the spatial distribution of the fluorescence signal intensity from lanthanide doped nanoparticles incorporated into a system of biological interest. The temperature sub-mm gradient - analyzing the spectral features so gathered through an all-optical route is also thoroughly discussed.

  6. Spectral Analysis of Markov Chains

    OpenAIRE

    2007-01-01

    The paper deals with the problem of a statistical analysis of Markov chains connected with the spectral density. We present the expressions for the function of spectral density. These expressions may be used to estimate the parameter of the Markov chain.

  7. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  8. Airborne Shortwave Infrared Spectral Remote Sensing as a Direct Prospecting Method for Oil and Gas Resources

    Institute of Scientific and Technical Information of China (English)

    杨柏林

    1994-01-01

    The spectral characters of hydrocarbons in some oil-bearing strata and soil layers ouer oil and gas reservoirs in the Junggar Basin and northern Tarim Basin in Xinjng are compared with those of chemically pure hydrocarbons.The hydrocarbons are characterized by the bi-absorption at 2310nm and 2350nm.Hydrocarbon and radioactive anomalies in oil and gas terrains are found much more widespread than carbonate alterations.Based on the spectra of heavy hydrocarbons related to oil between 2270nm and 2460nm and refined data treatme nt, remote sensing may hold encouraging promise as a directly prospecting technique for oil and gas resources.

  9. Examining the Spectral Separability of Prosopis glandulosa from Co-Existent Species Using Field Spectral Measurement and Guided Regularized Random Forest

    Directory of Open Access Journals (Sweden)

    Nyasha Mureriwa

    2016-02-01

    Full Text Available The invasive taxa of Prosopis is rated the world’s top 100 unwanted species, and a lack of spatial data about the invasion dynamics has made the current control and monitoring methods unsuccessful. This study thus tests the use of in situ spectroscopy data with a newly-developed algorithm, guided regularized random forest (GRRF, to spectrally discriminate Prosopis from coexistent acacia species (Acacia karroo, Acacia mellifera and Ziziphus mucronata in the arid environment of South Africa. Results show that GRRF was able to reduce the high dimensionality of the spectroscopy data and select key wavelengths (n = 11 for discriminating amongst the species. These wavelengths are located at 356.3 nm, 468.5 nm, 531.1 nm, 665.2 nm, 1262.3 nm, 1354.1 nm, 1361.7 nm, 1376.9 nm, 1407.1 nm, 1410.9 nm and 1414.6 nm. The use of these selected wavelengths increases the overall classification accuracy from 79.19% and a Kappa value of 0.7201 when using all wavelengths to 88.59% and a Kappa of 0.8524 when the selected wavelengths were used. Based on our relatively high accuracies and ease of use, it is worth considering the GRRF method for reducing the high dimensionality of spectroscopy data. However, this assertion should receive considerable additional testing and comparison before it is accepted as a substitute for reliable high dimensionality reduction.

  10. Miniature spectrally selective dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.R.; Macconochie, I.O.; Poole, B.D.

    1983-02-08

    The present invention discloses a miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (e-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two e-cells and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one e-cell and three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame in a further embodiment, the electro-optic elements a packaged in a wristwatch case with attaching means being a watchband. The filters in all embodiments allow only selected wavelengths of radiation to be detected by the photovoltaic detectors and then integrated by the e-cells.

  11. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    Science.gov (United States)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  12. Characterization of red-near infrared transition for wheat and chickpea using 3 nm bandwidth data

    Science.gov (United States)

    Gupta, R. K.; Vijayan, D.; Prasad, T. S.

    2001-01-01

    Enhancement of space based capabilities to discriminate different crops and different varieties of a particular crop needs measurement of (i) the shift in red edge and (ii) the slope of the sudden rise of reflectance in 680 - 760 nm spectral region as a function of Days After Sowing (DAS). To develop the knowledge base for catering to the analysis of future space-based hyperspectral measurements, ground based measurements in 3 nm bandwidth in visible - near Infrared region together with corresponding Leaf Area Index (LAI) observations were taken over the Crop Growth Cycle (CGC) of Wheat and Chickpea. The red edge for wheat crop was at 679 nm for 25 DAS and reached the upper limit i.e., 693.7 nm at 84 DAS and thereafter shifted backward to 679 nm at 108 DAS. There was no change in red edge value of 684.9 nm during 40 to 49 DAS and of 687.8 nm during 55 to 71 DAS. The slope of Red to NIR transition for wheat varied from 0.457 to peak value of 0.784 during 25 to 71 DAS and thereafter decreased to 0.073 at 108 DAS. The peak of Red to Near Infrared (NIR) transition slope and Ratio Vegetation Index (RVI) occurred at the same time i.e., 71 DAS. However, the upper most value of red edge shift occurred at 84 DAS. Paper discusses the above aspects including role of mid point of Red to NIR transition, interrelationships among the Red-NIR transition Slope, Red Edge, LAI and RVI for wheat and chickpea.

  13. Spectral numbers in Floer theories

    CERN Document Server

    Usher, Michael

    2007-01-01

    The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz, and others. We prove that the spectral number associated to any nonzero Floer homology class is always finite, and that the infimum in the definition of the spectral number is always attained. In the Hamiltonian case, this implies that what is known as the "nondegenerate spectrality" axiom holds on all closed symplectic manifolds. Our proofs are entirely algebraic and rather elementary, and apply to any Floer-type theory (including Novikov homology) satisfying certain standard formal properties provided that one works with coefficients in a Novikov ring whose degree-zero part \\Lambda_0 is a field. The key ingredient is a theorem about linear transforma...

  14. Mercury's Pyroclastic Deposits and their spectral variability

    Science.gov (United States)

    Besse, Sebastien; Doressoundiram, Alain

    2016-10-01

    Observations of the MESSENGER spacecraft in orbit around Mercury have shown that volcanism is a very important process that has shaped the surface of the planet, in particular in its early history.In this study, we use the full range of the MASCS spectrometer (300-1400nm) to characterize the spectral properties of the pyroclastic deposits. Analysis of deposits within the Caloris Basin, and on other location of Mercury's surface (e.g., Hesiod, Rachmaninoff, etc.) show two main results: 1) Spectral variability is significant in the UV and VIS range between the deposits themselves, and also with respect to the rest of the planet and other features like hollows, 2) Deposits exhibit a radial variability similar to those found with the lunar pyroclastic deposits of floor fractured craters.These results are put in context with the latest analysis of other instruments of the MESSENGER spacecraft, in particular the visible observations from the imager MDIS, and the elemental composition given by the X-Ray spectrometer. Although all together, the results do not allow pointing to compositional variability of the deposits for certain, information on the formation mechanisms, the weathering and the age formation can be extrapolated from the radial variability and the elemental composition.

  15. Multivariate Analysis of Solar Spectral Irradiance Measurements

    Science.gov (United States)

    Pilewskie, P.; Rabbette, M.

    2001-01-01

    Principal component analysis is used to characterize approximately 7000 downwelling solar irradiance spectra retrieved at the Southern Great Plains site during an Atmospheric Radiation Measurement (ARM) shortwave intensive operating period. This analysis technique has proven to be very effective in reducing a large set of variables into a much smaller set of independent variables while retaining the information content. It is used to determine the minimum number of parameters necessary to characterize atmospheric spectral irradiance or the dimensionality of atmospheric variability. It was found that well over 99% of the spectral information was contained in the first six mutually orthogonal linear combinations of the observed variables (flux at various wavelengths). Rotation of the principal components was effective in separating various components by their independent physical influences. The majority of the variability in the downwelling solar irradiance (380-1000 nm) was explained by the following fundamental atmospheric parameters (in order of their importance): cloud scattering, water vapor absorption, molecular scattering, and ozone absorption. In contrast to what has been proposed as a resolution to a clear-sky absorption anomaly, no unexpected gaseous absorption signature was found in any of the significant components.

  16. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  17. Design and Simulation of Low Noise Amplifiers at 180nm and 90nm Technologies

    Directory of Open Access Journals (Sweden)

    Fathima Janisha

    2016-11-01

    Full Text Available With continued process scaling, CMOS has become a viable technology for the design of high-performance low noise amplifiers (LNAs in the radio frequency (RF regime. This thesis presents design and simulation of LNA at 180nm and 90nm technology. The LNA function is used to amplify signals without adding noise. The work is done on Cadence Virtuoso platform and the performance parameters like transient response and Noise figure are simulated and plotted. A supply voltage of just 5mV is used here. The noise figure at 180nm is found to be 259.722mdB at 1.04502GHz and The noise figure at 90nm is found to be 183.21mdB at 1.157GHz. 1.04502GHz and 1.157GHz are the peak frequency obtained from the frequency response of the Low noise amplifier. It is observed that the noise figure varies in each technology.

  18. Picosecond Laser Shock Peening of Nimonic 263 at 1064 nm and 532 nm Wavelength

    Directory of Open Access Journals (Sweden)

    Sanja Petronic

    2016-02-01

    Full Text Available The paper presents a study on the surface modifications of nickel based superalloy Nimonic 263 induced by laser shock peening (LSP process. The process was performed by Nd3+:Yttrium Aluminium Garnet (YAG picosecond laser using the following parameters: pulse duration 170 ps; repetition rate 10 Hz; pulse numbers of 50, 100 and 200; and wavelength of 1064 nm (with pulse energy of 2 mJ, 10 mJ and 15 mJ and 532 nm (with pulse energy of 25 mJ, 30 mJ and 35 mJ. The following response characteristics were analyzed: modified surface areas obtained by the laser/material interaction were observed by scanning electron microscopy; elemental composition of the modified surface was evaluated by energy-dispersive spectroscopy (EDS; and Vickers microhardness tests were performed. LSP processing at both 1064 nm and 532 nm wavelengths improved the surface structure and microhardness of a material. Surface morphology changes of the irradiated samples were determined and surface roughness was calculated. These investigations are intended to contribute to the study on the level of microstructure and mechanical properties improvements due to LSP process that operate in a picosecond regime. In particular, the effects of laser wavelength on the microstructural and mechanical changes of a material are studied in detail.

  19. Laser Shock Processing of 6061-T6 Al alloy with 1064 nm and 532 nm wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Rosas, G., E-mail: gomezrg@hotmail.com [Departamento de Fisica, Centro Universitario de Ciencias Exactas e Ingenierias, CUCEI, Universidad de Guadalajara, Blvd. Marcelino Garcia Barragan 1421, Guadalajara, Jalisco 44430 (Mexico); Rubio-Gonzalez, C. [Centro de Ingenieria y Desarrollo Industrial, Pie de la cuesta No. 702, Desarrollo San Pablo, Queretaro, Qro. 76130 (Mexico); Ocana, J.L.; Molpeceres, C.; Porro, J.A.; Morales, M. [Departamento de Fisica Aplicada a la Ingenieria Industrial, ETSII. Universidad Politecnica de Madrid (Spain); Casillas, F.J. [Departamento de Ciencias Exactas y Tecnologicas, Universidad de Guadalajara, Lagos de Moreno, Jalisco 47460 (Mexico)

    2010-08-01

    Laser Shock Processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results in the LSP concept for metal surface treatments in underwater laser irradiation at 532 nm and 1064 nm. The purpose of the work is to compare the effect of both wavelengths on the same material. A convergent lens is used to deliver 1.2 J/pulse (1064 nm) and 0.9 J/pulse (532 nm) in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG laser with spots of a 1.5 mm in diameter moving forward along the work piece. A LSP configuration with experimental results using a pulse density of 2500 pulses/cm{sup 2} and 5000 pulses/cm{sup 2} in 6061-T6 aluminum samples are presented. High level compressive residual stresses are produced using both wavelengths. It has been shown that surface residual stress level is comparable to that achieved by conventional shot peening, but with greater depths. This method can be applied to surface treatment of final metal products.

  20. The Spectrum of Thorium from 250 nm to 5500 nm: Ritz Wavelengths and Optimized Energy Levels

    CERN Document Server

    Redman, Stephen L; Sansonetti, Craig J

    2013-01-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists (Giacchetti et al. 1974; Zalubas & Corliss 1974; Zalubas 1976; Palmer & Engleman 1983; Engleman et al. 2003; Lovis & Pepe 2007; Kerber et al. 2008) to re-optimize the energy levels of neutral, singly-, and doubly-ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19679 thorium lines between 250 nm and 5500 nm (40000 1/cm to 1800 1/cm). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer & Engleman (1983) and typographical errors and incorrect classifications in Kerber et al. (2008). We also found a la...

  1. Spectrally based mapping of riverbed composition

    Science.gov (United States)

    Legleiter, Carl J.; Stegman, Tobin K.; Overstreet, Brandon T.

    2016-07-01

    Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader range

  2. Spectrally based mapping of riverbed composition

    Science.gov (United States)

    Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.

    2016-01-01

    Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader

  3. An 80-W Laser Diode Array with 0.1 nm Linewidth for Rubidium Vapor Laser Pumping

    Institute of Scientific and Technical Information of China (English)

    YANG Zi-Ning; WANG Hong-Yan; LU Qi-Sheng; HUA Wei-Hong; XU Xiao-Jun

    2011-01-01

    The spectral linewidth of a 64-emitter laser-diode array is effectively suppressed by using a volume Bragg grating (VBG) based external cavity.At a maximal driven current of 90 A,the device produces a cw output of 80 W with 1.2 W/A slope efficiency and 0.1 nm spectral linewidth (FWHM) centered at 780 nm.The power extraction efficiency reaches 90% as compared with the free running case.The central wavelength of the narrowed spectrum is tuned over a 0.3nm range by adjusting the VBG's temperature.The absorption of 45% laser radiation by a 5-mm-long rubidium vapor cell with 150Torr ethane and 450 Torr helium at 383K is demonstrated.Diode pumped alkali vapor lasers (DPALs) have attracted much attention and have developed quickly in recent years due to their great potential in the high power laser field.[1-4] The efficient operation of DPALs requires pump sources with a linewidth that matches the pressure-broadened absorption band of alkali atoms.In moderate (~5 atm buffer gas) and low (~1 atm buffer gas) pressure operating regimes,the required pump linewidths should be 0.4 nm and less than 0.1 nm,respectively,[5] while the typical linewidth of commercial laser diode arrays (LDAs) is 2-4 nm.%The spectral linewidth of a 64-emitter laser-diode array is effectively suppressed by using a volume Bragg grating (VBG) based external cavity. At a maximal driven current of 90 A, the device produces a cw output of80W with 1.2 W/A slope efficiency and 0.1 nm spectral linewidth (FWHM) centered at 780 nm. The power extraction efficiency reaches 90% as compared with the free running case. The central wavelength of the narrowed spectrum is tuned over a 0.3nm range by adjusting the VBG's temperature. The absorption of 45% laser radiation by a 5-mm-long rubidium vapor cell with 150 Torr ethane and 450 Torr helium at 383 K is demonstrated.

  4. Time and spectrum-resolving multiphoton correlator for 300-900 nm

    Science.gov (United States)

    Johnsen, Kelsey D.; Kolenderski, Piotr; Scarcella, Carmelo; Thibault, Marilyne; Tosi, Alberto; Jennewein, Thomas

    2014-10-01

    We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements at room temperature. It is based on a monochromator composed of two gratings, collimation optics, and an array of single photon avalanche diodes. The time resolution can reach 110 ps and the spectral resolution is 2 nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.

  5. Time and spectrum-resolving multiphoton correlator for 300–900 nm

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Kelsey D.; Thibault, Marilyne; Jennewein, Thomas [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Kolenderski, Piotr, E-mail: kolenderski@fizyka.umk.pl [Institute for Quantum Computing and Department for Physics and Astronomy, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1 (Canada); Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Scarcella, Carmelo; Tosi, Alberto [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2014-10-14

    We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements at room temperature. It is based on a monochromator composed of two gratings, collimation optics, and an array of single photon avalanche diodes. The time resolution can reach 110 ps and the spectral resolution is 2 nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.

  6. Electro-optic dual-comb interferometry over 40-nm bandwidth

    CERN Document Server

    Duran, Vicente; Torres-Company, Victor

    2016-01-01

    Dual-comb interferometry is a measurement technique that uses two laser frequency combs to retrieve complex spectra in a line-by-line basis. This technique can be implemented with electro-optic frequency combs, offering intrinsic mutual coherence, high acquisition speed and flexible repetition-rate operation. A challenge with the operation of this kind of frequency comb in dual-comb interferometry is its limited optical bandwidth. Here, we use coherent spectral broadening and demonstrate electro-optic dual-comb interferometry over the entire telecommunications C band (200 lines covering ~ 40 nm, measured within 10 microseconds at 100 signal-to-noise ratio per spectral line). These results offer new prospects for electro-optic dual-comb interferometry as a suitable technology for high-speed broadband metrology, for example in optical coherence tomography or coherent Raman microscopy.

  7. Half Swing Clocking Scheme at 45nm

    Directory of Open Access Journals (Sweden)

    Sakshi Verma,

    2014-01-01

    Full Text Available Achievement of high processor speed with low power consumption is an elemental factor in processor technology, especially for hand-held devices. The need for low power has caused a major paradigm shift where power dissipation has become a important consideration as performance and area. In CMOS circuits, dynamic power consumption is proportional to the transition frequency, capacitance, and square of supply voltage. Consequentially, lowering supply voltage delivers significant power savings compromising the speed of processor. Large portion of the total power is consumed in the clocking circuitry in embedded processor technology. So clock power can be reduced using half swing of clock scheme which will cut down the power dissipation and minimum speed degradation. In Digital circuits by using double-edge triggered flip flops (DETFFs, the clock frequency can be significantly reduced ideally, in half while preserving the rate of data processing. Using lower clock frequency may translate into considerable power savings for the clocked portions of a circuit, including the clock distribution network and flip-flops. The designing is based on 45nm process technology.

  8. CCN Spectral Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, James G.

    2009-02-27

    Detailed aircraft measurements were made of cloud condensation nuclei (CCN) spectra associated with extensive cloud systems off the central California coast in the July 2005 MASE project. These measurements include the wide supersaturation (S) range (2-0.01%) that is important for these polluted stratus clouds. Concentrations were usually characteristic of continental/anthropogenic air masses. The most notable feature was the consistently higher concentrations above the clouds than below. CCN measurements are so important because they provide a link between atmospheric chemistry and cloud-climate effects, which are the largest climate uncertainty. Extensive comparisons throughout the eleven flights between two CCN spectrometers operated at different but overlapping S ranges displayed the precision and accuracy of these difficult spectral determinations. There are enough channels of resolution in these instruments to provide differential spectra, which produce more rigorous and precise comparisons than traditional cumulative presentations of CCN concentrations. Differential spectra are also more revealing than cumulative spectra. Only one of the eleven flights exhibited typical maritime concentrations. Average below cloud concentrations over the two hours furthest from the coast for the 8 flights with low polluted stratus was 614?233 at 1% S, 149?60 at 0.1% S and 57?33 at 0.04% S cm-3. Immediately above cloud average concentrations were respectively 74%, 55%, and 18% higher. Concentration variability among those 8 flights was a factor of two. Variability within each flight excluding distances close to the coast ranged from 15-56% at 1% S. However, CN and probably CCN concentrations sometimes varied by less than 1% over distances of more than a km. Volatility and size-critical S measurements indicated that the air masses were very polluted throughout MASE. The aerosol above the clouds was more polluted than the below cloud aerosol. These high CCN concentrations from

  9. The Sydney University Stellar Interferometer: A Major Upgrade to Spectral Coverage and Performance

    CERN Document Server

    Davis, J; Chow, J; Jacob, A P; Lucas, R E; North, J R; O'Byrne, J W; Owens, S M; Robertson, J G; Seneta, E; Tango, W J; Tuthill, P G

    2007-01-01

    A new beam-combination and detection system has been installed in the Sydney University Stellar Interferometer working at the red end of the visual spectrum (wavelength range 500-950 nm) to complement the existing blue-sensitive system (wavelength range 430-520 nm) and to provide an increase in sensitivity. Dichroic beam-splitters have been introduced to allow simultaneous observations with both spectral system, albeit with some restriction on the spectral range of the longer wavelength system (wavelength range 550-760 nm). The blue system has been upgraded to allow remote selection of wavelength and spectral bandpass, and to enable simultaneous operation with the red system with the latter providing fringe-envelope tracking. The new system and upgrades are described and examples of commissioning tests presented. As an illustration of the improvement in performance the measurement of the angular diameter of the southern F supergiant delta CMa is described and compared with previous determinations.

  10. [Decoloring and spectral properties analysis of innoxious ultraviolet absorbents].

    Science.gov (United States)

    Fang, Yi-Wen; Ni, Wen-Xiu; Huang, Chong; Xue, Liang; Yu, Lin

    2006-07-01

    The ultraviolet absorbent extracted from mango leaves, was discolored by some decoloring agent. Then the spectral properties of the discolored ultraviolet absorbents were analyzed. The discolored method of ultraviolet absorbent was studied by comparing one with the others. The results showed that the discoloring effect was satisfactory by using active carbon, H2O2, citric acid, and oxalic acid as decoloring agent. Specially, when oxalic acid was used as decoloring agent, the color of the production was slight, the rate of production was high, and the absorption effect of ultraviolet ray was well. When the concentration of the ultraviolet absorbent solution is 0.5% (w/w), the ultraviolet ray transmission was smaller than 0.3% in 200-370 nm, and it increased slightly from 370 nm. There was a maximum value at 400 nm, approaching 12%.

  11. UV spectral filtering by surface structured multilayer mirrors.

    Science.gov (United States)

    Huang, Qiushi; Paardekooper, Daniel Mathijs; Zoethout, Erwin; Medvedev, V V; van de Kruijs, Robbert; Bosgra, Jeroen; Louis, Eric; Bijkerk, Fred

    2014-03-01

    A surface structured extreme ultraviolet multilayer mirror was developed showing full band suppression of UV (λ=100-400  nm) and simultaneously a high reflectance of EUV light (λ=13.5  nm). The surface structure consists of Si pyramids, which are substantially transparent for EUV but reflective for UV light. The reflected UV is filtered out by blazed diffraction, interference, and absorption. A first demonstration pyramid structure was fabricated on a multilayer by using a straightforward deposition technique. It shows an average suppression of 14 times over the whole UV range and an EUV reflectance of 56.2% at 13.5 nm. This robust scheme can be used as a spectral purity solution for all XUV sources that emit longer wavelength radiation as well.

  12. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator.

    Science.gov (United States)

    Fan, Jintao; Gu, Chenglin; Wang, Chingyue; Hu, Minglie

    2016-06-13

    We experimentally demonstrate a compact tunable, high average power femtosecond laser source in the ultraviolet (UV) regime. The laser source is based on intra-cavity frequency doubling of a temperature-tuned lithium tribotate (LBO) optical parametric oscillator (OPO), synchronously pumped at 520 nm by a frequency-doubled, Yb-fiber femtosecond laser amplifier system. By adjusting crystal temperature, the OPO can provide tunable visible to near-infrared (NIR) signal pulse, which have a wide spectral tuning range from 660 to 884 nm. Using a β-barium borate (BBO) crystal for intra-cavity frequency doubling, tunable femtosecond UV pulse are generated across 330~442 nm with up to 364 mW at 402 nm.

  13. Snapshot Spectral Domain Optical Coherence Tomography

    Science.gov (United States)

    Valdez, Ashley

    Optical coherence tomography systems are used to image the retina in 3D to allow ophthalmologists diagnose ocular disease. These systems yield large data sets that are often labor-intensive to analyze and require significant expertise in order to draw conclusions, especially when used over time to monitor disease progression. Spectral Domain Optical Coherence Tomography (SD-OCT) instantly acquires depth profiles at a single location with a broadband source. These systems require mechanical scanning to generate two- or three-dimensional images. Instead of mechanically scanning, a beamlet array was used to permit multiple depth measurements on the retina with a single snapshot using a 3x 3 beamlet array. This multi-channel system was designed, assembled, and tested using a 1 x 2 beamlet lens array instead of a 3 x 3 beamlet array as a proof of concept prototype. The source was a superluminescent diode centered at 840nm with a 45nm bandwidth. Theoretical axial resolution was 6.92um and depth of focus was 3.45mm. Glass samples of varying thickness ranging from 0.18mm to 1.14mm were measured with the system to validate that correct depth profiles can be acquired for each channel. The results demonstrated the prototype system performed as expected, and is ready to be modified for in vivo applicability.

  14. SPECTRAL REFLECTANCE MEASUREMENTS AT THE CHINA RADIOMETRIC CALIBRATION TEST SITE FOR THE REMOTE SENSING SATELITE SENSOR

    Institute of Scientific and Technical Information of China (English)

    张玉香; 张广顺; 刘志权; 张立军; 朱顺斌; 戎志国; 邱康睦

    2001-01-01

    A comprehensive field experiment was made with the support of the project of China Radiometric Calibration Site (CRCS) during June-July 1999. Ground reflectance spectra were measured at Dunhuang Calibration Test Site in the experiment. More than two thousands of spectral curves were acquired in a 20 km × 20 km area. The spectral coverage is from 350 nm to 2500 nm. The measurement values show that reflectance is between 10% and 33% at the VISSWIR spectral region. The standard deviation of reflectance is between 1.0% and 2.0% for the spectral range. Optical characteristics and ground reflectance measurements at the Dunhuang test site, result analysis and error source were described. In addition, a comparison of the reflectance obtained in 1999 with those measured in 1994 and 1996 was also made.

  15. Reflectance Spectral Characteristics of Minerals in the Mboukoumassi Sylvite Deposit, Kouilou Province, Congo

    Directory of Open Access Journals (Sweden)

    Xian-Fu Zhao

    2016-06-01

    Full Text Available This study presents reflectance spectra, determined with an ASD Inc. TerraSpec® spectrometer, of five types of ore and gangue minerals from the Mboukoumassi sylvite deposit, Democratic Republic of the Congo. The spectral absorption features, with peaks at 999, 1077, 1206, 1237, 1524, and 1765 nm, of the ore mineral carnallite were found to be different from those of gangue minerals. Spectral comparison among carnallite samples from different sylvite deposits suggests that, in contrast to spectral shapes, the absorption features of carnallite are highly reproducible. Heating of carnallite to 400 and 750°C, and comparing the spectra of heated and non-heated samples, indicates that spectral absorption is related to lattice hydration or addition of hydroxyl. Since carnallite undergoes deliquescence easily, the absorption features of carnallite in the 350–2500 nm spectrum could serve as a robust tool for carnallite identification and separation.

  16. High-power 850-870-nm pulsed lasers based on heterostructures with narrow and wide waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Ladugin, M A; Koval' , Yu P; Marmalyuk, Aleksandr A; Petrovskii, V A; Bagaev, T A; Andreev, A Yu; Padalitsa, A A; Simakov, V A [Open Joint-Stock Company ' M.F. Stel' makh Polyus Research and Development Institute' , Moscow (Russian Federation)

    2013-05-31

    The power and spectral characteristics of pulsed laser diode arrays operating in the spectral range of 850-870 nm and based on heterostructures of two different types (with narrow and wide waveguides) are studied. It is found that the power-current characteristics of the laser arrays of both types are linear within the pump current range of 10-50 A and that the steepness of these characteristics decreases at currents exceeding 80 A. The decrease in the slope efficiency is more noticeable for laser arrays based on heterostructures with wide waveguides. (semiconductor lasers. physics and technology)

  17. Spectral characteristics of caries-related autofluorescence spectra and their use for diagnosis of caries stage

    Science.gov (United States)

    Son, Sung-Ae; Jung, Kyeong-Hoon; Ko, Ching-Chang; Kwon, Yong Hoon

    2016-01-01

    The purpose of the present study was to identify factors useful for diagnosis of the caries stage from laser-induced autofluorescence (AF) spectra. Affected teeth were accurately staged and allocated to four groups: sound, stage II, stage III, or stage IV. A 405-nm laser was used to produce AF spectra. The spectrum factors analyzed were spectrum slope at 550 to 600 nm, spectral area from 500 and 590 nm, and intensity ratio of peaks 625 and 667 nm (625/667 nm). DIAGNOdent was used as control measurement. AF spectra of sound teeth had a peak near 500 nm followed by a smooth decline to 800 nm. As caries progressed, some specimens in stages II to IV showed one or two peak(s) near 625 and 667 nm. Slopes at 550 to 600 nm and areas under the curve at 500 to 590 nm were significantly different (p<0.001) for each stage. Two-peak ratios were also significantly different (p<0.001) except for stage III and stage IV. DIAGNOdent readings for sound and stage II and stage III and IV were not significantly different. Among the studied factors, the spectrum slope at 550 to 600 nm and area under curve at 500 to 590 nm could be useful treatment decision-making tools for carious lesions.

  18. spectral-cube: Read and analyze astrophysical spectral data cubes

    Science.gov (United States)

    Robitaille, Thomas; Ginsburg, Adam; Beaumont, Chris; Leroy, Adam; Rosolowsky, Erik

    2016-09-01

    Spectral-cube provides an easy way to read, manipulate, analyze, and write data cubes with two positional dimensions and one spectral dimension, optionally with Stokes parameters. It is a versatile data container for building custom analysis routines. It provides a uniform interface to spectral cubes, robust to the wide range of conventions of axis order, spatial projections, and spectral units that exist in the wild, and allows easy extraction of cube sub-regions using physical coordinates. It has the ability to create, combine, and apply masks to datasets and is designed to work with datasets too large to load into memory, and provide basic summary statistic methods like moments and array aggregates.

  19. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band

    OpenAIRE

    Sergei V. Firstov; Sergey V. Alyshev; Konstantin E. Riumkin; Khopin, Vladimir F.; Alexey N. Guryanov; Melkumov, Mikhail A.; Evgeny M. Dianov

    2016-01-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will req...

  20. Synchronization of 1064 and 1342 nm pulses using passive saturable absorbers

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Janousek, Jiri; Melich, Radek

    2004-01-01

    The material V:YAG can work as a saturable absorber both at 1064 and 1342 nm. It is shown in this paper, that the saturation effect is spectrally homogeneous. V:YAG can therefore be used for generation of passively synchronized Qswitched pulses at wavelengths hundreds of nanometers apart. First...... a pump–probe experiment is described, investigating the fundamental cross wavelength coupling. Then the first measurements of synchronized Q-switched pulses using a solid-state passive saturable absorber are presented. Finally a setup containing two different saturable absorbing materials is investigated...

  1. Stable 811.53 nm diode laser pump source for optically pumped metastable Ar laser

    Science.gov (United States)

    Gao, Jun; Zuo, Duluo; Zhao, Jun; Li, Bin; Yu, Anlan; Wang, Xinbing

    2016-10-01

    A stable external cavity diode laser coupled with volume Bragg grating for metastable argon atoms pumping is presented. The measured maximum output power of the continuous wave is 6.5 W when the spectral width (FWHM) is less than 21 pm around 811.53 nm and the power efficiency is 68%. The tuning range of the emission wavelength is bigger than 270 pm. The calculated deviation in relative absorption efficiency caused by the fluctuations of wavelength and power is less than 4%.

  2. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    Science.gov (United States)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  3. Polymer integrated waveguide optical biosensor by using spectral splitting effect

    Science.gov (United States)

    Han, Xiaonan; Han, Xiuyou; Shao, Yuchen; Wu, Zhenlin; Liang, Yuxin; Teng, Jie; Bo, Shuhui; Morthier, Geert; Zhao, Mingshan

    2017-02-01

    The polymer waveguide optical biosensor based on the Mach-Zehnder interferometer (MZI) by using spectral splitting effect is investigated. The MZI based biosensor has two unequal width sensing arms. With the different mode dispersion responses of the two-arm waveguides to the cladding refractive index change, the spectral splitting effect of the output interference spectrum is obtained, inducing a very high sensitivity. The influence of the different mode dispersions between the two-arm waveguides on the spectral splitting characteristic is analyzed. By choosing different lengths of the two unequal width sensing arms, the initial dip wavelength of the interference spectrum and the spectral splitting range can be controlled flexibly. The polymer waveguide optical biosensor is designed, and its sensing property is analyzed. The results show that the sensitivity of the polymer waveguide optical biosensor by using spectral splitting effect is as high as 104 nm/RIU, with an improvement of 2-3 orders of magnitude compared with the slot waveguide based microring biosensor.

  4. Intra-cavity frequency-doubled mode-locked semiconductor disk laser at 325 nm.

    Science.gov (United States)

    Bek, Roman; Baumgärtner, Stefan; Sauter, Fabian; Kahle, Hermann; Schwarzbäck, Thomas; Jetter, Michael; Michler, Peter

    2015-07-27

    We present a passively mode-locked semiconductor disk laser (SDL) emitting at 650nm with intra-cavity second harmonic generation to the ultraviolet (UV) spectral range. Both the gain and the absorber structure contain InP quantum dots (QDs) as active material. In a v-shaped cavity using the semiconductor samples as end mirrors, a beta barium borate (BBO) crystal is placed in front of the semiconductor saturable absorber mirror (SESAM) for pulsed UV laser emission in one of the two outcoupled beams. Autocorrelation (AC) measurements at the fundamental wavelength reveal a FWHM pulse duration of 1.22ps. With a repetition frequency of 836MHz, the average output power is 10mW per beam for the red emission and 0.5mW at 325nm.

  5. A compact design for monochromatic OSL measurements in the wavelength range 380-1020 nm

    Energy Technology Data Exchange (ETDEWEB)

    Boetter-Jensen, L.; Poolton, N.R.J.; Willumsen, F.; Christiansen, H. [Risoe National Lab., Roskilde (Denmark)

    1994-04-01

    The development and performance of a compact module is described that allows for the monochromatic illumination of samples in the wavelength range 380-1020 nm, enabling the measurement of energy-resolved optically stimulated luminescence. The unit is designed to couple directly to the existing automated Risoe TL/OSL dating apparatus, thus allowing for either routine scanning or more detailed thermo-optical investigations. The high throughput efficiency of the unit means that the existing 75 W tungsten-halogen lamp can be directly used for such measurements on both quartz and feldspar samples. The design allows for rapid spectral scanning with a choice of resolution of anywhere between 10 and 80 nm: stray light levels are less than 0.01%. The unit can equally be used for recording wavelength-resolved emission spectra, whether photo-excited or thermally stimulated; the capabilities of the system are demonstrated in the article. (author).

  6. Timescale Analysis of Spectral Lags

    Institute of Scientific and Technical Information of China (English)

    Ti-Pei Li; Jin-Lu Qu; Hua Feng; Li-Ming Song; Guo-Qiang Ding; Li Chen

    2004-01-01

    A technique for timescale analysis of spectral lags performed directly in the time domain is developed. Simulation studies are made to compare the time domain technique with the Fourier frequency analysis for spectral time lags. The time domain technique is applied to studying rapid variabilities of X-ray binaries and γ-ray bursts. The results indicate that in comparison with the Fourier analysis the timescale analysis technique is more powerful for the study of spectral lags in rapid variabilities on short time scales and short duration flaring phenomena.

  7. Multi-watt 589nm fiber laser source

    Energy Technology Data Exchange (ETDEWEB)

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  8. Spectrally narrowed external-cavity high-power stack of laser diode arrays.

    Science.gov (United States)

    Zhu, H; Ruset, I C; Hersman, F W

    2005-06-01

    We describe an effective external cavity for narrowing the spectral linewidth of a multiarray stack of laser diode arrays. For a commercially available 279-W free-running five-array laser diode array operating at 60 A, we narrow the spectral linewidth to 0.40 nm at FWHM with 115 W of cw power output. This technique leads to the possibility of higher-efficiency, lower-cost production of hyperpolarized noble gases for magnetic resonance imaging.

  9. On line contribution functions and examining spectral line formation in 3D model stellar atmospheres

    CERN Document Server

    Amarsi, Anish Mayur

    2015-01-01

    Line contribution functions are useful diagnostics for studying spectral line formation in stellar atmospheres. I derive an expression for the contribution function to the abso- lute flux depression that emerges from three-dimensional box-in-a-star model stellar atmospheres. I illustrate the result by comparing the local thermodynamic equilibrium (LTE) spectral line formation of the high-excitation permitted OI777nm lines with the non-LTE case.

  10. Spectral focusing characteristics of a grazing-incidence flat-field grating spectrometer

    Institute of Scientific and Technical Information of China (English)

    Xie Xin-Hua; Liu Ya-Qing; Fan Pin-Zhong; Li Ru-Xin

    2004-01-01

    The spectral focusing characteristics of a grazing-incidence flat-field spectrometer with a spherical variable-linespacing grating in the 5-40nm spectral range are presented. The spectrometer can be used for any object at a distance in the 50mm-infinity range from the grating apex with a diffracted spectrum sharply focused on an almost flat focal plane at a constant distance from the grating apex.

  11. Spectral demixing avoids registration errors and reduces noise in multicolor localization-based super-resolution microscopy

    Science.gov (United States)

    Lampe, André; Tadeus, Georgi; Schmoranzer, Jan

    2015-09-01

    Multicolor single molecule localization-based super-resolution microscopy (SMLM) approaches are challenged by channel crosstalk and errors in multi-channel registration. We recently introduced a spectral demixing-based variant of direct stochastic optical reconstruction microscopy (SD-dSTORM) to perform multicolor SMLM with minimal color crosstalk. Here, we demonstrate that the spectral demixing procedure is inherently free of errors in multicolor registration and therefore does not require multicolor channel alignment. Furthermore, spectral demixing significantly reduces single molecule noise and is applicable to astigmatism-based 3D multicolor imaging achieving 25 nm lateral and 66 nm axial resolution on cellular nanostructures.

  12. Absolute frequency references at 1529 nm and 1560 nm using modulation transfer spectroscopy

    CERN Document Server

    de Escobar, Y Natali Martinez; Coop, Simon; Vanderbruggen, Thomas; Kaczmarek, Krzysztof T; Mitchell, Morgan W

    2015-01-01

    We demonstrate a double optical frequency reference (1529 nm and 1560 nm) for the telecom C-band using $^{87}$Rb modulation transfer spectroscopy. The two reference frequencies are defined by the 5S$_{1/2} F=2 \\rightarrow $ 5P$_{3/2} F'=3$ two-level and 5S$_{1/2} F=2 \\rightarrow $ 5P$_{3/2} F'=3 \\rightarrow $ 4D$_{5/2} F"=4$ ladder transitions. We examine the sensitivity of the frequency stabilization to probe power and magnetic field fluctuations, calculate its frequency shift due to residual amplitude modulation, and estimate its shift due to gas collisions. The short-term Allan deviation was estimated from the error signal slope for the two transitions. Our scheme provides a simple and high performing system for references at these important wavelengths. We estimate an absolute accuracy of $\\sim$ 1 kHz is realistic.

  13. Magnetic Susceptibility of liquid Gd-NM (NM = Cu, Ga, Ge) alloys

    Science.gov (United States)

    Shimakura, Hironori; Tahara, Shuta; Okada, Tatsuya; Ohno, Satoru

    2017-08-01

    For rare earth alloys, the indirect interaction of RKKY is at work between rare-earth atoms. Therefore, the magnetism of them depends on the number of conduction electrons and the distance between rare-earth metals. In this work, to reveal the relationship between the number of conduction electrons and magnetic property of rare earth metal alloys, magnetic susceptibility measurements for liquid Gd-NM (NM = Cu, Ga, Ge) was performed by Faraday method. As the results, it was observed that the sign of paramagnetic Curie temperature of Cu-Gd alloys are positive at all composition, while Ga-Gd and Ge-Gd alloys show negative paramagnetic Curie temperature at certain composition. Moreover, it was indicated when the alloy at certain composition shows highest melting temperature, it has the lowest paramagnetic Curie temperature.

  14. Analysis of the spectral response of flourishing-withering vegetation changes based on ground spectral measurements

    Institute of Scientific and Technical Information of China (English)

    Guli·Japper; CHEN Xi; ZHAO Jin; MA ZhongGuo; CHANG Cun; ZHANG XueRen

    2007-01-01

    A structural mode was used to characterize vegetation composition at the plant leaf level and a flourishing-withering ratio was developed. The spectral responses of vegetation with different flourishing-withering ratios were analyzed, the change rates of the chlorophyll and moisture content indices of vegetation with different flourishing-withering ratios were compared, and correlations between the chlorophyll and moisture content indices were analyzed. The results reveal that leaves with an intermediate flourishing-withering ratio can increase the absorption signatures of vegetation and that band ranges of 570-700 nm and 1300-1540 nm can play a role in indicating changes in the flourishing-withering ratios of vegetation; NPQI, NPCI, R695/R420, R695/R760, R750/R700, the peak-value area of red selvedge, the red selvedge amplitude, the ratio between the red selvedge amplitude and the minimum amplitude, and the NDVl of vegetation change regularly with the change in flourishing-withering ratios,and these nine vegetation indices are highly related to the chlorophyll content. Vegetation indexes of NDWI and PRI are very sensitive to the flourishing-withering change in vegetation and are closely related to the moisture content, and the correlation coefficient is higher than 0.9. The derivative of the spectra is more effective in describing changes in the structural mode of vegetation with different flourishing-withering ratios, especially at band ranges of 552-628 nm and 630-686 nm, and it is more sensitive to the mixed flourishing-withering ratios of leaves rather than to the vegetation indices. The red selvedge position in the spectrum is highly related to the chlorophyll content and is not sensitive to changes in the structural mode of mixed flourishing-withering leaves. The red selvedge parameters are sensitive to changes in the flourishing-withering ratio at the peak-value area of the red selvedge amplitude and the ratio between the red selvedge amplitude and the

  15. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    Science.gov (United States)

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  16. High-power, Yb-fiber-laser-pumped, picosecond parametric source tunable across 752-860 nm.

    Science.gov (United States)

    Kumar, S Chaitanya; Kimmelma, O; Ebrahim-Zadeh, M

    2012-05-01

    We report a stable, high-power source of picosecond pulses in the near-infrared based on intracavity second harmonic generation (SHG) of a MgO:PPLN optical parametric oscillator synchronously pumped at 81 MHz by a mode-locked Yb-fiber laser. By exploiting the large spectral acceptance bandwidth for Type I (oo→e) SHG in β-BaB2O4 and a 5 mm crystal, we have generated picosecond pulses over 752-860 nm spectral range under minimal angle tuning, with as much as 3.5 W of output power at 778 nm and >2  W over 73% of the tuning range, in good beam quality with TEM00 spatial profile and M21  W over 1505-1721 nm (25 THz) and idler power >1.8  W over 2787-3630 nm (25 THz), corresponding to a total (signal plus idler) tuning range of 1059 nm. The SHG, signal, and idler output exhibit passive long-term power stability better than 1.6%, 1.3%, and 1.6% rms, respectively, over 14 h.

  17. Spectral Band Selection for Urban Material Classification Using Hyperspectral Libraries

    Science.gov (United States)

    Le Bris, A.; Chehata, N.; Briottet, X.; Paparoditis, N.

    2016-06-01

    In urban areas, information concerning very high resolution land cover and especially material maps are necessary for several city modelling or monitoring applications. That is to say, knowledge concerning the roofing materials or the different kinds of ground areas is required. Airborne remote sensing techniques appear to be convenient for providing such information at a large scale. However, results obtained using most traditional processing methods based on usual red-green-blue-near infrared multispectral images remain limited for such applications. A possible way to improve classification results is to enhance the imagery spectral resolution using superspectral or hyperspectral sensors. In this study, it is intended to design a superspectral sensor dedicated to urban materials classification and this work particularly focused on the selection of the optimal spectral band subsets for such sensor. First, reflectance spectral signatures of urban materials were collected from 7 spectral libraires. Then, spectral optimization was performed using this data set. The band selection workflow included two steps, optimising first the number of spectral bands using an incremental method and then examining several possible optimised band subsets using a stochastic algorithm. The same wrapper relevance criterion relying on a confidence measure of Random Forests classifier was used at both steps. To cope with the limited number of available spectra for several classes, additional synthetic spectra were generated from the collection of reference spectra: intra-class variability was simulated by multiplying reference spectra by a random coefficient. At the end, selected band subsets were evaluated considering the classification quality reached using a rbf svm classifier. It was confirmed that a limited band subset was sufficient to classify common urban materials. The important contribution of bands from the Short Wave Infra-Red (SWIR) spectral domain (1000-2400 nm) to material

  18. Results and lessons from a decade of Terra MODIS on-orbit spectral characterization

    Science.gov (United States)

    Xiong, Xiaoxiong; Choi, Taeyoung; Che, Nianzeng; Wang, Zhipeng; Dodd, Jennifer; Xie, Yong; Barnes, William

    2010-10-01

    Since launch in 1999, the NASA EOS Terra MODIS has successfully operated for more than a decade. MODIS acquires data in 36 spectral bands with wavelengths ranging from visible (VIS) to long-wave infrared (LWIR) and at three nadir spatial resolutions: 250m for 2 bands, 500m for 5 bands, and 1km for 29 bands. In addition to its on-board calibrators (OBC), designed for sensor radiometric calibration and characterization, MODIS was built with a unique device called the spectro-radiometric calibration assembly (SRCA), which can be configured into three different modes: radiometric, spatial, and spectral. When it is operated in the spectral mode, the SRCA can monitor changes in sensor spectral performance for the VIS and near-infrared (NIR) spectral bands. For more than 10 years, the SRCA operations have continued to provide valuable information for Terra MODIS on-orbit spectral performance. This paper briefly describes Terra MODIS SRCA on-orbit operations and calibration activities and presents results derived from its decade-long spectral characterization, including changes in the VIS and NIR spectral bands center wavelengths (CW) and bandwidths (BW). It demonstrates that the SRCA on-orbit wavelength calibration capability remains satisfactory. For most spectral bands, the changes in CW and BW are less than 0.5 nm and 1.0 nm, respectively. As expected, results and lessons from Terra MODIS on-orbit spectral characterization have and will continue to benefit the operation and calibration of its successor, Aqua MODIS, and the development of future missions and sensors, which have stringent requirements on sensor spectral performance.

  19. Spectral variation of the solar radiation during an eclipse

    Directory of Open Access Journals (Sweden)

    Peter Koepke

    2001-05-01

    Full Text Available The time dependent variation of the spectral extraterrestrial solar flux is modelled for the conditions during a total eclipse. These data are used to calculate irradiance and actinic flux at the Earth’s surface for atmospheric conditions of August 11, 1999 at Weihenstephan. These results are compared with measurements. It is shown, that the spectral composition of solar radiation varies during the eclipse, since solar limb darkening has a spectral dependence. The solar radiation differs from that of a hypothetical sun without limb darkening by up to 30% in the near IR at 1500 nm and 60% in the UV-B at 310 nm. As shown by a comparison of modelling and measurements, this spectral variation has to be taken into account for modelling of UV radiative quantities in the atmosphere and resulting photochemical processes. The effect of broken cloudiness on irradiance and actinic flux and its dependency on wavelength and receiver geometry is explained. Der Verlauf der spektralen extraterrestrischen solaren Strahlung wÄhrend einer Sonnenfinsternis wurde berechnet. Basierend auf diesen Daten, unter BerÜcksichtigung der atmosphÄrischen Bedingungen am 11. August 1999 in Weihenstephan, wurden Globalstrahlung und Aktinischer Fluss am Boden modelliert und mit Messwerten verglichen. Die spektrale Zusammensetzung der Strahlung Ändert sich wÄhrend einer Sonnenfinsternis, bedingt durch die wellenlÄngenabhÄngige Randverdunklung der Sonne. Im Vergleich zu einer hypothetischen Sonne ohne Randverdunklung ist die solare Strahlung im nahen IR um bis zu 30% gemindert und im UVB bei 310 nm um bis zu 60%. Diese spektralen Änderungen sollten bei der Modellierung von Strahlung, z.B. fÜr photochemische Prozesse berÜcksichtigt werden. Dies wurde durch Messung und Modellierung gezeigt. Der Einfluss von Wolken auf gemessene Werte von Globalstrahlung und Aktinischem Fluss wurde untersucht und erklÄrt.

  20. [Spectral diagnosis of plasma jet at atmospheric pressure].

    Science.gov (United States)

    Li, Chi; Tang, Xiao-liang; Qiu, Gao

    2008-12-01

    A new approach to surface modification of materials using dielectric barrier discharge (DBD) plasma jet at atmospheric pressure is presented in the present paper. The emission spectral lines of argon plasma jet at atmospheric pressure were recorded by the grating spectrograph HR2000 and computer software. The argon plasma emission spectra, ranging from 300nm to 1000 nm, were measured at different applied voltage. Compared to air plasma emission spectra under the same circumstance, it is shown that all of the spectral lines are attributed to neutral argon atoms. The spectral lines 763.51 and 772.42 nm were chosen to estimate the electron excitation temperature. The purpose of the study is to research the relationship between the applied voltage and temperature to control the process of materials' surface modification promptly. The results show that electron excitation temperature is in the range of 0.1-0.5 eV and increases with increasing applied voltage. In the process of surface modification under the plasma jet, the infrared radiation thermometer was used to measure the material surface temperature under the plasma jet. The results show that the material surface temperature is in the range of 50-100 degrees C and it also increases with increasing applied voltage. Because the material surface was under the plasma jet and its temperature was decided by the plasma, and the material surface temperature increased with increasing the macro-temperature of plasma jet, the relationship between the surface temperature and applied voltage indicates the relationship between the macro-temperature of the plasma jet and the applied voltage approximately. The experimental results indicate that DBD plasma jet at atmospheric pressure is a new approach to improving the quality of materials' surface modification, and spectral diagnosis has proved to be a kind of workable method by choosing suitable applied voltage.

  1. Monolithic PM Raman fiber laser at 1679 nm for Raman amplification at 1810 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    Stimulated Raman scattering (SRS) has been subject to much attention within the field of fiber lasers and amplifiers as it provides an extended wavelength coverage in comparison to rare-earth based devices. Motivated by the projected capacity crunch [1], different approaches are being explored...... demonstrate a monolithic RM Raman fiber laser (RFL), which acts as a pump for a Raman amplifier (RA) at 1810 nm. The lasing wavelength of a RFL, thus also for a RA, can in principle be designed arbitrarily within the entire wavelength range from the Erbium band up to the Thulium/Holmium band...... of OFS PM Raman fiber, with an estimated propagation loss of 0.42/0.46/1.3 dB/km at 1564/1679/1810 nm. The Raman gain coefficient was measured to be gR=2.66/2.35 W-1km-1 at 1679/1810 nm. The laser curve of the RFL is depicted in Fig. 1b, with a slope efficiency of 67 %. The high slope efficiency...

  2. High-resolution photoabsorption cross section measurements of sulfur dioxide between 198 nm and 325 nm

    Science.gov (United States)

    Stark, Glenn; Smith, Peter; Blackie, Douglas; Blackwell-Whitehead, Richard; Pickering, Juliet; Rufus, James; Thorne, Anne

    Accurate photoabsorption cross section data at a range of temperatures are required for the incorporation of sulfur dioxide into atmospheric photochemical models. In addition to its role in the terrestrial atmosphere, sulfur dioxide is observed in significant concentrations in the atmospheres of Venus and Io. Our laboratory measurement program focuses on the very congested SO2 spectrum in the ultraviolet. Using the Imperial College UV Fourier transform spectrometer, we have recorded high-resolution (resolving power (λ/∆λ) = 450,000) absorption spectra in the 198 to 325 nm region over a range of temperatures from 160 K to 295 K. This high resolving power allows resolutions approaching those required to fully resolve the Doppler profile of SO2 in the UV. We have reported absolute photoabsorption cross sections at 295 K [Stark et al., JGR Planets 104, 16585 (1999); Rufus et al. JGR Planets 108, doi:10.1029/2002JE001931,(2003)]. Further measurements, at 160 K in the 198 to 200 nm region and at 195 K in the 220 to 325 nm region, have been recorded and analyzed. We present an overview of our new measured cross sections at temperatures and pressures comparable to those found in planetary atmospheres. This work was supported in part by NASA Grant NNG05GA03G, PPARC (UK), and the Leverhulme Trust.

  3. Efficient spectral shift and compression of femtosecond pulses by parametric amplification of chirped light.

    Science.gov (United States)

    Nejbauer, Michał; Radzewicz, Czesław

    2012-01-30

    We present a method for an efficient spectral shift and compression of pulses from a femtosecond laser system. The method enables generation of broadly tunable (615-985 nm) narrow bandwidth (≈10 cm(-1)) pulses from the femtosecond pulses at 1030 nm. It employs a direct parametric amplification--without spectral filtering--of highly chirped white light by a narrow bandwidth (pulse. The system, when pumped with just 200 μJ of the fundamental femtosecond pulse energy, generates pulses with energies of 3-9 μJ and an excellent beam quality in the entire tuning range.

  4. Optimization of Quantum-Dot Molecular Beam Epitaxy for Broad Spectral Bandwidth Devices

    KAUST Repository

    Majid, M. A.

    2012-12-01

    The optimization of the key growth parameters for broad spectral bandwidth devices based on quantum dots is reported. A combination of atomic force microscopy, photoluminescence of test samples, and optoelectronic characterization of superluminescent diodes (SLDs) is used to optimize the growth conditions to obtain high-quality devices with large spectral bandwidth, radiative efficiency (due to a reduced defective-dot density), and thus output power. The defective-dot density is highlighted as being responsible for the degradation of device performance. An SLD device with 160 nm of bandwidth centered at 1230 nm is demonstrated.

  5. The spectral properties of uranium hexafluoride and its thermal decomposition products

    Science.gov (United States)

    Krascella, N. L.

    1976-01-01

    This investigation was initiated to provide basic spectral data for gases of interest to the plasma core reactor concept. The attenuation of vacuum ultraviolet (VUV) radiation by helium at pressures up to 20 atm over path lengths of about 61 cm and in the approximate wavelength range between 80 and 300 nm was studied. Measurements were also conducted to provide basic VUV data with respect to UF6 and UF6/argon mixtures in the wavelength range between 80 and 120 nm. Finally, an investigation was initiated to provide basic spectral emission and absorption data for UF6 and possible thermal decomposition products of UF6 at elevated temperatures.

  6. Generation of a 650 nm - 2000 nm Laser Frequency Comb based on an Erbium-Doped Fiber Laser

    CERN Document Server

    Ycas, Gabriel; Diddams, Scott A

    2012-01-01

    We present a laser frequency comb based upon a 250 MHz mode-locked erbium-doped fiber laser that spans more than 300 terahertz of bandwidth, from 660 nm to 2000 nm. The system generates 1.2 nJ, 70 fs pulses at 1050 nm by amplifying the 1580 nm laser light in Er:fiber, followed by nonlinear broadening to 1050 nm and amplification in Yb:fiber. Extension of the frequency comb into the visible is achieved by supercontinuum generation from the 1050 nm light. Comb coherence is verified with cascaded f-2f interferometry and comparison to a frequency stabilized laser.

  7. Performance comparison of bismuth/erbium co-doped optical fibre by 830 nm and 980 nm pumping

    Science.gov (United States)

    Yan, Binbin; Luo, Yanhua; Zareanborji, Amirhassan; Xiao, Gui; Peng, Gang-Ding; Wen, Jianxiang

    2016-10-01

    The performance of bismuth/erbium co-doped fibre (BEDF) by 830 nm and 980 nm pumping has been studied in detail, including the small signal absorption, pump absorption, emission, gain and excited state absorption (ESA). Based on the study, energy transition diagrams of BEDF under 830 nm or 980 nm pumping are proposed to clarify the spectroscopic properties. The results demonstrate the advantages of 830 nm pumping for BEDF over 980 nm pumping when considering the absorption, pumping efficiency, excited state absorption and optical amplification.

  8. Cross-correlation frequency-resolved optical gating of white-light continuum (500-900 nm) generated in bulk media by 1053 nm laser pulses

    Science.gov (United States)

    Imran, T.; Hussain, M.; Figueira, G.

    2016-06-01

    We have efficiently characterized the white-light continuum (WLC) generation covering 500-900 nm in a bulk sapphire plate using 280 fs pulse duration, 1053 nm center-wavelength seed laser pulses. We have acquired the well-optimized smoother region of the WLC spectrum successfully by using an FGS-900 color glass filter (Edmund Optics, Inc.). We have suppressed the spectral components below 500 nm and over 900 nm including an intense 1053 nm residual seed laser peak of the WLC spectrum. The experimental artifacts have been avoided by suppressing the intense 1053 nm seed laser. We employed the sum frequency generation cross-correlation frequency-resolved optical gating (SFG-XFROG) technique for characterization. The XFROG measurement was carried out by introducing the crystal dithering method up to 10° in 2° intervals to obtain the phase matching effectively over the filtered and smoother region of the WLC spectrum. This well-optimized WLC region covering 500-900 nm has significant importance for use as a seed pulse in an optical parametric chirped pulse amplification (OPCPA) system.

  9. Al-free active region laser diodes at 894 nm for compact Cesium atomic clocks

    Science.gov (United States)

    Von Bandel, N.; Bébé Manga Lobé, J.; Garcia, M.; Larrue, A.; Robert, Y.; Vinet, E.; Lecomte, M.; Drisse, O.; Parillaud, O.; Krakowski, M.

    2015-03-01

    Time-frequency applications are in need of high accuracy and high stability clocks. Compact industrial Cesium atomic clocks optically pumped is a promising area that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of laser diodes that are used for atomic pumping. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for earth applications. This work will provide key experience for further space technology qualification. We are in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894nm (D1 line of Cesium) and 852nm (D2 line). The use of D1 line for pumping will provide simplified clock architecture compared to D2 line pumping thanks to simpler atomic transitions and larger spectral separation between lines in the 894nm case. Also, D1 line pumping overcomes the issue of unpumped "dark states" that occur with D2 line. The modules should provide narrow linewidth (<1MHz), very good reliability in time and, crucially, be insensitive to optical feedback. The development of the 894nm wavelength is grounded on our previous results for 852nm DFB. Thus, we show our first results from Al-free active region with InGaAsP quantum well broad-area lasers (100μm width, with lengths ranging from 2mm to 4mm), for further DFB operation at 894nm. We obtained low internal losses below 2cm-1, the external differential efficiency is 0.49W/A with uncoated facets and a low threshold current density of 190A/cm², for 2mm lasers at 20°C.

  10. Monolithic Y-branch dual wavelength DBR diode laser at 671nm for shifted excitation Raman difference spectroscopy

    Science.gov (United States)

    Maiwald, M.; Fricke, J.; Ginolas, A.; Pohl, J.; Sumpf, B.; Erbert, G.; Tränkle, G.

    2013-05-01

    A dual-wavelength laser diode source suitable for shifted excitation Raman difference spectroscopy (SERDS) is presented. This monolithic device contains two ridge waveguide (RW) sections with wavelengths adjusted distributed Bragg reflection (DBR) gratings as rear side mirrors. An integrated Y-branch coupler guides the emission into a common output aperture. The two wavelengths are centered at 671 nm with a well-defined spectral spacing of about 0.5 nm, i.e. 10 cm-1. Separate RW sections can be individually addressed by injection current. An output power up to 110 mW was achieved. Raman experiments demonstrate the suitability of these devices for SERDS.

  11. Generation of 170-fs Laser Pulses at 1053 nm by a Passively Mode-Locked Yb:YAG Laser

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bin-Bin; WEI Zhi-Yi; LI De-Hua; TENG Hao; Bourdet G. L

    2009-01-01

    A novel method is developed to obtain 1.05μm laser operation with a Yb:YAG laser. By using a Yb:YAG crystal with proper length and doping concentration, a femtosecond Yb: YAG laser is realized at the central wavelength of 1053nm. The measured pulse duration and spectral bandwidth (FWHM) are 17ors and 7nm; the repetition rate is 80 MHz. Under a power pump of 2 W, an average mode-locking power of 180mW is achieved.

  12. Deposition of robust multilayer mirror coatings for storage ring FEL lasing at 176nm

    Science.gov (United States)

    Günster, St.; Ristau, D.; Trovó, M.; Danailov, M.; Gatto, A.; Kaiser, N.; Sarto, F.; Piegari, A.

    2005-09-01

    Progress was achieved in the last years in the development of multilayer mirrors used in storage ring Free Electron Lasers (FEL) operating in the vacuum ultraviolet spectral range. Based on dense oxide coatings deposited by Ion Beam Sputtering, a stable lasing at 190 nm was demonstrated. The extension towards shorter wavelengths had to overcome severe problems connected to the radiation resistance and the necessary reflectivity of the resonator mirrors. In this context, radiation resistance can be considered as the ability of the mirror materials to withstand the high power laser radiation and the intense energetic background radiation generated in the synchrotron source. The bombardment with high energetic photons leads to irreversible changes and a coloration on the specimen. Reflectivity requirements can be evaluated from the tolerable losses of FEL systems. At ELETTRA FEL the resonator mirror reflectivity must be above 95 %. Evaporated fluoride multilayer mirrors provide sufficient reflectivity, but they do not exhibit an adequate radiation resistance. Pure oxide multilayers show a sufficient radiation resistance, but they cannot reach the necessary reflectivity below 190 nm. A successful approach combines evaporated fluoride multilayer stack with a dense protection layer of silicon dioxide deposited by Ion Beam Sputtering. Such mirror systems were produced reaching a reflectivity of approximately 99 % at 180 nm. Lasing in the storage ring FEL at ELETTRA was realised in the range between 176 - 179 nm. The mirror reflectivity shows only a slight degradation after lasing, which could be fully restored after the lasing experiment.

  13. Broadband Advanced Spectral System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NovaSol proposes to develop an advanced hyperspectral imaging system for earth science missions named BRASS (Broadband Advanced Spectral System). BRASS combines...

  14. Matched Spectral Filter Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — OPTRA proposes the development of an imaging spectrometer for greenhouse gas and volcanic gas imaging based on matched spectral filtering and compressive imaging....

  15. Spectral Methods for Numerical Relativity

    CERN Document Server

    Grandclément, Philippe

    2007-01-01

    Equations arising in General Relativity are usually to complicated to be solved analytically and one has to rely on numerical methods to solve sets of coupled, partial differential, equations. Amongst the possible choices, this paper focuses on a class called spectral methods where, typically, the various functions are expanded onto sets of orthogonal polynomials or functions. A theoretical introduction on spectral expansion is first given and a particular emphasize is put on the fast convergence of the spectral approximation. We present then different approaches to solve partial differential equations, first limiting ourselves to the one-dimensional case, with one or several domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. One then turns to results obtained by various groups in the field of General Relativity by means of spectral methods. First, works which do not involve explicit t...

  16. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  17. Spectral Theory and Mirror Symmetry

    CERN Document Server

    Marino, Marcos

    2015-01-01

    Recent developments in string theory have revealed a surprising connection between spectral theory and local mirror symmetry: it has been found that the quantization of mirror curves to toric Calabi-Yau threefolds leads to trace class operators, whose spectral properties are conjecturally encoded in the enumerative geometry of the Calabi-Yau. This leads to a new, infinite family of solvable spectral problems: the Fredholm determinants of these operators can be found explicitly in terms of Gromov-Witten invariants and their refinements; their spectrum is encoded in exact quantization conditions, and turns out to be determined by the vanishing of a quantum theta function. Conversely, the spectral theory of these operators provides a non-perturbative definition of topological string theory on toric Calabi-Yau threefolds. In particular, their integral kernels lead to matrix integral representations of the topological string partition function, which explain some number-theoretic properties of the periods. In this...

  18. Enhanced performance of an EUV light source (λ = 84 nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon

    Science.gov (United States)

    Carman, R. J.; Kane, D. M.; Ward, B. K.

    2010-01-01

    The electrical and optical characteristics of a dielectric barrier discharge (DBD) based neon excimer lamp generating output in the extreme ultraviolet (EUV) spectral range (λ = 84 nm) have been investigated experimentally. We report a detailed comparison of lamp performance for both pulsed and sinusoidal voltage excitation waveforms, using otherwise identical operating conditions. The results show that pulsed voltage excitation yields a ~50% increase in the overall electrical to EUV conversion efficiency compared with sinusoidal waveforms, when operating in the pressure range 500-900 mbar. Pulsed operation allows greater control of parameters associated with the temporal evolution of the EUV pulse shapes (risetime, instantaneous peak power). The Ne DBD based source is also found to be highly monochromatic with respect to its spectral output from the second continuum band at λ ~ 84 nm (5 nm FWHM). This continuum band dominates the spectral emission over the wavelength range 30-550 nm. Lamp performance; as measured by the overall EUV output energy, electrical to EUV conversion efficiency and spectral purity at λ ~ 84 nm; improves with increasing gas pressure up to p = 900 mbar.

  19. Enhanced performance of an EUV light source ({lambda} = 84 nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon

    Energy Technology Data Exchange (ETDEWEB)

    Carman, R J; Kane, D M; Ward, B K, E-mail: rcarman@science.mq.edu.a [Department of Physics and Engineering, Faculty of Science, Macquarie University, North Ryde, Sydney, NSW 2109 (Australia)

    2010-01-20

    The electrical and optical characteristics of a dielectric barrier discharge (DBD) based neon excimer lamp generating output in the extreme ultraviolet (EUV) spectral range ({lambda} = 84 nm) have been investigated experimentally. We report a detailed comparison of lamp performance for both pulsed and sinusoidal voltage excitation waveforms, using otherwise identical operating conditions. The results show that pulsed voltage excitation yields a {approx}50% increase in the overall electrical to EUV conversion efficiency compared with sinusoidal waveforms, when operating in the pressure range 500-900 mbar. Pulsed operation allows greater control of parameters associated with the temporal evolution of the EUV pulse shapes (risetime, instantaneous peak power). The Ne DBD based source is also found to be highly monochromatic with respect to its spectral output from the second continuum band at {lambda} {approx} 84 nm (5 nm FWHM). This continuum band dominates the spectral emission over the wavelength range 30-550 nm. Lamp performance; as measured by the overall EUV output energy, electrical to EUV conversion efficiency and spectral purity at {lambda} {approx} 84 nm; improves with increasing gas pressure up to p = 900 mbar.

  20. Upwelled spectral radiance distribution in relation to particulate matter in sea water

    Science.gov (United States)

    Clark, D. K.; Strong, A. E.; Baker, E. T.

    1980-01-01

    Spectral analysis of water color and concurrent measurements of the relative concentration of various particulate and dissolved constituents within a broad range of water types are necessary to quantify ocean color observations and successfully relate them to various biological and physical processes that can be monitored by remote sensing. Some of the results of a Nimbus-G prelaunch cruise in connection with the Coastal Zone Color Scanner (CZCS) experiment, which was carried out in the Gulf of Mexico in October 1977, are presented and discussed. Based upon a small but diverse sample of near-surface measurements, it appears possible to estimate total suspended particulate matter (SPM) to useful accuracies by forming ratios of the spectral radiances measured at wavelengths falling near the centers of certain CZCS bands, viz., 440 nm:550 nm and 440 nm:520 nm. Furthermore, the analysis suggests a very high degree of covariation between SPM and phytoplankton pigments except for certain well-defined special cases.

  1. Evaluation of Various Spectral Inputs for Estimation of Forest Biochemical and Structural Properties from Airborne Imaging Spectroscopy Data

    Science.gov (United States)

    Homolová, L.; Janoutová, R.; Malenovský, Z.

    2016-06-01

    In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab) and leaf area index (LAI) from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž). The retrieval algorithm was based on a machine learning method - support vector regression (SVR). Performance of the four spectral inputs used to train SVR was evaluated: a) all available hyperspectral bands, b) continuum removal (CR) 645 - 710 nm, c) CR 705 - 780 nm, and d) CR 680 - 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 - 710 nm, whereas CR bands in range of 680 - 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.

  2. Nanocatalytic resonance scattering spectral analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The resonance scattering spectral technique has been established using the synchronous scanning technique on spectrofluorometry.Because of its advantages of simplicity,rapidity and sensitivity,it has been widely applied to analyses of proteins,nucleic acids and inorganic ions.This paper summarizes the application of immunonanogold and aptamer modified nanogold(AptAu) catalytic resonance scattering spectral technique in combination with the work of our group,citing 53 references.

  3. Spectral Conditions for Positive Maps

    Science.gov (United States)

    Chruściński, Dariusz; Kossakowski, Andrzej

    2009-09-01

    We provide partial classification of positive linear maps in matrix algebras which is based on a family of spectral conditions. This construction generalizes the celebrated Choi example of a map which is positive but not completely positive. It is shown how the spectral conditions enable one to construct linear maps on tensor products of matrix algebras which are positive but only on a convex subset of separable elements. Such maps provide basic tools to study quantum entanglement in multipartite systems.

  4. Prym varieties of spectral covers

    CERN Document Server

    Hausel, Tamás

    2010-01-01

    Given a possibly reducible and non-reduced spectral cover X over a smooth projective complex curve C we determine the group of connected components of the Prym variety Prym(X/C). We also describe the sublocus of characteristics a for which the Prym variety Prym(X_a/C) is connected. These results extend special cases of work of Ng\\^o who considered integral spectral curves.

  5. Short-wave infrared (SWIR) spectral imager based on Fabry-Perot interferometer for remote sensing

    Science.gov (United States)

    Mannila, Rami; Holmlund, Christer; Ojanen, Harri J.; Näsilä, Antti; Saari, Heikki

    2014-10-01

    VTT Technical Research Centre of Finland has developed a spectral imager for short-wave infrared (SWIR) wavelength range. The spectral imager is based on a tunable Fabry-Perot interferometer (FPI) accompanied by a commercial InGaAs Camera. The FPI consists of two dielectric coated mirrors separated by a tunable air gap. Tuning of the air gap tunes also transmitted wavelength and therefore FPI acts as a tunable band bass filter. The FPI is piezo-actuated and it uses three piezo-actuators in a closed capacitive feedback loop for air gap tuning. The FPI has multiple order transmission bands, which limit free spectral range. Therefore spectral imager contains two FPI in a stack, to make possible to cover spectral range of 1000 - 1700 nm. However, in the first tests imager was used with one FPI and spectral range was limited to 1100-1600 nm. The spectral resolution of the imager is approximately 15 nm (FWHM). Field of view (FOV) across the flight direction is 30 deg. Imaging resolution of the spectral imager is 256 x 320 pixels. The focal length of the optics is 12 mm and F-number is 3.2. This imager was tested in summer 2014 in an unmanned aerial vehicle (UAV) and therefore a size and a mass of the imager were critical. Total mass of the imager is approximately 1200 grams. In test campaign the spectral imager will be used for forest and agricultural imaging. In future, because results of the UAV test flights are promising, this technology can be applied to satellite applications also.

  6. 76 FR 22015 - Amendment of Class E Airspace; Raton, NM

    Science.gov (United States)

    2011-04-20

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Raton, NM AGENCY: Federal... Raton, NM, to accommodate new Area Navigation (RNAV) Standard Instrument Approach Procedures at Raton Municipal Airport/Crews Field, Raton, NM. The FAA is taking this action to enhance the safety and...

  7. Spectral measurements of PMCs from SBUV/2 instruments

    Science.gov (United States)

    Deland, Matthew T.; Shettle, Eric P.; Thomas, Gary E.; Olivero, John J.

    2006-01-01

    The SBUV/2 (Solar Backscattered Ultraviolet, model 2) instrument is designed to monitor ozone stratospheric profile and total column ozone using measurements of the Earth's backscattered ultraviolet albedo. We have previously demonstrated that the normal radiance measurements from SBUV/2 instruments, which sample 12 discrete wavelengths between 252 and 340 nm during each scan, can be used to identify polar mesospheric clouds (PMCs). Some SBUV/2 instruments also periodically view the earth in continuous scan mode, covering the wavelength range 160 400 nm with 0.15 nm sampling. Analysis of these data show PMC occurrence rates similar to the normal discrete scan results, although the observation technique reduces the number of daily measurements by a factor of six. PMC observed by SBUV/2 instruments show a monotonic variation in the residual spectral albedo over the wavelength range 250 300 nm, with maximum enhancements of 10 15% at 250 nm. This result is consistent with microphysical model predictions from Jensen [1989.A numerical model of polar mesospheric cloud formation and evolution, Ph. D. Thesis, University of Colorado]. We find no evidence for a systematic localized increase in PMC residual albedo for wavelengths near 260 nm, in contrast to the recently reported results from the MSX UVISI instrument [Carbary J.F., et al., 2004. Evidence for bimodal particle distribution from the spectra of polar mesospheric clouds. Geophysics Research. Letters 31, L13108]. This result is observed for three different SBUV/2 instruments in both Northern and Southern Hemisphere data over a 13-year span. Our Mie scattering calculations show that the location and magnitude of the 260 nm “hump” feature is dependent upon the specific scattering angles appropriate to the MSX measurements. Although it explains the MSX spectrum, the bimodal size distribution proposed by Carbary et al. (2004), cannot explain the lack of scattering angle dependence of the SBUV/2 spectral shapes. The

  8. Bandgap Engineering of 1300 nm Quantum Dots/Quantum Well Nanostructures Based Devices

    KAUST Repository

    Alhashim, Hala H.

    2016-05-29

    The main objectives of this thesis are to develop viable process and/or device technologies for bandgap tuning of 1300-nm InGaAs/GaAs quantum-dot (QD) laser structures, and broad linewidth 1300-nm InGaAsP/InP quantum well (QW) superluminescent diode structures. The high performance bandgap-engineered QD laser structures were achieved by employing quantum-dot intermixing (QDI) based on impurity free vacancy diffusion (IFVD) technique for eventual seamless active-passive integration, and bandgap-tuned lasers. QDI using various dielectric-capping materials, such as HfO2, SrTiO3, TiO2, Al2O3 and ZnO, etc, were experimented in which the resultant emission wavelength can be blueshifted to ∼ 1100 nm ─ 1200 nm range depending on process conditions. The significant results extracted from the PL characterization were used to perform an extensive laser characterization. The InAs/GaAs quantum-dot lasers with QDs transition energies were blueshifted by ~185 nm, and lasing around ~1070 – 1190 nm was achieved. Furthermore, from the spectral analysis, a simultaneous five-state lasing in the InAs/InGaAs intermixed QD laser was experimentally demonstrated for the first time in the very important wavelength range from 1030 to 1125 nm. The QDI methodology enabled the facile formation of a plethora of devices with various emission wavelengths suitable for a wide range of applications in the infrared. In addition, the wavelength range achieved is also applicable for coherent light generation in the green – yellow – orange visible wavelength band via frequency doubling, which is a cost-effective way of producing compact devices for pico-projectors, semiconductor laser based solid state lighting, etc. [1, 2] In QW-based superluminescent diode, the problem statement lies on achieving a flat-top and ultra-wide emission bandwidth. The approach was to design an inhomogeneous active region with a comparable simultaneous emission from different transition states in the QW stacks, in

  9. Spectral Properties and Upconversion Luminescence of Er3+, Yb3+: BaWO4 Crystal

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The optical quality of Er3+, Yb3+: BaWO4 crystal was grown by Czochralski method. Absorption spectra were measured and energy levels were assigned. According to Judd-Ofelt theory, the spectral strength parameters of Er3+ ion were fitted to be Ω2=0.3926×10-20 cm2, Ω4=0.0721×10-20 cm2, Ω6=0.0028×10-20 cm2. Emission peaks centered at around 523, 544 and 670 nm were observed under 334 nm He-Cd laser excitation and emission peaks centered at 1001 and 1534 nm were detected under 976 nm laser excitation. Strong green emission was also observed when the crystal was pumped with 808 nm and 976 nm laser. The mechanisms of frequency upconversion and sensitization were analyzed.

  10. Operation of the European FEL at ELETTRA Below 190 nm A Tunable Laser Source for VUV Spectroscopy

    CERN Document Server

    De Ninno, G; Curbis, F; Danailov, M B; Diviacco, B; Marsi, M; Trovò, M

    2005-01-01

    Thanks to an intensive technological effort in the framework of the EEC Contract HPRI CT-2001-50025 (EUFELE), the European FEL at ELETTRA was able to break the previous record for the shortest wavelength of an FEL oscillator. Novel solutions were adopted for multilayer mirrors to allow FEL operation in the wavelength region between 160 and 190 nm, which is one of the main targets of the project. The characteristics of the FEL pulses measured at 176 nm (spectral profiles, high intensity, meV bandpass, MHz repetition rate) make it a competitive light source for spectroscopy, in particular for fluorescence studies in the VUV spectral range. Proof of principle experiments have been performed on different types of silica glasses, yielding information on the mechanisms of light absorption in this material.

  11. Development of Chip-Based Frequency Combs for Spectral and Timing Applications

    Science.gov (United States)

    2011-12-01

    by measuring the RF beat note. A 1-nm section of the comb spectrum is filtered at 1540 nm and amplified with an EDFA . The output is sent to a fast...amplitude Approved for public release; distribution unlimited. 13 noise from the EDFA and the laser. We estimate a frequency shift of approximately 100...oxide-semiconductor EDFA erbium-doped fiber amplifier FSR free spectral range FWM four-wave mixing IR infrared OPO optical parametric

  12. From the nm to the Mm

    Science.gov (United States)

    Villa, I. M.

    2003-12-01

    Tectonic models for the evolution of an orogen start at the Mm scale, and use field work on smaller subunits at the km scale and rocks collected at the m scale. At the mm scale, minerals are identified, analyzed by mass spectrometry, their "cooling ages" assigned to a specific closure temperature, a cooling rate attributed to a particular tectonic regime, and a large body of self-referential literature is the product of an oiled machinery. Problems become apparent if one attempts to harmonize mm-scale science with the nasty little details at even smaller scales. Atoms are invisible to the naked eye (unlike the minerals mentioned above) and their actual behavior is, or was, only accessible to indirect argumentations and simplified calculations. Increased computing power now allows calculating the transport of atoms in a crystal from the Schr”dinger equation: results do not fit 19th century continuum physics for infinitely dilute solutions (Fick's and Arrhenius' "laws"). Moreover, improved nanochemical analyses allow characterizing the supposedly homogeneous mineral matrix. TEM images show how layers or chains in pristine minerals are substituted in a non-periodic way by alteration products. EMP analyses show the almost ubiquitous presence of razor-sharp boundaries rather than Erf profiles. Disequilibrium recrystallization textures thus prevail over diffusive reequilibration; diffusion sensu stricto is shown to be a much slower process than heterochemical replacement. Alterability sequences are well known to surface scientists: e.g. halite, olivine, biotite, muscovite, zircon. Such sequences are reflected in the isotopic retentivity. The link only becomes clear at the nm scale: isotopic exchange occurs during the replacement reactions that affect all rocks on their retrograde P-T evolution. This is sufficient to explain why zircons record higher isotopic ages than muscovites, which in turn undergo less isotope exchange than biotites etc. While there is a vague

  13. Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy.

    Science.gov (United States)

    Zhang, Zhengyang; Kenny, Samuel J; Hauser, Margaret; Li, Wan; Xu, Ke

    2015-10-01

    By developing a wide-field scheme for spectral measurement and implementing photoswitching, we synchronously obtained the fluorescence spectra and positions of ∼10(6) single molecules in labeled cells in minutes, which consequently enabled spectrally resolved, 'true-color' super-resolution microscopy. The method, called spectrally resolved stochastic optical reconstruction microscopy (SR-STORM), achieved cross-talk-free three-dimensional (3D) imaging for four dyes 10 nm apart in emission spectrum. Excellent resolution was obtained for every channel, and 3D localizations of all molecules were automatically aligned within one imaging path.

  14. The nephelometric method of determining light attenuation in the ultraviolet and visible spectral bands

    Science.gov (United States)

    Toropova, T. P.

    1980-03-01

    An analysis of the variability of the shape of the scattering indicatrix of the atmospheric boundary layer in the spectral range of 304 to 710 nm is presented. The accuracy of determining attenuation using the indicatrix measured at various angles is evaluated; it is shown that in the application of the nephelometric method in the examined spectral region it is shown that in the application of the nephelometric method in the examined spectral region it is more advantageous to utilize the indicatrix measurements preformed at angles of 40-50 deg, which produce a mean magnitude of error not exceeding 10-15%.

  15. First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength

    Science.gov (United States)

    Saldin; Sandner; Sanok; Schlarb; Schmidt; Schmuser; Schneider; Schneidmiller; Schreiber; Schreiber; Schutt; Sekutowicz; Serafini; Sertore; Setzer; Simrock; Sonntag; Sparr; Stephan; Sytchev; Tazzari; Tazzioli; Tigner; Timm; Tonutti; Trakhtenberg

    2000-10-30

    We present the first observation of self-amplified spontaneous emission (SASE) in a free-electron laser (FEL) in the vacuum ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approximately 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width, and intensity fluctuations, are all consistent with the present models for SASE FELs.

  16. Spectral changes induced by a phase modulator acting as a time lens

    Energy Technology Data Exchange (ETDEWEB)

    Plansinis, B. W. [Univ. of Rochester, Rochester, NY (United States). Inst. of Optics.; Donaldson, W. R. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics; Agrawal, G. P. [Univ. of Rochester, Rochester, NY (United States). Inst. of Optics; Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.

    2015-07-06

    We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phase shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.

  17. A feasibility study on diagnosing wheat water status using spectral reflectance

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A total of 110 wheat leaf samples were collected in the field andtheir spectral reflectances were measured with a spectroradiometer in laboratory. After a spectral normalizing technique, the spectral absorption feature parameters such as the absorption depth and area, were extracted from each leaf spectrum. The relative water content (RWC) was measured for samples. The experimental results indicated that the spectral absorption depth and area of wheat leaves at 1 450 nm were correlated with their RWC. So we can diagnose wheat water status by using their spectral reflectances. Furthermore, we discuss the possibility of developing new instruments based on the analysis of the spectroradiometer data for non-destructive and instantaneous measurement of the wheat water status in the field.

  18. Scaling the spectral beam combining channel by multiple diode laser stacks in an external cavity

    Science.gov (United States)

    Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao; Lei, Fuchuan; Yu, Junhong; Tan, Hao

    2017-04-01

    Spectral beam combining of a broad area diode laser is a promising technique for direct diode laser applications. We present an experimental study of three mini-bar stacks in an external cavity on spectral beam combining in conjunction with spatial beam combining. At the pump current of 70 A, a CW output power of 579 W, spectral bandwidth of 18.8 nm and electro-optical conversion efficiency of 47% are achieved. The measured M 2 values of spectral beam combining are 18.4 and 14.7 for the fast and the slow axis, respectively. The brightness of the spectral beam combining output is 232 MW · cm‑2 · sr‑1.

  19. Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry.

    Science.gov (United States)

    Lee, Ji Yong; Kim, Dug Young

    2006-11-27

    We present a versatile and accurate chromatic dispersion measurement method for single mode optical fibers over a wide spectral range (200 nm) using a spectral domain white light interferometer. This technique is based on spectral interferometry with a Mach-Zehnder interferometer setup and a broad band light source. It takes less than a second to obtain a spectral interferogram for a few tens of centimeter length fiber sample. We have demonstrated that the relative group velocity, the chromatic dispersion and the dispersion slope of a sample fiber can be obtained very accurately regardless of the zero-dispersion wavelength (ZDW) of a sample after frequency dependent optical phase was directly retrieved from a spectral interferogram. The measured results with our proposed method were compared with those obtained with a conventional time-domain dispersion measurement method. A good agreement between those results indicates that our proposed method can measure the chromatic dispersion of a short length optical fiber with very high accuracy.

  20. Cell projection use in maskless lithography for 45nm and 32nm logic nodes

    Science.gov (United States)

    Manakli, S.; Komami, H.; Takizawa, M.; Mitsuhashi, T.; Pain, L.

    2009-03-01

    Due to the ever-increasing cost of equipment and mask complexity, the use of optical lithography for integrated circuit manufacturing is increasingly more complex and expensive. Recent workshops and conferences in semiconductor lithography underlined that one alternative to support sub-32nm technologies is mask-less lithography option using electron beam technology. However, this direct write approach based on variable shaped beam principle (VSB) is not sufficient in terms of throughput, i.e. of productivity. New direct write techniques like multibeam systems are under development, but these solutions will not be mature before 2012. The use of character/cell projection (CP) on industrial VSB tools is the first step to deal with the throughput concerns. This paper presents the status of the CP technology and evaluates its possible use for the 45nm and 32nm logic nodes. It will present standard cell and SRAM structures that are printed as single characters using the CP technique. All experiments are done using the Advantest tool (F3000) which can project up to 100 different cells per layer. Cell extractions and design have been performed with the design and software solution developed by D2S. In this paper, we first evaluate the performance gain that can be obtained with the CP approach compared to the standard VSB approach. This paper also details the patterning capability obtained by using the CP concept. An evaluation of the CD uniformity and process stability is also presented. Finally this paper discusses about the improvements of this technique to address high resolution and to improve the throughput concerns.

  1. [Selection of interpolation methods used to mitigate spectral misregistration of imaging spectrometers].

    Science.gov (United States)

    Chen, Xu; Xiang, Yang; Feng, Yu-Tao

    2011-04-01

    Spectral curvature destroys the co-registration of the spectra measured by dispersion imaging spectrometer. Using interpolation to re-sample the measured spectra at the non-offset mid-wavelengths can mitigate the spectral misregistration. It is very important to select an optimum interpolation method. The performances of six common interpolation methods are evaluated by comparing the residual errors in the corrected spectral radiance. The results indicate that, four-point cubic Lagrange interpolation and cubic spline interpolation are better than other four interpolation methods (linear Interpolation, three points quadratic polynomial interpolation, five points four-order Lagrange interpolation and cubic Hermite interpolation). For spectral offset of 10% deltalambda (deltalambda = 5 nm), the normalized errors in measured spectral radiance is PV = 0.06, that is reduced to PV interpolation with cubic Lagrange interpolation or cubic spline interpolation, but for other four methods they are PV > 0.035. Furthermore, for lower spectral resolution (deltalambda > 5 nm), cubic Lagrange interpolation is a little better than cubic spline interpolation; while for higher spectral resolution (deltalambda interpolation is a little better.

  2. [Multi-wavelength spectral aerosol scale height in inshore in contrast with that in inland].

    Science.gov (United States)

    Han, Yong; Rao, Rui-Zhong; Wang, Ying-Jian

    2009-01-01

    In the present paper, based on the exponential attenuation of atmospheric aerosol concentration with height, so using continuous spectrum sun-photometer, forward scatter visibility sensor and hygrothermograph, the authors measured the atmosphere column optical characteristic and plane spectral extinction coefficient on earth on the base of two experiments at some edge of ocean at the same time, respectively, set up the calculative method of multi-wavelength spectral aerosol scale height. Firstly, the authors obtained atmospheric horizontal extinction coefficient with forward scattering visibility sensor, which subtracted molecular extinction coefficient, and could get aerosol extinction coefficient near ground; Then, selecting sea salt model, using OPAC software, the authors also could calculate the aerosol extinction coefficient under different humidity (0%, 50%, 70%, 80%, 90%, 95%, 98% and 99%) and different wavelength (400, 450, 500, 550, 600, 650, 700 and 750 nm), the aerosol extinction coefficient was detected by visibility sensor, using interpolation method, respectively; Finally, using the data of atmospheric columniation optical thickness detected by continuous spectral sun-photometer and subtracted molecular optical thickness corresponding wavelengths were accounted out by Modtran 4. 0. The authors obtained the characteristic of spectral aerosol scale height of visible light (wavelength is 400, 440, 532, 550 and 690 nm): with wavelength increments, and spectral aerosol scale height was found to decline neither in inland nor in inshore in China; Spectral aerosol scale height in winter is higher than in summer in southeast inshore; but spectral aerosol scale height in winter is smaller in summer than in inland.

  3. High-spectral-resolution radiometric measurements of aerosol extinction over an urban region in India

    Science.gov (United States)

    Devara, P. C. S.; Ramkumar, M.; Maheskumar, R. S.; Pandithurai, G.

    2001-06-01

    Concurrent observations of aerosol optical depth (AOD) were carried out using a high-spectral-resolution radiometer (HSRR) and solar radiometer (SR) at the Indian Institute of Tropical Meteorology (IITM), Pune, India, on all clear-sky days available during November 1995-February 1996. The HSRR observations were collected at 5 nm intervals throughout the 400-700 nm spectrum while the SR measurements were made at discrete wavelengths of 400, 600, 940, 1060 and 1630 nm. In order to study the effect of integrated spectral observations on the derived AODs as compared to such depths from a single spectrum, multi-spectral observations at 2 nm intervals were collected. The AODs and their wavelength dependence from the HSRR and SR are compared and fairly good agreement found. The HSRR derived AODs at 400 nm and 700 nm from the present data sets are compared with those obtained during the winters of 1993-94 and 1994-95. The results reveal greater AODs, indicating abundance of aerosol particle concentration, during 1995-96 as compared to 1993-94 and 1994-95.

  4. Manufacturability of 2x-nm devices with EUV tool

    Science.gov (United States)

    Tawarayama, Kazuo; Nakajima, Yumi; Kyoh, Suigen; Aoyama, Hajime; Matsunaga, Kentaro; Magoshi, Shunko; Tanaka, Satoshi; Hayashi, Yumi; Mori, Ichiro

    2011-04-01

    Due to the promising development status of EUVL as a practical lithography technology for the 2x-nm node, we are continuing to evaluate its process liability using the EUV1 at Selete, which has an Off-Axis illumination capability. The resolution limit of the EUV1 for L&S patterns is currently 18 nm for dipole illumination, and 16 nm for aggressive dipole illumination. This study examined the critical points of EUVL for device manufacturing through wafer processes. The yield obtained from electrical measurements indicates the maturity of the technology, including the resist process, the tool, and the mask. Optimization of the resist and RIE processes significantly improved the yield. The final yields obtained from electrical measurements were 100% for hp 30 nm, 70% for hp 28 nm, and 40% for hp 26 nm. These results demonstrate EUV lithography to be a practical technology that is now suitable for 2x nm semiconductor manufacture.

  5. a Spatio-Spectral Camera for High Resolution Hyperspectral Imaging

    Science.gov (United States)

    Livens, S.; Pauly, K.; Baeck, P.; Blommaert, J.; Nuyts, D.; Zender, J.; Delauré, B.

    2017-08-01

    Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS) is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600-900 nm) in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots), horticulture (crop status monitoring to evaluate irrigation management in strawberry fields) and geology (meteorite detection on a grassland field). Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475-925 nm), and we discuss future work.

  6. Noninvasive dosimetry and monitoring of TTT using spectral imaging

    Science.gov (United States)

    Schuele, G.; Molnar, F. E.; Yellachich, D.; Vitkin, E.; Perelman, L. T.; Palanker, D.

    2006-02-01

    Transpupillary thermo therapy (TTT) is a slow (60 seconds) photothermal treatment of the fundus with a near-infrared (780-810nm) laser irradiating a large spot (0.5- 1. mm) on the retina. Due to high variability in ocular tissue properties and the lack of immediately observable outcome of the therapy, a real-time dosimetry is highly desirable. We found that fundus spectroscopy and spectrally-resolved imaging allow for non-invasive real-time monitoring and dosimetry of TTT. A 795nm laser was applied in rabbit eyes for 60 seconds using a 0.86mm retinal spot diameter. The fundus was illuminated with a broadband polarized light, and its reflectance spectra were measured in parallel and cross-polarizations. The fundus was also imaged in selected spectral domains. At irradiances that do not create ophthalmoscopically visible lesions the fundus reflectance increases at the wavelengths corresponding to absorption of the oxygenated blood indicating the reduced concentration of blood in the choroid. Vasoconstrictive response of the choroidal and retinal vasculature during TTT was also directly observed using spectrally-resolved imaging. At irradiances that produce ophthalmoscopically visible lesions a rapid reduction of the fundus reflectance was observed within the first 5-10 seconds of the exposure even when the visible lesions developed only by the end of the 60 second exposure. No visible lesions were produced where the laser was terminated after detection of the reduced scattering but prior to appearance of the enhanced scattering.

  7. Unmanned aerial vehicle (UAV) operated megapixel spectral camera

    Science.gov (United States)

    Mäkynen, Jussi; Holmlund, Christer; Saari, Heikki; Ojala, Kai; Antila, Tapani

    2011-11-01

    VTT Technical Research Centre of Finland has developed a lightweight Fabry-Perot interferometer based hyperspectral imager weighting only 400 g which makes it compatible with various small UAV platforms. The concept of the hyperspectral imager has been published in SPIE Proc. 74741 and 76682. This UAV spectral imager is capable of recording 5 Mpix multispectral data in the wavelength range of 500 - 900 nm at resolutions of 10-40 nm, Full-Width-Half-Maximum (FWHM). An internal memory buffer allows 16 Mpix of image data to be stored during one image burst. The user can configure the system to take either three 5 Mpix images or up to 54 VGA resolution images with each triggering. Each image contains data from one, two or three wavelength bands which can be separated during post processing. This allows a maximum of 9 spectral bands to be stored in high spatial resolution mode or up to 162 spectral bands in VGA-mode during each image burst. Image data is stored in a compact flash memory card which provides the mass storage for the imager. The field of view of the system is 26° × 36° and the ground pixel size at 150 m flying altitude is around 40 mm in high-resolution mode. The design, calibration and test flight results will be presented.

  8. Formaldehyde sensor using non-dispersive UV spectroscopy at 340nm

    Science.gov (United States)

    Davenport, J. J.; Hodgkinson, J.; Saffell, J. R.; Tatam, R. P.

    2014-05-01

    Formaldehyde is a volatile organic compound that exists as a gas at room temperature. It is hazardous to human health causing irritation of the eyes, nose and throat, headaches, limited pulmonary function and is a potential human carcinogen. Sources include incomplete combustion, numerous modern building materials and vehicle fumes. Here we describe a simple method for detecting formaldehyde using low resolution non-dispersive UV absorption spectroscopy for the first time. A two channel system has been developed, making use of a strong absorption peak at 339nm and a neighbouring region of negligible absorption at 336nm as a reference. Using a modulated UV LED as a light source and narrowband filters to select the desired spectral bands, a simple detection system was constructed that was specifically targeted at formaldehyde. A minimum detectable absorbance of 4.5 × 10-5 AU was estimated (as ΔI/I0), corresponding to a limit of detection of approximately 6.6 ppm for a 195mm gas cell, with a response time of 20s. However, thermally-induced drift in the LED spectral output caused this to deteriorate over longer time periods to around 30 ppm or 2 × 10-4 AU.

  9. Effect of metal particles in cermets on spectral selectivity

    Science.gov (United States)

    Gao, J. D.; Zhao, C. Y.; Wang, B. X.

    2017-03-01

    Most cermet-based coatings achieve their solar selectivities by the tandem interference effect, which has been widely studied. This study focused on the spectral selectivity achieved by the scattering effect of metal particles in cermet-based coatings. Previous research proved that reasonable solar selectivities can be obtained for cermets in the regime of particles with a radius of the order of 100 nm, but their solar absorptance is low (Cr, Ni, and W particles with radii of 10 nm, 50 nm, 100 nm, and 200 nm, which were embedded in Al2O3 and occupied 5% of the volume fraction. It was found that by arranging different particles in different layers, a very high solar absorptance (95.6%) could be achieved. Since their thermal emittance (˜25% at 600 °C) was higher than that of normal coatings, these coatings are recommended to be used in solar absorbers that have a high concentration factor. Finally, the dependent scattering effect was qualitatively considered by the coupled-dipole approach. With a metal volume fraction of 5%, it was found that the effect of dependent scattering was small and should not change the conclusions made based on independent scattering.

  10. Broadening of the Spectral Atomic Lines Analysis in High Density Argon Corona Plasma by Using Voigt Profile

    Science.gov (United States)

    Nur, M.; Bonifaci, N.; Denat, A.; Atrazhev, V. M.

    2015-06-01

    Studies of spectrum emission from high density argon plasma corona has been done. The analysis of the boardening of spectral atomic lines of Ar-I profile has been curried out by using an empirical approximation based on a Voigt profile. Full-width at half-maximum (FWHM) of the spectral-lines of 763.5 nm has been determined from atmospheric pressure until liquid state. The study liquid argon was curried out in a variation of temperature from K to 151.2 K and hydrostatics pressure from 2.1 MPa to 6.4 MPa. These pressure gives the densities N∞ (i.e. density very far from ionization zone) a variation from 1.08 1022 to 2.11 1022 cm-3. FWHM of Voigt approximation (Wv) of the line 763,5 nm of 'Ar I for: the emission lamp very low pressure (Wv = 0,160 nm) and our corona discharge at a pressure of MPa (Wv = 0,67 nm) and at a pressure of 9,5 MPa (Wv = 1,16 nm). In gas, corona plasma has been generated from 0.1 MPa to 9.5 MPa. We found that the broadening spectral line increase by increasing densities both for. the spectral-lines of 763.5 nm and 696.5 nm. We concluded that broadening of spectrum cause of Van der Waals force.

  11. Ultraviolet 320 nm laser excitation for flow cytometry.

    Science.gov (United States)

    Telford, William; Stickland, Lynn; Koschorreck, Marco

    2017-04-01

    Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry. © 2017 International

  12. Measurements of Stokes parameters of materials at 1064-nm and 532-nm wavelengths

    Science.gov (United States)

    Tan, Songxin; Narayanan, Ram M.; Kalshoven, James E., Jr.

    2001-09-01

    Laser radar systems have found wide applications in the field of remote sensing. Reflectance as well as polarization features are used together for applications ranging from environmental monitoring to target classification. The Stokes parameters are ideal quantities for characterizing the above features because they provide useful information on both light intensity and polarization state. The University of Nebraska is currently refurbishing an airborne multi-wavelength laser radar system based on the NASA Goddard Space Flight Center (GSFC) developed Airborne Laser Polarimetric Sensor (ALPS). The system uses a Nd:YAG laser operating at wavelengths of 1064 nm and 532 nm, and contains four channels at each wavelength to measure the polarization states. This system was used to measure the Stokes parameters of backscattered laser light from different materials. These included canvas tarp, white paper, plywood, concrete, aluminum plate and anodized aluminum plate. The data provide an understanding of the polarized scattering properties of various materials, and are expected to be useful in developing target discrimination algorithms.

  13. Spectral Estimation of NMR Relaxation

    Science.gov (United States)

    Naugler, David G.; Cushley, Robert J.

    2000-08-01

    In this paper, spectral estimation of NMR relaxation is constructed as an extension of Fourier Transform (FT) theory as it is practiced in NMR or MRI, where multidimensional FT theory is used. nD NMR strives to separate overlapping resonances, so the treatment given here deals primarily with monoexponential decay. In the domain of real error, it is shown how optimal estimation based on prior knowledge can be derived. Assuming small Gaussian error, the estimation variance and bias are derived. Minimum bias and minimum variance are shown to be contradictory experimental design objectives. The analytical continuation of spectral estimation is constructed in an optimal manner. An important property of spectral estimation is that it is phase invariant. Hence, hypercomplex data storage is unnecessary. It is shown that, under reasonable assumptions, spectral estimation is unbiased in the context of complex error and its variance is reduced because the modulus of the whole signal is used. Because of phase invariance, the labor of phasing and any error due to imperfect phase can be avoided. A comparison of spectral estimation with nonlinear least squares (NLS) estimation is made analytically and with numerical examples. Compared to conventional sampling for NLS estimation, spectral estimation would typically provide estimation values of comparable precision in one-quarter to one-tenth of the spectrometer time when S/N is high. When S/N is low, the time saved can be used for signal averaging at the sampled points to give better precision. NLS typically provides one estimate at a time, whereas spectral estimation is inherently parallel. The frequency dimensions of conventional nD FT NMR may be denoted D1, D2, etc. As an extension of nD FT NMR, one can view spectral estimation of NMR relaxation as an extension into the zeroth dimension. In nD NMR, the information content of a spectrum can be extracted as a set of n-tuples (ω1, … ωn), corresponding to the peak maxima

  14. 9nm node wafer defect inspection using three-dimensional scanning, a 405nm diode laser, and a broadband source

    Science.gov (United States)

    Zhou, Renjie; Edwards, Chris; Bryniarski, Casey A.; Popescu, Gabriel; Goddard, Lynford L.

    2015-03-01

    We recently built a 405nm laser based optical interferometry system for 9nm node patterned wafer defect inspection. Defects with volumes smaller than 15nm by 90nm by 35nm have been detected. The success of defect detection relied on accurate mechanical scanning of the wafer and custom engineered image denoising post-processing. To further improve the detection sensitivity, we designed a higher precision XYZ scanning stage and replaced the laser source with an incoherent LED to remove the speckle noise. With these system modifications, we successfully detected both defects and surface contamination particles in bright-field imaging mode. Recently, we have upgraded this system for interferometric defect inspection.

  15. Structural spectral response tuning in organic deep ultraviolet photodetectors

    Science.gov (United States)

    Zhu, Lu; Wang, Wen-Shuo; Yao, Zhi-Gang; Zhang, Xi-Qing; Wang, Yong-Sheng

    2013-02-01

    We demonstrated novel organic deep ultraviolet photodetectors with structural spectral response tuning through bulk heterojunctions (HJs) and mixed planar-bulk HJs (PBHJs), respectively. TAPC and BAlq were utilized as the electron donor and acceptor, as well as polymer PEDOT:PSS was present as the transparent anode. The mixed PBHJs and bulk HJs reveal extremely low dark current of 3.35 × 10-8 and 2.94 × 10-8 A/cm2, and high photocurrent of 3.01 × 10-5 and 9.55 × 10-5 A/cm2 at -10 V under 260 nm light illumination with an intensity of 0.91 mW/cm2, respectively. A peak response of 33.6 mA/W at ˜260 nm and a detectivity of 3.24 × 1011 cm Hz1/2 W-1 are achieved in the mixed PBHJs. The bulk HJs exhibit a maximum response of 100.8 mA/W at ˜280 nm and a detectivity of 1.04 × 1012 cm Hz1/2 W-1. The photophysics involved in structural spectral response tuning are also discussed in detail.

  16. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Hynek Hermansky

    2011-10-01

    Information is carried in changes of a signal. The paper starts with revisiting Dudley’s concept of the carrier nature of speech. It points to its close connection to modulation spectra of speech and argues against short-term spectral envelopes as dominant carriers of the linguistic information in speech. The history of spectral representations of speech is briefly discussed. Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) filtering. Next, the frequency domain perceptual linear prediction technique for deriving autoregressive models of temporal trajectories of spectral power in individual frequency bands is reviewed. Finally, posterior-based features, which allow for straightforward application of modulation frequency domain information, are described. The paper is tutorial in nature, aims at a historical global overview of attempts for using spectral dynamics in machine recognition of speech, and does not always provide enough detail of the described techniques. However, extensive references to earlier work are provided to compensate for the lack of detail in the paper.

  17. New approach to spectral features modeling

    NARCIS (Netherlands)

    Brug, H. van; Scalia, P.S.

    2012-01-01

    The origin of spectral features, speckle effects, is explained, followed by a discussion on many aspects of spectral features generation. The next part gives an overview of means to limit the amplitude of the spectral features. This paper gives a discussion of all means to reduce the spectral featur

  18. Comparison between HMME mediated photodynamic therapy using 413nm and 532nm for port wine stains: a mathematical simulation study

    Science.gov (United States)

    Wang, Y.; Gu, Y.; Chen, R.; Xu, L. Q.; Liao, X. H.; Huang, N. Y.; Wang, Y. Y.

    2007-11-01

    Introduction: As it is always difficult to find the optimal combination of photosensitizer and of laser wavelength to achieve selective vascular damage in PWS-PDT, the selective vascular effects of HMME (Hematoporphyrin monomethyl ether) mediated PDT with 413 nm and with 532 nm were compared by mathematical simulation in this study. Materials & Methods: Firstly, distribution of 413 nm, 532 nm light in PWS tissue was simulated by Monte Carlo model. Two energy density groups were set, one is 80mW/cm2x40min for both 413 nm and 532 nm, the other is 80mW/cm2x40min for 532 nm while 80mW/cm2x20min in for 413 nm. Secondly, the productivity of reactive oxygen species (ROS) in target vessels and normal tissue were simulated using a simulation system for PDT of PWS established in our lab, which considering the amount of light and photosensitizer in tissue, the molar extinction coefficient of photosensitizer, and quantum yield of ROS. Concentration of HMME for each wavelength were same. Finally, the productivity of ROS n in target vessels and normal tissue were compared between 413 nm PDT and 532 nm PDT under different energy density. Result: Under the same energy density, ROS productivity in target vessels of 413 nm PDT was significantly higher than that of 532 nm PDT. Moreover, it was still higher at low energy density than that of 532nm PDT with high energy density. Conclusion: HMME mediated PDT using 413 nm has the potential to increase the selective vascular effect of PDT for PWS by shortening treatment time.

  19. Spectral element simulation of ultrafiltration

    DEFF Research Database (Denmark)

    Hansen, M.; Barker, Vincent A.; Hassager, Ole

    1998-01-01

    A spectral element method for simulating stationary 2-D ultrafiltration is presented. The mathematical model is comprised of the Navier-Stokes equations for the velocity field of the fluid and a transport equation for the concentration of the solute. In addition to the presence of the velocity...... vector in the transport equation, the system is coupled by the dependency of the fluid viscosity on the solute concentration and by a concentration-dependent boundary condition for the Navier-Stokes equations at the membrane surface. The spectral element discretization yields a nonlinear algebraic system....... The performance of the spectral element code when applied to several ultrafiltration problems is reported. (C) 1998 Elsevier Science Ltd. All rights reserved....

  20. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

    2016-01-01

    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT.......e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT...... decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm \\tt TT-DMRG-cross to obtain the TT decomposition of tensors resulting from suitable...

  1. Optical Spectral Variability of Blazars

    Indian Academy of Sciences (India)

    Haritma Gaur

    2014-09-01

    It is well established that blazars show flux variations in the complete electromagnetic (EM) spectrum on all possible time scales ranging from a few tens of minutes to several years. Here, we report the review of optical flux and spectral variability properties of different classes of blazars on IDV and STV time-scales. Our analysis show HSPs are less variable in optical bands as compared to LSPs. Also, we investigated the spectral slope variability and found that the average spectral slopes of LSPs showed a good agreement with the synchrotron self-Compton loss-dominated model. However, spectra of the HSPs and FSRQs have significant additional emission components. In general, spectra of BL Lacs get flatter when they become brighter, while for FSRQs the opposite trend appears to hold.

  2. Performance assessment of onboard and scene-based methods for Airborne Prism Experiment spectral characterization.

    Science.gov (United States)

    D'Odorico, Petra; Guanter, Luis; Schaepman, Michael E; Schläpfer, Daniel

    2011-08-20

    Accurate spectral calibration of airborne and spaceborne imaging spectrometers is essential for proper preprocessing and scientific exploitation of high spectral resolution measurements of the land and atmosphere. A systematic performance assessment of onboard and scene-based methods for in-flight monitoring of instrument spectral calibration is presented for the first time in this paper. Onboard and ground imaging data were collected at several flight altitudes using the Airborne Prism Experiment (APEX) imaging spectrometer. APEX is equipped with an in-flight characterization (IFC) facility allowing the evaluation of radiometric, spectral, and geometric system properties, both in-flight and on-ground for the full field of view. Atmospheric and onboard filter spectral features present in at-sensor radiances are compared with the same features in reference transmittances convolved to varying instrument spectral configurations. A spectrum-matching algorithm, taking advantage of the high sensitivity of measurements around sharp spectral features toward spectrometer spectral performance, is used to retrieve channel center wavelength and bandwidth parameters. Results showed good agreement between spectral parameters estimated using onboard IFC and ground imaging data. The average difference between estimates obtained using the O(2) and H(2)O features and those obtained using the corresponding filter features amounted to about 0.3 nm (0.05 of a spectral pixel). A deviation from the nominal laboratory instrument spectral calibration and an altitude-dependent performance was additionally identified. The relatively good agreement between estimates obtained by the two approaches in similar spectral windows suggests they can be used in a complementary fashion: while the method relying on atmospheric features can be applied without the need for dedicated calibration acquisitions, the IFC allows assessment at user-selectable wavelength positions by custom filters as well as for

  3. Spectral analysis by correlation; Analyse spectrale par correlation

    Energy Technology Data Exchange (ETDEWEB)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [French] La densite spectrale d'un signal qui represente la repartition de sa puissance sur l'axe des frequences est une fonction de premiere importance, constamment utilisee dans tout ce qui touche le traitement du signal (identification de processus, analyse de vibrations, etc...). Parmi toutes les methodes possibles de calcul de cette fonction, la methode par correlation (calcul de la fonction de correlation + transformation de Fourier) est tres seduisante par sa simplicite et ses performances. L'etude qui est faite ici va deboucher sur la realisation d'un appareil qui, couple a un correlateur, constituera un ensemble d'analyse spectrale en temps reel couvrant la gamme de frequence 0 a 5 MHz. (auteur)

  4. Common Raman Spectral Markers among Different Tissues for Cancer Detection

    Directory of Open Access Journals (Sweden)

    Zohreh Dehghani-Bidgoli

    2014-11-01

    Full Text Available Introduction Raman spectroscopy is a vibrational spectroscopic technique, based on inelastic scattering of monochromatic light. This technique can provide valuable information about biomolecular changes, associated with neoplastic transformation. The purpose of this study was to find Raman spectral markers for distinguishing normal samples from cancerous ones in different tissues. Materials and Methods Ten tissue samples from the breast, colon, pancreas, and thyroid were collected. A Raman system was used for Raman spectroscopic measurement of tissues at 532 nm laser excitation. Five to six Raman spectra were acquired from each sample (a total of 52 spectra. Raman spectra were investigated in important bands associated with Amid1, CH2 (scissoring, Amid3, d(NH, n(C-C, and das (CH3 in both normal and cancerous groups. In addition, common spectral markers, which discriminated between normal and cancerous samples in the above tissues, were investigated. Results Common spectral markers among different tissues included intensities of Amid3 and CH2 (scissoring and intensity ratios of I(Amid1/I(CH2, I(n(C-C/I(CH2, and I(d(NH/I(CH2. This study showed that Amid1-, n(C-C-, and d(NH-to-CH2 intensity ratios can discriminate between normal and cancerous samples, with an accuracy of 84.6%, 82.7%, and 82.7% in all studied tissues, respectively. Conclusion This study demonstrates the presence of common spectral markers, associated with neoplastic changes, among different tissues.

  5. Ultra-wideband spectral analysis using S2 technology

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Mohan, R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: krishna@spectrum.montana.edu; Chang, T. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Tian, M. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Bekker, S. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Olson, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Ostrander, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Khallaayoun, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Dollinger, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cole, Z. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Reibel, R.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Merkel, K.D. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Sun, Y. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cone, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Schlottau, F. [University of Colorado, Boulder, CO 80309 (United States); Wagner, K.H. [University of Colorado, Boulder, CO 80309 (United States)

    2007-11-15

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution ({approx}25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 {mu}s) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed.

  6. Multi-spectral camera development

    CSIR Research Space (South Africa)

    Holloway, M

    2012-10-01

    Full Text Available stream_source_info Holloway_2012.pdf.txt stream_content_type text/plain stream_size 6209 Content-Encoding ISO-8859-1 stream_name Holloway_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Multi-Spectral Camera... Development 4th Biennial Conference Presented by Mark Holloway 10 October 2012 Fused image ? Red, Green and Blue Applications of the Multi-Spectral Camera ? CSIR 2012 Slide 2 Green and Blue, Near Infrared (IR) RED Applications of the Multi...

  7. Stingray: Spectral-timing software

    Science.gov (United States)

    Huppenkothen, Daniela; Bachetti, Matteo; Stevens, Abigail L.; Migliari, Simone; Balm, Paul

    2016-08-01

    Stingray is a spectral-timing software package for astrophysical X-ray (and more) data. The package merges existing efforts for a (spectral-)timing package in Python and is composed of a library of time series methods (including power spectra, cross spectra, covariance spectra, and lags); scripts to load FITS data files from different missions; a simulator of light curves and event lists that includes different kinds of variability and more complicated phenomena based on the impulse response of given physical events (e.g. reverberation); and a GUI to ease the learning curve for new users.

  8. Silica-Based Arrayed Waveguide Grating with Flattened Spectral Response Using a Multimode Interference Coupler

    Institute of Scientific and Technical Information of China (English)

    TANG Yan-Zhe; JIA Ke-Miao; LI Bai-Yang; YANG Jian-Yi; JIANG Xiao-Qing; WU Ya-Ming; WANG Yue-Lin

    2004-01-01

    @@ We designed and fabricated an arrayed waveguide grating based on silica-on-silicon materials with flattened spectral response by adding a multimode interference coupler in the input region. The theoretical analysis and calculation are given. The device has worked effectively and has been tested with the passband 0.43 nm at 1 dB,0.72nm at 3dB and 1.56nm at 20dB respectively, at a cost of power penalty of about 1.5dB. The crosstalk is less than -30 dB, owing to the high-resolution photomask and well-controlled fabrication processes.

  9. Spectral analysis of tissues from patients with cancer using a portable spectroscopic diagnostic ratiometer unit

    Science.gov (United States)

    Sordillo, Laura A.; Pu, Yang; Sordillo, Peter P.; Budansky, Yury; Alfano, R. R.

    2014-05-01

    Spectral profiles of tissues from patients with breast carcinoma, malignant carcinoid and non-small cell lung carcinoma were acquired using native fluorescence spectroscopy. A novel spectroscopic ratiometer device (S3-LED) with selective excitation wavelengths at 280 nm and 335 nm was used to produce the emission spectra of the key biomolecules, tryptophan and NADH, in the tissue samples. In each of the samples, analysis of emission intensity peaks from biomolecules showed increased 340 nm/440 nm and 340 nm/460 nm ratios in the malignant samples compared to their paired normal samples. This most likely represented increased tryptophan to NADH ratios in the malignant tissue samples compared to their paired normal samples. Among the non-small cell lung carcinoma and breast carcinomas, it appeared that tumors of very large size or poor differentiation had an even greater increase in the 340 nm/440 nm and 340 nm/460 nm ratios. In the samples of malignant carcinoid, which is known to be a highly metabolically active tumor, a marked increase in these ratios was also seen.

  10. Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm

    Science.gov (United States)

    Lee, Sieun; Beg, Mirza F.; Sarunic, Marinko V.

    2013-06-01

    Retinal imaging with optical coherence tomography (OCT) has rapidly advanced in ophthalmic applications with the broad availability of Fourier domain (FD) technology in commercial systems. The high sensitivity afforded by FD-OCT has enabled imaging of the choroid, a layer of blood vessels serving the outer retina. Improved visualization of the choroid and the choroid-sclera boundary has been investigated using techniques such as enhanced depth imaging (EDI), and also with OCT systems operating in the 1060-nm wavelength range. We report on a comparison of imaging the macular choroid with commercial and prototype OCT systems, and present automated 3D segmentation of the choroid-scleral layer using a graph cut algorithm. The thickness of the choroid is an important measurement to investigate for possible correlation with severity, or possibly early diagnosis, of diseases such as age-related macular degeneration.

  11. 9nm node wafer defect inspection using visible light

    Science.gov (United States)

    Zhou, Renjie; Edwards, Chris; Popescu, Gabriel; Goddard, Lynford L.

    2014-04-01

    Over the past 2 years, we have developed a common optical-path, 532 nm laser epi-illumination diffraction phase microscope (epi-DPM) and successfully applied it to detect different types of defects down to 20 by 100 nm in a 22nm node intentional defect array (IDA) wafer. An image post-processing method called 2DISC, using image frame 2nd order differential, image stitching, and convolution, was used to significantly improve sensitivity of the measured images. To address 9nm node IDA wafer inspection, we updated our system with a highly stable 405 nm diode laser. By using the 2DISC method, we detected parallel bridge defects in the 9nm node wafer. To further enhance detectability, we are exploring 3D wafer scanning, white-light illumination, and dark-field inspection.

  12. A Spectral Analysis of Laser Induced Fluorescence of Iodine

    CERN Document Server

    Bayram, S B

    2015-01-01

    When optically excited, iodine absorbs in the 490- to 650-nm visible region of the spectrum and, after radiative relaxation, it displays an emission spectrum of discrete vibrational bands at moderate resolution. This makes laser-induced fuorescence spectrum of molecular iodine especially suitable to study the energy structure of homonuclear diatomic molecules at room temperature. In this spirit, we present a rather straightforward and inexpensive experimental setup and the associated spectral analysis which provides an excellent exercise of applied quantum mechanics fit for advanced laboratory courses. The students would be required to assign spectral lines, fill a Deslandres table, process the data to estimate the harmonic and anharmonic characteristics of the ground vibronic state involved in the radiative transitions, and thenceforth calculate a set of molecular constants and discuss a model of molecular vibrator.

  13. Spectral Analysis of Nonstationary Spacecraft Vibration Data

    Science.gov (United States)

    1965-11-01

    the instantaneous power spectral density function for the process (y(t)). This spectral function can take on negative values for certain cases...power spectral density function is not directly measurable in the frequency domain. An experimental estimate for the function can be obtained only by...called the generalized power spectral density function for the process (y(t)) . This spectral description for nonstationary data is of great value for

  14. First Detection of Sign-reversed Linear Polarization from the Forbidden [O I] 630.03 nm Line

    Science.gov (United States)

    de Wijn, A. G.; Socas-Navarro, H.; Vitas, N.

    2017-02-01

    We report on the detection of linear polarization of the forbidden [O i] 630.03 nm spectral line. The observations were carried out in the broader context of the determination of the solar oxygen abundance, an important problem in astrophysics that still remains unresolved. We obtained spectro-polarimetric data of the forbidden [O i] line at 630.03 nm as well as other neighboring permitted lines with the Solar Optical Telescope of the Hinode satellite. A novel averaging technique was used, yielding very high signal-to-noise ratios in excess of 105. We confirm that the linear polarization is sign-reversed compared to permitted lines as a result of the line being dominated by a magnetic dipole transition. Our observations open a new window for solar oxygen abundance studies, offering an alternative method to disentangle the Ni i blend from the [O i] line at 630.03 nm that has the advantage of simple LTE formation physics.

  15. Picosecond high-power 355-nm UV generation in CsLiBsub>6sub>Osub>10sub> crystal.

    Science.gov (United States)

    Ueda, Kentaro; Orii, Yosuke; Takahashi, Yoshinori; Okada, George; Mori, Yusuke; Yoshimura, Masashi

    2016-12-26

    We report third-harmonic generation (THG) at 355 nm in CsLiBsub>6sub>Osub>10sub> (CLBO) by using sum-frequency mixing process. As a fundamental laser source, we employ a hybrid master oscillator power amplifier (MOPA) system seeded by a gain-switched laser diode (GS-LD) at 1064 nm to produce narrow spectral picosecond pulses. Both CLBO and walk-off compensated prism-coupled CLBO device generate over 30-W output of 355-nm UV lights, which means walk-off effect in CLBO is negligible in the picosecond laser system. The maximum THG conversion efficiency from the fundamental reaches about 48%, which is 1.2 times higher than that of LiBsub>3sub>Osub>5sub> (LBO). Theoretical THG outputs with CLBO and LBO are numerically calculated in order to verify the validity of these experimental results in detail.

  16. Amplification of femtosecond vacuum ultraviolet laser pulses at 126 nm in an optical-field-induced ionized argon plasma

    Science.gov (United States)

    Kubodera, Shoichi; Kaku, Masanori; Katto, Masahito; Miyazaki, Kenzo

    2012-10-01

    Short-wavelength lasers in the vacuum ultraviolet (VUV) spectral region between 100 and 200 nm have not yet been developed to the same degree as visible and infrared lasers. We have been developing the argon excimer laser at 126 nm by using an optical-field-induced ionized (OFI) argon plasma. We have observed the gain of 0.86 /cm at 126 nm in the OFI Ar plasma, which was produced inside a hollow fiber with a diameter of 250 microns and a length of 5 cm. In this paper, we have used the OFI plasma gain medium as an amplifier of the 126 nm radiation. A femtosecond 126 nm pulse was produced by the seventh-order nonlinear wavelength conversion of a femtosecond Ti:sapphire laser at 882 nm. The femtosecond wavelength-converted coherent VUV beam was then injected inside the OFI plasma that was produced by the same Ti:sapphire laser, resulting in a 2.4-fold increase of the VUV intensity with one-pass amplification. The gain-length product of 0.87 with the one-pass amplification was evaluated, which was consistent with the value we have observed in the previous measurements. The further extension of the OFI plasma by using a hollow fiber would be plausible to increase the gain-length product and the VUV amplified intensity.

  17. Generation of 35.5-nm coherent radiation.

    Science.gov (United States)

    Bokor, J; Bucksbaum, P H; Freeman, R R

    1983-04-01

    Tunable coherent radiation was produced at 35.5 nm by seventh-harmonic conversion of 248-nm radiation from a krypton fluoride excimer laser. The nonlinear interaction took place at the intersection of the laser focus and a pulsed, supersonic helium gas jet. Third- and fifth-harmonic generation produced coherent outputs at 83 and 50 nm in both helium and xenon gas jets.

  18. Construction of Spectral Discoloration Model for Red Lead Pigment by Aging Test and Simulating Degradation Experiment

    Directory of Open Access Journals (Sweden)

    Jinxing Liang

    2016-01-01

    Full Text Available The construction of spectral discoloration model, based on aging test and simulating degradation experiment, was proposed to detect the aging degree of red lead pigment in ancient murals and to reproduce the spectral data supporting digital restoration of the ancient murals. The degradation process of red lead pigment under the aging test conditions was revealed by X-ray diffraction, scanning electron microscopy, and spectrophotometer. The simulating degradation experiment was carried out by proportionally mixing red lead and lead dioxide with referring to the results of aging test. The experimental result indicated that the pure red lead was gradually turned into black lead dioxide, and the amount of tiny particles of the aging sample increased faced with aging process. Both the chroma and lightness of red lead pigment decreased with discoloration, and its hue essentially remains unchanged. In addition, the spectral reflectance curves of the aging samples almost started rising at about 550 nm with the inflection moving slightly from about 570 nm to 550 nm. The spectral reflectance of samples in long- and in short-wavelength regions was fitted well with the logarithmic and linear function. The spectral discoloration model was established, and the real aging red lead pigment in Dunhuang murals was measured and verified the effectiveness of the model.

  19. Absorption spectral analysis of proteins and free amino acids in Pleurotus ostreatus fruiting body extracts

    Science.gov (United States)

    Kostyshyn, S.; Gorshynska, I.; Guminetsky, S. G.

    2002-02-01

    The paper deals with the results of spectrophotometric studies of the extracts of Pleurotus ostreatus fruiting bodies, grown in natural conditions in different habitats of Chernivtsy region, in the spectral interval of 215 - 340 nm. It is shown that the samples reveal considerable difference both in free amino acid content and reserved protein content of albumins, globulins, prolamins, glutelins.

  20. Retrieval of Total Suspended Matters Using Field Spectral Data in Shitoukoumen Reservoir, Jilin Province, Northeast China

    Institute of Scientific and Technical Information of China (English)

    XU Jingping; ZHANG Bai; LI Fang; SONG Kaishan; WANG Zongming; LIU Dianwei

    2009-01-01

    From August to October in 2006, three times of field spectral measurements with a Field Spec FR spectroradiometer (Analytical Spectral Devices, Inc., USA) were carried out in Shitoukoumen Reservoir, Jilin Province, Northeast China. Owing to the serious soil and water loss in the upstream, reflectance curves of the reservoir were characterized by high concentrations of total suspended matter (TSM). Extending the spectral analysis to 1200nm in the near-infrared band, this research revealed an obvious reflectance peak around 1070nm which was caused by the strong backscattering of high TSM. The method of partial least squares (PLS) regression was applied to retrieving the TSM. Reflectance in two spectral bands, i.e., 675-948nm and 1029-1105nm, were used as variables to develop PLS models. Traditional linear regression, first derivative model and logarithmic model were also used for the comparison of different models. Results showed that the PLS model based on Rrs(675)-Rrs(948) gave out best results with high precision and stability. Although the PLS model based on Rrs(1029)-Rrs(1105) did not have an outstanding performance due to lots of noise, the reflectance peak in the near-infrared band was an important TSM feature and its efficient exploitation would have a eunsiderable significance in TSM remote sensing.

  1. Raman spectral imaging technique on detection of melamine in skim milk powder

    Science.gov (United States)

    A point-scan Raman spectral imaging system was used for quantitative detection of melamine in milk powder. A sample depth of 2 mm and corresponding laser intensity of 200 mW were selected after evaluating the penetration of a 785 nm laser through milk powder. Horizontal and vertical spatial resoluti...

  2. Detection limits of 405 nm and 633 nm excited PpIX fluorescence for brain tumor detection during stereotactic biopsy

    Science.gov (United States)

    Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2016-04-01

    5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.

  3. The Infrared Spectrum of Uranium Hollow Cathode Lamps from 850 nm to 4000 nm: Wavenumbers and Line Identifications from Fourier Transform Spectra

    CERN Document Server

    Redman, Stephen L; Nave, Gillian; Ramsey, Lawrence W; Mahadevan, Suvrath

    2011-01-01

    We provide new measurements of wavenumbers and line identifications of 10 100 UI and UII near-infrared (NIR) emission lines between 2500 cm-1 and 12 000 cm-1 (4000 nm to 850 nm) using archival FTS spectra from the National Solar Observatory (NSO). This line list includes isolated uranium lines in the Y, J, H, K, and L bands (0.9 {\\mu}m to 1.1 {\\mu}m, 1.2 {\\mu}m to 1.35 {\\mu}m, 1.5 {\\mu}m to 1.65 {\\mu}m, 2.0 {\\mu}m to 2.4 {\\mu}m, and 3.0 {\\mu}m to 4.0 {\\mu}m, respectively), and provides six times as many calibration lines as thorium in the NIR spectral range. The line lists we provide enable inexpensive, commercially-available uranium hollow-cathode lamps to be used for high-precision wavelength calibration of existing and future high-resolution NIR spectrographs.

  4. Novel spectral range expansion method for liquid crystal adaptive optics.

    Science.gov (United States)

    Mu, Quanquan; Cao, Zhaoliang; Hu, Lifa; Liu, Yonggang; Peng, Zenghui; Xuan, Li

    2010-10-11

    Energy loss is a main problem of liquid crystal adaptive optics systems (LC AOSs). It is caused by the polarization dependence and narrow spectral range. The polarization dependence has been avoided by Love and Mu et al. [Appl. Opt. 32, 2222 (1993); Appl. Opt. 47, 4297 (2008)]. In this paper, a novel method was proposed to extend the spectral range of LC AOSs using multiple liquid crystal wavefront correctors (LCWFCs) to improve the energy utilization. Firstly, the chromatism of an LCWFC was measured and analyzed. The calculated results indicate that one LCWFC is only suitable to perform adaptive correction for a narrow waveband; therefore, multiple LCWFCs must be used to achieve a broadband correction. Secondly, based on open-loop control, a novel optical layout consisting of three LCWFCs was proposed to extend the spectral range of LC AOSs and thus achieve correction in the whole waveband of 520-810 nm. Thirdly, a broadband correction experiment was conducted and near diffraction-limited resolution was achieved in the waveband of 520-690 nm. Finally, a 500 m horizontal turbulence correction experiment was performed in the waveband of 520-690 nm. With adaptive correction, the resolution of the optical system was improved significantly and the image of the single fiber was clearly resolved. Furthermore, compared with a sub-waveband system, the system energy was improved. The energy of the whole waveband is equal to the sum of all the sub-wavebands. The experiment results validated our method and indicate that the chromatism in a broad waveband of LC AOSs can be eliminated. And then, the system energy can be improved greatly using the novel method.

  5. Investigations of a Dual Seeded 1178 nm Raman Laser System

    Science.gov (United States)

    2016-01-14

    constructed using slab1-3 or fiber laser technology4-15. Slab technology generally involves sum-frequency mixing of 1064 and 1319 nm in a lithium...triborate crystal to obtain 589 nm. Another way of achieving the desired output wavelength of 589 nm for sodium guidestar laser applications is through...been obtained from an ytterbium-doped photonic band gap fiber laser with a 320 kHz linewidth13. Finally, 85 W of single frequency (1 MHz) 1178 nm was

  6. 7nm logic optical lithography with OPC-Lite

    Science.gov (United States)

    Smayling, Michael C.; Tsujita, Koichiro; Yaegashi, Hidetami; Axelrad, Valery; Nakayama, Ryo; Oyama, Kenichi; Yamauchi, Shohei; Ishii, Hiroyuki; Mikami, Koji

    2015-03-01

    The CMOS logic 22nm node was the last one done with single patterning. It used a highly regular layout style with Gridded Design Rules (GDR). Smaller nodes have required the same regular layout style but with multiple patterning for critical layers. A "line/cut" approach is being used to achieve good pattern fidelity and process margin.[1] As shown in Fig. 1, even with "line" patterns, pitch division will eventually be necessary. For the "cut" pattern, Design-Source-Mask Optimization (DSMO) has been demonstrated to be effective at the 20nm node and below.[2,3,4] Single patterning was found to be suitable down to 16nm, while double patterning extended optical lithography for cuts to the 10-12nm nodes. Design optimization avoided the need for triple patterning. Lines can be patterned with 193nm immersion with no complex OPC. The final line dimensions can be achieved by applying pitch division by two or four.[5] In this study, we extend the scaling using simplified OPC to the 7nm node for critical FEOL and BEOL layers. The test block is a reasonably complex logic function with ~100k gates of combinatorial logic and flip-flops, scaled from previous experiments. Simulation results show that for cuts at 7nm logic dimensions, the gate layer can be done with single patterning whose minimum pitch is 53nm, possibly some of the 1x metal layers can be done with double patterning whose minimum pitch is 53nm, and the contact layer will require triple patterning whose minimum pitch is 68nm. These pitches are less than the resolution limit of ArF NA=1.35 (72nm). However these patterns can be separated by a combination of innovative SMO for less than optical resolution limit and a process trick of hole-repair technique. An example of triple patterning coloring is shown in Fig 3. Fin and local interconnect are created by lines and trims. The number of trim patterns are 3 times (min. pitch=90nm) and twice (min. pitch=120nm), respectively. The small number of masks, large pitches, and

  7. First principles study on the interfacial properties of NM/graphdiyne (NM = Pd, Pt, Rh and Ir): The implications for NM growing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhansheng; Li, Shuo; Lv, Peng [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); He, Chaozheng, E-mail: hecz2013@nynu.edu.cn [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061 (China); Ma, Dongwei [School of Physics, Anyang Normal University, Anyang 455000 (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Kaifeng (China)

    2016-01-01

    Graphical abstract: - Highlights: • The NM adatoms belong to embedded adsorption in 18C-hexagon of GDY. • The Rh and Ir/GDY can be applied to single metal catalysts or sensors. • A simple linear relationship between E{sub e-ads} and E{sub b} is presented. • The linear relationship can be used in the noble metal modified GDY. - Abstract: Based on the dispersion-corrected density functional calculations (DFT-D), we systematically studied the adsorption of noble metals (NM), Pd, Pt, Rh and Ir, on graphdiyne (GDY). We present a systematic study on the geometry, embedded adsorption energy and electronic structure of four different adatoms adsorbed on the GDY. The strong interaction between the NM adatoms and the GDY substrate is found with the NM embedded in the 18C-hexagon of the GDY. We investigated the mobility of the NM adatoms on the GDY, and found that the mobility barrier energy increases along with the increasing of the embedded adsorption energy. We present the NM adatoms growth of high concentrations on the GDY. Upon the analysis of the electronic structure and the frontier molecular orbitals, Rh and Ir adatoms of low concentrations (about 1.37 at%) on the GDY have the potential to be applied as single metal catalysts or gas molecule sensors.

  8. Low-cost 420nm blue laser diode for tissue cutting and hemostasis

    Science.gov (United States)

    Linden, Kurt J.

    2016-03-01

    This paper describes the use of a 420 nm blue laser diode for possible surgery and hemostasis. The optical absorption of blood-containing tissue is strongly determined by the absorption characteristics of blood. Blood is primarily comprised of plasma (yellowish extracellular fluid that is approximately 95% water by volume) and formed elements: red blood cells (RBCs), white blood cells (WBCs) and platelets. The RBCs (hemoglobin) are the most numerous, and due to the spectral absorption characteristics of hemoglobin, the optical absorption of blood has a strong relative maximum value in the 420 nm blue region of the optical spectrum. Small, low-cost laser diodes emitting at 420 nm with tens of watts of continuous wave (CW) optical power are becoming commercially available. Experiments on the use of such laser diodes for tissue cutting with simultaneous hemostasis were carried out and are here described. It was found that 1 mm deep x 1 mm wide cuts can be achieved in red meat at a focused laser power level of 3 W moving at a velocity of ~ 1 mm/s. The peripheral necrosis and thermal damage zone extended over a width of approximately 0.5 mm adjacent to the cuts. Preliminary hemostasis experiments were carried out with fresh equine blood in Tygon tubing, where it was demonstrated that cauterization can occur in regions of intentional partial tubing puncture.

  9. Some spectral response characteristics of ZnTe thin films

    Indian Academy of Sciences (India)

    R Sarma; N Mazumdar; H L Das

    2006-02-01

    Zinc telluride thin films have been grown at room temperature and higher temperature substrates by thermal evaporation technique in a vacuum of 10-6 torr. A main peak in the photocurrent is observed at 781 nm (1.58 eV) with two lower amplitude peaks on the lower wavelength side and one on higher wavelength side. The evaluated thermal activation energy is found to correspond well with the main spectral peak. From these studies it can be inferred that temperatures up to 453 K is still in the extrinsic conductivity region of the studied ZnTe thin films.

  10. Bimodal-sized quantum dots for broad spectral bandwidth emitter.

    Science.gov (United States)

    Zhou, Yinli; Zhang, Jian; Ning, Yongqiang; Zeng, Yugang; Zhang, Jianwei; Zhang, Xing; Qin, Li; Wang, Lijun

    2015-12-14

    In this work, a high-power and broadband superluminescent diode (SLD) is achieved utilizing bimodal-sized quantum dots (QDs) as active materials. The device exhibits a 3 dB bandwidth of 178.8 nm with output power of 1.3 mW under continuous-wave (CW) conditions. Preliminary discussion attributes the spectra behavior of the device to carrier transfer between small dot ensemble and large dot ensemble. Our result provides a new possibility to further broadening the spectral bandwidth and improving the CW output power of QD-SLDs.

  11. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  12. Spectral Methods for Numerical Relativity

    Directory of Open Access Journals (Sweden)

    Grandclément Philippe

    2009-01-01

    Full Text Available Equations arising in general relativity are usually too complicated to be solved analytically and one must rely on numerical methods to solve sets of coupled partial differential equations. Among the possible choices, this paper focuses on a class called spectral methods in which, typically, the various functions are expanded in sets of orthogonal polynomials or functions. First, a theoretical introduction of spectral expansion is given with a particular emphasis on the fast convergence of the spectral approximation. We then present different approaches to solving partial differential equations, first limiting ourselves to the one-dimensional case, with one or more domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. We then present results obtained by various groups in the field of general relativity by means of spectral methods. Work, which does not involve explicit time-evolutions, is discussed, going from rapidly-rotating strange stars to the computation of black-hole–binary initial data. Finally, the evolution of various systems of astrophysical interest are presented, from supernovae core collapse to black-hole–binary mergers.

  13. Polynomial J-spectral factorization

    NARCIS (Netherlands)

    Kwakernaak, Huibert; Sebek, Michael

    1994-01-01

    Several algorithms are presented for the J-spectral factorization of a para-Hermitian polynomial matrix. The four algorithms that are discussed are based on diagonalization, successive factor extraction, interpolation, and the solution of an algebraic Riccati equation, respectively. The paper includ

  14. Asymptotics of thermal spectral functions

    CERN Document Server

    Caron-Huot, S

    2009-01-01

    We use operator product expansion (OPE) techniques to study the spectral functions of currents at finite temperature, in the high-energy time-like region $\\omega\\gg T$. The leading corrections to the spectral function of currents and stress tensors are proportional to $\\sim T^4$ expectation values in general, and the leading corrections $\\sim g^2T^4$ are calculated at weak coupling, up to one undetermined coefficient in the shear viscosity channel. Spectral functions in the asymptotic regime are shown to be infrared safe up to order $g^8T^4$. The convergence of sum rules in the shear and bulk viscosity channels is established in QCD to all orders in perturbation theory, though numerically significant tails $\\sim T^4/(\\log\\omega)^3$ are shown to exist in the bulk viscosity channel and to have an impact on sum rules recently proposed by Kharzeev and Tuchin. We argue that the spectral functions of currents and stress tensors in strongly coupled $\\mathcal{N}=4$ super Yang-Mills do not receive any medium-dependent...

  15. Spectral representation of Gaussian semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas

    2009-01-01

    The aim of the present paper is to characterize the spectral representation of Gaussian semimartingales. That is, we provide necessary and sufficient conditions on the kernel K for X t =∫ K t (s) dN s to be a semimartingale. Here, N denotes an independently scattered Gaussian random measure...

  16. Spectral problems for operator matrices

    NARCIS (Netherlands)

    Bátkai, A.; Binding, P.; Dijksma, A.; Hryniv, R.; Langer, H.

    2005-01-01

    We study spectral properties of 2 × 2 block operator matrices whose entries are unbounded operators between Banach spaces and with domains consisting of vectors satisfying certain relations between their components. We investigate closability in the product space, essential spectra and generation of

  17. Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters.

    Science.gov (United States)

    Luo, Yuan; Gelsinger, Paul J; Barton, Jennifer K; Barbastathis, George; Kostuk, Raymond K

    2008-03-15

    Holographic gratings formed in thick phenanthrenquinone- (PQ-) doped poly(methyl methacrylate) (PMMA) can be made to have narrowband spectral and spatial transmittance filtering properties. We present the design and performance of angle-multiplexed holographic filters formed in PQ-PMMA at 488 nm and reconstructed with a LED operated at approximately 630 nm. The dark delay time between exposure and the preillumination exposure of the polymer prior to exposure of the holographic area are varied to optimize the diffraction efficiency of multiplexed holographic filters. The resultant holographic filters can enhance the performance of four-dimensional spatial-spectral imaging systems. The optimized filters are used to simultaneously sample spatial and spectral information at five different depths separated by 50 microm within biological tissue samples.

  18. Remote sensing study of the influence of herbicides on the spectral reflectance of pea plant leaves (Pisum sativum L.)

    Science.gov (United States)

    Krezhova, D.; Alexieva, V.; Yanev, T.; Ivanov, S.

    Results from a remote sensing study of spectral reflectance of leaves of pea plants Pisum sativum L treated by the herbicides atrazine 2 4-D glyphosate fluridone and chlorsulfuron are reported According to the classification of the Herbicide Action Committee reflecting their mode of action they belong to different groups photosystem II bloker - C1 atrazine synthetic auxins - O 2 4-D inhibition of EPSP synthase - G glyphosate photobleaching - F1 fluridone and inhibition of acetoctate synthase - B chlorsulfuron The plants studied were grown hydroponically in a growth chamber in a nutritious medium to which every herbicide was added at three low concentrations 1 mu M 0 1 mu M and 0 01 mu M with respect to the field dose applied in the agricultural practice The spectral measurements of the leaf spectral reflectance were carried out in laboratory using a multichannel spectrometer in the visible and near infrared regions of the spectrum 480 div 810 nm Data was registered in 128 channels at a high spectral resolution of 2 6 nm halfwidth and a spatial resolution of 2 mm 2 The reflectance spectra were obtained from the leaf-reflected radiation referenced against a standard white screen To assess the changes arising in the leaf spectral reflectance under the herbicide action the developed by us approach based on discriminant analysis and other statistical methods was applied The spectral reflectance characteristics SRC were investigated in three spectral intervals 520 div 580 nm region of maximal

  19. VF- and V+K Aggregate Colour Centres:Origin of the Room-Temperature 350 nm Absorption Band in PbWO4

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-Ren; LIU Ting-Yu; YAN Fei-Nan

    2004-01-01

    @@ A PbWO4 (PWO) single crystal has been grown by the advanced Bridgman method. The as-grown PWO crystal exhibits a weak band at 350nm. This band was fitted into two overlapping bands peaking at 330nm and 360nm respectively. The absorption spectra of the as-grown crystal sample on un-polarized light and polarized light are measured respectively. The formation mechanism of colour centres in the as-grown PWO crystal is discussed and the 330nm and 360nm bands are ascribed to V-F- and V+F centres respectively. The structure models of VF- and VK+ centres are illustrated. The configuration terms, absorption transitions between the energy terms,the absorption spectral features on polarized light and the distributions of VF-- and VK+ centres in PWO are systematically studied.

  20. High-speed spectral tuning CARS microscopy using AOTF laser

    Science.gov (United States)

    Hashimoto, Mamoru; Iwatsuka, Junichi; Niioka, Hirohiko; Araki, Tsutomu

    2012-03-01

    We have developed a high speed spectral tuning CARS microscopy system using a mode-locked Ti:Sapphire laser with an acousto-optic tunable filter (AOTF) in the cavity. Since the wavelength of the laser is tunable with the applied radio frequency to the AOTF, the wavelength is electrically tunable.The pulse duration of the laser is about 10 ps, tunable range is 800 nm to 930 nm, and the tuning speed is ms order. The laser is synchronized with another mode-locked Ti:Sapphire laser laser our own method using a balance cross-correlator and phase lock loop technique. The synchronized lasers are used for light source of multi-focus CARS microscopy system using a microlens array scanner, and the hyperspectral imaging of adipocyte cells is demonstrated.

  1. Effect of spectral resolution on the measurement of monoaromatic hydrocarbons by DOAS

    Institute of Scientific and Technical Information of China (English)

    PENG Fumin; XIE Pinhua; ZHANG Yinghua; ZHU Yanwu; SI Fuqi; LIU Wenqing; WANG Junde

    2008-01-01

    The excellent response characteristics and detection sensitivity with much lower operational cost and the capability to discriminate between the isomer of some monoaromatic hydrocarbons (MAHCs) make differential optical absorption spectroscopy (DOAS) a powerful tool to trace concentration variation of MAHCs. But due to the similarity in chemical structure, those MAHCs have the similar overlapped characteristic absorption structures, which make the selection of instrumental parameter critical to the accurate detection of MAHCs. Firstly, the spectral resolution used in DOAS system determines the nonlinear absorption of O2 and the mass dependence of characteristic absorption structure; thereby it determines the effect of elimination error of O2 absorption in the atmospheric spectra for the detection of MAHCs. Secondly, spectral resolution determines the differential absorption characteristics of twelve MAHCs representing major constituents in technical solvents used in the automobile industry and the interference of spectral overlapping. Thirdly, the spectral resolution determines the sensitivity, time resolution and linear range. So the spectral resolution range with the best ratio of signal to noise is used to determine the most suitable spectral resolution range, as well as the spectral resolution range that ensure the characteristic absorption structure of MAHCs and the minimization of O2 absorption interference. Finally, 0. 15-0. 16 nm (FWHM: full width at half maximum) is assumed to be closest to the optimum spectral resolution and it is confirmed by the results of practical measurement of MAHCs by DOAS.

  2. Spectral light absorption by yellow substance in the Kattegat-Skagerrak area

    Directory of Open Access Journals (Sweden)

    Niels K. Højerslev

    2001-03-01

    Full Text Available More than 1500 water samples were taken from the Kattegat, the Skagerrak and adjacent waters. The value of the absorption coefficient of yellow substance at 310 nm was found to vary from 0.06 to 7.4 m-1 in the open coastal waters, with a mean value of 1.3 m-1. The corresponding wavelength-averaged value (250-450 nm of the semilogarithmic spectral slope of the coefficient ranges from 0.008 to 0.042 nm-1, and the mean value is 0.023 nm-1. Closer to river discharges, as in the fjords, the values of the slope seem to be more constant at around 0.0175 ± 0.0015 nm-1. In this area the slope must then be known in order to compare absorption at different wavelengths or to model the yellow substance absorption.

  3. Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones.

    Science.gov (United States)

    Zhou, Qian; Pang, Jinchao; Li, Xinghui; Ni, Kai; Tian, Rui

    2015-11-10

    In this study, a new flat-field concave grating miniature spectrometer is proposed with improved resolution across a wide spectral band. A mirror is added to a conventional concave grating spectrometer and placed near the existing detector array, allowing a wide spectral band to be divided into two adjacent subspectral bands. One of these bands is directly detected by the detector, and the other is indirectly analyzed by the same detector after being reflected by the mirror. These two subspectral bands share the same entrance slit, concave grating, and detector, which allows for a compact size, while maintaining an improved spectral resolution across the entire spectral band. The positions of the mirror and other parameters of the spectrometer are designed by a computer procedure and the optical design software ZEMAX. Simulation results show that the resolution of this kind of flat-field concave grating miniature spectrometer is better than 1.6 nm across a spectral band of 700 nm. Experiments based on three laser sources reveal that the measured resolutions are comparable to the simulated ones, with a maximum relative error between them of less than 19%.

  4. Biomarkers spectral subspace for cancer detection.

    Science.gov (United States)

    Sun, Yi; Pu, Yang; Yang, Yuanlong; Alfano, Robert R

    2012-10-01

    A novel approach to cancer detection in biomarkers spectral subspace (BSS) is proposed. The basis spectra of the subspace spanned by fluorescence spectra of biomarkers are obtained by the Gram-Schmidt method. A support vector machine classifier (SVM) is trained in the subspace. The spectrum of a sample tissue is projected onto and is classified in the subspace. In addition to sensitivity and specificity, the metrics of positive predictivity, Score1, maximum Score1, and accuracy (AC) are employed for performance evaluation. The proposed BSS using SVM is applied to breast cancer detection using four biomarkers: collagen, NADH, flavin, and elastin, with 340-nm excitation. It is found that the BSS SVM outperforms the approach based on multivariate curve resolution (MCR) using SVM and achieves the best performance of principal component analysis (PCA) using SVM among all combinations of PCs. The descent order of efficacy of the four biomarkers in the breast cancer detection of this experiment is collagen, NADH, elastin, and flavin. The advantage of BSS is twofold. First, all diagnostically useful information of biomarkers for cancer detection is retained while dimensionality of data is significantly reduced to obviate the curse of dimensionality. Second, the efficacy of biomarkers in cancer detection can be determined.

  5. A 1.5-W frequency doubled semiconductor disk laser tunable over 40 nm at around 745 nm

    Science.gov (United States)

    Saarinen, Esa J.; Lyytikäinen, Jari; Ranta, Sanna; Rantamäki, Antti; Saarela, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Okhotnikov, Oleg G.

    2016-03-01

    We report on a semiconductor disk laser emitting 1.5 W of output power at the wavelength of 745 nm via intracavity frequency doubling. The high power level and the pumped with commercial low-cost 980 nm laser diode modules. Laser emission at 1490 nm was frequency-doubled with a bismuth borate crystal that was cut for type I critical phase matching. At the maximum output power, we achieved an optical-to-optical efficiency of 8.3% with beam quality parameter M2 below 1.5. The laser wavelength could be tuned with an intracavity birefringent plate from 720 to 764 nm.

  6. Evaluation of dental pulp repair using low level laser therapy (688 nm and 785 nm) morphologic study in capuchin monkeys

    Science.gov (United States)

    Pretel, H.; Oliveira, J. A.; Lizarelli, R. F. Z.; Ramalho, L. T. O.

    2009-02-01

    The aim of this study was to evaluate the hypothesis that low-level laser therapy (LLLT) 688 nm and 785 nm accelerate dentin barrier formation and repair process after traumatic pulp exposure. The sample consisted of 45 premolars of capuchin monkeys (Cebus apella) with pulp exposure Class V cavities. All premolars were treated with calcium hydroxide (Ca(OH)2), divided in groups of 15 teeth each, and analyzed on 7th, 25th, and 60th day. Group GI - only Ca(OH)2, GII - laser 688 nm, and GIII - laser 785 nm. Laser beam was used in single and punctual dose with the parameters: continuous, 688 nm and 785 nm wavelength, tip's area of 0.00785 cm2, power 50 mW, application time 20 s, dose 255 J/cm2, energy 2 J. Teeth were capped with Ca(OH)2, Ca(OH)2 cement and restored with amalgam. All groups presented pulp repair. On 25th day the thickness of the formed dentin barrier was different between the groups GI and GII (p < 0.05) and between groups GI and GIII (p < 0.01). On 60th day there was difference between GI and GIII (p < 0.01). It may be concluded that, LLLT 688 nm and 785 nm accelerated dentin barrier formation and consequently pulp repair process, with best results using infrared laser 785 nm.

  7. Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications.

    Science.gov (United States)

    Debord, B; Alharbi, M; Benoît, A; Ghosh, D; Dontabactouny, M; Vincetti, L; Blondy, J-M; Gérôme, F; Benabid, F

    2014-11-01

    We report on the development of a hypocycloidal-core Kagome hollow-core photonic crystal fiber guiding, with low transmission loss in the 450-650 nm visible spectral range. Transmission loss records have been achieved with 70  dB/km at 600 nm, and 130  dB/km at 532 nm. As a demonstration of the fiber potential applications, we report on a compact 600 THz wide Raman comb generator, centered around 532 nm, and on a 10 W average power frequency-doubled Yb-fiber picosecond laser beam delivery, along with its use for organic material laser micro-processing.

  8. 355nm Photon-Recycled Fringe Imager for HSRL Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work is to develop a high-efficiency aircraft-qualified Fabry-Perot-based interferometer for the High Spectral Resolution LIDAR (HSRL). Through this...

  9. Atlas and wavenumber tables for visible part ($419 \\div 696$ nm) of the rovibronic multiline emission spectrum of the $D_2$ molecule measured with moderate resolution

    CERN Document Server

    Lavrov, B P

    2012-01-01

    The visible part ($\\approx 419 \\div 696$ nm) of the multiline electronic-vibro-rotational emission spectrum of the $D_2$ molecule was recorded with moderate resolution (line widths $\\approx 0.013$ nm). The resolution was limited by Doppler broadening of spectral lines. After numerical deconvolution of the recorded intensity distributions and proper calibration of the spectrometer the new set of wavenumber values was obtained. The results are reported in the form of an atlas divided into 158 sections (each section covers about 1.5 nm) containing pictures of images in the focal plane of the spectrometer, intensity distributions in linear and logarithmic scales and the table containing wavenumber and relative intensity values for 11990 spectral lines together with existing line assignments.

  10. On high speed transmission with the 850nm VCSELs

    Science.gov (United States)

    Turkiewicz, Jarosław P.; Chorchos, Łukasz; Puerta Ramirez, Rafael; Vegas Olmos, Juan Jose; Ledentsov, Nikolay

    2016-09-01

    One of the key research challenges is development of energy efficient high bit rate data interconnects. The most promising solutions are based on 850 nm vertical cavity surface emitting lasers (VCSEL) and multi mode fibre (MMF). In this paper options to realize energy efficient 850 nm data interconnects are discussed and evaluated.

  11. On high speed transmission with the 850 nm VCSELs

    DEFF Research Database (Denmark)

    Turkiewicz, Jarosław P.; Chorchos, Łukasz; Puerta Ramírez, Rafael

    2016-01-01

    One of the key research challenges is development of energy efficient high bit rate data interconnects. The most promising solutions are based on 850 nm vertical cavity surface emitting lasers (VCSEL) and multi mode fibre (MMF). In this paper options to realize energy efficient 850 nm data...

  12. A photonic crystal fiber with zero dispersion at 1064 nm

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas

    2002-01-01

    We report on the dispersion properties of a single mode, large core photonic crystal fiber. Using white light interferometry the fiber is found to have zero dispersion at 1064 nm......We report on the dispersion properties of a single mode, large core photonic crystal fiber. Using white light interferometry the fiber is found to have zero dispersion at 1064 nm...

  13. [Estimation of rice LAI by using NDVI at different spectral bandwidths].

    Science.gov (United States)

    Wang, Fu-min; Huang, Jing-feng; Tang, Yan-lin; Wang, Xiu-zhen

    2007-11-01

    The canopy hyperspectral reflectance data of rice at its different development stages were collected from field measurement, and the corresponding NDVIs as well as the correlation coefficients of NDVIs and LAI were computed at extending bandwidth of TM red and near-infrared (NIR) spectra. According to the variation characteristics of best fitted R2 with spectral bandwidth, the optimal bandwidth was determined. The results showed that the correlation coefficients of LAI and ND-VI and the maximum R2 of the best fitted functions at different spectral bandwidths had the same variation trend, i.e., decreased with increasing bandwidth when the bandwidth was less than 60 nm. However, when the bandwidth was beyond 60 nm, the maximum R2 somewhat fluctuated due to the effect of NIR. The analysis of R2 variation with bandwidth indicated that 15 nm was the optimal bandwidth for the estimation of rice LAI by using NDVI.

  14. Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths.

    Science.gov (United States)

    Evans, Christopher C; Shtyrkova, Katia; Bradley, Jonathan D B; Reshef, Orad; Ippen, Erich; Mazur, Eric

    2013-07-29

    We observe spectral broadening of femtosecond pulses in single-mode anatase-titanium dioxide (TiO(2)) waveguides at telecommunication and near-visible wavelengths (1565 and 794 nm). By fitting our data to nonlinear pulse propagation simulations, we quantify nonlinear optical parameters around 1565 nm. Our fitting yields a nonlinear refractive index of 0.16 × 10(-18) m(2)/W, no two-photon absorption, and stimulated Raman scattering from the 144 cm(-1) Raman line of anatase with a gain coefficient of 6.6 × 10(-12) m/W. Additionally, we report on asymmetric spectral broadening around 794 nm. The wide wavelength applicability and negligible two-photon absorption of TiO(2) make it a promising material for integrated photonics.

  15. An imaging spectro-polarimeter for measuring hemispherical spectrally resolved down-welling sky polarization

    Science.gov (United States)

    Chenault, David B.; Pezzaniti, J. L.; Roche, Michael; Hyatt, Brian

    2016-05-01

    A full sky imaging spectro-polarimeter has been developed that measures spectrally resolved (~2.5 nm resolution) radiance and polarization (𝑠0, 𝑠1, 𝑠2 Stokes Elements) of natural sky down-welling over approximately 2π sr between 400nm and 1000nm. The sensor is based on a scanning push broom hyperspectral imager configured with a continuously rotating polarizer (sequential measurement in time polarimeter). Sensor control and processing software (based on Polaris Sensor Technologies Grave' camera control software) has a straight-forward and intuitive user interface that provides real-time updated sky down-welling spectral radiance/polarization maps and statistical analysis tools.

  16. Preliminary study of spectral features of normal and malignant cell cultures

    Science.gov (United States)

    Atif, M.; Farooq, W. A.; Siddiqui, Maqsood A.; Al-Khedhairy, Abdulaziz A.

    2016-04-01

    In this study the fluorescence emission spectra of normal and malignant cell cultures were recorded at an excitation wavelength of 290 nm, corresponding to the higher fluorescence intensity at 350 nm (due to tryptophan) of three malignant cells and normal cells. Similarly, Stokes shift spectra were recorded for normal and malignant cell cultures with a shift, Δλ, of 70 nm. The Stokes shift shows the existence of discriminating features between normal and carcinoma cell lines due to the higher concentration of phenylalanine and tryptophan in carcinoma cell lines which are completely absent in normal cell lines. Hence, both the emission spectra and the Stokes shift spectra showed considerably different spectral features between the normal and malignant cells. The preliminary studies indicate the potential application of fluorescence spectroscopy for cancer detection using the spectral features of biofluorophores.

  17. 3D printed miniaturized spectral system for tissue fluorescence lifetime measurements

    Science.gov (United States)

    Zou, Luwei; Mahmoud, Mohamad; Fahs, Mehdi; Liu, Rui; Lo, Joe F.

    2016-04-01

    Various types of collagens, e.g. type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes like wound healing and fibrosis. Collagens exhibit autofluorescence when excited by ultra-violet light, distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Therefore, we designed a miniaturized spectral-lifetime detection system for collagens as a non-invasive probe for monitoring tissue in wound healing and scarring applications. A sine modulated LED illumination was applied to enable frequency domain (FD) fluorescence lifetime measurements under different wavelengths bands, separated via a series of longpass dichroics at 387nm, 409nm and 435nm. To achieve the minute scale of optomechanics, we employed a stereolithography based 3D printer with types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes.

  18. Development and application of UV excimer lamps from 354nm -126nm

    Science.gov (United States)

    Boyd, Ian W.; Liaw, Irving I.

    2006-05-01

    The use of high intensity ultraviolet (UV) and vacuum ultraviolet (VUV) radiation generated from decaying excimer complexes through dielectric barrier discharge (silent discharges) sources for the purposes of surface processing and modification is reviewed. Such sources provide a singular dominant narrow-band emission at various wavelengths(λ) between 126 - 354 nm. The remarkable simplicity of supplying these sources and flexibility of their geometric configurations allow them to be coupled in parallel thus providing high photon fluxes over large areas. The monochromatic selectivity allows for application to process and chemical pathway specific tasks by simple variation of the discharge gas mixture. These sources are an interesting addition to and as an alternative to lasers for large scale industrial applications and their unique characterisitics have led to their use in a number of low-temperature material modification techniques, some of which are reviewed here. These include the photo-induced low-temperature formation of oxynitride layers, high-κ thin film layers and the post-deposition annealing of pulsed laser deposited (PLD) thin films.

  19. [Spectral diagnosis of hydroxyl radical in multiphase pulsed discharge system].

    Science.gov (United States)

    Wang, Hui-juan; Li, Jie; Quan, Xie; Wu, Yan; Li, Guo-feng

    2007-12-01

    A gas-liquid hybrid pulsed discharge system with a multi-needle-to-plate electrode geometry was used in the present study. A multiphase (gas-liquid-solid) pulsed discharge system was then formed by adding glasses beads immobilized with TiO2 photocatalyst into the discharge system. In the present paper, ultraviolet light produced during the pulsed discharge process was used as the lamp-house to induce the photocatalytic activity of the TiO2 photocatalyst. The synergistic effect of pulsed discharge and TiO2 photocatalysis was reviewed by the spectral diagnosis of hydroxyl radical ( *OH) in the pulsed discharge system. The obtained results showed that the emission spectrum of *OH could be observed at 306 nm (A2Sigma+-->X2II), 309 mn (A2Sigma+ (v' = 0) --> X2II (v" = 0)) and 313 nm (A2Sigma+ (v' = 1) --> X2II (v" = 1) transition). The relative emission intensity of *OH at 313 nm in the discharge system was the strongest among the three characteristic spectra. The relative emission intensity of *OH at 313 nm was stronger by adding TiO2 photocatalyst into the pulsed discharge system than that in the sole pulsed discharge system. In the case of experiments that changing the gas bubbling varieties and initial solution pH values, the results revealed that the relative emission intensity of *OH at 313 nm in the synergistic system was stronger when Ar was used as bubbling gas compared with that when air and oxygen were bubbled into the reaction system. Furthermore, the acidic solution system was favorable for producing more *OH, and therefore the corresponding emission intensity of *OH at 313 nm was stronger than that in the neutral and basic solution.

  20. Solar Cycle Spectral Irradiance Variation and Stratospheric Ozone

    Science.gov (United States)

    Stolarski, R. S.; Swartz, W. H.; Jackman, C. H.; Fleming, E. L.

    2011-12-01

    Recent measurements from the SIM instrument on the SORCE satellite have been interpreted by Harder et al (Geophys. Res. Lett., 36, L07801, doi:10.1029/2008GL036797, 2009) as implying a different spectral irradiance variation over the solar cycle than that put forward by Lean (Geophys. Res. Lett., 27, 2425-2428, 2000). When we inserted this new wavelength dependent solar cycle variation into our 3D CCM we found a different solar cycle dependence of the ozone concentration as a function of altitude from that we derived using the traditional Lean wavelength dependence. Examination of these results led us to realize that the main issue is the solar cycle variation of radiation at wavelengths less than 240 nm versus the solar cycle variation of radiation at wavelengths between 240 nm and 300 nm. The impact of wavelengths less than 240 nm occurs through photodissociation of O2 leading to the production of ozone. The impact of wavelengths between 240 nm and 300 nm occurs through photodissociation of O3 leading to an increase in O atoms and enhanced ozone destruction. Thus one wavelength region gives an in-phase relationship of ozone with the solar cycle while the other wavelength region gives an out-of-phase relationship of ozone with the solar cycle. We have used the Goddard two-dimensional (2D) photochemistry transport model to examine this relationship in more detail. We calculate the altitude and latitude sensitivity of ozone to changes in the solar UV irradiance as a function of wavelength. These results can be used to construct the ozone response to arbitrary wavelength dependencies of solar UV variation.