WorldWideScience

Sample records for 11beta-hydroxysteroid dehydrogenase type

  1. 11beta-hydroxysteroid dehydrogenase type 1 and obesity.

    Science.gov (United States)

    Morton, Nicholas M; Seckl, Jonathan R

    2008-01-01

    The metabolic syndrome consists of a constellation of co-associated metabolic abnormalities such as insulin resistance, type 2 diabetes, dyslipidaemia, hypertension and visceral obesity. For many years endocrinologists have noted the striking resemblance between this disease state and that associated with Cushing's syndrome. However, in the metabolic syndrome plasma cortisol levels tend to be normal or lower than in normal individuals. Nevertheless there is strong evidence that glucocorticoid action underlies metabolic disease, largely from rodent obesity models where removing glucocorticoids reverses obesity and its metabolic abnormalities. The apparent paradox of similar metabolic defects - despite the opposing plasma glucocorticoid profiles of Cushing's and idiopathic metabolic syndrome - remained intriguing until the discovery that intracellular glucocorticoid reactivation was elevated in adipose tissue of obese rodents and humans. The enzyme that mediates this activation, conversion of cortisone (11-dehydrocorticosterone in rodents) to cortisol (corticosterone in rodents), locally within tissues is 11beta -hydroxysteroid dehydrogenase type 1 (11beta -HSD1). In order to determine whether elevated tissue 11beta -HSD1 contributed to obesity and metabolic disease, transgenic mice overexpressing 11beta -HSD1 in adipose tissue or liver were made. Adipose-selective 11beta -HSD1 transgenic mice exhibited elevated intra-adipose and portal, but not systemic corticosterone levels, abdominal obesity, hyperglycaemia, insulin resistance, dyslipidaemia and hypertension. In contrast, transgenic overexpression of 11beta -HSD1 in liver yielded an attenuated metabolic syndrome with mild insulin resistance, dyslipidaemia, hypertension and fatty liver, but not obesity or glucose intolerance. Together with early data using non-selective 11beta -HSD1 inhibitors to insulin sensitise humans, this corroborated the notion that the enzyme may be a good therapeutic target in the treatment

  2. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  3. 11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity.

    Science.gov (United States)

    Milagro, Fermin I; Campión, Javier; Martínez, J Alfredo

    2007-04-01

    Glucocorticoid action within the cells is regulated by the levels of glucocorticoid receptor (GR) expression and two enzymes, 11-beta hydroxysteroid dehydrogenase type 1 (11betaHSD1), which converts inactive to active glucocorticoids, and 11-beta hydroxysteroid dehydrogenase type 2 (11betaHSD2), which regulates the access of active glucocorticoids to the receptor by converting cortisol/corticosterone to the glucocorticoid-inactive form cortisone/dehydrocorticosterone. Male Wistar rats developed obesity by being fed a high-fat diet for 56 days, and GR, 11betaHSD1 and 11betaHSD2 gene expression were compared with control-diet fed animals. Gene expression analysis of 11betaHSD1, 11betaHSD2 and GR were performed by RT-PCR in subcutaneous and retroperitoneal adipose tissue. High-fat fed animals overexpressed 11betaHSD2 in subcutaneous but not in retroperitoneal fat. Interestingly, mRNA levels strongly correlated in both tissues with different parameters related to obesity, such as body weight, adiposity and insulin resistance, suggesting that this gene is a reliable marker of adiposity in this rat model of obesity. Thus, 11betaHSD2 is expressed in adipose tissue by both adipocytes and stromal-vascular cells, which suggests that this enzyme may play an important role in preventing fat accumulation in adipose tissue.

  4. Novel non-steroidal inhibitors of human 11beta-hydroxysteroid dehydrogenase type 1.

    Science.gov (United States)

    Vicker, Nigel; Su, Xiangdong; Ganeshapillai, Dharshini; Smith, Andrew; Purohit, Atul; Reed, Michael J; Potter, Barry V L

    2007-05-01

    11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) regulates glucocorticoid action at the pre-receptor stage by converting cortisone to cortisol. 11beta-HSD1 is selectively expressed in many tissues including the liver and adipose tissue where metabolic events are important. Metabolic syndrome relates to a number of metabolic abnormalities and currently has a prevalence of >20% in adult Americans. 11beta-HSD1 inhibitors are being investigated by many major pharmaceutical companies for type 2 diabetes and other abnormalities associated with metabolic syndrome. In this area of intense interest a number of structural types of 11beta-HSD1 inhibitor have been identified. It is important to have an array of structural types as the physicochemical properties of the compounds will determine tissue distribution, HPA effects, and ultimately clinical utility. Here we report the discovery and synthesis of three structurally different series of novel 11beta-HSD1 inhibitors that inhibit human 11beta-HSD1 in the low micromolar range. Docking studies with 1-3 into the crystal structure of human 11beta-HSD1 reveal how the molecules may interact with the enzyme and cofactor and give further scope for structure based drug design in the optimisation of these series.

  5. 11beta-hydroxysteroid dehydrogenase type 1 inhibitors for metabolic syndrome.

    Science.gov (United States)

    Schnackenberg, Christine G

    2008-03-01

    The metabolic syndrome is a constellation of interrelated metabolic risk factors that appear to promote the development of diabetes and cardiovascular disease. These risk factors include abdominal obesity, insulin resistance, hypertension and dyslipidemia. 11beta-Hydroxysteroid dehydrogenase (11beta-HSD) catalyzes the interconversion of glucocorticoids through the activity of two isozymes: type 1 (11beta-HSD1) and type 2 (11beta-HSD2). 11beta-HSD1 converts inactive glucocorticoid to the active form, whereas 11beta-HSD2 converts active glucocorticoid to the inactive form. It is well established that reduced 11beta-HSD2 activity causes hypertension and electrolyte abnormalities. More recently, the pathophysiological role of 11beta-HSD1 has been explored and studies suggest that increased 11beta-HSD1 activity within target tissues may promote insulin resistance, obesity, hypertension and dyslipidemia. This review will discuss the evidence that inhibition of 11beta-HSD1 may be therapeutic in the treatment of the metabolic syndrome.

  6. 11 beta-hydroxysteroid dehydrogenase type 1 promotes differentiation of 3T3-L1 preadipocyte

    Institute of Scientific and Technical Information of China (English)

    Yun LIU; Yan SUN; Ting ZHU; Yu XIE; Jing YU; Wen-lan SUN; Guo-xian DING; Gang HU

    2007-01-01

    Aim: To investigate the relationship between 11 beta-hydroxysteroid dehydroge-nase type 1 (1 lbeta-HSD1), a potential link between obesity and type 2 diabetes,and preadipocyte differentiation. Methods: Mouse 11beta-HSD1 siRNA plasmids were transfected into 3T3-L1 preadipocytes (a cell line derived from mouse Swiss3T3 cells that were isolated from mouse embryo), for examination of the effect of targeted 11 beta-HSD1 inhibition on differentiation of 3T3-L1 cells. Dif-ferentiation was stimulated with 3-isobutyl-1-methyxanthine, insulin, and dexamethasone. The transcription level of the genes was detected by real-time PCR. Results: Lipid accumulation was significantly inhibited in cells transfected with mouse 11beta-HSD1 siRNA compared with non-transfected 3T3-L1 cells.Fewer lipid droplets were detected in the transfected cells both prior to stimulation and after stimulation with differentiation-inducing reagents. The expression of adipocyte differentiation-associated markers such as lipoprotein lipase and fatty acid synthetase were downregulated in the transfected cells. Similarly, the expres-sion of preadipocyte factor-1, an inhibitor of adipocyte differentiation, was downregulated upon stimulation of differentiation and had no changes in the transfected cells. Conclusion: 11 beta-HSD1 can promote preadipocyte differentiation. Based on this, we propose that 11 beta-HSD1 may be an important candidate mediator of obesity and obesity-induced insulin resistance.

  7. Discovery of novel inhibitors of human 11beta-hydroxysteroid dehydrogenase type 1.

    Science.gov (United States)

    Su, Xiangdong; Vicker, Nigel; Trusselle, Melanie; Halem, Heather; Culler, Michael D; Potter, Barry V L

    2009-03-25

    11beta-Hydroxysteroid dehydrogenases (11beta-HSDs) are key enzymes regulating the pre-receptor metabolism of glucocorticoid hormones, which play essential roles in various vital physiological processes. The modulation of 11beta-HSD type 1 activity with selective inhibitors has beneficial effects on various conditions including insulin resistance, dyslipidemia and obesity. Therefore, inhibition of tissue-specific glucocorticoid action by regulating 11beta-HSD1 constitutes a promising treatment for metabolic and cardiovascular diseases. Here we report the discovery of a series of novel adamantyl carboxamides as selective inhibitors of human 11beta-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Compounds 9 and 14 show inhibitory activity against 11beta-HSD1 with IC(50) values in 100nM range. Docking studies with the potent compound 8 into the crystal structure of human 11beta-HSD1 (1XU9) reveals how the molecule may interact with the enzyme and cofactor.

  8. 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue and prospective changes in body weight and insulin resistance

    DEFF Research Database (Denmark)

    Koska, Juraj; de Courten, Barbora; Wake, Deborah J

    2006-01-01

    Increased mRNA and activity levels of 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in human adipose tissue (AT) are associated with obesity and insulin resistance. The aim of our study was to investigate whether 11betaHSD1 expression or activity in abdominal subcutaneous AT of non......-diabetic subjects are associated with subsequent changes in body weight and insulin resistance [homeostasis model assessment of insulin resistance (HOMA-IR)]....

  9. Rosiglitazone decreases 11beta-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue.

    Science.gov (United States)

    Mai, Knut; Andres, Janin; Bobbert, Thomas; Maser-Gluth, Christiane; Möhlig, Matthias; Bähr, Volker; Pfeiffer, Andreas F H; Spranger, Joachim; Diederich, Sven

    2007-09-01

    The peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist rosiglitazone increases insulin sensitivity, which, in animal models, is comparable to the effect of a reduction in 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activity. We therefore investigated whether rosiglitazone-induced insulin sensitivity is associated with changes in 11beta-HSD1 activity in different tissues. An oral glucose tolerance test (OGTT) and a euglycaemic hyperinsulinaemic clamp were performed in seven male volunteers [age 59.3 +/- 3.0 years, body mass index (BMI) 29.3 +/- 4.1 kg/m(2)] with impaired glucose tolerance before and after 8 weeks of rosiglitazone treatment. To assess hepatic 11beta-HSD1 activity, serum cortisol levels were measured after oral administration of cortisone acetate. 11beta-HSD1 activity and mRNA expression were assessed in abdominal subcutaneous fat biopsies. Total-body 11beta-HSD activities were estimated by calculating the urinary ratios of glucocorticoid metabolites. As expected, rosiglitazone improved insulin resistance and postprandial hyperglycaemia. In parallel, 11beta-HSD1 mRNA expression [100 +/- 0% (reference) vs. 68.5 +/- 9.3%, P < 0.01] and activity [0.18 +/- 0.02 vs. 0.13 +/- 0.02 pmol/min/mg, P < 0.05] decreased in abdominal subcutaneous fat, while an increase in hepatic 11beta-HSD1 activity was detected [the area under the curve (AUC) for the cortisol/cortisone ratio was 1319 +/- 76 vs. 955 +/- 59; P < 0.05]. No changes in BMI, waist-to-hip ratio (WHR) and whole-body 11beta-HSD1 activity were found. Part of the beneficial effects of rosiglitazone may be mediated by a reduction in the 11beta-HSD1 mRNA expression and activity in subcutaneous abdominal fat.

  10. Acute in vivo regulation of 11beta-hydroxysteroid dehydrogenase type 1 activity by insulin and intralipid infusions in humans.

    Science.gov (United States)

    Wake, Deborah J; Homer, Natalie Z M; Andrew, Ruth; Walker, Brian R

    2006-11-01

    Extraadrenal regeneration of cortisol by 11beta-hydroxysteroid dehydrogenase type 1 (11HSD1) is increased after a mixed meal. It is unknown which tissue is responsible and whether this reflects the complex transcriptional control of 11HSD1 or posttranscriptional control exerted by supply of reduced nicotinamide adenine dinucleotide phosphate from hexose-6-phosphate dehydrogenase. The objective of this study was to test whether hyperinsulinemia and/or increased serum free fatty acids increase whole-body and intraadipose 11HSD1, and whether adipose 11HSD1 switches from dehydrogenase to reductase activity. In nine healthy men, we measured whole-body cortisol regeneration (by iv infusion of 9,11,12,12-[2H]4 -cortisol) and intra-adipose interconversion of cortisol and cortisone (by sc microdialysis infusion of [3H]4 -cortisol and [3H]2 -cortisone in separate cannulae) during: 1) a hyperinsulinemic euglycemic clamp; 2) iv lipid infusion (Intralipid 20% fat emulsion); and 3) saline infusion, each for 3.5 h. Hyperinsulinemia increased rate of appearance of 9,12,12-[2H]3 -cortisol (19.3 +/- 0.8 vs. 16.7 +/- 1.1 nmol/min with saline, P adipose, the predominant reaction was reductase conversion of cortisone to cortisol (after 3.5 h of saline infusion, reaching 11.0 +/- 2.7% per hour reductase vs. 5.2 +/- 1.3 dehydrogenase, P effects on whole-body deuterated cortisol metabolism, but increased both dehydrogenase and reductase (reaching 16.7 +/- 1.8, P adipose. Hyperinsulinemia and increased free fatty acids induce acute increases in 11HSD1 activity in adipose tissue that are not attributable to a switch from dehydrogenase to reductase. Hyperinsulinemia also increases systemic cortisol regeneration. These effects may enhance intracellular cortisol concentrations after a meal.

  11. Class-Specific Histone Deacetylase Inhibitors Promote 11-Beta Hydroxysteroid Dehydrogenase Type 2 Expression in JEG-3 Cells

    Directory of Open Access Journals (Sweden)

    Katie L. Togher

    2017-01-01

    Full Text Available Exposure to maternal cortisol plays a crucial role in fetal organogenesis. However, fetal overexposure to cortisol has been linked to a range of short- and long-term adverse outcomes. Normally, this is prevented by the expression of an enzyme in the placenta called 11-beta hydroxysteroid dehydrogenase type 2 (11β-HSD2 which converts active cortisol to its inactive metabolite cortisone. Placental 11β-HSD2 is known to be reduced in a number of adverse pregnancy complications, possibly through an epigenetic mechanism. As a result, a number of pan-HDAC inhibitors have been examined for their ability to promote 11β-HSD2 expression. However, it is not known if the effects of pan-HDAC inhibition are a general phenomenon or if the effects are dependent upon a specific class of HDACs. Here, we examined the ability of pan- and class-specific HDAC inhibitors to regulate 11β-HSD2 expression in JEG3 cells. We find that pan-, class I, or class IIa HDAC inhibition promoted 11β-HSD2 expression and prevented cortisol or interleukin-1β-induced decrease in its expression. These results demonstrate that targeting a specific class of HDACs can promote 11β-HSD2 expression in JEG3 cells. This adds to the growing body of evidence suggesting that HDACs may be crucial in maintaining normal fetal development.

  12. Estrogen reduces 11beta-hydroxysteroid dehydrogenase type 1 in liver and visceral, but not subcutaneous, adipose tissue in rats.

    Science.gov (United States)

    Andersson, Therése; Söderström, Ingegerd; Simonyté, Kotryna; Olsson, Tommy

    2010-03-01

    Following menopause, body fat is redistributed from peripheral to central depots. This may be linked to the age related decrease in estrogen levels. We hypothesized that estrogen supplementation could counteract this fat redistribution through tissue-specific modulation of glucocorticoid exposure. We measured fat depot masses and the expression and activity of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) in fat and liver of ovariectomized female rats treated with or without 17beta-estradiol. 11betaHSD1 converts inert cortisone, or 11-dehydrocorticosterone in rats into active cortisol and corticosterone. Estradiol-treated rats gained less weight and had significantly lower visceral adipose tissue weight than nontreated rats (P adipose weight was unaltered. In addition, 11betaHSD1 activity/expression was downregulated in liver and visceral, but not subcutaneous, fat of estradiol-treated rats (P adipose tissue depots, with higher levels in subcutaneous than visceral adipose tissue of estradiol-treated animals (P effects on tissue-specific glucocorticoid metabolism, suggesting that estrogen replacement therapy could influence obesity related morbidity in postmenopausal women.

  13. Distinct effect of stress on 11beta-hydroxysteroid dehydrogenase type 1 and corticosteroid receptors in dorsal and ventral hippocampus.

    Science.gov (United States)

    Ergang, P; Kuželová, A; Soták, M; Klusoňová, P; Makal, J; Pácha, J

    2014-01-01

    Multiple lines of evidence suggest the participation of the hippocampus in the feedback inhibition of the hypothalamus-pituitary-adrenal axis during stress response. This inhibition is mediated by glucocorticoid feedback due to the sensitivity of the hippocampus to these hormones. The sensitivity is determined by the expression of glucocorticoid (GR) and mineralocorticoid (MR) receptors and 11beta-hydroxysteroid dehydrogenase type 1 (11HSD1), an enzyme that regulates the conversion of glucocorticoids from inactive to active form. The goal of our study was to assess the effect of stress on the expression of 11HSD1, GR and MR in the ventral and dorsal region of the CA1 hippocampus in three different rat strains with diverse responses to stress: Fisher 344, Lewis and Wistar. Stress stimulated 11HSD1 in the ventral but not dorsal CA1 hippocampus of Fisher 344 but not Lewis or Wistar rats. In contrast, GR expression following stress was decreased in the dorsal but not ventral CA1 hippocampus of all three strains. MR expression was not changed in either the dorsal or ventral CA1 region. These results indicate that (1) depending on the strain, stress stimulates 11HSD1 in the ventral hippocampus, which is known to be involved in stress and emotion reactions whereas (2) independent of strain, stress inhibits GR in the dorsal hippocampus, which is predominantly involved in cognitive functions.

  14. Discovery of adamantyl ethanone derivatives as potent 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibitors.

    Science.gov (United States)

    Su, Xiangdong; Pradaux-Caggiano, Fabienne; Thomas, Mark P; Szeto, Michelle W Y; Halem, Heather A; Culler, Michael D; Vicker, Nigel; Potter, Barry V L

    2010-07-05

    11Beta-hydroxysteroid dehydrogenases (11beta-HSDs) are key enzymes regulating the pre-receptor metabolism of glucocorticoid hormones. The modulation of 11beta-HSD type 1 activity with selective inhibitors has beneficial effects on various conditions including insulin resistance, dyslipidemia and obesity. Inhibition of tissue-specific glucocorticoid action by regulating 11beta-HSD1 constitutes a promising treatment for metabolic and cardiovascular diseases. A series of novel adamantyl ethanone compounds was identified as potent inhibitors of human 11beta-HSD1. The most active compounds identified (52, 62, 72, 92, 103 and 104) display potent inhibition of 11beta-HSD1 with IC(50) values in the 50-70 nM range. Compound 72 also proved to be metabolically stable when incubated with human liver microsomes. Furthermore, compound 72 showed very weak inhibitory activity for human cytochrome P450 enzymes and is therefore a candidate for in vivo studies. Comparison of the publicly available X-ray crystal structures of human 11beta-HSD1 led to docking studies of the potent compounds, revealing how these molecules may interact with the enzyme and cofactor.

  15. Age-related changes in the expression of 11beta-hydroxysteroid dehydrogenase type 2 in rat Leydig cells.

    Directory of Open Access Journals (Sweden)

    Katerina Georgieva

    2009-12-01

    Full Text Available Previous studies in rats have shown that the ability of Leydig cells (LCs to produce testosterone significantly declines with age. To address the possible mechanisms by which aging LCs lose their steroidogenic function, we determined the effect of aging on the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD type 2. The enzyme plays a protective role in blunting the suppressive effects of glucocorticoids on LCs steroidogenesis. Our immunohistochemical analysis revealed progressive decline in 11beta-HDS type 2 expression in LCs of the 18 months of age rats and the most significant reduction in 11beta-HSD2 immunoreactivity was evident in the testicular interstitium of 24- month-old rats. The decrease in the 11beta-HDS type 2 immunostaining in LCs during aging coincided with decline in insulin-like 3/relaxin-like factor (INSL3/RLF expression, an independent marker for LCs differentiation status. Concomitant with the age-related decrease of 11beta-HDS type 2 immunoreactivity in the LCs population, the immunoexpression of 3beta-hydroxysteroid dehydrogenase (3beta-HSD, marker for LCs steroidogenic activity, was greatly reduced at 24 months compared to 3-month-old control. Similar pattern of expression exhibited also androgen receptor (AR which is localized in the nuclei of Sertoli cells (SCs, LCs, and peritubular cells. During ages we observed progressive decrease in the immunoreactivity for AR in the testicular types and there was a loss of stage specificity in SCs at age of 24 months. It now seems evident that a variety of factors are likely to be involved in age-related decreases in LCs steroidogenesis, including 11beta-HSD type 2. The observed reduction in 11beta-HSD type 2 expression in aging LCs reflects the decline in their protection ability, opposing the suppressive effect of glucocorticoids on testosterone production.

  16. Testosterone stimulates adipose tissue 11beta-hydroxysteroid dehydrogenase type 1 expression in a depot-specific manner in children.

    Science.gov (United States)

    Zhu, Lijun; Hou, Miao; Sun, Bin; Burén, Jonas; Zhang, Li; Yi, Jun; Hernell, Olle; Li, Xiaonan

    2010-07-01

    Activation of the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in adipose tissue results in the production of excess tissue glucocorticoids and the induction of adiposity and visceral obesity in particular. Androgens may affect body fat distribution by regulating the local metabolism of cortisol. Our objective was to study 11beta-HSD1 mRNA expression in abdominal sc and omental (om) adipose tissue in children after in vitro testosterone and cortisol treatment. Paired fat biopsies (sc and om) were obtained from 19 boys (age 6-14 yr, body mass index 14.6-25.3 kg/m(2), BMI sd score SDS -1.6-3.1) undergoing open abdominal surgery. Pieces of adipose tissue were incubated with testosterone, cortisol, or both hormones for 24 h, whereupon mRNA expression of 11beta-HSD1 and hexose-6-phosphate dehydrogenase (H6PDH) were measured by real-time PCR, and 11beta-HSD1 enzyme activity was determined. Testosterone treatment up-regulated 11beta-HSD1 mRNA expression compared with control incubations in the absence of testosterone (P tissue. Testosterone and cortisol both increased 11beta-HSD1 mRNA expression in om but not sc adipose tissue in a depot-specific manner by 2.5- and 2.9-fold, respectively (P effect of the two hormones. 11beta-HSD1 enzyme activity correlated positively to mRNA expression (r = 0.610; P = 0.001). Adipose tissue mRNA expression of H6PDH was affected in a similar fashion to 11beta-HSD1 after hormonal treatment. Testosterone and cortisol stimulated 11beta-HSD1 and H6PDH mRNA expression and 11beta-HSD1 activity in om but not in sc adipose tissue. This suggests that these hormones may contribute to fat distribution and accumulation during childhood.

  17. Intense physical exercise increases systemic 11beta-hydroxysteroid dehydrogenase type 1 activity in healthy adult subjects.

    Science.gov (United States)

    Dovio, Andrea; Roveda, Eliana; Sciolla, Chiara; Montaruli, Angela; Raffaelli, Andrea; Saba, Alessandro; Calogiuri, Giovanna; De Francia, Silvia; Borrione, Paolo; Salvadori, Piero; Carandente, Franca; Angeli, Alberto

    2010-03-01

    Intense physical exercise activates the hypothalamic-pituitary-adrenocortical axis but little is known about changes in glucocorticoid sensitivity at the target cell level. No data are available on the acute effects of exercise on 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 activity, which generates biologically active cortisol from inactive cortisone and is expressed also in skeletal muscle. Fifteen healthy, trained males (age mean +/- SE 28 +/- 1) were assessed on three non-consecutive days: at rest, during an endurance and strength sessions. During each session, between 1000 and 1600 hours, 6-h urine and four salivary samples were collected. Urinary total tetrahydrocortisol (THF) + alloTHF, tetrahydrocortisone (THE), cortisol (F) and cortisone (E) were measured with HPLC-tandem mass spectrometry; urinary-unconjugated F and E were measured by HPLC-UV. Salivary cortisol and interleukin (IL)-6 were measured by RIA and ELISA, respectively. Both endurance and strength exercises caused an increase in (THF + alloTHF)/THE ratio (mean +/- SE 1.90 +/- 0.07 and 1.82 +/- 0.05 vs. 1.63 +/- 0.06, P < 0.01 and P = 0.03, respectively), consistent with increased systemic 11beta-HSD type 1 activity. No relationship was found with age, BMI, VO(2max) maximal power load or perceived exertion. No significant change was apparent in F/E ratio, an index of 11beta-HSD type 2 activity. No effect of exercise on salivary cortisol and IL-6 was observed, whereas a significant effect of sampling time was found. Intense physical exercise acutely increases systemic 11beta-HSD type 1 activity in humans. Such an increase may lead to higher cortisol concentration in target tissues, notably in skeletal muscle where it could contribute to limit exercise-induced muscle inflammatory response.

  18. Inhibition of human and rat 11beta-hydroxysteroid dehydrogenase type 1 by 18beta-glycyrrhetinic acid derivatives.

    Science.gov (United States)

    Su, Xiangdong; Vicker, Nigel; Lawrence, Harshani; Smith, Andrew; Purohit, Atul; Reed, Michael J; Potter, Barry V L

    2007-05-01

    11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) plays an important role in regulating the cortisol availability to bind to corticosteroid receptors within specific tissue. Recent advances in understanding the molecular mechanisms of metabolic syndrome indicate that elevation of cortisol levels within specific tissues through the action of 11beta-HSD1 could contribute to the pathogenesis of this disease. Therefore, selective inhibitors of 11beta-HSD1 have been investigated as potential treatments for metabolic diseases, such as diabetes mellitus type 2 or obesity. Here we report the discovery and synthesis of some 18beta-glycyrrhetinic acid (18beta-GA) derivatives (2-5) and their inhibitory activities against rat hepatic11beta-HSD1 and rat renal 11beta-HSD2. Once the selectivity over the rat type 2 enzyme was established, these compounds' ability to inhibit human 11beta-HSD1 was also evaluated using both radioimmunoassay (RIA) and homogeneous time resolved fluorescence (HTRF) methods. The 11-modified 18beta-GA derivatives 2 and 3 with apparent selectivity for rat 11beta-HSD1 showed a high percentage inhibition for human microsomal 11beta-HSD1 at 10 microM and exhibited IC50 values of 400 and 1100 nM, respectively. The side chain modified 18beta-GA derivatives 4 and 5, although showing selectivity for rat 11beta-HSD1 inhibited human microsomal 11beta-HSD1 with IC50 values in the low micromolar range.

  19. Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Therése Andersson

    Full Text Available With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women. Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids influence body composition, and 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1 which converts inert cortisone to active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11betaHSD1 in adipose tissue may contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11betaHSD1 gene expression and activity are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and 23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a subcutaneous adipose tissue biopsy and the hepatic 11betaHSD1 activity was estimated by the serum cortisol response after an oral dose of cortisone. Urinary (5alpha-tetrahydrocortisol+5beta-tetrahydrocortisol/tetrahydrocortisone ratios were higher in postmenopausal women versus premenopausal women in luteal phase (P<0.05, indicating an increased whole-body 11betaHSD1 activity. Postmenopausal women had higher 11betaHSD1 gene expression in subcutaneous fat (P<0.05. Hepatic first pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in follicular phase of the menstrual cycle (P<0.01, at 30 min post cortisone ingestion, suggesting higher hepatic 11betaHSD1 activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11betaHSD1 activity in adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.

  20. 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction.

    Science.gov (United States)

    Shams, M; Kilby, M D; Somerset, D A; Howie, A J; Gupta, A; Wood, P J; Afnan, M; Stewart, P M

    1998-04-01

    The type 2 isoform of 11beta-hydroxysteroid dehydrogenase (11beta-HSD2), which inactivates cortisol (F) to cortisone (E), has been suggested to play a role in the ontogeny of the fetal pituitary-adrenal axis and also protect the developing fetus from the deleterious effects of circulating maternal glucocorticoids. The abundance of 11beta-HSD2 in the placenta and other fetal tissues was inferred from the F/E ratio in 17 term deliveries in both umbilical arterial (1.73 +/- 0.24, mean +/- SE) and umbilical venous blood (1.16 +/- 0.14) compared with adult peripheral venous blood (7.76 +/- 0.57, n = 70). Using sensitive assays for 11beta-HSD2 and an in-house human 11beta-HSD2 antibody, the expression and activity of this enzyme in fresh frozen human placenta increased progressively from first (8-12 weeks, n = 16) and second (13-20 weeks, n = 9) to third trimester (term) pregnancies (39-40 weeks, n = 50). Placental 11beta-HSD2 activity was significantly reduced in deliveries complicated by intrauterine growth restriction (IUGR) [25-36 weeks, n = 12, activity 380 pmol/mg/h median (225-671; 95% confidence interval)], compared with the term deliveries [888 (725-1362)] and with appropriately grown pre-term deliveries [27-36 weeks, n = 14, activity 810 (585-1269)], P < 0.05. In human pregnancy placental 11beta-HSD2 activity increases markedly in the third trimester of pregnancy at a time when maternal circulating levels of glucocorticoid are rising. The finding of attenuated placental 11beta-HSD2 activity in IUGR suggests that glucocorticoids may, in part, contribute to impaired fetal growth and that this is closely controlled in normal gestation through placental 11beta-HSD2 expression.

  1. In vivo activity of 11beta-hydroxysteroid dehydrogenase type 1 and free fatty acid-induced insulin resistance.

    Science.gov (United States)

    Mai, K; Kullmann, V; Bobbert, T; Maser-Gluth, C; Möhlig, M; Bähr, V; Pfeiffer, A F H; Spranger, J; Diederich, S

    2005-10-01

    Free fatty acids (FFAs) induce hepatic insulin resistance and enhance hepatic gluconeogenesis. Glucocorticoids (GCs) also stimulate hepatic gluconeogenesis. The aim of this study was to investigate whether the FFA-induced hepatic insulin resistance is mediated by increased activity of hepatic 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), accompanied by elevated hepatic cortisol levels. Following a 10-h overnight fast, six healthy male volunteers were investigated. A euglycaemic hyperinsulinaemic clamp was performed during lipid or saline infusion. To assess hepatic 11beta-HSD1 activity, plasma cortisol levels were measured after oral administration of cortisone acetate during lipid or saline infusion. In addition, 11beta-HSD activities were determined in vivo by calculating the urinary ratios of GC metabolites. Lipid infusion increased FFAs (5.41 +/- 1.00 vs. 0.48 +/- 0.20 mmol/l; P < 0.005) and significantly increased insulin resistance [glucose infusion rate (GIR) 6.02 +/- 2.60 vs. 4.08 +/- 2.15 mg/kg/min; P < 0.005]. After lipid and saline infusions no changes in 11beta-HSD1 activity were found, neither by changes in cortisone acetate to cortisol conversion nor by differences in urinary free cortisol (UFF) or cortisone (UFE), 5beta-tetrahydrocortisol (THF), 5alpha-THF, cortisone (THE), UFF/UFE and (5alpha-THF + THF)/THE ratios. We found no change in hepatic and whole-body 11beta-HSD1 activity during acute FFA-induced insulin resistance. Further studies are necessary to clarify whether 11beta-HSD1 in muscle and adipose tissue is influenced by FFAs and whether 11beta-HSD1 is involved in other conditions of insulin resistance.

  2. Glucocorticoids, feto-placental 11 beta-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease.

    Science.gov (United States)

    Seckl, J R

    1997-01-01

    Increasing human epidemiological data suggest that events that subtly retard intrauterine growth may determine common disorders, such as hypertension and non-insulin-dependent diabetes, in adult life. The underlying mechanisms are unknown. However, excessive fetal exposure to glucocorticoids retards growth and "programs" adult hypertension in rats. 11 beta-Hydroxysteroid dehydrogenase type 2 (11 beta-HSD2) catalyzes the rapid inactivation of cortisol and corticosterone to inert 11 keto-products. Normally, 11 beta-HSD2 in the placenta and some fetal tissues is thought to protect the fetus from excess maternal glucocorticoids. In both rats and humans there is considerable natural variation in placental 11 beta-HSD2, and enzyme activity correlates with birth weight. Moreover, inhibition of feto-placental 11 beta-HSD2 in the rat reduces birth weight and produces hypertensive and hyperglycaemic adult offspring, many months after prenatal treatment; effects are dependent upon intact maternal adrenals, suggesting a direct action on the fetus or placenta. Maternal protein restriction during pregnancy also produces hypertensive offspring and selectively attenuates placental 11 beta-HSD2 activity. These data suggest that feto-placental 11 beta-HSD2, by regulating fetal exposure to maternal glucocorticoids, crucially determines fetal growth and the programming of later disorders. Deficiency of the barrier to maternal glucocorticoids may represent a common pathway between the maternal environment and feto-placental programming of later disease. These data may, at least in part, explain the human observations linking early life events to the risk of subsequent disease.

  3. Glucocorticoid-mediated effects on metabolism are reversed by targeting 11 beta hydroxysteroid dehydrogenase type 1 in human skeletal muscle.

    Science.gov (United States)

    Salehzadeh, Firoozeh; Al-Khalili, Lubna; Kulkarni, Sameer S; Wang, Minghan; Lönnqvist, Fredrik; Krook, Anna

    2009-03-01

    Adipose tissue and liver play important roles in mediating the metabolic actions of glucocorticoids. However, the effects of glucocorticoids on glucose and lipid metabolism in skeletal muscle are not understood completely. Intracellular glucocorticoid action is dependent on 11 beta-hydroxysteroid dehydrogenase 1 (HSD1), an enzyme that converts cortisone to active cortisol. We investigated the direct role of HSD1 in cultured primary human skeletal muscle cells using siRNA and pharmacological inhibitors of the enzyme. Primary human skeletal muscle cells were cultured in the presence of 0.5 microM cortisone or 0.5 microM cortisol for eight days. siRNA was utilized to reduce expression of either HSD1 or pyruvate dehydrogenase kinase (PDK) 4. Effects of pharmacological inhibitors of HSD1 were also studied. Exposure to cortisone or cortisol decreased basal glucose uptake and glucose incorporation into glycogen, but was without effect on the insulin-stimulated response. Glucocorticoid exposure increased palmitate oxidation, as well as the expression of PDK4. siRNA-mediated reduction or pharmacological inhibition of HSD1 prevented the effects of cortisone, but not cortisol, on metabolic responses. siRNA-mediated reduction of PDK4 prevented the effect of cortisol to attenuate glycogen synthesis. Targeted reduction or pharmacological inhibition of HSD1 in primary human skeletal muscle cells prevents the effects of cortisone, but not cortisol, on glucose metabolism and palmitate oxidation. Furthermore, the glucocorticoid-mediated reductions in glucose metabolism are dependent on PDK4.

  4. Evaluation of hepatic 11 beta-hydroxysteroid dehydrogenase activity by cortisone acetate test in young adults with diabetes mellitus type 1.

    Science.gov (United States)

    Šimůnková, K; Hampl, R; Hill, M; Kříž, L; Vrbíková, J; Kvasničková, H; Vondra, K

    2011-01-01

    Cortisone acetate test was performed in twelve young adult patients with diabetes mellitus type 1, after dexamethasone administration to suppress endogenous cortisol production. Previous screening revealed that all of the subjects had peak cortisol responses in the range from subnormal to normal, as determined by a low-dose Synacthen test. The aim was to find out whether these patients would exhibit different conversion of cortisone to cortisol by 11beta-hydroxysteroid dehydrogenase. Using multifactorial ANOVA the following significant relationships were obtained between cortisol or cortisol/cortisone ratio measured during the test and other parameters examined a) before dexamethasone suppression and b) during the test: a) Cortisol at 120(th) minute negatively correlated with daily insulin dose and positively with basal aldosterone. Cortisol/cortisone ratio at 60(th), 120(th), 180(th), and 240(th) minute negatively correlated with basal aldosterone/plasma renin activity ratio, urinary free cortisol/24 hours and positively with basal dehydroepindrosterone sulphate. b) Cortisol at 120(th) minute negatively correlated with suppressed basal serum glycemia; cortisol/cortisone ratio during the whole test negatively correlated with supressed basal ACTH. The examination of peripheral metabolism of cortisol using cortisone acetate test in patients with diabetes mellitus type 1 showed adaptive changes of 11beta-hydroxysteroid dehydrogenace activity associated with altered cortisol tissue supply.

  5. Lack of relationship between 11 beta-hydroxysteroid dehydrogenase setpoint and insulin sensitivity in the basal state and after 24h of insulin infusion in healthy subjects and type 2 diabetic patients

    NARCIS (Netherlands)

    Kerstens, MN; Riemens, SC; Sluiter, WJ; Pratt, JJ; Wolthers, BG; Dullaart, RPF

    OBJECTIVES To test whether insulin resistance in type 2 diabetes mellitus is associated with an altered overall setpoint of the 11 beta-hydroxysteroid dehydrogenase (11 beta HSD) mediated cortisol to cortisone interconversion towards cortisol, and to evaluate whether changes in insulin sensitivity

  6. Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11beta-hydroxysteroid dehydrogenase type 1 inhibitor carbenoxolone.

    Science.gov (United States)

    Sandeep, Thekkepat C; Andrew, Ruth; Homer, Natalie Z M; Andrews, Robert C; Smith, Ken; Walker, Brian R

    2005-03-01

    11beta-Hydroxysteroid dehydrogenase type 1 (11HSD1) regenerates cortisol from cortisone within adipose tissue and liver. 11HSD1 inhibitors may enhance insulin sensitivity in type 2 diabetes and be most efficacious in obesity when 11HSD1 is increased in subcutaneous adipose biopsies. We examined the regeneration of cortisol in vivo in obesity, and the effects of the 11HSD1 inhibitor carbenoxolone. We compared six lean and six obese men and performed a randomized, placebo-controlled crossover study of carbenoxolone in obese men. The obese men had no difference in their whole-body rate of regenerating cortisol (measured with 9,11,12,12-[(2)H(4)]cortisol tracer), but had more rapid conversion of [(3)H]cortisone to [(3)H]cortisol in abdominal subcutaneous adipose tissue (measured with microdialysis). During insulin infusion, adipose 11HSD1 activity fell markedly in lean but not in obese men. Carbenoxolone inhibited whole-body cortisol regeneration, but did not significantly inhibit adipose 11HSD1 and had no effects on insulin sensitivity (measured by [(2)H(2)]glucose infusion with or without hyperinsulinemia). Thus, in vivo cortisol generation is increased selectively within adipose tissue in obesity, perhaps reflecting resistance to insulin-mediated downregulation of 11HSD1. However, obese men are less susceptible than lean men to the insulin-sensitizing effects of carbenoxolone. To be useful in obese patients, 11HSD1 inhibitors will need to inhibit the enzyme more effectively in adipose tissue.

  7. Hexose-6-phosphate dehydrogenase modulates 11beta-hydroxysteroid dehydrogenase type 1-dependent metabolism of 7-keto- and 7beta-hydroxy-neurosteroids.

    Directory of Open Access Journals (Sweden)

    Lyubomir G Nashev

    Full Text Available BACKGROUND: The role of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 in the regulation of energy metabolism and immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of enzyme activity revealed that 11beta-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates, whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate dehydrogenase (H6PDH, which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that 11beta-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative function of 11beta-HSD1 has not been assessed. METHODOLOGY: We investigated the 11beta-HSD1-dependent metabolism of the neurosteroids 7-keto-, 7alpha-hydroxy- and 7beta-hydroxy-dehydroepiandrosterone (DHEA and 7-keto- and 7beta-hydroxy-pregnenolone, respectively, in the absence or presence of H6PDH in intact cells. 3D-structural modeling was applied to study the binding of ligands in 11beta-HSD1. PRINCIPAL FINDINGS: We demonstrated that 11beta-HSD1 functions in a reversible way and efficiently catalyzed the interconversion of these 7-keto- and 7-hydroxy-neurosteroids in intact cells. In the presence of H6PDH, 11beta-HSD1 predominantly converted 7-keto-DHEA and 7-ketopregnenolone into their corresponding 7beta-hydroxy metabolites, indicating a role for H6PDH and 11beta-HSD1 in the local generation of 7beta-hydroxy-neurosteroids. 3D-structural modeling offered an explanation for the preferred formation of 7beta-hydroxy-neurosteroids. CONCLUSIONS: Our results from experiments determining the steady state concentrations of glucocorticoids or 7-oxygenated neurosteroids suggested that the equilibrium between cortisone and cortisol and between 7-keto- and 7-hydroxy-neurosteroids is regulated by 11beta-HSD1 and greatly

  8. Role of 11-beta-hydroxysteroid dehydrogenase type 1 in differentiation of 3T3-L1 cells and in rats with diet-induced obesity

    Institute of Scientific and Technical Information of China (English)

    Yun LIU; Wen-lan SUN; Yan SUN; Gang HU; Guo-xian DING

    2006-01-01

    Aim: To observe the roles of 11-beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in in vitro preadipocyte differentiation and in rats with diet-induced obesity (DIO). Methods: Protein expression of 11β-HSD1 in the process of 3T3-L1 cell differentiation and in various tissues of the rats were detected by Western blot analysis; expression of 11β-HSD1 mRNA and glucocorticoid receptor (GR) and other marker genes of preadipocyte differentiation were detected by using real-time PCR. Results: Lipid droplets in 3T3-L1 cells accumulated and increased after stimulation. A dramatically elevated protein level of 11β-HSD1, especially in the late stages of 3T3-L1 cell differentiation, was detected. The relative mRNA levels of 11β-HSD1, GR and cell differentiation markers LPL, aP2, and FAS were upregulated, and Pref-1 was downregulated during the differentiation. In DIO rats, bodyweight, visceral adipose mass index and the protein expression of 11β-HSD1 increased, especially in adipose tissue, brain and muscles. Serum insulin, triglyceride, total cholesterol and 1oW-density lipoprotein cholesterol were found to be increased in DIO rats, but without any obvious changes in blood glucose or tumor necrosis factor-αlevels. Conclusion: 11β-HSD1 may promote preadipocyte differentiation, and may be involved in the development of obesity.

  9. Upregulation of adipose 11-beta-hydroxysteroid dehydrogenase type 1 expression in ovariectomized rats is due to obesity rather than lack of estrogen.

    Science.gov (United States)

    Paulsen, Søren K; Nielsen, Maria P; Richelsen, Bjørn; Bruun, Jens M; Flyvbjerg, Allan; Pedersen, Steen B

    2008-04-01

    Increased tissue activity of cortisol induced by the activation of inert cortisone to active cortisol through 11-beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) may play a role in the metabolic syndrome. We recently found that 11beta-HSD1 in subcutaneous adipose tissue (AT) was lower in lean women compared with lean men. Estrogen suppresses hepatic and renal 11beta-HSD1 in rats; hence we investigated the in vitro effect of estrogen on human and rat AT, and the in vivo effects on rat AT 11beta-HSD1 expression. Wistar rats were divided into four groups of eight animals. One group was sham-operated (controls) and others were ovariectomized (OVX). One OVX group was left untreated (OVX-E), another (OVX+E) received estrogen treatment, and one received a hypo-caloric diet (OVX-E+D), matching the weight gain of the control group. AT from women undergoing liposuction or surgery and from killed male and female rats were incubated with estrogen alone or in the presence of IL-1beta. Gene expressions were determined by real-time reverse transcriptase PCR. Ovariectomy resulted in a 280% increase in adipose 11beta-HSD1 expression P effect of estrogen on adipose 11beta-HSD1 was found. The upregulation of 11beta-HSD1 in ovariectomized rats was most likely due to changes in body composition rather than lack of estrogen.

  10. 11beta-Hydroxysteroid dehydrogenase type 1-driven cortisone reactivation regulates plasminogen activator inhibitor type 1 in adipose tissue of obese women.

    Science.gov (United States)

    Ayachi, S Ei; Paulmyer-Lacroix, O; Verdier, M; Alessi, M-C; Dutour, A; Grino, M

    2006-03-01

    Plasminogen activator inhibitor type 1 (PAI-1) is the main inhibitor of the fibrinolytic system and contributes to an increased risk of atherothrombosis in insulin-resistant obese patients. In adipose tissue, we have shown that PAI-1 is synthesized mainly in the visceral stromal compartment and is positively regulated by glucocorticoids. We have demonstrated that adipose tissue expression of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD-1), an enzyme that catalyzes the conversion of inactive cortisone to active cortisol, is exaggerated in obese patients. We hypothesized that increased action of 11beta-HSD-1 in adipose tissue of obese subjects may contribute to PAI-1 overproduction. Using in situ hybridization, we studied the expression of the mRNAs coding for PAI-1 and 11beta-HSD-1 in the stromal compartment of visceral adipose tissue obtained from obese women. The regulation of PAI-1 secretion from in vitro incubated tissue explants was also investigated. Regression analysis showed a significant positive linear relationship between PAI-1 and 11beta-HSD-1 mRNAs expression. In vitro incubation of adipose tissue explants demonstrated that cortisone stimulated PAI-1 gene expression and secretion, and that these effects were inhibited by co-incubation with the 11beta-HSD inhibitor, glycyrrhetinic acid. Our data demonstrate that 11beta-HSD-1-driven cortisone reactivation regulates adipose PAI-1 synthesis and secretion. They suggest that the increased PAI-1 synthesis and secretion observed in obese patients can be also related, at least in part, to an increased local conversion of cortisone to cortisol. Therefore, local cortisol metabolism in adipose tissue may be involved in increasing the risk of cardiovascular disease in obese subjects.

  11. Effects of peroxisome proliferator-activated receptor-alpha and -gamma agonists on 11beta-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue in men.

    Science.gov (United States)

    Wake, Deborah J; Stimson, Roland H; Tan, Garry D; Homer, Natalie Z M; Andrew, Ruth; Karpe, Fredrik; Walker, Brian R

    2007-05-01

    In animals, peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma agonists down-regulate 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) mRNA and activity in liver and adipose tissue, respectively, and PPARgamma agonists reduce ACTH secretion from corticotrope cells. Our objective was to test whether PPAR agonists alter cortisol secretion and peripheral regeneration by 11beta-HSD1 in humans and whether reduced cortisol action contributes to metabolic effects of PPARgamma agonists. Three randomized placebo-controlled crossover studies were conducted at a clinical research facility. Healthy men and patients with type 2 diabetes participated. INTERVENTIONS, OUTCOME MEASURES, AND RESULTS: In nine healthy men, 7 d of PPARalpha agonist (fenofibrate) or PPARgamma agonist (rosiglitazone) had no effect on cortisol secretion, hepatic cortisol generation after oral cortisone administration, or tracer kinetics during 9,11,12,12-[(2)H](4)-cortisol infusion, although rosiglitazone marginally reduced cortisol generation in sc adipose tissue measured by in vivo microdialysis. In 12 healthy men, 4-5 wk of rosiglitazone increased insulin sensitivity during insulin infusion but did not change 11beta-HSD1 mRNA or activity in sc adipose tissue, and insulin sensitization was unaffected by glucocorticoid blockade with a combination of metyrapone and RU38486. In 12 men with type 2 diabetes 12 wk of rosiglitazone reduced arteriovenous cortisone extraction across abdominal sc adipose tissue and reduced 11beta-HSD1 mRNA in sc adipose tissue but increased plasma cortisol concentrations. Neither PPARalpha nor PPARgamma agonists down-regulate 11beta-HSD1 or cortisol secretion acutely in humans. The early insulin-sensitizing effect of rosiglitazone is not dependent on reducing intracellular glucocorticoid concentrations. Reduced adipose 11beta-HSD1 expression and increased plasma cortisol during longer therapy with rosiglitazone probably reflect indirect effects, e

  12. Human kidney 11 beta-hydroxysteroid dehydrogenase: regulation by adrenocorticotropin?

    Science.gov (United States)

    Diederich, S; Quinkler, M; Miller, K; Heilmann, P; Schoneshofer, M; Oelkers, W

    1996-03-01

    In ectopic adrenocorticotropin (ACTH) syndrome (EAS) with higher ACTH levels than in pituitary Cushing's syndrome and during ACTH infusion, the ratio of cortisol to cortisone in plasma and urine is increased, suggesting inhibition of renal 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) by ACTH or by ACTH-dependent steroids. Measuring the conversion of cortisol to cortisone by human kidney slices under different conditions, we tested the possibility of 11 beta-HSD regulation by ACTH and corticosteroids. Slices prepared from unaffected parts of kidneys removed because of renal cell carcinoma were incubated with unlabeled or labeled cortisol, and cortisol and cortisone were quantitated after HPLC separation by UV or radioactive detection. The 11 beta HSD activity was not influenced by incubation with increasing concentrations (10(-12)-10(-9) mol/l) of ACTH (1-24 or 1-39) for 1 h. Among 12 ACTH-dependent steroids tested (10(-9)-10(-6) mol/l), only corticosterone (IC50 = 2 x 10(-7) mol/l), 18-OH-corticosterone and 11 beta-OH-androstenedione showed a significant dose-dependent inhibition of 11 beta-HSD activity. The percentage conversion rate of cortisol to cortisone was concentration dependent over the whole range of cortisol concentrations tested (10(-8) - 10(-5) mol/l. A direct inhibitory effect of ACTH on 11 beta-HSD is, therefore, unlikely. The only steroids inhibiting the conversion of cortisol to cortisone are natural substrates for 11 beta-HSD. Kinetic studies show a saturation of the enzyme at high cortisol concentrations. Thus, the reduced percentage renal cortisol inactivation in EAS seems to be due mainly to overload of the enzyme with endogenous substrates (cortisol, corticosterone and others) rather than to direct inhibition of 11 beta-HSD by ACTH or ACTH-dependent steroids, not being substrates of 11 beta-HSD.

  13. Lack of renal 11 beta-hydroxysteroid dehydrogenase type 2 at birth, a targeted temporal window for neonatal glucocorticoid action in human and mice.

    Directory of Open Access Journals (Sweden)

    Laetitia Martinerie

    Full Text Available BACKGROUND: Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2. This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse. METHODS: Cortisol (F and cortisone (E concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity and between plasma and urine in newborns (renal activity. Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species. RESULTS: We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein. CONCLUSIONS: We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming.

  14. Lack of regulation of 11beta-hydroxysteroid dehydrogenase type 1 during short-term manipulation of GH in patients with hypopituitarism.

    Science.gov (United States)

    Sigurjonsdottir, Helga A; Andrew, Ruth; Stimson, Roland H; Johannsson, Gudmundur; Walker, Brian R

    2009-09-01

    Evidence from long-term clinical studies measuring urinary steroid ratios, and from in vitro studies, suggests that GH administered for longer than 2 months down-regulates 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), thereby reducing cortisol regeneration in liver and adipose tissue. We aimed to measure acute effects of GH on 11beta-HSD1 in liver and adipose tissue in vivo, including using a stable isotope tracer. Observational studies of GH withdrawal and reintroduction in patients with hypopituitarism. Twelve men with benign pituitary disease causing GH and ACTH deficiency on stable replacement therapy for >6 months were studied after GH withdrawal for 3 weeks, and after either placebo or GH injections were reintroduced for another 3 weeks. We measured cortisol kinetics during 9,11,12,12-(2)H(4)-cortisol (d4-cortisol) infusion, urinary cortisol/cortisone metabolite ratios, liver 11beta-HSD1 by appearance of plasma cortisol after oral cortisone, and 11beta-HSD1 mRNA levels in subcutaneous adipose biopsies. GH withdrawal and reintroduction had no effect on 9,12,12-[(2)H](3)-cortisol (d3-cortisol) appearance, urinary cortisol/cortisone metabolite ratios, initial appearance of cortisol after oral cortisone, or adipose 11beta-HSD1 mRNA. GH withdrawal increased plasma cortisol 30-180 min after oral cortisone, increased d4-cortisol clearance, and decreased relative excretion of 5alpha-reduced cortisol metabolites. In this setting, GH did not regulate 11beta-HSD1 rapidly in vivo in humans. Altered cortisol metabolism with longer term changes in GH may reflect indirect effects on 11beta-HSD1. These data do not suggest that glucocorticoid replacement doses need to be increased immediately after introducing GH therapy to compensate for reduced 11beta-HSD1 activity, although dose adjustment may be required in the longer term.

  15. Repeated maternal dexamethasone treatments in late gestation increases 11beta-hydroxysteroid dehydrogenase type 1 expression in the hippocampus of the newborn rat.

    Science.gov (United States)

    Wan, Shunlun; Hao, Rusong; Sun, Kang

    This study was designed to investigate the effect of repeated maternal injections of dexamethasone in late gestation on the expression of newborn hippocampal 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), the enzyme amplifying glucocorticoids' action by converting biologically inactive 11-ketone metabolites into active glucocorticoids. Daily dexamethasone treatments (0.10 mg/kg body weight) in the last week of gestation were carried out in the pregnant rat. The expression of 11beta-HSD1 in the newborn hippocampal tissue was analyzed with Western blot and real-time polymerase chain reaction (PCR). The effect of corticosterone on the expression of 11beta-HSD1 was studied in cultured hippocampal neurons derived from newborn offspring received prenatal dexamethasone treatments. Both body and brain weights of the offspring were reduced significantly by repeated dexamethasone treatments in the last week of gestation. Western blot and real-time PCR analysis showed that both 11beta-HSD1 protein and mRNA expressions were increased significantly in the hippocampus of the newborn offspring on the first and seventh days after birth. Corticosterone could induce 11beta-HSD1 expression in cultured hippocampal neurons prepared from newborns received prenatal dexamethasone treatments, which was blocked by glucocorticoid receptor antagonist RU38486. The above findings suggest that repeated prenatal dexamethasone treatments at the end of gestation increase 11beta-HSD1 expression in the hippocampal tissue of the offspring, which may trigger a positive feedback pathway for the generation of biologically active glucocorticoids in the hippocampal tissue of the newborns.

  16. 11beta-hydroxysteroid dehydrogenase type 2 expression in the newly formed Leydig cells after ethane dimethanesulphonate treatment of adult rats.

    Directory of Open Access Journals (Sweden)

    Katerina Georgieva

    2008-01-01

    Full Text Available The enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD catalyzes the reversible conversion of physiologically active corticosterone to the biologically inert 11beta-dehydrocorticosterone in rat testis and protect the Leydig cells (LCs against the suppressive effect of glucocorticoids. The developmental pathway of the adult LCs population is accompanied with an increase in the 11beta-HDS activity. Thus, 11beta-HDS together with its role in controlling the toxicological effect of glucocorticoids on LCs can be used as a marker for their functional maturity. Ethane 1,2-dimethanesulphonate (EDS treatment of adult rats become unique appropriate model, which enable to answer many questions related to the differentiation of adult LCs in the prepubertal rat testis. The aim of the present study was to investigate the specific changes in the 11beta-HDS type 2 immunoreactivity in tandem with the expression of androgen receptor (AR during renewal of LCs population after EDS treatment. In the present study, we observed the first appearance of immunostaining for 11beta-HSD2 in new LCs population on day 14 after EDS administration when the progenitor LCs were detected. Our immunohistochemical analysis revealed progressive increases in the 11beta-HSD2 reaction intensity on 21 days after EDS treatment and reached a maximum on day 35. AR immunoexpression was found in new LCs on day 14 and 21 after EDS injection with an increasing curve of intensity. The most prominent AR immunostaining in new population LCs was evident by 35 days after EDS and that coincided with the increased number of LCs and restoration of adult LCs population. Our results demonstrated similar pattern of immunoreactivity for 11beta-HSD2 and AR in new LCs population after EDS treatment and suggested that the changes in 11beta-HSD2 expression can be used for evaluation of adult LCs differentiation in rat testis.

  17. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  18. Dehydroepiandrosterone affects the expression of multiple genes in rat liver including 11 beta-hydroxysteroid dehydrogenase type 1: a cDNA array analysis.

    Science.gov (United States)

    Gu, Shi; Ripp, Sharon L; Prough, Russell A; Geoghegan, Thomas E

    2003-03-01

    Dehydroepiandrosterone (DHEA) is a C-19 adrenal steroid precursor to the gonadal steroids. In humans, circulating levels of DHEA, as its sulfated conjugate, are high at puberty and throughout early adulthood but decline with age. Dietary supplementation to maintain high levels of DHEA purportedly has beneficial effects on cognitive memory, the immune system, and fat and carbohydrate metabolism. In rodents, DHEA is a peroxisome proliferator that induces genes for the classical peroxisomal and microsomal enzymes associated with this response. These effects are mediated through activation of peroxisome proliferator-activated receptor alpha (PPAR alpha). However, DHEA can affect the expression of genes independently of PPAR alpha, including the gene for the major inducible drug and xenobiotic metabolizing enzyme, cytochrome P450 3A23. To elucidate the biochemistry associated with DHEA treatment, we employed a cDNA gene expression array using liver RNA from rats treated with DHEA or the classic peroxisome proliferator nafenopin. Principal components analysis identified 30 to 35 genes whose expression was affected by DHEA and/or nafenopin. Some were genes previously identified as PPAR-responsive genes. Changes in expression of several affected genes were verified by quantitative reverse transcriptase-polymerase chain reaction. These included aquaporin 3, which was induced by DHEA and to a lesser extent nafenopin, nuclear tyrosine phosphatase, which was induced by both agents, and 11 beta-hydroxysteroid dehydrogenase 1, which was decreased by treatment with DHEA in a dose-dependent fashion. Regulation of 11 beta-hydroxysteroid dehydrogenase 1 expression is important since the enzyme is believed to amplify local glucocorticoid signaling, and its repression may cause some of the metabolic effects associated with DHEA.

  19. Tumor necrosis factor-alpha upregulates 11beta-hydroxysteroid dehydrogenase type 1 expression by CCAAT/enhancer binding protein-beta in HepG2 cells.

    Science.gov (United States)

    Ignatova, Irena D; Kostadinova, Radina M; Goldring, Christopher E; Nawrocki, Andrea R; Frey, Felix J; Frey, Brigitte M

    2009-02-01

    The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the conversion of inactive to active glucocorticoids. 11beta-HSD1 plays a crucial role in the pathogenesis of obesity and controls glucocorticoid actions in inflammation. Several studies have demonstrated that TNF-alpha increases 11beta-HSD1 mRNA and activity in various cell models. Here, we demonstrate that mRNA and activity of 11beta-HSD1 is increased in liver tissue from transgenic mice overexpressing TNF-alpha, indicating that this effect also occurs in vivo. To dissect the molecular mechanism of this increase, we investigated basal and TNF-alpha-induced transcription of the 11beta-HSD1 gene (HSD11B1) in HepG2 cells. We found that TNF-alpha acts via p38 MAPK pathway. Transient transfections with variable lengths of human HSD11B1 promoter revealed highest activity with or without TNF-alpha in the proximal promoter region (-180 to +74). Cotransfection with human CCAAT/enhancer binding protein-alpha (C/EBPalpha) and C/EBPbeta-LAP expression vectors activated the HSD11B1 promoter with the strongest effect within the same region. Gel shift and RNA interference assays revealed the involvement of mainly C/EBPalpha, but also C/EBPbeta, in basal and only of C/EBPbeta in the TNF-alpha-induced HSD11B1 expression. Chromatin immunoprecipitation assay confirmed in vivo the increased abundance of C/EBPbeta on the proximal HSD11B1 promoter upon TNF-alpha treatment. In conclusion, C/EBPalpha and C/EBPbeta control basal transcription, and TNF-alpha upregulates 11beta-HSD1, most likely by p38 MAPK-mediated increased binding of C/EBPbeta to the human HSD11B1 promoter. To our knowledge, this is the first study showing involvement of p38 MAPK in the TNF-alpha-mediated 11beta-HSD1 regulation, and that TNF-alpha stimulates enzyme activity in vivo.

  20. Growth hormone (GH) substitution in GH-deficient patients inhibits 11beta-hydroxysteroid dehydrogenase type 1 messenger ribonucleic acid expression in adipose tissue.

    Science.gov (United States)

    Paulsen, Søren Kildeberg; Pedersen, Steen Bønløkke; Jørgensen, Jens Otto Lunde; Fisker, Sanne; Christiansen, Jens Sandahl; Flyvbjerg, Allan; Richelsen, Bjørn

    2006-03-01

    Local tissue activity of glucocorticoids is in part determined by the isoenzymes 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) and 11beta-HSD2, interconverting inert cortisone and active cortisol. Increased tissue activity of cortisol may play a central role in the features of GH deficiency and the metabolic syndrome. We investigated the effects of GH treatment on adipose tissue 11beta-HSD mRNA. A randomized placebo-controlled double-blind study design was used. Twenty-three GH-deficient patients (16 males and seven females) were randomized to 4 months of GH treatment (2 IU/m2) (n = 11) or placebo treatment (n = 12). Adipose tissue biopsies and blood samples were obtained before and after treatment. Biopsies were obtained from the abdominal sc depot at the level of the umbilicus and do not necessarily reflect the metabolically more important visceral adipose tissue. Gene expressions were determined by real-time RT-PCR. GH treatment decreased 11beta-HSD1 mRNA 66% [95% confidence interval (CI), 23-107%; P adipose tissue. Serum IGF-I and IGF-I mRNA increased in the GH-treated group by 187% (95% CI, 122-250%; P cortisol in adipose tissue.

  1. A novel genetically-obese rat model with elevated 11beta-hydroxysteroid dehydrogenase type 1 activity in subcutaneous adipose tissue

    OpenAIRE

    Giridharan Nappan V; Reddy Sirisha J; Kumar Chodavarapu; Prashanth Anamthathmakula; Prasad Sakamuri; Vajreswari Ayyalasomayajula

    2010-01-01

    Abstract 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and plays an important role in the development of obesity and metabolic syndrome. 11β-HSD1 activity is lower in liver and higher in omental adipose tissue of obese rodent models like obese zucker rats, Ob/Ob and db/db mice. Here, we report the 11β-HSD1 activity in liver and adipose tissue of lean and obese rats of WNIN/Ob strain, a new genetic rat model of...

  2. A novel genetically-obese rat model with elevated 11beta-hydroxysteroid dehydrogenase type 1 activity in subcutaneous adipose tissue

    Directory of Open Access Journals (Sweden)

    Giridharan Nappan V

    2010-11-01

    Full Text Available Abstract 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and plays an important role in the development of obesity and metabolic syndrome. 11β-HSD1 activity is lower in liver and higher in omental adipose tissue of obese rodent models like obese zucker rats, Ob/Ob and db/db mice. Here, we report the 11β-HSD1 activity in liver and adipose tissue of lean and obese rats of WNIN/Ob strain, a new genetic rat model of obesity. 11β-HSD1 activity in liver, omental and subcutaneous adipose tissues of 3 month-old male WNIN/Ob lean and obese rats was assayed. As observed in other rodent models, 11β-HSD1 activity was lower in liver and higher in omental adipose tissue. In contrast to other rodent obese models, WNIN/Ob obese rats had elevated 11β-HSD1 activity in subcutaneous adipose tissue, which is in line with the observation in human obesity. Here, we conclude that dysregulation of 11β-HSD1 in WNIN/Ob obese rat model is identical to human obesity, which makes it an excellent model for studying the effect of 11β-HSD1 inhibitors in ameliorating obesity and metabolic syndrome.

  3. A novel genetically-obese rat model with elevated 11 beta-hydroxysteroid dehydrogenase type 1 activity in subcutaneous adipose tissue.

    Science.gov (United States)

    Prasad, Sakamuri S S Vara; Prashanth, Anamthathmakula; Kumar, Chodavarapu Pavan; Reddy, Sirisha J; Giridharan, Nappan V; Vajreswari, Ayyalasomayajula

    2010-11-17

    11 β-hydroxysteroid dehydrogenase type 1 (11 β-HSD1) catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and plays an important role in the development of obesity and metabolic syndrome. 11 β-HSD1 activity is lower in liver and higher in omental adipose tissue of obese rodent models like obese zucker rats, Ob/Ob and db/db mice. Here, we report the 11 β-HSD1 activity in liver and adipose tissue of lean and obese rats of WNIN/Ob strain, a new genetic rat model of obesity. 11 β-HSD1 activity in liver, omental and subcutaneous adipose tissues of 3 month-old male WNIN/Ob lean and obese rats was assayed. As observed in other rodent models, 11 β-HSD1 activity was lower in liver and higher in omental adipose tissue. In contrast to other rodent obese models, WNIN/Ob obese rats had elevated 11 β-HSD1 activity in subcutaneous adipose tissue, which is in line with the observation in human obesity. Here, we conclude that dysregulation of 11 β-HSD1 in WNIN/Ob obese rat model is identical to human obesity, which makes it an excellent model for studying the effect of 11 β-HSD1 inhibitors in ameliorating obesity and metabolic syndrome.

  4. Ultraviolet- and infrared-induced 11 beta-hydroxysteroid dehydrogenase type 1 activating skin photoaging is inhibited by red ginseng extract containing high concentration of ginsenoside Rg3(S).

    Science.gov (United States)

    Nam, Jin-Ju; Min, Ji-Eun; Son, Min-Ho; Oh, Jin-Hwan; Kang, Seunghyun

    2017-08-09

    Sun irradiation is one of major extrinsic stressors responsible for premature skin aging through activation and expression of 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive cortisone to active cortisol. The aim of this study was to evaluate the inhibitory effects of red ginseng extract containing high concentrations of ginsenoside Rg3 (S) (GERg3) on 11β-HSD1-induced skin photoaging. To evaluate the inhibitory effects of GERg3 on ultraviolet- (UV) or infrared (IR)-induced skin photoaging, human dermal fibroblasts or a normal human 3D skin model was exposed to UV or an IR. RT-PCR, ELISA, Western blot, and H&E staining were used for evaluations. GERg3 was isolated from crude red ginseng. GERg3 inhibited the increased expressions of 11β-HSD1, interleukin (IL)-6, and matrix metalloproteinase-1 (MMP-1) in UVB- or IR-exposed Hs68 cells. Additionally, the increased cortisol, IL-6, and MMP-1 expressions were effectively reduced by GERg3 in UVA-exposed 3D skin models. The photoinduced decrease in type 1 procollagen also recovered as a result of GERg3 treatment in Hs68 cells and the 3D skin model. In addition, the UVA-exposed dermal thickness was decreased in comparison with the UVA-protected 3D skin model, recovered with GERg3 treatment. GERg3 had antiphotoaging effects in UV- or IR-exposed human dermal fibroblasts and normal human 3D skin model. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Reduced 11beta-hydroxysteroid dehydrogenase activity in patients with the nephrotic syndrome.

    Science.gov (United States)

    Vogt, B; Dick, B; N'Gankam, V; Frey, F J; Frey, B M

    1999-02-01

    Patients with the nephrotic syndrome (NS) exhibit abnormal renal sodium retention which cannot completely explained by a secondary hyperaldosteronism due to reduced renal perfusion. As an alternative mechanism to explain this phenomenon we postulate a cortisol-mediated mineralocorticoid effect as a consequence of a reduced activity of 11beta-hydroxysteroid dehydrogenase (11beta-HSD). A down-regulation of 11beta-HSD, i.e. of the shuttle of active to inactive glucocorticosteroids, has been shown to cause mineralocorticoid effects. Therefore we investigated the activity of 11beta-HSD by measuring the urinary ratio of (tetrahydrocortisol + 5alpha-tetrahydrocortisol)/tetrahydrocortisone [(THF+5alpha-THF)/THE] by gas-chromatography in 29 NS patients with biopsy-proven glomerulonephritis and 29 healthy control subjects. The ratio of (THF+5alpha-THF)/THE was higher in NS patients (median 1.49, range 0.45-4.07) than in the control subjects (0.98, 0.60-1.36; pnew mechanism contributing to the exaggerated sodium retention in patients with the NS.

  6. Characterisation of 11beta-hydroxysteroid dehydrogenase 1 in human orbital adipose tissue: a comparison with subcutaneous and omental fat.

    Science.gov (United States)

    Bujalska, Iwona J; Durrani, Omar M; Abbott, Joseph; Onyimba, Claire U; Khosla, Pamela; Moosavi, Areeb H; Reuser, Tristan T Q; Stewart, Paul M; Tomlinson, Jeremy W; Walker, Elizabeth A; Rauz, Saaeha

    2007-02-01

    Glucocorticoids (GCs) have a profound effect on adipose biology increasing tissue mass causing central obesity. The pre-receptor regulation of GCs by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) that activates cortisol from cortisone has been postulated as a fundamental mechanism underlying the metabolic syndrome mediating adipocyte hyperplasia and hypertrophy in the omental (OM) depot. Orbital adipose tissue (OF) is the site of intense inflammation and tissue remodelling in several orbital inflammatory disease states. In this study, we describe features of the GC metabolic pathways in normal human OF depot and compare it with subcutaneous (SC) and OM depots. Using an automated histological characterisation technique, OF adipocytes were found to be significantly smaller (parameters: area, maximum diameter and perimeter) than OM and SC adipocytes (P<0 x 001). Although immunohistochemical analyses demonstrated resident CD68+ cells in all three whole tissue adipose depots, OF CD68 mRNA and protein expression exceeded that of OM and SC (mRNA, P<0 x 05; protein, P<0 x 001). In addition, there was higher expression of glucocorticoid receptor (GR)alpha mRNA in the OF whole tissue depot (P<0 x 05). Conversely, 11beta-HSD1 mRNA together with the markers of late adipocyte differentiation (FABP4 and G3PDH) were significantly lower in OF. Primary cultures of OF preadipocytes demonstrated predominant 11beta-HSD1 oxo-reductase activity with minimal dehydrogenase activity. Orbital adipocytes are smaller, less differentiated, and express low levels of 11beta-HSD1 but abundant GRalpha compared with SC and OM. OF harbours a large CD68+ population. These characteristics define an orbital microenvironment that has the potential to respond to sight-threatening orbital inflammatory disease.

  7. Weight loss after gastric bypass surgery in women is followed by a metabolically favorable decrease in 11beta-hydroxysteroid dehydrogenase 1 expression in subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Simonyte, Kotryna; Olsson, Tommy; Näslund, Ingmar;

    2010-01-01

    The role of 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) in the pathogenesis of obesity has been elucidated in humans and in various rodent models. Obesity is accompanied by disturbances in glucocorticoid metabolism, circulating adipokine levels, and fatty acid (FA) reesterification. This ...

  8. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome.

    Science.gov (United States)

    Svendsen, P F; Madsbad, S; Nilas, L; Paulsen, S K; Pedersen, S B

    2009-11-01

    To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate the association between these enzymes and different measures of insulin sensitivity. Cross-sectional study. A total of 60 women, 36 women with PCOS, 17 lean (lean PCOS, LP) and 19 obese (obese PCOS, OP) and 24 age- and weight-matched control women, 8 lean (lean controls, LC) and 16 obese (obese controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. Polycystic ovary syndrome (Peffects of PCOS or obesity on11beta-HSD2 or H6PDH mRNA expression. Decreased peripheral insulin sensitivity (Pcortisol in the peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1.

  9. Vitamin A decreases pre-receptor amplification of glucocorticoids in obesity: study on the effect of vitamin A on 11beta-hydroxysteroid dehydrogenase type 1 activity in liver and visceral fat of WNIN/Ob obese rats

    Directory of Open Access Journals (Sweden)

    Ayyalasomayajula Vajreswari

    2011-06-01

    Full Text Available Abstract Background 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and its inhibition ameliorates obesity and metabolic syndrome. So far, no studies have reported the effect of dietary vitamin A on 11β-HSD1 activity in visceral fat and liver under normal and obese conditions. Here, we studied the effect of chronic feeding of vitamin A-enriched diet (129 mg/kg diet on 11β-HSD1 activity in liver and visceral fat of WNIN/Ob lean and obese rats. Methods Male, 5-month-old, lean and obese rats of WNIN/Ob strain (n = 16 for each phenotype were divided into two subgroups consisting of 8 rats of each phenotype. Control groups received stock diet containing 2.6 mg vitamin A/kg diet, where as experimental groups received diet containing 129 mg vitamin A/Kg diet for 20 weeks. Food and water were provided ad libitum. At the end of the experiment, tissues were collected and 11β-HSD1 activity was assayed in liver and visceral fat. Results Vitamin A supplementation significantly decreased body weight, visceral fat mass and 11β-HSD1 activity in visceral fat of WNIN/Ob obese rats. Hepatic 11β-HSD1 activity and gene expression were significantly reduced by vitamin A supplementation in both the phenotypes. CCAAT/enhancer binding protein α (C/EBPα, the main transcription factor essential for the expression of 11β-HSD1, decreased in liver of vitamin A fed-obese rats, but not in lean rats. Liver × receptor α (LXRα, a nuclear transcription factor which is known to downregulate 11β-HSD1 gene expression was significantly increased by vitamin A supplementation in both the phenotypes. Conclusions This study suggests that chronic consumption of vitamin A-enriched diet decreases 11β-HSD1 activity in liver and visceral fat of WNIN/Ob obese rats. Decreased 11β-HSD1 activity by vitamin A may result in decreased levels of active glucocorticoids in adipose tissue and possibly

  10. Persistent hypokalemia after successful adrenalectomy in a patient with Cushing's syndrome due to ectopic ACTH secretion: possible role of 11beta-hydroxysteroid dehydrogenase inhibition.

    Science.gov (United States)

    Arteaga, E; Fardella, C; Campusano, C; Cárdenas, I; Martinez, P

    1999-12-01

    Ectopic ACTH secretion is characterized by a high incidence of hypokalemia. The pathophysiology of hypokalemia has not been totally clarified, although it has been postulated that excessive amounts of adrenal steroids may play a role, as well as a possible role of the inhibition of the enzyme 11beta-hydroxysteroid dehydrogenase (11beta-OHSD). This enzyme normally converts cortisol to cortisone avoiding the mineralocorticoid action of cortisol. We present a patient with ectopic ACTH secretion due to a metastatic carcinoid tumor. The clinical picture was characterized by maintained hypokalemia (1.4 mmol/l) resistant to potassium, spironolactone and ketoconazole administration. A bilateral adrenalectomy was performed but the hypokalemia persisted while he was receiving a physiological dose of cortisol. Eight days after adrenalectomy cortisol was replaced by an equivalent dose of dexamethasone. This change was followed by a rapid and persistent normalization of hypokalemia suggesting a mineralocorticoid effect of cortisol. In conclusion, the origin of hypokalemia in our patient with ectopic ACTH secretion was secondary to cortisol. We postulate that this peculiar effect of cortisol could have happened if an inhibition of 11beta-OHSD occurred.

  11. Expression of glucocorticoid receptor, mineralocorticoid receptor, and 11beta-hydroxysteroid dehydrogenase 1 and 2 in the fetal and postnatal ovine hippocampus: ontogeny and effects of prenatal glucocorticoid exposure.

    Science.gov (United States)

    Sloboda, Deborah M; Moss, Timothy J M; Li, Shaofu; Matthews, Stephen G; Challis, John R G; Newnham, John P

    2008-05-01

    To determine the expression of glucocorticoid metabolizing and action genes in the hippocampus of fetal, neonatal, and adult sheep. Pregnant ewes (or their fetuses) received intramuscular injections of saline or betamethasone (BETA, 0-5 mg/kg) at 104, 111, 118, and/or 125 days of gestation (dG). Hippocampal tissue was collected prior to (75, 84, and 101 dG), during (109 and 116 dG), or after (121, 132, and 146 dG; 6 and 12 postnatal weeks; 3.5 years of age) saline or BETA injections. Hippocampal glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and 11beta-hydroxysteroid dehydrogenase (11betaHSD)1 and 11betaHSD2 mRNA levels were determined using qRT-PCR. Control animals late in gestation demonstrated a decrease in mRNA encoding GR and 11betaHSD1, whereas 11betaHSD2 was undetectable, consistent with a damping of the negative feedback influence of circulating or locally produced cortisol on the hypothalamic-pituitary-adrenal (HPA) axis. BETA-administration had transient effects on fetal GR and MR, and early in postnatal life (12 weeks of age) 11betaHSD1 mRNA was increased. Hippocampal MR mRNA was elevated in adult offspring exposed to either one or four doses of maternal BETA (Pglucocorticoid negative feedback, facilitating increased preterm HPA activity and parturition. Adult offspring of BETA-treated mothers demonstrated increased MR and 11betaHSD2 mRNA, therefore it appears that exposure of fetus to high levels of synthetic glucocorticoids may have long-lasting effects on the hippocampal expression of HPA-related genes into adulthood.

  12. Cortisone induces insulin resistance in C2C12 myotubes through activation of 11beta-hydroxysteroid dehydrogenase 1 and autocrinal regulation.

    Science.gov (United States)

    Park, Seung Yeon; Bae, Ji Hyun; Cho, Young Sik

    2014-04-01

    The enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) is known to catalyse inactive glucocorticoids into active forms, and its dysregulation in adipose and muscle tissues has been implicated in the development of metabolic syndrome. To delineate the molecular mechanism by which active cortisol has an antagonizing effect against insulin, we optimized the metabolic production of cortisol and its biological functions in myotubes (C2C12). Myotubes supplemented with cortisone actively catalysed its conversion into cortisol, which in turn abolished phosphorylation of Akt in response to insulin treatment. This led to diminished uptake of insulin-induced glucose. This was corroborated by the application of 11β-HSD1 inhibitor glycyrrhetinic acid and a glucocorticoid receptor antagonist RU-486, which reversed completely the antagonizing effects of cortisol on insulin action. Therefore, development of specific inhibitors targeting 11β-HSD1 might be a promising way to improve impaired insulin-stimulated glucose uptake. Copyright © 2013 John Wiley & Sons, Ltd.

  13. [Possible pathogenetic role of 11 beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) gene polymorphisms in arterial hypertension].

    Science.gov (United States)

    Morales, Mauricio A; Carvajal, Cristián A; Ortiz, Eugenia; Mosso, Lorena M; Artigas, Rocío A; Owen, Gareth I; Fardella, Carlos E

    2008-06-01

    Cortisol has been implicated in hypertension and lately reported to be regulated at the pre-receptor level by the 11betaHSD1 enzyme, which converts cortisone (E) to cortisol (F). Over-expression of this enzyme in adipose tissue could determine an increase in available cortisol that interacts with the mineralocorticoid receptor (MR) in renal, brain and heart tissue, leading to similar hypertensive effects as in 11betaHSD2 impaired patients. Several polymorphisms have been reported in HSDl IB 1 gene (CAI5, CAI9 and InsA83557), which could modify HSDl IB 1 gene expression or activity. To determine the distribution and prevalence of CAI5, CAI9 and InsA83557 in the HSDl IBl gene, and to correlate these results with biochemical parameters in cortisol/ ACTH (HPA) and renin-angiotensin-aldosterone (RAA) axis in patients with essential hypertension (EH). We studied 113 EH patients (76 non-obese and 37 obese, with a body mass índex >30 kg/m(2)) and 30 normotensive adults (NT). In each patient, we measured serum levels of E E, serum aldosterone (SA), plasma renin activity (PRA), adrenocorticotrophic hormone (ACTH), the urinary free cortisol/creatinine (UFF/Cr), F/ACTH and SA/PRA ratios. Each polymorphism was studied by PCR and 8% polyacrylamide gel electrophoresis. Statistical associations were evaluated by Pearson correlations and the genetic equilibrium by the Hardy-Weinberg (H-W) equation. We found all three polymorphisms in the EH and the NT group, both in genetic equilibrium. In obese essential hypertensives, the CAI5 polymorphism showed association with SA/PRA ratio (r =0.189, p =0.012) and F/ACTH (r =0.301, p 0.048); CA19 also showed correlation with F/ACTH in obese EH (r = 0.220, p 0.009). The InsA83557polymorphism correlated with UFF/Cr in both EH (r =0.206; p =0.03), and in obese EH (r =0.354; p =0.05). The CAI5 and CAI9 polymorphism correlated with changes in biochemical parameters in HPA and RAA axis of obese essential hypertensives. These changes may result in modifications in the expression of 11betaHSD1, leading to increased cortisol and aldosterone levels independent of ACTH and renin control, respectively.

  14. Inactivation of corticosteroids in intestinal mucosa by 11 beta-hydroxysteroid: NADP oxidoreductase (EC 1. 1. 1. 146)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, A.F.; Anderson, F.H.

    1983-10-01

    Activity of the enzyme 11 beta-hydroxysteroid:NADP oxidoreductase (EC 1.1.1.146) in human intestinal mucosa was determined by incubating scraped mucosa with /sup 3/H-cortisone and /sup 14/C-cortisol; these steroids were then extracted, separated chromatographically, and the radioactivity assayed to determine simultaneously both reductase and dehydrogenase activities. This was the only significant metabolic alteration which the substrate underwent. Only two cases had slight (5 and 13%) reductase activity. In 35 patients, 16 male and 19 female, including seven cases of Crohn's disease, three ulcerative colitis, five diverticulitis, two undergoing surgery for repair of injuries and 18 for carcinoma of colon or rectum, cortisol was converted to cortisone in 15 min with a wide range of values distributed uniformly up to 85% dehydrogenation, with a mean of 42%. When tissue homogenates were fortified with coenzymes, excess NADPH lowered dehydrogenase activity 81%; excess NADP increased dehydrogenase activity 2-fold in three cases. It is possible that a value is characteristic of an individual but perhaps more likely enzyme activity varies with metabolic events involving changes in the coenzyme levels in mucosa, and a random sampling might be expected to yield such a distribution of values. In any event, where activity is high most of the cortisol is inactivated within minutes. It is suggested that synthetic corticoids which escape such metabolic alteration might, except during pregnancy, prove superior in the treatment of conditions such as inflammatory bowel disease.

  15. 11Beta-HSD type 1 expression in human adipose tissue: impact of gender, obesity, and fat localization

    DEFF Research Database (Denmark)

    Paulsen, Søren Kildeberg; Pedersen, Steen Bønløkke; Fisker, Sanne

    2007-01-01

    OBJECTIVE: Pre-receptor amplification of glucocorticoids is, in part, determined by the isoenzymes 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and type 2, interconverting inert cortisone and active cortisol. Increased tissue activity of cortisol may play a part in features of the meta......OBJECTIVE: Pre-receptor amplification of glucocorticoids is, in part, determined by the isoenzymes 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and type 2, interconverting inert cortisone and active cortisol. Increased tissue activity of cortisol may play a part in features...

  16. Dehydrogenase and Oxoreductase Activities of Porcine Placental 11Beta-Hydroxysteroid Dehydrogenase

    Science.gov (United States)

    2016-06-07

    Subsequently, samples were thawed and extracted with ethyl acetate to obtain tritiated steroids. These extracts were sub- jected to thin layer chromatography...containing .02 M EDTA (PBS) to remove most radio- activity. Tissue fragments were then homogenized in PBS and aliquots removed for DNA analysis (32). In...either 3H-cortisol or 3H-cortisone were used as substrate. Incubations were conducted as above-noted and DNA measures conducted. Statistical

  17. 11Beta-HSD type 1 expression in human adipose tissue: impact of gender, obesity, and fat localization

    DEFF Research Database (Denmark)

    Paulsen, Søren Kildeberg; Pedersen, Steen Bønløkke; Fisker, Sanne

    2007-01-01

    OBJECTIVE: Pre-receptor amplification of glucocorticoids is, in part, determined by the isoenzymes 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and type 2, interconverting inert cortisone and active cortisol. Increased tissue activity of cortisol may play a part in features of the meta...... relative risk of cardiovascular disease in women suffering from the metabolic syndrome. Udgivelsesdato: 2007-Aug...

  18. 11 beta-hydroxysteroid dehydrogenase activity in proteinuric patients and the effect of angiotensin-II receptor blockade

    NARCIS (Netherlands)

    Kerstens, MN; Buter, H; Navis, GJ; Dullaart, RPF

    Background It has been suggested that an altered setpoint of the 11betaHSD-mediated cortisol to cortisone interconversion towards cortisol contributes to sodium retention in nephrotic syndrome patients. We studied the parameters of 11betaHSD activity in proteinuric patients, in particular its

  19. 11β-羟基类固醇脱氢酶2基因表达作为葡萄籽提取物预防乳腺癌靶点的探讨%Expression of 11 beta-hydroxysteroid dehydrogenase type 2 genes as a molecular target endpoint for the prevention of breast cell carcinogenesis with grape seed extracts

    Institute of Scientific and Technical Information of China (English)

    宋筱瑜; 王华骞

    2011-01-01

    Objective To study the change of 11 β-HSD 2 gene expression in carcinogenesis and cancer prevention and to study the possibility of using 11 β-HSD 2 gene expression as a molecular target endpoint in the progression of breast cell carcinogenesis suppressed by Grape Seed Extract (GSE). Methods Cell carcinogenesis model for human breast epithelial MCF10A cell was induced by treating the cell with carcinogens NNK and B[ a] P repeatedly, and the cell model system for the prevention of carcinogenesis was developed by combining GSE with NNK and B[ a] P. Western blot analysis was used to detect the expression of 11 β-HSD 2 gene. The biological change of carcinogen treated cells was studied by transfecting small interference RNA ( siRNA ) to inhibit 11 β-HSD 2 gene expression of cells. Results The colony formation of carcinogen treated cells in low-mitogen medium was less after the expression of 11 β-HSD 2 gene was inhibited by specific siRNA, which was just like the colony formation of normal cells. The expression of 11 β-HSD 2 gene was high in carcinogen treated cells, and the gene expression was low or undetectable in normal breast epithelial cells and cells combined treated with GSE and carcinogen. Conclusion The biological display of carcinogen treated cells could be normalized after the expression of 11 β-HSD 2 gene was inhibited. The mechanism for GSE preventing carcinogenesis might be the result of GSE inhibiting the expression of 11β-HSD 2 gene. 11β-HSD 2 gene might be the molecular target endpoint for the suppression of breast cell carcinogenesis by GSE.%目的 研究11β-羟基类固醇脱氢酶2型基因(11β-HSD 2)表达在癌症发生及预防过程中的变化,探讨该基因作为葡萄籽提取物(GSE)抑制乳腺上皮细胞慢性癌变过程中靶点的可能性.方法 建立低浓度致癌物NNK和B[a]P刺激乳腺上皮细胞MCF 10A癌变及GSE抑制乳腺上皮细胞癌变过程的细胞模型,研究瞬时转染了靶向11β-HSD 2基因的小RNA后的癌变细胞的生物学特性改变,并用Western blot分析11β-HSD 2基因在癌变细胞和经GSE抑制后细胞中的表达情况.结果 使用靶向11β-HSD 2基因的小RNA抑制后的癌变细胞,在低生长因子培养基中形成细胞集落的能力降低,与正常乳腺上皮细胞相当.11β-HSD 2基因在致癌物慢性刺激的细胞中呈现高表达,而在正常乳腺上皮细胞和经GSE与致癌物联合处理的细胞中基本不表达或表达水平很低.结论 抑制癌变细胞中11β-HSD 2基因的表达可使细胞的生物学表现趋于正常,GSE抑制细胞癌变的机制可能是通过抑制11β-HSD 2基因的表达实现,11β-HSD 2基因可能是GSE抑制乳腺上皮细胞癌变的分子靶点.

  20. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Svendsen, P F; Madsbad, S; Nilas, L

    2009-01-01

    controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model......beta-HSD1 mRNA. The subgroups LP and OC had increased 11beta-HSD1 and 11beta-HSD2 mRNA expression compared with LC (Pfat...

  1. SwissProt search result: AK121922 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121922 J033106F11 (P50233) Corticosteroid 11-beta-dehydrogenase, isozyme 2 (EC 1....1.1.-) (11-DH2) (11-beta-hydroxysteroid dehydrogenase type 2) (11-beta-HSD2) (NAD-dependent 11-beta-hydroxysteroid dehydrogenase) DHI2_RAT 2e-13 ...

  2. SwissProt search result: AK069875 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069875 J023036D07 (P50233) Corticosteroid 11-beta-dehydrogenase, isozyme 2 (EC 1....1.1.-) (11-DH2) (11-beta-hydroxysteroid dehydrogenase type 2) (11-beta-HSD2) (NAD-dependent 11-beta-hydroxysteroid dehydrogenase) DHI2_RAT 1e-13 ...

  3. Effects of growth hormone replacement on cortisol metabolism in hypopituitary patients treated with cortisone acetate

    NARCIS (Netherlands)

    Beentjes, JAM; Kerstens, MN; Dullaart, RPF

    2001-01-01

    Growth hormone (GH) replacement may inhibit 11 beta -hydroxysteroid dehydrogenase type 1 (11 beta HSD1) activity, resulting in diminished conversion of cortisone to cortisol. Moreover, GH replacement may lower bioavailability of hydrocortisone tablets. Therefore, substitution therapy with cortisone

  4. Defects in the HSD11 gene encoding 11[beta]-hydroxysteriod dehydrogenase are not found in patients with apparent mineralocorticoid excess or 11-oxoreductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nikkila, H.; White, P.C. (Cornell Univ. Medical College, New York, NY (United States)); Tannin, G.M. (Rainbow Babies and Children' s Hospital, Cleveland, OH (United States)); New, M.I.; Taylor, N.F. (King' s College School of Medicine and Dentistry, London (United Kingdom)); Kalaitzoglou, G.; Monder, C. (Population Council, New York, NY (United States))

    1993-09-01

    The syndrome of apparent mineralocorticoid excess (AME) is a form of low renin hypertension that is thought to be caused by congenital deficiency of 11[beta]-hydroxysteroid dehydrogenase (11HSD) activity. This enzyme converts cortisol to cortisone and apparently prevents cortisol from acting as a ligand for the mineralocorticoid (type I) receptor. It also catalyzes the reverse oxoreductase (cortisone to cortisol) reaction. Four patients with AME and the parents of the first patient described (now deceased) were analyzed for mutations in the cloned HSD11 gene encoding an 11HSD enzyme. A patient with suspected cortisone reductase deficiency was also studied. No gross deletions or rearrangements in the HSD11 gene were apparent on hybridizations of blot of genomic DNA. Direct sequencing of polymerase chain reaction-amplified fragments corresponding to the coding sequences, intronexon junctions, and proximal untranslated regions of this gene revealed no mutations. AME may involve mutations in a gene for another enzyme with 11HSD activity or perhaps another cortisol metabolizing enzyme. 48 refs., 2 figs., 2 tabs.

  5. Hydroxysteroid dehydrogenase HSD1L is localised to the pituitary–gonadal axis of primates

    Directory of Open Access Journals (Sweden)

    A Daniel Bird

    2017-09-01

    Full Text Available Steroid hormones play clinically important and specific regulatory roles in the development, growth, metabolism, reproduction and brain function in human. The type 1 and 2 11-beta hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 2 have key roles in the pre-receptor modification of glucocorticoids allowing aldosterone regulation of blood pressure, control of systemic fluid and electrolyte homeostasis and modulation of integrated metabolism and brain function. Although the activity and function of 11β-HSDs is thought to be understood, there exists an open reading frame for a distinct 11βHSD-like gene; HSD11B1L, which is present in human, non-human primate, sheep, pig and many other higher organisms, whereas an orthologue is absent in the genomes of mouse, rat and rabbit. We have now characterised this novel HSD11B1L gene as encoded by 9 exons and analysis of EST library transcripts indicated the use of two alternate ATG start sites in exons 2 and 3, and alternate splicing in exon 9. Relatively strong HSD11B1L gene expression was detected in human, non-human primate and sheep tissue samples from the brain, ovary and testis. Analysis in non-human primates and sheep by immunohistochemistry localised HSD11B1L protein to the cytoplasm of ovarian granulosa cells, testis Leydig cells, and gonadatroph cells in the anterior pituitary. Intracellular localisation analysis in transfected human HEK293 cells showed HSD1L protein within the endoplasmic reticulum and sequence analysis suggests that similar to 11βHSD1 it is membrane bound. The endogenous substrate of this third HSD enzyme remains elusive with localisation and expression data suggesting a reproductive hormone as a likely substrate.

  6. Disease: H01111 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H01111 Cortisone reductase deficiency (CRD) Cortisone reductase deficiency (CRD) is...arity, anovulatory infertility, obesity, insulin resistance and hyperandrogenism. 11...ne biosynthesis hsa00980(3290) Metabolism of xenobiotics by cytochrome P450 H6PD [HSA:9563] [KO:K13937] HSD11...ted with heterozygous mutations in 11beta-hydroxysteroid dehydrogenase type 1. Proc Natl Acad Sci U S A 108:4111-6 (2011...M, Shackleton CH, Stewart PM Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and

  7. The role of mediastinal adipose tissue 11β-hydroxysteroid d ehydrogenase type 1 and glucocorticoid expression in the development of coronary atherosclerosis in obese patients with ischemic heart disease.

    Science.gov (United States)

    Atalar, Fatmahan; Gormez, Selcuk; Caynak, Baris; Akan, Gokce; Tanriverdi, Gamze; Bilgic-Gazioglu, Sema; Gunay, Demet; Duran, Cihan; Akpinar, Belhhan; Ozbek, Ugur; Buyukdevrim, Ahmet Sevim; Yazici, Zeliha

    2012-09-25

    Visceral fat deposition and its associated atherogenic complications are mediated by glucocorticoids. Cardiac visceral fat comprises mediastinal adipose tissue (MAT) and epicardial adipose tissue (EAT), and MAT is a potential biomarker of risk for obese patients. Our objective was to evaluate the role of EAT and MAT 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) and glucocorticoid receptor (GCR) expression in comparison with subcutaneous adipose tissue (SAT) in the development of coronary atherosclerosis in obese patients with coronary artery disease (CAD), and to assess their correlations with CD68 and fatty acids from these tissues. Expression of 11β-HSD-1 and GCR was measured by qRT-PCR in EAT, MAT and SAT of thirty-one obese patients undergoing coronary artery bypass grafting due to CAD (obese CAD group) and sixteen obese patients without CAD undergoing heart valve surgery (controls). 11β-HSD-1 and GCR expression in MAT were found to be significantly increased in the obese CAD group compared with controls (p effects of stearidonic acid, HOMA-IR, plasma cortisol and GCR mRNA levels, explaining 40.2% of the variance in 11β-HSD-1 mRNA levels in MAT of obese CAD patients. These findings support the hypothesis that MAT contributes locally to the development of coronary atherosclerosis via glucocorticoid action.

  8. Effects of antenatal glucocorticoids on 11-beta-hydroxysteroid dehydrogenase activity in hippocampus of neonatal rats%产前应用糖皮质激素对仔鼠海马区11-β羟基类固醇脱氢酶表达的影响

    Institute of Scientific and Technical Information of China (English)

    徐发林; 张香敏; 程秀永

    2009-01-01

    目的 探讨产前应用不同疗程糖皮质激素(GCs)对仔鼠海马11-β羟基类同醇脱氢酶(11β-HSD)活性的影响.方法 健康3月龄雌性SD大鼠30只,孕18 d时(E18)随机分为3组:多疗程组,E18开始每天肌注地塞米松O.48 ms/(kg·次),q 4 h,4次/d,连用3 d;单疗程组,E18肌注地塞米松4次,共1 d,其余2 d以等容积生理盐水代替;对照组.均以生理盐水代替.采用免疫组化法分别于仔鼠生后第7、15天(P7、P15)测定脑组织海马部位 11β-HSD1、11β-HsD2的活性.结果 P7各组仔鼠海马组织均有11β-HSD1表达,多疗程组仔鼠海马11β-HSD1活性高于单疗程组和对照组(P0.05).P7、P15各组仔鼠脑组织海马11βB-HSD2活性表达均极低.结论 产前过量GCs可导致仔鼠脑组织海马部位11β-HSD1活性增高,在体内持续存在时间较长.产前GCs对仔鼠脑组织海马部位11β-HSD2活性无明显影响.

  9. Cerebrospinal Fluid Corticosteroid Levels and Cortisol Metabolism in Patients with Idiopathic Intracranial Hypertension : A Link between 11 beta-HSD1 and Intracranial Pressure Regulation?

    NARCIS (Netherlands)

    Sinclair, Alexandra J.; Walker, Elizabeth A.; Burdon, Michael A.; van Beek, Andre P.; Kema, Ido P.; Hughes, Beverly A.; Murray, Philip I.; Nightingale, Peter G.; Stewart, Paul M.; Rauz, Saaeha; Tomlinson, Jeremy W.

    2010-01-01

    Context: The etiology of idiopathic intracranial hypertension (IIH) is unknown. We hypothesized that obesity and elevated intracranial pressure may be linked through increased 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) activity. Objective: The aim was to characterize 11 beta-HSD1 in

  10. Obesity is accompanied by disturbances in peripheral glucocorticoid metabolism and changes in FA recycling

    DEFF Research Database (Denmark)

    Simonyte, Kotryna; Rask, Eva; Näslund, Ingmar;

    2009-01-01

    The glucocorticoid activating enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) is of major interest in obesity-related morbidity. Alterations in tissue-specific cortisol levels may influence lipogenetic and gluco/glyceroneogenetic pathways in fat and liver. We analyzed the expressio...... acid (FA) recycling in adipose tissue (AT)....

  11. The role of mediastinal adipose tissue 11β-hydroxysteroid d ehydrogenase type 1 and glucocorticoid expression in the development of coronary atherosclerosis in obese patients with ischemic heart disease

    Directory of Open Access Journals (Sweden)

    Atalar Fatmahan

    2012-09-01

    Full Text Available Abstract Background Visceral fat deposition and its associated atherogenic complications are mediated by glucocorticoids. Cardiac visceral fat comprises mediastinal adipose tissue (MAT and epicardial adipose tissue (EAT, and MAT is a potential biomarker of risk for obese patients. Aim Our objective was to evaluate the role of EAT and MAT 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD-1 and glucocorticoid receptor (GCR expression in comparison with subcutaneous adipose tissue (SAT in the development of coronary atherosclerosis in obese patients with coronary artery disease (CAD, and to assess their correlations with CD68 and fatty acids from these tissues. Methods and results Expression of 11β-HSD-1 and GCR was measured by qRT-PCR in EAT, MAT and SAT of thirty-one obese patients undergoing coronary artery bypass grafting due to CAD (obese CAD group and sixteen obese patients without CAD undergoing heart valve surgery (controls. 11β-HSD-1 and GCR expression in MAT were found to be significantly increased in the obese CAD group compared with controls (p  Conclusions We report for the first time the increased expression of 11β-HSD-1 and GCR in MAT compared with EAT and SAT, and also describe the interrelated effects of stearidonic acid, HOMA-IR, plasma cortisol and GCR mRNA levels, explaining 40.2% of the variance in 11β-HSD-1 mRNA levels in MAT of obese CAD patients. These findings support the hypothesis that MAT contributes locally to the development of coronary atherosclerosis via glucocorticoid action.

  12. Lakridsinduceret hypertension og hypokaliæmi

    DEFF Research Database (Denmark)

    Nielsen, Mette Lundgren; Pareek, Manan; Andersen, Inger

    2012-01-01

    Consumption of large amounts of liquorice can cause hypertension and hypokalaemia. Liquorice contains glycyrrhetinic acid, which inhibits the enzyme 11 beta-hydroxysteroid dehydrogenase type 2, and ultimately leads to an apparent mineralocorticoid excess syndrome. This case report describes a 50...... year-old woman presenting with hypertension and hypokalaemia-induced limb paresis due to chronic liquorice ingestion. The patient was treated with potassium supplementation and spironolactone. Her blood pressure and electrolyte status normalised within a month after cessation of liquorice intake....

  13. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Semjonous, Nina M

    2011-01-01

    Glucose-6-phosphate (G6P) metabolism by the enzyme hexose-6-phosphate dehydrogenase (H6PDH) within the sarcoplasmic reticulum lumen generates nicotinamide adenine dinucleotide phosphate (reduced) to provide the redox potential for the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to activate glucocorticoid (GC). H6PDH knockout (KO) mice have a switch in 11β-HSD1 activity, resulting in GC inactivation and hypothalamic-pituitary-adrenal axis activation. Importantly, H6PDHKO mice develop a type II fiber myopathy with abnormalities in glucose metabolism and activation of the unfolded protein response (UPR). GCs play important roles in muscle physiology, and therefore, we have examined the importance of 11β-HSD1 and GC metabolism in mediating aspects of the H6PDHKO myopathy. To achieve this, we examined 11β-HSD1\\/H6PDH double-KO (DKO) mice, in which 11β-HSD1 mediated GC inactivation is negated. In contrast to H6PDHKO mice, DKO mice GC metabolism and hypothalamic-pituitary-adrenal axis set point is similar to that observed in 11β-HSD1KO mice. Critically, in contrast to 11β-HSD1KO mice, DKO mice phenocopy the salient features of the H6PDHKO, displaying reduced body mass, muscle atrophy, and vacuolation of type II fiber-rich muscle, fasting hypoglycemia, increased muscle glycogen deposition, and elevated expression of UPR genes. We propose that muscle G6P metabolism through H6PDH may be as important as changes in the redox environment when considering the mechanism underlying the activation of the UPR and the ensuing myopathy in H6PDHKO and DKO mice. These data are consistent with an 11β-HSD1-independent function for H6PDH in which sarcoplasmic reticulum G6P metabolism and nicotinamide adenine dinucleotide phosphate-(oxidized)\\/nicotinamide adenine dinucleotide phosphate (reduced) redox status are important for maintaining muscle homeostasis.

  14. Alcohol consumption and type 2 diabetes: Influence of genetic variation in alcohol dehydrogenase

    NARCIS (Netherlands)

    Beulens, J.W.J.; Rimm, E.B.; Hendriks, H.F.J.; Hu, F.B.; Manson, J.E.; Hunter, D.J.; Mukamal, K.J.

    2007-01-01

    OBJECTIVE - We sought to investigate whether a polymorphism in the alcohol dehydrogenase 1c (ADH1C) gene modifies the association between alcohol consumption and type 2 diabetes. RESEARCH DESIGN AND METHODS - In nested case-control studies of 640 women with incident diabetes and 1,000 control

  15. Alcohol consumption and type 2 diabetes - Influence of genetic variation in alcohol dehydrogenase

    NARCIS (Netherlands)

    Beulens, J.W.J.; Rimm, E.B.; Hendriks, H.F.J.; Hu, F.B.; Manson, J.E.; Hunter, D.J.; Mukamal, K.J.

    2007-01-01

    OBJECTIVE-We sought to investigate whether a polymorphism I in the alcohol dehydrogenase 1c (ADH1C) gene modifies the association between alcohol consumption and type 2 diabetes. RESEARCH DESIGN AND METHODS-In nested case-control studies of 640 women with incident diabetes and 1,000 control subjects

  16. Alcohol consumption and type 2 diabetes: Influence of genetic variation in alcohol dehydrogenase

    NARCIS (Netherlands)

    Beulens, J.W.J.; Rimm, E.B.; Hendriks, H.F.J.; Hu, F.B.; Manson, J.E.; Hunter, D.J.; Mukamal, K.J.

    2007-01-01

    OBJECTIVE - We sought to investigate whether a polymorphism in the alcohol dehydrogenase 1c (ADH1C) gene modifies the association between alcohol consumption and type 2 diabetes. RESEARCH DESIGN AND METHODS - In nested case-control studies of 640 women with incident diabetes and 1,000 control subjec

  17. Renal and endocrine changes in rats with inherited stress-induced arterial hypertension (ISIAH)

    DEFF Research Database (Denmark)

    Amstislavsky, Sergej; Welker, Pia; Frühauf, Jan-Henning

    2006-01-01

    Hypertensive inbred rats (ISIAH; inherited stress-induced arterial hypertension) present with baseline hypertension (>170 mmHg in adult rats), but attain substantially higher values upon mild emotional stress. We aimed to characterize key parameters related to hypertension in ISIAH. Kidneys...... channel-alpha; 11beta-hydroxysteroid dehydrogenase type 2) were increased. These data suggest enhanced volume conservation by the kidney. Our data define ISIAH as an attractive model for the renal components determining salt and water homeostasis in hypertension. The specific condition of a basally...

  18. Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.

    Directory of Open Access Journals (Sweden)

    Jessica Schmiesing

    Full Text Available Glutaric aciduria type 1 (GA1 is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH, which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1.

  19. Discovery of Adamantyl Heterocyclic Ketones as Potent 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors

    Science.gov (United States)

    Su, Xiangdong; Vicker, Nigel; Thomas, Mark P; Pradaux-Caggiano, Fabienne; Halem, Heather; Culler, Michael D; Potter, Barry V L

    2011-01-01

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays a key role in converting intracellular cortisone to physiologically active cortisol, which is implicated in the development of several phenotypes of metabolic syndrome. Inhibition of 11β-HSD1 activity with selective inhibitors has beneficial effects on various conditions, including diabetes, dyslipidemia and obesity, and therefore constitutes a promising strategy to discover novel therapies for metabolic and cardiovascular diseases. A series of novel adamantyl heterocyclic ketones provides potent and selective inhibitors of human 11β-HSD1. Lead compounds display low nanomolar inhibition against human and mouse 11β-HSD1 and are selective with no activity against 11β-HSD2 and 17β-HSD1. Selected potent 11β-HSD1 inhibitors show moderate metabolic stability upon incubation with human liver microsomes and weak inhibition of human CYP450 enzymes. PMID:21608132

  20. Novel inhibitors of 17beta-hydroxysteroid dehydrogenase type 1: templates for design.

    Science.gov (United States)

    Allan, Gillian M; Vicker, Nigel; Lawrence, Harshani R; Tutill, Helena J; Day, Joanna M; Huchet, Marion; Ferrandis, Eric; Reed, Michael J; Purohit, Atul; Potter, Barry V L

    2008-04-15

    The 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyze the interconversion between the oxidized and reduced forms of androgens and estrogens at the 17 position. The 17beta-HSD type 1 enzyme (17beta-HSD1) catalyzes the reduction of estrone (E1) to estradiol and is expressed in malignant breast cells. Inhibitors of this enzyme thus have potential as treatments for hormone dependent breast cancer. Syntheses and biological evaluation of novel non-steroidal inhibitors designed to mimic the E1 template are reported using information from potent steroidal inhibitors. Of the templates investigated biphenyl ethanone was promising and led to inhibitors with IC(50) values in the low micromolar range.

  1. The structure of retinal dehydrogenase type II at 2.7 A resolution: implications for retinal specificity.

    Science.gov (United States)

    Lamb, A L; Newcomer, M E

    1999-05-11

    Retinoic acid, a hormonally active form of vitamin A, is produced in vivo in a two step process: retinol is oxidized to retinal and retinal is oxidized to retinoic acid. Retinal dehydrogenase type II (RalDH2) catalyzes this last step in the production of retinoic acid in the early embryo, possibly producing this putative morphogen to initiate pattern formation. The enzyme is also found in the adult animal, where it is expressed in the testis, lung, and brain among other tissues. The crystal structure of retinal dehydrogenase type II cocrystallized with nicotinamide adenine dinucleotide (NAD) has been determined at 2.7 A resolution. The structure was solved by molecular replacement using the crystal structure of a mitochondrial aldehyde dehydrogenase (ALDH2) as a model. Unlike what has been described for the structures of two aldehyde dehydrogenases involved in the metabolism of acetaldehyde, the substrate access channel is not a preformed cavity into which acetaldehyde can readily diffuse. Retinal dehydrogenase appears to utilize a disordered loop in the substrate access channel to discriminate between retinaldehyde and short-chain aldehydes.

  2. Resveratrol inhibits 11β-hydroxysteroid dehydrogenase type 1 activity in rat adipose microsomes.

    Science.gov (United States)

    Tagawa, Noriko; Kubota, Sayaka; Kato, Ikuo; Kobayashi, Yoshiharu

    2013-09-01

    It has been suggested that resveratrol, a polyphenol in wine, can regulate adiposity because it decreases adipose deposition in mice and rats; however, the mechanism underlying this effect has not been fully clarified. In humans and rodents, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is expressed in liver and adipose tissue. 11β-HSD1 converts inactive glucocorticoid into active glucocorticoid in adipocytes. Activated glucocorticoid plays an important role in the pathogenesis of central obesity. The objective of this study was to investigate the effects of resveratrol on 11β-HSD1 activity in rodent adipose tissue. 11β-HSD1 activity in microsomes from rat mesenteric adipose depots and 3T3-L1 adipocytes was determined in the presence of 11-dehydrocorticosterone with or without varying concentrations of resveratrol. Significant inhibition of 11β-HSD1 by resveratrol was observed in rat adipose microsomes and 3T3-L1 adipocytes within 10 min. Time- and dose-dependent effects were also observed. The 11β-HSD1 activity by resveratrol was also inhibited in rat epididymal adipose tissue, and this inhibition was not recovered by estrogen receptor blockers. The kinetic study revealed that resveratrol acted as a non-competitive inhibitor of 11β-HSD1. Ki and IC50 values of resveratrol were 39.6 and 35.2 μM respectively. Further, resveratrol did not affect the activities of 11β-HSD2 and hexose-6-phosphate dehydrogenase. These results suggest that the most likely mechanism of 11β-HSD1 inhibition by resveratrol is via interaction between resveratrol and 11β-HSD1 enzyme, rather than via a transcriptional pathway. We demonstrated that the antiobesity effects of resveratrol may partially be attributed to the inhibition of 11β-HSD1 activity in adipocytes.

  3. Genetic Polymorphisms of Alcohol Dehydrogenase and Aldehyde Dehydrogenase: Alcohol Use and Type 2 Diabetes in Japanese Men

    Directory of Open Access Journals (Sweden)

    Guang Yin

    2011-01-01

    Full Text Available This study investigated the association of ADH1B (rs1229984 and ALDH2 (rs671 polymorphisms with glucose tolerance status, as determined by a 75-g oral glucose tolerance test, and effect modification of these polymorphisms on the association between alcohol consumption and glucose intolerance in male officials of the Self-Defense Forces. The study subjects included 1520 men with normal glucose tolerance, 553 with prediabetic condition (impaired fasting glucose and impaired glucose tolerance, and 235 men with type 2 diabetes. There was an evident interaction between alcohol consumption and ADH1B polymorphism in relation to type 2 diabetes (interaction P=.03. The ALDH24∗87Lys allele was associated with a decreased prevalence odds of type 2 diabetes regardless of alcohol consumption. In conclusion, the ADH1B polymorphism modified the association between alcohol consumption and type 2 diabetes. A positive association between alcohol consumption and type 2 diabetes was confounded by ALDH2 polymorphism.

  4. Zebrafish 20β-hydroxysteroid dehydrogenase type 2 is important for glucocorticoid catabolism in stress response.

    Directory of Open Access Journals (Sweden)

    Janina Tokarz

    Full Text Available Stress, the physiological reaction to a stressor, is initiated in teleost fish by hormone cascades along the hypothalamus-pituitary-interrenal (HPI axis. Cortisol is the major stress hormone and contributes to the appropriate stress response by regulating gene expression after binding to the glucocorticoid receptor. Cortisol is inactivated when 11β-hydroxysteroid dehydrogenase (HSD type 2 catalyzes its oxidation to cortisone. In zebrafish, Danio rerio, cortisone can be further reduced to 20β-hydroxycortisone. This reaction is catalyzed by 20β-HSD type 2, recently discovered by us. Here, we substantiate the hypothesis that 20β-HSD type 2 is involved in cortisol catabolism and stress response. We found that hsd11b2 and hsd20b2 transcripts were up-regulated upon cortisol treatment. Moreover, a cortisol-independent, short-term physical stressor led to the up-regulation of hsd11b2 and hsd20b2 along with several HPI axis genes. The morpholino-induced knock down of hsd20b2 in zebrafish embryos revealed no developmental phenotype under normal culture conditions, but prominent effects were observed after a cortisol challenge. Reporter gene experiments demonstrated that 20β-hydroxycortisone was not a physiological ligand for the zebrafish glucocorticoid or mineralocorticoid receptor but was excreted into the fish holding water. Our experiments show that 20β-HSD type 2, together with 11β-HSD type 2, represents a short pathway in zebrafish to rapidly inactivate and excrete cortisol. Therefore, 20β-HSD type 2 is an important enzyme in stress response.

  5. Purification of two putative type II NADH dehydrogenases with different substrate specificities from alkaliphilic Bacillus pseudofirmus OF4.

    Science.gov (United States)

    Liu, Jun; Krulwich, Terry A; Hicks, David B

    2008-05-01

    A putative Type II NADH dehydrogenase from Halobacillus dabanensis was recently reported to have Na+/H+ antiport activity (and called Nap), raising the possibility of direct coupling of respiration to antiport-dependent pH homeostasis. This study characterized a homologous type II NADH dehydrogenase of genetically tractable alkaliphilic Bacillus pseudofirmus OF4, in which evidence supports antiport-based pH homeostasis that is mediated entirely by secondary antiport. Two candidate type II NADH dehydrogenase genes with canonical GXGXXG motifs were identified in a draft genome sequence of B. pseudofirmus OF4. The gene product designated NDH-2A exhibited homology to enzymes from Bacillus subtilis and Escherichia coli whereas NDH-2B exhibited homology to the H. dabanensis Nap protein and its alkaliphilic Bacillus halodurans C-125 homologue. The ndh-2A, but not the ndh-2B, gene complemented the growth defect of an NADH dehydrogenase-deficient E. coli mutant. Neither gene conferred Na+-resistance on an antiporter-deficient E. coli strain, nor did they confer Na+/H+ antiport activity in vesicle assays. The purified hexa-histidine-tagged gene products were approximately 50 kDa, contained noncovalently bound FAD and oxidized NADH. They were predominantly cytoplasmic in E. coli, consonant with the absence of antiport activity. The catalytic properties of NDH-2A were more consistent with a major respiratory role than those of NDH-2B.

  6. [Correlations between the hypothalamo-pituitary-adrenal axis and the metabolic syndrome].

    Science.gov (United States)

    Góth, Miklós; Hubina, Erika; Korbonits, Márta

    2005-01-09

    The metabolic syndrome has several similarities with Cushing's syndrome (impaired glucose tolerance, hypertension, dyslipidemia, central obesity) suggesting that abnormalities in the regulation of the hypothalamic-pituitary-adrenal axis may have a link with the metabolic syndrome. Several studies suggested an association between the clinical signs of the metabolic syndrome and the increased hypothalamic-pituitary-adrenal axis activity based on increased cortisol concentration at 09.00 a.m. and increased cortisol response to corticotropin. According to the Barker hypothesis the fetal malnutrition could determine adult cardiovascular diseases (coronary heart disease, hypertension), some endocrine and metabolic disorders (obesity, type 2 diabetes and hyperlipidemia). The suggested mechanism of the phenomenon is that the suboptimal fetal nutrition results in glucocorticoid overproduction. The 11beta-hydroxysteroid dehydrogenase (converts biological inactive cortisone to cortisol and vice versa) is an important enzyme in cortisol metabolism. The increased expression of 11beta-hydroxysteroid dehydrogenase type 1 in fat tissue could lead to central obesity and impaired glucose tolerance. The hypothesis that increased corticotropin-releasing hormone production drives the overactive hypothalamo-pituitary-adrenal axis was not proven. Further investigations are needed to identify additional pathogenetic factors and to find new therapeutic possibilities.

  7. Changing glucocorticoid action: 11β-hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation.

    Science.gov (United States)

    Chapman, Karen E; Coutinho, Agnes E; Zhang, Zhenguang; Kipari, Tiina; Savill, John S; Seckl, Jonathan R

    2013-09-01

    Since the discovery of cortisone in the 1940s and its early success in treatment of rheumatoid arthritis, glucocorticoids have remained the mainstay of anti-inflammatory therapies. However, cortisone itself is intrinsically inert. To be effective, it requires conversion to cortisol, the active glucocorticoid, by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Despite the identification of 11β-HSD in liver in 1953 (which we now know to be 11β-HSD1), its physiological role has been little explored until recently. Over the past decade, however, it has become apparent that 11β-HSD1 plays an important role in shaping endogenous glucocorticoid action. Acute inflammation is more severe with 11β-HSD1-deficiency or inhibition, yet in some inflammatory settings such as obesity or diabetes, 11β-HSD1-deficiency/inhibition is beneficial, reducing inflammation. Current evidence suggests both beneficial and detrimental effects may result from 11β-HSD1 inhibition in chronic inflammatory disease. Here we review recent evidence pertaining to the role of 11β-HSD1 in inflammation. This article is part of a Special Issue entitled 'CSR 2013'.

  8. Changing glucocorticoid action: 11β-Hydroxysteroid dehydrogenase type 1 in acute and chronic inflammation

    Science.gov (United States)

    Chapman, Karen E.; Coutinho, Agnes E.; Zhang, Zhenguang; Kipari, Tiina; Savill, John S.; Seckl, Jonathan R.

    2013-01-01

    Since the discovery of cortisone in the 1940s and its early success in treatment of rheumatoid arthritis, glucocorticoids have remained the mainstay of anti-inflammatory therapies. However, cortisone itself is intrinsically inert. To be effective, it requires conversion to cortisol, the active glucocorticoid, by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Despite the identification of 11β-HSD in liver in 1953 (which we now know to be 11β-HSD1), its physiological role has been little explored until recently. Over the past decade, however, it has become apparent that 11β-HSD1 plays an important role in shaping endogenous glucocorticoid action. Acute inflammation is more severe with 11β-HSD1-deficiency or inhibition, yet in some inflammatory settings such as obesity or diabetes, 11β-HSD1-deficiency/inhibition is beneficial, reducing inflammation. Current evidence suggests both beneficial and detrimental effects may result from 11β-HSD1 inhibition in chronic inflammatory disease. Here we review recent evidence pertaining to the role of 11β-HSD1 in inflammation. This article is part of a Special Issue entitled ‘CSR 2013’. PMID:23435016

  9. The design of novel 17beta-hydroxysteroid dehydrogenase type 3 inhibitors.

    Science.gov (United States)

    Vicker, Nigel; Sharland, Christopher M; Heaton, Wesley B; Gonzalez, Ana M Ramos; Bailey, Helen V; Smith, Andrew; Springall, Jeremy S; Day, Joanna M; Tutill, Helena J; Reed, Michael J; Purohit, Atul; Potter, Barry V L

    2009-03-25

    17beta-Hydroxysteroid dehydrogenase type 3 (17beta-HSD3) is expressed at high levels in the testes and seminal vesicles but has also been shown to be present in prostate tissue, suggesting its potential involvement in both gonadal and non-gonadal testosterone biosynthesis. The role of 17beta-HSD3 in testosterone biosynthesis makes this enzyme an attractive molecular target for small molecule inhibitors for the treatment of prostate cancer. Here we report the design of selective inhibitors of 17beta-HSD3 as potential anti-cancer agents. Due to 17beta-HSD3 being a membrane-bound protein a crystal structure is not yet available. A homology model of 17beta-HSD3 has been built to aid structure-based drug design. This model has been used with docking studies to identify a series of lead compounds that may give an insight as to how inhibitors interact with the active site. Compound 1 was identified as a potent selective inhibitor of 17beta-HSD3 with an IC(50)=700nM resulting in the discovery of a novel lead series for further optimisation. Using our homology model as a tool for inhibitor design compound 5 was discovered as a novel potent and selective inhibitor of 17beta-HSD3 with an IC(50) approximately 200nM.

  10. Comparative evolutionary genomics of the HADH2 gene encoding Aβ-binding alcohol dehydrogenase/17β-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10

    Directory of Open Access Journals (Sweden)

    Fernandes Pedro A

    2006-08-01

    Full Text Available Abstract Background The Aβ-binding alcohol dehydrogenase/17β-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10 is an enzyme involved in pivotal metabolic processes and in the mitochondrial dysfunction seen in the Alzheimer's disease. Here we use comparative genomic analyses to study the evolution of the HADH2 gene encoding ABAD/HSD10 across several eukaryotic species. Results Both vertebrate and nematode HADH2 genes showed a six-exon/five-intron organization while those of the insects had a reduced and varied number of exons (two to three. Eutherian mammal HADH2 genes revealed some highly conserved noncoding regions, which may indicate the presence of functional elements, namely in the upstream region about 1 kb of the transcription start site and in the first part of intron 1. These regions were also conserved between Tetraodon and Fugu fishes. We identified a conserved alternative splicing event between human and dog, which have a nine amino acid deletion, causing the removal of the strand βF. This strand is one of the seven strands that compose the core β-sheet of the Rossman fold dinucleotide-binding motif characteristic of the short chain dehydrogenase/reductase (SDR family members. However, the fact that the substrate binding cleft residues are retained and the existence of a shared variant between human and dog suggest that it might be functional. Molecular adaptation analyses across eutherian mammal orthologues revealed the existence of sites under positive selection, some of which being localized in the substrate-binding cleft and in the insertion 1 region on loop D (an important region for the Aβ-binding to the enzyme. Interestingly, a higher than expected number of nonsynonymous substitutions were observed between human/chimpanzee and orangutan, with six out of the seven amino acid replacements being under molecular adaptation (including three in loop D and one in the substrate binding loop. Conclusion Our study revealed that HADH

  11. Benzofuran derivatives inhibit 11β-hydroxysteroid dehydrogenase type 1 activity in rat adipose tissue.

    Science.gov (United States)

    Kiyonaga, Daisuke; Tagawa, Noriko; Yamaguchi, Yuko; Wakabayashi, Midori; Kogure, Toshiaki; Ueda, Masafumi; Miyata, Okiko; Kobayashi, Yoshiharu

    2012-01-01

    Excess glucocorticoids promote visceral obesity and insulin resistance. The main regulator of intracellular glucocorticoid levels are 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoid into bioactive glucocorticoid such as cortisol in humans and corticosterone in rodents; therefore, the inhibition of 11β-HSD1 has considerable therapeutic potential for metabolic diseases including obesity and diabetes. Benzofuran is a key structure in many biologically active compounds such as benzbromarone, malibatol A and (+)-liphagal. The aim of this study was to investigate the inhibitory effect of benzofuran derivatives on 11β-HSD1 in mesenteric adipose tissue from rodents. 11β-HSD1 activity was determined by incubation of rat mesenteric adipose tissue microsomes in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) with and without benzofuran derivatives (Compounds 1-14). The corticosterone produced was measured by HPLC. More than 40% of 11β-HSD1 inhibition was observed in Compounds 1, 5, 7 and 8. Moreover, Compounds 7 and 8 inhibited the 11β-HSD1 activity in adipose microsomes dose- and time-dependently, as well as in 3T3-L1 adipocytes. Compounds 7 and 8 did not inhibit 11β-HSD type 2 (11β-HSD2), whereas Compounds 1 and 5 inhibited 11β-HSD2 by 18.7% and 56.3%, respectively. Further, a kinetic study revealed that Compounds 7 and 8 acted as non-competitive inhibitors of 11β-HSD1. Ki (nmol/h/mg protein) values of Compounds 7 and 8 were 17.5 and 24.0, respectively, with IC50 (µM) of 10.2 and 25.6, respectively. These data indicate that Compounds 7 and 8 are convincing candidates for seed compounds as specific inhibitors of 11β-HSD1 and have the potential to be developed as anti-obesity drugs.

  12. Cortisol Release From Adipose Tissue by 11β-Hydroxysteroid Dehydrogenase Type 1 in Humans

    Science.gov (United States)

    Stimson, Roland H.; Andersson, Jonas; Andrew, Ruth; Redhead, Doris N.; Karpe, Fredrik; Hayes, Peter C.; Olsson, Tommy; Walker, Brian R.

    2009-01-01

    OBJECTIVE—11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) regenerates cortisol from cortisone. 11β-HSD1 mRNA and activity are increased in vitro in subcutaneous adipose tissue from obese patients. Inhibition of 11β-HSD1 is a promising therapeutic approach in type 2 diabetes. However, release of cortisol by 11β-HSD1 from adipose tissue and its effect on portal vein cortisol concentrations have not been quantified in vivo. RESEARCH DESIGN AND METHODS—Six healthy men underwent 9,11,12,12-[2H]4-cortisol infusions with simultaneous sampling of arterialized and superficial epigastric vein blood sampling. Four men with stable chronic liver disease and a transjugular intrahepatic porto-systemic shunt in situ underwent tracer infusion with simultaneous sampling from the portal vein, hepatic vein, and an arterialized peripheral vein. RESULTS—Significant cortisol and 9,12,12-[2H]3-cortisol release were observed from subcutaneous adipose tissue (15.0 [95% CI 0.4–29.5] and 8.7 [0.2–17.2] pmol · min−1 · 100 g−1 adipose tissue, respectively). Splanchnic release of cortisol and 9,12,12-[2H]3-cortisol (13.5 [3.6–23.5] and 8.0 [2.6–13.5] nmol/min, respectively) was accounted for entirely by the liver; release of cortisol from visceral tissues into portal vein was not detected. CONCLUSIONS—Cortisol is released from subcutaneous adipose tissue by 11β-HSD1 in humans, and increased enzyme expression in obesity is likely to increase local glucocorticoid signaling and contribute to whole-body cortisol regeneration. However, visceral adipose 11β-HSD1 activity is insufficient to increase portal vein cortisol concentrations and hence to influence intrahepatic glucocorticoid signaling. PMID:18852329

  13. Inhibition of 11β-hydroxysteroid dehydrogenase type 1 ameliorates obesity-related insulin resistance.

    Science.gov (United States)

    Shao, Shiying; Zhang, Xiaojie; Zhang, Muxun

    2016-09-09

    Excess 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) may be implicated in the development of obesity related metabolic disorders. The present study measured the expression level of 11β-HSD1 in visceral adipose tissues from 23 patients undergoing abdominal operation. Correlation of 11β-HSD1 expression with BMI, waist-to-hip ratio (WHR), HOMA-IR, and serum lipids was evaluated by spearman correlation analysis. High-fat diet-induced obese (DIO) rats were orally dosed with BVT.2733 for 4 weeks. Weight, plasma insulin, and lipids were detected at the end of the treatment. The effects of 11β-HSD1 inhibition on the key insulin-signaling cascade and adipocytokines were measured by western blot and ELISA respectively. 11β-HSD1 was increased in patients with central obesity, the expression level of which was closely related with WHR (r = 0.5851), BMI (r = 0.4952), and HOMA-IR (r = 0.4637). Obesity related insulin resistance in high-fat DIO rats, as reflected by a marked decrease in IRS-1, IRS-2, GLUT4, and PI3K, could be attenuated by 11β-HSD1 inhibition. Furthermore, the down-regulation of 11β-HSD1 could correct the disordered profiles of adipocytokines including adiponectin, IL-6, and TNF-α. These findings indicated that 11β-HSD1 inhibition can give a potential benefit in reducing obesity and lowering insulin resistance by modulating the insulin-signaling pathway and adipocytokine production. Copyright © 2016. Published by Elsevier Inc.

  14. Alcohol dehydrogenase type 3 (ADH3) and the risk of bladder cancer.

    NARCIS (Netherlands)

    Dijk, B. van; Houwelingen, K.P. van; Witjes, J.A.; Schalken, J.A.; Kiemeney, L.A.L.M.

    2001-01-01

    OBJECTIVES: The polymorphic enzyme alcohol dehydrogenase (ADH) catalyses the conversion of ethanol into the carcinogenic metabolite acetaldehyde which is partly excreted into the urine. Objectives of this pilot study are to determine whether this polymorphism may be related to bladder cancer and

  15. Delayed diagnosis of congenital adrenal hyperplasia with salt wasting due to type II 3beta-hydroxysteroid dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Johannsen, Trine H; Mallet, Delphine; Dige-Petersen, Harriet

    2005-01-01

    Classical 3beta-hydroxysteroid dehydrogenase (3beta-HSD) deficiency is a rare cause of congenital adrenal hyperplasia. We report two sisters presenting with delayed diagnoses of classical 3beta-HSD, despite salt wasting (SW) episodes in infancy. Sibling 1 was referred for premature pubarche, slight....... There is no previous report of the combination of SW and premature pubarche due to mutations in the type II 3beta-HSD gene. Because neonatal diagnosis could have prevented life-threatening crises in these girls, this report further supports the benefits for neonatal screening for congenital adrenal hyperplasia...

  16. Crystal structures of type III{sub H} NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Pampa, K.J. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Manjula, M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Hemantha Kumar, G. [Department of Studies in Computer Science, University of Mysore, Mysore 570 006 (India); Kunishima, Naoki [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Lokanath, N.K., E-mail: lokanath@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India)

    2014-08-15

    Highlights: • Determined the crystal structures of PGDH from two thermophiles. • Monomer is composed of nucleotide binding domain and substrate binding domain. • Crystal structures of type III{sub H} PGDH. - Abstract: In the L-Serine biosynthesis, D-3-phosphoglycerate dehydrogenase (PGDH) catalyzes the inter-conversion of D-3-phosphoglycerate to phosphohydroxypyruvate. PGDH belongs to 2-hydroxyacid dehydrogenases family. We have determined the crystal structures of PGDH from Sulfolobus tokodaii (StPGDH) and Pyrococcus horikoshii (PhPGDH) using X-ray diffraction to resolution of 1.77 Å and 1.95 Å, respectively. The PGDH protomer from both species exhibits identical structures, consisting of substrate binding domain and nucleotide binding domain. The residues and water molecules interacting with the NAD are identified. The catalytic triad residues Glu-His-Arg are highly conserved. The residues involved in the dimer interface and the structural features responsible for thermostability are evaluated. Overall, structures of PGDHs with two domains and histidine at the active site are categorized as type III{sub H} and such PGDHs structures having this type are reported for the first time.

  17. The HADHSC gene encoding short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) and type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    van Hove, Els C; Hansen, Torben; Dekker, Jacqueline M;

    2006-01-01

    of the SCHAD enzyme in glucose-stimulated insulin secretion led us to the hypothesis that common variants in HADHSC on chromosome 4q22-26 might be associated with development of type 2 diabetes. In this study, we have performed a large-scale association study in four different cohorts from the Netherlands...... measure (all P > 0.1). The present study provides no evidence that the specific HADHSC variants or haplotypes examined do influence susceptibility to develop type 2 diabetes. We conclude that it is unlikely that variation in HADHSC plays a major role in the pathogenesis of type 2 diabetes in the examined......The short-chain l-3-hydroxyacyl-CoA dehydrogenase (SCHAD) protein is involved in the penultimate step of mitochondrial fatty acid oxidation. Previously, it has been shown that mutations in the corresponding gene (HADHSC) are associated with hyperinsulinism in infancy. The presumed function...

  18. Zearalenone Inhibits Rat and Human 11β-Hydroxysteroid Dehydrogenase Type 2

    Directory of Open Access Journals (Sweden)

    Linxi Li

    2015-01-01

    Full Text Available Zearalenone is a mycotoxin produced by Fusarium spp. 11β-Hydroxysteroid dehydrogenases, isoforms 1 (HSD11B1 and 2 (HSD11B2, have been demonstrated to be the regulators of the local level of active glucocorticoid, which has a broad range of physiological actions. In the present study, the potency of zearalenone was tested for the inhibition of HSD11B1 and HSD11B2 in rat and human tissues. Zearalenone showed potent inhibition of HSD11B2 with the half-maximal inhibitory concentration (IC50 calculated at 49.63 and 32.22 μM for the rat and human, respectively. Results showed that zearalenone competitively inhibited HSD11B2 when a steroid substrate was used. However, it served as an uncompetitive inhibitory factor when the cofactor NAD+ was used. In contrast, the potency of zearalenone to inhibit both rat and human HSD11B1 was diminished, with the concentration of 100 μM causing almost no inhibitory effect on the isoform. In conclusion, we observed that zearalenone is a selective inhibitor of HSD11B2, implying that this agent may cause excessive glucocorticoid action in local tissues such as kidney and placentas.

  19. Zearalenone Inhibits Rat and Human 11β-Hydroxysteroid Dehydrogenase Type 2.

    Science.gov (United States)

    Li, Linxi; Wu, Xiaolong; Guan, Hongguo; Mao, Baiping; Wang, Huang; Yuan, Xiaohuan; Chu, Yanhui; Sun, Jianliang; Ge, Ren-Shan

    2015-01-01

    Zearalenone is a mycotoxin produced by Fusarium spp. 11β-Hydroxysteroid dehydrogenases, isoforms 1 (HSD11B1) and 2 (HSD11B2), have been demonstrated to be the regulators of the local level of active glucocorticoid, which has a broad range of physiological actions. In the present study, the potency of zearalenone was tested for the inhibition of HSD11B1 and HSD11B2 in rat and human tissues. Zearalenone showed potent inhibition of HSD11B2 with the half-maximal inhibitory concentration (IC50) calculated at 49.63 and 32.22 μM for the rat and human, respectively. Results showed that zearalenone competitively inhibited HSD11B2 when a steroid substrate was used. However, it served as an uncompetitive inhibitory factor when the cofactor NAD(+) was used. In contrast, the potency of zearalenone to inhibit both rat and human HSD11B1 was diminished, with the concentration of 100 μM causing almost no inhibitory effect on the isoform. In conclusion, we observed that zearalenone is a selective inhibitor of HSD11B2, implying that this agent may cause excessive glucocorticoid action in local tissues such as kidney and placentas.

  20. Association between ins4436A in 11β-hydroxysteroid dehydrogenase type 1 gene and essential hypertension in Polish population

    Directory of Open Access Journals (Sweden)

    Paulina Hejduk

    2015-11-01

    Full Text Available Background: Essential hypertension (EH is the most common cardiovascular disease worldwide, and it has a strong genetic component. Cortisol homeostasis is an important factor in controlling blood pressure, and the availability of this hormone is regulated by 11βhydroxysteroid dehydrogenase type 1 enzyme (11βHSD1, which converts cortisone into cortisol. Materials and Methods: We investigated the correlation between EH and the single nucleotide polymorphism (SNP ins4436A located on the hydroxysteroid (11-beta dehydrogenase 1 gene among the Polish population. The study included a total of 268 patients with confirmed EH and 151 unrelated controls. All studied polymorphisms were detected using the restriction fragment length polymorphism (RFLP method. Results: The carriage of ins4436A (rs45487298 polymorphism in intron 3 of the HSD11B1 gene was more frequent among patients with EH than among controls (p=0.013. The analysis of association of ins4436A with the risk of EH indicated an odds ratio (OR of 2.44 (95% confidential interval: 1.24-4.82. Moreover, essential hypertension occurred less frequently in males than in females. Results of multivariate analysis in the study group showed that ins4436A is a strong predictor of diabetes mellitus type 2 and ins4436A may lead to a decrease of the high-density lipoprotein (HDL cholesterol level.Discussion: The cause of essential hypertension has not been fully established, but genetic factors seem to play a very important role. In our study we found that ins4436A in the HSD11B1 gene was associated with essential hypertension in a Polish population. Nevertheless, the impact of ins4436A in the HSD11B1 gene on the occurrence of essential hypertension requires further investigations.

  1. Expression and Activation of STAT Transcription Factors in Breast Cancer

    Science.gov (United States)

    1998-05-08

    clinicians. J~, 273: 577-585, 1995. 183 Hundertmark 5, Buhler H, Rudolf M, Weitzel HK, Ragosch V: Inhibition of 11 beta-hydroxysteroid dehydrogenase...activated protein kinase through a Jakl-dependent pathway. Mol. Cell. Bioi., 17:3833-40, 1997. Stewart JF, Rubens RO, King RJ, Minton MJ, Steiner R

  2. Genistein inhibits glucocorticoid amplification in adipose tissue by suppression of 11β-hydroxysteroid dehydrogenase type 1.

    Science.gov (United States)

    Tagawa, Noriko; Kubota, Sayaka; Kobayashi, Yoshiharu; Kato, Ikuo

    2015-01-01

    Excess glucocorticoids promote visceral obesity, hyperlipidemia, and insulin resistance. The main regulator of intracellular glucocorticoid levels is 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoids into bioactive forms such as cortisol in humans and corticosterone in rodents. Hexose-6-phosphate dehydrogenase (H6PD), which is colocalized with 11β-HSD1 in the intralumen of the endoplasmic reticulum, supplies a crucial coenzyme, NADPH, for full reductase activity of 11β-HSD1. Therefore, it is possible that inhibition of 11β-HSD1 will become a considerable medical treatment for metabolic diseases including obesity and diabetes. Genistein, a soy isoflavone, has received attention for its therapeutic potential for obesity, diabetes, and cardiovascular disease, and has been proposed as a promising compound for the treatment of metabolic disorders. However, the mechanisms underlying the pleiotropic anti-obesity effects of genistein have not been fully clarified. Here, we demonstrate that genistein was able to inhibit 11β-HSD1 and H6PD activities within 10 or 20min, in dose- and time-dependent manners. Inhibition of 11β-HSD2 activity was not observed in rat kidney microsomes. The inhibition was not reversed by two estrogen receptor antagonists, tamoxifen and ICI182,780. A kinetic study revealed that genistein acted as a non-competitive inhibitor of 11β-HSD1, and its apparent Km value for 11-dehydrocorticosterone was 0.5μM. Genistein also acted as a non-competitive inhibitor of H6PD, and its apparent Km values for G6P and NADP were 0.9 and 3.3μM, respectively. These results suggest that genistein may exert its inhibitory effect by interacting with these enzymes. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Substrate binding process and mechanistic functioning of type 1 11β-hydroxysteroid dehydrogenase from enhanced sampling methods.

    Directory of Open Access Journals (Sweden)

    Angelo D Favia

    Full Text Available In humans, type 1 11β-hydroxysteroid dehydrogenase (11β-HSD-1 plays a key role in the regulation of the glucocorticoids balance by converting the inactive hormone cortisone into cortisol. Numerous functional aspects of 11β-HSD-1 have been understood thanks to the availability at the Worldwide Protein Data Bank of a number of X-ray structures of the enzyme either alone or in complex with inhibitors, and to several experimental data. However at present, a complete description of the dynamic behaviour of 11β-HSD-1 upon substrate binding is missing. To this aim we firstly docked cortisone into the catalytic site of 11β-HSD-1 (both wild type and Y177A mutant, and then we used steered molecular dynamics and metadynamics to simulate its undocking. This methodology helped shedding light at molecular level on the complex relationship between the enzyme and its natural substrate. In particular, the work highlights a the reason behind the functional dimerisation of 11β-HSD-1, b the key role of Y177 in the cortisone binding event, c the fine tuning of the active site degree of solvation, and d the role of the S228-P237 loop in ligand recognition.

  4. Adamantyl Ethanone Pyridyl Derivatives: Potent and Selective Inhibitors of Human 11β-Hydroxysteroid Dehydrogenase Type 1

    Science.gov (United States)

    Su, Xiangdong; Pradaux-Caggiano, Fabienne; Vicker, Nigel; Thomas, Mark P; Halem, Heather; Culler, Michael D; Potter, Barry V L

    2011-01-01

    Elevated levels of active glucocorticoids have been implicated in the development of several phenotypes of metabolic syndrome, such as type 2 diabetes and obesity. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular conversion of inactive cortisone to cortisol. Selective 11β-HSD1 inhibitors have shown beneficial effects in various conditions, including diabetes, dyslipidemia and obesity. A series of adamantyl ethanone pyridyl derivatives has been identified, providing potent and selective inhibitors of human 11β-HSD1. Lead compounds display low nanomolar inhibition against human and mouse 11β-HSD1 and are selective for this isoform, with no activity against 11β-HSD2 and 17β-HSD1. Structure–activity relationship studies reveal that an unsubstituted pyridine tethered to an adamantyl ethanone motif through an ether or sulfoxide linker provides a suitable pharmacophore for activity. The most potent inhibitors have IC50 values around 34–48 nm against human 11β-HSD1, display reasonable metabolic stability in human liver microsomes, and weak inhibition of key human CYP450 enzymes. PMID:21714097

  5. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    Directory of Open Access Journals (Sweden)

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  6. [Reduction of obesity-related metabolic risk by modulating tissue exposition to cortisol].

    Science.gov (United States)

    Iovino, Alessandra; Paquot, Nicolas; Scheen, André J

    2010-09-01

    The 11-beta-hydroxysteroid dehydrogenase type 1 (11HSD1) enzyme promotes the local conversion from cortisone to cortisol, especially in the liver and the adipose tissue. It may play a role in the pathophysiology of abdominal obesity and the metabolic syndrome, both showing some similarities with the Cushing syndrome. Considering experimental results obtained in rodents, the inhibition of this enzyme could exert favourable metabolic effects, with significant reductions in plasma glucose, insulin resistance and dyslipidaemia. Synthetic inhibitors of 11HSD1 are currently in development with encouraging preliminary results, first in animals, and more recently in humans. Selective inhibitors of 11HSD1 may represent an innovative approach in the pharmacological management of obesity, metabolic syndrome and type 2 diabetes in a near future.

  7. Association study of sorbitol dehydrogenase -888G>C polymorphism with type 2 diabetic retinopathy in Caucasian-Brazilians.

    Science.gov (United States)

    Ferreira, Fábio Netto; Crispim, Daisy; Canani, Luís Henrique; Gross, Jorge Luiz; dos Santos, Kátia Gonçalves

    2013-10-01

    Diabetic retinopathy (DR) is a common chronic complication of diabetes and remains the leading cause of blindness in working-aged people. Hyperglycemia increases glucose flux through the polyol pathway, in which aldose reductase converts glucose into intracellular sorbitol, which is subsequently converted to fructose by sorbitol dehydrogenase (SDH). The accelerated polyol pathway triggers a cascade of events leading to retinal vascular endothelial dysfunction and the eventual development of DR. Polymorphisms in the gene encoding aldose reductase have been consistently associated with DR. However, only two studies have analyzed the relationship between polymorphisms in the gene encoding SDH (SORD) and DR. In this case-control study, we investigated whether the -888G > C polymorphism (rs3759890) in the SORD gene is associated with the presence or severity of DR in 446 Caucasian-Brazilians with type 2 diabetes (241 subjects with and 205 subjects without DR). The -888G > C polymorphism was also examined in 105 healthy Caucasian blood donors, and the genotyping of this polymorphism was carried out by real-time PCR. The genotype and allele frequencies of the -888G > C polymorphism in patients with type 2 diabetes were similar to those of blood donors (G allele frequency = 0.16 in both groups of subjects). Similarly, the genotype and allele frequencies in patients with DR or the proliferative form of DR were similar to those of patients without this complication (P > 0.05 for all comparisons). Thus, our findings suggest that the -888G > C polymorphism in the SORD gene is not involved in the pathogenesis of DR in type 2 diabetes.

  8. Species used for drug testing reveal different inhibition susceptibility for 17beta-hydroxysteroid dehydrogenase type 1.

    Directory of Open Access Journals (Sweden)

    Gabriele Möller

    Full Text Available Steroid-related cancers can be treated by inhibitors of steroid metabolism. In searching for new inhibitors of human 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD 1 for the treatment of breast cancer or endometriosis, novel substances based on 15-substituted estrone were validated. We checked the specificity for different 17beta-HSD types and species. Compounds were tested for specificity in vitro not only towards recombinant human 17beta-HSD types 1, 2, 4, 5 and 7 but also against 17beta-HSD 1 of several other species including marmoset, pig, mouse, and rat. The latter are used in the processes of pharmacophore screening. We present the quantification of inhibitor preferences between human and animal models. Profound differences in the susceptibility to inhibition of steroid conversion among all 17beta-HSDs analyzed were observed. Especially, the rodent 17beta-HSDs 1 were significantly less sensitive to inhibition compared to the human ortholog, while the most similar inhibition pattern to the human 17beta-HSD 1 was obtained with the marmoset enzyme. Molecular docking experiments predicted estrone as the most potent inhibitor. The best performing compound in enzymatic assays was also highly ranked by docking scoring for the human enzyme. However, species-specific prediction of inhibitor performance by molecular docking was not possible. We show that experiments with good candidate compounds would out-select them in the rodent model during preclinical optimization steps. Potentially active human-relevant drugs, therefore, would no longer be further developed. Activity and efficacy screens in heterologous species systems must be evaluated with caution.

  9. [Diagnostic value of definition of lactate dehydrogenase in mixed saliva in children with periodontitis at diabetes mellitus, type I].

    Science.gov (United States)

    Chidzhavadze, E M; Akhvlediani, M V; Vadachkoriia, Z O; Gordeladze, M R

    2006-01-01

    The problem of treatment of periodontitis remains one of the hot topics in practical stomatology. It has been established that modern adaptogenic infection is rather aggressive to whole organism of a human being. All these demands accurate approach while choosing of a conservative method of treatment for such forms as acute and chronic periodontitis. There were 27 children under observation with diabetes mellitus of type 1 (I group). Mean age was 10.5+/-0.75 years. 15 were girls and 13 boys. All patients from the I group were examined for the pathologies of oral cavity. In 100% dryness in a mouth and in 67% bleeding from the gum had been revealed. The mild form of chronic catarrhal gingivitis was revealed in 12 patients, moderate in 5, chronic hypertrophic gingivitis in 8 respectively. Studying of pH of saliva and lactate dehydrogenase (LDH) activity in children with periodontitis developed on the background of recently diagnosed type 1 diabetes mellitus has shown, that pH of saliva was equal to 5.3+/-0.18. In control group (healthy children) pH of saliva was 6.8+/-0.06. In the conclusion it should be emphasized, that we have tried to explain some aspects of multiple character of development of periodontitis at recently discovered insulin-depended diabetes mellitus. Character of changes of some properties of saliva pH and of enzyme activity of LDG promotes to carrying out medical and preventive actions, influencing the main blocks of pathogenesis of this pathological process. Besides, we consider possibility of inclusion the studied parameters of mixed saliva in the algorithm of investigation of periodontitis in children with recently diagnosed type 1 diabetes mellitus.

  10. Chronic inhibition of 11 β -hydroxysteroid dehydrogenase type 1 activity decreases hypertension, insulin resistance, and hypertriglyceridemia in metabolic syndrome.

    Science.gov (United States)

    Schnackenberg, Christine G; Costell, Melissa H; Krosky, Daniel J; Cui, Jianqi; Wu, Charlene W; Hong, Victor S; Harpel, Mark R; Willette, Robert N; Yue, Tian-Li

    2013-01-01

    Metabolic syndrome is a constellation of risk factors including hypertension, dyslipidemia, insulin resistance, and obesity that promote the development of cardiovascular disease. Metabolic syndrome has been associated with changes in the secretion or metabolism of glucocorticoids, which have important functions in adipose, liver, kidney, and vasculature. Tissue concentrations of the active glucocorticoid cortisol are controlled by the conversion of cortisone to cortisol by 11 β -hydroxysteroid dehydrogenase type 1 (11 β -HSD1). Because of the various cardiovascular and metabolic activities of glucocorticoids, we tested the hypothesis that 11 β -HSD1 is a common mechanism in the hypertension, dyslipidemia, and insulin resistance in metabolic syndrome. In obese and lean SHR/NDmcr-cp (SHR-cp), cardiovascular, metabolic, and renal functions were measured before and during four weeks of administration of vehicle or compound 11 (10 mg/kg/d), a selective inhibitor of 11 β -HSD1. Compound 11 significantly decreased 11 β -HSD1 activity in adipose tissue and liver of SHR-cp. In obese SHR-cp, compound 11 significantly decreased mean arterial pressure, glucose intolerance, insulin resistance, hypertriglyceridemia, and plasma renin activity with no effect on heart rate, body weight gain, or microalbuminuria. These results suggest that 11 β -HSD1 activity in liver and adipose tissue is a common mediator of hypertension, hypertriglyceridemia, glucose intolerance, and insulin resistance in metabolic syndrome.

  11. Chronic Inhibition of 11β-Hydroxysteroid Dehydrogenase Type 1 Activity Decreases Hypertension, Insulin Resistance, and Hypertriglyceridemia in Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Christine G. Schnackenberg

    2013-01-01

    Full Text Available Metabolic syndrome is a constellation of risk factors including hypertension, dyslipidemia, insulin resistance, and obesity that promote the development of cardiovascular disease. Metabolic syndrome has been associated with changes in the secretion or metabolism of glucocorticoids, which have important functions in adipose, liver, kidney, and vasculature. Tissue concentrations of the active glucocorticoid cortisol are controlled by the conversion of cortisone to cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1. Because of the various cardiovascular and metabolic activities of glucocorticoids, we tested the hypothesis that 11β-HSD1 is a common mechanism in the hypertension, dyslipidemia, and insulin resistance in metabolic syndrome. In obese and lean SHR/NDmcr-cp (SHR-cp, cardiovascular, metabolic, and renal functions were measured before and during four weeks of administration of vehicle or compound 11 (10 mg/kg/d, a selective inhibitor of 11β-HSD1. Compound 11 significantly decreased 11β-HSD1 activity in adipose tissue and liver of SHR-cp. In obese SHR-cp, compound 11 significantly decreased mean arterial pressure, glucose intolerance, insulin resistance, hypertriglyceridemia, and plasma renin activity with no effect on heart rate, body weight gain, or microalbuminuria. These results suggest that 11β-HSD1 activity in liver and adipose tissue is a common mediator of hypertension, hypertriglyceridemia, glucose intolerance, and insulin resistance in metabolic syndrome.

  12. Central glucocorticoid administration promotes weight gain and increased 11β-hydroxysteroid dehydrogenase type 1 expression in white adipose tissue.

    Directory of Open Access Journals (Sweden)

    Christelle Veyrat-Durebex

    Full Text Available Glucocorticoids (GCs are involved in multiple metabolic processes, including the regulation of insulin sensitivity and adipogenesis. Their action partly depends on their intracellular activation by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1. We previously demonstrated that central GC administration promotes hyperphagia, body weight gain, hyperinsulinemia and marked insulin resistance at the level of skeletal muscles. Similar dysfunctions have been reported to occur upon specific overexpression of 11β-HSD1 in adipose tissue. The aim of the present study was therefore to determine whether the effects of central GC infusion may enhance local GC activation in white adipose tissue. Male Wistar and Sprague Dawley (SD rats were intracerebroventricularly infused with GCs for 2 to 3 days. Body weight, food intake and metabolic parameters were measured, and expression of enzymes regulating 11β-HSD1, as well as that of genes regulated by GCs, were quantified. Central GC administration induced a significant increase in body weight gain and in 11β-HSD1 and resistin expression in adipose tissue. A decrease 11β-HSD1 expression was noticed in the liver of SD rats, as a partial compensatory mechanism. Such effects of GCs are centrally elicited. This model of icv dexamethasone infusion thus appears to be a valuable acute model, that helps delineating the initial metabolic defects occurring in obesity. An impaired downregulation of intracellular GC activation in adipose tissue may be important for the development of insulin resistance.

  13. A Novel Type II NAD+-Specific Isocitrate Dehydrogenase from the Marine Bacterium Congregibacter litoralis KT71.

    Science.gov (United States)

    Wu, Ming-Cai; Tian, Chang-Qing; Cheng, Hong-Mei; Xu, Lei; Wang, Peng; Zhu, Guo-Ping

    2015-01-01

    In most living organisms, isocitrate dehydrogenases (IDHs) convert isocitrate into ɑ-ketoglutarate (ɑ-KG). Phylogenetic analyses divide the IDH protein family into two subgroups: types I and II. Based on cofactor usage, IDHs are either NAD+-specific (NAD-IDH) or NADP+-specific (NADP-IDH); NADP-IDH evolved from NAD-IDH. Type I IDHs include NAD-IDHs and NADP-IDHs; however, no type II NAD-IDHs have been reported to date. This study reports a novel type II NAD-IDH from the marine bacterium Congregibacter litoralis KT71 (ClIDH, GenBank accession no. EAQ96042). His-tagged recombinant ClIDH was produced in Escherichia coli and purified; the recombinant enzyme was NAD+-specific and showed no detectable activity with NADP+. The Km values of the enzyme for NAD+ were 262.6±7.4 μM or 309.1±11.2 μM with Mg2+ or Mn2+ as the divalent cation, respectively. The coenzyme specificity of a ClIDH Asp487Arg/Leu488His mutant was altered, and the preference of the mutant for NADP+ was approximately 24-fold higher than that for NAD+, suggesting that ClIDH is an NAD+-specific ancestral enzyme in the type II IDH subgroup. Gel filtration and analytical ultracentrifugation analyses revealed the homohexameric structure of ClIDH, which is the first IDH hexamer discovered thus far. A 163-amino acid segment of CIIDH is essential to maintain its polymerization structure and activity, as a truncated version lacking this region forms a non-functional monomer. ClIDH was dependent on divalent cations, the most effective being Mn2+. The maximal activity of purified recombinant ClIDH was achieved at 35°C and pH 7.5, and a heat inactivation experiment showed that a 20-min incubation at 33°C caused a 50% loss of ClIDH activity. The discovery of a NAD+-specific, type II IDH fills a gap in the current classification of IDHs, and sheds light on the evolution of type II IDHs.

  14. Glucocorticoid-related genetic susceptibility for Alzheimer's disease.

    Science.gov (United States)

    de Quervain, Dominique J-F; Poirier, Raphael; Wollmer, M Axel; Grimaldi, Luigi M E; Tsolaki, Magdalini; Streffer, Johannes R; Hock, Christoph; Nitsch, Roger M; Mohajeri, M Hasan; Papassotiropoulos, Andreas

    2004-01-01

    Because glucocorticoid excess increases neuronal vulnerability, genetic variations in the glucocorticoid system may be related to the risk for Alzheimer's disease (AD). We analyzed single-nucleotide polymorphisms in 10 glucocorticoid-related genes in a population of 814 AD patients and unrelated control subjects. Set-association analysis revealed that a rare haplotype in the 5' regulatory region of the gene encoding 11beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) was associated with a 6-fold increased risk for sporadic AD. Results of a reporter-gene assay indicated that the rare risk-associated haplotype altered HSD11B1 transcription. HSD11B1 controls tissue levels of biologically active glucocorticoids and thereby influences neuronal vulnerability. Our results indicate that a functional variation in the glucocorticoid system increases the risk for AD, which may have important implications for the diagnosis and treatment of this disease.

  15. A quantitative cytochemical study of glucose-6-phosphate dehydrogenase and delta 5-3 beta-hydroxysteroid dehydrogenase activity in the membrana granulosa of the ovulable type of follicle of the rat.

    Science.gov (United States)

    Zoller, L C; Weisz, J

    1979-08-01

    During the last four days of follicular development prior to ovulation, the activities of delta 5-3 beta-hydroxysteroid dehydrogenase (3 beta OHD) and glucose-6-phosphate dehydrogenase (G-6-PD) were quantified in cryostat sections of the rat ovary. The product of the enzyme reactions were measured using a scanning and integrating microdensitometer. The enzyme activity was measured in the peripheral region, the antral region and the cumulus of the membrana granulosa (MG) of these follicles on the morning of each of the four days of the estrous cycle. G-6-PD activity was measured in the presence and absence of an intermediate hydrogen acceptor, phenazine methosulphate, to provide a measure of the quantity of Type I and Type II Hydrogen (H) generated: Type I H is considered to be related to hydroxylating reactions such as those of steroids and Type II H to other general biosynthetic activities of cells. In all three regions of the MG of follicles of the ovulable type, 3 beta OHD activity was lowest in estrus and diestrus-1, increased on diestrus-2 and peaked in proestrus. In estrus and diestrus-1, the level of 3 beta OHD activity in the three regions was comparable. However, by diestrus-2, and even more conspicuously in proestrus, enzyme activity was significantly greater in the peripheral region than in the antral region or in the cumulus. During the same period, the level of enzyme activity remained comparable in the last two regions. Throughout the estrous cycle, both Type I and Type II H generation from G-6-PD was greatest in the peripheral region, less in the antral region and least in the cumulus. In the eripheral region, Type I H generation increased progressively after diestrus-1, to reach a maximum in prestrus. In the antral region, Type I H generation increased between diestrus-1 and diestrus-2 and then remained unchanged through proestrus. In the cumulus, Type I H generation remained at levels seen in estrus throughout the remainder of the cycle. Generation

  16. Annotated compound data for modulators of detergent-solubilised or lipid-reconstituted respiratory type II NADH dehydrogenase activity obtained by compound library screening

    OpenAIRE

    Dunn, Elyse A.; Cook, Gregory M.; Adam Heikal

    2015-01-01

    The energy-generating membrane protein NADH dehydrogenase (NDH-2), a proposed antibacterial drug target (see “Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs” Weinstein et al. 2005 [1]), was screened for modulators of activity in either detergent-solublised or lipid reconstituted (proteolipsome) form. Here we present an annotated list of compounds identified in a small-scale screen against NDH-2. The dataset contains information regarding the li...

  17. 17β-Hydroxysteroid Dehydrogenase Type 1 Stimulates Breast Cancer by Dihydrotestosterone Inactivation in Addition to Estradiol Production

    Science.gov (United States)

    Aka, Juliette A.; Mazumdar, Mausumi; Chen, Chang-Qing; Poirier, Donald; Lin, Sheng-Xiang

    2010-01-01

    The active estrogen estradiol (E2) stimulates breast cancer cell (BCC) growth, whereas the androgen dihydrotestosterone (DHT) has shown an antiproliferative effect. The principal product synthesized by the 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) is E2, although we have demonstrated that the purified enzyme also inactivates DHT. However, the direct roles of 17β-HSD1 in sex-hormone regulation and BCC proliferation have not been completely established. Here, we show that 17β-HSD1 inhibition suppresses DHT catabolism by 19%, whereas knockdown of the gene expression increases the concentration of DHT by 41% in the T47D BCC line. The 17β-HSD1/DHT complex crystal structure reveals that DHT binds in both normal and reverse modes, but the latter mode leading to O3 reduction is preferred with stronger interactions. Using RNA interference and an inhibitor of 17β-HSD1, we demonstrate that 17β-HSD1 expression is negatively correlated to DHT levels in BCC but positively correlated to estrone reduction, E2 levels, and cell proliferation. 17β-HSD1 inhibition reduces DHT inactivation, increasing the antiproliferative effect by DHT in T47D cells after 8 d treatment. Thus, 17β-HSD1 up-regulates BCC growth by a dual action on estradiol synthesis and DHT inactivation. We have further demonstrated that 17β-HSD1 can enhance the E2-induced expression of the endogenous estrogen-responsive gene pS2, providing an important information regarding the modulation of the estrogen responsiveness by 17β-HSD1 that may also contribute to BCC growth. These results strongly support the rationale for inhibiting 17β-HSD1 in breast cancer therapy to eliminate estrogen activation via the sulfatase pathway while avoiding the deprivation of DHT. PMID:20172961

  18. Molecular alterations and expression of succinate dehydrogenase complex in wild-type KIT/PDGFRA/BRAF gastrointestinal stromal tumors.

    Science.gov (United States)

    Celestino, Ricardo; Lima, Jorge; Faustino, Alexandra; Vinagre, João; Máximo, Valdemar; Gouveia, António; Soares, Paula; Lopes, José Manuel

    2013-05-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, disclosing somatic KIT, PDGFRA and BRAF mutations. Loss of function of succinate dehydrogenase (SDH) complex is an alternative molecular mechanism in GISTs, namely in carriers of germline mutations of the SDH complex that develop Carney-Stratakis dyad characterized by multifocal GISTs and multicentric paragangliomas (PGLs). We studied a series of 25 apparently sporadic primary wild-type (WT) KIT/PDGFRA/BRAF GISTs occurring in patients without personal or familial history of PGLs, re-evaluated clinicopathological features and analyzed molecular alterations and immunohistochemistry expression of SDH complex. As control, we used a series of well characterized 49 KIT/PDGFRA/BRAF-mutated GISTs. SDHB expression was absent in 20% and SDHB germline mutations were detected in 12% of WT GISTs. Germline SDHB mutations were significantly associated to younger age at diagnosis. A significant reduction in SDHB expression in WT GISTs was found when compared with KIT/PDGFRA/BRAF-mutated GISTs. No significant differences were found when comparing DOG-1 and c-KIT expression in WT, SDHB-mutated and KIT/PDGFRA/BRAF-mutated GISTs. Our results confirm the occurrence of germline SDH genes mutations in isolated, apparently sporadic WT GISTs. WT KIT/PDGFRA/BRAF GISTs without SDHB or SDHA/SDHB expression may correspond to Carney-Stratakis dyad or Carney triad. Most importantly, the possibility of PGLs (Carney-Stratakis dyad) and/or pulmonary chondroma (Carney triad) should be addressed in these patients and their kindred.

  19. High salt intake down-regulates colonic mineralocorticoid receptors, epithelial sodium channels and 11β-hydroxysteroid dehydrogenase type 2.

    Directory of Open Access Journals (Sweden)

    Daniel Lienhard

    Full Text Available Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2. Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001 and reduced the expression of the MR (p<0.01. The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001. The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.

  20. Saturated fatty acids in human visceral adipose tissue are associated with increased 11- β-hydroxysteroid-dehydrogenase type 1 expression.

    Science.gov (United States)

    Petrus, Paul; Rosqvist, Fredrik; Edholm, David; Mejhert, Niklas; Arner, Peter; Dahlman, Ingrid; Rydén, Mikael; Sundbom, Magnus; Risérus, Ulf

    2015-05-02

    Visceral fat accumulation is associated with metabolic disease. It is therefore relevant to study factors that regulate adipose tissue distribution. Recent data shows that overeating saturated fatty acids promotes greater visceral fat storage than overeating unsaturated fatty acids. Visceral adiposity is observed in states of hypercortisolism, and the enzyme 11-β-hydroxysteroid-dehydrogenase type 1 (11β-hsd1) is a major regulator of cortisol activity by converting inactive cortisone to cortisol in adipose tissue. We hypothesized that tissue fatty acid composition regulates body fat distribution through local effects on the expression of 11β-hsd1 and its corresponding gene (HSD11B1) resulting in altered cortisol activity. Visceral- and subcutaneous adipose tissue biopsies were collected during Roux-en-Y gastric bypass surgery from 45 obese women (BMI; 41±4 kg/m2). The fatty acid composition of each biopsy was measured and correlated to the mRNA levels of HSD11B1. 11β-hsd1 protein levels were determined in a subgroup (n=12) by western blot analysis. Our main finding was that tissue saturated fatty acids (e.g. palmitate) were associated with increased 11β-hsd1 gene- and protein-expression in visceral but not subcutaneous adipose tissue. The present study proposes a link between HSD11B1 and saturated fatty acids in visceral, but not subcutaneous adipose tissue. Nutritional regulation of visceral fat mass through HSD11B1 is of interest for the modulation of metabolic risk and warrants further investigation.

  1. Adipose tissue-targeted 11β-hydroxysteroid dehydrogenase type 1 inhibitor protects against diet-induced obesity.

    Science.gov (United States)

    Liu, Juan; Wang, Long; Zhang, Aisen; Di, Wenjuan; Zhang, Xiao; Wu, Lin; Yu, Jing; Zha, Juanmin; Lv, Shan; Cheng, Peng; Hu, Miao; Li, Yujie; Qi, Hanmei; Ding, Guoxian; Zhong, Yi

    2011-01-01

    Current pharmacological treatments for obesity and metabolic syndrome have various limitations. Recently, adipose tissue 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) has been proposed as a novel therapeutic target for the treatment of obesity and metabolic syndrome. Nevertheless, there is no adipose tissue-targeted 11β-HSD1 inhibitor available now. We sought to develop a new 11β-HSD1 pharmacological inhibitor that homes specifically to the white adipose tissue and aimed to investigate whether adipose tissue-targeted 11β-HSD1 inhibitor might decrease body weight gain and improve glucose tolerance in diet-induced obesity mice. BVT.2733, an 11β-HSD1 selective inhibitor was connected with a peptide CKGGRAKDC that homes to white fat vasculature. CKGGRAKDC-BVT.2733 (T-BVT) or an equimolar mixture of CKGGRAKDC and BVT.2733 (NT-BVT) was given to diet-induced obesity mice for two weeks through subcutaneous injection. T-BVT decreased body weight gain, improved glucose tolerance and decreased adipocyte size compared with vehicle treated mice. In adipose tissue T-BVT administration significantly increased adiponectin, vaspin mRNA levels; In liver T-BVT administration decreased the mRNA level of phosphoenolpyruvate carboxykinase (PEPCK), increased the mRNA levels of mitochondrial carnitine palmi-toyltransferase-I (mCPT-I) and peroxisome proliferator-activated receptorα(PPARα). No significant differences in adipocyte size and hepatic gene expression were observed after treatment with NT-BVT compared with vehicle treated mice, though NT-BVT also decreased body weight gain, improved glucose tolerance, and increased uncoupling protein-2 (UCP-2) mRNA levels in muscle. These results suggest that an adipose tissue-targeted pharmacological inhibitor of 11β-HSD1 may prove to be a new approach for the treatment of obesity and metabolic syndrome.

  2. The role of 11?-hydroxysteroid dehydrogenase type 1 and type2 isoenzymes on the pathogenesis of Cushing’s syndrome - doi:10.5020/18061230.2007.p104

    Directory of Open Access Journals (Sweden)

    Maria Betânia Pereira Toralles

    2012-01-01

    Full Text Available The action of glucocorticoids is modulated by isoenzymes 11?-hidroxiesteróide desidrogenases (11?-HSD type 1 and 2. The knowledge concerning these isoenzymes contribute to the understanding of the regulatory mechanisms involved in several disease processes of the Cushing’s syndrome, such as obesity, osteoporosis and hypertension. With the aim at describing the action of isoenzymes 11?-HSD type 1 and 2 in the Cushing’s syndrome, a literature review was done from 1990 - 2006 using the Medline data base, searching for the following key-words: Cushing’s syndrome, glucocorticoids, 11?-hydroxysteroid dehydrogenase, hypertension, osteoporosis and obesity. Review studies, meta-analysis and original articles were selected and chosen on the basis of methodological aspects and relevance. The exact mechanism by which cortisol increases blood pressure is not completely understood, but it involves, among others factors, changes in the sodium homeostasis. The conversion of cortisone to cortisol through expression of 11?-HSD1 induces the differentiation of preadipoctyes to mature adipoctyes and such patients develop an increase in visceral fat. The prevalence of osteoporosis in adult patients with Cushing’s syndrome is approximately 50% and glucocorticoids play a strong effect on the bone and calcium metabolism. The isoenzymes 11?-HSD1 and 11?-HSD2 have an important function in these several pathophysiology processes; however the isoenzymes action in the pathophysiology of the Cushing’s syndrome need to be more investigated.

  3. Lack of significant metabolic abnormalities in mice with liver-specific disruption of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Lavery, Gareth G

    2012-07-01

    Glucocorticoids (GC) are implicated in the development of metabolic syndrome, and patients with GC excess share many clinical features, such as central obesity and glucose intolerance. In patients with obesity or type 2 diabetes, systemic GC concentrations seem to be invariably normal. Tissue GC concentrations determined by the hypothalamic-pituitary-adrenal (HPA) axis and local cortisol (corticosterone in mice) regeneration from cortisone (11-dehydrocorticosterone in mice) by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, principally expressed in the liver. Transgenic mice have demonstrated the importance of 11β-HSD1 in mediating aspects of the metabolic syndrome, as well as HPA axis control. In order to address the primacy of hepatic 11β-HSD1 in regulating metabolism and the HPA axis, we have generated liver-specific 11β-HSD1 knockout (LKO) mice, assessed biomarkers of GC metabolism, and examined responses to high-fat feeding. LKO mice were able to regenerate cortisol from cortisone to 40% of control and had no discernible difference in a urinary metabolite marker of 11β-HSD1 activity. Although circulating corticosterone was unaltered, adrenal size was increased, indicative of chronic HPA stimulation. There was a mild improvement in glucose tolerance but with insulin sensitivity largely unaffected. Adiposity and body weight were unaffected as were aspects of hepatic lipid homeostasis, triglyceride accumulation, and serum lipids. Additionally, no changes in the expression of genes involved in glucose or lipid homeostasis were observed. Liver-specific deletion of 11β-HSD1 reduces corticosterone regeneration and may be important for setting aspects of HPA axis tone, without impacting upon urinary steroid metabolite profile. These discordant data have significant implications for the use of these biomarkers of 11β-HSD1 activity in clinical studies. The paucity of metabolic abnormalities in LKO points to important compensatory effects by HPA

  4. The oxidative pentose phosphate pathway in the haloarchaeon Haloferax volcanii involves a novel type of glucose-6-phosphate dehydrogenase--The archaeal Zwischenferment.

    Science.gov (United States)

    Pickl, Andreas; Schönheit, Peter

    2015-04-28

    The oxidative pentose phosphate pathway (OPPP), catalyzing the oxidation of glucose-6-phosphate to ribulose-5-phosphate is ubiquitous in eukarya and bacteria but has not yet been reported in archaea. In haloarchaea a putative 6-phosphogluconate dehydrogenase (6PGDH) is annotated, whereas a gene coding for glucose-6-phosphate dehydrogenase (Glc6PDH) could not be identified. Here we report the purification and characterization of a novel type of Glc6PDH in Haloferax volcanii that is not related to bacterial and eukaryal Glc6PDHs and the encoding gene is designated as azf (archaeal zwischenferment). Further, recombinant H. volcanii 6PGDH was characterized. Deletion mutant analyses indicate that both, Glc6PDH and 6PGDH, are functionally involved in pentose phosphate formation in vivo. This is the first report on the operation of the OPPP in the domain of archaea.

  5. A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain.

    Science.gov (United States)

    Middelhoven, W J; van Eijk, J; van Renesse, R; Blijham, J M

    1978-01-01

    NAD-specific glutamate dehydrogenase (GDH-B) was induced in a wild-type strain derived of alpha-sigma 1278b by alpha-amino acids, the nitrogen of which according to known degradative pathways is transferred to 2-oxoglutarate. A recessive mutant (gdhB) devoid of GDH-B activity grew more slowly than the wild type if one of these amino acids was the sole source of nitrogen. Addition of ammonium chloride, glutamine, asparagine or serine to growth media with inducing alpha-amino acids as the main nitrogen source increased the growth rate of the gdhB mutant to the wild-type level and repressed GDH-B synthesis in the wild type. Arginine, urea and allantoin similarly increased the growth rate of the gdhB mutant and repressed GDH-B synthesis in the presence of glutamate, but not in the presence of aspartate, alanine or proline as the main nitrogen source. These observations are consistent with the view that GDH-B in vivo deaminates glutamate. Ammonium ions are required for the biosynthesis of glutamine, asparagine, arginine, histidine and purine and pyrimidine bases. Aspartate and alanine apparently are more potent inducers of GDH-B than glutamate. Anabolic NADP-specific glutamate dehydrogenase (GDH-A) can not fulfil the function of GDH-B in the gdhB mutant. This is concluded from the equal growth rates in glutamate, aspartate and proline media as observed with a gdhB mutant and with a gdhA, gdhB double mutant in which both glutamate dehydrogenases area lacking. The double mutant showed an anomalous growth behaviour, growth rates on several nitrogen sources being unexpectedly low.

  6. The activity of 11β-hydroxysteroid dehydrogenase type 2 enzyme and cortisol secretion in patients with adrenal incidentalomas.

    Science.gov (United States)

    Morelli, Valentina; Polledri, Elisa; Mercadante, Rosa; Zhukouskaya, Volha; Palmieri, Serena; Beck-Peccoz, Paolo; Spada, Anna; Fustinoni, Silvia; Chiodini, Iacopo

    2016-09-01

    In adrenal incidentaloma (AI) patients, beside the cortisol secretion, a different 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2) activity, measurable by 24-h urinary cortisol/cortisone ratio (R-UFF/UFE) (the higher R-UFF/UFE the lower HSD11B2 activity), could influence the occurrence of the subclinical hypercortisolism (SH)-related complications (hypertension, type 2 diabetes, obesity). We evaluated whether in AI patients, UFF levels are associated to UFE levels, and the HSD11B2 activity to the complications presence. In 156 AI patients (93F, age 65.2 ± 9.5 years), the following were measured: serum cortisol after 1 mg-dexamethasone test (1 mg-DST), ACTH, UFF, UFE levels, and R-UFF/UFE (by liquid chromatography-tandem mass spectrometry), the latter was also evaluated in 63 matched-controls. We diagnosed SH (n = 22) in the presence of ≥2 among ACTH 83 nmol/L. Patients showed higher UFF levels and R-UFF/UFE than controls (75.9 ± 43.1 vs 54.4 ± 22.9 nmol/24 h and 0.26 ± 0.12 vs 0.20 ± 0.07, p < 0.005, respectively) but comparable UFE levels (291 ± 91.1 vs 268 ± 61.5, p = 0.069). The R-UFF/UFE was higher in patients with high (h-UFF, n = 28, 0.41 ± 0.20) than in those with normal (n-UFF, 0.22 ± 0.10, p < 0.005) UFF levels and in patients with SH than in those without SH (0.30 ± 0.12 vs 0.25 ± 0.12, p = 0.04). UFF levels were associated with R-UFF/UFE (r = 0.849, p < 0.001) in n-UFF, but not in h-UFF patients. Among h-UFF patients, the complications prevalence was not associated with R-UFF/UFE values. In AI patients, the UFF increase is not associated with a UFE increase. The HSD11B2 activity is inversely associated with UFF levels in n-UFF patients but not in h-UFF patients, and it is not associated with the SH complications.

  7. Identification of Hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12) as a CD8+ T-cell-defined human tumor antigen of human carcinomas

    OpenAIRE

    2011-01-01

    Hydroxysteroid (17β) dehydrogenase type 12 (HSD17B12) is a multifunctional isoenzyme functional in the conversion of estrone to estradiol (E2), and elongation of long-chain fatty acids, in particular the conversion of palmitic to archadonic (AA) acid, the precursor of sterols and the inflammatory mediator, prostaglandin E2. Its overexpression together with that of COX-2 in breast carcinoma is associated with a poor prognosis. We have identified the HSD17B12114–122 peptide (IYDKIKTGL) as a nat...

  8. 4-Dihydromethyltrisporate dehydrogenase, an enzyme of the sex hormone pathway in Mucor mucedo, is constitutively transcribed but its activity is differently regulated in (+) and (-) mating types.

    Science.gov (United States)

    Schimek, Christine; Petzold, Annett; Schultze, Kornelia; Wetzel, Jana; Wolschendorf, Frank; Burmester, Anke; Wöstemeyer, Johannes

    2005-09-01

    4-Dihydromethyltrisporate dehydrogenase (TDH) converts the (+) mating type sex pheromone 4-dihydromethyltrisporate into methyltrisporate. In Mucor mucedo, this conversion is required only in the (-) mating type. Expression of the TDH encoding TSP1 gene was analyzed qualitatively using reverse-transcribed PCR. TSP1 is constitutively transcribed in the (+) and in the (-) mating type, irrespective of the mating situation. By immunodetection, the translation product is also formed constitutively. In contrast to gene expression, TDH enzyme activity depends on the sexual status of the mycelium. Activity is restricted to the sexually stimulated (-) mating type. Non-stimulated (-), as well as stimulated and non-stimulated (+) mycelia exhibit no activity and do not influence activity in stimulated (-) mycelia. Time course analysis shows strongly increased enzyme activity at 80 min after stimulation. Low activity exists from the onset of stimulation, indicating that additional regulation mechanisms are involved in TDH function.

  9. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport.

    Science.gov (United States)

    Wallström, Sabá V; Florez-Sarasa, Igor; Araújo, Wagner L; Escobar, Matthew A; Geisler, Daniela A; Aidemark, Mari; Lager, Ida; Fernie, Alisdair R; Ribas-Carbó, Miquel; Rasmusson, Allan G

    2014-05-01

    The plant respiratory chain contains several pathways which bypass the energy-conserving electron transport complexes I, III and IV. These energy bypasses, including type II NAD(P)H dehydrogenases and the alternative oxidase (AOX), may have a role in redox stabilization and regulation, but current evidence is inconclusive. Using RNA interference, we generated Arabidopsis thaliana plants simultaneously suppressing the type II NAD(P)H dehydrogenase genes NDA1 and NDA2. Leaf mitochondria contained substantially reduced levels of both proteins. In sterile culture in the light, the transgenic lines displayed a slow growth phenotype, which was more severe when the complex I inhibitor rotenone was present. Slower growth was also observed in soil. In rosette leaves, a higher NAD(P)H/NAD(P)⁺ ratio and elevated levels of lactate relative to sugars and citric acid cycle metabolites were observed. However, photosynthetic performance was unaffected and microarray analyses indicated few transcriptional changes. A high light treatment increased AOX1a mRNA levels, in vivo AOX and cytochrome oxidase activities, and levels of citric acid cycle intermediates and hexoses in all genotypes. However, NDA-suppressing plants deviated from the wild type merely by having higher levels of several amino acids. These results suggest that NDA suppression restricts citric acid cycle reactions, inducing a shift towards increased levels of fermentation products, but do not support a direct association between photosynthesis and NDA proteins.

  10. 11β-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus.

    Science.gov (United States)

    Pereira, C D; Azevedo, I; Monteiro, R; Martins, M J

    2012-10-01

    Recent evidence strongly argues for a pathogenic role of glucocorticoids and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in obesity and the metabolic syndrome, a cluster of risk factors for atherosclerotic cardiovascular disease and type 2 diabetes mellitus (T2DM) that includes insulin resistance (IR), dyslipidaemia, hypertension and visceral obesity. This has been partially prompted not only by the striking clinical resemblances between the metabolic syndrome and Cushing's syndrome (a state characterized by hypercortisolism that associates with metabolic syndrome components) but also from monogenic rodent models for the metabolic syndrome (e.g. the leptin-deficient ob/ob mouse or the leptin-resistant Zucker rat) that display overall increased secretion of glucocorticoids. However, systemic circulating glucocorticoids are not elevated in obese patients and/or patients with metabolic syndrome. The study of the role of 11β-HSD system shed light on this conundrum, showing that local glucocorticoids are finely regulated in a tissue-specific manner at the pre-receptor level. The system comprises two microsomal enzymes that either activate cortisone to cortisol (11β-HSD1) or inactivate cortisol to cortisone (11β-HSD2). Transgenic rodent models, knockout (KO) for HSD11B1 or with HSD11B1 or HSD11B2 overexpression, specifically targeted to the liver or adipose tissue, have been developed and helped unravel the currently undisputable role of the enzymes in metabolic syndrome pathophysiology, in each of its isolated components and in their prevention. In the transgenic HSD11B1 overexpressing models, different features of the metabolic syndrome and obesity are replicated. HSD11B1 gene deficiency or HSD11B2 gene overexpression associates with improvements in the metabolic profile. In face of these demonstrations, research efforts are now being turned both into the inhibition of 11β-HSD1 as a possible pharmacological target and into the role of dietary habits on the

  11. Piper sarmentosum Effects on 11β-Hydroxysteroid Dehydrogenase Type 1 Enzyme in Serum and Bone in Rat Model of Glucocorticoid-Induced Osteoporosis.

    Science.gov (United States)

    Mohamad Asri, Siti Fadziyah; Mohd Ramli, Elvy Suhana; Soelaiman, Ima Nirwana; Mat Noh, Muhamad Alfakry; Abdul Rashid, Abdul Hamid; Suhaimi, Farihah

    2016-11-15

    Glucocorticoid-induced osteoporosis is one of the common causes of secondary osteoporosis. Piper sarmentosum (Ps) extract possesses antioxidant and anti-inflammatory activities. In this study, we determined the correlation between the effects of Ps leaf water extract with the regulation of 11β-hydroxysteroid dehydrogenase (HSD) type 1 enzyme activity in serum and bone of glucocorticoid-induced osteoporotic rats. Twenty-four Sprague-Dawley rats were grouped into following: G1: sham-operated group administered with intramuscular vehicle olive oil and vehicle normal saline orally; G2: adrenalectomized (adrx) control group given intramuscular dexamethasone (120 μg/kg/day) and vehicle normal saline orally; G3: adrx group given intramuscular dexamethasone (120 μg/kg/day) and water extract of Piper sarmentosum (125 mg/kg/day) orally. After two months, the femur and serum were taken for ELISA analysis. Results showed that Ps leaf water extract significantly reduced the femur corticosterone concentration (p < 0.05). This suggests that Ps leaf water extract was able to prevent bone loss due to long-term glucocorticoid therapy by acting locally on the bone cells by increasing the dehydrogenase action of 11β-HSD type 1. Thus, Ps may have the potential to be used as an alternative medicine against osteoporosis and osteoporotic fracture in patients on long-term glucocorticoid treatment.

  12. 17beta-hydroxysteroid dehydrogenase Type 1, and not Type 12, is a target for endocrine therapy of hormone-dependent breast cancer.

    Science.gov (United States)

    Day, Joanna M; Foster, Paul A; Tutill, Helena J; Parsons, Michael F C; Newman, Simon P; Chander, Surinder K; Allan, Gillian M; Lawrence, Harshani R; Vicker, Nigel; Potter, Barry V L; Reed, Michael J; Purohit, Atul

    2008-05-01

    Oestradiol (E2) stimulates the growth of hormone-dependent breast cancer. 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyse the pre-receptor activation/inactivation of hormones and other substrates. 17beta-HSD1 converts oestrone (E1) to active E2, but it has recently been suggested that another 17beta-HSD, 17beta-HSD12, may be the major enzyme that catalyses this reaction in women. Here we demonstrate that it is 17beta-HSD1 which is important for E2 production and report the inhibition of E1-stimulated breast tumor growth by STX1040, a non-oestrogenic selective inhibitor of 17beta-HSD1, using a novel murine model. 17beta-HSD1 and 17beta-HSD12 mRNA and protein expression, and E2 production, were assayed in wild type breast cancer cell lines and in cells after siRNA and cDNA transfection. Although 17beta-HSD12 was highly expressed in breast cancer cell lines, only 17beta-HSD1 efficiently catalysed E2 formation. The effect of STX1040 on the proliferation of E1-stimulated T47D breast cancer cells was determined in vitro and in vivo. Cells inoculated into ovariectomised nude mice were stimulated using 0.05 or 0.1 microg E1 (s.c.) daily, and on day 35 the mice were dosed additionally with 20 mg/kg STX1040 s.c. daily for 28 days. STX1040 inhibited E1-stimulated proliferation of T47D cells in vitro and significantly decreased tumor volumes and plasma E2 levels in vivo. In conclusion, a model was developed to study the inhibition of the major oestrogenic 17beta-HSD, 17beta-HSD1, in breast cancer. Both E2 production and tumor growth were inhibited by STX1040, suggesting that 17beta-HSD1 inhibitors such as STX1040 may provide a novel treatment for hormone-dependent breast cancer.

  13. Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Tianyong; Olson, Daniel G.; Tian, Liang; Bomble, Yannick J.; Himmel, Michael E.; Lo, Jonathan; Hon, Shuen; Shaw, A. Joe; van Dijken, Johannes P.; Lynd, Lee R.; Metcalf, W. W.

    2015-05-26

    Clostridium thermocellum and type='genus-species'>Thermoanaerobacteriumtype='genus-species'> saccharolyticumare thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains oftype='genus-species'> T. saccharolyticumproduce ethanol with a yield of 90% of the theoretical maximum, engineered strains oftype='genus-species'>C. thermocellumproduce ethanol at lower yields (~50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in theiradhEgenes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, theadhEgenes from six strains oftype='genus-species'>C. thermocellumandtype='genus-species'>T. saccharolyticumwere cloned and expressed intype='genus-species'>Escherichia coli, the enzymes produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains oftype='genus-species'>T. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain oftype='genus-species'>C. thermocellumhas acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels

  14. Annotated compound data for modulators of detergent-solubilised or lipid-reconstituted respiratory type II NADH dehydrogenase activity obtained by compound library screening.

    Science.gov (United States)

    Dunn, Elyse A; Cook, Gregory M; Heikal, Adam

    2016-03-01

    The energy-generating membrane protein NADH dehydrogenase (NDH-2), a proposed antibacterial drug target (see "Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs" Weinstein et al. 2005 [1]), was screened for modulators of activity in either detergent-solublised or lipid reconstituted (proteolipsome) form. Here we present an annotated list of compounds identified in a small-scale screen against NDH-2. The dataset contains information regarding the libraries screened, the identities of hit compounds and the physicochemical properties governing solubility and permeability. The implications of these data for future antibiotic discovery are discussed in our associated report, "Comparison of lipid and detergent enzyme environments for identifying inhibitors of membrane-bound energy-transducing proteins" [2].

  15. Annotated compound data for modulators of detergent-solubilised or lipid-reconstituted respiratory type II NADH dehydrogenase activity obtained by compound library screening

    Directory of Open Access Journals (Sweden)

    Elyse A. Dunn

    2016-03-01

    Full Text Available The energy-generating membrane protein NADH dehydrogenase (NDH-2, a proposed antibacterial drug target (see “Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs” Weinstein et al. 2005 [1], was screened for modulators of activity in either detergent-solublised or lipid reconstituted (proteolipsome form. Here we present an annotated list of compounds identified in a small-scale screen against NDH-2. The dataset contains information regarding the libraries screened, the identities of hit compounds and the physicochemical properties governing solubility and permeability. The implications of these data for future antibiotic discovery are discussed in our associated report, “Comparison of lipid and detergent enzyme environments for identifying inhibitors of membrane-bound energy-transducing proteins” [2].

  16. Derivatives of (phenylsulfonamido-methyl)nicotine and (phenylsulfonamido-methyl)thiazole as novel 11β-hydroxysteroid dehydrogenase type 1 inhibitors: synthesis and biological activities in vitro

    Institute of Scientific and Technical Information of China (English)

    Xu ZHANG; Yang ZHOU; Yu SHEN; Li-li DU; Jun-hua CHEN; Ying LENG; Jian-hua SHEN

    2009-01-01

    Aim: To design and synthese a novel class of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors, featuring the (phenylsul-fonamido-methyl)pyridine and (phenyisulfonamido-methyl)thiazole framework. Methods: Our initial lead 4-(phenylsulfonamido-methyl)benzamides were modified. Inhibition of human and mouse 11β-HSD1 enzy-matic activities by the new compounds was determined by a scintillation proximity assay (SPA) using microsomes containing 11β-HSD1.Results: Sixteen new compounds (6a-6h, 7a-7h) were designed, synthesized and bioassayed. In dose-response studies, several com-pounds showed strong inhibitory activities with IC_(50) values at nanomolar or low nanomolar concentrations. Structure-activity relation-ships are also discussed with respect to molecular docking results. Conclusion: This study provides two promising new templates for 11β-HSD1 inhibitors.

  17. 11β-Hydroxysteroid dehydrogenase type 1 shRNA ameliorates glucocorticoid-induced insulin resistance and lipolysis in mouse abdominal adipose tissue.

    Science.gov (United States)

    Wang, Ying; Yan, Chaoying; Liu, Limei; Wang, Wei; Du, Hanze; Fan, Winnie; Lutfy, Kabirullah; Jiang, Meisheng; Friedman, Theodore C; Liu, Yanjun

    2015-01-01

    Long-term glucocorticoid exposure increases the risk for developing type 2 diabetes. Prereceptor activation of glucocorticoid availability in target tissue by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) coupled with hexose-6-phosphate dehydrogenase (H6PDH) is an important mediator of the metabolic syndrome. We explored whether the tissue-specific modulation of 11β-HSD1 and H6PDH in adipose tissue mediates glucocorticoid-induced insulin resistance and lipolysis and analyzed the effects of 11β-HSD1 inhibition on the key lipid metabolism genes and insulin-signaling cascade. We observed that corticosterone (CORT) treatment increased expression of 11β-HSD1 and H6PDH and induced lipase HSL and ATGL with suppression of p-Thr(172) AMPK in adipose tissue of C57BL/6J mice. In contrast, CORT induced adipose insulin resistance, as reflected by a marked decrease in IR and IRS-1 gene expression with a reduction in p-Thr(308) Akt/PKB. Furthermore, 11β-HSD1 shRNA attenuated CORT-induced 11β-HSD1 and lipase expression and improved insulin sensitivity with a concomitant stimulation of pThr(308) Akt/PKB and p-Thr(172) AMPK within adipose tissue. Addition of CORT to 3T3-L1 adipocytes enhanced 11β-HSD1 and H6PDH and impaired p-Thr(308) Akt/PKB, leading to lipolysis. Knockdown of 11β-HSD1 by shRNA attenuated CORT-induced lipolysis and reversed CORT-mediated inhibition of pThr(172) AMPK, which was accompanied by a parallel improvement of insulin signaling response in these cells. These findings suggest that elevated adipose 11β-HSD1 expression may contribute to glucocorticoid-induced insulin resistance and adipolysis. Copyright © 2015 the American Physiological Society.

  18. Divergent effects of retinoic acids on the expression of ERalpha and 17beta-hydroxysteroid dehydrogenase type 2 in endometrial carcinoma cells (RL 95-2).

    Science.gov (United States)

    Li, Xiao-Hong; Li, Hui; Xiao, Zhi-Jie; Piao, Yun-Shang

    2002-02-01

    The effects of E2 are dependent on ERs and local E2 concentration in target cells. Modulation of intracellular E2 concentration involves the action of 17beta-hydroxysteroid dehydrogenase (17HSD) type 2, the enzyme converting E2 to estrone. In the present study, the influence of RAs on the growth of endometrial cancer cell line RL 95-2 as well as the expression of ERs and 17HSD type 2 have been investigated. It was found that RAs repress the growth of RL 95-2 cells, which express all subtypes of RXR and RAR, as examined by RT-PCR. Also, quantitative RT-PCR analysis showed that both ERalpha and ERbeta are present in RL 95-2 cells, and Western blot assay further revealed that ERalpha expression was decreased by all trans-RA treatment. In contrast, RAs induced 17HSD type 2 mRNA expression in a dose- and time-dependent fashion. This stimulatory effect was also detected at the level of in vivo oxidative 17HSD activity in cultured cells. On the other hand, the abundance of 17HSD type 2 mRNA was not altered by RAs in cultured normal epithelial cells isolated from human early- and late-secretory endometrium. The data indicate that RAs have an inhibitory effect on the growth of RL 95-2 cells and a cross-talk with the estrogen pathway in estrogen-responsive endometrial cancer cells.

  19. Estrogen receptors (alpha and beta) and 17beta-hydroxysteroid dehydrogenase type 1 and 2 in thyroid disorders: possible in situ estrogen synthesis and actions.

    Science.gov (United States)

    Kawabata, Wakako; Suzuki, Takashi; Moriya, Takuya; Fujimori, Keisei; Naganuma, Hiroshi; Inoue, Satoshi; Kinouchi, Yositaka; Kameyama, Kaori; Takami, Hiroshi; Shimosegawa, Tooru; Sasano, Hironobu

    2003-05-01

    Both epidemiological and experimental findings suggest the possible roles of sex steroids in the pathogenesis and/or development of various human thyroid disorders. In this study, we evaluated the expression of estrogen receptors (ER) alpha and beta in normal thyroid glands (N = 25; female: n = 13, male: n = 10, unknown: n = 2) ranging in age from fetus to adult. Furthermore, using immunohistochemistry, we investigated the expression of ERalpha and beta in 206 cases of thyroid disorders, including 24 adenomatous goiters, 23 follicular adenomas, and 159 thyroid carcinomas. In addition, we also studied the mRNA expression of ERalpha and beta and 17beta-hydroxysteroid dehydrogenase Type 1 and 2, enzymes involved in the interconversion between estrone and estradiol, using reverse transcription polymerase chain reaction (RT-PCR), in 48 of these 206 cases (10 adenomatous goiters, 10 follicular adenomas, and 28 papillary thyroid carcinomas) in which fresh frozen tissues were available for examination to further elucidate the possible involvement of intracrine estrogen metabolism and/or actions in thyroid disorders. ERalpha labeling index, or percentage of cells immunopositive for ERalpha, was significantly higher in adenomatous goiter (14.2 +/- 6.4), follicular adenoma (13.4 +/- 5.1), and thyroid carcinoma (16.4 +/- 2.1) than in normal thyroid gland (0; P thyroid glands. In papillary carcinoma, ERalpha labeling index was significantly higher in premenopausal women (28.1 +/- 4.5) than in postmenopausal women (14.2 +/- 2.9) and in men of various ages (7.6 +/- 2.7; P thyroid carcinoma, no significant correlations were detected. ERbeta immunoreactivity was detected in both follicular and C-cells of normal thyroid glands, including those in developing fetal thyroid glands. In addition, ERbeta immunoreactivity was detected in the nuclei of various thyroid lesions. But no significant correlations were detected between ERbeta labeling index and clinicopathological findings

  20. Expression of wild-type and mutant medium-chain acyl-CoA dehydrogenase (MCAD) cDNA in eucaryotic cells

    DEFF Research Database (Denmark)

    Jensen, T G; Andresen, B S; Bross, P

    1992-01-01

    An effective EBV-based expression system for eucaryotic cells has been developed and used for the study of the mitochondrial enzyme medium-chain acyl-CoA dehydrogenase (MCAD). 1325 bp of PCR-generated MCAD cDNA, containing the entire coding region, was placed between the SV40 early promoter...... and polyadenylation signals in the EBV-based vector. Both wild-type MCAD cDNA and cDNA containing the prevalent disease-causing mutation A to G at position 985 of the MCAD cDNA were tested. In transfected COS-7 cells, the steady state amount of mutant MCAD protein was consistently lower than the amount of wild......-type human enzyme. The enzyme activity in extracts from cells harbouring the wild-type MCAD cDNA was dramatically higher than in the controls (harbouring the vector without the MCAD gene) while only a slightly higher activity was measured with the mutant MCAD. The mutant MCAD present behaves like wild...

  1. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that helps red ...

  2. Lactate dehydrogenase test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003471.htm Lactate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Lactate dehydrogenase (LDH) is a protein that helps produce energy ...

  3. Preparation of 16β-Estradiol Derivative Libraries as Bisubstrate Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 Using the Multidetachable Sulfamate Linker

    Directory of Open Access Journals (Sweden)

    Donald Poirier

    2010-03-01

    Full Text Available Combinatorial chemistry is a powerful tool used to rapidly generate a large number of potentially biologically active compounds. In our goal to develop bisubstrate inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1 that interact with both the substrate (estrone or estradiol and the cofactor (NAD(PH binding sites, we used parallel solid-phase synthesis to prepare three libraries of 16β-estradiol derivatives with two or three levels of molecular diversity. From estrone, we first synthesized a sulfamate precursor that we loaded on trityl chloride resin using the efficient multidetachable sulfamate linker strategy recently developed in our laboratory. We then introduced molecular diversity [one or two amino acid(s followed by a carboxylic acid] on steroid nucleus by Fmoc peptide chemistry. Finally, after a nucleophilic cleavage, libraries of 30, 63 and 25 estradiol derivatives were provided. A library of 30 sulfamoylated estradiol derivatives was also generated by acidic cleavage and its members were screened for inhibition of steroid sulfatase. Biological evaluation on homogenated HEK-293 cells overexpressing 17β-HSD1 of the estradiol derivatives carrying different oligoamide-type chains at C-16 first revealed that three levels of molecular diversity (a spacer of two amino acids were necessary to interact with the adenosine part of the cofactor binding site. Second, the best inhibition was obtained when hydrophobic residues (phenylalanine were used as building blocks.

  4. Proliferative responses to altered 17beta-hydroxysteroid dehydrogenase (17HSD) type 2 expression in human breast cancer cells are dependent on endogenous expression of 17HSD type 1 and the oestradiol receptors.

    Science.gov (United States)

    Jansson, A; Gunnarsson, C; Stål, O

    2006-09-01

    The primary source of oestrogen in premenopausal women is the ovary but, after menopause, oestrogen biosynthesis in peripheral tissue is the exclusive site of formation. An enzyme group that affects the availability of active oestrogens is the 17beta-hydroxysteroid dehydrogenase (17HSD) family. In breast cancer, 17HSD type 1 and type 2 have been mostly investigated and seem to be the principal 17HSD enzymes involved thus far. The question whether 17HSD type 1 or type 2 is of greatest importance in breast tumour development is still not clear. The aim of this study was to investigate how the loss of 17HSD type 2 expression, using siRNA in the non-tumour breast epithelial cells HMEC (human mammal epithelial cells) and MCF10A, and gain of 17HSD type 2 expression, using transient transfection in the breast cancer derived cell lines MCF7 and T47D, affect oestradiol conversion and proliferation rate measured as S-phase fraction. We further investigated how this was related to the endogenous expression of 17HSD type 1 and oestradiol receptors in the examined cell lines. The oestradiol level in the medium changed significantly in the MCF7 transfected cells and the siRNA-treated HMEC cells, but not in T47D or MCF10A. The S-phase fraction decreased in the 17HSD type 2-transfected MCF7 cells and the siRNA-treated HMEC cells. The results seemed to be dependent on the endogenous expression of 17HSD type 1 and the oestradiol receptors. In conclusion, we found that high or low levels of 17HSD type 2 affected the oestradiol concentration significantly. However, the response was dependent on the endogenous expression of 17HSD type 1. Expression of 17HSD type 1 seems to be dominant to 17HSD type 2. Therefore, it may be important to investigate a ratio between 17HSD type 1 and 17HSD type 2.

  5. Diabetes and Insulin Injection Modalities: Effects on Hepatic and Hippocampal Expression of 11β-Hydroxysteroid Dehydrogenase Type 1 in Juvenile Diabetic Male Rats.

    Science.gov (United States)

    Rougeon, Véronica; Moisan, Marie-Pierre; Barthe, Nicole; Beauvieux, Marie-Christine; Helbling, Jean-Christophe; Pallet, Véronique; Marissal-Arvy, Nathalie; Barat, Pascal

    2017-01-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is often encountered in diabetes, leading to several clinical complications. Our recent results showing an elevated tetrahydrocortisol/tetrahydrocorticosterone ratio in morning urine of diabetic children compared to that of controls suggest an increased nocturnal activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in the former. We hypothesized that these observations could be explained by a reduced inhibition of hepatic 11β-HSD1 activity by exogenous insulin owing to its subcutaneous (SC) administration and absence of first hepatic passage. Additionally, we hypothesized that hippocampal 11β-HSD1 activity might also be impaired by diabetes. We therefore measured HPA axis activity and 11β-HSD1 expression and activity in liver and hippocampus in streptozotocin-induced diabetic juvenile rats treated with SC or intraperitoneal (IP) insulin. Plasma corticosterone levels were elevated in untreated diabetic rats during the resting phase and restored by both types of insulin treatment. The mRNA expression and activity of 11β-HSD1 were increased in the untreated diabetic group in liver. Although diabetes was controlled equally whatever the route of insulin administration, liver 11β-HSD1 gene expression and activity was decreased only in the IP group, suggesting that a first hepatic pass is needed for 11β-HSD1 hepatic inhibition. In hippocampus, 11β-HSD1 activity was elevated in the untreated diabetic group but restored by both types of insulin treatment. Thus, these data extend our findings in diabetic children by showing impairment of hippocampal 11β-HSD1 in diabetes and by demonstrating that IP is preferable to SC insulin administration to restore 11β-HSD1 activity in liver.

  6. Identification of Important Chemical Features of 11β-Hydroxysteroid Dehydrogenase Type1 Inhibitors: Application of Ligand Based Virtual Screening and Density Functional Theory

    Directory of Open Access Journals (Sweden)

    Keun Woo Lee

    2012-04-01

    Full Text Available 11ß-Hydroxysteroid dehydrogenase type1 (11ßHSD1 regulates the conversion from inactive cortisone to active cortisol. Increased cortisol results in diabetes, hence quelling the activity of 11ßHSD1 has been thought of as an effective approach for the treatment of diabetes. Quantitative hypotheses were developed and validated to identify the critical chemical features with reliable geometric constraints that contribute to the inhibition of 11ßHSD1 function. The best hypothesis, Hypo1, which contains one-HBA; one-Hy-Ali, and two-RA features, was validated using Fischer’s randomization method, a test and a decoy set. The well validated, Hypo1, was used as 3D query to perform a virtual screening of three different chemical databases. Compounds selected by Hypo1 in the virtual screening were filtered by applying Lipinski’s rule of five, ADMET, and molecular docking. Finally, five hit compounds were selected as virtual novel hit molecules for 11ßHSD1 based on their electronic properties calculated by Density functional theory.

  7. Pharmacological evaluation of adipose dysfunction via 11β-hydroxysteroid dehydrogenase type 1 in the development of diabetes in diet-induced obese mice with cortisone pellet implantation.

    Science.gov (United States)

    Akiyama, Nobuteru; Akiyama, Yuko; Kato, Hideaki; Kuroda, Takayuki; Ono, Takashi; Imagawa, Keiichi; Asakura, Kenji; Shinosaki, Toshihiro; Murayama, Toshihiko; Hanasaki, Kohji

    2014-04-01

    Signals from intracellular glucocorticoids (GCs) via 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in adipose tissues have been reported to serve as amplifiers leading to deterioration of glucose metabolism associated with obesity. To elucidate adipose dysfunction via 11β-HSD1 activation in the development of obesity-related diabetes, we established novel diabetic mice by implanting a cortisone pellet (CP) in diet-induced obesity (DIO) mice. Cortisone pellet-implanted DIO mice (DIO/CP mice) showed hyperglycemia, insulin resistance, hyperlipidemia, and ectopic fat accumulation, whereas cortisone pellet implantation in lean mice did not induce hyperglycemia. In DIO/CP mice, indexes of lipolysis such as plasma glycerol and nonesterified fatty acids (NEFAs) increased before hyperglycemia appeared. Furthermore, the adipose mRNA level of 11β-HSD1 was up-regulated in DIO/CP mice compared with sham-operated DIO mice. RU486 (mifepristone, 11β-[p-(dimethylamino)phenyl]-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one), a glucocorticoid receptor antagonist, decreased adipose mRNA levels of 11β-HSD1 as well as adipose triglyceride lipase. RU486 also improved plasma NEFA, glycerol, and glucose levels in DIO/CP mice. These results demonstrate that lipolysis in adipose tissues caused by GC activation via 11β-HSD1 serves as a trigger for diabetes with ectopic fat accumulation. Our findings also indicate the possibility of a vicious circle of GC signals via 11β-HSD1 up-regulation in adipose tissues, contributing to deterioration of glucose metabolism to result in diabetes. Our DIO/CP mouse could be a suitable model of type 2 diabetes to evaluate adipose dysfunction via 11β-HSD1.

  8. Continuous inhibition of 11β-hydroxysteroid dehydrogenase type I in adipose tissue leads to tachyphylaxis in humans and rats but not in mice.

    Science.gov (United States)

    Morentin Gutierrez, P; Gyte, A; deSchoolmeester, J; Ceuppens, P; Swales, J; Stacey, C; Eriksson, J W; Sjöstrand, M; Nilsson, C; Leighton, B

    2015-10-01

    11β-hydroxysteroid dehydrogenase type I (11β-HSD1), a target for Type 2 diabetes mellitus, converts inactive glucocorticoids into bioactive forms, increasing tissue concentrations. We have compared the pharmacokinetic-pharmacodynamic (PK/PD) relationship of target inhibition after acute and repeat administration of inhibitors of 11β-HSD1 activity in human, rat and mouse adipose tissue (AT). Studies included abdominally obese human volunteers, rats and mice. Two specific 11β-HSD1 inhibitors (AZD8329 and COMPOUND-20) were administered as single oral doses or repeat daily doses for 7-9 days. 11β-HSD1 activity in AT was measured ex vivo by conversion of (3) H-cortisone to (3) H-cortisol. In human and rat AT, inhibition of 11β-HSD1 activity was lost after repeat dosing of AZD8329, compared with acute administration. Similarly, in rat AT, there was loss of inhibition of 11β-HSD1 activity after repeat dosing with COMPOUND-20 with continuous drug cover, but effects were substantially reduced if a 'drug holiday' period was maintained daily. Inhibition of 11β-HSD1 activity was not lost in mouse AT after continuous cover with COMPOUND-20 for 7 days. Human and rat AT, but not mouse AT, exhibited tachyphylaxis for inhibition of 11β-HSD1 activity after repeat dosing. Translation of observed efficacy in murine disease models to human for 11β-HSD1 inhibitors may be misleading. Investigators of the effects of 11β-HSD1 inhibitors should confirm that desired levels of enzyme inhibition in AT can be maintained over time after repeat dosing and not rely on results following a single dose. © 2015 The British Pharmacological Society.

  9. Down-regulation of 11β-hydroxysteroid dehydrogenase type 2 by bortezomib sensitizes Jurkat leukemia T cells against glucocorticoid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Yi Tao

    Full Text Available 11β-Hydroxysteroid dehydrogenases type 2 (11β-HSD2, a key regulator for pre-receptor metabolism of glucocorticoids (GCs by converting active GC, cortisol, to inactive cortisone, has been shown to be present in a variety of tumors. But its expression and roles have rarely been discussed in hematological malignancies. Proteasome inhibitor bortezomib has been shown to not only possess antitumor effects but also potentiate the activity of other chemotherapeutics. In this study, we demonstrated that 11β-HSD2 was highly expressed in two GC-resistant T-cell leukemic cell lines Jurkat and Molt4. In contrast, no 11β-HSD2 expression was found in two GC-sensitive non-hodgkin lymphoma cell lines Daudi and Raji as well as normal peripheral blood T cells. Inhibition of 11β-HSD2 by 11β-HSD inhibitor 18β-glycyrrhetinic acid or 11β-HSD2 shRNA significantly increased cortisol-induced apoptosis in Jurkat cells. Additionally, pretreatment of Jurkat cells with low-dose bortezomib resulted in increased cellular sensitivity to GC as shown by elevated induction of apoptosis, more cells arrested at G1 stage and up-regulation of GC-induced leucine zipper which is an important mediator of GC action. Furthermore, we clarified that bortezomib could dose-dependently inhibit 11β-HSD2 messenger RNA and protein levels as well as activity (cortisol-cortisone conversion through p38 mitogen-activated protein kinase signaling pathway. Therefore, we suggest 11β-HSD2 is, at least partially if not all, responsible for impaired GC suppression in Jurkat cells and also indicate a novel mechanism by which proteasome inhibitor bortezomib may influence GC action.

  10. Acute effects of physical exercise and phosphodiesterase's type 5 inhibition on serum 11β-hydroxysteroid dehydrogenases related glucocorticoids metabolites: a pilot study.

    Science.gov (United States)

    Di Luigi, Luigi; Botrè, Francesco; Sabatini, Stefania; Sansone, Massimiliano; Mazzarino, Monica; Guidetti, Laura; Baldari, Carlo; Lenzi, Andrea; Caporossi, Daniela; Romanelli, Francesco; Sgrò, Paolo

    2014-12-01

    Endogenous glucocorticoids (GC) rapidly increase after acute exercise, and the phosphodiesterase's type 5 inhibitor (PDE5i) tadalafil influences this physiological adaptation. No data exist on acute effects of both acute exercise and PDE5i administration on 11β-hydroxysteroid dehydrogenases (11β-HSDs)-related GC metabolites. We aimed to investigate the rapid effects of exercise on serum GC metabolites, with and without tadalafil administration. A double blind crossover study was performed in eleven healthy male volunteers. After the volunteers randomly received a short-term administration of placebo or tadalafil (20 mg/die for 2 days), a maximal exercise test to exhaustion on cycle ergometer was performed. Then, after a 2-week washout period, the volunteers were crossed over. Blood samples were collected before starting exercise and at 5 and 30 min of recovery (+5-Rec, +30-Rec). Serum ACTH, corticosterone (Cn), cortisol (F), cortisone (E), tetrahydrocortisol (THF), tetrahydrocortisone (THE), cortols, cortolones and respective ratios were evaluated. Pre-Ex THF was higher after tadalafil. Exercise increased ACTH, Cn, F, E, THE, cortols and cortolones after both placebo and tadalafil, and THF after placebo. The F/E ratio increased at +5-Rec and decreased at +30-Rec after placebo. Compared to placebo, after tadalafil lower ACTH, F and Cn, higher THF/F and THE/E, and not E (at +5-Rec) and F/E modifications were observed. Acute exercise rapidly influences serum GC metabolites concentrations. Tadalafil influences both GC adaptation and 11β-HSDs activity during acute exercise. Additional researches on the effects of both exercise and PDE5i on tissue-specific 11β-HSDs activity at rest and during physiological adaptation are warranted.

  11. BVT.2733, a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor, attenuates obesity and inflammation in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Long Wang

    Full Text Available BACKGROUND: Inhibition of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 is being pursued as a new therapeutic approach for the treatment of obesity and metabolic syndrome. Therefore, there is an urgent need to determine the effect of 11β-HSD1 inhibitor, which suppresses glucocorticoid action, on adipose tissue inflammation. The purpose of the present study was to examine the effect of BVT.2733, a selective 11β-HSD1 inhibitor, on expression of pro-inflammatory mediators and macrophage infiltration in adipose tissue in C57BL/6J mice. METHODOLOGY/PRINCIPAL FINDINGS: C57BL/6J mice were fed with a normal chow diet (NC or high fat diet (HFD. HFD treated mice were then administrated with BVT.2733 (HFD+BVT or vehicle (HFD for four weeks. Mice receiving BVT.2733 treatment exhibited decreased body weight and enhanced glucose tolerance and insulin sensitivity compared to control mice. BVT.2733 also down-regulated the expression of inflammation-related genes including monocyte chemoattractant protein 1 (MCP-1, tumor necrosis factor alpha (TNF-α and the number of infiltrated macrophages within the adipose tissue in vivo. Pharmacological inhibition of 11β-HSD1 and RNA interference against 11β-HSD1 reduced the mRNA levels of MCP-1 and interleukin-6 (IL-6 in cultured J774A.1 macrophages and 3T3-L1 preadipocyte in vitro. CONCLUSIONS/SIGNIFICANCE: These results suggest that BVT.2733 treatment could not only decrease body weight and improve metabolic homeostasis, but also suppress the inflammation of adipose tissue in diet-induced obese mice. 11β-HSD1 may be a very promising therapeutic target for obesity and associated disease.

  12. Molecular cloning and characterization of a steroidogenic enzyme, 17β-hydroxysteroid dehydrogenase type 14, from the stony coral Euphyllia ancora (Cnidaria, Anthozoa).

    Science.gov (United States)

    Shikina, Shinya; Chung, Yi-Jou; Chiu, Yi-Ling; Huang, Yi-Jie; Lee, Yan-Horn; Chang, Ching-Fong

    2016-03-01

    Sex steroids play a fundamental role not only in reproduction but also in various other biological processes in vertebrates. Although the presence of sex steroids has been confirmed in cnidarians (e.g., coral, sea anemone, jellyfish, and hydra), which are basal metazoans, only a few studies to date have characterized steroidogenesis-related genes in cnidarians. Based on a transcriptomic analysis of the stony coral Euphyllia ancora, we identified the steroidogenic enzyme 17β-hydroxysteroid dehydrogenase type 14 (17beta-hsd 14), an oxidative enzyme that catalyzes the NAD(+)-dependent inactivation of estrogen/androgen (estradiol to estrone and testosterone to androstenedione) in mammals. Phylogenetic analysis showed that E. ancora 17beta-Hsd 14 (Ea17beta-Hsd 14) clusters with other animal 17beta-HSD 14s but not with other members of the 17beta-HSD family. Subsequent quantitative RT-PCR analysis revealed a lack of correlation of Ea17beta-hsd 14 transcript levels with the coral's reproductive cycle. In addition, Ea17beta-hsd 14 transcript and protein were detected in all tissues examined, such as the tentacles, mesenterial filaments, and gonads, at similar levels in both sexes, as determined by quantitative RT-PCR analysis and Western blotting with an anti-Ea17beta-Hsd 14 antibody. Immunohistochemical analysis revealed that Ea17beta-Hsd 14 is mainly distributed in the endodermal regions of the polyps, but the protein was also observed in all tissues examined. These results suggest that Ea17beta-Hsd 14 is involved in important functions that commonly occur in endodermal cells or has multiple functions in different tissues. Our data provide information for comparison with advanced animals as well as insight into the evolution of steroidogenesis-related genes in metazoans.

  13. Elevation of 11β-hydroxysteroid dehydrogenase type 2 activity in Holocaust survivor offspring: evidence for an intergenerational effect of maternal trauma exposure.

    Science.gov (United States)

    Bierer, Linda M; Bader, Heather N; Daskalakis, Nikolaos P; Lehrner, Amy L; Makotkine, Iouri; Seckl, Jonathan R; Yehuda, Rachel

    2014-10-01

    Adult offspring of Holocaust survivors comprise an informative cohort in which to study intergenerational transmission of the effects of trauma exposure. Lower cortisol and enhanced glucocorticoid sensitivity have been previously demonstrated in Holocaust survivors with PTSD, and in offspring of Holocaust survivors in association with maternal PTSD. In other work, reduction in the activity of the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD-2), which inactivates cortisol, was identified in Holocaust survivors in comparison to age-matched, unexposed Jewish controls. Therefore, we investigated glucocorticoid metabolism in offspring of Holocaust survivors to evaluate if similar enzymatic decrements would be observed that might help to explain glucocorticoid alterations previously shown for Holocaust offspring. Holocaust offspring (n=85) and comparison subjects (n=27) were evaluated with clinical diagnostic interview and self-rating scales, and asked to collect a 24-h urine sample from which concentrations of cortisol and glucocorticoid metabolites were assayed by GCMS. 11β-HSD-2 activity was determined as the ratio of urinary cortisone to cortisol. Significantly reduced cortisol excretion was observed in Holocaust offspring compared to controls (p=.046), as had been shown for Holocaust survivors. However, 11β-HSD-2 activity was elevated for offspring compared to controls (p=.008), particularly among those whose mothers had been children, rather than adolescents or adults, during World War II (p=.032). The effect of paternal Holocaust exposure could not be reliably investigated in the current sample. The inverse association of offspring 11β-HSD-2 activity with maternal age at Holocaust exposure is consistent with the influence of glucocorticoid programming. Whereas a long standing reduction in 11β-HSD-2 activity among survivors is readily interpreted in the context of Holocaust related deprivation, understanding the directional effect on offspring will

  14. Caffeine reduces 11β-hydroxysteroid dehydrogenase type 2 expression in human trophoblast cells through the adenosine A(2B receptor.

    Directory of Open Access Journals (Sweden)

    Saina Sharmin

    Full Text Available Maternal caffeine consumption is associated with reduced fetal growth, but the underlying molecular mechanisms are unknown. Since there is evidence that decreased placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2 is linked to fetal growth restriction, we hypothesized that caffeine may inhibit fetal growth partly through down regulating placental 11β-HSD2. As a first step in examining this hypothesis, we studied the effects of caffeine on placental 11β-HSD2 activity and expression using our established primary human trophoblast cells as an in vitro model system. Given that maternal serum concentrations of paraxanthine (the primary metabolite of caffeine were greater in women who gave birth to small-for-gestational age infants than to appropriately grown infants, we also studied the effects of paraxanthine. Our main findings were: (1 both caffeine and paraxanthine decreased placental 11β-HSD2 activity, protein and mRNA in a concentration-dependent manner; (2 this inhibitory effect was mediated by the adenosine A(2B receptor, since siRNA-mediated knockdown of this receptor prevented caffeine- and paraxanthine-induced inhibition of placental 11β-HSD2; and (3 forskolin (an activator of adenyl cyclase and a known stimulator of 11β-HSD2 abrogated the inhibitory effects of both caffeine and paraxanthine, which provides evidence for a functional link between exposure to caffeine and paraxanthine, decreased intracellular levels of cAMP and reduced placental 11β-HSD2. Taken together, these findings reveal that placental 11β-HSD2 is a novel molecular target through which caffeine may adversely affect fetal growth. They also uncover a previously unappreciated role for the adenosine A(2B receptor signaling in regulating placental 11β-HSD2, and consequently fetal development.

  15. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice.

    Science.gov (United States)

    Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W

    2015-04-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Alternative mechanism for anti-obesity effect of dehydroepiandrosterone: possible contribution of 11β-hydroxysteroid dehydrogenase type 1 inhibition in rodent adipose tissue.

    Science.gov (United States)

    Tagawa, Noriko; Minamitani, Erika; Yamaguchi, Yuko; Kobayashi, Yoshiharu

    2011-12-20

    Dehydroepiandrosterone (DHEA) has been suggested to have an anti-obesity effect; however, the mechanism underlying this effect remains unclear. The effect of DHEA on adipocytes opposes that of glucocorticoids, which potentiate adipogenesis. The key to the intracellular activation of glucocorticoids in adipocytes is 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyses the production of active glucocorticoids (cortisol in humans and corticosterone in rodents) from an inactive 11-keto form (cortisone in humans and 11-dehydrocorticosterone in rodents). In humans and rodents, intracellular glucocorticoid reactivation is exaggerated in obese adipose tissue. Using differentiated 3T3-L1 adipocytes, we demonstrated that DHEA inhibited about 15.6% of 11β-HSD1 activity at a concentration of 1 μM within 10min. Inhibition was also observed in a cell-free system composed of microsomes prepared from rat adipose tissue and NADPH, a coenzyme of 11β-HSD1. A kinetic study revealed that DHEA acted as a non-competitive inhibitor of 11β-HSD1. Moreover, conversion from DHEA to estrogens was not observed by sensitive semi-micro HPLC equipped with electrochemical detector. These results indicate that the inhibition of 11β-HSD1 by DHEA depends on neither the transcriptional pathway nor the nonspecific manner. This is the first demonstration that the anti-obesity effect of DHEA is exerted by non-transcriptional inhibition of 11β-HSD1 in rodent adipocytes. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. 11β-羟类固醇脱氢酶1型与认知功能%11β-Hydroxysteroid dehydrogenase type 1 and cognition

    Institute of Scientific and Technical Information of China (English)

    綦雯雯; 钟历勇

    2010-01-01

    11β-羟类固醇脱氧酶1型(11β-HSD1)是一种糖皮质激素(GC)的调节酶,参与中枢神经系统组织局部GC水平与活性的调节.其能使无活性的酮还原成有活性的GC,从而放大中枢GC的作用,致使局部GC水平过高,进而直接损伤海马,影响认知功能.11β-HSD1抑制剂和过氧化物酶体增殖物活化受体(PPAR)-γ激动剂,通过抑制和下调11β-HSD1的表达,能够改善伴有认知功能障碍的疾病如阿尔茨海默病(AD)、遗忘型轻度认知障碍患者的认知水平.%11β p-hydroxysteroid dehydrogenase type 1( 11β-HSD1 ) , a glucocorticoid ( GC ) regulatory enzyme,is involved in the regulation of GC from level to activity in the central nervous system. 11β-HSD1 mediates the conversion of cortisone to cortisol, amyplifying the action of local GC. The higher level of intra-cellular GC in brain results in the lesion of the hippocampus and the impairment of cognition. Inhibition of 11β-HSD1 or peroxisome proliferator-activated receptor ( PPAR) -γ agonists can improve the cognitive dysfunction associated with diseases such as Alzheimer disease (AD) and amnestic mild cognitive impairment, by inhibiting or reducing the expression of 11β-HSD1.

  18. Regulation of 11β-hydroxysteroid dehydrogenase type 1 and 7α-hydroxylase CYP7B1 during social stress.

    Directory of Open Access Journals (Sweden)

    Martin Vodička

    Full Text Available 11β-hydroxysteroid dehydrogenase type 1 (11HSD1 is an enzyme that amplifies intracellular glucocorticoid concentration by the conversion of inert glucocorticoids to active forms and is involved in the interconversion of 7-oxo- and 7-hydroxy-steroids, which can interfere with the activation of glucocorticoids. The presence of 11HSD1 in the structures of the hypothalamic-pituitary-adrenal (HPA axis suggests that this enzyme might play a role in the regulation of HPA output. Here we show that the exposure of Fisher 344 rats to mild social stress based on the resident-intruder paradigm increased the expression of 11HSD1 and CYP7B1, an enzyme that catalyzes 7-hydroxylation of steroids. We found that social behavioral profile of intruders was significantly decreased whereas their plasma levels of corticosterone were increased more than in residents. The stress did not modulate 11HSD1 in the HPA axis (paraventricular nucleus, pituitary, adrenal cortex but selectively upregulated 11HSD1 in some regions of the hippocampus, amygdala and prelimbic cortex. In contrast, CYP7B1 was upregulated not only in the hippocampus and amygdala but also in paraventricular nucleus and pituitary. Furthermore, the stress downregulated 11HSD1 in the thymus and upregulated it in the spleen and mesenteric lymphatic nodes whereas CYP7B1 was upregulated in all of these lymphoid organs. The response of 11HSD1 to stress was more obvious in intruders than in residents and the response of CYP7B1 to stress predominated in residents. We conclude that social stress induces changes in enzymes of local metabolism of glucocorticoids in lymphoid organs and in brain structures associated with the regulation of the HPA axis. In addition, the presented data clearly suggest a role of 11HSD1 in modulation of glucocorticoid feedback of the HPA axis during stress.

  19. Increased Whole-Body and Sustained Liver Cortisol Regeneration by 11β-Hydroxysteroid Dehydrogenase Type 1 in Obese Men With Type 2 Diabetes Provides a Target for Enzyme Inhibition

    Science.gov (United States)

    Stimson, Roland H.; Andrew, Ruth; McAvoy, Norma C.; Tripathi, Dhiraj; Hayes, Peter C.; Walker, Brian R.

    2011-01-01

    OBJECTIVE The cortisol-regenerating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies glucocorticoid levels in liver and adipose tissue. 11β-HSD1 inhibitors are being developed to treat type 2 diabetes. In obesity, 11β-HSD1 is increased in adipose tissue but decreased in liver. The benefits of pharmacological inhibition may be reduced if hepatic 11β-HSD1 is similarly decreased in obese patients with type 2 diabetes. To examine this, we quantified in vivo whole-body, splanchnic, and hepatic 11β-HSD1 activity in obese type 2 diabetic subjects. RESEARCH DESIGN AND METHODS Ten obese men with type 2 diabetes and seven normal-weight control subjects were infused with 9,11,12,12-[2H]4cortisol (40%) and cortisol (60%) at 1.74 mg/h. Adrenal cortisol secretion was suppressed with dexamethasone. Samples were obtained from the hepatic vein and an arterialized hand vein at steady state and after oral administration of cortisone (5 mg) to estimate whole-body and liver 11β-HSD1 activity using tracer dilution. RESULTS In obese type 2 diabetic subjects, the appearance rate of 9,12,12-[2H]3cortisol in arterialized blood was increased (35 ± 2 vs. 29 ± 1 nmol/min, P cortisol production was not reduced (29 ± 6 vs. 29 ± 6 nmol/min), and cortisol appearance in the hepatic vein after oral cortisone was unchanged. CONCLUSIONS Whole-body 11β-HSD1 activity is increased in obese men with type 2 diabetes, whereas liver 11β-HSD1 activity is sustained, unlike in euglycemic obesity. This supports the concept that inhibitors of 11β-HSD1 are likely to be most effective in obese type 2 diabetic subjects. PMID:21266326

  20. Differential Effect of Initiating Moderate Red Wine Consumption on 24-h Blood Pressure by Alcohol Dehydrogenase Genotypes: Randomized Trial in Type 2 Diabetes.

    Science.gov (United States)

    Gepner, Yftach; Henkin, Yaakov; Schwarzfuchs, Dan; Golan, Rachel; Durst, Ronen; Shelef, Ilan; Harman-Boehm, Ilana; Spitzen, Shosana; Witkow, Shula; Novack, Lena; Friger, Michael; Tangi-Rosental, Osnat; Sefarty, Dana; Bril, Nitzan; Rein, Michal; Cohen, Noa; Chassidim, Yoash; Sarusi, Benny; Wolak, Talia; Stampfer, Meir J; Rudich, Assaf; Shai, Iris

    2016-04-01

    Observational studies report inconsistent associations between moderate alcohol intake and blood pressure (BP). In a sub-study of a larger randomized controlled trial, we assessed the effect of initiating moderate red wine consumption on 24-h BP recordings and the effect of a common genetic variant of alcohol dehydrogenases (ADH) among patients with type 2 diabetes. Fifty-four type 2 diabetes, alcohol abstainers were randomized to consume 150 ml/dinner dry red wine or mineral water. Both groups were guided to adhere to a Mediterranean diet, without caloric restriction. We measured 24-h ambulatory BP monitoring (ABPM) at baseline and after 6 months. Participants (age = 57 years; 85% men; mean 24-h BP = 129/77 mm Hg) had 92% 6-month retention. After 6 months of intervention, the average 24-h BP did not differ between the wine and water groups. A transient decrease in BP was observed in the red wine group at midnight (3-4 hours after wine intake: systolic BP: red wine = -10.6mm Hg vs. mineral water = +2.3 mm Hg; P = 0.031) and the following morning at 7-9 am (red wine: -6.2mm Hg vs. mineral water: +5.6mm Hg; P = 0.014). In a second post hoc sub-analysis among the red wine consumers, individuals who were homozygous for the gene encoding ADH1B*2 variant (Arg48His; rs1229984, TT, fast ethanol metabolizers), exhibited a reduction in mean 24-h systolic BP (-8.0mm Hg vs. +3.7 mm Hg; P = 0.002) and pulse pressure (-3.8 mm Hg vs. +1.2 mm Hg; P = 0.032) compared to heterozygotes and those homozygous for the ADH1B*1 variant (CC, slow metabolizers). Initiating moderate red wine consumption at dinner among type 2 diabetes patients does not have a discernable effect on mean 24-h BP. Yet, a modest temporal BP reduction could be documented, and a more pronounced BP-lowering effect is suggested among fast ethanol metabolizers. ClinicalTrials.gov Identifier: NCT00784433. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Association of Genetically Determined Aldehyde Dehydrogenase 2 Activity with Diabetic Complications in Relation to Alcohol Consumption in Japanese Patients with Type 2 Diabetes Mellitus: The Fukuoka Diabetes Registry.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Idewaki

    Full Text Available Aldehyde dehydrogenase 2 (ALDH2 detoxifies aldehyde produced during ethanol metabolism and oxidative stress. A genetic defect in this enzyme is common in East Asians and determines alcohol consumption behaviors. We investigated the impact of genetically determined ALDH2 activity on diabetic microvascular and macrovascular complications in relation to drinking habits in Japanese patients with type 2 diabetes mellitus. An ALDH2 single-nucleotide polymorphism (rs671 was genotyped in 4,400 patients. Additionally, the relationship of clinical characteristics with ALDH2 activity (ALDH2 *1/*1 active enzyme activity vs. *1/*2 or *2/*2 inactive enzyme activity and drinking habits (lifetime abstainers vs. former or current drinkers was investigated cross-sectionally (n = 691 in *1/*1 abstainers, n = 1,315 in abstainers with *2, n = 1,711 in *1/*1 drinkers, n = 683 in drinkers with *2. The multiple logistic regression analysis for diabetic complications was adjusted for age, sex, current smoking habits, leisure-time physical activity, depressive symptoms, diabetes duration, body mass index, hemoglobin A1c, insulin use, high-density lipoprotein cholesterol, systolic blood pressure and renin-angiotensin system inhibitors use. Albuminuria prevalence was significantly lower in the drinkers with *2 than that of other groups (odds ratio [95% confidence interval (CI]: *1/*1 abstainers as the referent, 0.94 [0.76-1.16] in abstainers with *2, 1.00 [0.80-1.26] in *1/*1 drinkers, 0.71 [0.54-0.93] in drinkers with *2. Retinal photocoagulation prevalence was also lower in drinkers with ALDH2 *2 than that of other groups. In contrast, myocardial infarction was significantly increased in ALDH2 *2 carriers compared with that in ALDH2 *1/*1 abstainers (odds ratio [95% CI]: *1/*1 abstainers as the referent, 2.63 [1.28-6.13] in abstainers with *2, 1.89 [0.89-4.51] in *1/*1 drinkers, 2.35 [1.06-5.79] in drinkers with *2. In summary, patients with type 2 diabetes and ALDH2 *2

  2. 11β-hydroxysteroid dehydrogenase type 1 gene knockout attenuates atherosclerosis and in vivo foam cell formation in hyperlipidemic apoE⁻/⁻ mice.

    Directory of Open Access Journals (Sweden)

    Ricardo A García

    Full Text Available BACKGROUND: Chronic glucocorticoid excess has been linked to increased atherosclerosis and general cardiovascular risk in humans. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1 increases active glucocorticoid levels within tissues by catalyzing the conversion of cortisone to cortisol. Pharmacological inhibition of 11βHSD1 has been shown to reduce atherosclerosis in murine models. However, the cellular and molecular details for this effect have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: To examine the role of 11βHSD1 in atherogenesis, 11βHSD1 knockout mice were created on the pro-atherogenic apoE⁻/⁻ background. Following 14 weeks of Western diet, aortic cholesterol levels were reduced 50% in 11βHSD1⁻/⁻/apoE⁻/⁻ mice vs. 11βHSD1⁺/⁺/apoE⁻/⁻ mice without changes in plasma cholesterol. Aortic 7-ketocholesterol content was reduced 40% in 11βHSD1⁻/⁻/apoE⁻/⁻ mice vs. control. In the aortic root, plaque size, necrotic core area and macrophage content were reduced ∼30% in 11βHSD1⁻/⁻/apoE⁻/⁻mice. Bone marrow transplantation from 11βHSD1⁻/⁻/apoE⁻/⁻ mice into apoE⁻/⁻ recipients reduced plaque area 39-46% in the thoracic aorta. In vivo foam cell formation was evaluated in thioglycollate-elicited peritoneal macrophages from 11βHSD1⁺/⁺/apoE⁻/⁻ and 11βHSD1⁻/⁻/apoE⁻/⁻ mice fed a Western diet for ∼5 weeks. Foam cell cholesterol levels were reduced 48% in 11βHSD1⁻/⁻/apoE⁻/⁻ mice vs. control. Microarray profiling of peritoneal macrophages revealed differential expression of genes involved in inflammation, stress response and energy metabolism. Several toll-like receptors (TLRs were downregulated in 11βHSD1⁻/⁻/apoE⁻/⁻ mice including TLR 1, 3 and 4. Cytokine release from 11βHSD1⁻/⁻/apoE⁻/⁻-derived peritoneal foam cells was attenuated following challenge with oxidized LDL. CONCLUSIONS: These findings suggest that 11βHSD1 inhibition may have

  3. Fetal growth restriction alters transcription factor binding and epigenetic mechanisms of renal 11β-hydroxysteroid dehydrogenase type 2 in a sex-specific manner

    Science.gov (United States)

    Kaur, Rajwinderjit; Hale, Merica A.; Bares, Allyson; Yu, Xing; Callaway, Christopher W.; McKnight, Robert A.; Lane, Robert H.

    2010-01-01

    Intrauterine growth restriction (IUGR) increases the risk of serious adult morbidities such as hypertension. In an IUGR rat model of hypertension, we reported a persistent decrease in kidney 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) mRNA and protein levels from birth through postnatal (P) day 21. This enzyme deficiency can lead to hypertension by limiting renal glucocorticoid deactivation. In the present study, we hypothesized that IUGR affects renal 11β-HSD2 epigenetic determinants of chromatin structure and alters key transcription factor binding to the 11β-HSD2 promoter in association with persistent downregulation of its mRNA expression. To test this hypothesis, we performed bilateral uterine artery ligation on embryonic day 19.5 pregnant rats and harvested kidneys at day 0 (P0) and P21. Key transcription factors that can affect 11β-HSD2 expression include transcriptional enhancers specificity protein 1 (SP1) and NF-κB p65 and transcriptional repressors early growth response factor (Egr-1) and NF-κB p50. Our most important findings were as follows: 1) IUGR significantly decreased SP1 and NF-κB (p65) binding to the 11β-HSD2 promoter in males, while it increased Egr-1 binding in females and NF-κB (p50) binding in males; 2) IUGR increased CpG methylation status, as well as modified the pattern of methylation in several CpG sites of 11β-HSD2 promoter at P0 also in a sex-specific manner; and 3) IUGR decreased trimethylation of H3K36 in exon 5 of 11β-HSD2 at P0 and P21 in both genders. We conclude that IUGR is associated with altered transcriptional repressor/activator binding in connection with increased methylation in the 11β-HSD2 promoter region in a sex-specific manner, possibly leading to decreased transcriptional activity. Furthermore, IUGR decreased trimethylation of H3K36 of the 11β-HSD2 gene in both genders, which is associated with decreased transcriptional elongation. We speculate that alterations in transcription factor binding and

  4. Human 3α-hydroxysteroid dehydrogenase type 3: structural clues of 5α-DHT reverse binding and enzyme down-regulation decreasing MCF7 cell growth.

    Science.gov (United States)

    Zhang, Bo; Hu, Xiao-Jian; Wang, Xiao-Qiang; Thériault, Jean-François; Zhu, Dao-Wei; Shang, Peng; Labrie, Fernand; Lin, Sheng-Xiang

    2016-04-15

    Human 3α-HSD3 (3α-hydroxysteroid dehydrogenase type 3) plays an essential role in the inactivation of the most potent androgen 5α-DHT (5α-dihydrotestosterone). The present study attempts to obtain the important structure of 3α-HSD3 in complex with 5α-DHT and to investigate the role of 3α-HSD3 in breast cancer cells. We report the crystal structure of human 3α-HSD3·NADP(+)·A-dione (5α-androstane-3,17-dione)/epi-ADT (epiandrosterone) complex, which was obtained by co-crystallization with 5α-DHT in the presence of NADP(+) Although 5α-DHT was introduced during the crystallization, oxidoreduction of 5α-DHT occurred. The locations of A-dione and epi-ADT were identified in the steroid-binding sites of two 3α-HSD3 molecules per crystal asymmetric unit. An overlay showed that A-dione and epi-ADT were oriented upside-down and flipped relative to each other, providing structural clues for 5α-DHT reverse binding in the enzyme with the generation of different products. Moreover, we report the crystal structure of the 3α-HSD3·NADP(+)·4-dione (4-androstene-3,17-dione) complex. When a specific siRNA (100 nM) was used to suppress 3α-HSD3 expression without interfering with 3α-HSD4, which shares a highly homologous active site, the 5α-DHT concentration increased, whereas MCF7 cell growth was suppressed. The present study provides structural clues for 5α-DHT reverse binding within 3α-HSD3, and demonstrates for the first time that down-regulation of 3α-HSD3 decreases MCF7 breast cancer cell growth. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Structural basis for species specific inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1: computational study and biological validation.

    Directory of Open Access Journals (Sweden)

    Tobias Klein

    Full Text Available 17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1 catalyzes the reduction of estrone to estradiol, which is the most potent estrogen in humans. Inhibition of 17β-HSD1 and thereby reducing the intracellular estradiol concentration is thus a promising approach for the treatment of estrogen dependent diseases. In the past, several steroidal and non-steroidal inhibitors of 17β-HSD1 have been described but so far there is no cocrystal structure of the latter in complex with 17β-HSD1. However, a distinct knowledge of active site topologies and protein-ligand interactions is a prerequisite for structure-based drug design and optimization. An elegant strategy to enhance this knowledge is to compare inhibition values obtained for one compound toward ortholog proteins from various species, which are highly conserved in sequence and differ only in few residues. In this study the inhibitory potencies of selected members of different non-steroidal inhibitor classes toward marmoset 17β-HSD1 were determined and the data were compared with the values obtained for the human enzyme. A species specific inhibition profile was observed in the class of the (hydroxyphenylnaphthols. Using a combination of computational methods, including homology modelling, molecular docking, MD simulation, and binding energy calculation, a reasonable model of the three-dimensional structure of marmoset 17β-HSD1 was developed and inhibition data were rationalized on the structural basis. In marmoset 17β-HSD1, residues 190 to 196 form a small α-helix, which induces conformational changes compared to the human enzyme. The docking poses suggest these conformational changes as determinants for species specificity and energy decomposition analysis highlighted the outstanding role of Asn152 as interaction partner for inhibitor binding. In summary, this strategy of comparing the biological activities of inhibitors toward highly conserved ortholog proteins might be an alternative to

  6. The dilemma of the gender assignment in a Portuguese adolescent with disorder of sex development due to 17β-hydroxysteroid-dehydrogenase type 3 enzyme deficiency.

    Science.gov (United States)

    Costa, Carla; Castro-Correia, Cíntia; Mira-Coelho, Alda; Monteiro, Bessa; Monteiro, Joaquim; Hughes, Ieuan; Fontoura, Manuel

    2014-01-01

    The development of male internal and external genitalia in an XY fetus requires a complex interplay of many critical genes, enzymes, and cofactors. The enzyme 17β-hydroxysteroid-dehydrogenase type 3 (17βHSD3) is present almost exclusively in the testicles and converts Delta 4-androstenodione (Δ4) to testosterone. A deficiency in this enzyme is rare and is a frequently misdiagnosed autosomal recessive cause of 46,XY, disorder of sex development. The case report is of a 15-year-old adolescent, who was raised according to female gender. At puberty, the adolescent had a severe virilization and primary amenorrhea. The physical examination showed a male phenotype with micropenis and blind vagina. The Tanner stage was A3B1P4, nonpalpable gonads. The karyotype revealed 46,XY. The endocrinology study revealed: testosterone=2.38 ng/ml, Δ4>10.00 ng/ml, and low testosterone/Δ4 ratio=0.23. Magnetic resonance imaging of the abdominal-pelvic showed the presence of testicles in inguinal canal, seminal vesicle, prostate, micropenis, and absence of uterus and vagina. The genetic study confirmed the mutation p.Glu215Asp on HSD17B3 gene in homozygosity. The dilemma of sex reassignment was seriously considered when the diagnosis was made. During all procedures the patient was accompanied by a child psychiatrist/psychologist. The teenager desired to continue being a female, so gonadectomy was performed. Estrogen therapy and surgical procedure to change external genitalia was carried out. In this case, there was a severe virilization at puberty. It is speculated to be due to a partial activity of 17βHSD3 in the testicles and/or extratesticular ability to convert Δ4 to testosterone by 17βHSD5. Prenatal exposure of the brain to androgens has increasingly been put forward as a critical factor in gender identity development, but in this case the social factor was more important for the gender assignment. In this case, we highlight the late diagnosis, probably because the patient

  7. A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy.

    Science.gov (United States)

    Guo, Yuli; Yu, Wenjun; Sun, Dongdong; Wang, Jiaxing; Li, Congye; Zhang, Rongqing; Babcock, Sara A; Li, Yan; Liu, Min; Ma, Meijuan; Shen, Mingzhi; Zeng, Chao; Li, Na; He, Wei; Zou, Qian; Zhang, Yingmei; Wang, Haichang

    2015-02-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is known to offer myocardial protection against stress conditions including ischemia-reperfusion injury, alcoholism and diabetes mellitus although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on diabetes-induced myocardial injury with a focus on autophagy. Wild-type FVB and ALDH2 transgenic mice were challenged with streptozotozin (STZ, 200mg/kg, i.p.) for 3months to induce experimental diabetic cardiomyopathy. Diabetes triggered cardiac remodeling and contractile dysfunction as evidenced by cardiac hypertrophy, decreased cell shortening and prolonged relengthening duration, the effects of which were mitigated by ALDH2. Lectin staining displayed that diabetes promoted cardiac hypertrophy, the effect of which was alleviated by ALDH2. Western blot analysis revealed dampened autophagy protein markers including LC3B ratio and Atg7 along with upregulated p62 following experimental diabetes, the effect of which was reconciled by ALDH2. Phosphorylation level of AMPK was decreased and its downstream signaling molecule FOXO3a was upregulated in both diabetic cardiac tissue and in H9C2 cells with high glucose exposure. All these effect were partly abolished by ALDH2 overexpression and ALDH2 agonist Alda1. High glucose challenge dampened autophagy in H9C2 cells as evidenced by enhanced p62 levels and decreased levels of Atg7 and LC3B, the effect of which was alleviated by the ALDH2 activator Alda-1. High glucose-induced cell death and apoptosis were reversed by Alda-1. The autophagy inhibitor 3-MA and the AMPK inhibitor compound C mitigated Alda-1-offered beneficial effect whereas the autophagy inducer rapamycin mimicked or exacerbated high glucose-induced cell injury. Moreover, compound C nullified Alda-1-induced protection against STZ-induced changes in autophagy and function. Our results suggested that ALDH2 protects against diabetes-induced myocardial dysfunction possibly through an

  8. The environmental obesogen bisphenol A promotes adipogenesis by increasing the amount of 11β-hydroxysteroid dehydrogenase type 1 in the adipose tissue of children.

    Science.gov (United States)

    Wang, J; Sun, B; Hou, M; Pan, X; Li, X

    2013-07-01

    Bisphenol A (BPA) is considered as an environmental obesogen. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts the inactive hormone cortisone to the active hormone cortisol in adipose tissues and promotes adipogenesis. To examine whether environmentally relevant concentrations of BPA could increase the expression of 11β-HSD1, as well as that of the adipogenesis-related genes peroxisome proliferator-activated receptor-γ (PPAR-γ) and lipoprotein lipase (LPL), in the adipose tissue of children. Omental fat biopsies were obtained from 17 children (7 boys and 10 girls between 3 and 13 years of age) undergoing abdominal surgery. The effects of BPA (10 nM, 1 μM, and 80 μM) on 11β-HSD1, PPAR-γ and LPL mRNA expression, and 11β-HSD1 enzymatic activity in adipose tissue and adipocytes were assessed in vitro. Moreover, the effects of carbenoxolone (CBX), an 11β-HSD1 inhibitor, or RU486, a glucocorticoid (GC) receptor antagonist, on 11β-HSD1, PPAR-γ and LPL mRNA expression were assessed in human visceral preadipocytes and adipocytes. BPA, even at the lowest concentration tested (10 nM), increased the mRNA expression and enzymatic activity of 11β-HSD1 in the omental adipose tissue samples and the visceral adipocytes. Similar effects on PPAR-γ and LPL mRNA expression and lipid accumulation were observed in the adipocytes. CBX treatment inhibited the stimulatory effects of BPA (at 10 nM) on PPAR-γ and LPL mRNA expression, whereas RU486 inhibited 11β-HSD1 mRNA expression in the adipocytes. BPA, at environmentally relevant levels, increased the mRNA expression and enzymatic activity of 11β-HSD1 by acting upon a GC receptor, which may lead to the acceleration of adipogenesis.

  9. Emodin, an 11β-hydroxysteroid dehydrogenase type 1 inhibitor, regulates adipocyte function in vitro and exerts anti-diabetic effect in ob/ob mice

    Institute of Scientific and Technical Information of China (English)

    Yue-jing WANG; Su-ling HUANG; Ying FENG; Meng-meng NING; Ying LENG

    2012-01-01

    Aim:Emodin (1,3,8-trihydroxy 6-methylanthraquinone) is a potent and selective inhibitor of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) with the ability to ameliorate metabolic disorders in diet-induced obese mice.In the present study,we investigated the effects of emodin on adipocyte function and the underlying mechanisms in vitro,and its anti-diabetic effects in ob/ob mice.Methods:3T3-L1 adipocytes were used for in vitro studies.11β-HSD1A activity was evaluated with a scintillation proximity assay.The adipogenesis,glucose uptake,lipolysis and adiponectin secretion were investigated in 3T3-L1 adipocytes treated with emodin in the presence of active (corticosterone) or inactive glucocorticoid (11-dehydrocorticosterone).For in vivo studies,ob/ob mice were administered emodin (25 and 50 mg.kg-1·d-1,ip) for 26 d.On the last day of administration,the serum was collected and the mesenteric and perirenal fat were dissected for analyses.Results:Emodin inhibited the 11β-HSD1 activity in 3T3-L1 adipocytes in concentration- and time dependent manners (the IC50 values were 7,237 and 4.204 μmol/L,respectively,after 1 and 24 h treatment,in 3T3-L1 adipocytes,emodin (30 μmol/L) suppressed 11-dehydrocorticosterone-induced adipogenesis without affecting corticosterone-induced adipogenesis; emodin (3 μmol/L) reduced 11-dehydrocorticosterone-stimulated lipolysis,but had no effect on corticosterone-induced lipolysis.Moreover,emodin (3 μmol/L)partly reversed the impaired insulin-stimulated glucose uptake and adiponectin secretion induced by 11-dehydrocorticosterone but not those induced by corticosterone.In ob/ob mice,long-term emodin administration decreased 11β-HSD1 activity in mesenteric adipose tissues,lowered non-fasting and fasting blood glucose levels,and improved glucose tolerance.Conclusion:Emodin improves the inactive glucocorticoid-induced adipose tissue dysfunction by selective inhibition on 11β-HSD1 in adipocyte in vitro and improves glycemic control in ob

  10. STX2171, a 17β-hydroxysteroid dehydrogenase type 3 inhibitor, is efficacious in vivo in a novel hormone-dependent prostate cancer model.

    Science.gov (United States)

    Day, Joanna M; Foster, Paul A; Tutill, Helena J; Schmidlin, Fabien; Sharland, Christopher M; Hargrave, Jonathan D; Vicker, Nigel; Potter, Barry V L; Reed, Michael J; Purohit, Atul

    2013-02-01

    17β-Hydroxysteroid dehydrogenases (17β-HSDs) catalyse the 17-position reduction/oxidation of steroids. 17β-HSD type 3 (17β-HSD3) catalyses the reduction of the weakly androgenic androstenedione (adione) to testosterone, suggesting that specific inhibitors of 17β-HSD3 may have a role in the treatment of hormone-dependent prostate cancer and benign prostate hyperplasia. STX2171 is a novel selective non-steroidal 17β-HSD3 inhibitor with an IC(50) of ∼200 nM in a whole-cell assay. It inhibits adione-stimulated proliferation of 17β-HSD3-expressing androgen receptor-positive LNCaP(HSD3) prostate cancer cells in vitro. An androgen-stimulated LNCaP(HSD3) xenograft proof-of-concept model was developed to study the efficacies of STX2171 and a more established 17β-HSD3 inhibitor, STX1383 (SCH-451659, Schering-Plough), in vivo. Castrated male MF-1 mice were inoculated s.c. with 1×10(7) cells 24 h after an initial daily dose of testosterone propionate (TP) or vehicle. After 4 weeks, tumours had not developed in vehicle-dosed mice, but were present in 50% of those mice given TP. One week after switching the stimulus to adione, mice were dosed additionally with the vehicle or inhibitor for a further 4 weeks. Both TP and adione efficiently stimulated tumour growth and increased plasma testosterone levels; however, in the presence of either 17β-HSD3 inhibitor, adione-dependent tumour growth was significantly inhibited and plasma testosterone levels reduced. Mouse body weights were unaffected. Both inhibitors also significantly lowered plasma testosterone levels in intact mice. In conclusion, STX2171 and STX1383 significantly lower plasma testosterone levels and inhibit androgen-dependent tumour growth in vivo, indicating that 17β-HSD3 inhibitors may have application in the treatment of hormone-dependent prostate cancer.

  11. Characterization of wild-type human medium-chain acyl-CoA dehydrogenase (MCAD) and mutant enzymes present in MCAD-deficient patients by two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Bross, P; Jensen, T G; Andresen, B S;

    1994-01-01

    Two-dimensional gel electrophoresis was used to study and compare wild-type medium-chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3) and mis-sense mutant enzyme found in patients with MCAD deficiency. By comparing the patterns for wild-type and mutant MCAD expressed in Escherichia coli or in eukar......Two-dimensional gel electrophoresis was used to study and compare wild-type medium-chain acyl-CoA dehydrogenase (MCAD; EC 1.3.99.3) and mis-sense mutant enzyme found in patients with MCAD deficiency. By comparing the patterns for wild-type and mutant MCAD expressed in Escherichia coli...... of one aspartic acid residue per monomer. Comparison of pulse labeling and steady-state amounts of MCAD protein in overexpressing COS-7 cells confirms that K304E MCAD is synthesized and transported into mitochondria in amounts similar to the wild-type protein, but is degraded much more readily. For wild...

  12. Development of hormone-dependent prostate cancer models for the evaluation of inhibitors of 17beta-hydroxysteroid dehydrogenase type 3.

    Science.gov (United States)

    Day, Joanna M; Tutill, Helena J; Foster, Paul A; Bailey, Helen V; Heaton, Wesley B; Sharland, Christopher M; Vicker, Nigel; Potter, Barry V L; Purohit, Atul; Reed, Michael J

    2009-03-25

    17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are responsible for the pre-receptor reduction/oxidation of steroids at the 17-position into active/inactive hormones, and the 15 known enzymes vary in their substrate specificity, localisation, and directional activity. 17beta-HSD Type 3 (17beta-HSD3) has been seen to be over-expressed in prostate cancer, and catalyses the reduction of androstenedione (Adione) to testosterone (T), which stimulates prostate tumour growth. Specific inhibitors of 17beta-HSD3 may have a role in the treatment of hormone-dependent prostate cancer and benign prostate hyperplasia, and also have potential as male anti-fertility agents. A 293-EBNA-based cell line with stable expression of transfected human 17beta-HSD3 was created and used to develop a whole cell radiometric TLC-based assay to assess the 17beta-HSD3 inhibitory potency of a series of compounds. STX2171 and STX2624 (IC(50) values in the 200-450nM range) were two of several active inhibitors identified. In similar TLC-based assays these compounds were found to be inactive against 17beta-HSD1 and 17beta-HSD2, indicating selectivity. A novel proof of concept model was developed to study the efficacy of the compounds in vitro using the androgen receptor positive hormone-dependent prostate cancer cell line, LNCaPwt, and its derivative, LNCaP[17beta-HSD3], transfected and selected for stable expression of 17beta-HSD3. The proliferation of the parental cell line was most efficiently stimulated by 5alpha-dihydrotestosterone (DHT), but the LNCaP[17beta-HSD3] cells were equally stimulated by Adione, indicating that 17beta-HSD3 efficiently converts Adione to T in this model. Adione-stimulated proliferation of LNCaP[17beta-HSD3] cells was inhibited in the presence of either STX2171 or STX2624. The compounds alone neither stimulated proliferation of the cells nor caused significant cell death, indicating that they are non-androgenic with low cytotoxicity. STX2171 inhibited Adione

  13. Antisense reduction of 11β-hydroxysteroid dehydrogenase type 1 enhances energy expenditure and insulin sensitivity independent of food intake in C57BL/6J mice on a Western-type diet.

    Science.gov (United States)

    Li, Guoping; Hernandez-Ono, Antonio; Crooke, Rosanne M; Graham, Mark J; Ginsberg, Henry N

    2012-06-01

    We recently reported that inhibition of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) by antisense oligonucleotide (ASO) improved hepatic lipid metabolism independent of food intake. In that study, 11β-HSD1 ASO-treated mice lost weight compared with food-matched control ASO-treated mice, suggesting treatment-mediated increased energy expenditure. We have now examined the effects of 11β-HSD1 ASO treatment on adipose tissue metabolism, insulin sensitivity, and whole-body energy expenditure. We used an ASO to knock down 11β-HSD1 in C57BL/6J mice consuming a Western-type diet (WTD). The 11β-HSD1 ASO-treated mice consumed less food, so food-matched control ASO-treated mice were also evaluated. We characterized body composition, gene expression of individual adipose depots, and measures of energy metabolism. We also investigated glucose/insulin tolerance as well as acute insulin signaling in several tissues. Knockdown of 11β-HSD1 protected against WTD-induced obesity by reducing epididymal, mesenteric, and subcutaneous white adipose tissue while activating thermogenesis in brown adipose tissue. The latter was confirmed by demonstrating increased energy expenditure in 11β-HSD1 ASO-treated mice. The 11β-HSD1 ASO treatment also protected against WTD-induced glucose intolerance and insulin resistance; this protection was associated with smaller cells and fewer macrophages in epididymal white adipose tissue as well as enhanced in vivo insulin signaling. Our results indicate that ASO-mediated inhibition of 11β-HSD1 can protect against several WTD-induced metabolic abnormalities. These effects are, at least in part, mediated by increases in the oxidative capacity of brown adipose tissue. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Compound library development guided by protein structure similarity clustering and natural product structure.

    Science.gov (United States)

    Koch, Marcus A; Wittenberg, Lars-Oliver; Basu, Sudipta; Jeyaraj, Duraiswamy A; Gourzoulidou, Eleni; Reinecke, Kerstin; Odermatt, Alex; Waldmann, Herbert

    2004-11-30

    To identify biologically relevant and drug-like protein ligands for medicinal chemistry and chemical biology research the grouping of proteins according to evolutionary relationships and conservation of molecular recognition is an established method. We propose to employ structure similarity clustering of the ligand-sensing cores of protein domains (PSSC) in conjunction with natural product guided compound library development as a synergistic approach for the identification of biologically prevalidated ligands with high fidelity. This is supported by the concepts that (i) in nature spatial structure is more conserved than amino acid sequence, (ii) the number of fold types characteristic for all protein domains is limited, and (iii) the underlying frameworks of natural product classes with multiple biological activities provide evolutionarily selected starting points in structural space. On the basis of domain core similarity considerations and irrespective of sequence similarity, Cdc25A phosphatase, acetylcholinesterase, and 11beta-hydroxysteroid dehydrogenases type 1 and type 2 were grouped into a similarity cluster. A 147-member compound collection derived from the naturally occurring Cdc25A inhibitor dysidiolide yielded potent and selective inhibitors of the other members of the similarity cluster with a hit rate of 2-3%. Protein structure similarity clustering may provide an experimental opportunity to identify supersites in proteins.

  15. 11β-Hydroxysteroid dehydrogenase type1 and memory%11β-羟类固醇脱氢酶1与记忆

    Institute of Scientific and Technical Information of China (English)

    苏颖; 林函; 连庆泉

    2010-01-01

    海马局部长期的高糖皮质激素(GC)水平对海马神经元造成损伤并影响记忆.经循环进入海马组织的肾上腺皮质分泌的GC主要是游离的无活性GC,因而需在具有还原酶活性的11β-羟类固醇脱氡酶1(11β-HSD1)的催化下转化为活性GC才能发挥作用.11β-HSD1在海马组织高表达.11β-HSD1的还原酶活性由内质网中己糖-6-磷酸脱氢酶催化生成的还原型辅酶Ⅱ维持.因此,选择性抑制海马11β-HSD1的还原酶活性可以调节海马组织活性GC的水平,保护记忆.%In hippocampus,a high level of glucocorticoid lasting for a long time can do harm to hippocampal neurons and damage memory.Most of the glucocorticoid secreted from the adrenal cortex and transported into the hippocarnpus is nomadic and inactive,and it needs to be converted into active form under the catalysis of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1).11β-HSD1 is expressed highly in hippocampus of the cerebrum.The reductase activity of 11β-HSD1 is maintained by coenzyme Ⅱ generated under the catalysis of hexose-6-phosphate dehydrogenase in endocytoplasmic reticulum.Therefore,it is possible to adjust the level of active glucocorticoid and protect memory if the reducase activity of 11β-HSD1 is inhibited selectively.

  16. Intrahippocampal glucocorticoids generated by 11β-HSD1 affect memory in aged mice.

    Science.gov (United States)

    Yau, Joyce L W; Wheelan, Nicola; Noble, June; Walker, Brian R; Webster, Scott P; Kenyon, Christopher J; Ludwig, Mike; Seckl, Jonathan R

    2015-01-01

    11Beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) locally amplifies active glucocorticoids within specific tissues including in brain. In the hippocampus, 11β-HSD1 messenger RNA increases with aging. Here, we report significantly greater increases in intrahippocampal corticosterone (CORT) levels in aged wild-type (WT) mice during the acquisition and retrieval trials in a Y-maze than age-matched 11β-HSD1(-/-) mice, corresponding to impaired and intact spatial memory, respectively. Acute stress applied to young WT mice led to increases in intrahippocampal CORT levels similar to the effects of aging and impaired retrieval of spatial memory. 11β-HSD1(-/-) mice resisted the stress-induced memory impairment. Pharmacologic inhibition of 11β-HSD1 abolished increases in intrahippocampal CORT levels during the Y-maze trials and prevented spatial memory impairments in aged WT mice. These data provide the first in vivo evidence that dynamic increases in hippocampal 11β-HSD1 regenerated CORT levels during learning and retrieval play a key role in age- and stress-associated impairments of spatial memory.

  17. T cell-mediated inflammation in adipose tissue does not cause insulin resistance in hyperlipidemic mice.

    Science.gov (United States)

    Sultan, Ariane; Strodthoff, Daniela; Robertson, Anna-Karin; Paulsson-Berne, Gabrielle; Fauconnier, Jeremy; Parini, Paolo; Rydén, Mikael; Thierry-Mieg, Nicolas; Johansson, Maria E; Chibalin, Alexander V; Zierath, Juleen R; Arner, Peter; Hansson, Göran K

    2009-04-24

    Obesity is associated with chronic inflammation in adipose tissue. Proinflammatory cytokines including tumor necrosis factor-alpha and interleukin-6 secreted by adipose tissue during the metabolic syndrome are proposed to cause local and general insulin resistance and promote development of type 2 diabetes. We have used a compound mutant mouse, Apoe(-/-)xCD4dnTGFbR, with dysregulation of T-cell activation, excessive production of proinflammatory cytokines, hyperlipidemia, and atherosclerosis, to dissect the role of inflammation in adipose tissue metabolism. These mice are lean, which avoids confounding effects of concomitant obesity. Expression and secretion of a set of proinflammatory factors including tumor necrosis factor-alpha, interferon-gamma, and monocyte chemoattractant protein-1 was increased in adipose tissue of Apoe(-/-)xCD4dnTGFbR mice, as was the enzyme 11beta-hydroxysteroid dehydrogenase type 1, which converts cortisone to bioactive cortisol. Interleukin-6, which has an inhibitory glucocorticoid response element in its promoter, was not upregulated. In spite of intense local inflammation, insulin sensitivity was not impaired in adipose tissue of Apoe(-/-)xCD4dnTGFbR mice unless exogenous interleukin-6 was administered. In conclusion, T-cell activation causes inflammation in adipose tissue but does not lead to insulin resistance in this tissue in the absence of interleukin-6.

  18. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition in which ...

  19. Studies on lipoamide dehydrogenase.

    NARCIS (Netherlands)

    Benen, J.A.E.

    1992-01-01

    At the onset of the investigations described in this thesis progress was being made on the elucidation of the crystal structure of the Azotobactervinelandii lipoamide dehydrogenase. Also the gene encoding this enzyme was cloned in our laboratory. By this, a firm basis was laid to start site directed

  20. Transforming growth factor-β1 and epidermal growth factor decrease the expression of 17β(-hydroxysteroid dehy-drogenase type 2 in endo-metrial carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Estradiol (E2) is the major molecular form of estrogens. Its biological effects are determined by estrogen receptors and intracellular E2 concentration in target cells. Regulation of intracellular E2 concentration involves the action of 17β(-hydroxysteroid dehydrogenase (17HSD) type 2, the enzyme inactivating E2 to estrone. It has been demonstrated that 17HSD type 2 is expressed in normal endometrial epithelia and emdometrial carcinoma cells (RL 95-2). However, the regulatory mechanism of 17HSD type 2 expression in emdometrial cancer cells remains unknown. In the present study, the effects of transforming growth factor-(1 (TGF-β1) and epidermal growth factor (EGF) on 17HSD type 2 expression in RL 95-2 cells have been investigated using enzyme activity assay and Northern blot analysis. After stimulation with TGF-β1 or EGF, the in vivo oxidative 17HSD activity in RL 95-2 cells was significantly decreased. It appeared that the inhibitory effect of TGF-β1 and EGF on the enzyme activity of 17HSD type 2 is dose- and time-dependent. Northern blot analysis further revealed that treatment of cells for 48 h with 10 ng/mL TGF-1β And 50 ng/mL EGF reduced the expression 17HSD type 2 mRNA to 30% and 20% of the control level, respectively. The data demonstrate that 17HSD type 2 expression in endometrial carcinoma cells is down-regulated by certain growth factors.

  1. Micro determination of cortisol and cortisone in umbilical cord blood by chemiluminescent high-performance liquid chromatography.

    Science.gov (United States)

    Hasegawa, Takeshi; Kubo, Hiroaki; Shinozaki, Koichi; Nowatari, Masahiko; Ishii, Masahiro

    2010-06-01

    A simple, sensitive and specific chemiluminescent high-performance liquid chromatography method, based on the luminol reaction, for determination of serum cortisol and cortisone, was established. In infants, placental 11beta-hydroxysteroid dehydrogenase type 2 enzyme (11beta-HSD2) activity may affect adrenal function early after birth. The cortisol-cortisone ratio of serum concentrations in umbilical cord blood is an indicator of placental 11beta-HSD2 activity. The optimum conditions for the luminol reaction were determined to be 1.5 mM luminol, 0.6 M sodium hydroxide, 0.15 mm potassium hexacyanoferrate(III) and 200 mM potassium hexacyanoferrate (II). The calibration curves for cortisol and cortisone exhibited good linearity. The correlation coefficients of the calibration curves were 0.996. The intra- and inter-day precisions were in the ranges: cortisol 7.0-12.2 and 4.4-9.2%, cortisone 5.3-7.0 and 6.2-9.9%. The recoveries of these steroids were in the ranges: cortisol 97-105%, cortisone 94-102%. The limits of detection were as follows: cortisol, 0.17 microg/dl; cortisone 0.15 microg/dl. This assay could be successfully applied to determination of the cortisol-cortiosone ratio of serum concentrations in umbilical cord bloods. Copyright 2009 John Wiley & Sons, Ltd.

  2. Liquorice-induced sodium retention. Merely an acquired condition of apparent mineralocorticoid excess? A case report.

    Science.gov (United States)

    Negro, A; Rossi, E; Regolisti, G; Perazzoli, F

    2000-01-01

    Excessive ingestion of liquorice may result in sodium retention, hypertension, hypokalemia, and suppression of renin and aldosterone. Similarities between liquorice-induced effects and congenital apparent mineralocorticoid excess have recently been emphasized, as in both conditions, reduced activity of the enzyme 11 beta-hydroxysteroid dehydrogenase type 2 allows cortisol to act as a potent mineralocorticoid. We report a case of generalized edema without any increase in blood pressure, with biochemical and hormonal features of apparent mineralocorticoid excess, in a young woman who had been ingesting substantial amounts of liquorice for several years. Liquorice-induced wide-spread edema without hypertension in our patient, as well as in a few other cases previously reported, and the more common occurrence of edema associated with hypertension challenge the current explanation of liquorice syndrome as a purely acquired apparent mineralocorticoid excess. Indeed, in both congenital apparent and true mineralocorticoid excess, edema is typically absent, as a result of the sodium escape phenomenon. As pressure-natriuresis may be an essential mechanism accounting for the sodium escape phenomenon, some component of liquorice could partially or completely oppose the circulatory response that converts liquorice-induced sodium retention into blood pressure elevation. In patients with unexplained generalized edema and hypokalemia without hypertension, liquorice ingestion should be carefully investigated and the renin-aldosterone system should be assayed.

  3. Hyperaldosteronism in pregnancy.

    Science.gov (United States)

    Escher, Geneviève

    2009-04-01

    Aldosterone is a key regulator of electrolyte and water homeostasis and plays a central role in blood pressure regulation. Hormonal changes during pregnancy, among them increased progesterone and aldosterone production, lead to the required plasma volume expansion of the maternal body as an accommodation mechanism for fetus growth. This review discusses the regulation of aldosterone production by aldosterone synthase (CYP11B2); the impact on aldosterone secretion due to the presence of a chimeric gene originating from a crossover between CYP11B1 and CYP11B2 in glucocorticoid remediable aldosteronism (GRA) - the inherited form of hypertension; enhanced aldosterone production in aldosterone-producing adenoma (APA); and idiopathic hyperaldosteronism (IHA). Features of hyperaldosteronism are also found in patients with apparent mineralocorticoid excess (AME), in which glucocorticoids exacerbate activation of the mineralocorticoid receptor (MR) because of a defect in the 11beta-hydroxysteroid dehydrogenase type 2 enzyme. Regulation of aldosterone production and tissue-specific activation of the mineralocorticoid receptor are prerequisites for optimal control of body fluids and blood pressure during pregnancy and contribute largely to the wellbeing of the mother-to-be.

  4. Effect of immunosuppressive and other drugs on the cortisol-cortisone shuttle in human kidney and liver.

    Science.gov (United States)

    Quinkler, M; Jussli, J; Bähr, V; Pfeiffer, A F H; Lepenies, J; Diederich, S

    2007-08-01

    Impaired 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) has been suggested in patients with hypertension or renal disease, where it may contribute to sodium retention and hypertension. 11beta-HSD1, which is expressed predominantly in liver and adipose tissue, influences glucose homeostasis and fat distribution by altering intracellular cortisol (F) concentrations. We tested immunosuppressive drugs that cause hypertension, and substances that interfere with steroidogenesis or influence glucose homeostasis for their ability to influence the inhibition of 11beta-HSD isozymes. For inhibition experiments, we used microsomes prepared from unaffected parts of human liver segments and resected human kidney cortex because of hepatocarcinoma or renal cell cancer. The inhibitory potency of several compounds was evaluated in concentrations from 10(-9)-10(-5) mol/l. Only sirolimus, but not cyclosporine A, tacrolimus, mycophenolate mofetil, or azathioprine showed a slight inhibition of 11beta-HSD2 activity. None of the drugs that inhibit steroidogenesis (suramine, mitotane, etomidate, and aminogluthethimide) or steroid metabolism (rifampicine) influenced 11beta-HSDs, nor did ginsenoides Re, Rc, and Rb1. Among sulfonylureas, only gliclazide decreased significantly 11beta-HSD1 activity. Increased blood pressure due to immunosuppressive drugs is probably not caused by direct inhibition of 11beta-HSD2. An additional glucose lowering effect of sulfonylurea gliclazide may be due to its ability to inhibit 11beta-HSD1.

  5. Differential effects of exercise and dietary docosahexaenoic acid on molecular systems associated with control of allostasis in the hypothalamus and hippocampus.

    Science.gov (United States)

    Gomez-Pinilla, F; Ying, Z

    2010-06-16

    Given the robust influence of diet and exercise on brain plasticity and disease, we conducted studies to determine their effects on molecular systems important for control of brain homeostasis. Studies were centered on a battery of proteins implicated in metabolic homeostasis that have the potential to modulate brain plasticity and cognitive function, in rat hypothalamus and hippocampus. Adult male rats were exposed to a docosahexaenoic acid (DHA) enriched diet (1.25% DHA) with or without voluntary exercise for 14 days. Here we report that the DHA diet and exercise influence protein levels of molecular systems important for the control of energy metabolism (primarily phospho-AMPK, silent information regulator type 1), food intake (primarily leptin and ghrelin receptors), stress (primarily glucocorticoid receptors), and 11beta-hydroxysteroid dehydrogenase 1 (11betaHSD1). Exercise or DHA dietary supplementation had differential effects on several of these class proteins, and the concurrent application of both altered the pattern of response elicited by the single applications of diet or exercise. For example, exercise elevated levels of glucocorticoids receptors in the hypothalamus and the DHA diet had opposite effects, while the concurrent application of diet and exercise suppressed the single effects of diet or exercise. In most of the cases, the hypothalamus and the hippocampus had a distinctive pattern of response to the diet or exercise. The results harmonize with the concept that exercise and dietary DHA exert specific actions on the hypothalamus and hippocampus, with implications for the regulations of brain plasticity and cognitive function.

  6. Conversation galante: how the immune and the neuroendocrine systems talk to each other.

    Science.gov (United States)

    Di Comite, Gabriele; Grazia Sabbadini, Maria; Corti, Angelo; Rovere-Querini, Patrizia; Manfredi, Angelo A

    2007-11-01

    The generation of endogenous adjuvants and the clearance of apoptotic cells occur at the intersection between the neuroendocrine and the immune systems. Recent data suggest that autoimmunity associates with a communication breakdown between the two systems and that events taking place in lymphoid organs and in peripheral inflamed tissues shape the response to tissue damage. Autonomic nerve endings release norepinephrine and acetylcholine, whereas sensitive fibers release neuropeptides. Moreover, nervous endings in the tissues control the secretory activity of neuroendocrine cells, which are distributed in the gut, the pancreas, the lung, the thyroid, the liver, the prostate, the skin. Intracellular enzymes, and in particular the 11 beta-hydroxysteroid dehydrogenase type 1, regulate the availability of active glucocorticoids in inflammatory macrophages and maturing dendritic cells; in turn the rate of active glucocorticoids determine the efficiency of phagocytes in clearing apoptotic cells, possibly influencing the availability of autoantigens. Immune cells release cytokines, which, in turn signal to the central and peripheral nervous system. We learnt from cytokine-neutralizing therapies that the sustained production of pro-inflammatory signals interferes with various neuro-endocrine axes. A better molecular dissection of this finely regulated inter-system cross-talk, in physiological conditions and during self-sustaining inflammatory diseases, might enable more rational therapeutic approaches.

  7. Expression of 11β-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptors in reproductive tissue of male horses at different stages of sexual maturity.

    Science.gov (United States)

    Herrera-Luna, C V; Budik, S; Helmreich, M; Walter, I; Aurich, C

    2013-04-01

    Glucocorticoids (GCs) as mediators of the stress response may affect Leydig cell function by inhibiting either luteinizing hormone receptor expression or testosterone biosynthesis. The isozymes 11β-hydroxysteroid dehydrogenase (11βHSD) 1 and 11βHSD2 control the intracellular cortisol levels. Little is known about the effects of stress on fertility in the equine. The objective of the present study was to determine the presence and cellular localization of glucocorticoid receptors (GCR) and glucocorticoid-metabolizing enzymes (11βHSD1 and 11βHSD2) in equine epididymal and testicular tissue with special regard to sexual maturation. Testicular and epididymal tissue was collected from 21 healthy stallions, and four age groups were designed: pre-pubertal, young, mature and older horses. Immunohistochemistry (IHC) analysis and quantitative real-time PCR (qRT-PCR) were used. Pre-pubertal horses showed higher testicular gene expression of 11βHSD1, 11βHSD2 and GCR than horses of all other groups (p horses. In mature stallions, expression of 11βHSD enzymes and the oxidative 11βHSD activity in Leydig cells and epididymal basal and principal cells suggest a protective role on these tissues contributing to physiological intracellular glucocorticoid concentrations.

  8. An alpha-proteobacterial type malate dehydrogenase may complement LDH function in Plasmodium falciparum. Cloning and biochemical characterization of the enzyme.

    Science.gov (United States)

    Tripathi, Abhai K; Desai, Prashant V; Pradhan, Anupam; Khan, Shabana I; Avery, Mitchell A; Walker, Larry A; Tekwani, Babu L

    2004-09-01

    Malate dehydrogenase (MDH) may be important in carbohydrate and energy metabolism in malarial parasites. The cDNA corresponding to the MDH gene, identified on chromosome 6 of the Plasmodium falciparum genome, was amplified by RT-PCR, cloned and overexpressed in Escherichia coli. The recombinant Pf MDH was purified to homogeneity and biochemically characterized as an NAD(+)(H)-specific MDH, which catalysed reversible interconversion of malate to oxaloacetate. Pf MDH could not use NADP/NADPH as a cofactor, but used acetylpyridine adenine dinucleoide, an analogue of NAD. The enzyme exhibited strict substrate and cofactor specificity. The highest levels of Pf MDH transcripts were detected in trophozoites while the Pf MDH protein level remained high in trophozoites as well as schizonts. A highly refined model of Pf MDH revealed distinct structural characteristics of substrate and cofactor binding sites and important amino acid residues lining these pockets. The active site amino acid residues involved in substrate binding were conserved in Pf MDH but the N-terminal glycine motif, which is involved in nucleotide binding, was similar to the GXGXXG signature sequence found in Pf LDH and also in alpha-proteobacterial MDHs. Oxamic acid did not inhibit Pf MDH, while gossypol, which interacts at the nucleotide binding site of oxidoreductases and shows antimalarial activity, inhibited Pf MDH also. Treatment of a synchronized culture of P. falciparum trophozoites with gossypol caused induction in expression of Pf MDH, while expression of Pf LDH was reduced and expression of malate:quinone oxidoreductase remained unchanged. Pf MDH may complement Pf LDH function of NAD/NADH coupling in malaria parasites. Thus, dual inhibitors of Pf MDH and Pf LDH may be required to target this pathway and to develop potential new antimalarial drugs.

  9. Insulin, CCAAT/Enhancer-Binding Proteins and Lactate Regulate the Human 11β-Hydroxysteroid Dehydrogenase Type 2 Gene Expression in Colon Cancer Cell Lines

    Science.gov (United States)

    Alikhani-Koupaei, Rasoul; Ignatova, Irena D.; Guettinger, Andreas; Frey, Felix J.; Frey, Brigitte M.

    2014-01-01

    11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon. PMID:25133511

  10. Insulin, CCAAT/enhancer-binding proteins and lactate regulate the human 11β-hydroxysteroid dehydrogenase type 2 gene expression in colon cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Thomas Andrieu

    Full Text Available 11β-Hydroxysteroid dehydrogenases (11beta-HSD modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29 at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.

  11. Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11- hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India

    Indian Academy of Sciences (India)

    Manisha Patnaik; Pallabi Pati; Surendra N. Swain; Manoj K. Mohapatra; Bhagirathi Dwibedi; Shantanu K. Kar; Manoranjan Ranjit

    2014-12-01

    Essential hypertension which accounts 90–95% of the total hypertension cases is affected by both genetic and environmental factors. This study was undertaken to investigate the association of aldosterone synthase C-344T, angiotensin II type I receptor A1166C and 11- hydroxysteroid dehydrogenase type 2 G534A polymorphisms with essential hypertension in the population of Odisha, India. A total of 246 hypertensive subjects (males, 159; females, 87) and 274 normal healthy individuals (males, 158; females, 116) were enrolled in this study based on the inclusion and exclusion criteria. Analysis of genetic and biochemical data revealed that in this population the CT and TT genotypes of aldosterone synthase C-344T polymorphism, frequency of alcohol consumption and aldosterone levels were significantly high among the total as well as male hypertensives, while the AC and CC genotypes of angiotensin II type I receptor A1166C polymorphism were significantly high among the total as well as female hypertensives. High density lipoprotein levels were higher in male hypertensives.

  12. Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11- hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India

    Indian Academy of Sciences (India)

    Manisha Patnaik; Pallabi Pati; Surendra N. Swain; Manoj K. Mohapatra; Bhagirathi Dwibedi; Shantanu K. Kar; Manoranjan Ranjit

    2015-06-01

    Essential hypertension which accounts 90–95% of the total hypertension cases is affected by both genetic and environmental factors. This study was undertaken to investigate the association of aldosterone synthase C-344T, angiotensin II type I receptor A1166C and 11- hydroxysteroid dehydrogenase type 2 G534A polymorphisms with essential hypertension in the population of Odisha, India. A total of 246 hypertensive subjects (males, 159; females, 87) and 274 normal healthy individuals (males, 158; females, 116) were enrolled in this study based on the inclusion and exclusion criteria. Analysis of genetic and biochemical data revealed that in this population the CT and TT genotypes of aldosterone synthase C-344T polymorphism, frequency of alcohol consumption and aldosterone levels were significantly high among the total as well as male hypertensives, while the AC and CC genotypes of angiotensin II type I receptor A1166C polymorphism were significantly high among the total as well as female hypertensives. High density lipoprotein levels were higher in male hypertensives.

  13. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Science.gov (United States)

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  14. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.; Yang, Xiaojiang; Songya Pang [Univ. of Illinois, Chicago, IL (United States)

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD gene region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.

  15. Detection and functional characterization of the novel missense mutation Y254D in type II 3{beta}-hydroxysteroid dehydrogenase (3{beta}HSD) gene of a female patient with nonsalt-losing 3{beta}HSD deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Rheaume, E.; Laflamme, N.; Labrie, F.; Simard, J. [Laval Univ., Quebec (Canada); Rosenfield, R.L. [Univ. of Chicago, IL (United States)

    1994-03-01

    Three {beta}-hydroxysteroid dehydrogenase/{Delta}{sup 5}-{Delta}{sup 4}-isomerase (3{beta}HSD) deficiency is a form of congenital adrenal hyperplasia characterized by severe impairment of steroid biosynthesis in the adrenals and gonads. To better understand the molecular basis of the phenotypic heterogeneity found in 3{beta}HSD deficiency, the authors analyzed the structure of type I and II 3{beta}HSD genes in a female patient with nonsalt-losing 3{beta}HSD deficiency diagnosed at puberty. They directly sequenced DNA fragments generated by polymerase chain reaction amplification of the four exons, the exon-intron boundaries, and the 5{prime}-flanking regions of each gene. No mutation was detected in the type I 3{beta}HSD gene, which is the predominant species expressed in the placenta and peripheral tissues. They detected a novel missense mutation, Y254D, in one allele of the patient`s type II 3{beta}HSD gene, which is the almost exclusive type expressed in the adrenals and gonads. The influence of the Y254D mutation on enzymatic activity was assessed by analyzing the recombinant mutant enzyme generated by site-directed mutagenesis after its transient expression in COS-1 monkey kidney cells. Recombinant mutant type II 3{beta}HSD enzyme carrying the Y254D substitution exhibits no detectable activity with C{sub 21} {Delta}{sup 5}-steroid pregnenolone or C{sub 19} {Delta}{sup 5}-steroid hydroepiandrosterone used as substrate. The absence of restriction fragment length polymorphism by Southern blot analysis and the finding that all of the amplified DNA fragments possess the expected length suggest the absence of deletions, duplications, or rearrangements in the other allele. A putative second mutation could be located farther than 1427 basepairs upstream of the initiation codon, thus potentially affecting the normal expression of this gene or within intronic regions, generating an alternative aberrant splicing site. 43 refs., 5 figs., 1 tab.

  16. Comparison of a homology model and the crystallographic structure of human 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) in a structure-based identification of inhibitors

    Science.gov (United States)

    Miguet, Laurence; Zhang, Ziding; Barbier, Maryse; Grigorov, Martin G.

    2006-02-01

    Human 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) catalyzes the interconversion of cortisone into active cortisol. 11βHSD1 inhibition is a tempting target for the treatment of a host of human disorders that might benefit from blockade of glucocorticoid action, such as obesity, metabolic syndrome, and diabetes type 2. Here, we report an in silico screening study aimed at identifying new selective inhibitors of human 11βHSD1 enzyme. In the first step, homology modeling was employed to build the 3D structure of 11βHSD1. Further, molecular docking was used to validate the predicted model by showing that it was able to discriminate between known 11βHSD1 inhibitors or substrates and non-inhibitors. The homology model was found to reproduce closely the crystal structure that became publicly available in the final stages of this work. Finally, we carried out structure-based virtual screening experiments on both the homology model and the crystallographic structure with a database of 114'000 natural molecules. Among these, 15 molecules were consistently selected as inhibitors based on both the model and crystal structures of the enzyme, implying a good quality for the homology model. Among these putative 11βHSD1 inhibitors, two were flavonone derivatives that have already been shown to be potent inhibitors of the enzyme.

  17. Genetics Home Reference: lactate dehydrogenase deficiency

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions lactate dehydrogenase deficiency lactate dehydrogenase deficiency Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Lactate dehydrogenase deficiency is a condition that affects how the ...

  18. 15 Hypoxyprostaglandin dehydrogenase. A review

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1976-01-01

    A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references.......A review is given on the enzyme 15 hydroxyprostaglandin dehydrogenase. The determination, activity, distribution, purification, properties and physiological aspects are discussed. 128 references....

  19. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: Impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish

    Energy Technology Data Exchange (ETDEWEB)

    Biery, B.J.; Stein, D.E.; Goodman, S.I. [Univ. of Colorado School of Medicine, Denver, CO (United States)] [and others

    1996-11-01

    The structure of the human glutaryl coenzyme A dehydrogenase (GCD) gene was determined to contain 11 exons and to span {approximately}7 kb. Fibroblast DNA from 64 unrelated glutaric academia type I (GA1) patients was screened for mutations by PCR amplification and analysis of SSCP. Fragments with altered electrophoretic mobility were subcloned and sequenced to detect mutations that caused GA1. This report describes the structure of the GCD gene, as well as point mutations and polymorphisms found in 7 of its 11 exons. Several mutations were found in more than one patient, but no one prevalent mutation was detected in the general population. As expected from pedigree analysis, a single mutant allele causes GA1 in the Old Order Amish of Lancaster County, Pennsylvania. Several mutations have been expressed in Escherichia coli, and all produce diminished enzyme activity. Reduced activity in GCD encoded by the A421V mutation in the Amish may be due to impaired association of enzyme subunits. 13 refs., 5 figs., 3 tabs.

  20. Green tea and one of its constituents, Epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1.

    Directory of Open Access Journals (Sweden)

    Jan Hintzpeter

    Full Text Available The microsomal enzyme 11β-hydroxysteroid deydrogenase type 1 (11β-HSD1 catalyzes the interconversion of glucocorticoid receptor-inert cortisone to receptor- active cortisol, thereby acting as an intracellular switch for regulating the access of glucocorticoid hormones to the glucocorticoid receptor. There is strong evidence for an important aetiological role of 11β-HSD1 in various metabolic disorders including insulin resistance, diabetes type 2, hypertension, dyslipidemia and obesity. Hence, modulation of 11β-HSD1 activity with selective inhibitors is being pursued as a new therapeutic approach for the treatment of the metabolic syndrome. Since tea has been associated with health benefits for thousands of years, we sought to elucidate the active principle in tea with regard to diabetes type 2 prevention. Several teas and tea specific polyphenolic compounds were tested for their possible inhibition of cortisone reduction with human liver microsomes and purified human 11β-HSD1. Indeed we found that tea extracts inhibited 11β-HSD1 mediated cortisone reduction, where green tea exhibited the highest inhibitory potency with an IC50 value of 3.749 mg dried tea leaves per ml. Consequently, major polyphenolic compounds from green tea, in particular catechins were tested with the same systems. (--Epigallocatechin gallate (EGCG revealed the highest inhibition of 11β-HSD1 activity (reduction: IC50 = 57.99 µM; oxidation: IC50 = 131.2 µM. Detailed kinetic studies indicate a direct competition mode of EGCG, with substrate and/or cofactor binding. Inhibition constants of EGCG on cortisone reduction were Ki = 22.68 µM for microsomes and Ki = 18.74 µM for purified 11β-HSD1. In silicio docking studies support the view that EGCG binds directly to the active site of 11β-HSD1 by forming a hydrogen bond with Lys187 of the catalytic triade. Our study is the first to provide evidence that the health benefits of green tea and its

  1. Green tea and one of its constituents, Epigallocatechine-3-gallate, are potent inhibitors of human 11β-hydroxysteroid dehydrogenase type 1.

    Science.gov (United States)

    Hintzpeter, Jan; Stapelfeld, Claudia; Loerz, Christine; Martin, Hans-Joerg; Maser, Edmund

    2014-01-01

    The microsomal enzyme 11β-hydroxysteroid deydrogenase type 1 (11β-HSD1) catalyzes the interconversion of glucocorticoid receptor-inert cortisone to receptor- active cortisol, thereby acting as an intracellular switch for regulating the access of glucocorticoid hormones to the glucocorticoid receptor. There is strong evidence for an important aetiological role of 11β-HSD1 in various metabolic disorders including insulin resistance, diabetes type 2, hypertension, dyslipidemia and obesity. Hence, modulation of 11β-HSD1 activity with selective inhibitors is being pursued as a new therapeutic approach for the treatment of the metabolic syndrome. Since tea has been associated with health benefits for thousands of years, we sought to elucidate the active principle in tea with regard to diabetes type 2 prevention. Several teas and tea specific polyphenolic compounds were tested for their possible inhibition of cortisone reduction with human liver microsomes and purified human 11β-HSD1. Indeed we found that tea extracts inhibited 11β-HSD1 mediated cortisone reduction, where green tea exhibited the highest inhibitory potency with an IC50 value of 3.749 mg dried tea leaves per ml. Consequently, major polyphenolic compounds from green tea, in particular catechins were tested with the same systems. (-)-Epigallocatechin gallate (EGCG) revealed the highest inhibition of 11β-HSD1 activity (reduction: IC50 = 57.99 µM; oxidation: IC50 = 131.2 µM). Detailed kinetic studies indicate a direct competition mode of EGCG, with substrate and/or cofactor binding. Inhibition constants of EGCG on cortisone reduction were Ki = 22.68 µM for microsomes and Ki = 18.74 µM for purified 11β-HSD1. In silicio docking studies support the view that EGCG binds directly to the active site of 11β-HSD1 by forming a hydrogen bond with Lys187 of the catalytic triade. Our study is the first to provide evidence that the health benefits of green tea and its polyphenolic compounds may

  2. Peroxisomal multifunctional enzyme type 2 from the fruitfly: dehydrogenase and hydratase act as separate entities, as revealed by structure and kinetics.

    Science.gov (United States)

    Haataja, Tatu J K; Koski, M Kristian; Hiltunen, J Kalervo; Glumoff, Tuomo

    2011-05-01

    All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure-function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.

  3. Lactate dehydrogenase-elevating virus

    Science.gov (United States)

    This book chapter describes the taxonomic classification of Lactate dehydrogenase-elevating virus (LDV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biologic...

  4. Anti-inflammatory effect of a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor via the stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages

    Directory of Open Access Journals (Sweden)

    Sung Bum Park

    2016-08-01

    Full Text Available 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 converts inactive cortisone to the active cortisol. 11β-HSD1 may be involved in the resolution of inflammation. In the present study, we investigate the anti-inflammatory effects of 2-(3-benzoyl-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344, a selective 11β-HSD1 inhibitor, in lipopolysaccharide (LPS-activated C57BL/6J mice and macrophages. LPS increased 11β-HSD1 activity and expression in macrophages, which was inhibited by KR-66344. In addition, KR-66344 increased survival rate in LPS treated C57BL/6J mice. HO-1 mRNA expression level was increased by KR-66344, and this effect was reversed by the HO competitive inhibitor, ZnPP, in macrophages. Moreover, ZnPP reversed the suppression of ROS formation and cell death induced by KR-66344. ZnPP also suppressed animal survival rate in LPS plus KR-66344 treated C57BL/6J mice. In the spleen of LPS-treated mice, KR-66344 prevented cell death via suppression of inflammation, followed by inhibition of ROS, iNOS and COX-2 expression. Furthermore, LPS increased NFκB-p65 and MAPK phosphorylation, and these effects were abolished by pretreatment with KR-66344. Taken together, KR-66344 protects against LPS-induced animal death and spleen injury by inhibition of inflammation via induction of HO-1 and inhibition of 11β-HSD1 activity. Thus, we concluded that the selective 11β-HSD1 inhibitor may provide a novel strategy in the prevention/treatment of inflammatory disorders in patients.

  5. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Li

    Full Text Available Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017 and TP53 mutation (p < 0.001, but not 1p/19q loss (p = 0.834, occurred at a higher frequency in isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041 and frontal lobe location (p = 0.010 were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response

  6. Isocitrate dehydrogenase 1 Gene Mutation Is Associated with Prognosis in Clinical Low-Grade Gliomas.

    Science.gov (United States)

    Li, Ming-Yang; Wang, Yin-Yan; Cai, Jin-Quan; Zhang, Chuan-Bao; Wang, Kuan-Yu; Cheng, Wen; Liu, Yan-Wei; Zhang, Wei; Jiang, Tao

    2015-01-01

    Isocitrate dehydrogenase 1 gene mutations are found in most World Health Organization grade II and III gliomas and secondary glioblastomas. Isocitrate dehydrogenase 1 mutations are known to have prognostic value in high-grade gliomas. However, their prognostic significance in low-grade gliomas remains controversial. We determined the predictive and prognostic value of isocitrate dehydrogenase 1 status in low-grade gliomas. The association of isocitrate dehydrogenase 1 status with clinicopathological and genetic factors was also evaluated. Clinical information and genetic data including isocitrate dehydrogenase 1 mutation, O 6-methylguanine DNA methyltransferase promoter methylation, 1p/19q chromosome loss, and TP53 mutation of 417 low-grade gliomas were collected from the Chinese Glioma Genome Atlas database. Kaplan-Meier and Cox proportional hazards regression analyses were performed to evaluate the prognostic effect of clinical characteristics and molecular biomarkers. Isocitrate dehydrogenase 1 mutation was identified as an independent prognostic factor for overall, but not progression-free, survival. Notably, isocitrate dehydrogenase 1 mutation was found to be a significant prognostic factor in patients with oligodendrogliomas, but not in patients with astrocytomas. Furthermore, O 6-methylguanine DNA methyltransferase promoter methylation (p = 0.017) and TP53 mutation (p isocitrate dehydrogenase 1-mutated tumors than in isocitrate dehydrogenase 1 wild-type tumors. Younger patient age (p = 0.041) and frontal lobe location (p = 0.010) were significantly correlated with isocitrate dehydrogenase 1 mutation. Chemotherapy did not provide a survival benefit in patients with isocitrate dehydrogenase 1-mutated tumors. Isocitrate dehydrogenase 1 mutation was an independent prognostic factor in low-grade gliomas, whereas it showed no predictive value for chemotherapy response. Isocitrate dehydrogenase 1 mutation was highly associated with O 6-methylguanine DNA

  7. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  8. Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology.

    Science.gov (United States)

    Toyama, Hirohide; Mathews, F Scott; Adachi, Osao; Matsushita, Kazunobu

    2004-08-01

    Quino(hemo)protein alcohol dehydrogenases (ADH) that have pyrroloquinoline quinone (PQQ) as the prosthetic group are classified into 3 groups, types I, II, and III. Type I ADH is a simple quinoprotein having PQQ as the only prosthetic group, while type II and type III ADHs are quinohemoprotein having heme c as well as PQQ in the catalytic polypeptide. Type II ADH is a soluble periplasmic enzyme and is widely distributed in Proteobacteria such as Pseudomonas, Ralstonia, Comamonas, etc. In contrast, type III ADH is a membrane-bound enzyme working on the periplasmic surface solely in acetic acid bacteria. It consists of three subunits that comprise a quinohemoprotein catalytic subunit, a triheme cytochrome c subunit, and a third subunit of unknown function. The catalytic subunits of all the quino(hemo)protein ADHs have a common structural motif, a quinoprotein-specific superbarrel domain, where PQQ is deeply embedded in the center. In addition, in the type II and type III ADHs this subunit contains a unique heme c domain. Various type II ADHs each have a unique substrate specificity, accepting a wide variety of alcohols, as is discussed on the basis of recent X-ray crystallographic analyses. Electron transfer within both type II and III ADHs is discussed in terms of the intramolecular reaction from PQQ to heme c and also from heme to heme, and in terms of the intermolecular reaction with azurin and ubiquinone, respectively. Unique physiological functions of both types of quinohemoprotein ADHs are also discussed.

  9. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a

  10. Michael hydratase alcohol dehydrogenase or just alcohol dehydrogenase?

    NARCIS (Netherlands)

    Resch, V.A.; Jin, J.; Chen, B.S.; Hanefeld, U.

    2014-01-01

    The Michael hydratase – alcohol dehydrogenase (MhyADH) from Alicycliphilus denitrificans was previously identified as a bi-functional enzyme performing a hydration of α,β-unsaturated ketones and subsequent oxidation of the formed alcohols. The investigations of the bi-functionality were based on a s

  11. Relationships between the H and A-O blood types, phosphohexose isomerase and 6-phosphogluconate dehydrogenase red cell enzyme systems and halothane sensitivity, and economic traits in a superior and an inferior selection line of swiss landrace pigs.

    Science.gov (United States)

    Vögeli, P; Stranzinger, G; Schneebeli, H; Hagger, C; Künzi, N; Gerwig, C

    1984-12-01

    Associations between production traits and the genes for halothane sensitivity (HAL), S, A and H blood group systems and phosphohexose isomerase (PHI) and 6-phosphogluconate dehydrogenase (6-PGD) enzyme systems were investigated in two lines of pigs selected for an index. The phenotypic variance-covariance matrix of the index included backfat thickness and daily gain, whereas the genetic variance-covariance matrix included daily gain, feed conversion and percentage of lean meat. The experiment was conducted at the experimental station of the Institute of Animal Production and has been underway since 1973. The same index was applied but in two opposite directions to give a superior and inferior line in relation to the production traits. One hundred twenty-nine animals of the superior line in the seventh generation and 88 animals of the inferior line in the sixth generation were studied. Forty-two percent (54/129) of the animals of the superior line were halothane-positive. No animals in the inferior line were halothane reactors. Of the halothane-positive pigs, 70.4% (38/54) in the superior line had the HaHa and 94.4% (51/54) had the SsSs genotype, whereas only 4% (3/75) of the HaHa and 12% (9/75) of the SsSs pigs were halothane-negative. By practicing selection at the H and S loci, it seems possible to efficiently reduce halothane sensitivity in Swiss Landrace pigs. In pigs of the superior line, there were significant differences in percentage of lean meat, carcass length, pH1 (pH value at 45 min to 1 h postmortem, M. longissimus) and reflectance values among genotypes of the HAL, S and H systems and among some genotypes of the 6-PGD system. Poorest meat quality, highest percentage of lean meat and shortest carcass length were observed in pigs homozygous for the alleles HALn, Ss, Ha, PHIB and 6-PGDA. In the inferior line, these associations were absent. As the HAL locus is associated with the above mentioned production traits, linkage disequilibria may explain the

  12. Regulation of adipocyte 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 by CCAAT/enhancer-binding protein (C/EBP β isoforms, LIP and LAP.

    Directory of Open Access Journals (Sweden)

    Cristina L Esteves

    Full Text Available 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1 catalyses intracellular regeneration of active glucocorticoids, notably in liver and adipose tissue. 11β-HSD1 is increased selectively in adipose tissue in human obesity, a change implicated in the pathogenesis of metabolic syndrome. With high fat (HF-feeding, adipose tissue 11β-HSD1 is down-regulated in mice, plausibly to counteract metabolic disease. Transcription of 11β-HSD1 is directly regulated by members of the CCAAT/enhancer binding protein (C/EBP family. Here we show that while total C/EBPβ in adipose tissue is unaltered by HF diet, the ratio of the C/EBPβ isoforms liver-enriched inhibitor protein (LIP and liver-enriched activator protein (LAP (C/EBPβ-LIP:LAP is increased in subcutaneous adipose. This may cause changes in 11β-HSD1 expression since genetically modified C/EBPβ((+/L mice, with increased C/EBPβ-LIP:LAP ratio, have decreased subcutaneous adipose 11β-HSD1 mRNA levels, whereas C/EBPβ(ΔuORF mice, with decreased C/EBPβ-LIP:LAP ratio, show increased subcutaneous adipose 11β-HSD1. C/EBPβ-LIP:LAP ratio is regulated by endoplasmic reticulum (ER stress and mTOR signalling, both of which are altered in obesity. In 3T3-L1 adipocytes, 11β-HSD1 mRNA levels were down-regulated following induction of ER stress by tunicamycin but were up-regulated following inhibition of mTOR by rapamycin. These data point to a central role for C/EBPβ and its processing to LIP and LAP in transcriptional regulation of 11β-HSD1 in adipose tissue. Down-regulation of 11β-HSD1 by increased C/EBPβ-LIP:LAP in adipocytes may be part of a nutrient-sensing mechanism counteracting nutritional stress generated by HF diet.

  13. Lactate dehydrogenase assay for assessment of polycation cytotoxicity

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Moghimi, Seyed Moien

    2013-01-01

    cannot stand alone in determining the type and extent of damage or cell death mechanism. In this chapter we describe a lactate dehydrogenase (LDH) assay for high-throughput screening that can be used as a starting point for further detailed cytotoxicity determination. LDH release is considered an early...

  14. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    Science.gov (United States)

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  15. Hyper- and hypoaldosteronism.

    Science.gov (United States)

    Torpy, D J; Stratakis, C A; Chrousos, G P

    1999-01-01

    Aldosterone participates in blood volume and serum potassium homeostasis, which in turn regulate aldosterone secretion by the zona glomerulosa of the adrenal cortex. Autonomous aldosterone hypersecretion leads to hypertension and hypokalemia. Improved screening techniques have led to a re-evaluation of the frequency of primary aldosteronism among adults with hypertension, recognizing that normokalemic cases are more frequent than was previously appreciated. The genetic basis of glucocorticoid remediable aldosteronism has been elucidated and adequately explains most of the pathophysiologic features of this disorder. A new form of familial aldosteronism has been described, familial hyperaldosteronism type II; linkage analysis and direct mutation screening has shown that this disorder is unrelated to mutations in the genes for aldosterone synthase or the angiotensin II receptor. The features of aldosterone hypersecretion may be due to non-aldosterone-mediated mineralocorticoid excess. These include two causes of congenital adrenal hyperplasia (11 beta-hydroxylase deficiency and 17 alpha-hydroxylase deficiency), the syndrome of apparent mineralocorticoid excess (AME) due to 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) deficiency, primary glucocorticoid resistance, Liddle's syndrome due to activating mutations of the renal epithelial sodium channel, and exogenous sources of mineralocorticoid, such as licorice, or drugs, such as carbenoxolone. The features of mineralocorticoid excess are also often seen in Cushing's syndrome. Hypoaldosteronism may lead to hypotension and hyperkalemia. Hypoaldosteronism may be due to inadequate stimulation of aldosterone secretion (hyporeninemic hypoaldosteronism), defects in adrenal synthesis of aldosterone, or resistance to the ion transport effects of aldosterone, such as are seen in pseudohypoaldosteronism type I (PHA I). PHA I is frequently due to mutations involving the amiloride sensitive epithelial sodium channel. Gordon

  16. Effects of Carbenoxolone on the Canine Pituitary-Adrenal Axis.

    Directory of Open Access Journals (Sweden)

    Takahiro Teshima

    Full Text Available Cushing's disease caused by pituitary corticotroph adenoma is a common endocrine disease in dogs. A characteristic biochemical feature of corticotroph adenomas is their relative resistance to suppressive negative feedback by glucocorticoids. The abnormal expression of 11beta-hydroxysteroid dehydrogenase (11HSD, which is a cortisol metabolic enzyme, is found in human and murine corticotroph adenomas. Our recent studies demonstrated that canine corticotroph adenomas also have abnormal expression of 11HSD. 11HSD has two isoforms in dogs, 11HSD type1 (HSD11B1, which converts cortisone into active cortisol, and 11HSD type2 (HSD11B2, which converts cortisol into inactive cortisone. It has been suggested that glucocorticoid resistance in corticotroph tumors is related to the overexpression of HSD11B2. Therefore it was our aim to investigate the effects of carbenoxolone (CBX, an 11HSD inhibitor, on the healthy dog's pituitary-adrenal axis. Dogs were administered 50 mg/kg of CBX twice each day for 15 days. During CBX administration, no adverse effects were observed in any dogs. The plasma adrenocorticotropic hormone (ACTH, and serum cortisol and cortisone concentrations were significantly lower at day 7 and 15 following corticotropin releasing hormone stimulation. After completion of CBX administration, the HSD11B1 mRNA expression was higher, and HSD11B2 mRNA expression was significantly lower in the pituitaries. Moreover, proopiomelanocortin mRNA expression was lower, and the ratio of ACTH-positive cells in the anterior pituitary was also significantly lower after CBX treatment. In adrenal glands treated with CBX, HSD11B1 and HSD11B2 mRNA expression were both lower compared to normal canine adrenal glands. The results of this study suggested that CBX inhibits ACTH secretion from pituitary due to altered 11HSD expressions, and is potentially useful for the treatment of canine Cushing's disease.

  17. Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice.

    Science.gov (United States)

    Nuotio-Antar, Alli M; Hachey, David L; Hasty, Alyssa H

    2007-12-01

    Glucocorticoids, which are well established to regulate body fat mass distribution, adipocyte lipolysis, hepatic gluconeogenesis, and hepatocyte VLDL secretion, are speculated to play a role in the pathology of metabolic syndrome. Recent focus has been on the activity of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), which is capable of regenerating, and thus amplifying, glucocorticoids in key metabolic tissues such as liver and adipose tissue. To determine the effects of global 11beta-HSD1 inhibition on metabolic syndrome risk factors, we subcutaneously injected "Western"-type diet-fed hyperlipidemic mice displaying moderate or severe obesity [LDL receptor (LDLR)-deficient (LDLR(-/-)) mice and mice derived from heterozygous agouti (A(y)/a) and homozygous LDLR(-/-) breeding pairs (A(y)/a;LDLR(-/-) mice)] with the nonselective 11beta-HSD inhibitor carbenoxolone for 4 wk. Body composition throughout the study, end-point fasting plasma, and extent of hepatic steatosis and atherosclerosis were assessed. This route of treatment led to detection of high levels of carbenoxolone in liver and fat and resulted in decreased weight gain due to reduced body fat mass in both mouse models. However, only A(y)/a;LDLR(-/-) mice showed an effect of 11beta-HSD1 inhibition on fasting insulin and plasma lipids, coincident with a reduction in VLDL due to mildly increased VLDL clearance and dramatically decreased hepatic triglyceride production. A(y)/a;LDLR(-/-) mice also showed a greater effect of the drug on reducing atherosclerotic lesion formation. These findings indicate that subcutaneous injection of an 11beta-HSD1 inhibitor allows for the targeting of the enzyme in not only liver, but also adipose tissue, and attenuates many metabolic syndrome risk factors, with more pronounced effects in cases of severe obesity and hyperlipidemia.

  18. Beneficial metabolic effects of dietary epigallocatechin gallate alone and in combination with exendin-4 in high fat diabetic mice.

    Science.gov (United States)

    Pathak, Nupur M; Millar, Paul J B; Pathak, Varun; Flatt, Peter R; Gault, Victor A

    2017-07-25

    Significant attempts are being made to generate multifunctional, hybrid or peptide combinations as novel therapeutic strategies for type 2 diabetes, however this presents key challenges including design and pharmaceutical development. In this study, we evaluated metabolic properties of oral nutritional supplement epigallocatechin gallate (EGCG) in combination with GLP-1 agonist exendin-4 in a mouse model of dietary-induced diabetes and obesity. EGCG, exendin-4 or combination of both were administered twice-daily over 28 days to high fat (HF) mice on background of low-dose streptozotocin. Energy intake, body weight, fat mass, glucose tolerance, insulin sensitivity, lipid profile, biochemical and hormone markers, and islet histology were examined. All treatment groups exhibited significantly reduced body weight, fat mass, circulating glucose and insulin concentrations, and HbA1c levels which were independent of changes in energy intake. Similarly, there was marked improvement in glycaemic control, glucose-stimulated insulin release, insulin sensitivity, total cholesterol and triglycerides, with most prominent effects observed following combination therapy. Circulating corticosterone concentrations and 11beta-hydroxysteroid dehydrogenase type1 (11β-HSD1) staining (in pancreas) were beneficially decreased without changes in circulating interleukin 6 (IL-6), alanine transaminase (ALT) and glutathione reductase. Combination therapy resulted in increased islet area and number, beta cell area, and pancreatic insulin content. Generally, metabolic effects were much more pronounced in mice which received combination therapy. EGCG alone and particularly in combination with exendin-4 exerts positive metabolic properties in HF mice. EGCG may be useful dietary adjunct alongside GLP-1 mimetics in treatment of diabetes and related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Urinary cortisol/cortisone ratios in hypertensive and normotensive cats.

    Science.gov (United States)

    Walker, David J; Elliott, Jonathan; Syme, Harriet M

    2009-06-01

    Hypertension is a common problem in older cats, particularly associated with chronic kidney disease (CKD). Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 predisposes to hypertension in human patients by allowing excessive stimulation of the mineralocorticoid receptor by cortisol. This study was designed to test the hypothesis that reduced conversion of cortisol to cortisone contributes to the development of systemic hypertension in some cats with CKD and idiopathic hypertension (iHT). The study included 60 client-owned cats: 21 clinically normal, 16 normotensive cats with CKD (NTCKD), 14 hypertensive cats with CKD (HTCKD) and nine iHTs. Urine cortisol and cortisone were extracted into dichloromethane and chloroform, respectively, prior to analysis by radioimmunoassay. Data are reported as median and range. The Kruskall-Wallis test was used to compare cortisol:cortisone ratios between groups with post-hoc testing using the Mann-Whitney U test. Wilcoxon signed-ranks test was used to compare results before and after treatment of hypertensive cats with amlodipine. The urinary cortisol:cortisone ratio was significantly higher in clinically normal cats (0.87; 0.46-1.39) when compared to NTCKD (0.60; 0.35-1.20; Pcortisone ratio was detected (P=0.327). Reduced urinary cortisol to cortisone conversion does not appear to be associated with systemic hypertension in cats. In fact, the cortisol to cortisone shuttle appears to be more effective in cats with CKD (hypertensive and normotensive) and iHT than clinically normal cats. The mechanism for this potentially adaptive response to kidney disease is not clear.

  20. Simultaneous measurement of cortisol and cortisone in human saliva using liquid chromatography-tandem mass spectrometry: application in basal and stimulated conditions.

    Science.gov (United States)

    Perogamvros, Ilias; Owen, Laura J; Newell-Price, John; Ray, David W; Trainer, Peter J; Keevil, Brian G

    2009-11-01

    Immunoassays used for the measurement of salivary cortisol are limited by variable interference from cortisone. Salivary cortisone is a consequence of the salivary glands expressing 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) which converts cortisol to cortisone. We report a combined salivary cortisol and cortisone (SalF and SalE respectively) liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay to address the cortisone cross-reactivity in cortisol immunoassays and as a tool to study 11beta-HSD2 activity. The method was linear up to 400 nmol/L for SalF and 200 nmol/L for SalE and the lower limits of quantitation were 0.39 nmol/L (SalF) and 0.78 nmol/L (SalE). No evidence of ion suppression was found and precision, accuracy and recovery were within internationally accepted limits. No interference was identified from 13 structurally related steroids. SalF, SalE and SalF/SalE were significantly greater in the morning than at bed-time and following stimulation of the adrenal glands. As serum cortisol increased, an exponential rise was observed in SalF and a linear increase in SalE which reached a plateau at higher SalF concentrations. We have developed a novel, robust LC-MS/MS assay for the combined measurement of SalF and SalE. Our results confirm the 11beta-HSD2 activity of the salivary glands resulting in high SalE concentrations and the enzyme saturation at high substrate concentrations. This method can be used as a simple, non-invasive and highly specific tool to assess the value of salivary cortisol as a surrogate for free serum cortisol and as a potential novel way to assess 11beta-HSD2 activity.

  1. Carbenoxolone treatment ameliorated metabolic syndrome in WNIN/Ob obese rats, but induced severe fat loss and glucose intolerance in lean rats.

    Directory of Open Access Journals (Sweden)

    Siva Sankara Vara Prasad Sakamuri

    Full Text Available BACKGROUND: 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1 regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity. METHODOLOGY/PRINCIPAL FINDINGS: Subcutaneous injection of CBX (50 mg/kg body weight or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment. Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment. CONCLUSIONS/SIGNIFICANCE: We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions.

  2. Association between umbilical cord glucocorticoids and blood pressure at age 3 years

    Directory of Open Access Journals (Sweden)

    Rich-Edwards Janet W

    2008-08-01

    Full Text Available Abstract Background Animal data show that decreased activity of placental 11-beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2, which potently inactivates glucocorticoids (e.g. cortisol to inert forms (cortisone, allows increased access of maternal glucocorticoids to the fetus and 'programs' hypertension. Data in humans are limited. We examined in humans the association between venous umbilical cord blood glucocorticoids, a potential marker for placental 11β-HSD2 enzyme activity, and blood pressure at age 3 years. Methods Among 286 newborns in Project Viva, a prospective pre-birth cohort study based in eastern Massachusetts, we measured cortisol (F and cortisone (E in venous cord blood and used the ratio of F/E as a marker for placental 11β-HSD2 activity. We measured blood pressure (BP when the offspring reached age 3 years. Using mixed effects regression models to control for BP measurement conditions, maternal and child characteristics, we examined the association between the F/E ratio and child BP. Results At age 3 years, each unit increase in the F/E ratio was associated with a 1.6 mm Hg increase in systolic BP (95% CI 0.0 to 3.1. The F/E ratio was not associated with diastolic blood pressure or birth weight for gestational age z-score. Conclusion A higher F/E ratio in umbilical venous cord blood, likely reflecting reduced placental 11β-HSD2 activity, was associated with higher systolic blood pressure at age 3 years. Our data suggest that increased fetal exposure to active maternal glucocorticoids may program later systolic blood pressure.

  3. Cross-talk between cAMP and MAPK pathways in HSD11B2 induction by hCG in placental trophoblasts.

    Directory of Open Access Journals (Sweden)

    Qun Shu

    Full Text Available Overexposure of the fetus to glucocorticoids in gestation is detrimental to fetal development. The passage of maternal glucocorticoids into the fetal circulation is governed by 11beta-Hydroxysteroid Dehydrogenase Type 2 (HSD11B2 in the placental syncytiotrophoblasts. Human chorionic gonadotropin (hCG plays an important role in maintaining placental HSD11B2 expression via activation of the cAMP pathway. In this study, we investigated the relationship between the activation of the cAMP pathway by hCG and subsequent phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2 or p38 mitogen-activated protein kinase (MAPK pathways in the regulation of placental HSD11B2 expression in human placental syncytiotrophoblasts. We found that treatment of the placental syncytiotrophoblasts with either hCG or dibutyl cAMP (dbcAMP could promote the phosphorylation of p38 and ERK1/2. Inhibition of p38 MAPK with SB203580 not only reduced the basal HSD11B2 mRNA and protein levels but also attenuated HSD11B2 levels induced by either hCG or dbcAMP. By contrast, inhibition of ERK1/2 with PD98059 increased the basal mRNA and protein levels of HSD11B2 and had no effect on HSD11B2 mRNA and protein levels induced by either hCG or dbcAMP. These data suggest that p38 MAPK is involved in both basal and hCG/cAMP-induced expression of HSD11B2, and ERK1/2 may play a role opposite to p38 MAPK at least in the basal expression of HSD11B2 in human placental syncytiotrophoblasts and that there is complicated cross-talk between hCG/cAMP and MAPK cascades in the regulation of placental HSD11B2 expression.

  4. Severe metabolic alkalosis, hypokalemia, and respiratory acidosis induced by the Chinese herbal medicine yokukansan in an elderly patient with muscle weakness and drowsiness.

    Science.gov (United States)

    Yamada, Shunsuke; Tokumoto, Masanori; Kansui, Yasuo; Wakisaka, Yoshinobu; Uchizono, Yuji; Tsuruya, Kazuhiko; Ooboshi, Hiroaki

    2013-05-01

    Yokukansan is a Chinese herbal medicine containing licorice that has been shown to alleviate the behavioral and psychological symptoms of Alzheimer's disease, with few adverse effects. Increasing numbers of patients with Alzheimer's disease in Japan are now being treated with this drug. However, yokukansan should be used with caution because of its potential to induce pseudoaldosteronism through the inhibition of 11-beta-hydroxysteroid dehydrogenase type 2, which metabolizes cortisol into cortisone. We present the case of an 88-year-old woman with a history of Alzheimer's disease who was transferred to our emergency department because of drowsiness, anorexia, and muscle weakness. Her blood pressure was 168/90 mmHg. Laboratory data showed serum potassium of 1.9 mmol/l, metabolic alkalosis (pH 7.54; HCO 3(-) , 50.5 mmol/l; chloride, 81 mmol/l; sodium, 140 mmol/l), and respiratory disorders (pCO2, 60.5 mmHg; pO2, 63.8 mmHg). Plasma renin activity and aldosterone concentration were suppressed, and urinary potassium excretion was 22 mmol/l (calculated transtubular potassium gradient 12.9). An electrocardiogram showed flat T-waves and U-waves with ventricular premature contractions. Echocardiography denied volume depletion. Medical interview disclosed that she had been treated with a Chinese herbal medicine (yokukansan) containing licorice. The final diagnosis was pseudoaldosteronism and respiratory acidosis induced by licorice. Hypokalemia, metabolic alkalosis, and respiratory acidosis all subsided shortly after the discontinuation of yokukansan and initiation of intravenous potassium replacement. This case highlights the need for nephrologists to consider the possible involvement of Chinese herbal medicines, including yokukansan, when they encounter hypokalemia in elderly patients.

  5. Increased adiposity in annexin A1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Rand T Akasheh

    Full Text Available Production of Annexin A1 (ANXA1, a protein that mediates the anti-inflammatory action of glucocorticoids, is altered in obesity, but its role in modulation of adiposity has not yet been investigated. The objective of this study was to investigate modulation of ANXA1 in adipose tissue in murine models of obesity and to study the involvement of ANXA1 in diet-induced obesity in mice. Significant induction of ANXA1 mRNA was observed in adipose tissue of both C57BL6 and Balb/c mice with high fat diet (HFD-induced obesity versus mice on chow diet. Upregulation of ANXA1 mRNA was independent of leptin or IL-6, as demonstrated by use of leptin-deficient ob/ob mice and IL-6 KO mice. Compared to WT mice, female Balb/c ANXA1 KO mice on HFD had increased adiposity, as indicated by significantly elevated body weight, fat mass, leptin levels, and adipocyte size. Whereas Balb/c WT mice upregulated expression of enzymes involved in the lipolytic pathway in response to HFD, this response was absent in ANXA1 KO mice. A significant increase in fasting glucose and insulin levels as well as development of insulin resistance was observed in ANXA1 KO mice on HFD compared to WT mice. Elevated plasma corticosterone levels and blunted downregulation of 11-beta hydroxysteroid dehydrogenase type 1 in adipose tissue was observed in ANXA1 KO mice compared to diet-matched WT mice. However, no differences between WT and KO mice on either chow or HFD were observed in expression of markers of adipose tissue inflammation. These data indicate that ANXA1 is an important modulator of adiposity in mice, with female ANXA1 KO mice on Balb/c background being more susceptible to weight gain and diet-induced insulin resistance compared to WT mice, without significant changes in inflammation.

  6. Effects of DSP-8658, a novel selective peroxisome proliferator-activated receptors a/γ modulator, on adipogenesis and glucose metabolism in diabetic obese mice.

    Science.gov (United States)

    Goto, T; Nakayama, R; Yamanaka, M; Takata, M; Takazawa, T; Watanabe, K; Maruta, K; Nagata, R; Nagamine, J; Tsuchida, A; Kato, H

    2015-09-01

    Peroxisome proliferator-activated receptors (PPARs) play a key regulating role in homeostasis. In this study, we investigated the effects of DSP-8658, a novel selective PPARa/γ modulator, on adipogenesis and glucose metabolism in diabetic obese mice and compared these effects to those of pioglitazone, a PPARγ full agonist. DSP-8658 functional activity was assessed by PPARγ-target genes expression in adipose 3T3-L1 cells and its anti-diabetic efficacy evaluated in db/db mice. The effects of DSP-8658 on adipogenesis were investigated diet induced obese (DIO) KK-A(y) mice. DSP-8658 reduced the expression of PPARγ-target gene 11 beta hydroxysteroid dehydrogenase type 1 with an EC50 value 2.1-fold that of pioglitazone and 28.4-fold that of rosiglitazone. On the other hand, DSP-8658 increased the expression of fatty acid binding protein 4 and glycerol kinase genes with EC50 values 33-fold and >15-fold those of pioglitazone and 163-fold and >38-fold those of rosiglitazone, respectively. In db/db mice, DSP-8658, like pioglitazone, decreased blood glucose, HbA1c, and plasma triglyceride levels and increased plasma insulin concentration and pancreatic insulin contents. In DIO KK-A(y) mice, DSP-8658, unlike pioglitazone, decreased subcutaneous adipose tissue weight and mean adipocyte size. However, both DSP-8658 and pioglitazone improved blood glucose and HbA1c levels with similar efficacy. Although DSP-8658 did not change the expression levels of fatty acid transport protein 1 and glycerol kinase genes in subcutaneous adipose tissue of KK-A(y) mice, pioglitazone increased these gene expression levels. Unlike PPARγ full agonists, DSP-8658 ameliorates blood glucose without increasing adipogenesis in diabetic obesity mice. © Georg Thieme Verlag KG Stuttgart · New York.

  7. 视黄醛脱氢酶2抑制剂对斑马鱼胚胎心脏发育的影响%Effect of retinal dehydrogenase type 2 inhibitor on embryonic cardiac development of zebrafish

    Institute of Scientific and Technical Information of China (English)

    侯佳; 桂永浩; 王跃祥; 张立凤; 宋后燕

    2010-01-01

    目的 利用新型模式生物斑马鱼,采用外源性视黄醛脱氢酶2抑制剂--对二乙氨基苯甲醛(4-diethylaminobenzaldehyde,DEAB),建立维甲酸(retinoic acid,RA)缺乏的斑马鱼模型,探讨其对斑马鱼胚胎心脏发育的影响. 方法 在斑马鱼胚胎受精后5、8、10.3 h,分别用1×10~(-6),5×10~(-6)、10×10~(-6),25×10~(-6) mol/L的DEAB处理,在解剖显微镜下实时观察胚胎发育的全过程,在受精后5 h给予1×10~(-9) mol/L外源性RA干预,观察其对DEAB致畸的拮抗作用.通过胚胎心脏表型观察、心率和心室收缩分数比较以及心脏特异分子标记--心房利钠肽A基因整体原位杂交实验分析RA缺乏对胚胎心脏发育的影响. 结果 外源性DEAB处理后,胚胎生存率随着处理浓度增加而降低,随着处理时间点后移而升高.当DEAB浓度≥5×10~(-6) mol/L时,斑马鱼畸胎率为100%,异常表型一致,并能被1×10~(-9),mol/L外源性RA有效援救.RA缺乏时斑马鱼心脏表现出管状心脏、无向右环化或环化不完全、房室分化异常及房室管区血液反流.与野生型胚胎相比,DEAB处理后斑马鱼胚胎心率和心室收缩分数降低,心房利钠肽A基因表达改变,在心室部位表达清晰强烈,在心房部位表达明显减弱. 结论 DEAB影响胚胎发育有剂量依赖性和时效性,其致畸作用能被外源性RA有效拮抗.RA缺乏影响心脏早期发育的多个重要环节,导致心脏收缩功能受损.心脏心房利钠肽A基因表达受RA信号调控.%Objective To study the effect of retinal dehydrogenase type 2 inhibitor (4-diethylaminobenzaldehyde,DEAB) on embryonic CSrdiac develclpment of zebrafish model with retinoic acid(RA)deficiency. Methods Zebrafish embryos were treated with DEAB at various concentrations including 1×10~(-6),5×10~(-6),10×10~(-6),25×10~(-6)mol/L at 5,8 and 10.3 hours post fertilization,respectively.The effects of DEAB on the embryonic development were assessed under microscope.1×10

  8. Identification and overexpression of a bifunctional aldehyde/alcohol dehydrogenase responsible for ethanol production in Thermoanaerobacter mathranii.

    Science.gov (United States)

    Yao, Shuo; Mikkelsen, Marie Just

    2010-01-01

    Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (AdhB), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield. Copyright © 2010 S. Karger AG, Basel.

  9. Direct Enzymatic Assay for Alcohol Oxidase, Alcohol Dehydrogenase, and Formaldehyde Dehydrogenase in Colonies of Hansenula polymorpha

    OpenAIRE

    Eggeling, L; Sahm, H

    1980-01-01

    A procedure is described for the qualitative direct identification of alcohol oxidase, alcohol dehydrogenase, and formaldehyde dehydrogenase in yeast colonies. The method has been applied successfully to isolate mutants of Hansenula polymorpha with altered glucose repression of alcohol oxidase.

  10. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates.

    Science.gov (United States)

    Rozeboom, Henriëtte J; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J; Dijkstra, Bauke W

    2015-12-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The recombinant protein, expressed in Pichia pastoris, was crystallized, and three-dimensional (3D) structures of the native form, with PQQ and a Ca(2+) ion, and of the enzyme in complex with a Zn(2+) ion and a bound substrate mimic were determined at 1.72 Å and 1.84 Å resolution, respectively. PQQ-ADH displays an eight-bladed β-propeller fold, characteristic of Type I quinone-dependent methanol dehydrogenases. However, three of the four ligands of the Ca(2+) ion differ from those of related dehydrogenases and they come from different parts of the polypeptide chain. These differences result in a more open, easily accessible active site, which explains why PQQ-ADH can oxidize a broad range of substrates. The bound substrate mimic suggests Asp333 as the catalytic base. Remarkably, no vicinal disulfide bridge is present near the PQQ, which in other PQQ-dependent alcohol dehydrogenases has been proposed to be necessary for electron transfer. Instead an associated cytochrome c can approach the PQQ for direct electron transfer. © 2015 The Protein Society.

  11. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance l

  12. Metabolic Engineering of Mannitol Production in Lactococcus lactis: Influence of Overexpression of Mannitol 1-Phosphate Dehydrogenase in Different Genetic Backgrounds

    NARCIS (Netherlands)

    Wisselink, H.W.; Mars, A.E.; Meer, van der P.; Eggink, G.; Hugenholtz, J.

    2004-01-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance

  13. Requirement of succinate dehydrogenase activity for symbiotic bacteroid differentiation of Rhizobium meliloti in alfalfa nodules.

    OpenAIRE

    Gardiol, A E; Truchet, G L; Dazzo, F. B.

    1987-01-01

    Transmission electron microscopy was used to study the cellular morphologies of a wild-type Rhizobium meliloti strain (L5-30), a nitrogen fixation-ineffective (Fix-) succinate dehydrogenase mutant (Sdh-) strain, and a Fix+ Sdh+ revertant strain within alfalfa nodules and after free-living growth in a minimal medium containing 27 mM mannitol plus 20 mM succinate. The results showed a requirement of succinate dehydrogenase activity for symbiotic differentiation and maintenance of R. meliloti ba...

  14. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase

    DEFF Research Database (Denmark)

    Madiraju, Anila K; Erion, Derek M; Rahimi, Yasmeen

    2014-01-01

    prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered...... hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense...... oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production...

  15. Enhancement of the activity of enzyme immobilized on polydopamine-coated iron oxide nanoparticles by rational orientation of formate dehydrogenase.

    Science.gov (United States)

    Gao, Xin; Ni, Kefeng; Zhao, Chengcheng; Ren, Yuhong; Wei, Dongzhi

    2014-10-20

    Immobilization of enzymes onto nanoparticles and retention of their structure and activity, which may be related to the orientation of enzymes on nanoparticles, remain a challenge. Here, we developed a novel enzyme-orientation strategy to enhance the activity of formate dehydrogenase immobilized on polydopamine-coated iron oxide nanoparticles via site-directed mutation. Seven mutants were constructed based on homology modeling of formate dehydrogenase and immobilized on polydopamine-coated iron oxide nanoparticles to investigate the influence of these mutations on immobilization. The immobilized mutant C242A/C275V/C363V/K389C demonstrated the highest immobilization yield and retained 90% of its initial activity, which was about 3-fold higher than that of wild-type formate dehydrogenase. Moreover, co-immobilization of formate dehydrogenase and leucine dehydrogenase was performed for the synthesis of l-tert-leucine. The catalytic efficiency of the co-immobilized mutant C242A/C275V/C363V/K389C and leucine dehydrogenase increased by more than 4-fold compared to that of co-immobilized wild-type formate dehydrogenase and leucine dehydrogenase. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Rodrigues Valnês

    2009-01-01

    Full Text Available Abstract Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1 is 68-fold larger than that for the mutant K69A (0.73 s-1. There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM and NADPH (K69A = 30 μM; wild-type = 11 μM. The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4 μM and 134 (± 21, respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.

  17. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in...

  18. 21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase isoenzymes test system. 862... Test Systems § 862.1445 Lactate dehydrogenase isoenzymes test system. (a) Identification. A lactate dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase...

  19. Microbial alcohol dehydrogenases: identification, characterization and engineering

    NARCIS (Netherlands)

    Machielsen, M.P.

    2007-01-01

    Keywords: alcohol dehydrogenase, laboratory evolution, rational protein engineering, Pyrococcus furiosus, biocatalysis, characterization, computational design, thermostability.   Alcohol dehydrogeases (ADHs) catalyze the interconversion of alcohols, aldehydes and ketones. They display a wide variety

  20. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... of the skin on the palms and soles (hand-foot syndrome); shortness of breath; and hair loss may also ... dehydrogenase deficiency , with its early-onset neurological symptoms, is a rare disorder. Its prevalence is ...

  1. Isocitrate dehydrogenase mutations in gliomas.

    Science.gov (United States)

    Waitkus, Matthew S; Diplas, Bill H; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate α-ketoglutarate (αKG), but recurrent mutations at Arg(132) of IDH1 and Arg(172) of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of αKG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits αKG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy.

  2. Liver alcohol dehydrogenase immobilized on polyvinylidene difluoride.

    Science.gov (United States)

    Roig, M G; Bello, J F; Moreno de Vega, M A; Cachaza, J M; Kennedy, J F

    1990-01-01

    A physical method for immobilization of liver alcohol dehydrogenase (ADH) by hydrophobic adsorption onto a supporting membrane of polyvinylidene difluoride (PVDF) was performed. Simultaneously, a physicochemical characterization of the immobilized enzyme regarding its kinetic behaviour was performed. The activity/pH profile observed points to an effect of pH on activity that is completely different from the case of ADH in solution. The disturbance in the typical bell-shaped profile owing to the fact that the enzyme was immobilized is explained on the basis of a potent limitation to the diffusion of the protons in the support. The findings of the present work also reveal the existence of an effect that limits free external diffusion of the substrate towards and/or the product from the support; this effect seems to be the determinant of the overall rate of the enzymatic reaction and is thus of great importance in the effective kinetic behaviour (v([S])) of immobilized ADH, whose kinetic behaviour is complex (non-Michaelian), as may be seen from the lack of linearity observed in the corresponding double reciprocal and Eadie-Hofstee plots. By non-linear regression numerical analysis of the v([S]) data and application of the F-test for model discrimination, the minimum rate equation necessary to describe the intrinsic kinetic behaviour of PVDF-immobilized ADH proved to be one of the polynomial quotient type of degree 2:2 (in substrate concentration).

  3. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis

    DEFF Research Database (Denmark)

    Andersen, H.W.; Pedersen, M.B.; Hammer, Karin

    2001-01-01

    A series of mutant strains of Lactococcus lactis were constructed with lactate dehydrogenase (LDH) activities ranging from below 1% to 133% of the wild-type activity level. The mutants with 59% to 133% of lactate dehydrogenase activity had growth rates similar to the wild-type and showed...... a homolactic pattern of fermentation. Only after lactate dehydrogenase activity was reduced ninefold compared to the wild-type was the growth rate significantly affected, and the ldh mutants started to produce mixed-acid products (formate, acetate, and ethanol in addition to lactate). Flux control coefficients...... were determined and it was found that lactate dehydrogenase exerted virtually no control on the glycolytic flux at the wild-type enzyme level and also not on the flux catalyzed by the enzyme itself, i.e. on the lactate production. As expected, the flux towards the mixed-acid products was strongly...

  4. Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Takahashi, Kento; Nakanishi, Fumika; Tomita, Takeo; Akiyama, Nagisa; Lassak, Kerstin; Albers, Sonja-Verena; Kuzuyama, Tomohisa; Nishiyama, Makoto

    2016-11-01

    Sulfolobus acidocaldarius, a hyperthermoacidophilic archaeon, possesses two β-decarboxylating dehydrogenase genes, saci_0600 and saci_2375, in its genome, which suggests that it uses these enzymes for three similar reactions in lysine biosynthesis through 2-aminoadipate, leucine biosynthesis, and the tricarboxylic acid cycle. To elucidate their roles, these two genes were expressed in Escherichia coli in the present study and their gene products were characterized. Saci_0600 recognized 3-isopropylmalate as a substrate, but exhibited slight and no activity for homoisocitrate and isocitrate, respectively. Saci_2375 exhibited distinct and similar activities for isocitrate and homoisocitrate, but no detectable activity for 3-isopropylmalate. These results suggest that Saci_0600 is a 3-isopropylmalate dehydrogenase for leucine biosynthesis and Saci_2375 is a dual function enzyme serving as isocitrate-homoisocitrate dehydrogenase. The crystal structure of Saci_0600 was determined as a closed-form complex that binds 3-isopropylmalate and Mg(2+), thereby revealing the structural basis for the extreme thermostability and novel-type recognition of the 3-isopropyl moiety of the substrate.

  5. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.

    Science.gov (United States)

    Starkov, Anatoly A; Fiskum, Gary; Chinopoulos, Christos; Lorenzo, Beverly J; Browne, Susan E; Patel, Mulchand S; Beal, M Flint

    2004-09-08

    Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in complex I and complex III of the electron transport chain. We measured H(2)O(2) production, respiration, and NADPH reduction level in rat brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or carbonyl cyanide p-trifluoromethoxyphenylhydrazone,alpha-ketoglutarate supported the highest rate of H(2)O(2) production. In the absence of ADP or in the presence of rotenone, H(2)O(2) production rates correlated with the reduction level of mitochondrial NADPH with various substrates, with the exception of alpha-ketoglutarate. Isolated mitochondrial alpha-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehydrogenase (PDHC) complexes produced superoxide and H(2)O(2). NAD(+) inhibited ROS production by the isolated enzymes and by permeabilized mitochondria. We also measured H(2)O(2) production by brain mitochondria isolated from heterozygous knock-out mice deficient in dihydrolipoyl dehydrogenase (Dld). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H(2)O(2) than mitochondria isolated from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning mitochondria.

  6. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yun-Hee [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States); Patel, Mulchand S., E-mail: mspatel@buffalo.edu [Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214 (United States)

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  7. High substrate specificity of ipsdienol dehydrogenase (IDOLDH), a short-chain dehydrogenase from Ips pini bark beetles.

    Science.gov (United States)

    Figueroa-Teran, Rubi; Pak, Heidi; Blomquist, Gary J; Tittiger, Claus

    2016-09-01

    Ips spp. bark beetles use ipsdienol, ipsenol, ipsdienone and ipsenone as aggregation pheromone components and pheromone precursors. For Ips pini, the short-chain oxidoreductase ipsdienol dehydrogenase (IDOLDH) converts (-)-ipsdienol to ipsdienone, and thus likely plays a role in determining pheromone composition. In order to further understand the role of IDOLDH in pheromone biosynthesis, we compared IDOLDH to its nearest functionally characterized ortholog with a solved structure: human L-3-hydroxyacyl-CoA dehydrogenase type II/ amyloid-β binding alcohol dehydrogenase (hHADH II/ABAD), and conducted functional assays of recombinant IDOLDH to determine substrate and product ranges and structural characteristics. Although IDOLDH and hHADH II/ABAD had only 35% sequence identity, their predicted tertiary structures had high identity. We found IDOLDH is a functional homo-tetramer. In addition to oxidizing (-)-ipsdienol, IDOLDH readily converted racemic ipsenol to ipsenone, and stereo-specifically reduced both ketones to their corresponding (-)-alcohols. The (+)-enantiomers were never observed as products. Assays with various substrate analogs showed IDOLDH had high substrate specificity for (-)-ipsdienol, ipsenol, ipsenone and ipsdienone, supporting that IDOLDH functions as a pheromone-biosynthetic enzyme. These results suggest that different IDOLDH orthologs and or activity levels contribute to differences in Ips spp. pheromone composition.

  8. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis

    DEFF Research Database (Denmark)

    Andersen, H.W.; Pedersen, M.B.; Hammer, Karin;

    2001-01-01

    a homolactic pattern of fermentation. Only after lactate dehydrogenase activity was reduced ninefold compared to the wild-type was the growth rate significantly affected, and the ldh mutants started to produce mixed-acid products (formate, acetate, and ethanol in addition to lactate). Flux control coefficients...... were determined and it was found that lactate dehydrogenase exerted virtually no control on the glycolytic flux at the wild-type enzyme level and also not on the flux catalyzed by the enzyme itself, i.e. on the lactate production. As expected, the flux towards the mixed-acid products was strongly...... enhanced in the strain deleted for lactate dehydrogenase. What is more surprising is that the enzyme had a strong negative control (C- LDH(F1)J=-1.3) on the flux to formate at the wild-type level of lactate dehydrogenase. Furthermore, we showed that L. lactis has limited excess of capacity of lactate...

  9. Protein structure similarity clustering and natural product structure as guiding principles for chemical genomics.

    Science.gov (United States)

    Koch, M A; Waldmann, H

    2006-01-01

    The majority of all proteins are modularly built from a limited set of approximately 1,000 structural domains. The knowledge of a common protein fold topology in the ligand-sensing cores of protein domains can be exploited for the design of small-molecule libraries in the development of inhibitors and ligands. Thus, a novel strategy of clustering protein domain cores based exclusively on structure similarity considerations (protein structure similarity clustering, PSSC) has been successfully applied to the development of small-molecule inhibitors of acetylcholinesterase and the 11beta-hydroxysteroid dehydrogenases based on the structure of a naturally occurring Cdc25 inhibitor. The efficiency of making use of the scaffolds of natural products as biologically prevalidated starting points for the design of compound libraries is further highlighted by the development of benzopyran-based FXR ligands.

  10. Essential histidine residue in 3-ketosteroid-Δ1-dehydrogenase

    OpenAIRE

    Matsushita, Hiroyuki; Itagaki, Eiji; 板垣, 英治

    1992-01-01

    The variation with pH of kinetic parameters was examined for 3-ketosteroid-Δ1-dehydrogenase from Nocardia corallina. The V(max)/K(m) profile for 4-androstenedione indicates that activity is lost upon protonation of a cationic acid-type group with a pK value of 7.7. The enzyme was inactivated by diethylpyrocarbonate at pH 7.4 and the inactivation was substantially prevented by androstadienedione. Analyses of reactivation with neutral hydroxylamine, pH variation, and spectral changes of the ina...

  11. Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2012-11-01

    Full Text Available Mutagenesis studies on glucose oxidases (GOxs were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe and Aspergillus niger GOx (PDB ID; 1cf3. We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor.

  12. Glusoce-6-phosphate dehydrogenase- History and diagnosis

    Directory of Open Access Journals (Sweden)

    K Gautam

    2016-09-01

    Full Text Available Glucose-6-phosphate dehydrogenase deficiency is the most common enzymatic defect of red blood cells, which increases the vulnerability of erythrocytes to oxidative stress leading to hemolytic anemia. Since its identification more than 60 years ago, much has been done with respect to its clinical diagnosis, laboratory diagnosis and treatment. Association of G6PD is not just limited to anti malarial drugs, but a vast number of other diseases. In this article, we aimed to review the history of Glucose-6-phosphate dehydrogenase, the diagnostic methods available along with its association with other noncommunicable diseases. 

  13. Monoterpene metabolism. Cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint.

    Science.gov (United States)

    Ringer, Kerry L; Davis, Edward M; Croteau, Rodney

    2005-03-01

    The essential oils of peppermint (Mentha x piperita) and spearmint (Mentha spicata) are distinguished by the oxygenation position on the p-menthane ring of the constitutive monoterpenes that is conferred by two regiospecific cytochrome P450 limonene-3- and limonene-6-hydroxylases. Following hydroxylation of limonene, an apparently similar dehydrogenase oxidizes (-)-trans-isopiperitenol to (-)-isopiperitenone in peppermint and (-)-trans-carveol to (-)-carvone in spearmint. Random sequencing of a peppermint oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes, including dehydrogenases. Full-length dehydrogenase clones were screened by functional expression in Escherichia coli using a recently developed in situ assay. A single full-length acquisition encoding (-)-trans-isopiperitenol dehydrogenase (ISPD) was isolated. The (-)-ISPD cDNA has an open reading frame of 795 bp that encodes a 265-residue enzyme with a calculated molecular mass of 27,191. Nondegenerate primers were designed based on the (-)-trans-ISPD cDNA sequence and employed to screen a spearmint oil gland secretory cell cDNA library from which a 5'-truncated cDNA encoding the spearmint homolog, (-)-trans-carveol-dehydrogenase, was isolated. Reverse transcription-PCR amplification and RACE were used to acquire the remaining 5'-sequence from RNA isolated from oil gland secretory cells of spearmint leaf. The full-length spearmint dehydrogenase shares >99% amino acid identity with its peppermint homolog and both dehydrogenases are capable of utilizing (-)-trans-isopiperitenol and (-)-trans-carveol. These isopiperitenol/carveol dehydrogenases are members of the short-chain dehydrogenase/reductase superfamily and are related to other plant short-chain dehydrogenases/reductases involved in secondary metabolism (lignan biosynthesis), stress responses, and phytosteroid biosynthesis, but they are quite dissimilar (approximately 13% identity) to the monoterpene

  14. Serum lactic dehydrogenase isoenzymes and serum hydroxy butyric dehydrogenase in myocardial infarction

    Directory of Open Access Journals (Sweden)

    Kanekar D

    1979-01-01

    Full Text Available Total serum lactate dehydrogenase activity in cases of myocar-dial infarct is difficult to interpret as abnormal values can occur in diseases of liver, kidney and skeletal muscle. The estimation of its isoenzymes is of better diagnostic help because of its tissue specificity. Serum LDH isoenzymes were studied in patients o f myocardial infarction and results are quantitated by densitometry. As LDH 1 represents serum hydroxybutyric dehydrogenase when 2-oxylbutyrate is used as substrate, serum hydroxybutyric dehydro-genase was also estimated in above patients. Greater specificity in diagnosis is achieved with SHBDH because of its myocardial nature and lower incidence of false positive results.

  15. Disruption of the NADPH-dependent glutamate dehydrogenase affects the morphology of two industrial strains of Penicillium chrysogenum

    DEFF Research Database (Denmark)

    Thykær, Jette; Kildegaard, Kanchana Rueksomtawin; Noorman, H.

    2009-01-01

    New morphological aspects of Penicillium chrysogenum were found during physiological characterisation of two NADPH-dependent glutamate dehydrogenase mutant strains. A morphological characterisation of the previously constructed strains, together with the two beta-lactam producing industrial...... showed morphology similar to the industrial strains. Interestingly, the constructed strains showed morphology similar to wild type Aspergillus nidulans another species carrying the penicillin biosynthetic cluster. Thus, the results showed that elimination of glutamate dehydrogenase activity in high...

  16. Anti-diabetic and anti-adipogenic effects of a novel selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor, 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344).

    Science.gov (United States)

    Park, Ji Seon; Rhee, Sang Dal; Kang, Nam Sook; Jung, Won Hoon; Kim, Hee Youn; Kim, Jun Hyoung; Kang, Seung Kyu; Cheon, Hyae Gyeong; Ahn, Jin Hee; Kim, Ki Young

    2011-04-15

    The selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential for treating type 2 diabetes mellitus and metabolic syndrome. In the present study, we investigated the anti-diabetic and anti-adipogenic effects of 2-(3-benzoyl)-4-hydroxy-1,1-dioxo-2H-1,2-benzothiazine-2-yl-1-phenylethanone (KR-66344), as a 11β-HSD1 inhibitor; we also investigated the underlying molecular mechanisms in the cortisone-induced 3T3-L1 adipogenesis model system and C57BL/6-Lep(ob/ob) mice. KR-66344 concentration-dependently inhibited 11β-HSD1 activity in human liver microsome, mouse C2C12 myotube and human SW982 cells. In the C57BL/6-Lep(ob/ob) mice study, the administration of KR-66344 (200mg/kg/d, orally for 5 days) improved the glucose intolerance as determined by the oral glucose tolerance test, in which the area under the curve (AUC) of the plasma glucose concentration was significantly reduced by 27% compared with the vehicle treated group. Further, KR-66344 suppressed adipocyte differentiation on cortisone-induced adipogenesis in 3T3-L1 cells is associated with the suppression of the cortisone-induced mRNA levels of FABP4, G3PD, PPARγ2 and Glut4, and 11β-HSD1 expression and activity. Our results additionally demonstrate evidence showing that KR-66344 improved glycemic control and inhibited adipogenesis via 11β-HSD1 enzyme activity. Taken together, these results may provide evidence of the therapeutic potential of KR-66344, as a 11β-HSD1 inhibitor, in obesity and type 2 diabetes patients with metabolic syndrome.

  17. Yeast surface display of dehydrogenases in microbial fuel-cells.

    Science.gov (United States)

    Gal, Idan; Schlesinger, Orr; Amir, Liron; Alfonta, Lital

    2016-12-01

    Two dehydrogenases, cellobiose dehydrogenase from Corynascus thermophilus and pyranose dehydrogenase from Agaricus meleagris, were displayed for the first time on the surface of Saccharomyces cerevisiae using the yeast surface display system. Surface displayed dehydrogenases were used in a microbial fuel cell and generated high power outputs. Surface displayed cellobiose dehydrogenase has demonstrated a midpoint potential of -28mV (vs. Ag/AgCl) at pH=6.5 and was used in a mediator-less anode compartment of a microbial fuel cell producing a power output of 3.3μWcm(-2) using lactose as fuel. Surface-displayed pyranose dehydrogenase was used in a microbial fuel cell and generated high power outputs using different substrates, the highest power output that was achieved was 3.9μWcm(-2) using d-xylose. These results demonstrate that surface displayed cellobiose dehydrogenase and pyranose dehydrogenase may successfully be used in microbial bioelectrochemical systems.

  18. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently in

  19. Binding of small molecules to lipoamide dehydrogenase

    NARCIS (Netherlands)

    Muiswinkel-Voetberg, van H.

    1972-01-01

    The existence of a monomer-dimer equilibrium with lipoamide dehydrogenase is demonstrated. The equilibrium can be shifted to the monomer side at low ionic strength and low pH by removing the phosphate ions by extensive dialysis. At low ionic strength, I : 0.01 and 0.02, the enzyme

  20. Alcohol dehydrogenase – physiological and diagnostic Importance

    Directory of Open Access Journals (Sweden)

    Magdalena Łaniewska-Dunaj

    2013-08-01

    Full Text Available Alcohol dehydrogenase (ADH is a polymorphic enzyme, existing in multiple isoenzymes divided into several classes and localized in different organs. ADH plays a significant role in the metabolism of many biologically important substances, catalyzing the oxidation or reduction of a wide spectrum of specific substrates. The best characterized function of ADH is protection against excess of ethanol and some other exogenous xenobiotics and products of lipid peroxidation. The isoenzymes of alcohol dehydrogenase also participate in the metabolism of retinol and serotonin. The total alcohol dehydrogenase activity is significantly higher in cancer tissues than in healthy organs (e.g. liver, stomach, colorectum. The changes in activity of particular ADH isoenzymes in the sera of patients with different cancers (especially of the digestive system seem to be caused by release of these isoenzymes from cancer cells, and may play a potential role as markers of this cancer. The particular isoenzymes of ADH present in the serum may indicate the cancer localization. Alcohol dehydrogenase may also be useful for diagnostics of non-cancerous liver diseases (e.g. viral hepatitis, non-alcoholic cirrhosis.

  1. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity.

    Science.gov (United States)

    Li, Sha; Gan, Li-Qin; Li, Shu-Ke; Zheng, Jie-Cong; Xu, Dong-Ping; Li, Hua-Bin

    2014-01-01

    Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.

  2. Determination of the Subunit Molecular Mass and Composition of Alcohol Dehydrogenase by SDS-PAGE

    Science.gov (United States)

    Nash, Barbara T.

    2007-01-01

    SDS-PAGE is a simple, rapid technique that has many uses in biochemistry and is readily adaptable to the undergraduate laboratory. It is, however, a technique prone to several types of procedural pitfalls. This article describes the use of SDS-PAGE to determine the subunit molecular mass and composition of yeast alcohol dehydrogenase employing…

  3. CRYSTAL-STRUCTURE OF AN ELECTRON-TRANSFER COMPLEX BETWEEN METHYLAMINE DEHYDROGENASE AND AMICYANIN

    NARCIS (Netherlands)

    CHEN, LY; DURLEY, R; POLIKS, BJ; HAMADA, K; CHEN, ZW; MATHEWS, FS; DAVIDSON, VL; SATOW, Y; HUIZINGA, E; VELLIEUX, FMD; HOL, WGJ

    1992-01-01

    The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-angstrom resolution using molecular replacement. The search model was MADH from Thiobacillus ver

  4. CRYSTAL-STRUCTURE OF AN ELECTRON-TRANSFER COMPLEX BETWEEN METHYLAMINE DEHYDROGENASE AND AMICYANIN

    NARCIS (Netherlands)

    CHEN, LY; DURLEY, R; POLIKS, BJ; HAMADA, K; CHEN, ZW; MATHEWS, FS; DAVIDSON, VL; SATOW, Y; HUIZINGA, E; VELLIEUX, FMD; HOL, WGJ

    1992-01-01

    The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-angstrom resolution using molecular replacement. The search model was MADH from Thiobacillus

  5. Kinetic and chemical analyses of the cytokinin dehydrogenase-catalysed reaction : correlations with the crystal structure

    NARCIS (Netherlands)

    Popelková, Hana; Fraaije, Marco W.; Novák, Ondřej; Frébortová, Jitka; Bilyeu, Kristin D.; Frébort, Ivo

    2006-01-01

    CKX (cytokinin dehydrogenase) is a flavoprotein that cleaves cytokinins to adenine and the corresponding side-chain aldehyde using a quinone-type electron acceptor. In the present study, reactions of maize (Zea mays) CKX with five different substrates (N6-isopentenyladenine, trans-zeatin, kinetin, p

  6. Kinetic and chemical analyses of the cytokinin dehydrogenase-catalysed reaction : correlations with the crystal structure

    NARCIS (Netherlands)

    Popelková, Hana; Fraaije, Marco W.; Novák, Ondřej; Frébortová, Jitka; Bilyeu, Kristin D.; Frébort, Ivo

    2006-01-01

    CKX (cytokinin dehydrogenase) is a flavoprotein that cleaves cytokinins to adenine and the corresponding side-chain aldehyde using a quinone-type electron acceptor. In the present study, reactions of maize (Zea mays) CKX with five different substrates (N6-isopentenyladenine, trans-zeatin, kinetin,

  7. Catalytic reaction of cytokinin dehydrogenase : preference for quinones as electron acceptors

    NARCIS (Netherlands)

    Frébortová, Jitka; Fraaije, Marco W.; Galuszka, Petr; Šebela, Marek; Peč, Pavel; Hrbáč, Jan; Novák, Ondřej; Bilyeu, Kristin D.; English, James T.; Frébort, Ivo; Sebela, M.; Pec, P.; Hrbac, J.; Frebort, [No Value

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that

  8. CRYSTAL-STRUCTURE OF AN ELECTRON-TRANSFER COMPLEX BETWEEN METHYLAMINE DEHYDROGENASE AND AMICYANIN

    NARCIS (Netherlands)

    CHEN, LY; DURLEY, R; POLIKS, BJ; HAMADA, K; CHEN, ZW; MATHEWS, FS; DAVIDSON, VL; SATOW, Y; HUIZINGA, E; VELLIEUX, FMD; HOL, WGJ

    1992-01-01

    The crystal structure of the complex between the quinoprotein methylamine dehydrogenase (MADH) and the type I blue copper protein amicyanin, both from Paracoccus denitrificans, has been determined at 2.5-angstrom resolution using molecular replacement. The search model was MADH from Thiobacillus ver

  9. NAD(+)-linked alcohol dehydrogenase 1 regulates methylglyoxal concentration in Candida albicans.

    Science.gov (United States)

    Kwak, Min-Kyu; Ku, MyungHee; Kang, Sa-Ouk

    2014-04-02

    We purified a fraction that showed NAD(+)-linked methylglyoxal dehydrogenase activity, directly catalyzing methylglyoxal oxidation to pyruvate, which was significantly increased in glutathione-depleted Candida albicans. It also showed NADH-linked methylglyoxal-reducing activity. The fraction was identified as a NAD(+)-linked alcohol dehydrogenase (ADH1) through mass spectrometric analyses. In ADH1-disruptants of both the wild type and glutathione-depleted cells, the intracellular methylglyoxal concentration increased significantly; defects in growth, differentiation, and virulence were observed; and G2-phase arrest was induced.

  10. Escherichia coli mutants with a temperature-sensitive alcohol dehydrogenase.

    OpenAIRE

    Lorowitz, W; Clark, D.

    1982-01-01

    Mutants of Escherichia coli resistant to allyl alcohol were selected. Such mutants were found to lack alcohol dehydrogenase. In addition, mutants with temperature-sensitive alcohol dehydrogenase activity were obtained. These mutations, designated adhE, are all located at the previously described adh regulatory locus. Most adhE mutants were also defective in acetaldehyde dehydrogenase activity.

  11. Biochemical Characterization of Putative Adenylate Dimethylallyltransferase and Cytokinin Dehydrogenase from Nostoc sp. PCC 7120.

    Science.gov (United States)

    Frébortová, Jitka; Greplová, Marta; Seidl, Michael F; Heyl, Alexander; Frébort, Ivo

    2015-01-01

    Cytokinins, a class of phytohormones, are adenine derivatives common to many different organisms. In plants, these play a crucial role as regulators of plant development and the reaction to abiotic and biotic stress. Key enzymes in the cytokinin synthesis and degradation in modern land plants are the isopentyl transferases and the cytokinin dehydrogenases, respectively. Their encoding genes have been probably introduced into the plant lineage during the primary endosymbiosis. To shed light on the evolution of these proteins, the genes homologous to plant adenylate isopentenyl transferase and cytokinin dehydrogenase were amplified from the genomic DNA of cyanobacterium Nostoc sp. PCC 7120 and expressed in Escherichia coli. The putative isopentenyl transferase was shown to be functional in a biochemical assay. In contrast, no enzymatic activity was detected for the putative cytokinin dehydrogenase, even though the principal domains necessary for its function are present. Several mutant variants, in which conserved amino acids in land plant cytokinin dehydrogenases had been restored, were inactive. A combination of experimental data with phylogenetic analysis indicates that adenylate-type isopentenyl transferases might have evolved several times independently. While the Nostoc genome contains a gene coding for protein with characteristics of cytokinin dehydrogenase, the organism is not able to break down cytokinins in the way shown for land plants.

  12. Calculations of hydrogen tunnelling and enzyme catalysis: a comparison of liver alcohol dehydrogenase, methylamine dehydrogenase and soybean lipoxygenase

    Science.gov (United States)

    Tresadern, Gary; McNamara, Jonathan P.; Mohr, Matthias; Wang, Hong; Burton, Neil A.; Hillier, Ian H.

    2002-06-01

    Although the potential energy barrier for hydrogen transfer is similar for the enzymes liver alcohol dehydrogenase, methylamine dehydrogenase and soybean lipoxygenase, the degree of tunnelling is predicted to differ greatly, and is reflected by their primary kinetic isotope effects.

  13. [Dihydropirymidine dehydrogenase (DPD)--a toxicity marker for 5-fluorouracil?].

    Science.gov (United States)

    Jedrzychowska, Adriana; Dołegowska, Barbara

    2013-01-01

    In proceedings relating to patients suffering from cancer, an important step is predicting response and toxicity to treatment. Depending on the type of cancer, physicians use the generally accepted schema of treatment, for example pharmacotherapy. 5-fluorouracil (5-FU) is the most widely used anticancer drug in chemotherapy for colon, breast, and head and neck cancer. Patients with dihydropyrimidine dehydrogenase (DPD) deficiency, which is responsible for the metabolism of 5-FU, may experience severe side effects during treatment, and even death. In many publications the need for determining the activity of DPD is discussed, which would protect the patient from the numerous side effects of treatment. However, in practice these assays are not done routinely, despite the high demand. In most cases, a genetic test is used to detect changes in the gene encoding DPD (such as in the USA), but because of the large number of mutations the genetic test cannot be used as a screening test. Dihydropyrimidine dehydrogenase activity has been shown to have high variability among the general population, with an estimated proportion of at least 3-5% of individuals showing low or deficient DPD activity. In this publication we presents data about average dihydropirymidine dehydrogenase activity in various populations of the world (e.g. Japan, Ghana, Great Britain) including gender differences and collected information about the possibility of determination of DPD activity in different countries. Detection of reduced DPD activity in patients with planned chemotherapy will allow a lower dosage of 5-FU or alternative treatment without exposing them to adverse reactions.

  14. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.

    Science.gov (United States)

    Henningsen, Brooks M; Hon, Shuen; Covalla, Sean F; Sonu, Carolina; Argyros, D Aaron; Barrett, Trisha F; Wiswall, Erin; Froehlich, Allan C; Zelle, Rintze M

    2015-12-01

    Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter(-1) acetate during fermentation of 114 g liter(-1) glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter(-1), this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter(-1) and raised the ethanol yield to 7% above the wild-type level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Class 2 aldehyde dehydrogenase. Characterization of the hamster enzyme, sensitive to daidzin and conserved within the family of multiple forms.

    Science.gov (United States)

    Hjelmqvist, L; Lundgren, R; Norin, A; Jörnvall, H; Vallee, B; Klyosov, A; Keung, W M

    1997-10-13

    Mitochondrial (class 2) hamster aldehyde dehydrogenase has been purified and characterized. Its primary structure has been determined and correlated with the tertiary structure recently established for this class from another species. The protein is found to represent a constant class within a complex family of multiple forms. Variable segments that occur in different species correlate with non-functional segments, in the same manner as in the case of the constant class of alcohol dehydrogenases (class III type) of another protein family, but distinct from the pattern of the corresponding variable enzymes. Hence, in both these protein families, overall variability and segment architectures behave similarly, with at least one 'constant' form in each case, class III in the case of alcohol dehydrogenases, and at least class 2 in the case of aldehyde dehydrogenases.

  16. In Silico Analysis of Arabidopsis thaliana Peroxisomal 6-Phosphogluconate Dehydrogenase

    Directory of Open Access Journals (Sweden)

    Álvaro D. Fernández-Fernández

    2016-01-01

    Full Text Available NADPH, whose regeneration is critical for reductive biosynthesis and detoxification pathways, is an essential component in cell redox homeostasis. Peroxisomes are subcellular organelles with a complex biochemical machinery involved in signaling and stress processes by molecules such as hydrogen peroxide (H2O2 and nitric oxide (NO. NADPH is required by several peroxisomal enzymes involved in β-oxidation, NO, and glutathione (GSH generation. Plants have various NADPH-generating dehydrogenases, one of which is 6-phosphogluconate dehydrogenase (6PGDH. Arabidopsis contains three 6PGDH genes that probably are encoded for cytosolic, chloroplastic/mitochondrial, and peroxisomal isozymes, although their specific functions remain largely unknown. This study focuses on the in silico analysis of the biochemical characteristics and gene expression of peroxisomal 6PGDH (p6PGDH with the aim of understanding its potential function in the peroxisomal NADPH-recycling system. The data show that a group of plant 6PGDHs contains an archetypal type 1 peroxisomal targeting signal (PTS, while in silico gene expression analysis using affymetrix microarray data suggests that Arabidopsis p6PGDH appears to be mainly involved in xenobiotic response, growth, and developmental processes.

  17. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    Directory of Open Access Journals (Sweden)

    Iris Krondorfer

    Full Text Available Pyranose dehydrogenase (PDH, a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organometals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity.

  18. Purification of arogenate dehydrogenase from Phenylobacterium immobile.

    Science.gov (United States)

    Mayer, E; Waldner-Sander, S; Keller, B; Keller, E; Lingens, F

    1985-01-07

    Phenylobacterium immobile, a bacterium which is able to degrade the herbicide chloridazon, utilizes for L-tyrosine synthesis arogenate as an obligatory intermediate which is converted in the final biosynthetic step by a dehydrogenase to tyrosine. This enzyme, the arogenate dehydrogenase, has been purified for the first time in a 5-step procedure to homogeneity as confirmed by electrophoresis. The Mr of the enzyme that consists of two identical subunits amounts to 69000 as established by gel electrophoresis after cross-linking the enzyme with dimethylsuberimidate. The Km values were 0.09 mM for arogenate and 0.02 mM for NAD+. The enzyme has a high specificity with respect to its substrate arogenate.

  19. Hybridizability of gamma-irradiated lactic dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Saito, M.

    1976-03-01

    The hybridizabilities of the gamma-irradiated chicken heart and pig muscle lactic dehydrogenases were estimated by hybridizing the irradiated enzymes with the unirradiated pig heart lactic dehydrogenase. The disc gel electrophoretic patterns of the inter- and intraspecific hybrids showed that the LDH activity of the pig heart isozyme band increased as a function of dose. This observation was analyzed upon the binomial redistribution pattern of the recombined subunits. The result shows that the hybridizabilities of both the chicken heart and pig muscle isozymes decreased along with the loss of catalytic activity and the release from substrate inhibition. The titration of free SH groups of the irradiated chicken isozyme suggested that the unfolding of the peptide chain destroyed the specific tertiary structure needed for the binding of subunits. (auth)

  20. From obesity to diabetes.

    Science.gov (United States)

    Keller, U

    2006-07-01

    The prevalence of obesity has been increasing dramatically in the last decades in the whole world, not only in industrialized countries but also in developing areas. A major complication of obesity is insulin resistance and type 2 diabetes. Diabetes is also rapidly increasing world-wide--reaching a prevalence in adults of approx. 5-6% in Central Europe and in the US, and more than 50% in specific, genetically prone populations. This article reviews pathogenetic mechanisms linking obesity and type 2 diabetes. Emphasis is placed on the observation that excessive amounts of adipocytes are associated with an impairment of insulin sensitivity, a key feature of the "metabolic syndrome". This is a cluster of metabolic abnormalities such as type 2 diabetes, hypertension and dyslipidemia; all of them are enhanced by the presence of visceral (abdominal) obesity and all contribute to the increased cardiovascular risk observed in these patients. Besides release of free fatty acids, adipocytes secrete substances that contribute to peripheral insulin resistance, including adiponectin, resistin, TNF-alpha and interleukin 6. Increased turnover of free fatty acids interferes with intracellular metabolism of glucose in the muscle, and they exert lipotoxic effect on pancreatic beta-cells. The pre-receptor metabolism of cortisol is enhanced in visceral adipose tissue by activation of 11 beta-hydroxysteroid dehydrogenase type 1. A new class of anti-diabetic drugs (thiazolidinediones, or glitazones) bind to peroxisome proliferator activated receptor (PPAR-gamma) and lower thereby plasma free fatty acids and cytokine production in adipocytes, in addition to a decrease of resistin and an increase in adiponectin observed in animals, resulting in an overall increase in insulin sensitivity and in an improvement of glucose homeostasis. However, the first step to avoid insulin resistance and prevent the development of diabetes should be a reduction in body weight in overweight subjects, and an

  1. Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma.

    Science.gov (United States)

    Kipp, Benjamin R; Voss, Jesse S; Kerr, Sarah E; Barr Fritcher, Emily G; Graham, Rondell P; Zhang, Lizhi; Highsmith, W Edward; Zhang, Jun; Roberts, Lewis R; Gores, Gregory J; Halling, Kevin C

    2012-10-01

    Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases.

  2. Improved production of propionic acid in Propionibacterium jensenii via combinational overexpression of glycerol dehydrogenase and malate dehydrogenase from Klebsiella pneumoniae.

    Science.gov (United States)

    Liu, Long; Zhuge, Xin; Shin, Hyun-Dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian

    2015-04-01

    Microbial production of propionic acid (PA), an important chemical building block used as a preservative and chemical intermediate, has gained increasing attention for its environmental friendliness over traditional petrochemical processes. In previous studies, we constructed a shuttle vector as a useful tool for engineering Propionibacterium jensenii, a potential candidate for efficient PA synthesis. In this study, we identified the key metabolites for PA synthesis in P. jensenii by examining the influence of metabolic intermediate addition on PA synthesis with glycerol as a carbon source under anaerobic conditions. We also further improved PA production via the overexpression of the identified corresponding enzymes, namely, glycerol dehydrogenase (GDH), malate dehydrogenase (MDH), and fumarate hydratase (FUM). Compared to those in wild-type P. jensenii, the activities of these enzymes in the engineered strains were 2.91- ± 0.17- to 8.12- ± 0.37-fold higher. The transcription levels of the corresponding enzymes in the engineered strains were 2.85- ± 0.19- to 8.07- ± 0.63-fold higher than those in the wild type. The coexpression of GDH and MDH increased the PA titer from 26.95 ± 1.21 g/liter in wild-type P. jensenii to 39.43 ± 1.90 g/liter in the engineered strains. This study identified the key metabolic nodes limiting PA overproduction in P. jensenii and further improved PA titers via the coexpression of GDH and MDH, making the engineered P. jensenii strain a potential industrial producer of PA.

  3. Effect of nutrient ingestion on total-body and splanchnic cortisol production in humans.

    Science.gov (United States)

    Basu, Rita; Singh, Ravinder; Basu, Ananda; Johnson, C M; Rizza, Robert A

    2006-03-01

    The splanchnic bed produces cortisol at rates approximating extraadrenal tissues by converting cortisone to cortisol via the 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 pathway. It is not known whether splanchnic cortisol production is regulated by nutrient ingestion and/or by the accompanying changes in hormone secretion. To address this question, 18 healthy humans were randomized to ingest either a mixed meal or to receive an intravenous saline infusion while total-body, splanchnic, and D3 cortisol production (an index of 11beta-HSD type 1 activity) were measured using the combined hepatic catheterization and D4 cortisol infusion methods. Fasting glucose and insulin concentrations did not differ on the meal and saline study days. Glucose and insulin concentrations increased after meal ingestion, peaking at 11.0 +/- 1.0 mmol/l and 451 +/- 64 pmol/l, respectively, at 45 min, then fell to baseline thereafter. In contrast, glucose and insulin concentrations slowly fell to 5.1 +/- 0.1 mmol/l and 27 +/- 6 pmol/l during the 6 h of observation on the saline study day. Fasting cortisol concentration did not differ on the meal and saline study days. Cortisol increased (P < 0.05) to a peak of 353 +/- 55 nmol/l after meal ingestion but did not change after saline infusion. The increase in cortisol after meal ingestion was associated with an increase in both total body cortisol (from 748 +/- 63 to 1,620 +/- 235 nmol/min; P < 0.01) and total body D3 cortisol (from 99 +/- 11 to 143 +/- 11 nmol/min; P < 0.01) production, whereas there was no change in either on the saline study day. The increase in total-body cortisol and D3 cortisol production after meal ingestion originated in extrasplanchnic tissues since splanchnic cortisol production (mean 0-360 min: 254 +/- 83 vs. 262 +/- 36 nmol/min) and splanchnic D3 cortisol production (mean 0-360 min: 72 +/- 22 vs. 77 +/- 14 nmol/min) did not differ on the meal and saline study days. We conclude that ingestion of a mixed

  4. A Case of Hyperammonemia Associated with High Dihydropyrimidine Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Keiki Nagaharu

    2016-01-01

    Full Text Available Over the past decades, 5-Fluorouracil (5-FU has been widely used to treat several types of carcinoma, including esophageal squamous cell carcinoma. In addition to its common side effects, including diarrhea, mucositis, neutropenia, and anemia, 5-FU treatment has also been reported to cause hyperammonemia. However, the exact mechanism responsible for 5-FU-induced hyperammonemia remains unknown. We encountered an esophageal carcinoma patient who developed hyperammonemia when receiving 5-FU-containing chemotherapy but did not exhibit any of the other common adverse effects of 5-FU treatment. At the onset of hyperammonemia, laboratory tests revealed high dihydropyrimidine dehydrogenase (DPD activity and rapid 5-FU clearance. Our findings suggested that 5-FU hypermetabolism may be one of the key mechanisms responsible for hyperammonemia during 5-FU treatment.

  5. Glucose-6 phosphate dehydrogenase deficiency and psychotic illness

    Directory of Open Access Journals (Sweden)

    Vijender Singh

    2012-01-01

    Full Text Available Mr. T, a 28-year-old unmarried male, a diagnosed case of Glucose-6 Phosphate Dehydrogenase (G6PD deficiency since childhood, presented with 13 years of psychotic illness and disturbed biological functions. He showed poor response to antipsychotics and mood stabilizers and had three prior admissions to Psychiatry. There was a family history of psychotic illness. The General Physical Examination and Systemic Examination were unremarkable. Mental Status Examination revealed increased psychomotor activity, pressure of speech, euphoric affect, prolixity, delusion of persecution, delusion of grandiosity, delusion of control, thought withdrawal and thought insertion, and second and third person auditory hallucinations, with impaired judgment and insight. A diagnosis of schizophrenia paranoid type, with a differential diagnosis of schizoaffective disorder manic subtype, was made. This case is being reported for its rarity and atypicality of clinical presentation, as well as a course of psychotic illness in the G6PD Deficiency state,with its implications on management.

  6. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase.

    OpenAIRE

    1989-01-01

    The structure of isocitrate dehydrogenase [threo-DS-isocitrate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42] from Escherichia coli has been solved and refined at 2.5 A resolution and is topologically different from that of any other dehydrogenase. This enzyme, a dimer of identical 416-residue subunits, is inactivated by phosphorylation at Ser-113, which lies at the edge of an interdomain pocket that also contains many residues conserved between isocitrate dehydrogenase and isopropylma...

  7. Malate dehydrogenase: a model for structure, evolution, and catalysis.

    OpenAIRE

    1994-01-01

    Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid s...

  8. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver diseases, myocardial infarctions, cancer, and blood disorders such as myelogenous (produced in the...

  9. Placental glucose dehydrogenase polymorphism in Koreans.

    Science.gov (United States)

    Kim, Y J; Paik, S G; Park, H Y

    1994-12-01

    The genetic polymorphism of placental glucose dehydrogenase (GDH) was investigated in 300 Korean placentae using horizontal starch gel electrophoresis. The allele frequencies for GDH1, GDH2 and GDH3 were 0.537, 0.440 and 0.005, respectively, which were similar to those in Japanese. We also observed an anodal allele which was similar to the GDH4 originally reported in Chinese populations at a low frequency of 0.015. An additional new cathodal allele (named GDH6) was observed in the present study with a very low frequency of 0.003.

  10. Newborn screening for dihydrolipoamide dehydrogenase deficiency: Citrulline as a useful analyte

    Directory of Open Access Journals (Sweden)

    Shane C. Quinonez

    2014-01-01

    Full Text Available Dihydrolipoamide dehydrogenase deficiency, also known as maple syrup urine disease (MSUD type III, is caused by the deficiency of the E3 subunit of branched chain alpha-ketoacid dehydrogenase (BCKDH, α-ketoglutarate dehydrogenase (αKGDH, and pyruvate dehydrogenase (PDH. DLD deficiency variably presents with either a severe neonatal encephalopathic phenotype or a primarily hepatic phenotype. As a variant form of MSUD, it is considered a core condition recommended for newborn screening. The detection of variant MSUD forms has proven difficult in the past with no asymptomatic DLD deficiency patients identified by current newborn screening strategies. Citrulline has recently been identified as an elevated dried blood spot (DBS metabolite in symptomatic patients affected with DLD deficiency. Here we report the retrospective DBS analysis and second-tier allo-isoleucine testing of 2 DLD deficiency patients. We show that an elevated citrulline and an elevated allo-isoleucine on second-tier testing can be used to successfully detect DLD deficiency. We additionally recommend that DLD deficiency be included in the “citrullinemia/elevated citrulline” ACMG Act Sheet and Algorithm.

  11. Molecular determinants of the cofactor specificity of ribitol dehydrogenase, a short-chain dehydrogenase/reductase

    DEFF Research Database (Denmark)

    Moon, Hee-Jung; Tiwari, Manish Kumar; Singh, Ranjitha;

    2012-01-01

    Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site...

  12. Identity of the subunits and the stoicheiometry of prosthetic groups in trimethylamine dehydrogenase and dimethylamine dehydrogenase.

    Science.gov (United States)

    Kasprzak, A A; Papas, E J; Steenkamp, D J

    1983-01-01

    Trimethylamine dehydrogenases from bacterium W3A1 and Hyphomicrobium X and the dimethylamine dehydrogenase from Hyphomicrobium X were found to contain only one kind of subunit. The millimolar absorption coefficient of a single [4Fe-4S] cluster in trimethylamine dehydrogenase from bacterium W3A1 was estimated to be 14.8 mM-1 . cm-1 at 443 nm. From this value a 1:1 stoicheiometry of the prosthetic groups, 6-S-cysteinyl-FMN and the [4Fe-4S] cluster, was established. Millimolar absorption coefficients of the three enzymes were in the range 49.4-58.7 mM-1 . cm-1 at approx. 440 nm. This range of values is consistent with the presence of two [4Fe-4S] clusters and two flavin residues, for which the millimolar absorption coefficient had earlier been found to be 12.3 mM-1 . cm-1 at 437 nm. The N-terminal amino acid was alanine in each of the three enzymes. Sequence analysis of the first 15 residues from the N-terminus of dimethylamine dehydrogenase indicated a single unique sequence. Two identical subunits, each containing covalently bound 6-S-cysteinyl-FMN and a [4Fe-4S] cluster, in each of the enzymes are therefore indicated. Images Fig. 1. PMID:6882357

  13. Peculiarities of the inhibition of the pyruvate dehydrogenase complex by thiamine thiazolone diphosphate in vitro and in intact mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Yakovleva, G.M.; Strumilo, S.A.; Gorenshtein, B.I.; Ostrovskii, Yu.M.

    1986-07-10

    Thiamine thiazolone diphosphate (TTPP) possesses the ability to penetrate through the mitochondrial membrane and inhibit the pyruvate dehydrogenase complex in intact mitochondria, TTPP inhibits the activity of the complex of animal origin according to a mixed type (K/sub i/ 5 x 10/sup -8/ M) and yeast pyruvate decarboxylase according to a competitive type (K/sub i/ 5 x 10/sup -6/ M) with respect to thiamine diphosphate (TPP). Decarboxylation of pyruvate in intact and lysed rat liver and brain mitochondria is inhibited in the presence of TTPP significantly more weakly than the total activity of the pyruvate dehydrogenase complex, determined according to the formation of acetyl-CoA. It is suggested that TTPP, as an analog of the transition state, acts only in dehydrogenase reactions but not at the stage of simple decarboxylation of pyruvate.

  14. Skeletal muscle 11beta-HSD1 controls glucocorticoid-induced proteolysis and expression of E3 ubiquitin ligases atrogin-1 and MuRF-1.

    Directory of Open Access Journals (Sweden)

    Katrin Biedasek

    Full Text Available Recent studies demonstrated expression and activity of the intracellular cortisone-cortisol shuttle 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 in skeletal muscle and inhibition of 11beta-HSD1 in muscle cells improved insulin sensitivity. Glucocorticoids induce muscle atrophy via increased expression of the E3 ubiquitin ligases Atrogin-1 (Muscle Atrophy F-box (MAFbx and MuRF-1 (Muscle RING-Finger-1. We hypothesized that 11beta-HSD1 controls glucocorticoid-induced expression of atrophy E3 ubiquitin ligases in skeletal muscle. Primary human myoblasts were generated from healthy volunteers. 11beta-HSD1-dependent protein degradation was analyzed by [(3H]-tyrosine release assay. RT-PCR was used to determine mRNA expression of E3 ubiquitin ligases and 11beta-HSD1 activity was measured by conversion of radioactively labeled [(3H]-cortisone to [(3H]-cortisol separated by thin-layer chromatography. We here demonstrate that 11beta-HSD1 is expressed and biologically active in interconverting cortisone to active cortisol in murine skeletal muscle cells (C2C12 as well as in primary human myotubes. 11Beta-HSD1 expression increased during differentiation from myoblasts to mature myotubes (p < 0.01, suggesting a role of 11beta-HSD1 in skeletal muscle growth and differentiation. Treatment with cortisone increased protein degradation by about 20% (p < 0.001, which was paralleled by an elevation of Atrogin-1 and MuRF-1 mRNA expression (p < 0.01, respectively. Notably, pre-treatment with the 11beta-HSD1 inhibitor carbenoxolone (Cbx completely abolished the effect of cortisone on protein degradation as well as on Atrogin-1 and MuRF-1 expression. In summary, our data suggest that 11beta-HSD1 controls glucocorticoid-induced protein degradation in human and murine skeletal muscle via regulation of the E3 ubiquitin ligases Atrogin-1 and MuRF-1.

  15. Effects of proportions of dietary macronutrients on glucocorticoid metabolism in diet-induced obesity in rats.

    Directory of Open Access Journals (Sweden)

    Roland H Stimson

    Full Text Available Tissue glucocorticoid levels in the liver and adipose tissue are regulated by regeneration of inactive glucocorticoid by 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1 and inactivation by 5alpha- and 5beta-reductases. A low carbohydrate diet increases hepatic 11beta-HSD1 and reduces glucocorticoid metabolism during weight loss in obese humans. We hypothesized that similar variations in macronutrient proportions regulate glucocorticoid metabolism in obese rats. Male Lister Hooded rats were fed an obesity-inducing ad libitum 'Western' diet (37% fat, n = 36 for 22 weeks, then randomised to continue this diet (n = 12 or to switch to either a low carbohydrate (n = 12 or a moderate carbohydrate (n = 12 diet for the final 8 weeks. A parallel lean control group were fed an ad libitum control diet (10% fat, n = 12 throughout. The low and moderate carbohydrate diets decreased hepatic 11beta-HSD1 mRNA compared with the Western diet (both 0.7+/-0.0 vs 0.9+/-0.1 AU; p<0.01, but did not alter 11beta-HSD1 in adipose tissue. 5Alpha-reductase mRNA was increased on the low carbohydrate compared with the moderate carbohydrate diet. Compared with lean controls, the Western diet decreased 11beta-HSD1 activity (1.6+/-0.1 vs 2.8+/-0.1 nmol/mcg protein/hr; p<0.001 and increased 5alpha-reductase and 5beta-reductase mRNAs (1.9+/-0.3 vs 1.0+/-0.2 and 1.6+/-0.1 vs 1.0+/-0.1 AU respectively; p<0.01 in the liver, and reduced 11beta-HSD1 mRNA and activity (both p<0.01 in adipose tissue. Although an obesity-inducing high fat diet in rats recapitulates the abnormal glucocorticoid metabolism associated with human obesity in liver (but not in adipose tissue, a low carbohydrate diet does not increase hepatic 11beta-HSD1 in obese rats as occurs in humans.

  16. Dietary macronutrient content alters cortisol metabolism independently of body weight changes in obese men.

    Science.gov (United States)

    Stimson, Roland H; Johnstone, Alexandra M; Homer, Natalie Z M; Wake, Deborah J; Morton, Nicholas M; Andrew, Ruth; Lobley, Gerald E; Walker, Brian R

    2007-11-01

    Dietary macronutrient composition influences cardiometabolic health independently of obesity. Both dietary fat and insulin alter glucocorticoid metabolism in rodents and, acutely, in humans. However, whether longer-term differences in dietary macronutrients affect cortisol metabolism in humans and contribute to the tissue-specific dysregulation of cortisol metabolism in obesity is unknown. The objective of the study was to test the effects of dietary macronutrients on cortisol metabolism in obese men. The study consisted of two randomized, crossover studies. The study was conducted at a human nutrition unit. Participants included healthy obese men. INTERVENTIONS, OUTCOME MEASURES, AND RESULTS: Seventeen obese men received 4 wk ad libitum high fat-low carbohydrate (HF-LC) (66% fat, 4% carbohydrate) vs. moderate fat-moderate carbohydrate (MF-MC) diets (35% fat, 35% carbohydrate). Six obese men participated in a similar study with isocaloric feeding. Both HF-LC and MF-MC diets induced weight loss. During 9,11,12,12-[(2)H](4)-cortisol infusion, HF-LC but not MF-MC increased 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activity (rates of appearance of cortisol and 9,12,12-[(2)H](3)-cortisol) and reduced urinary excretion of 5alpha- and 5beta-reduced [(2)H](4)-cortisol metabolites and [(2)H](4)-cortisol clearance. HF-LC also reduced 24-h urinary 5alpha- and 5beta-reduced endogenous cortisol metabolites but did not alter plasma cortisol or diurnal salivary cortisol rhythm. In sc abdominal adipose tissue, 11beta-HSD1 mRNA and activity were unaffected by diet. A low-carbohydrate diet alters cortisol metabolism independently of weight loss. In obese men, this enhances cortisol regeneration by 11beta-HSD1 and reduces cortisol inactivation by A-ring reductases in liver without affecting sc adipose 11beta-HSD1. Alterations in cortisol metabolism may be a consequence of macronutrient dietary content and may mediate effects of diet on metabolic health.

  17. The effects of growth hormone deficiency and replacement on glucocorticoid exposure in hypopituitary patients on cortisone acetate and hydrocortisone replacement.

    Science.gov (United States)

    Swords, F M; Carroll, P V; Kisalu, J; Wood, P J; Taylor, N F; Monson, J P

    2003-11-01

    11 beta-hydroxysteroid dehydrogenase type 1 (11 beta HSD1) converts inactive cortisone to active cortisol. 11 beta HSD1 activity is increased in GH deficiency and inhibited by GH and IGF-I in acromegaly. However it is not known whether these changes in cortisol metabolism exert significant effects during hydrocortisone therapy, and the effect has not been studied in patients taking cortisone acetate. We have studied the effect of GH induced 11 beta HSD1 inhibition in hypopituitary adults with severe GH deficiency to determine whether this inhibition has a different magnitude of effect when patients are taking different forms of glucocorticoid replacement therapy. We have taken the ratio of 11-hydroxy/11-oxo cortisol metabolites (Fm/Em), an established measure of net 11 beta HSD activity to reflect the likely balance of cortisol to cortisone exposure in tissues expressing 11 beta HSD1, principally the liver and adipose tissue. We recruited 10 hypopituitary adults all on established glucocorticoid replacement therapy, but who were not receiving GH. Patients were treated with their standard hydrocortisone therapy for one week and an equivalent dose of cortisone acetate in its place for one week in random order. Serial serum cortisol assessments and urine steroid profiles were performed on each treatment. All patients were then established on GH therapy for at least three months before the two-week cycle was repeated. Fm/Em was also measured in a control population (20F, 20M). Prior to GH, the ratio Fm/Em was greater with hydrocortisone compared with cortisone acetate replacement (1.17 +/- 0.28 and 0.52 +/- 0.09 respectively, P cortisol/cortisone did not change indicating unchanged 11 beta HSD2 activity. Mean circulating cortisol also fell in all subjects after GH. This effect was greater during cortisone acetate treatment (-18.7%, P tissue exposure to glucocorticoid is supra-physiological in hypopituitary patients with untreated GH deficiency taking hydrocortisone

  18. Transcriptional Regulation of Pyruvate Dehydrogenase Kinase

    Directory of Open Access Journals (Sweden)

    Ji Yun Jeong

    2012-10-01

    Full Text Available The pyruvate dehydrogenase complex (PDC activity is crucial to maintains blood glucose and ATP levels, which largely depends on the phosphorylation status by pyruvate dehydrogenase kinase (PDK isoenzymes. Although it has been reported that PDC is phosphorylated and inactivated by PDK2 and PDK4 in metabolically active tissues including liver, skeletal muscle, heart, and kidney during starvation and diabetes, the precise mechanisms by which expression of PDK2 and PDK4 are transcriptionally regulated still remains unclear. Insulin represses the expression of PDK2 and PDK4 via phosphorylation of FOXO through PI3K/Akt signaling pathway. Several nuclear hormone receptors activated due to fasting or increased fat supply, including peroxisome proliferator-activated receptors, glucocorticoid receptors, estrogen-related receptors, and thyroid hormone receptors, also participate in the up-regulation of PDK2 and PDK4; however, the endogenous ligands that bind those nuclear receptors have not been identified. It has been recently suggested that growth hormone, adiponectin, epinephrine, and rosiglitazone also control the expression of PDK4 in tissue-specific manners. In this review, we discuss several factors involved in the expressional regulation of PDK2 and PDK4, and introduce current studies aimed at providing a better understanding of the molecular mechanisms that underlie the development of metabolic diseases such as diabetes.

  19. Redesigning the substrate specificity of an enzyme: isocitrate dehydrogenase.

    Science.gov (United States)

    Doyle, S A; Fung, S Y; Koshland, D E

    2000-11-21

    Despite the structural similarities between isocitrate and isopropylmalate, isocitrate dehydrogenase (IDH) exhibits a strong preference for its natural substrate. Using a combination of rational and random mutagenesis, we have engineered IDH to use isopropylmalate as a substrate. Rationally designed mutations were based on comparison of IDH to a similar enzyme, isopropylmalate dehydrogenase (IPMDH). A chimeric enzyme that replaced an active site loop-helix motif with IPMDH sequences exhibited no activity toward isopropylmalate, and site-directed mutants that replaced IDH residues with their IPMDH equivalents only showed small improvements in k(cat). Random mutants targeted the IDH active site at positions 113 (substituted with glutamate), 115, and 116 (both randomized) and were screened for activity toward isopropylmalate. Six mutants were identified that exhibited up to an 8-fold improvement in k(cat) and increased the apparent binding affinity by as much as a factor of 80. In addition to the S113E mutation, five other mutants contained substitutions at positions 115 and/or 116. Most small hydrophobic substitutions at position 116 improved activity, possibly by generating space to accommodate the isopropyl group of isopropylmalate; however, substitution with serine yielded the most improvement in k(cat). Only two substitutions were identified at position 115, which suggests a more specific role for the wild-type asparagine residue in the utilization of isopropylmalate. Since interactions between neighboring residues in this region greatly influenced the effects of each other in unexpected ways, structural solutions were best identified in combinations, as allowed by random mutagenesis.

  20. Monoterpene Metabolism. Cloning, Expression, and Characterization of (−)-Isopiperitenol/(−)-Carveol Dehydrogenase of Peppermint and Spearmint1

    Science.gov (United States)

    Ringer, Kerry L.; Davis, Edward M.; Croteau, Rodney

    2005-01-01

    The essential oils of peppermint (Mentha x piperita) and spearmint (Mentha spicata) are distinguished by the oxygenation position on the p-menthane ring of the constitutive monoterpenes that is conferred by two regiospecific cytochrome P450 limonene-3- and limonene-6-hydroxylases. Following hydroxylation of limonene, an apparently similar dehydrogenase oxidizes (−)-trans-isopiperitenol to (−)-isopiperitenone in peppermint and (−)-trans-carveol to (−)-carvone in spearmint. Random sequencing of a peppermint oil gland secretory cell cDNA library revealed a large number of clones that specified redox-type enzymes, including dehydrogenases. Full-length dehydrogenase clones were screened by functional expression in Escherichia coli using a recently developed in situ assay. A single full-length acquisition encoding (−)-trans-isopiperitenol dehydrogenase (ISPD) was isolated. The (−)-ISPD cDNA has an open reading frame of 795 bp that encodes a 265-residue enzyme with a calculated molecular mass of 27,191. Nondegenerate primers were designed based on the (−)-trans-ISPD cDNA sequence and employed to screen a spearmint oil gland secretory cell cDNA library from which a 5′-truncated cDNA encoding the spearmint homolog, (−)-trans-carveol-dehydrogenase, was isolated. Reverse transcription-PCR amplification and RACE were used to acquire the remaining 5′-sequence from RNA isolated from oil gland secretory cells of spearmint leaf. The full-length spearmint dehydrogenase shares >99% amino acid identity with its peppermint homolog and both dehydrogenases are capable of utilizing (−)-trans-isopiperitenol and (−)-trans-carveol. These isopiperitenol/carveol dehydrogenases are members of the short-chain dehydrogenase/reductase superfamily and are related to other plant short-chain dehydrogenases/reductases involved in secondary metabolism (lignan biosynthesis), stress responses, and phytosteroid biosynthesis, but they are quite dissimilar (approximately 13

  1. Oxidative stress and bovine liver diseases: Role of glutathione peroxidase and glucose6‐phosphate dehydrogenase

    OpenAIRE

    Abd Ellah, Mahmoud Rushdi; OKADA, Keiji; Yasuda, Jun

    2007-01-01

    This article summarizes the different types of free radicals, antioxidants and the effect of oxidative stress on the activities of glutathione peroxidase and glucose6‐phosphate dehydrogenase in bovine liver diseases. A growing body of evidence suggests that the formation of reactive oxygen species is a common occurrence associated with most if not all disease processes. The overall importance of reactive oxygen species to the progression and severity of various disease state...

  2. Studies on the structure and function of pyruvate dehydrogenase complexes

    NARCIS (Netherlands)

    Abreu, de R.A.

    1978-01-01

    The aim of the present investigation was to obtain more information of the structure and function of the pyruvate dehydrogenase complexes from Azotobacter vinelandii and Escherichia coli.In chapter 2 a survey is given of the recent literature on pyruvate dehydrogenase complexes.In chapter 3 results

  3. Dimerization and enzymatic activity of fungal 17β-hydroxysteroid dehydrogenase from the short-chain dehydrogenase/reductase superfamily

    Directory of Open Access Journals (Sweden)

    Kristan Katja

    2005-12-01

    Full Text Available Abstract Background 17β-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17β-HSDcl is a member of the short-chain dehydrogenase/reductase (SDR superfamily. SDR proteins usually function as dimers or tetramers and 17β-HSDcl is also a homodimer under native conditions. Results We have investigated here which secondary structure elements are involved in the dimerization of 17β-HSDcl and examined the importance of dimerization for the enzyme activity. Sequence similarity with trihydroxynaphthalene reductase from Magnaporthe grisea indicated that Arg129 and His111 from the αE-helices interact with the Asp121, Glu117 and Asp187 residues from the αE and αF-helices of the neighbouring subunit. The Arg129Asp and His111Leu mutations both rendered 17β-HSDcl monomeric, while the mutant 17β-HSDcl-His111Ala was dimeric. Circular dichroism spectroscopy analysis confirmed the conservation of the secondary structure in both monomers. The three mutant proteins all bound coenzyme, as shown by fluorescence quenching in the presence of NADP+, but both monomers showed no enzymatic activity. Conclusion We have shown by site-directed mutagenesis and structure/function analysis that 17β-HSDcl dimerization involves the αE and αF helices of both subunits. Neighbouring subunits are connected through hydrophobic interactions, H-bonds and salt bridges involving amino acid residues His111 and Arg129. Since the substitutions of these two amino acid residues lead to inactive monomers with conserved secondary structure, we suggest dimerization is a prerequisite for catalysis. A detailed understanding of this dimerization could lead to the development of compounds that will specifically prevent dimerization, thereby serving as a new type of inhibitor.

  4. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  5. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  6. Fast internal dynamics in alcohol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Monkenbusch, M.; Stadler, A., E-mail: a.stadler@fz-juelich.de; Biehl, R.; Richter, D. [Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Ollivier, J. [Institut Laue-Langevin, CS 20156, 38042 Grenoble (France); Zamponi, M. [Jülich Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)

    2015-08-21

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D{sub 2}O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  7. Fast internal dynamics in alcohol dehydrogenase

    Science.gov (United States)

    Monkenbusch, M.; Stadler, A.; Biehl, R.; Ollivier, J.; Zamponi, M.; Richter, D.

    2015-08-01

    Large-scale domain motions in alcohol dehydrogenase (ADH) have been observed previously by neutron spin-echo spectroscopy (NSE). We have extended the investigation on the dynamics of ADH in solution by using high-resolution neutron time-of-flight (TOF) and neutron backscattering (BS) spectroscopy in the incoherent scattering range. The observed hydrogen dynamics were interpreted in terms of three mobility classes, which allowed a simultaneous description of the measured TOF and BS spectra. In addition to the slow global protein diffusion and domain motions observed by NSE, a fast internal process could be identified. Around one third of the protons in ADH participate in the fast localized diffusive motion. The diffusion coefficient of the fast internal motions is around two third of the value of the surrounding D2O solvent. It is tempting to associate the fast internal process with solvent exposed amino acid residues with dangling side chains.

  8. Untangling the glutamate dehydrogenase allosteric nightmare.

    Science.gov (United States)

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  9. Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O' Neal

    2017-08-29

    The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.

  10. Regulation of hepatic branched-chain alpha-keto acid dehydrogenase complex in rats fed a high-fat diet

    Science.gov (United States)

    Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...

  11. Handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins in transgenic mice

    DEFF Research Database (Denmark)

    Kragh, Peter M; Pedersen, Christina B; Schmidt, Stine P;

    2007-01-01

    Abstract To investigate the in vivo handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins, three transgenic mouse lines were produced by pronuclear injection of cDNA encoding the wild-type, hSCAD-wt, and two disease causing folding variants hSCAD-319C > T and hSCAD-625G > A...

  12. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic ¤Nicotiana sylvestris¤

    DEFF Research Database (Denmark)

    Michalecka, A.M.; Agius, S.C.; Møller, I.M.;

    2004-01-01

    (P)H dehydrogenases, was introduced into Nicotiana sylvestris. Transgenic lines with high transcript and protein levels for St-NDB1 had up to threefold increased activity of external NADPH dehydrogenase in isolated mitochondria as compared to the wild type (WT). In two lines, the external NADPH dehydrogenase activity...... for NADPH and dependent on calcium for activity. Transgenic lines overexpressing St-ndb1 had specifically increased protein levels for alternative oxidase and uncoupling protein, as compared to the WT and one co-suppressing line. This indicates cross-talk in the expressional control, or metabolic conditions...... influencing it, for the different categories of energy-dissipating proteins that bypass oxidative phosphorylation. The potential effects of external NADPH oxidation on other cellular processes are discussed....

  13. Effect of 15-hydroxyprostaglandin dehydrogenase inhibitor on wound healing.

    Science.gov (United States)

    Seo, Seung Yong; Han, Song-Iy; Bae, Chun Sik; Cho, Hoon; Lim, Sung Chul

    2015-06-01

    PGE2 is an important mediator of wound healing. It is degraded and inactivated by 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Various growth factors, type IV collagen, TIMP-2 and PGE2 are important mediators of inflammation involving wound healing. Overproduction of TGF-β and suppression of PGE2 are found in excessive wound scarring. If we make the condition downregulating growth factors and upregulating PGE2, the wound will have a positive effect which results in little scar formation after healing. TD88 is a 15-PGDH inhibitor based on thiazolinedione structure. We evaluated the effect of TD88 on wound healing. In 10 guinea pigs (4 control and 6 experimental groups), we made four 1cm diameter-sized circular skin defects on each back. TD88 and vehicle were applicated on the wound twice a day for 4 days in the experimental and control groups, respectively. Tissue samples were harvested for qPCR and histomorphometric analyses on the 2nd and 4th day after treatment. Histomorphometric analysis showed significant reepithelization in the experimental group. qPCR analysis showed significant decrease of PDGF, CTGF and TIMP-2, but significant increase of type IV collagen in the experimental group. Taken together TD88 could be a good effector on wound healing, especially in the aspects of prevention of scarring.

  14. Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion.

    Science.gov (United States)

    Ainscow, E K; Zhao, C; Rutter, G A

    2000-07-01

    Islet beta-cells express low levels of lactate dehydrogenase and have high glycerol phosphate dehydrogenase activity. To determine whether this configuration favors oxidative glucose metabolism via mitochondria in the beta-cell and is important for beta-cell metabolic signal transduction, we have determined the effects on glucose metabolism and insulin secretion of acute overexpression of the skeletal muscle isoform of lactate dehydrogenase (LDH)-A. Monitored in single MIN6 beta-cells, LDH hyperexpression (achieved by intranuclear cDNA microinjection or adenoviral infection) diminished the response to glucose of both phases of increases in mitochondrial NAD(P)H, as well as increases in mitochondrial membrane potential, cytosolic free ATP, and cystolic free Ca2+. These effects were observed at all glucose concentrations, but were most pronounced at submaximal glucose levels. Correspondingly, adenoviral vector-mediated LDH-A overexpression reduced insulin secretion stimulated by 11 mmol/l glucose and the subsequent response to stimulation with 30 mmol/l glucose, but it was without significant effect when the concentration of glucose was raised acutely from 3 to 30 mmol/l. Thus, overexpression of LDH activity interferes with normal glucose metabolism and insulin secretion in the islet beta-cell type, and it may therefore be directly responsible for insulin secretory defects in some forms of type 2 diabetes. The results also reinforce the view that glucose-derived pyruvate metabolism in the mitochondrion is critical for glucose-stimulated insulin secretion in the beta-cell.

  15. Cell wall-associated malate dehydrogenase activity from maize roots.

    Science.gov (United States)

    Hadži-Tašković Šukalović, Vesna; Vuletić, Mirjana; Marković, Ksenija; Vučinić, Zeljko

    2011-10-01

    Isolated cell walls from maize (Zea mays L.) roots exhibited ionically and covalently bound NAD-specific malate dehydrogenase activity. The enzyme catalyses a rapid reduction of oxaloacetate and much slower oxidation of malate. The kinetic and regulatory properties of the cell wall enzyme solubilized with 1M NaCl were different from those published for soluble, mitochondrial or plasma membrane malate dehydrogenase with respect to their ATP, Pi, and pH dependence. Isoelectric focusing of ionically-bound proteins and specific staining for malate dehydrogenase revealed characteristic isoforms present in cell wall isolate, different from those present in plasma membranes and crude homogenate. Much greater activity of cell wall-associated malate dehydrogenase was detected in the intensively growing lateral roots compared to primary root with decreased growth rates. Presence of Zn(2+) and Cu(2+) in the assay medium inhibited the activity of the wall-associated malate dehydrogenase. Exposure of maize plants to excess concentrations of Zn(2+) and Cu(2+) in the hydroponic solution inhibited lateral root growth, decreased malate dehydrogenase activity and changed isoform profiles. The results presented show that cell wall malate dehydrogenase is truly a wall-bound enzyme, and not an artefact of cytoplasmic contamination, involved in the developmental processes, and detoxification of heavy metals.

  16. External NAD(P)H dehydrogenases in Acanthamoeba castellanii mitochondria.

    Science.gov (United States)

    Antos-Krzeminska, Nina; Jarmuszkiewicz, Wieslawa

    2014-09-01

    The mitochondrial respiratory chain of plants and some fungi contains multiple rotenone-insensitive NAD(P)H dehydrogenases, of which at least two are located on the outer surface of the inner membrane (i.e., external NADH and external NADPH dehydrogenases). Annotated sequences of the putative alternative NAD(P)H dehydrogenases of the protozoan Acanthamoeba castellanii demonstrated similarity to plant and fungal sequences. We also studied activity of these dehydrogenases in isolated A. castellanii mitochondria. External NADPH oxidation was observed for the first time in protist mitochondria. The coupling parameters were similar for external NADH oxidation and external NADPH oxidation, indicating similar efficiencies of ATP synthesis. Both external NADH oxidation and external NADPH oxidation had an optimal pH of 6.8 independent of relevant ubiquinol-oxidizing pathways, the cytochrome pathway or a GMP-stimulated alternative oxidase. The maximal oxidizing activity with external NADH was almost double that with external NADPH. However, a lower Michaelis constant (K(M)) value for external NADPH oxidation was observed compared to that for external NADH oxidation. Stimulation by Ca(2+) was approximately 10 times higher for external NADPH oxidation, while NADH dehydrogenase(s) appeared to be slightly dependent on Ca(2+). Our results indicate that external NAD(P)H dehydrogenases similar to those in plant and fungal mitochondria function in mitochondria of A. castellanii.

  17. Metabolism of excised embryos of Lupinus luteus L. VI. An electrophoretic analysis of some dehydrogenases in cultured embryos as compared with the normal seedling axes

    Directory of Open Access Journals (Sweden)

    J. Czosnowski

    2015-01-01

    Full Text Available The electrophoretic patterns (disc electrophoresis of the studied dehydrogenases: glucose-6-phosphate - (A, malate - (B, glutamate - (C, alcohol - (D and lactate dehydrogenase (E, in the axial organs of isolated Lupinus luteus embryos and seedlings cultivated over 12 days are characterized by great similarities. With time, after the third day of cultivation the patterns begin to become less deyeloped. Analyses performed during the first 10 hours of imbibition of seed parts indicate that the maximal development of isozyme patterns occurs during the third hour after which the patterns become poorer. The most uniform type of pattern. and the lowest number of isozymes was shown by glutamate dehydrogenase, the richest pattern was shown by malate dehydrogenase. No band common for a 11 the 27 experimental elements was found.

  18. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    from Geobacillus. It is selected from SEQ ID NO. 1-17. Sequences not defined here may be found at ftp://ftp.wipo.int/pub/publishedpctsequences/publication. The heterologous gene encoding glycerol dehydrogenase has been incorporated into the chromosome of the bacterium, or is inserted into a lactate...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...... selected from glycerol dehydrogenase (E.C 1.1.1.6); glycerol dehydrogenase (NADP(+)) (E.C. 1.1.1.72); glycerol 2-dehydrogenase (NADP(+)) (E.C. 1.1.1.156); and glycerol dehydrogenase (acceptor) (E.C. 1.1.99.22). The heterologous gene encoding a glycerol dehydrogenase is derived from Thermotoga or is derived...

  19. Priapism and glucose-6-phosphate dehydrogenase deficiency: An underestimated correlation?

    Directory of Open Access Journals (Sweden)

    Aldo Franco De Rose

    2016-10-01

    Full Text Available Priapism is a rare clinical condition characterized by a persistent erection unrelated to sexual excitement. Often the etiology is idiopathic. Three cases of priapism in glucose-6-phosphate dehydrogenase (G6PD deficiency patients have been described in literature. We present the case of a 39-year-old man with glucose- 6-phosphate dehydrogenase deficiency, who reached out to our department for the arising of a non-ischemic priapism without arteriolacunar fistula. We suggest that the glucose-6-phosphate dehydrogenase deficiency could be an underestimated risk factor for priapism.

  20. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites.

    Science.gov (United States)

    Bartholomae, Maike; Meyer, Frederik M; Commichau, Fabian M; Burkovski, Andreas; Hillen, Wolfgang; Seidel, Gerald

    2014-02-01

    In Bacillus subtilis, recent in vivo studies revealed that particular enzymes of the tricarboxylic acid cycle form complexes that allow an efficient transfer of metabolites. Remarkably, a complex of the malate dehydrogenase (Mdh) (EC 1.1.1.37) with isocitrate dehydrogenase (Icd) (EC 1.1.1.42) was identified, although both enzymes do not catalyze subsequent reactions. In the present study, the interactions between these enzymes were characterized in vitro by surface plasmon resonance in the absence and presence of their substrates and cofactors. These analyses revealed a weak but specific interaction between Mdh and Icd, which was specifically stimulated by a mixture of substrates and cofactors of Icd: isocitrate, NADP(+) and Mg(2+). Wild-type Icd converted these substrates too fast, preventing any valid quantitative analysis of the interaction with Mdh. Therefore, binding of the IcdS104P mutant to Mdh was quantified because the mutation reduced the enzymatic activity by 174-fold but did not affect the stimulatory effect of substrates and cofactors on Icd-Mdh complex formation. The analysis of the unstimulated Mdh-IcdS104P interaction revealed kinetic constants of k(a) = 2.0 ± 0.2 × 10(2) m(-1) ·s(-1) and k(d) = 1.0 ± 0.1 × 10(-3) ·s(-1) and a K(D) value of 5.0 ± 0.1 μm. Addition of isocitrate, NADP(+) and Mg(2+) stimulated the affinity of IcdS104P to Mdh by 33-fold (K(D) = 0.15 ± 0.01 μm, k(a) = 1.7 ± 0.7 × 10(3) m(-1) ·s(-1), k(d) = 2.6 ± 0.6 × 10(-4) ·s(-1)). Analyses of the enzymatic activities of wild-type Icd and Mdh showed that Icd activity doubles in the presence of Mdh, whereas Mdh activity was slightly reduced by Icd. In summary, these data indicate substrate control of complex formation in the tricarboxylic acid cycle metabolon assembly and maintenance of the α-ketoglutarate supply for amino acid anabolism in vivo.

  1. Malate dehydrogenases from actinomycetes: structural comparison of Thermoactinomyces enzyme with other actinomycete and Bacillus enzymes.

    OpenAIRE

    1984-01-01

    Malate dehydrogenases from bacteria belonging to the genus Thermoactinomyces are tetrameric, like those from Bacillus spp., and exhibit a high degree of structural homology to Bacillus malate dehydrogenase as judged by immunological cross-reactivity. Malate dehydrogenases from other actinomycetes are dimers and do not cross-react with antibodies to Bacillus malate dehydrogenase.

  2. Immunochemical properties of NAD+-linked glycerol dehydrogenases from Escherichia coli and Klebsiella pneumoniae.

    OpenAIRE

    Tang, J C; Forage, R G; Lin, E C

    1982-01-01

    An NAD+-linked glycerol dehydrogenase hyperproduced by a mutant of Escherichia coli K-12 was found to be immunochemically homologous to a minor glycerol dehydrogenase of unknown physiological function in Klebsiella pneumoniae 1033, but not to the glycerol dehydrogenase of the dha system responsible for anaerobic dissimilation of glycerol or to the 2,3-butanediol dehydrogenase of K. pneumoniae.

  3. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... enzyme is involved in the normal processing of carbohydrates. It also protects red blood cells from the ... of glucose-6-phosphate dehydrogenase or alter its structure, this enzyme can no longer play its protective ...

  4. 21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... dehydrogenase (HBD) in plasma or serum. HBD measurements are used in the diagnosis and treatment of myocardial infarction, renal damage (such as rejection of transplants), certain hematological diseases (such as...

  5. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Pradeep Kumar

    2016-02-06

    Feb 6, 2016 ... for studies that investigated G6PD deficiency in Indian population. If any author studied .... analyses, (2) case reports, and (3) reviews and editorials. 2.3. ..... Beutler E, editors. Glucose-6-phosphate dehydrogenase. Orlando,.

  6. A novel glutamate dehydrogenase from bovine brain: purification and characterization.

    Science.gov (United States)

    Lee, J; Kim, S W; Cho, S W

    1995-08-01

    A soluble form of novel glutamate dehydrogenase has been purified from bovine brain. The preparation was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and composed of six identical subunits having a subunit size of 57,500 Da. The biochemical properties of glutamate dehydrogenase such as N-terminal amino acids sequences, kinetic parameters, amino acids analysis, and optimum pH were examined in both reductive amination of alpha-ketoglutarate and oxidative deamination of glutamate. N-terminal amino acid sequences of the bovine brain enzyme showed the significant differences in the first 5 amino acids compared to other glutamate dehydrogenases from various sources. These results indicate that glutamate dehydrogenase isolated from bovine brain is a novel polypeptide.

  7. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase.

    Science.gov (United States)

    Lessmeier, Lennart; Hoefener, Michael; Wendisch, Volker F

    2013-12-01

    Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the actinomycetes, is able to degrade formaldehyde but the enzyme(s) involved in this detoxification process were not known. Acetaldehyde dehydrogenase Ald, which is essential for ethanol utilization, and FadH, characterized here as NAD-linked mycothiol-dependent formaldehyde dehydrogenase, were shown to be responsible for formaldehyde oxidation since a mutant lacking ald and fadH could not oxidize formaldehyde resulting in the inability to grow when formaldehyde was added to the medium. Moreover, C. glutamicum ΔaldΔfadH did not grow with vanillate, a carbon source giving rise to intracellular formaldehyde. FadH from C. glutamicum was purified from recombinant Escherichia coli and shown to be active as a homotetramer. Mycothiol-dependent formaldehyde oxidation revealed Km values of 0.6 mM for mycothiol and 4.3 mM for formaldehyde and a Vmax of 7.7 U mg(-1). FadH from C. glutamicum also possesses zinc-dependent, but mycothiol-independent alcohol dehydrogenase activity with a preference for short chain primary alcohols such as ethanol (Km = 330 mM, Vmax = 9.6 U mg(-1)), 1-propanol (Km = 150 mM, Vmax = 5 U mg(-1)) and 1-butanol (Km = 50 mM, Vmax = 0.8 U mg(-1)). Formaldehyde detoxification system by Ald and mycothiol-dependent FadH is essential for tolerance of C. glutamicum to external stress by free formaldehyde in its habitat and for growth with natural substrates like vanillate, which are metabolized with concomitant release of formaldehyde.

  8. Resurrecting ancestral alcohol dehydrogenases from yeast.

    Science.gov (United States)

    Thomson, J Michael; Gaucher, Eric A; Burgan, Michelle F; De Kee, Danny W; Li, Tang; Aris, John P; Benner, Steven A

    2005-06-01

    Modern yeast living in fleshy fruits rapidly convert sugars into bulk ethanol through pyruvate. Pyruvate loses carbon dioxide to produce acetaldehyde, which is reduced by alcohol dehydrogenase 1 (Adh1) to ethanol, which accumulates. Yeast later consumes the accumulated ethanol, exploiting Adh2, an Adh1 homolog differing by 24 (of 348) amino acids. As many microorganisms cannot grow in ethanol, accumulated ethanol may help yeast defend resources in the fruit. We report here the resurrection of the last common ancestor of Adh1 and Adh2, called Adh(A). The kinetic behavior of Adh(A) suggests that the ancestor was optimized to make (not consume) ethanol. This is consistent with the hypothesis that before the Adh1-Adh2 duplication, yeast did not accumulate ethanol for later consumption but rather used Adh(A) to recycle NADH generated in the glycolytic pathway. Silent nucleotide dating suggests that the Adh1-Adh2 duplication occurred near the time of duplication of several other proteins involved in the accumulation of ethanol, possibly in the Cretaceous age when fleshy fruits arose. These results help to connect the chemical behavior of these enzymes through systems analysis to a time of global ecosystem change, a small but useful step towards a planetary systems biology.

  9. Lactic dehydrogenase and cancer: an overview.

    Science.gov (United States)

    Gallo, Monica; Sapio, Luigi; Spina, Annamaria; Naviglio, Daniele; Calogero, Armando; Naviglio, Silvio

    2015-01-01

    Despite the intense scientific efforts made, there are still many tumors that are difficult to treat and the percentage of patient survival in the long-term is still too low. Thus, new approaches to the treatment of cancer are needed. Cancer is a highly heterogeneous and complex disease, whose development requires a reorganization of cell metabolism. Most tumor cells downregulate mitochondrial oxidative phosphorylation and increase the rate of glucose consumption and lactate release, independently of oxygen availability (Warburg effect). This metabolic rewiring is largely believed to favour tumor growth and survival, although the underlying molecular mechanisms are not completely understood. Importantly, the correlation between the aerobic glycolysis and cancer is widely regarded as a useful biochemical basis for the development of novel anticancer strategies. Among the enzymes involved in glycolysis, lactate dehydrogenase (LDH) is emerging as a very attractive target for possible pharmacological approaches in cancer therapy. This review addresses the state of the art and the perspectives concerning LDH both as a useful diagnostic marker and a relevant molecular target in cancer therapy and management.

  10. Green tea catechins: inhibitors of glycerol-3-phosphate dehydrogenase.

    Science.gov (United States)

    Kao, Chung-Cheng; Wu, Bo-Tsung; Tsuei, Yi-Wei; Shih, Li-Jane; Kuo, Yu-Liang; Kao, Yung-Hsi

    2010-05-01

    Green tea catechins, especially (-)-epigallocatechin-3-gallate (EGCG), are known to regulate obesity and fat accumulation. We performed a kinetic analysis in a cell-free system to determine the mode of inhibition of glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8) by EGCG. GPDH catalyzes the beta-nicotinamide adenine dinucleotide (NADH)-dependent reduction of dihydroxyacetone phosphate (DHAP) to yield glycerol-3-phosphate, which serves as one of the major precursors of triacylglycerols. We found that EGCG dose-dependently inhibited GPDH activity at a concentration of approximately 20 muM for 50 % inhibition. The IC (50) values of other green tea catechins, such as (-)-epicatechin, (-)-epicatechin-3-gallate, and (-)-epigallocatechin, were all above 100 microM. This suggests a catechin type-dependent effect. Based on double-reciprocal plots of the kinetic data, EGCG was a noncompetitive inhibitor of the GPDH substrates, NADH and DHAP, with respective inhibition constants (Ki) of 18 and 31 microM. Results of this study possibly support previous studies that EGCG mediates fat content. Georg Thieme Verlag KG Stuttgart. New York.

  11. [Alcohol dehydrogenase and aldehyde dehydrogenase as tumour markers and factors intensifying carcinogenesis in colorectal cancer].

    Science.gov (United States)

    Jelski, Wojciech; Orywal, Karolina; Kedra, Bogusław; Szmitkowski, Maciej

    2008-06-01

    Numerous experiments have shown that alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in cells of various cancers and play role in carcinogenesis. The aim of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity, between colorectal cancer and normal colonic mucosa. We have also investigated the serum activity of these enzymes in colorectal cancer patients as potential tumour markers. The activities of ADH isoenzymes and ALDH were measured in the: cancer tissue, healthy colonic mucosa and serum of 42 patients with colorectal cancer. For the measurement of the activity of class I ADH isoenzyme and ALDH activity the fluorometric methods was employed. The total ADH activity and activity of class III and IV isoenzymes was measured by the photometric method. The activity of total alcohol dehydrogenase and class I of ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH had higher activities in cancer tissue but the differences were not statistically significant. The activity of ALDH was significantly lower in the cancer cells. The activities of all tested enzymes and isoenzymes in colorectal cancer tissue were not significantly higher in drinkers than in non-drinkers. Additionally we observed statistically significant increasing activity of class I ADH isoenzymes in the sera of patients with colorectal cancer. For this reason the total ADH activity was also significantly increased. The activities of ADH III and ADH IV isoenzymes and ALDH were unchanged in the sera of patients. There were no marked differences in activities of all tested enzymes and isoenzymes between drinkers and non-drinkers (with colorectal cancer). The differences in activities of total ADH and class I ADH isoenzymes between colorectal cancer tissues and healthy mucosa might be a factor of ethanol metabolism disorders, which can intensify carcinogenesis. The increased total

  12. Dehydrogenase isoenzyme polymorphism in genus Prunus, subgenus Cerasus

    Directory of Open Access Journals (Sweden)

    Čolić Slavica

    2012-01-01

    Full Text Available Dehydrogenase polymorphism was studied in 36 sour cherry (Prunus cerasus L., sweet cherry (Prunus avuim L., mahaleb (Prunus mahaleb L., ground cherry (Prunus fruticosa Pall., duke cherry (Prunus gondounii Redh., Japanese flowering cherry (Prunus serrulata Lindl. and four iterspecific hybrids (standard cherry rootstocks ‘Gisela 5’, ‘Gisela 6’, ‘Max Ma’ and ‘Colt’. Inner bark of one-year-old shoots, in dormant stage, was used for enzyme extraction. Vertical PAGE was used for isoenzyme analysis: alcohol dehydrogenase (ADH, formate dehydrogenase (FDH, glutamate dehydrogenase (GDH, isocitrate dehydrogenaze (IDH, malate dehydrogenase (MDH, phosphogluconate dehydrogenase (PGD, and shikimate dehydrogenase (SDH. All studied systems were polymorphic at 10 loci: Adh -1 (3 genotypes and Adh-2 (5 genotypes, Fdh-1 (2 genotypes, Gdh-1 (3 genotypes, Idh-1 (4 genotypes i Idh -2 (5 genotypes, Mdh-1 (3 genotypes, Pgd-1 (4 genotypes, Sdh-1 (1 genotype i Sdh-2 (3 genotypes. Cluster analysis was used to construct dendrogram on which four groups of similar genotypes were separated. Obtained results indicate that studied enzyme systems can be used for determination of genus Prunus, subgenus Cerasus. Among studied enzyme systems ADH, IDH and SDH were the most polymorphic and most useful to identify genetic variability. Polymorphism of FDH and GDH in genus Prunus, subgenus Cerasus was described first time in this work. First results for dehydrogenase variability of Oblačinska indicate that polymorphism of loci Idh-2 and Sdh-2 can be useful for discrimination of different clones.

  13. Malate dehydrogenase activity in human seminal plasma and spermatozoa homogenates

    Directory of Open Access Journals (Sweden)

    Hulya Leventerler

    2013-08-01

    Full Text Available Purpose: Malate Dehydrogenase is an important enzyme of the Krebs cycle, most cells require this enzyme for their metabolic activity. We evaluated the Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates in normozoospermic, fertile and infertile males. Also glucose and fructose concentrations were determined in the seminal plasma samples. Material and Methods: Malate Dehydrogenase (NAD/NADP activity in human seminal plasma and sperm homogenates of normozoospermic and infertile males was determined by spectrophotometric method. Semen analysis was considered according to the WHO Criteria. Results: Malat Dehydrogenase-NAD value in seminal plasma (the mean ± SD, mU/ml of asthenoteratospermic (40.0±25.7 and azospermic (38.0±43.6 groups were significantly lower than normozoospermic, (93.9±52.1 males. Malat Dehydrogenase-NAD value in sperm homogenates (the mean ± SD, mU/ 20x106 sperm of teratospermic group (136.8±61.8 was significantly higher compared to the normozoospermic (87.3±26.5 males. Glucose concentration (mg/dl in asthenoteratospermic (4.0±1.4 and azospermic (15.4±6.4 groups were significantly higher than fertile (2.0±2.1 males. Also fructose concentration (mg/dl in asthenoteratospermic (706.6±143.3 and azospermic (338.1±228.2 groups were significantly high compared to the normozoospermic (184.7±124.8 group. Conclusion: Sperm may be some part of the source of Malat Dehydrogenase activity in semen. Malat Dehydrogenase activity in seminal plasma has an important role on energy metabolism of sperm. Intermediate substrates of Krebs cycle might have been produced under the control of Malat Dehydrogenase and these substrates may be important for sperm motility and male infertility. [Cukurova Med J 2013; 38(4.000: 648-658

  14. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    OpenAIRE

    Keung, W M; Vallee, B L

    1993-01-01

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3...

  15. α -Ketoglutarate accumulation is not dependent on isocitrate dehydrogenase activity during tellurite detoxification in Escherichia coli.

    Science.gov (United States)

    Reinoso, Claudia A; Appanna, Vasu D; Vásquez, Claudio C

    2013-01-01

    Tellurite is toxic to most microorganisms because of its ability to generate oxidative stress. However, the way in which tellurite interferes with cellular processes is not fully understood to date. In this line, it was previously shown that tellurite-exposed cells displayed reduced activity of the α-ketoglutarate dehydrogenase complex (α-KGDH), which resulted in α-ketoglutarate (α-KG) accumulation. In this work, we assessed if α-KG accumulation in tellurite-exposed E. coli could also result from increased isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) activities, both enzymes involved in α-KG synthesis. Unexpectedly both activities were found to decrease in the presence of the toxicant, an observation that seems to result from the decreased transcription of icdA and gdhA genes (encoding ICDH and GDH, resp.). Accordingly, isocitrate levels were found to increase in tellurite-exposed E. coli. In the presence of the toxicant, cells lacking icdA or gdhA exhibited decreased reactive oxygen species (ROS) levels and higher tellurite sensitivity as compared to the wild type strain. Finally, a novel branch activity of ICDH as tellurite reductase is presented.

  16. Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus.

    Science.gov (United States)

    Halavaty, Andrei S; Rich, Rebecca L; Chen, Chao; Joo, Jeong Chan; Minasov, George; Dubrovska, Ievgeniia; Winsor, James R; Myszka, David G; Duban, Mark; Shuvalova, Ludmilla; Yakunin, Alexander F; Anderson, Wayne F

    2015-05-01

    When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.

  17. Coulometric bioelectrocatalytic reactions based on NAD-dependent dehydrogenases in tricarboxylic acid cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: seiya@kais.kyoto-u.ac.jp; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: kkano@kais.kyoto-u.ac.jp

    2008-12-30

    This paper describes the characterization of mediated electro-enzymatic electrolysis systems based on NAD-dependent dehydrogenase reactions in the tricarboxylic acid (TCA) cycle. A micro-bulk electrolysis system with a carbon felt anode immersed in an electrolysis solution with a value of about 10 {mu}L was constructed for coulometric analysis of the substrate oxidation. Diaphorase (DI) was used to couple the NAD-dependent dehydrogenase reaction with the anode reaction of a suitable redox mediator. We focused on three types of NAD-dependant dehydrogenases reactions in this research: (1) isocitrate oxidation, in which the standard Gibbs energy change ({delta}G{sup o}') is negative; (2) {alpha}-ketoglutarate oxidation, which involves an electrochemically active coenzyme A (CoA); and (3) malate oxidation, which is thermodynamically unfavorable because of a large positive {delta}G{sup o}' value. The complete electrolysis of isocitrate was easily achieved, supporting the effective re-oxidation of NADH in the diaphorase-catalyzed electrochemical reaction. CoA was unfavorably oxidized at the electrodes in the presence of some mediators. The electrocatalytic oxidation of CoA was suppressed and the quantitative electrochemical oxidation of {alpha}-ketoglutarate was achieved by selecting a suitable mediator with negligibly slow electron transfer kinetics with CoA. The uphill malate oxidation was susceptible to product inhibition in the bioelectrochemical system, although NADH generated in the malate dehydrogenase reaction was immediately oxidized in the electrochemical system. The inhibition was successfully suppressed by linking citrate synthase to quench oxaloacetate and to make the total {delta}G{sup o}' value negative.

  18. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Jin-Woo; Chin, Young-Wook; Park, Yong-Cheol; Seo, Jin-Ho

    2012-01-01

    Bioethanol is currently used as an alternative fuel for gasoline worldwide. For economic production of bioethanol by Saccharomyces cerevisiae, formation of a main by-product, glycerol, should be prevented or minimized in order to reduce a separation cost of ethanol from fermentation broth. In this study, S. cerevisiae was engineered to investigate the effects of the sole and double disruption of NADH-dependent glycerol-3-phosphate dehydrogenase 1 (GPD1) and NADPH-requiring glutamate dehydrogenase 1 (GDH1) on the production of glycerol and ethanol from glucose. Even though sole deletion of GPD1 or GDH1 reduced glycerol production, double deletion of GPD1 and GDH1 resulted in the lowest glycerol concentration of 2.31 g/L, which was 46.4% lower than the wild-type strain. Interestingly, the recombinant S. cerevisiae ∆GPD1∆GDH1 strain showed a slight improvement in ethanol yield (0.414 g/g) compared with the wild-type strain (0.406 g/g). Genetic engineering of the glycerol and glutamate metabolic pathways modified NAD(P)H-requiring metabolic pathways and exerted a positive effect on glycerol reduction without affecting ethanol production.

  19. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates.

    Science.gov (United States)

    Good, Nathan M; Vu, Huong N; Suriano, Carly J; Subuyuj, Gabriel A; Skovran, Elizabeth; Martinez-Gomez, N Cecilia

    2016-11-15

    Lanthanides are utilized by microbial methanol dehydrogenases, and it has been proposed that lanthanides may be important for other type I alcohol dehydrogenases. A triple mutant strain (mxaF xoxF1 xoxF2; named MDH-3), deficient in the three known methanol dehydrogenases of the model methylotroph Methylobacterium extorquens AM1, is able to grow poorly with methanol if exogenous lanthanides are added to the growth medium. When the gene encoding a putative quinoprotein ethanol dehydrogenase, exaF, was mutated in the MDH-3 background, the quadruple mutant strain could no longer grow on methanol in minimal medium with added lanthanum (La(3+)). ExaF was purified from cells grown with both calcium (Ca(2+)) and La(3+) and with Ca(2+) only, and the protein species were studied biochemically. Purified ExaF is a 126-kDa homodimer that preferentially binds La(3+) over Ca(2+) in the active site. UV-visible spectroscopy indicates the presence of pyrroloquinoline quinone (PQQ) as a cofactor. ExaF purified from the Ca(2+)-plus-La(3+) condition readily oxidizes ethanol and has secondary activities with formaldehyde, acetaldehyde, and methanol, whereas ExaF purified from the Ca(2+)-only condition has minimal activity with ethanol as the substrate and activity with methanol is not detectable. The exaF mutant is not affected for growth with ethanol; however, kinetic and in vivo data show that ExaF contributes to ethanol metabolism when La(3+) is present, expanding the role of lanthanides to multicarbon metabolism. ExaF is the most efficient PQQ-dependent ethanol dehydrogenase reported to date and, to our knowledge, the first non-XoxF-type alcohol oxidation system reported to use lanthanides as a cofactor, expanding the importance of lanthanides in biochemistry and bacterial metabolism beyond methanol dehydrogenases to multicarbon metabolism. These results support an earlier proposal that an aspartate residue near the catalytic aspartate residue may be an indicator of rare

  20. Identification of Hedgehog pathway responsive glioblastomas by isocitrate dehydrogenase mutation.

    Science.gov (United States)

    Gerardo Valadez, J; Grover, Vandana K; Carter, Melissa D; Calcutt, M Wade; Abiria, Sunday A; Lundberg, Christopher J; Williams, Thomas V; Cooper, Michael K

    2013-01-28

    The Hedgehog (Hh) pathway regulates the growth of a subset of adult gliomas and better definition of Hh-responsive subtypes could enhance the clinical utility of monitoring and targeting this pathway in patients. Somatic mutations of the isocitrate dehydrogenase (IDH) genes occur frequently in WHO grades II and III gliomas and WHO grade IV secondary glioblastomas. Hh pathway activation in WHO grades II and III gliomas suggests that it might also be operational in glioblastomas that developed from lower-grade lesions. To evaluate this possibility and to better define the molecular and histopathological glioma subtypes that are Hh-responsive, IDH genes were sequenced in adult glioma specimens assayed for an operant Hh pathway. The proportions of grades II-IV specimens with IDH mutations correlated with the proportions that expressed elevated levels of the Hh gene target PTCH1. Indices of an operational Hh pathway were measured in all primary cultures and xenografts derived from IDH-mutant glioma specimens, including IDH-mutant glioblastomas. In contrast, the Hh pathway was not operational in glioblastomas that lacked IDH mutation or history of antecedent lower-grade disease. IDH mutation is not required for an operant pathway however, as significant Hh pathway modulation was also measured in grade III gliomas with wild-type IDH sequences. These results indicate that the Hh pathway is operational in grades II and III gliomas and glioblastomas with molecular or histopathological evidence for evolvement from lower-grade gliomas. Lastly, these findings suggest that gliomas sharing this molecularly defined route of progression arise in Hh-responsive cell types.

  1. Properties and subunit structure of pig heart pyruvate dehydrogenase.

    Science.gov (United States)

    Hamada, M; Hiraoka, T; Koike, K; Ogasahara, K; Kanzaki, T

    1976-06-01

    Pyruvate dehydrogenase [EC 1.2.4.1] was separated from the pyruvate dehydrogenase complex and its molecular weight was estimated to be about 150,000 by sedimentation equilibrium methods. The enzyme was dissociated into two subunits (alpha and beta), with estimated molecular weights of 41,000 (alpha) and 36,000 (beta), respectively, by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The subunits were separated by phosphocellulose column chromatography and their chemical properties were examined. The subunit structure of the pyruvate dehydrogenase was assigned as alpha2beta2. The content of right-handed alpha-helix in the enzyme molecule was estimated to be about 29 and 28% by optical rotatory dispersion and by circular dichroism, respectively. The enzyme contained no thiamine-PP, and its dehydrogenase activity was completely dependent on added thiamine-PP and partially dependent on added Mg2+ and Ca2+. The Km value of pyruvate dehydrogenase for thiamine diphosphate was estimated to be 6.5 X 10(-5) M in the presence of Mg2+ or Ca2+. The enzyme showed highly specific activity for thiamine-PP dependent oxidation of both pyruvate and alpha-ketobutyrate, but it also showed some activity with alpha-ketovalerate, alpha-ketoisocaproate, and alpha-ketoisovalerate. The pyruvate dehydrogenase activity was strongly inhibited by bivalent heavy metal ions and by sulfhydryl inhibitors; and the enzyme molecule contained 27 moles of 5,5'-dithiobis(2-nitrobenzoic acid)-reactive sulfhydryl groups and a total of 36 moles of sulfhydryl groups. The inhibitory effect of p-chloromercuribenzoate was prevented by preincubating the enzyme with thiamine-PP plus pyruvate. The structure of pyruvate dehydrogenase necessary for formation of the complex is also reported.

  2. Effects of 11β-hydroxysteroid dehydrogenase type 1 on insulin resistance in rats induced by glucocorticoid and high fat diet%11β-HSD1在糖皮质激素联合高脂喂养大鼠胰岛素抵抗中的作用

    Institute of Scientific and Technical Information of China (English)

    孙红爽; 乜春城; 朱小丽; 马红芳; 陈赫军; 种宝贵

    2016-01-01

    目的 通过糖皮质激素联合高脂喂养建立胰岛素抵抗动物模型,探讨11β-羟类固醇脱氢酶1(11β-HSD1)在该模型中的表达和意义.方法 32只雄性Wistar大鼠,按体重随机区组法分为对照组、地塞米松组、高脂饮食组、高脂+地塞米松组(HFD+ DEX组),每组8只.对照组和地塞米松组喂以普通饲料,高脂饮食组和HFD+ DEX组喂以高脂饲料,8周后地塞米松组和HFD+ DEX组辅以地塞米松刺激,12周后进行胰岛素耐量试验,检测血糖、血脂、血胰岛素及皮质酮水平,计算肝指数、内脏肥胖指数及稳态模型评估-胰岛素抵抗(HOMA-IR)指数,检测11β-HSD1基因及蛋白表达情况.结果 与对照组相比,其余3组均出现胰岛素抵抗,表现为:胰岛素耐量试验不敏感(注射胰岛素30 min后对照组、高脂饮食组、地塞米松组和HFD+ DEX组血糖值分别下降了44.15%,28.14%,32.58%,13.53%)、高血糖、高胰岛素血症、血脂紊乱(总胆固醇、甘油三酯及游离脂肪酸升高,高密度脂蛋白-胆固醇降低)、HOMA-IR指数、肝指数及内脏肥胖指数升高,且HFD+ DEX组各项指标变化幅度最大(F=10.89~213.20,P<0.05或P<0.01).另外,与对照组相比,其余3组内脏脂肪组织11β-HSD1基因及蛋白表达水平也明显升高,且HFD+ DEX组明显高于高脂饮食组及地塞米松组(F =32.64~116.00,P均<0.01).结论 地塞米松联合高脂饮食喂养可成功建立大鼠胰岛素抵抗模型,内脏脂肪组织中11β-HSD1基因及蛋白表达升高,可能与胰岛素抵抗的发生密切相关.%Objective To set up an insulin-resistant (IR) animal model by glucocorticoid and high-fat diet, and investigate the expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in this model and its significance.Methods Thirty-two male Wistar rats were randomly divided into four groups according to body weight randomized blocks : control group, dexamethasone group (DEX group), high-fat diet

  3. Expression of 11β-hydroxysteroid dehydrogenase type 1 on hippocampus of rat with chronic unpredictable mild stress%11β-羟基类固醇脱氢酶-1在慢性温和应激抑郁大鼠海马组织中的表达

    Institute of Scientific and Technical Information of China (English)

    程世翔; 涂悦; 张赛; 文立; 刘晓智

    2012-01-01

    Objective To investigate the roles of 11 β-hydroxysteroid dehydrogenase type 1 ( 11 β-HSD1 )on hippocampus of rat with chronic unpredictable mild stress (CUMS).Methods Twenty-four male SpragueDawley rats were randomly divided into control group and depressive model group. Chronic unpredictable mild stress (CUMS) was used to make up depressive animal model.Behavioral changes were recorded by body weight measuring,sucrose consumption test (SCT) and open field test (OFT),respectively.The mRNA transcription of 11β-HSD1 in hippocampus tissues of the rats were detected by real-time RT-PCR,and the protein expression of 11β-HSD1 were detected by western blot and immunofluorescence.Results Bcforc starting CUMS protocol,the rats exhibited equivalent weight and sucrose consumption.Twenty-eight days after CUMS protocol,behavior parameters such as body weight,sucrose consumption,nunber of crossing,and number of rearing were significantly decreased in rats exposed to CUMS group compared with control group (P < 0.05,P < 0.01 ).Correspondingly,realtime RT-PCR assays showed the mRNA expression of 11 β-HSD1 in the hippocampus of CUMS group,which was (31 ±9) % lower than that of control group.Meanwhile,the protein expression of it in CUMS group was lower than that of control group (P < 0.05 ).Inmunofluorescence revealed that the number of positive 11 3-HSD1 cells was high (223 ± 13) in the control group,while the number was decreased prominently (92 ± 11 ) in the CUMS group (P < 0.01 ).Conclusion Depressive behavior of rats is induced and the expression of 11 β-HSD1 in the hippocampus is decreased prominently by CUMS,the mechanism of which is at least related to the low expression of 11β-HSD1 and disturbance of glucocorticoid metabolism caused by CUMS.%目的 应用慢性温和不可预知刺激( CUMS)建立抑郁症动物模型,探讨大鼠海马组织中11β-羟基类固醇脱氢酶-1(11β-HSD1)蛋白表达以及抑郁症的发病机制.方法 将24只Sprague

  4. 13C–Metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae

    OpenAIRE

    Tang, Yijin; Sieg, Alex; Trotter, Pamela J.

    2011-01-01

    Glutamate dehydrogenases (GDH) interconvert α-ketoglutarate and glutamate. In yeast, NADP-dependent enzymes, encoded by GDH1 and GDH3, are reported to synthesize glutamate from α-ketoglutarate, while an NAD-dependent enzyme, encoded by GDH2, catalyzes the reverse. Cells were grown in acetate/raffinose (YNAceRaf) to examine the role(s) of these enzymes during aerobic metabolism. In YNAceRaf the doubling time of wild type, gdh2Δ, and gdh3Δ cells was comparable at ~ 4 hours. NADP-dependent GDH a...

  5. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats.

    OpenAIRE

    FitzGerald, R.J.; Adams, B. O.; Sandham, H. J.; Abhyankar, S

    1989-01-01

    A lactate dehydrogenase-deficient (Ldh-) mutant of a human isolate of Streptococcus mutans serotype c was tested in a gnotobiotic rat caries model. Compared with the wild-type Ldh-positive (Ldh+) strains, it was significantly (alpha less than or equal to 0.005) less cariogenic in experiments with two different sublines of Sprague-Dawley rats. The Ldh- mutant strain 044 colonized the oral cavity of the test animals to the same extent as its parent strain 041, although its initial implantation ...

  6. Prognostic values of aldehyde dehydrogenase 1 isoenzymes in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Ma YM

    2016-04-01

    Full Text Available Yu-mei Ma,1 Shan Zhao2 1Department of Pathology, 2Department of Cancer Second Division, The Second Hospital of Hebei Medical University, Shijiazhuang City, People’s Republic of China Abstract: Aldehyde dehydrogenase 1 (ALDH1 activity has been used as a functional stem cell marker to isolate cancer stem cells in different cancer types, including ovarian cancer. However, which ALDH1’s isoenzymes are contributing to ALDH1 activity in ovarian cancer remains elusive. In addition, the prognostic value of an individual ALDH1 isoenzyme in ovarian cancer is not clear. Thus, we accessed the prognostic value of ALDH1 isoenzymes in ovarian cancer patients through the “Kaplan–Meier plotter” online database, which can be used to determine the effect of the genes on ovarian cancer prognosis. We found that high mRNA expression of five ALDH1 isoenzymes, such as ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, and ALDH1L1, was not correlated with overall survival (OS for all 1,306 ovarian cancer patients. In addition, all five of the ALDH1 isoenzymes’ high mRNA expression was found to be uncorrelated with OS in serous cancer or endometrioid cancer patients. However, ALDH1A3’s high mRNA expression is associated with worse OS in grade II ovarian cancer patients, hazard ratio (HR 1.53 (1.14–2.07, P=0.005. ALDH1A2’s high mRNA expression is significantly associated with worse OS in TP53 wild-type ovarian cancer patients, HR 2.86 (1.56–5.08, P=0.00036. In addition, ALDH1A3’s high mRNA expression is significantly associated with better OS in TP53 wild-type ovarian cancer patients, HR 0.56 (0.32–1.00, P=0.04. Our results indicate that although ALDH1 isoenzyme mRNA might not be a prognostic marker for overall ovarian cancer patients, some isoenzymes, such as ALDH1A2 and ALDH1A3, might be a good prognostic marker for some types of ovarian cancer patients. Keywords: ALDH1, cancer stem cell, prognosis, KM plotter, hazard ratio

  7. Genetics Home Reference: phosphoglycerate dehydrogenase deficiency

    Science.gov (United States)

    ... by an unusually small head size (microcephaly); impaired development of physical reactions, movements, and speech (psychomotor retardation); and recurrent seizures (epilepsy). Different types of ...

  8. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains.

    Science.gov (United States)

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  9. Determination of dehydrogenase activities involved in D-glucose oxidation in Gluconobacter and Acetobacter strains

    Directory of Open Access Journals (Sweden)

    Florencia Sainz

    2016-08-01

    Full Text Available Acetic acid bacteria (AAB are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane bound dehydrogenases. In the present study, the enzyme activity of the membrane bound dehydrogenases (membrane-bound PQQ-glucose dehydrogenase (mGDH, D-gluconate dehydrogenase (GADH and membrane-bound glycerol dehydrogenase (GLDH involved in the oxidation of D-glucose and D-gluconic acid (GA was determined in six strains of three different species of AAB (three natural and three type strains. Moreover, the effect of these activities on the production of related metabolites (GA, 2-keto-D-gluconic acid (2KGA and 5-keto-D-gluconic acid (5KGA was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the A. malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h, which coincided with glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of G. oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition.Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter were

  10. Determination of Dehydrogenase Activities Involved in D-Glucose Oxidation in Gluconobacter and Acetobacter Strains

    Science.gov (United States)

    Sainz, Florencia; Jesús Torija, María; Matsutani, Minenosuke; Kataoka, Naoya; Yakushi, Toshiharu; Matsushita, Kazunobu; Mas, Albert

    2016-01-01

    Acetic acid bacteria (AAB) are known for rapid and incomplete oxidation of an extensively variety of alcohols and carbohydrates, resulting in the accumulation of organic acids as the final products. These oxidative fermentations in AAB are catalyzed by PQQ- or FAD- dependent membrane-bound dehydrogenases. In the present study, the enzyme activity of the membrane-bound dehydrogenases [membrane-bound PQQ-glucose dehydrogenase (mGDH), D-gluconate dehydrogenase (GADH) and membrane-bound glycerol dehydrogenase (GLDH)] involved in the oxidation of D-glucose and D-gluconic acid (GA) was determined in six strains of three different species of AAB (three natural and three type strains). Moreover, the effect of these activities on the production of related metabolites [GA, 2-keto-D-gluconic acid (2KGA) and 5-keto-D-gluconic acid (5KGA)] was analyzed. The natural strains belonging to Gluconobacter showed a high mGDH activity and low activity in GADH and GLDH, whereas the Acetobacter malorum strain presented low activity in the three enzymes. Nevertheless, no correlation was observed between the activity of these enzymes and the concentration of the corresponding metabolites. In fact, all the tested strains were able to oxidize D-glucose to GA, being maximal at the late exponential phase of the AAB growth (24 h), which coincided with D-glucose exhaustion and the maximum mGDH activity. Instead, only some of the tested strains were capable of producing 2KGA and/or 5KGA. In the case of Gluconobacter oxydans strains, no 2KGA production was detected which is related to the absence of GADH activity after 24 h, while in the remaining strains, detection of GADH activity after 24 h resulted in a high accumulation of 2KGA. Therefore, it is possible to choose the best strain depending on the desired product composition. Moreover, the sequences of these genes were used to construct phylogenetic trees. According to the sequence of gcd, gene coding for mGDH, Acetobacter and Komagataeibacter

  11. Cloning, characterization, and engineering of fungal L-arabinitol dehydrogenases.

    Science.gov (United States)

    Kim, Byoungjin; Sullivan, Ryan P; Zhao, Huimin

    2010-07-01

    L-Arabinitol 4-dehydrogenase (LAD) catalyzes the conversion of L-arabinitol to L-xylulose with concomitant NAD(+) reduction in fungal L-arabinose catabolism. It is an important enzyme in the development of recombinant organisms that convert L: -arabinose to fuels and chemicals. Here, we report the cloning, characterization, and engineering of four fungal LADs from Penicillium chrysogenum, Pichia guilliermondii, Aspergillus niger, and Trichoderma longibrachiatum, respectively. The LAD from P. guilliermondii was inactive, while the other three LADs were NAD(+)-dependent and showed high catalytic activities, with P. chrysogenum LAD being the most active. T. longibrachiatum LAD was the most thermally stable and showed the maximum activity in the temperature range of 55-65 degrees C with the other LADs showed the maximum activity in the temperature range of 40-50 degrees C. These LADs were active from pH 7 to 11 with an optimal pH of 9.4. Site-directed mutagenesis was used to alter the cofactor specificity of these LADs. In a T. longibrachiatum LAD mutant, the cofactor preference toward NADP(+) was increased by 2.5 x 10(4)-fold, whereas the cofactor preference toward NADP(+) of the P. chrysogenum and A. niger LAD mutants was also drastically improved, albeit at the expense of significantly reduced catalytic efficiencies. The wild-type LADs and their mutants with altered cofactor specificity could be used to investigate the functionality of the fungal L-arabinose pathways in the development of recombinant organisms for efficient microbial L-arabinose utilization.

  12. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  13. The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer.

    Science.gov (United States)

    Jelski, Wojciech; Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2014-12-01

    Human brain tissue contains various alcohol dehydrogenase (ADH) isoenzymes and possess also aldehyde dehydrogenase (ALDH) activity. In our last experiments we have shown that ADH and ALDH are present also in the brain tumour cells. Moreover the activities of total ADH and class I isoenzymes were significantly higher in cancer tissue than healthy cells. It can suggests that these changes may be reflected by enzyme activity in the serum of patients with brain cancer. Serum samples were taken for routine biochemical investigation from 62 patients suffering from brain cancer (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. A statistically significant increase of class I alcohol dehydrogenase isoenzymes was found in the sera of patients with brain cancer. The median activity of this class isoenzyme in the patients group increased about 24 % in the comparison to the control level. The total alcohol dehydrogenase activity was also significantly higher (26 %) among patients with brain tumour than healthy ones. The activities of other tested ADH isoenzymes and total ALDH were unchanged. The increase of the activity of total ADH and class I alcohol dehydrogenase isoenzyme in the sera of patients with brain cancer seems to be caused by the release of this isoenzyme from tumour's cells.

  14. A survey for isoenzymes of glucosephosphate isomerase, phosphoglucomutase, glucose-6-phosphate dehydrogenase and 6-Phosphogluconate dehydrogenase in C3-, C 4-and crassulacean-acid-metabolism plants, and green algae.

    Science.gov (United States)

    Herbert, M; Burkhard, C; Schnarrenberger, C

    1979-01-01

    Two isoenzymes each of glucosephosphate isomerase (EC 5.3.1.9), phosphoglucomutase (EC 2.7.5.1), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.43) were separated by (NH4)2SO4 gradient solubilization and DEAE-cellulose ion-exchange chromatography from green leaves of the C3-plants spinach (Spinacia oleracea L.), tobacco (Nicotiana tabacum L.) and wheat (Triticum aestivum L.), of the Crassulacean-acid-metabolism plants Crassula lycopodioides Lam., Bryophyllum calycinum Salisb. and Sedum rubrotinctum R.T. Clausen, and from the green algae Chlorella vulgaris and Chlamydomonas reinhardii. After isolation of cell organelles from spinach leaves by isopyenic centrifugation in sucrose gradients one of two isoenzymes of each of the four enzymes was found to be associated with whole chloroplasts while the other was restricted to the soluble cell fraction, implying the same intracellular distribution of these isoenzymes also in the other species.Among C4-plants, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in only one form in corn (Zea mays L.), sugar cane (Saccharum officinarum L.) and Coix lacrymajobi L., but as two isoenzymes in Atriplex spongiosa L. and Portulaca oleracea L. In corn, the two dehydrogenases were mainly associated with isolated mesophyll protoplasts while in Atriplex spongiosa they were of similar specific activity in both mesophyll protoplasts and bundle-sheath strands. In all five C4-plants three isoenzymes of glucosephosphate isomerase and phosphoglucomutase were found. In corn two were localized in the bundle-sheath strands and the third one in the mesophyll protoplasts. The amount of activity of the enzymes was similar in each of the two cell fractions. Apparently, C4 plants have isoenzymes not only in two cell compartments, but also in physiologically closely linked cell types such as mesophyll and bundle-sheath cells.

  15. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  16. Characterization of alcohol dehydrogenase 3 of the thermotolerant methylotrophic yeast Hansenula polymorpha.

    Science.gov (United States)

    Suwannarangsee, Surisa; Kim, Seonghun; Kim, Oh-Cheol; Oh, Doo-Byoung; Seo, Jeong-Woo; Kim, Chul Ho; Rhee, Sang Ki; Kang, Hyun Ah; Chulalaksananukul, Warawut; Kwon, Ohsuk

    2012-11-01

    In this study, we identified and characterized mitochondrial alcohol dehydrogenase 3 from the thermotolerant methylotrophic yeast Hansenula polymorpha (HpADH3). The amino acid sequence of HpADH3 shares over 70% of its identity with the alcohol dehydrogenases of other yeasts and exhibits the highest similarity of 91% with the alcohol dehydrogenase 1 of H. polymorpha. However, unlike the cytosolic HpADH1, HpADH3 appears to be a mitochondrial enzyme, as a mitochondrial targeting extension exists at its N terminus. The recombinant HpADH3 overexpressed in Escherichia coli showed similar catalytic efficiencies for ethanol oxidation and acetaldehyde reduction. The HpADH3 displayed substrate specificities with clear preferences for medium chain length primary alcohols and acetaldehyde for an oxidation reaction and a reduction reaction, respectively. Although the H. polymorpha ADH3 gene was induced by ethanol in the culture medium, both an ADH isozyme pattern analysis and an ADH activity assay indicated that HpADH3 is not the major ADH in H. polymorpha DL-1. Moreover, HpADH3 deletion did not affect the cell growth on different carbon sources. However, when the HpADH3 mutant was complemented by an HpADH3 expression cassette fused to a strong constitutive promoter, the resulting strain produced a significantly increased amount of ethanol compared to the wild-type strain in a glucose medium. In contrast, in a xylose medium, the ethanol production was dramatically reduced in an HpADH3 overproduction strain compared to that in the wild-type strain. Taken together, our results suggest that the expression of HpADH3 would be an ideal engineering target to develop H. polymorpha as a substrate specific bioethanol production strain.

  17. Cloning, characterization and functional expression of Taenia solium 17 beta-hydroxysteroid dehydrogenase.

    Science.gov (United States)

    Aceves-Ramos, A; de la Torre, P; Hinojosa, L; Ponce, A; García-Villegas, R; Laclette, J P; Bobes, R J; Romano, M C

    2014-07-01

    The 17β-hydroxysteroid dehydrogenases (17β-HSD) are key enzymes involved in the formation (reduction) and inactivation (oxidation) of sex steroids. Several types have been found in vertebrates including fish, as well as in invertebrates like Caenorhabditis elegans, Ciona intestinalis and Haliotis diversicolor supertexta. To date limited information is available about this enzyme in parasites. We showed previously that Taenia solium cysticerci are able to synthesize sex steroid hormones in vitro when precursors are provided in the culture medium. Here, we identified a T. solium 17β-HSD through in silico blast searches in the T. solium genome database. This coding sequence was amplified by RT-PCR and cloned into the pcDNA 3.1(+) expression vector. The full length cDNA contains 957bp, corresponding to an open reading frame coding for 319 aa. The highest identity (84%) at the protein level was found with the Echinococcus multilocularis 17β-HSD although significant similarities were also found with other invertebrate and vertebrate 17β-HSD sequences. The T. solium Tsol-17βHSD belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily. HEK293T cells transiently transfected with Tsol17β-HSD induced expression of Tsol17β-HSD that transformed 3H-androstenedione into testosterone. In contrast, 3H-estrone was not significantly transformed into estradiol. In conclusion, T. solium cysticerci express a 17β-HSD that catalyzes the androgen reduction. The enzyme belongs to the short chain dehydrogenases/reductase family and shares motifs and activity with the type 3 enzyme of some other species.

  18. Distribution of genetic polymorphism of aldehyde dehydrogenase-2 (ALDH2 in Indonesian subjects

    Directory of Open Access Journals (Sweden)

    Septelia I. Wanandi

    2002-09-01

    Full Text Available Aldehyde dehydrogenase (ALDH plays a pivotal role in the alcohol metabolism. Decreased activity of ALDH enzyme has more influence on the hypersensitivity to alcohol than of alcohol dehydrogenase. ALDH enzyme exists in several isozymes. Among these isozymes, ALDH2 is a major isozyme that has a very high affinity for acetaldehyde. Recent studies suggested that the deficiency of ALDH2 may be inherited. Functional polymorphism of ALDH2 gene has been observed in a nucleotide of the 487th codon. In the atypical gene, this codon consists of AAA nucleotides for lysine, instead of GAA for glutamic acid in the wild type gene. In this study, we have analyzed the genetic polymorphism of ALDH2 gene among 100 Indonesian students using genomic DNA extracted from hair roots. Polymerase chain reaction (PCR and restriction fragment length polymorphism (RFLP methods were performed for this purpose. Three oligonucleotide primers were designed for two steps PCR. The reverse primer R was intentionally constructed not to be 100% complementary to the template strand, to generate a restriction site for Eco RI within the variable nucleotide in the PCR product of ALDH2 gene. This study indicates that 70 subjects (70% have wild type, 29 (29% atypical heterozygote and only 1 (1% atypical homozygote ALDH2 alleles. Conclusively, the atypical ALDH2 allele frequency in Indonesians (31/200 is higher than in Caucasoids (only about 5-10%, but less than in Mongoloids (40-50%. This may be due to the diverse ethnics of Indonesian population. (Med J Indones 2002; 11: 135-42 Keywords: alcohol hypersensitivity, genetic polymorphism, aldehyde dehydrogenase-2 (ALDH2 gene

  19. Purification and characterization of 3-isopropylmalate dehydrogenase from Thiobacillus thiooxidans.

    Science.gov (United States)

    Kawaguchi, H; Inagaki, K; Matsunami, H; Nakayama, Y; Tano, T; Tanaka, H

    2000-01-01

    3-Isopropylmalate dehydrogenase was purified to homogeneity from the acidophilic autotroph Thiobacillus thiooxidans. The native enzyme was a dimer of molecular weight 40,000. The apparent K(m) values for 3-isopropylmalate and NAD+ were estimated to be 0.13 mM and 8.7 mM, respectively. The optimum pH for activity was 9.0 and the optimum temperature was 65 degrees C. The properties of the enzyme were similar to those of the Thiobacillus ferrooxidans enzyme, expect for substrate specificity. T. thiooxidans 3-isopropylmalate dehydrogenase could not utilize malate as a substrate.

  20. Comparative Study on Sequence–Structure–Function Relationship of the Human Short-chain Dehydrogenases/Reductases Protein Family

    OpenAIRE

    Tang, Nu Thi Ngoc; Le, Ly

    2014-01-01

    Human short-chain dehydrogenases/reductases (SDRs) protein family has been the subject of recent studies for its critical role in human metabolism. Studies also found that single nucleotide polymorphisms of the SDR protein family were responsible for a variety of genetic diseases, including type II diabetes. This study reports the effect of sequence variation on the structural and functional integrities of human SDR protein family using phylogenetics and correlated mutation analysis tools. Ou...

  1. How are ‘atypical’ sulfite dehydrogenases linked to cell metabolism? – Interactions between the SorT sulfite deydrogenase and small redox proteins

    Directory of Open Access Journals (Sweden)

    Louie eLow

    2011-03-01

    Full Text Available Sulfite dehydrogenases are enzymes that catalyze the oxidation of the toxic and mutagenic compound sulfite to sulfate, thereby protecting cells from adverse effects associated with sulfite exposure. While some bacterial sulfite dehydrogenases that have been characterized to date are able to use cytochrome c as an electron acceptor, the majority of these enzymes prefer ferricyanide as an electron acceptor and have therefore been termed ‘atypical’ sulfite dehydrogenases. Identifying the natural electron acceptor of these enzymes, however, is crucial for understanding how the ‘atypical’ sulfite dehydrogenases are integrated into cell metabolism.The SorT sulfite dehydrogenase from Sinorhizobium meliloti is a representative of this enzyme type and we have investigated the interactions of SorT with two small redox proteins, a cytochrome c and a Cu containing pseudoazurin, that are encoded in the same operon and are co-transcribed with the sorT gene. Both potential acceptor proteins have been purified and characterized in terms of their biochemical and electrochemical properties, and interactions and enzymatic studies with both the purified SorT sulfite dehydrogenase and components of the respiratory chain have been carried out.We were able to show for the first time that an ‘atypical’ sulfite dehydrogenase can couple efficiently to a cytochrome c isolated from the same organism despite being unable to efficiently reduce horse heart cytochrome c, however, at present the role of the pseudoazurin in SorT electron transfer is unclear, but it is possible that it acts as an intermediate electron shuttle between. The SorT system appears to couple directly to the respiratory chain, most likely to a cytochrome oxidase.

  2. Polymorphisms of alcohol dehydrogenase 2 and aldehyde dehydrogenase 2 and colorectal cancer risk in Chinese males

    Institute of Scientific and Technical Information of China (English)

    Chang-Ming Gao; Keitaro Matsuo; Nobuyuki Hamajima; Kazuo Tajima; Toshiro Takezaki; Jian-Zhong Wu; Xiao-Mei Zhang; Hai-Xia Cao; Jian-Hua Ding; Yan-Ting Liu; Su-Ping Li; Jia Cao

    2008-01-01

    AIM: To evaluate the relationship between drinking and polymorphisms of alcohol dehydrogenase 2 (ADH2) and/or aldehyde dehydrogenase 2 (ALDH2) for risk of colorectal cancer (CRC) in Chinese males.METHODS: A case-control study was conducted in 190 cases and 223 population-based controls.ADH2 Arg47His (G-A) and ALDH2 Glu487Lys (G-A) genotypes were identified by PCR and denaturing high-performance liquid chromatography (DHPLC).Information on smoking and drinking was collected and odds ratio (OR) was estimated.RESULTS: The ADH2 A/A and ALDH2 G/G genotypes showed moderately increased CRC risk. The age- and smoking-adjusted OR for ADH2 A/A relative to G/A and G/G was 1.60 (95% CI=1.08-2.36), and the adjusted OR for ALDH2 G/G relative to G/A and A/A was 1.79 (95% CI=1.19-2.69). Significant interactions between ADH2,ALDH2 and drinking were observed. As compared to the subjects with ADH2 G and ALDH2 A alleles, those with ADH2 A/A and ALDH2 G/G genotypes had a significantly increased OR (3.05, 95% CI= 1.67-5.57). The OR for CRC among drinkers with the ,4DH2 A/A genotype was increased to 3.44 (95% CI= 1.84-6.42) compared with non-drinkers with the ADH2 G allele. The OR for CRC among drinkers with theALDH2 G/G genotype was also increased to 2.70 (95% CI= 1.57-4.66) compared with non-drinkers with the ALDH2 A allele.CONCLUSION: Polymorphisms of the ADH2 and ALDH2 genes are significantly associated with CRC risk. There are also significant gene-gene and geneenvironment interactions between drinking and ADH2 and ALDH2 polymorphisms regarding CRC risk in Chinese males.

  3. In vitro effects of metals and pesticides on dehydrogenase activity in ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-04

    Jan 4, 2007 ... Key words: Dehydrogenase activity, rhizosplane bacteria, atrazine, cypermethrin, ... resources for improved and sustainable agriculture ... Growth of cowpea and source of microbial community. The cowpea plant (Vigna unguiculata) was grown to maturity in an ..... stimulation of dehydrogenase activity.

  4. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes.

    Science.gov (United States)

    Shiota, Masaki; Yamazaki, Tomohiko; Yoshimatsu, Keiichi; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji

    2016-12-01

    Several bacterial flavin adenine dinucleotide (FAD)-harboring dehydrogenase complexes comprise three distinct subunits: a catalytic subunit with FAD, a cytochrome c subunit containing three hemes, and a small subunit. Owing to the cytochrome c subunit, these dehydrogenase complexes have the potential to transfer electrons directly to an electrode. Despite various electrochemical applications and engineering studies of FAD-dependent dehydrogenase complexes, the intra/inter-molecular electron transfer pathway has not yet been revealed. In this study, we focused on the conserved Cys-rich region in the catalytic subunits using the catalytic subunit of FAD dependent glucose dehydrogenase complex (FADGDH) as a model, and site-directed mutagenesis and electron paramagnetic resonance (EPR) were performed. By co-expressing a hitch-hiker protein (γ-subunit) and a catalytic subunit (α-subunit), FADGDH γα complexes were prepared, and the properties of the catalytic subunit of both wild type and mutant FADGDHs were investigated. Substitution of the conserved Cys residues with Ser resulted in the loss of dye-mediated glucose dehydrogenase activity. ICP-AEM and EPR analyses of the wild-type FADGDH catalytic subunit revealed the presence of a 3Fe-4S-type iron-sulfur cluster, whereas none of the Ser-substituted mutants showed the EPR spectrum characteristic for this cluster. The results suggested that three Cys residues in the Cys-rich region constitute an iron-sulfur cluster that may play an important role in the electron transfer from FAD (intra-molecular) to the multi-heme cytochrome c subunit (inter-molecular) electron transfer pathway. These features appear to be conserved in the other three-subunit dehydrogenases having an FAD cofactor.

  5. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation.

    Science.gov (United States)

    Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F; Gibson, Gary E; Beal, M Flint; Adam-Vizi, Vera; Chinopoulos, Christos

    2013-06-01

    A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20-48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ~30% higher ADP-ATP exchange rates compared to those obtained from DLST(+/-) or DLD(+/-) littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on "in-house" mitochondrial ATP reserves.

  6. Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects.

    Science.gov (United States)

    Jörnvall, H; Hempel, J; von Bahr-Lindström, H; Höög, J O; Vallee, B L

    1987-01-01

    All three types of subunit of class I human alcohol dehydrogenase have been analyzed both at the protein and cDNA levels, and the structures of alpha, beta 1, beta 2, gamma 1, and gamma 2 subunits are known. The same applies to class II pi subunits. Extensive protein data are also available for class III chi subunits. In the class I human isozymes, amino acid exchanges occur at 35 positions in total, with 21-28 replacements between any pair of the alpha/beta/gamma chains. These values, compared with those from species differences between the corresponding human and horse enzymes, suggest that isozyme developments in the class I enzyme resulted from separate gene duplications after the divergence of the human and equine evolutionary lines. All subunits exhibit some unique properties, with slightly closer similarity between the human gamma and horse enzyme subunits and somewhat greater deviations towards the human alpha subunit. Differences are large also in segments close to the active site zinc ligands and other functionally important positions. Species differences are distributed roughly equally between the two types of domain in the subunit, whereas isozyme differences are considerably more common in the catalytic than in the coenzyme-binding domain. These facts illustrate a functional divergence among the isozymes but otherwise similar changes during evolution. Polymorphic forms of beta and gamma subunits are characterized by single replacements at one and two positions, respectively, explaining known deviating properties. Class II and class III subunits are considerably more divergent. Their homology with class I isozymes exhibits only 60-65% positional identity. Hence, they reflect further steps towards the development of new enzymes, with variations well above the horse/human species levels, in contrast to the class I forms. Again, functionally important residues are affected, and patterns resembling those previously established for the divergently related

  7. Virtual mutagenesis of isocitrate dehydrogenase 1 involved in glioblastoma multiforme

    Institute of Scientific and Technical Information of China (English)

    WANG Ming-dong; SHI Yan-fang; WANG Hong; WANG Jia-liang; MA Wen-bin; WANG Ren-zhi

    2011-01-01

    Background Site A132Arg mutations potentially impair the affinity of isocitrate dehydrogenase 1 (IDH1) for its substrate isocitrate (ICT),consequently reducing the production of α-ketoglutarate and leading to tumor growth through the induction of the hypoxia-inducible factor-1 (HIF-1) pathway.However,given that the roles of other active sites in IDH1 substrate binding remain unclear,we aimed to investigate IDH1 mutation pattern and its influence on enzyme function.Methods Fifteen IDH1 catalytic active site candidates were selected for in silico mutagenesis and protein homology modeling.Binding free energy of the IDH1/ICT complexes with single-site mutations was compared with that of the wild type.The affinity of 10 IDH1 catalytic active sites for the ICT substrate was further calculated.Results The IDH1 active site included seven residues from chain A (A77Thr,A94Ser,A100Arg,A132Arg,A1O9Arg,A275Asp,and A279Asp) and three residues from chain B (B214Thr,B212Lys,and B252Asp) that constituted the substrate ICT-binding site.These residues were located within 0.5 nm of ICT,indicating a potential interaction with the substrate.IDH1 changes of binding free energy (△E) suggested that the A132Arg residue from chain A contributes three hydrogen bonds to the ICT α-carboxyl and β-carboxyl groups,while the other nine residues involved in ICT binding form only one or two hydrogen bonds.Amino acid substitutes at A132Arg,A109Arg,and B212Lys sites,had the greatest effect on enzyme affinity for its substrate.Conclusions Mutations at sites A132Arg,A109Arg,and B212Lys reduced IDH1 affinity for ICT,indicating these active sites may play a central role in substrate binding.Mutations at sites A77Thr,A94Ser,and A275Asp increased the affinity of IDH1 for ICT,which may enhance IDN1 catalytic activity.Mutant IDH1 proteins with higher catalytic activity than the wild-type IDH1 could potentially be used as a novel gene therapy for glioblastoma multiforme.

  8. Malate dehydrogenase in phototrophic purple bacteria: purification, molecular weight, and quaternary structure.

    OpenAIRE

    1987-01-01

    The citric acid cycle enzyme malate dehydrogenase was purified to homogeneity from the nonsulfur purple bacteria Rhodobacter capsulatus, Rhodospirillum rubrum, Rhodomicrobium vannielii, and Rhodocyclus purpureus. Malate dehydrogenase was purified from each species by either a single- or a two-step protocol: triazine dye affinity chromatography was the key step in purification of malate dehydrogenase in all cases. Purification of malate dehydrogenase resulted in a 130- to 240-fold increase in ...

  9. Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design

    NARCIS (Netherlands)

    Machielsen, M.P.; Looger, L.L.; Raedts, J.G.J.; Dijkhuizen, S.; Hummel, W.; Henneman, H.G.; Daussmann, T.; Oost, van der J.

    2009-01-01

    The R-specific alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for biotechnologica

  10. Red Algal Bromophenols as Glucose 6-Phosphate Dehydrogenase Inhibitors

    Directory of Open Access Journals (Sweden)

    Koretaro Takahashi

    2013-10-01

    Full Text Available Five bromophenols isolated from three Rhodomelaceae algae (Laurencia nipponica, Polysiphonia morrowii, Odonthalia corymbifera showed inhibitory effects against glucose 6-phosphate dehydrogenase (G6PD. Among them, the symmetric bromophenol dimer (5 showed the highest inhibitory activity against G6PD.

  11. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Travis Hartman

    2014-11-01

    Full Text Available In chronic infection, Mycobacterium tuberculosis bacilli are thought to enter a metabolic program that provides sufficient energy for maintenance of the protonmotive force, but is insufficient to meet the demands of cellular growth. We sought to understand this metabolic downshift genetically by targeting succinate dehydrogenase, the enzyme which couples the growth processes controlled by the TCA cycle with the energy production resulting from the electron transport chain. M. tuberculosis contains two operons which are predicted to encode succinate dehydrogenase enzymes (sdh-1 and sdh-2; we found that deletion of Sdh1 contributes to an inability to survive long term stationary phase. Stable isotope labeling and mass spectrometry revealed that Sdh1 functions as a succinate dehydrogenase during aerobic growth, and that Sdh2 is dispensable for this catalysis, but partially overlapping activities ensure that the loss of one enzyme can incompletely compensate for loss of the other. Deletion of Sdh1 disturbs the rate of respiration via the mycobacterial electron transport chain, resulting in an increased proportion of reduced electron carrier (menaquinol which leads to increased oxygen consumption. The loss of respiratory control leads to an inability to recover from stationary phase. We propose a model in which succinate dehydrogenase is a governor of cellular respiration in the adaptation to low oxygen environments.

  12. Phosphorylation of formate dehydrogenase in potato tuber mitochondria

    DEFF Research Database (Denmark)

    Bykova, N.V.; Stensballe, A.; Egsgaard, H.

    2003-01-01

    Two highly phosphorylated proteins were detected after two-dimensional (blue native/SDS-PAGE) gel electrophoretic separation of the matrix fraction isolated from potato tuber mitochondria. These two phosphoproteins were identified by mass spectrometry as formate dehydrogenase (FDH) and the E1alpha...

  13. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  14. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  15. Toxic Neuronal Death by Glyeraldehyde-3-Phosphate Dehydrogenase and Mitochondria

    Science.gov (United States)

    2003-08-01

    Effect of macromolecula r crowding upon the st ructure and funct ion of an enzyme: Glycera ldehyde-3-phospha te dehydrogenase. Biochem- istry 20:4821...Leit ing B, Ruel R, Nicholson DW, and Thornber ry NA (1998) Inhibit ion of human caspases by pept ide-based and macromolecula r inh ib- itors. J Biol

  16. 21 CFR 862.1420 - Isocitric dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Isocitric dehydrogenase test system. 862.1420 Section 862.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  17. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas

    NARCIS (Netherlands)

    Tiemersma, E.W.; Wark, P.A.; Ocké, M.C.; Bunschoten, A.; Otten, M.H.; Kok, F.J.; Kampman, E.

    2003-01-01

    Alcohol is a probable risk factor with regard to colorectal neoplasm and is metabolized to the carcinogen acetaldehyde by the genetically polymorphic alcohol dehydrogenase 3 (ADH3) enzyme. We evaluated whether the association between alcohol and colorectal adenomas is modified by ADH3 polymorphism.

  18. Mutations associated with succinate dehydrogenase D-related malignant paragangliomas.

    NARCIS (Netherlands)

    Timmers, H.J.L.M.; Pacak, K.; Bertherat, J.; Lenders, J.W.M.; Duet, M.; Eisenhofer, G.; Stratakis, C.A.; Niccoli-Sire, P.; Tran, B.H.; Burnichon, N.; Gimenez-Roqueplo, A.P.

    2008-01-01

    OBJECTIVE: Hereditary paraganglioma (PGL) syndromes result from germline mutations in genes encoding subunits B, C and D of the mitochondrial enzyme succinate dehydrogenase (SDHB, SDHC and SDHD). SDHB-related PGLs are known in particular for their high malignant potential. Recently, however, maligna

  19. 21 CFR 862.1440 - Lactate dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lactate dehydrogenase test system. 862.1440 Section 862.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry...

  20. Lactate dehydrogenase in the cyanobacterium Microcystis PCC7806

    NARCIS (Netherlands)

    Moezelaar, R.; Teixeira, de M.J.; Stal, L.J.

    1995-01-01

    The cyanobacterium Microcystis PCC7806 was found to possess an NAD-dependent lactate dehydrogenase (EC 1.1.1.27) which catalyzes the reduction of pyruvate to l-lactate. The enzyme required fructose 1,6-bisphosphate for activity and displayed positive cooperativity towards pyruvate. Lactate was not

  1. Nondecarboxylating and decarboxylating isocitrate dehydrogenases: oxalosuccinate reductase as an ancestral form of isocitrate dehydrogenase.

    Science.gov (United States)

    Aoshima, Miho; Igarashi, Yasuo

    2008-03-01

    Isocitrate dehydrogenase (ICDH) from Hydrogenobacter thermophilus catalyzes the reduction of oxalosuccinate, which corresponds to the second step of the reductive carboxylation of 2-oxoglutarate in the reductive tricarboxylic acid cycle. In this study, the oxidation reaction catalyzed by H. thermophilus ICDH was kinetically analyzed. As a result, a rapid equilibrium random-order mechanism was suggested. The affinities of both substrates (isocitrate and NAD+) toward the enzyme were extremely low compared to other known ICDHs. The binding activities of isocitrate and NAD+ were not independent; rather, the binding of one substrate considerably promoted the binding of the other. A product inhibition assay demonstrated that NADH is a potent inhibitor, although 2-oxoglutarate did not exhibit an inhibitory effect. Further chromatographic analysis demonstrated that oxalosuccinate, rather than 2-oxoglutarate, is the reaction product. Thus, it was shown that H. thermophilus ICDH is a nondecarboxylating ICDH that catalyzes the conversion between isocitrate and oxalosuccinate by oxidation and reduction. This nondecarboxylating ICDH is distinct from well-known decarboxylating ICDHs and should be categorized as a new enzyme. Oxalosuccinate-reducing enzyme may be the ancestral form of ICDH, which evolved to the extant isocitrate oxidative decarboxylating enzyme by acquiring higher substrate affinities.

  2. Physiological and Growth Responses of Tomato Progenies Harboring the Betaine Alhyde Dehydrogenase Gene to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Shu-Feng Zhou; Xian-Yang Chen; Xing-Ning Xue; Xin-Guo Zhang; Yin-Xin Li

    2007-01-01

    The responses of five transgenlc tomato (Lycoperslcon esculentum Mill) lines containing the betaine aldehyde dehydrogenase (BADH) gene to salt stress were evaluated. Proline, betaine (N, N, N-trimethylglycine, hereafter betaine), chlorophyll and ion contents, BADH activity, electrolyte leakage (EL), and some growth parameters of the plants under 1.0% and 1.5% NaCl treatments were examined. The transgenic tomatoes had enhanced BADH activity and betaine content, compared to the wild type under stress conditions. Salt stress reduced chlorophyll contents to a higher extent in the wild type than in the transgenic plants. The wild type exhibited significantly higher proline content than the transgenic plants at 0.9% and 1.3% NaCl. Cell membrane of the wild type was severely damaged as determined by higher EL under salinity stress. K+ and Ca2+ contents of all tested lines decreased under salt stress,but the transgenic plants showed a significantly higher accumulation of K+ and Ca2+ than the wild type. In contrast,the wild type had significantly higher Cl- and Na+ contents than the transgenic plants under salt stress. Although yield reduction among various lines varied, the wild type had the highest yield reduction. Fruit quality of the transgenic plants was better in comparison with the wild type as shown by a low ratio of blossom end rot fruits.The results show that the transgenic plants have improved salt tolerance over the wild type.

  3. Acyl-CoA Dehydrogenase 9 Is Required for the Biogenesis of Oxidative Phosphorylation Complex I

    NARCIS (Netherlands)

    J. Nouws; L. Nijtmans; S.M. Houten; M. Brand; M. Huynen; H. Venselaar; S. Hoefs; J. Gloerich; J. Kronick; T. Hutchin; P. Willems; R. Rodenburg; R. Wanders; L. van den Heuvel; J. Smeitink; R.O. Vogel

    2010-01-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is a recently identified member of the acyl-CoA dehydrogenase family. It closely resembles very long-chain acyl-CoA dehydrogenase (VLCAD), involved in mitochondria! (3 oxidation of long-chain fatty acids. Contrary to its previously proposed involvement in fatty acid

  4. STUDIES ON THE DYNAMICS OF DEHYDROGENASES KREBS CYCLE ACTIVITY AT MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS GROWN ON MEDIA WITH DIFFERENT CARBOHYDRATES

    Directory of Open Access Journals (Sweden)

    Elena Ciornea

    2010-09-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  5. STUDIES CONCERNING THE INFLUENCE OF SOME AMINO ACIDS ON THE DYNAMICS OF KREBS CYCLE DEHYDROGENASES ACTIVITY AT MONILINIA LAXA (ADERH.& RUHL. HONEY PARASITE ON PLUM TREES

    Directory of Open Access Journals (Sweden)

    Elena Tutu

    2011-11-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  6. STUDIES ON THE DYNAMICS OF DEHYDROGENASES KREBS CYCLE ACTIVITY AT MONILINIA LAXA (ADERH. & RUHL. HONEY FUNGUS GROWN ON MEDIA WITH DIFFERENT CARBOHYDRATES

    Directory of Open Access Journals (Sweden)

    Elena Ciornea

    2011-11-01

    Full Text Available As ubiquitous organisms, fungi grow on a large number of organic substrate, alive or dead, confronting therefore with a wide variety of carbohydrates and various physical factors, and their versatility to adapt and be able to use a large number of these compounds could provide them the chance to survive. Given that, these fungi have a rich enzyme equipment that allows them to operate on different metabolic pathways, this study aims to monitor the dynamics activity of some Krebs cycle dehydrogenases in Monilinia laxa (Aderh & Ruhl. Honey species parasitic on various species of plum trees. To this end, the fungus was cultivated in vitro on media enriched with different carbohydrates and the isocitrate dehydrogenase, �-cetoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase activity in the fungus mycelium was followed, at 7, respectively, 14 days after the inoculation of the culture medium and determined using the spectrophotometric Sîsoev and Krasna method (Cojocaru, D.C., 2009. Data revealed obvious differences depending on the type of carbohydrate introduced into the medium and the age of the culture mycelia.

  7. Engineering of alanine dehydrogenase from Bacillus subtilis for novel cofactor specificity.

    Science.gov (United States)

    Lerchner, Alexandra; Jarasch, Alexander; Skerra, Arne

    2016-09-01

    The l-alanine dehydrogenase of Bacillus subtilis (BasAlaDH), which is strictly dependent on NADH as redox cofactor, efficiently catalyzes the reductive amination of pyruvate to l-alanine using ammonia as amino group donor. To enable application of BasAlaDH as regenerating enzyme in coupled reactions with NADPH-dependent alcohol dehydrogenases, we alterated its cofactor specificity from NADH to NADPH via protein engineering. By introducing two amino acid exchanges, D196A and L197R, high catalytic efficiency for NADPH was achieved, with kcat /KM  = 54.1 µM(-1)  Min(-1) (KM  = 32 ± 3 µM; kcat  = 1,730 ± 39 Min(-1) ), almost the same as the wild-type enzyme for NADH (kcat /KM  = 59.9 µM(-1)  Min(-1) ; KM  = 14 ± 2 µM; kcat  = 838 ± 21 Min(-1) ). Conversely, recognition of NADH was much diminished in the mutated enzyme (kcat /KM  = 3 µM(-1)  Min(-1) ). BasAlaDH(D196A/L197R) was applied in a coupled oxidation/transamination reaction of the chiral dicyclic dialcohol isosorbide to its diamines, catalyzed by Ralstonia sp. alcohol dehydrogenase and Paracoccus denitrificans ω-aminotransferase, thus allowing recycling of the two cosubstrates NADP(+) and l-Ala. An excellent cofactor regeneration with recycling factors of 33 for NADP(+) and 13 for l-Ala was observed with the engineered BasAlaDH in a small-scale biocatalysis experiment. This opens a biocatalytic route to novel building blocks for industrial high-performance polymers.

  8. Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Ogura, Ryutaro; Wakamatsu, Taisuke; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2014-06-10

    An NAD(+)-dependent l-tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH) was cloned and overexpressed in Escherichia coli. The recombinant NpTrpDH with a C-terminal His6-tag was purified to homogeneity using a Ni-NTA agarose column, and was found to be a homodimer with a molecular mass of 76.1kDa. The enzyme required NAD(+) and NADH as cofactors for oxidative deamination and reductive amination, respectively, but not NADP(+) or NADPH. l-Trp was the preferred substrate for deamination, though l-Phe was deaminated at a much lower rate. The enzyme exclusively aminated 3-indolepyruvate; phenylpyruvate was inert. The pH optima for the deamination of l-Trp and amination of 3-indolpyruvate were 11.0 and 7.5, respectively. For deamination of l-Trp, maximum enzymatic activity was observed at 45°C. NpTrpDH retained more than 80% of its activity after incubation for 30min at pHs ranging from 5.0 to 11.5 or incubation for 10min at temperatures up to 40°C. Unlike l-Trp dehydrogenases from higher plants, NpTrpDH activity was not activated by metal ions. Typical Michaelis-Menten kinetics were observed for NAD(+) and l-Trp for oxidative deamination, but with reductive amination there was marked substrate inhibition by 3-indolepyruvate. NMR analysis of the hydrogen transfer from the C4 position of the nicotinamide moiety of NADH showed that NpTrpDH has a pro-S (B-type) stereospecificity similar to the Glu/Leu/Phe/Val dehydrogenase family. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study.

    Science.gov (United States)

    Ferrari, P; McKay, J D; Jenab, M; Brennan, P; Canzian, F; Vogel, U; Tjønneland, A; Overvad, K; Tolstrup, J S; Boutron-Ruault, M-C; Clavel-Chapelon, F; Morois, S; Kaaks, R; Boeing, H; Bergmann, M; Trichopoulou, A; Katsoulis, M; Trichopoulos, D; Krogh, V; Panico, S; Sacerdote, C; Palli, D; Tumino, R; Peeters, P H; van Gils, C H; Bueno-de-Mesquita, B; Vrieling, A; Lund, E; Hjartåker, A; Agudo, A; Suarez, L R; Arriola, L; Chirlaque, M-D; Ardanaz, E; Sánchez, M-J; Manjer, J; Lindkvist, B; Hallmans, G; Palmqvist, R; Allen, N; Key, T; Khaw, K-T; Slimani, N; Rinaldi, S; Romieu, I; Boffetta, P; Romaguera, D; Norat, T; Riboli, E

    2012-12-01

    Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populations. A nested case-control study (1269 cases matched to 2107 controls by sex, age, study centre and date of blood collection) was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC) to evaluate the impact of rs1229984 (ADH1B), rs1573496 (ADH7) and rs441 (ALDH2) polymorphisms on CRC risk. Using the wild-type variant of each polymorphism as reference category, CRC risk estimates were calculated using conditional logistic regression, with adjustment for matching factors. Individuals carrying one copy of the rs1229984(A) (ADH1B) allele (fast metabolizers) showed an average daily alcohol intake of 4.3 g per day lower than subjects with two copies of the rs1229984(G) allele (slow metabolizers) (P(diff)cancers of the colon or rectum. Heavy alcohol intake was more strongly associated with CRC risk among carriers of the rs1573496(C) allele, with odds ratio equal to 2.13 (95% confidence interval: 1.26-3.59) compared with wild-type subjects with low alcohol consumption (P(interaction)=0.07). The rs1229984(A) (ADH1B) allele was associated with a reduction in alcohol consumption. The rs1229984 (ADH1B), rs1573496 (ADH7) and rs441 (ALDH2) polymorphisms were not associated with CRC risk overall in Western-European populations. However, the relationship between alcohol and CRC risk might be modulated by the rs1573496 (ADH7) polymorphism.

  10. Crystal structure of quinone-dependent alcohol dehydrogenase from Pseudogluconobacter saccharoketogenes. A versatile dehydrogenase oxidizing alcohols and carbohydrates

    NARCIS (Netherlands)

    Rozeboom, Henriette J.; Yu, Shukun; Mikkelsen, Rene; Nikolaev, Igor; Mulder, Harm J.; Dijkstra, Bauke W.

    2015-01-01

    The quinone-dependent alcohol dehydrogenase (PQQ-ADH, E.C. 1.1.5.2) from the Gram-negative bacterium Pseudogluconobacter saccharoketogenes IFO 14464 oxidizes primary alcohols (e.g. ethanol, butanol), secondary alcohols (monosaccharides), as well as aldehydes, polysaccharides, and cyclodextrins. The

  11. NADH dehydrogenase-like behavior of nitrogen-doped graphene and its application in NAD(+)-dependent dehydrogenase biosensing.

    Science.gov (United States)

    Gai, Pan-Pan; Zhao, Cui-E; Wang, Ying; Abdel-Halim, E S; Zhang, Jian-Rong; Zhu, Jun-Jie

    2014-12-15

    A novel electrochemical biosensing platform for nicotinamide adenine dinucleotide (NAD(+))-dependent dehydrogenase catalysis was designed using the nitrogen-doped graphene (NG), which had properties similar to NADH dehydrogenase (CoI). NG mimicked flavin mononucleotide (FMN) in CoI and efficiently catalyzed NADH oxidation. NG also acted as an electron transport "bridge" from NADH to the electrode due to its excellent conductivity. In comparison with a bare gold electrode, an 800 mV decrease in the overpotential for NADH oxidation and CoI-like behavior were observed at NG-modified electrode, which is the largest decrease in overpotential for NADH oxidation reported to date. The catalytic rate constant (k) for the CoI-like behavior of NG was estimated to be 2.3×10(5) M(-1) s(-1), which is much higher than that of other previously reported FMN analogs. The Michaelis-Menten constant (Km) of NG was 26 μM, which is comparable to the Km of CoI (10 μM). Electrodes modified with NG and NG/gold nanoparticals/formate dehydrogenase (NG/AuNPs/FDH) showed excellent analytical performance for the detection of NADH and formate. This electrode fabrication strategy could be used to create a universal biosensing platform for developing NAD(+)-dependent dehydrogenase biosensors and biofuel cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Durand, Fabien [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Stines-Chaumeil, Claire [Universite de Bordeaux, CNRS, Institut de Biochimie et de Genetique Cellulaires, 1 rue Camille Saint Saens, 33077 Bordeaux Cedex (France); Flexer, Victoria [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Andre, Isabelle [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); INRA, UMR 792 Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); Mano, Nicolas, E-mail: mano@crpp-bordeaux.cnrs.fr [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France)

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  13. Expression of lactate dehydrogenase C correlates with poor prognosis in renal cell carcinoma.

    Science.gov (United States)

    Hua, Yibo; Liang, Chao; Zhu, Jundong; Miao, Chenkui; Yu, Yajie; Xu, Aimin; Zhang, Jianzhong; Li, Pu; Li, Shuang; Bao, Meiling; Yang, Jie; Qin, Chao; Wang, Zengjun

    2017-03-01

    Lactate dehydrogenase C is an isoenzyme of lactate dehydrogenase and a member of the cancer-testis antigens family. In this study, we aimed to investigate the expression and functional role of lactate dehydrogenase C and its basic mechanisms in renal cell carcinoma. First, a total of 133 cases of renal cell carcinoma samples were analysed in a tissue microarray, and Kaplan-Meier survival curve analyses were performed to investigate the correlation between lactate dehydrogenase C expression and renal cell carcinoma progression. Lactate dehydrogenase C protein levels and messenger RNA levels were significantly upregulated in renal cell carcinoma tissues, and the patients with positive lactate dehydrogenase C expression had a shorter progression-free survival, indicating the oncogenic role of lactate dehydrogenase C in renal cell carcinoma. In addition, further cytological experiments demonstrated that lactate dehydrogenase C could prompt renal cell carcinoma cells to produce lactate, and increase metastatic and invasive potential of renal cell carcinoma cells. Furthermore, lactate dehydrogenase C could induce the epithelial-mesenchymal transition process and matrix metalloproteinase-9 expression. In summary, these findings showed lactate dehydrogenase C was associated with poor prognosis in renal cell carcinoma and played a pivotal role in the migration and invasion of renal cell carcinoma cells. Lactate dehydrogenase C may act as a novel biomarker for renal cell carcinoma progression and a potential therapeutic target for the treatment of renal cell carcinoma.

  14. Crystal structure studies of NADP+ dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain.

    Science.gov (United States)

    Kumar, S M; Pampa, K J; Manjula, M; Abdoh, M M M; Kunishima, Naoki; Lokanath, N K

    2014-06-20

    NADP(+) dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP(+) was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH's. And, small domain and clasp domain showing significant differences when compared to other IDH's of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH's. Also, helices/beta sheets are absent in the small domain, when compared to other IDH's of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit-subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.

  15. Analysis of lactate and malate dehydrogenase enzyme profiles of selected major carps of wetland of Calcutta.

    Science.gov (United States)

    Manna, Madhumita; Chakraborty, Priyanka

    2012-07-01

    The East Calcutta Wetland (ECW), a Ramsar site in India, acts as the only sink for both city sewages as well as effluents from the surrounding small-scale industries and is alarmingly polluted with heavy metals. The three best edible major carp species rohu (Labeo rohita,), catla (Catla catla,) and mrigala (Cirrhinus mrigala) were undertaken to monitor lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) by cellulose acetate electrophoresis (CAE) to assess the effects of pollutants, if any. Crude tissue extracts were prepared from brain, eye, heart, skeletal muscle and kidney tissue respectively from each type of fish. No differences were not found in MDH of catla from both sites for all tissues analyzed in this study. Rohu also showed similar mobility for all tissues except for heart tissue which was distinctly different in fishes from ECW site than that of its counterpart from non ECW site. On the other hand, MDH of two tissues of mrigala, eye and muscle respectively showed different migration patterns. LDH profiles for all tissues of three fish species from both the sites were consistently similar, only the expression levels of muscle LDH of mrigala and kidney LDH of rohu varied little.

  16. Purification of methanol dehydrogenase from mouth methylotrophic bacteria of tropical region

    Directory of Open Access Journals (Sweden)

    Waturangi, D.

    2011-01-01

    Full Text Available Aims: Purification of methanol dehydrogenase (MDH from methylotrophic bacteria was conducted to obtain pure enzyme for further research and industrial applications due to the enzyme’s unique activity that catalyzes oxidation of methanol as an important carbon source in methylotrophic bacteria.Methodology and Results: The enzyme was screened from methylotrophic bacteria isolated from human mouth. Purification of this enzyme was conducted using ammonium sulphate precipitation followed by cation exchange chromatography. Two types of media were used to produce the enzymes: luria broth and standard mineral salts media (MSM. MSM produced MDH with higher specific activity than LB. Specific activity was also increased along with the purification steps. Application of ammonium sulphate increased the purity of enzyme and was more effective for the enzyme produced in LB. Using sepharose increased the enzyme activity 10 -57 folds.Conclusion, significant and impact of this study: With this, ammonium sulphate precipitation coupled with single cation exchange chromatographic system has been proved to provide sufficient purified of methanol dehydrogenase from methylotrophic bacteria origin of human mouth with high specific activity for further application.

  17. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.

    Science.gov (United States)

    Jung, Moo-Young; Ng, Chiam Yu; Song, Hyohak; Lee, Jinwon; Oh, Min-Kyu

    2012-07-01

    2,3-Butanediol is an important bio-based chemical product, because it can be converted into several C4 industrial chemicals. In this study, a lactate dehydrogenase-deleted mutant was constructed to improve 2,3-butanediol productivity in Enterobacter aerogenes. To delete the gene encoding lactate dehydrogenase, λ Red recombination method was successfully adapted for E. aerogenes. The resulting strain produced a very small amount of lactate and 16.7% more 2,3-butanediol than that of the wild-type strain in batch fermentation. The mutant and its parental strain were then cultured with six different carbon sources, and the mutant showed higher carbon source consumption and microbial growth rates in all media. The 2,3-butanediol titer reached 69.5 g/l in 54 h during fed-batch fermentation with the mutant,which was 27.4% higher than that with the parental strain.With further optimization of the medium and aeration conditions,118.05 g/l 2,3-butanediol was produced in 54 h during fed-batch fermentation with the mutant. This is by far the highest titer of 2,3-butanediol with E. aerogenes achieved by metabolic pathway engineering.

  18. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  19. Hemizygous Expression of Glucose-6-Phosphate Dehydrogenase in Erythrocytes of Heterozygotes for the Lesch-Nyhan Syndrome*

    Science.gov (United States)

    Nyhan, William L.; Bakay, Bohdan; Connor, James D.; Marks, James F.; Keele, Doman K.

    1970-01-01

    In women heterozygous for hypoxanthine guanine phosphoribosyl trasferase deficiency, the activity of this enzyme in the erythrocyte is usually normal. In a key kindred two such obligate heterozygotes were also heterozygous for glucose-6-phosphate dehydrogenase types A and B. The AB genotype was confirmed in one by assay of skin fibroblasts. Erythrocytes were exclusively of type B. These observations suggest the clonal origin of the hematopoietic system in these women from a primordial cell line with a single active X chromosome. Images PMID:5263751

  20. Substrate specificity and stereospecificity of nicotinamide adenine dinucleotide-linked alcohol dehydrogenases from methanol-grown yeasts.

    OpenAIRE

    Hou, C T; Patel, R; Laskin, A I; Barnabe, N; Marczak, I

    1981-01-01

    Nicotine adenine dinucleotide-linked primary alcohol dehydrogenase and a newly discovered secondary alcohol dehydrogenase coexist in most strains of methanol-grown yeasts. Alcohol dehydrogenases from methanol-grown yeasts oxidize (--)-2-butanol preferentially over its (+) enantiomorph. This is substantially different from alcohol dehydrogenases from bakers' yeast and horse liver.

  1. Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

    OpenAIRE

    Morello, Fulvio; Ravetti, Anna; Nazerian, Peiman; Liedl, Giovanni; Veglio, Maria Grazia; Battista, Stefania; Vanni, Simone; Pivetta, Emanuele; Montrucchio, Giuseppe; Mengozzi, Giulio; Rinaldi, Mauro; Moiraghi, Corrado; Lupia, Enrico

    2016-01-01

    Abstract In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both on diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far. This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency...

  2. Recent advances in biotechnological applications of alcohol dehydrogenases.

    Science.gov (United States)

    Zheng, Yu-Guo; Yin, Huan-Huan; Yu, Dao-Fu; Chen, Xiang; Tang, Xiao-Ling; Zhang, Xiao-Jian; Xue, Ya-Ping; Wang, Ya-Jun; Liu, Zhi-Qiang

    2017-02-01

    Alcohol dehydrogenases (ADHs), which belong to the oxidoreductase superfamily, catalyze the interconversion between alcohols and aldehydes or ketones with high stereoselectivity under mild conditions. ADHs are widely employed as biocatalysts for the dynamic kinetic resolution of racemic substrates and for the preparation of enantiomerically pure chemicals. This review provides an overview of biotechnological applications for ADHs in the production of chiral pharmaceuticals and fine chemicals.

  3. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  4. Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria.

    Directory of Open Access Journals (Sweden)

    Seiya Watanabe

    Full Text Available Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(PH-dependent dehydrogenases (synthases, which catalyze the reductive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti plasmid. In addition to the reverse oxidative reaction(s, the genes noxB-noxA and ooxB-ooxA are considered to be involved in opine catabolism as (membrane-associated oxidases; however, their properties have not yet been elucidated in detail due to the difficulties associated with purification (and preservation. We herein successfully expressed Nox/Oox-like genes from Pseudomonas putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the chromosome (OdhB-C-A, and exhibited dehydrogenase (but not oxidase activity toward nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. The enzyme contained FAD, FMN, and [2Fe-2S]-iron sulfur as prosthetic groups. On the other hand, the gene cluster from Bradyrhizobium japonicum consisted of OdhB1-C-A-B2, from which two proteins, OdhAB1C and OdhAB2C, appeared through the assembly of each β-subunit together with common α- and γ-subunits. A poor phylogenetic relationship was detected between OdhB1 and OdhB2 in spite of them both functioning as octopine dehydrogenases, which provided clear evidence for the acquisition of novel functions by "subunit-exchange". To the best of our knowledge, this is the first study to have examined flavin-containing opine dehydrogenase.

  5. GLUTAMATE DEHYDROGENASE 1 AND SIRT4 REGULATE GLIAL DEVELOPMENT

    OpenAIRE

    Komlos, Daniel; Mann, Kara D.; Zhuo, Yue; Ricupero, Christopher L.; Hart, Ronald P.; Liu, Alice Y.-C.; Firestein, Bonnie L.

    2012-01-01

    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and a frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological de...

  6. Encapsulation of Alcohol Dehydrogenase in Mannitol by Spray Drying

    OpenAIRE

    Hirokazu Shiga; Hiromi Joreau; Tze Loon Neoh; Takeshi Furuta; Hidefumi Yoshii

    2014-01-01

    The retention of the enzyme activity of alcohol dehydrogenase (ADH) has been studied in various drying processes such as spray drying. The aim of this study is to encapsulate ADH in mannitol, either with or without additive in order to limit the thermal denaturation of the enzyme during the drying process. The retention of ADH activity was investigated at different drying temperatures. When mannitol was used, the encapsulated ADH was found inactive in all the dried powders. This is presumably...

  7. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective.

    Science.gov (United States)

    Kisiela, Michael; Skarka, Adam; Ebert, Bettina; Maser, Edmund

    2012-03-01

    Steroidal compounds including cholesterol, bile acids and steroid hormones play a central role in various physiological processes such as cell signaling, growth, reproduction, and energy homeostasis. Hydroxysteroid dehydrogenases (HSDs), which belong to the superfamily of short-chain dehydrogenases/reductases (SDR) or aldo-keto reductases (AKR), are important enzymes involved in the steroid hormone metabolism. HSDs function as an enzymatic switch that controls the access of receptor-active steroids to nuclear hormone receptors and thereby mediate a fine-tuning of the steroid response. The aim of this study was the identification of classified functional HSDs and the bioinformatic annotation of these proteins in all complete sequenced bacterial genomes followed by a phylogenetic analysis. For the bioinformatic annotation we constructed specific hidden Markov models in an iterative approach to provide a reliable identification for the specific catalytic groups of HSDs. Here, we show a detailed phylogenetic analysis of 3α-, 7α-, 12α-HSDs and two further functional related enzymes (3-ketosteroid-Δ(1)-dehydrogenase, 3-ketosteroid-Δ(4)(5α)-dehydrogenase) from the superfamily of SDRs. For some bacteria that have been previously reported to posses a specific HSD activity, we could annotate the corresponding HSD protein. The dominating phyla that were identified to express HSDs were that of Actinobacteria, Proteobacteria, and Firmicutes. Moreover, some evolutionarily more ancient microorganisms (e.g., Cyanobacteria and Euryachaeota) were found as well. A large number of HSD-expressing bacteria constitute the normal human gastro-intestinal flora. Another group of bacteria were originally isolated from natural habitats like seawater, soil, marine and permafrost sediments. These bacteria include polycyclic aromatic hydrocarbons-degrading species such as Pseudomonas, Burkholderia and Rhodococcus. In conclusion, HSDs are found in a wide variety of microorganisms including

  8. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase.

    Science.gov (United States)

    Korotchkina, Lioubov G; Sidhu, Sukhdeep; Patel, Mulchand S

    2004-10-01

    The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.

  9. SERUM LACTATE DEHYDROGENASE AS A PROGNOSTIC MARKER IN BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Hardik

    2015-11-01

    Full Text Available : BACKGROUND: Breast cancer a multifactorial disease and one of the most dreaded of human diseases that claims the lives of thousands of women all over the globe every year. This may probably due to the fact that it remains undiagnosed at an early stage perhaps due to lack of awareness amongst the females and the fact that most cancers do not produce any symptoms until the tumour are too large to be removed surgically. Hence there is need to detect cancer at an early stage. AIM: Estimation of diagnostic importance and prognostication of serum Lactate dehydrogenase in cases on breast cancer. SETTINGS AND DESIGN: An observational study was conducted in Acharya Vinoba Bhave Rural Hospital, Sawangi (Meghe, Wardha which included 44 confirmed cases of carcinoma breast and 44 normal healthy females admitted in AVBRH in a span of 2 years. METHODS AND MATERIAL: Determination of serum LDH was done using TC matrix analyser. The values of LDH were obtained on presentation, 21 days after intervention, 2 months after intervention and 6 months after intervention. The values of LDH on presentation in both the groups were compared. The decline in the values of LDH were observed with the due course of treatment. Chisquare test and Student’s Unpaired and paired t test were used for statistical analysis. RESULT: The mean Lactate dehydrogenase on presentation was in study group and control group was 564.38±219.41 IU/L and 404.18±101.32 IU/L respectively (p<0.05. The levels of Lactate dehydrogenase decreased with due course of treatment. The levels of LDH were proportionate to the stage of disease. CONCLUSION: The results of the study concludes cost effective usefulness of serum Lactate dehydrogenase in early detection of breast cancer and to assess its prognostic importance which can be done in smaller laboratories. The traditional model of DS-

  10. Daidzin: a potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase.

    Science.gov (United States)

    Keung, W M; Vallee, B L

    1993-02-15

    Human mitochondrial aldehyde dehydrogenase (ALDH-I) is potently, reversibly, and selectively inhibited by an isoflavone isolated from Radix puerariae and identified as daidzin, the 7-glucoside of 4',7-dihydroxyisoflavone. Kinetic analysis with formaldehyde as substrate reveals that daidzin inhibits ALDH-I competitively with respect to formaldehyde with a Ki of 40 nM, and uncompetitively with respect to the coenzyme NAD+. The human cytosolic aldehyde dehydrogenase isozyme (ALDH-II) is nearly 3 orders of magnitude less sensitive to daidzin inhibition. Daidzin does not inhibit human class I, II, or III alcohol dehydrogenases, nor does it have any significant effect on biological systems that are known to be affected by other isoflavones. Among more than 40 structurally related compounds surveyed, 12 inhibit ALDH-I, but only prunetin and 5-hydroxydaidzin (genistin) combine high selectivity and potency, although they are 7- to 15-fold less potent than daidzin. Structure-function relationships have established a basis for the design and synthesis of additional ALDH inhibitors that could both be yet more potent and specific.

  11. An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.

    Science.gov (United States)

    Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul

    2015-05-01

    An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity.

  12. Structural insights on mouse L-threonine dehydrogenase: A regulatory role of Arg180 in catalysis.

    Science.gov (United States)

    He, Chao; Huang, Xianyu; Liu, Yanhong; Li, Fudong; Yang, Yang; Tao, Hongru; Han, Chuanchun; Zhao, Chen; Xiao, Yazhong; Shi, Yunyu

    2015-12-01

    Mouse L-threonine dehydrogenase (mTDH), which belongs to the short-chain dehydrogenase/reductase (SDR) superfamily and mediates threonine catabolism, plays pivotal roles in both powerful biosynthesis and signaling in mouse stem cells and has a regulatory residue Arg180. Here we determined three crystal structures of mTDH: wild-type (WT) in the apo form; in complex with NAD(+) and a substrate analog, glycerol, or with only NAD(+); as well as the R180K variant with NAD(+). This is the first description of a structure for mammalian SDR-type TDH. Structural comparison revealed the structural basis for SDR-type TDH catalysis remains strictly conserved in bacteria and mammals. Kinetic enzyme assays, and isothermal titration calorimetry (ITC) measurements indicated the R180K mutation has little effect on NAD(+) binding affinity, whereas affects the substrate's affinity for the enzyme. The crystal structure of R180K with NAD(+), biochemical and spectroscopic studies suggested that the R180K mutant should bind NAD(+) in a similar way and have a similar folding to the WT. However, the R180K variant may have difficulty adopting the closed form due to reduced interaction of residue 180 with a loop which connects a key position for mTDH switching between the closed and open forms in mTDH catalysis, and thereby exhibited a significantly decreased kcat/Km value toward the substrate, L-Thr. In sum, our results suggest that activity of GalE-like TDH can be regulated by remote interaction, such as hydrogen bonding and hydrophobic interaction around the Arg180 of mTDH.

  13. α-Ketoglutarate Accumulation Is Not Dependent on Isocitrate Dehydrogenase Activity during Tellurite Detoxification in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Claudia A. Reinoso

    2013-01-01

    Full Text Available Tellurite is toxic to most microorganisms because of its ability to generate oxidative stress. However, the way in which tellurite interferes with cellular processes is not fully understood to date. In this line, it was previously shown that tellurite-exposed cells displayed reduced activity of the α-ketoglutarate dehydrogenase complex (α-KGDH, which resulted in α-ketoglutarate (α-KG accumulation. In this work, we assessed if α-KG accumulation in tellurite-exposed E. coli could also result from increased isocitrate dehydrogenase (ICDH and glutamate dehydrogenase (GDH activities, both enzymes involved in α-KG synthesis. Unexpectedly both activities were found to decrease in the presence of the toxicant, an observation that seems to result from the decreased transcription of icdA and gdhA genes (encoding ICDH and GDH, resp.. Accordingly, isocitrate levels were found to increase in tellurite-exposed E. coli. In the presence of the toxicant, cells lacking icdA or gdhA exhibited decreased reactive oxygen species (ROS levels and higher tellurite sensitivity as compared to the wild type strain. Finally, a novel branch activity of ICDH as tellurite reductase is presented.

  14. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Directory of Open Access Journals (Sweden)

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  15. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin.

    Science.gov (United States)

    Vastano, Valeria; Salzillo, Marzia; Siciliano, Rosa A; Muscariello, Lidia; Sacco, Margherita; Marasco, Rosangela

    2014-01-01

    Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile.

  16. Purification, crystallization and preliminary X-ray analysis of bifunctional isocitrate dehydrogenase kinase/phosphatase in complex with its substrate, isocitrate dehydrogenase, from Escherichia coli

    OpenAIRE

    2009-01-01

    The protein complex of bifunctional isocitrate dehydrogenase kinase/phosphatase with its substrate, isocitrate dehydrogenase, has been crystallized for structural analysis. A complete data set was collected from the complex crystal and processed to 2.9 Å resolution.

  17. A quantitative histochemical study of lactate dehydrogenase and succinate dehydrogenase activities in the membrana granulosa of the ovulatory follicle of the rat.

    Science.gov (United States)

    Zoller, L C; Enelow, R

    1983-11-01

    Using a microdensitometer, lactate dehydrogenase and succinate dehydrogenase activities were measured in the membrana granulosa of the rat ovulatory follicle. Ovaries were removed on each day of the oestrous cycle; oestrus, dioestrus-1, dioestrus-2, and proestrus; and enzyme activities measured in the membrana granulosa as a whole and in four regions within it: peripheral (PR), antral (AR), cumulus oophorus (CO) and corona radiata (CR). Throughout the cycle, lactate dehydrogenase activity was greatest in PR. On oestrus, lactate dehydrogenase activity was progressively less in AR, CO and CR. On dioestrus-1, activity was identical in AR and CO and less in CR. On dioestrus-2, activity was greater in AR than in CO or CR. By proestrus, activity was equal in AR, CO and CR. In the membrana granulosa as a whole, and in each region, lactate dehydrogenase activity declined as ovulation approached. In contrast, succinate dehydrogenase activity in the membrana granulosa as a whole and in PR was constant throughout the cycle. Activity fluctuated in the other regions. Succinate dehydrogenase activity on oestrus was greatest in PR, less in AR and CO and least in CR. On the remaining days, succinate dehydrogenase activity was greatest in PR and less but equal in the remainder of the membrana granulosa.

  18. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    NARCIS (Netherlands)

    Ferrari, P.; McKay, J.D.; Jenab, M.; Brennan, P.; Canzian, F.; Vogel, U.; Tjonneland, A.; Overvad, K.; Tolstrup, J.S.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Morois, S.; Kaaks, R.; Boeing, H.; Bergmann, M.; Trichopoulou, A.; Katsoulis, M.; Trichopoulos, D.; Krogh, V.; Panico, S.; Sacerdote, C.; Palli, D.; Tumino, R.; Peeters, P.H.M.; Gils, C.H. van; Bueno-de-Mesquita, B.; Vrieling, A.; Lund, E.; Hjartaker, A.; Agudo, A.; Suarez, L.R.; Arriola, L.; Chirlaque, M.D.; Ardanaz, E.; Sanchez, M.J.; Manjer, J.; Lindkvist, B.; Hallmans, G.; Palmqvist, R.; Allen, N.; Key, T.; Khaw, K.T.; Slimani, N.; Rinaldi, S.; Romieu, I.; Boffetta, P.; Romaguera, D.; Norat, T.; Riboli, E.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian

  19. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2008-11-01

    Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mutant and an as-GAPC1 line of Arabidopsis (Arabidopsis thaliana). Both mutant plant lines show a delay in growth, morphological alterations in siliques, and low seed number. Embryo development was altered, showing abortions and empty embryonic sacs in basal and apical siliques, respectively. The gapc-1 line shows a decrease in ATP levels and reduced respiratory rate. Furthermore, both lines exhibit a decrease in the expression and activity of aconitase and succinate dehydrogenase and reduced levels of pyruvate and several Krebs cycle intermediates, as well as increased reactive oxygen species levels. Transcriptome analysis of the gapc-1 mutants unveils a differential accumulation of transcripts encoding for enzymes involved in carbon partitioning. According to these studies, some enzymes involved in carbon flux decreased (phosphoenolpyruvate carboxylase, NAD-malic enzyme, glucose-6-P dehydrogenase) or increased (NAD-malate dehydrogenase) their activities compared to the wild-type line. Taken together, our data indicate that a deficiency in the cytosolic GAPC activity results in modifications of carbon flux and mitochondrial dysfunction, leading to an alteration of plant and embryo development with decreased number of seeds, indicating that GAPC-1 is essential for normal fertility in Arabidopsis plants.

  20. Characterization of Arabidopsis Lines Deficient in GAPC-1, a Cytosolic NAD-Dependent Glyceraldehyde-3-Phosphate Dehydrogenase1[C

    Science.gov (United States)

    Rius, Sebastián P.; Casati, Paula; Iglesias, Alberto A.; Gomez-Casati, Diego F.

    2008-01-01

    Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mutant and an as-GAPC1 line of Arabidopsis (Arabidopsis thaliana). Both mutant plant lines show a delay in growth, morphological alterations in siliques, and low seed number. Embryo development was altered, showing abortions and empty embryonic sacs in basal and apical siliques, respectively. The gapc-1 line shows a decrease in ATP levels and reduced respiratory rate. Furthermore, both lines exhibit a decrease in the expression and activity of aconitase and succinate dehydrogenase and reduced levels of pyruvate and several Krebs cycle intermediates, as well as increased reactive oxygen species levels. Transcriptome analysis of the gapc-1 mutants unveils a differential accumulation of transcripts encoding for enzymes involved in carbon partitioning. According to these studies, some enzymes involved in carbon flux decreased (phosphoenolpyruvate carboxylase, NAD-malic enzyme, glucose-6-P dehydrogenase) or increased (NAD-malate dehydrogenase) their activities compared to the wild-type line. Taken together, our data indicate that a deficiency in the cytosolic GAPC activity results in modifications of carbon flux and mitochondrial dysfunction, leading to an alteration of plant and embryo development with decreased number of seeds, indicating that GAPC-1 is essential for normal fertility in Arabidopsis plants. PMID:18820081

  1. Binding of NAD+ and L-threonine induces stepwise structural and flexibility changes in Cupriavidus necator L-threonine dehydrogenase.

    Science.gov (United States)

    Nakano, Shogo; Okazaki, Seiji; Tokiwa, Hiroaki; Asano, Yasuhisa

    2014-04-11

    Crystal structures of short chain dehydrogenase-like L-threonine dehydrogenase from Cupriavidus necator (CnThrDH) in the apo and holo forms were determined at 2.25 and 2.5 Å, respectively. Structural comparison between the apo and holo forms revealed that four regions of CnThrDH adopted flexible conformations when neither NAD(+) nor L-Thr were bound: residues 38-59, residues 77-87, residues 180-186, and the catalytic domain. Molecular dynamics simulations performed at the 50-ns time scale revealed that three of these regions remained flexible when NAD(+) was bound to CnThrDH: residues 80-87, residues 180-186, and the catalytic domain. Molecular dynamics simulations also indicated that the structure of CnThrDH changed from a closed form to an open form upon NAD(+) binding. The newly formed cleft in the open form may function as a conduit for substrate entry and product exit. These computational results led us to hypothesize that the CnThrDH reaction progresses by switching between the closed and open forms. Enzyme kinetics parameters of the L80G, G184A, and T186N variants also supported this prediction: the kcat/Km, L-Thr value of the variants was >330-fold lower than that of the wild type; this decrease suggested that the variants mostly adopt the open form when L-Thr is bound to the active site. These results are summarized in a schematic model of the stepwise changes in flexibility and structure that occur in CnThrDH upon binding of NAD(+) and L-Thr. This demonstrates that the dynamical structural changes of short chain dehydrogenase-like L-threonine dehydrogenase are important for the reactivity and specificity of the enzyme.

  2. Binding of NAD+ and l-Threonine Induces Stepwise Structural and Flexibility Changes in Cupriavidus necator l-Threonine Dehydrogenase*

    Science.gov (United States)

    Nakano, Shogo; Okazaki, Seiji; Tokiwa, Hiroaki; Asano, Yasuhisa

    2014-01-01

    Crystal structures of short chain dehydrogenase-like l-threonine dehydrogenase from Cupriavidus necator (CnThrDH) in the apo and holo forms were determined at 2.25 and 2.5 Å, respectively. Structural comparison between the apo and holo forms revealed that four regions of CnThrDH adopted flexible conformations when neither NAD+ nor l-Thr were bound: residues 38–59, residues 77–87, residues 180–186, and the catalytic domain. Molecular dynamics simulations performed at the 50-ns time scale revealed that three of these regions remained flexible when NAD+ was bound to CnThrDH: residues 80–87, residues 180–186, and the catalytic domain. Molecular dynamics simulations also indicated that the structure of CnThrDH changed from a closed form to an open form upon NAD+ binding. The newly formed cleft in the open form may function as a conduit for substrate entry and product exit. These computational results led us to hypothesize that the CnThrDH reaction progresses by switching between the closed and open forms. Enzyme kinetics parameters of the L80G, G184A, and T186N variants also supported this prediction: the kcat/Km, l-Thr value of the variants was >330-fold lower than that of the wild type; this decrease suggested that the variants mostly adopt the open form when l-Thr is bound to the active site. These results are summarized in a schematic model of the stepwise changes in flexibility and structure that occur in CnThrDH upon binding of NAD+ and l-Thr. This demonstrates that the dynamical structural changes of short chain dehydrogenase-like l-threonine dehydrogenase are important for the reactivity and specificity of the enzyme. PMID:24558034

  3. Evidence for distinct dehydrogenase and isomerase sites within a single 3. beta. -hydroxysteroid dehydrogenase/5-ene-4-ene isomerase protein

    Energy Technology Data Exchange (ETDEWEB)

    Luu-The, V.; Takahashi, Masakazu; de Launoit, Y.; Dumont, M.; Lachance, Y.; Labrie, F. (Laval Univ., Quebec City, Quebec (Canada))

    1991-09-10

    Complementary DNA encoding human 3{beta}-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3-{beta}-HSD) has been expressed in transfected GH{sub 4}C{sub 1} with use of the cytomegalovirus promoter. The activity of the expressed protein clearly shows that both dehydrogenase and isomerase enzymatic activities are present within a single protein. However, such findings do not indicate whether the two activities reside within one or two closely related catalytic sites. With use of ({sup 3}H)-5-androstenedione, the intermediate compound in dehydroepiandrosterone (DHEA) transformation into 4-androstenedione by 3{beta}-HSD, the present study shows that 4MA (N,N-diethyl-4-methyl-3-oxo-4-aza-5{alpha}-androstane-17{beta}-carboxamide) and its analogues of 5-androstenedione to 4-androstenedione with an approximately 1,000-fold higher K{sub i} value. The present results thus strongly suggest that dehydrogenase and isomerase activities are present at separate sites on the 3-{beta}-HSD protein. Such data suggest that the irreversible step in the transformation of DHEA to 4-androstenedione is due to a separate site possessing isomerase activity that converts the 5-ene-3-keto to a much more stable 4-ene-3-keto configuration.

  4. Cloning, structure, and chromosome localization of the mouse glutaryl-CoA dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Koeller, D.M.; DiGiulio, A.; Frerman, F.E. [Univ. of Colorado Health Sciences Center, Denver, CO (United States)] [and others

    1995-08-10

    Glutaryl-CoA dehydrogenase (GCDH) is a nuclear-encoded, mitochondrial matrix enzyme. In humans, deficiency of GCDH leads to glutaric acidemia type I, and inherited disorder of amino acid metabolism characterized by a progressive neurodegenerative disease. In this report we describe the cloning and structure of the mouse GCDH (Gcdh) gene and cDNA and its chromosomal localization. The mouse Gcdh cDNA is 1.75 kb long and contains and open reading frame of 438 amino acids. The amino acid sequences of mouse, human, and pig GCDH are highly conserved. The mouse Gcdh gene contains 11 exons and spans 7 kb of genomic DNA. Gcdh was mapped by backcross analysis to mouse chromosome 8 within a region that is homologous to a region of human chromosome 19, where the human gene was previously mapped. 14 refs., 3 figs.

  5. Mechanism of protection against alcoholism by an alcohol dehydrogenase polymorphism: development of an animal model.

    Science.gov (United States)

    Rivera-Meza, Mario; Quintanilla, María Elena; Tampier, Lutske; Mura, Casilda V; Sapag, Amalia; Israel, Yedy

    2010-01-01

    Humans who carry a point mutation in the gene coding for alcohol dehydrogenase-1B (ADH1B*2; Arg47His) are markedly protected against alcoholism. Although this mutation results in a 100-fold increase in enzyme activity, it has not been reported to cause higher levels of acetaldehyde, a metabolite of ethanol known to deter alcohol intake. Hence, the mechanism by which this mutation confers protection against alcoholism is unknown. To study this protective effect, the wild-type rat cDNA encoding rADH-47Arg was mutated to encode rADH-47His, mimicking the human mutation. The mutated cDNA was incorporated into an adenoviral vector and administered to genetically selected alcohol-preferring rats. The V(max) of rADH-47His was 6-fold higher (Palcoholism.

  6. Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1.

    Science.gov (United States)

    Kim, Hyo-Joon; Fei, Xiang; Cho, Seok-Cheol; Choi, Bu Young; Ahn, Hee-Chul; Lee, Kyeong; Seo, Seung-Yong; Keum, Young-Sam

    2015-12-01

    Somatic heterozygous mutations of isocitrate dehydrogenase-1 (IDH1) are abundantly found in several types of cancer and strongly implicate altered metabolism in carcinogenesis. In the present study, we have identified α-mangostin as a novel selective inhibitor of mutant IDH1 (IDH1-R132H). We have observed that α-mangostin competitively inhibits the binding of α-ketoglutarate (α-KG) to IDH1-R132H. The structure-relationship study reveals that α-mangostin exhibits the strongest core inhibitor structure. Finally, we have observed that α-mangostin selectively promotes demethylation of 5-methylcytosine (5mC) and histone H3 trimethylated lysine residues in IDH1 (+/R132H) MCF10A cells, presumably via restoring the activity of cellular α-KG-dependent DNA hydroxylases and histone H3 lysine demethylases. Collectively, we provide evidence that α-mangostin selectively inhibits IDH1-R132H.

  7. L(+) lactate dehydrogenase activity from the electric organ of Electrophorus electricus (L.).

    Science.gov (United States)

    Torres-da Matta, J; Nery da Matta, A; Hassón-Voloch, A

    1976-01-01

    Properties of L(+) lactate dehydrogenase (LDH) of Electrophorus electricus (L.) electric organ were studied, comparing the substrates pyruvate and lactate. Electric organ LDH is a soluble enzyme with a pH optimum of 7.4 for pyruvate and 9.0 for lactate. The apparent Km was lower for pyruvate (Km = 2.5 X 10(-4) M) than for lactate (Km = 1.5 X 10(-2) M). With lactate as a substrate at pH 7.4, malonate, oxalate and pyruvate inhibited competitively. For pyruvate as substrate at pH 9.0 malonate inhibited non-competitively and oxalate shiwed uncompetitive inhibition. The different effects of the carboxylic acids on LDH activity suggest different stereospecificities of the two enzyme-coenzyme complexes in the forward and reserve reactions. The reactions of electric organ LDH with substrates and inhibitors are consistent with electrophoretic analysis suggesting that the enzyme is of the M-type.

  8. Quantification of Lactate Dehydrogenase for Cell Viability Testing Using Cell Lines and Primary Cultured Astrocytes.

    Science.gov (United States)

    Kaja, Simon; Payne, Andrew J; Naumchuk, Yuliya; Koulen, Peter

    2017-05-02

    Drug discovery heavily relies on cell viability studies to assess the potential toxicity of drug candidates. L-Lactate dehydrogenase (LDH) is a cytoplasmic enzyme that catalyzes the concomitant interconversions of pyruvate to L-lactate and NADH to NAD(+) during glycolysis, and the reverse reactions during the Cori cycle. In response to cellular damage, induced by endogenous cellular mechanisms or as a result of exogenously applied insults, LDH is released from the cytoplasm into the extracellular environment. Its stability in cell culture medium makes it a well-suited correlate for the presence of damage and toxicity in tissues and cells. We herein present protocols for a reproducible and validated LDH assay optimized for several cell types. In contrast to commercially available LDH assays, often associated with proprietary formulations and high cost, our protocols provide ample opportunities for experiment-specific optimization with low variability and cost. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  9. [Interaction of pyruvate dehydrogenase complex from the heart muscle with thiamine diphosphate and its derivatives].

    Science.gov (United States)

    Strumilo, S A; Kiselevskiĭ, Iu V; Taranda, N I; Zabrodskaia, S V; Oparin, D A

    1989-01-01

    Inhibitory effects of 23 thiamin derivatives on the bovine heart pyruvate dehydrogenase complex (PDC) were studied. Oxythiamin diphosphate and tetrahydroxythiamin diphosphate exhibited the most pronounced effect on the PDC activity, affecting the complex by a competitive type of inhibition for thiamin diphosphate (TDP). The apparent affinity of TDP and the anticoenzyme derivatives for apo PDC depended on presence of phosphate and divalent metal ions. Phosphate considerably increased the Km values for TDP (up to 0.17 microM) and the Ki values for oxythiamin diphosphate (0.40 microM) as well as for tetrahydroxythiamin diphosphate (0.23 microM). In presence of Mn2+, Km value for TDP was 3.5-fold lower as compared with Mg2+ containing medium.

  10. Immunolocalization of succinate dehydrogenase in the esophagus epithelium of domesticated mammals.

    Science.gov (United States)

    Meyer, W; Kacza, J; Hornickel, I N; Schoennagel, B

    2013-05-10

    Using immunohistochemistry and transmission electron microscopy (TEM), the esophagus epithelia of seven domesticated mammals (horse, cattle, goat, pig, dog, laboratory rat, cat) of three nutrition groups (herbivorous, omnivorous, carnivorous) were studied to get first information about energy generation, as demonstrated by succinate dehydrogenase (SDH) activities. Distinct reaction intensities could be observed in all esophageal cell layers of the different species studied reflecting moderate to strong metabolic activities. The generally strong staining in the stratum basale indicated that new cells are continuously produced. The latter feature was confirmed by a thick, and in the horse generally highly active stratum spinosum. Only in the pig, reaction intensity variations occurred, obviously related to differences in physical feed quality or restricted feed allocation. The immunohistochemical results were corroborated by the presence of intact mitochondria in the esophageal cells of all species and nutrition types studied, except for the horse. Possible relationships between SDH reaction intensities and feed structure, mass or consistency are discussed.

  11. NADP+-dependent glutamate dehydrogenase activity is impaired in mutants of Saccharomyces cerevisiae that lack aconitase.

    Science.gov (United States)

    González, A; Rodríguez, L; Olivera, H; Soberón, M

    1985-10-01

    A mutant of Saccharomyces cerevisiae lacking aconitase did not grow on minimal medium (MM) and had five- to tenfold less NADP+-dependent glutamate dehydrogenase (GDH) activity than the wild-type, although its glutamine synthetase (GS) activity was still inducible. When this mutant was incubated with glutamate as the sole nitrogen source, the 2-oxoglutarate content rose, and the NADP+-dependent GDH activity increased. Furthermore, carbon-limited cultures showed a direct relation between NADP+-dependent GDH activity and the intracellular 2-oxoglutarate content. We propose that the low NADP+-dependent GDH activity found in the mutant was due to the lack of 2-oxoglutarate or some other intermediate of the tricarboxylic acid cycle.

  12. Molecular mechanism of null expression of aldehyde dehydrogenase-1 in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Yoshida, Akira [Institute of the City of Hope, Duarte, CA (United States); Yanagawa, Yuchio [Tokohu Univ., Sendai (Japan)

    1996-04-01

    In isozyme systems in general, the pattern of tissue-dependent expression of a given type of isozyme is uniform in various mammalian species. In contrast, a major cytosolic aldehyde dehydrogenase isozyme, termed ALDH1, which is strongly expressed in the livers of humans and other mammals, is hardly detectable in rat liver. Thirteen nucleotides existing in the 5{prime}-promoter region of human, marmoset, and mouse ALDH1 genes are absent in the four rat strains examined. When the 13 nucleotides were deleted from a chloramphenicol acetyltransferase expression construct, which contained the 5{prime} promoter region of the human ALDH1 gene and a low-background promoterless chloramphenicol acetyltransferase expression vector, the expression activity was severely diminished in human hepatic cells. Thus, deletion of the 13 nucleotides in the promoter region of the gene can account for the lack of ALDH1 expression in rat liver. 16 refs., 3 figs.

  13. Immunolocalization of succinate dehydrogenase in the esophagus epithelium of domesticated mammals

    Directory of Open Access Journals (Sweden)

    W. Meyer

    2013-05-01

    Full Text Available Using immunohistochemistry and transmission electron microscopy (TEM, the esophagus epithelia of seven domesticated mammals (horse, cattle, goat, pig, dog, laboratory rat, cat of three nutrition groups (herbivorous, omnivorous, carnivorous were studied to get first information about energy generation, as demonstrated by succinate dehydrogenase (SDH activities. Distinct reaction intensities could be observed in all esophageal cell layers of the different species studied reflecting moderate to strong metabolic activities. The generally strong staining in the stratum basale indicated that new cells are continuously produced. The latter feature was confirmed by a thick, and in the horse generally highly active stratum spinosum. Only in the pig, reaction intensity variations occurred, obviously related to differences in physical feed quality or restricted feed allocation. The immunohistochemical results were corroborated by the presence of intact mitochondria in the esophageal cells of all species and nutrition types studied, except for the horse. Possible relationships between SDH reaction intensities and feed structure, mass or consistency are discussed.

  14. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology.

    Science.gov (United States)

    Satomura, Takenori; Sakuraba, Haruhiko; Suye, Shin-Ichiro; Ohshima, Toshihisa

    2015-11-01

    Dye-linked D-amino acid dehydrogenases (Dye-DADHs) catalyze the dehydrogenation of free D-amino acids in the presence of an artificial electron acceptor. Although Dye-DADHs functioning in catabolism of L-alanine and as primary enzymes in electron transport chains are widely distributed in mesophilic Gram-negative bacteria, biochemical and biotechnological information on these enzymes remains scanty. This is in large part due to their instability after isolation. On the other hand, in the last decade, several novel types of Dye-DADH have been found in thermophilic bacteria and hyperthermophilic archaea, where they contribute not only to L-alanine catabolism but also to the catabolism of other amino acids, including D-arginine and L-hydroxyproline. In this minireview, we summarize recent developments in our understanding of the biochemical characteristics of Dye-DADHs and their specific application to electrochemical biosensors.

  15. In crystallo posttranslational modification within a MauG/pre-methylamine dehydrogenase complex.

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, L. M. R.; Sanishvili, R.; Davidson, V. L.; Wilmot, C. M.; Biosciences Division; Univ. of Minnesota; Univ. of Mississippi

    2010-03-12

    MauG is a diheme enzyme responsible for the posttranslational modification of two tryptophan residues to form the tryptophan tryptophylquinone (TTQ) cofactor of methylamine dehydrogenase (MADH). MauG converts preMADH, containing monohydroxylated {beta}Trp{sup 57}, to fully functional MADH by catalyzing the insertion of a second oxygen atom into the indole ring and covalently linking {beta}Trp{sup 57} to {beta}Trp{sup 108}. We have solved the x-ray crystal structure of MauG complexed with preMADH to 2.1 angstroms. The c-type heme irons and the nascent TTQ site are separated by long distances over which electron transfer must occur to achieve catalysis. In addition, one of the hemes has an atypical His-Tyr axial ligation. The crystalline protein complex is catalytically competent; upon addition of hydrogen peroxide, MauG-dependent TTQ synthesis occurs.

  16. Several novel transcripts of glyceraldehyde-3-phosphate dehydrogenase expressed in adult chicken testis.

    Science.gov (United States)

    Mezquita, J; Pau, M; Mezquita, C

    1998-10-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), in addition to being a classic glycolytic enzyme, is a multifunctional protein involved in relevant cell functions such as DNA replication, DNA repair, translational control of gene expression, and apoptosis. Although the multifunctional nature of GAPDH suggests versatility in the mechanisms regulating its expression, no major qualitative changes and few quantitative changes in the GAPDH transcripts have been reported. While studying the expression of GAPDH during spermatogenesis, we detected alternative initiations to TATA box and alternative splicings in the 5' region of the pre-mRNA, resulting in at least six different types of mRNAs. The amount and the polyadenylation of the GAPDH transcripts increased in mature testis in relation to immature testis and further increased when cell suspensions from mature testis were exposed to heat shock. These results suggest that alternative initiation, alternative splicing, and polyadenylation could provide the necessary versatility to the regulation of the expression of this multifunctional protein during spermatogenesis.

  17. Site-directed mutagenesis of aldehyde dehydrogenase-2 suggests three distinct pathways of nitroglycerin biotransformation.

    Science.gov (United States)

    Wenzl, M Verena; Beretta, Matteo; Griesberger, Martina; Russwurm, Michael; Koesling, Doris; Schmidt, Kurt; Mayer, Bernd; Gorren, Antonius C F

    2011-08-01

    To elucidate the mechanism underlying reduction of nitroglycerin (GTN) to nitric oxide (NO) by mitochondrial aldehyde dehydrogenase (ALDH2), we generated mutants of the enzyme lacking the cysteines adjacent to reactive Cys302 (C301S and C303S), the glutamate that participates as a general base in aldehyde oxidation (E268Q) or combinations of these residues. The mutants were characterized regarding acetaldehyde dehydrogenation, GTN-triggered enzyme inactivation, GTN denitration, NO formation, and soluble guanylate cyclase activation. Lack of the cysteines did not affect dehydrogenase activity but impeded GTN denitration, aggravated GTN-induced enzyme inactivation, and increased NO formation. A triple mutant lacking the cysteines and Glu268 catalyzed sustained formation of superstoichiometric amounts of NO and exhibited slower rates of inactivation. These results suggest three alternative pathways for the reaction of ALDH2 with GTN, all involving formation of a thionitrate/sulfenyl nitrite intermediate at Cys302 as the initial step. In the first pathway, which predominates in the wild-type enzyme and reflects clearance-based GTN denitration, the thionitrate apparently reacts with one of the adjacent cysteine residues to yield nitrite and a protein disulfide. The predominant reaction catalyzed by the single and double cysteine mutants requires Glu268 and results in irreversible enzyme inactivation. Finally, combined lack of the cysteines and Glu268 shifts the reaction toward formation of the free NO radical, presumably through homolytic cleavage of the sulfenyl nitrite intermediate. Although the latter reaction accounts for less than 10% of total turnover of GTN metabolism catalyzed by wild-type ALDH2, it is most likely essential for vascular GTN bioactivation.

  18. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration.

    Science.gov (United States)

    Parmentier, S; Arnaut, F; Soetaert, W; Vandamme, E J

    2003-01-01

    D-Mannitol and D-sorbitol were produced enzymatically from D-fructose using NAD-dependent polyol dehydrogenases. For the production of D-mannitol the Leuconostoc mesenteroides mannitol dehydrogenase could be used. Gluconobacter oxydans cell extract contained however both mannitol and sorbitol dehydrogenase. When this cell extract was used, the reduction of D-fructose resulted in a mixture of D-sorbitol and D-mannitol. To determine the optimal bioconversion conditions the polyol dehydrogenases were characterized towards pH- and temperature-optimum and -stability. As a compromise between enzyme activity and stability, the bioconversion reactions were performed at pH 6.5 and 25 degrees C. Since the polyol dehydrogenases are NADH-dependent, an efficient coenzyme regeneration was needed. Regeneration of NADH was accomplished by formate dehydrogenase-mediated oxidation of formate into CO2.

  19. Active site of Zn2+-dependent sn-glycerol-1-phosphate dehydrogenase from Aeropyrum pernix K1

    Directory of Open Access Journals (Sweden)

    Jin-Suk Han

    2005-01-01

    Full Text Available The enzyme sn-glycerol-1-phosphate dehydrogenase (Gro1PDH, EC 1.1.1.261 is key to the formation of the enantiomeric configuration of the glycerophosphate backbone (sn-glycerol-1-phosphate of archaeal ether lipids. This enzyme catalyzes the reversible conversion between dihydroxyacetone phosphate and glycerol-1-phosphate. To date, no information about the active site and catalytic mechanism of this enzyme has been reported. Using the sequence and structural information for glycerol dehydrogenase, we constructed six mutants (D144N, D144A, D191N, H271A, H287A and D191N/H271A of Gro1PDH from Aeropyrum pernix K1 and examined their characteristics to clarify the active site of this enzyme. The enzyme was found to be a zinc-dependent metalloenzyme, containing one zinc ion for every monomer protein that was essential for activity. Site-directed mutagenesis of D144 increased the activity of the enzyme. Mutants D144N and D144A exhibited low affinity for the substrates and higher activity than the wild type, but their affinity for the zinc ion was the same as that of the wild type. Mutants D191N, H271A and H287A had a low affinity for the zinc ion and a low activity compared with the wild type. The double mutation, D191N/ H271A, had no enzyme activity and bound no zinc. From these results, it was clarified that residues D191, H271 and H287 participate in the catalytic activity of the enzyme by binding the zinc ion, and that D144 has an effect on substrate binding. The structure of the active site of Gro1PDH from A. pernix K1 seems to be similar to that of glycerol dehydrogenase, despite the differences in substrate specificity and biological role.

  20. [Corticosteroid hormones and angiotensin-converting enzyme in the dynamics of chronic granulomatous inflammation].

    Science.gov (United States)

    Cherkasova, A P; Selyatitskaya, V G

    2013-01-01

    It was studied the contents of corticosteroid hormones in the adrenal gland, plasma and 11beta-hydroxysteroid dehydrogenase activity (11betaHSD) in the liver and kidneys, as well as the activity of angiotensin-converting enzyme (ACE) in blood plasma, lung, renal cortex and liver of male rats in the dynamics of SiO2-induced inflammation. The study showed that chronic granulomatous inflammation in rats was accompanied by an initial short-term reaction to the activation of synthesis of the main glucocorticoid hormone, followed by specific inhibition of synthesis of this hormone as well as 11betaHSD activity in the adrenal gland. Inflammation caused less pronounced changes in the functional state of the renin-angiotensin system, however, inhibition of ACE activity observed in plasma, liver and kidneys during the initial period of inflammation. Factor analysis revealed a violation of intersystem relations of hypothalamic-pituitary-adrenocortical and renin-angiotensin systems in inflammation due, probably, to the modulating influence of cytokines.

  1. Maternal Prenatal Mental Health and Placental 11β-HSD2 Gene Expression: Initial Findings from the Mercy Pregnancy and Emotional Wellbeing Study

    Directory of Open Access Journals (Sweden)

    Sunaina Seth

    2015-11-01

    Full Text Available High intrauterine cortisol exposure can inhibit fetal growth and have programming effects for the child’s subsequent stress reactivity. Placental 11beta-hydroxysteroid dehydrogenase (11β-HSD2 limits the amount of maternal cortisol transferred to the fetus. However, the relationship between maternal psychopathology and 11β-HSD2 remains poorly defined. This study examined the effect of maternal depressive disorder, antidepressant use and symptoms of depression and anxiety in pregnancy on placental 11β-HSD2 gene (HSD11B2 expression. Drawing on data from the Mercy Pregnancy and Emotional Wellbeing Study, placental HSD11B2 expression was compared among 33 pregnant women, who were selected based on membership of three groups; depressed (untreated, taking antidepressants and controls. Furthermore, associations between placental HSD11B2 and scores on the State-Trait Anxiety Inventory (STAI and Edinburgh Postnatal Depression Scale (EPDS during 12–18 and 28–34 weeks gestation were examined. Findings revealed negative correlations between HSD11B2 and both the EPDS and STAI (r = −0.11 to −0.28, with associations being particularly prominent during late gestation. Depressed and antidepressant exposed groups also displayed markedly lower placental HSD11B2 expression levels than controls. These findings suggest that maternal depression and anxiety may impact on fetal programming by down-regulating HSD11B2, and antidepressant treatment alone is unlikely to protect against this effect.

  2. Buformin suppresses the expression of glyceraldehyde 3-phosphate dehydrogenase.

    Science.gov (United States)

    Yano, Akiko; Kubota, Masafumi; Iguchi, Kazuhiro; Usui, Shigeyuki; Hirano, Kazuyuki

    2006-05-01

    The biguanides metformin and buformin, which are clinically used for diabetes mellitus, are known to improve resistance to insulin in patients. Biguanides were reported to cause lactic acidosis as a side effect. Since the mechanism of the side effect still remains obscure, we have examined genes whose expression changes by treating HepG2 cells with buformin in order to elucidate the mechanisms of the side effect. A subtraction cDNA library was constructed by the method of suppressive subtractive hybridization and the screening of the library was performed with cDNA probes prepared from HepG2 cells treated with or without buformin for 12 h. The expression of the gene and the protein obtained by the screening was monitored by real-time RT-PCR with specific primers and Western blotting with specific antibody. The amounts of ATP and NAD+ were determined with luciferase and alcohol dehydrogenase, respectively. We found that expression of the glyceraldehyde 3-phosphate dehydrogenase (GAPD) gene was suppressed by treating HepG2 cells with 0.25 mM buformin for 12 h as a result of the library screening. The decrease in the expression depended on the treatment period. The amount of GAPD protein also decreased simultaneously with the suppression of the gene expression by the treatment with buformin. The amount of ATP and NAD+ in the HepG2 cells treated with buformin decreased to 10 and 20% of the control, respectively. These observations imply that the biguanide causes deactivation of the glycolytic pathway and subsequently the accumulation of pyruvate and NADH and a decrease in NAD+. Therefore, the reaction equilibrium catalyzed by lactate dehydrogenase leans towards lactate production and this may result in lactic acidosis.

  3. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  4. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...

  5. Direct Observation of Correlated Interdomain Motion in Alcohol Dehydrogenase

    Science.gov (United States)

    Biehl, Ralf; Hoffmann, Bernd; Monkenbusch, Michael; Falus, Peter; Préost, Sylvain; Merkel, Rudolf; Richter, Dieter

    2008-09-01

    Interdomain motions in proteins are essential to enable or promote biochemical function. Neutron spin-echo spectroscopy is used to directly observe the domain dynamics of the protein alcohol dehydrogenase. The collective motion of domains as revealed by their coherent form factor relates to the cleft opening dynamics between the binding and the catalytic domains enabling binding and release of the functional important cofactor. The cleft opening mode hardens as a result of an overall stiffening of the domain complex due to the binding of the cofactor.

  6. Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis.

    Science.gov (United States)

    Ferraris, Davide M; Spallek, Ralf; Oehlmann, Wulf; Singh, Mahavir; Rizzi, Menico

    2015-02-01

    The tricarboxylic acid (TCA) cycle is a central metabolic pathway of all aerobic organisms and is responsible for the synthesis of many important precursors and molecules. TCA cycle plays a key role in the metabolism of Mycobacterium tuberculosis and is involved in the adaptation process of the bacteria to the host immune response. We present here the first crystal structures of M. tuberculosis malate dehydrogenase and citrate synthase, two consecutive enzymes of the TCA, at 2.6 Å and 1.5 Å resolution, respectively. General analogies and local differences with the previously reported homologous protein structures are described. © 2014 Wiley Periodicals, Inc.

  7. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J.; Mattingly, S.M. [Oak Ridge National Lab., TN (United States); Danson, M. [Univ. of Bath (United Kingdom)] [and others

    1996-07-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based on the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with the continuous recycling of cofactor. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value chemical commodity. 23 refs., 5 figs.

  8. Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase

    KAUST Repository

    Karume, Ibrahim

    2016-03-01

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99% ee and >99.5% recovery in one pot and without the need to isolate the prochiral ketone intermediate.

  9. Arteriovenous malformation within an isocitrate dehydrogenase 1 mutated anaplastic oligodendroglioma

    Directory of Open Access Journals (Sweden)

    Grace Lai

    2015-01-01

    Full Text Available Background: The co-occurrence of intracranial arteriovenous malformations (AVMs and cerebral neoplasms is exceedingly rare but may harbor implications pertaining to the molecular medicine of brain cancer pathogenesis. Case Description: Here, we present a case of de novo AVM within an isocitrate dehydrogenase 1 mutated anaplastic oligodendroglioma (WHO Grade III and review the potential contribution of this mutation to aberrant angiogenesis as an interesting case study in molecular medicine. Conclusion: The co-occurrence of an IDH1 mutated neoplasm and AVM supports the hypothesis that IDH1 mutations may contribute to aberrant angiogenesis and vascular malformation.

  10. Malaria, favism and glucose-6-phosphate dehydrogenase deficiency.

    Science.gov (United States)

    Huheey, J E; Martin, D L

    1975-10-15

    Although glucose-6-phosphate dehydrogenase deficient individuals may suffer (sometimes fatally) from favism, a high incidence of this trait occurs in many Mediterranean populations. This apparent paradox is explained on the basis of a synergistic interaction between favism and G-6-PD deficiency that provides increased protection against malaria compared to that of the G-6-PD deficiency alone. This relationship is analogous to that between various hemoglobins and malaria in that there is selection for a more severe trait if it provides more protection against malaria.

  11. Selective inhibition of 6-phosphogluconate dehydrogenase from Trypanosoma brucei

    Science.gov (United States)

    Bertelli, Massimo; El-Bastawissy, Eman; Knaggs, Michael H.; Barrett, Michael P.; Hanau, Stefania; Gilbert, Ian H.

    2001-05-01

    A number of triphenylmethane derivatives have been screened against 6-phosphogluconate dehydrogenase from Trypanosoma brucei and sheep liver. Some of these compounds show good inhibition of the enzymes and also selectivity towards the parasite enzyme. Modelling was undertaken to dock the compounds into the active sites of both enzymes. Using a combination of DOCK 3.5 and FLEXIDOCK a correlation was obtained between docking score and both activity for the enzymes and selectivity. Visualisation of the docked structures of the inhibitors in the active sites of the enzymes yielded a possible explanation of the selectivity for the parasite enzyme.

  12. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  13. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  14. Structural studies of MFE-1: the 1.9 A crystal structure of the dehydrogenase part of rat peroxisomal MFE-1.

    Science.gov (United States)

    Taskinen, Jukka P; Kiema, Tiila R; Hiltunen, J Kalervo; Wierenga, Rik K

    2006-01-27

    The 1.9 A structure of the C-terminal dehydrogenase part of the rat peroxisomal monomeric multifunctional enzyme type 1 (MFE-1) has been determined. In this construct (residues 260-722 and referred to as MFE1-DH) the N-terminal hydratase part of MFE-1 has been deleted. The structure of MFE1-DH shows that it consists of an N-terminal helix, followed by a Rossmann-fold domain (domain C), followed by two tightly associated helical domains (domains D and E), which have similar topology. The structure of MFE1-DH is compared with the two known homologous structures: human mitochondrial 3-hydroxyacyl-CoA dehydrogenase (HAD; sequence identity is 33%) (which is dimeric and monofunctional) and with the dimeric multifunctional alpha-chain (alphaFOM; sequence identity is 28%) of the bacterial fatty acid beta-oxidation alpha2beta2-multienzyme complex. Like MFE-1, alphaFOM has an N-terminal hydratase part and a C-terminal dehydrogenase part, and the structure comparisons show that the N-terminal helix of MFE1-DH corresponds to the alphaFOM linker helix, located between its hydratase and dehydrogenase part. It is also shown that this helix corresponds to the C-terminal helix-10 of the hydratase/isomerase superfamily, suggesting that functionally it belongs to the N-terminal hydratase part of MFE-1.

  15. Investigations regarding the anthropic impact on the Krebs cycle dehydrogenases system on certain wood-species in mining areas, Suceava county

    Directory of Open Access Journals (Sweden)

    Marius Viorel Oniciuc

    2013-03-01

    Full Text Available The Krebs cycle, a second stage of cellular respiration that occurs in the mitochondrion of the leafcell and consist in a multistep processes plays a central role in catabolism of organic fuel molecules. The miningextraction technologies for both underground and surface, the preparation of copper ore and barite applied in Tarnia,respectively to the sulphur in Calimani Mountain and the excess of these elements in natural environment may causemalfunction of ecosystem. The dehydrogenases of Krebs cycle can give information on the type and the duration of theeffects of pollutants on the metabolic activity in leaves, to subsequent area pollution, therefore, the aim of the presentstudy has been to determine these effects on this enzymatic system activity. For this reason, the isocitrate dehydrogenase,the -ketoglutate dehydrogenase, the succinate ehydrogenase and the malate dehydrogenase activity was determined using the spectrophotometric method with triphenyl-tetrazolium and the analysis of experimental results shows the differences from one sample to another sample of closely related species specificity, but also the effect of environmentalfactors.

  16. The impact of hypoxia on the activity of lactate dehydrogenase in two different pre-clinical tumour models

    DEFF Research Database (Denmark)

    Lukacova, Slavka; Sørensen, Brita; Alsner, Jan

    2008-01-01

    Aim. To investigate the direct relationship between tumour hypoxia and lactate dehydrogenase (Ldh) levels in serum and tumour in two different pre-clinical murine models. Materials and methods. Experiments were performed in CDF1 or C3H/Km mice implanted with a C3H mammary carcinoma and SCCVII...... carcinoma bearing mice. Reoxygenation for 4 or 24 hours had no additional effect on Ldh activity in any of the models. Discussion. Serum Ldh activity can be a marker for tumour burden in certain types of cancer. The relationship between serum and tumour Ldh and tumour hypoxia has not been confirmed. However...

  17. Vasodilatory effect of nitroglycerin in Japanese subjects with different aldehyde dehydrogenase 2 (ALDH2) genotypes.

    Science.gov (United States)

    Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki; Yonezawa, Kazuya

    2017-03-23

    The functional genetic polymorphism of aldehyde dehydrogenase 2 (ALDH2) influences the enzymatic activities of its wild type (Glu504 encoded by ALDH2*1) and mutant type (Lys504 encoded by ALDH2*2) proteins. The enzymatic activities of mutant-type ALDH2 are limited compared with those of the wild type. ALDH2 has been suggested as a critical factor for nitroglycerin-mediated vasodilation by some human studies and in vitro studies. Currently, there is no research on direct observations of the vasodilatory effect of nitroglycerin sublingual tablets, which is the generally used dosage form. In the present study, the contribution of ALDH2 to the vasodilatory effect of nitroglycerin sublingual tablets was investigated among three genotype groups (ALDH2*1/*1, ALDH2*1/*2, and ALDH2*2/*2) in Japanese. The results by direct assessments of in vivo nitroglycerin-mediated dilation showed no apparent difference in vasodilation among all genotypes of ALDH2. Furthermore, to analyze the effect of other factors (age and flow-mediated dilation), multiple regression analysis and Pearson's correlation coefficient analysis were carried out. These analyses also indicated that the genotypes of ALDH2 were not related to the degree of vasodilation. These results suggest the existence of other predominant pathway(s) for nitroglycerin biotransformation, at least with regard to clinical nitroglycerin (e.g., a sublingual tablet) in Japanese subjects.

  18. [Purification and properties of two chloridazondihydrodiol dehydrogenases from chloridazon degrading bacteria].

    Science.gov (United States)

    Eberspächer, J; Lingens, F

    1978-10-01

    A cell-free extract of Chloridazon-degrading soil bacteria catalyzes the conversion of the dihydrodiol derivative of chloridazon to the corresponding catechol derivative. NAD is required as hydrogen acceptor. Chromatography of the crude extract on DEAE-cellulose results in the elution of two different enzymes (enzyme A and enzyme B, respectively) with the same catalytic capacity. Both enzymes were purified to homogeneity in disc-gel electrophoresis and their properties were compared. The molecular weight was found to be 220 000 for both enzymes. Dodecyl sulphate polyacrylamide gel electrophoresis indicated subunits of molecular weight 50 000 in both cases. The synthesis of the enzymes does not seem to be under inductive control. The two dehydrogenases differ in heat-stability, pH-optimum, Km-values for the substrate and in their sensitivity to inhibitors. Enzyme A shows relatively high heat lability, a pH-optimum at pH 9.5, and a Km-value of 0.25 mM for the dihydrodiol derivative of chloridazon. The catalytic activity of enzyme A is not influenced by p-chloromercuribenzoate or by N-bromosuccinimide. In contrast enzyme B is relatively stable at high temperatures, showing a pH-optimum of 7.0, and a Km for the dihydrodiol derivative of chloridazon of 1.0 mM. Enzyme B can be completely inhibited by even small amounts of p-chloromercuribenzoate and by N-bromosuccinimide. Striking differences were found in the substrate specificities of the two dehydrogenases. Whereas enzyme A exhibits a high specificity towards dihydrodiols derived from aromates of the chloridazon or phenazon type, enzyme B is much less specific and is also able to convert the dihydrodiols of benzene, toluene or chlorobenzene into the corresponding catechols. Both enzymes are competitively inhibited by the reaction product, the catechol of chloridazon. Other catechols differed in their inhibitory effect on the two dehydrogenases. These differences are correlated with the different substrate

  19. 4-dihydrotrisporin-dehydrogenase, an enzyme of the sex hormone pathway of Mucor mucedo: purification, cloning of the corresponding gene, and developmental expression.

    Science.gov (United States)

    Wetzel, Jana; Scheibner, Olaf; Burmester, Anke; Schimek, Christine; Wöstemeyer, Johannes

    2009-01-01

    The NADP-dependent 4-dihydrotrisporin-dehydrogenase is a (-) mating-type-specific enzyme in the pathway from beta-carotene to trisporic acid. This substance and its isomers and derivatives represent the general system of sexual communication in zygomycetes. The (-) mating type of Mucor mucedo was stimulated by trisporic acid and the enzyme was purified by ion exchange and affinity chromatography. Several peptides of the 26-kDa protein, digested with trypsin, were sequenced by mass spectrometry. Oligonucleotides based on protein sequence data were used for PCR amplification of genomic DNA. The primary PCR fragment was sequenced and the complete gene, TSP2, was isolated. A labeled TSP2 hybridization probe detects a single-copy gene in the genome of M. mucedo. Northern blot analysis with RNAs from different growth stages reveals that the expression of the gene depends on the developmental stage of the mycelium in both mating types of M. mucedo. At the enzyme level, activity is found exclusively in the (-) mating type. However, renaturation of proteins in sodium dodecyl sulfate-containing gels revealed the TSP2 gene product in both mating types. Analyzing the protein sequence places the enzyme in the short chain dehydrogenase superfamily. Thus, it has an evolutionary origin distinct from that of the previously isolated 4-dihydromethyltrisporate dehydrogenase, which belongs to the aldo/keto reductase superfamily. Apart from the TSP2 genes in the three sequenced zygomycetous genomes (Phycomyces blakesleeanus, Rhizopus oryzae, and Mucor circinelloides), the closest relative is the Myxococcus xanthus CsgA gene product, which is also a short chain dehydrogenase, involved in C signaling and fruiting body formation.

  20. 4-Dihydrotrisporin-Dehydrogenase, an Enzyme of the Sex Hormone Pathway of Mucor mucedo: Purification, Cloning of the Corresponding Gene, and Developmental Expression▿

    Science.gov (United States)

    Wetzel, Jana; Scheibner, Olaf; Burmester, Anke; Schimek, Christine; Wöstemeyer, Johannes

    2009-01-01

    The NADP-dependent 4-dihydrotrisporin-dehydrogenase is a (−) mating-type-specific enzyme in the pathway from β-carotene to trisporic acid. This substance and its isomers and derivatives represent the general system of sexual communication in zygomycetes. The (−) mating type of Mucor mucedo was stimulated by trisporic acid and the enzyme was purified by ion exchange and affinity chromatography. Several peptides of the 26-kDa protein, digested with trypsin, were sequenced by mass spectrometry. Oligonucleotides based on protein sequence data were used for PCR amplification of genomic DNA. The primary PCR fragment was sequenced and the complete gene, TSP2, was isolated. A labeled TSP2 hybridization probe detects a single-copy gene in the genome of M. mucedo. Northern blot analysis with RNAs from different growth stages reveals that the expression of the gene depends on the developmental stage of the mycelium in both mating types of M. mucedo. At the enzyme level, activity is found exclusively in the (−) mating type. However, renaturation of proteins in sodium dodecyl sulfate-containing gels revealed the TSP2 gene product in both mating types. Analyzing the protein sequence places the enzyme in the short chain dehydrogenase superfamily. Thus, it has an evolutionary origin distinct from that of the previously isolated 4-dihydromethyltrisporate dehydrogenase, which belongs to the aldo/keto reductase superfamily. Apart from the TSP2 genes in the three sequenced zygomycetous genomes (Phycomyces blakesleeanus, Rhizopus oryzae, and Mucor circinelloides), the closest relative is the Myxococcus xanthus CsgA gene product, which is also a short chain dehydrogenase, involved in C signaling and fruiting body formation. PMID:18931040

  1. Evolution of D-lactate dehydrogenase activity from glycerol dehydrogenase and its utility for D-lactate production from lignocellulose.

    Science.gov (United States)

    Wang, Qingzhao; Ingram, Lonnie O; Shanmugam, K T

    2011-11-22

    Lactic acid, an attractive, renewable chemical for production of biobased plastics (polylactic acid, PLA), is currently commercially produced from food-based sources of sugar. Pure optical isomers of lactate needed for PLA are typically produced by microbial fermentation of sugars at temperatures below 40 °C. Bacillus coagulans produces L(+)-lactate as a primary fermentation product and grows optimally at 50 °C and pH 5, conditions that are optimal for activity of commercial fungal cellulases. This strain was engineered to produce D(-)-lactate by deleting the native ldh (L-lactate dehydrogenase) and alsS (acetolactate synthase) genes to impede anaerobic growth, followed by growth-based selection to isolate suppressor mutants that restored growth. One of these, strain QZ19, produced about 90 g L(-1) of optically pure D(-)-lactic acid from glucose in lactate dehydrogenase (D-LDH) activity was identified as a mutated form of glycerol dehydrogenase (GlyDH; D121N and F245S) that was produced at high levels as a result of a third mutation (insertion sequence). Although the native GlyDH had no detectable activity with pyruvate, the mutated GlyDH had a D-LDH specific activity of 0.8 μmoles min(-1) (mg protein)(-1). By using QZ19 for simultaneous saccharification and fermentation of cellulose to D-lactate (50 °C and pH 5.0), the cellulase usage could be reduced to 1/3 that required for equivalent fermentations by mesophilic lactic acid bacteria. Together, the native B. coagulans and the QZ19 derivative can be used to produce either L(+) or D(-) optical isomers of lactic acid (respectively) at high titers and yields from nonfood carbohydrates.

  2. Glutamate dehydrogenase from pumpkin cotyledons: characterization and isoenzymes.

    Science.gov (United States)

    Chou, K H; Splittstoesser, W E

    1972-04-01

    Glutamate dehydrogenase from pumpkin (Cucurbita moschata Pior. cultivar Dickinson Field) cotyledons was found in both soluble and particulate fractions with the bulk of the activity in the soluble fraction. Both enzymes used NAD(H) and NADP(H) but NAD(H) was favored. The enzymes were classified as glutamate-NAD oxidoreductase, deaminating (EC 1.4.1.3). Both enzymes were heat stable, had a pH optimum for reductive amination of 8.0, and were inhibited by high concentrations of NH(4) (+) or alpha-ketoglutarate. The soluble enzyme was more sensitive to NH(4) (+) inhibition and was activated by metal ions after ammonium sulfate fractionation while the solubilized particulate enzyme was not. Inhibition by ethylenediaminetetraacetate was restored by several divalent ions and inhibition by p-hydroxymercuribenzoate was reversed by glutathione. Particulate glutamate dehydrogenase showed a greater activity with NADP. The molecular weights of the enzymes are 250,000. Separation of the enzymes by disc gel electrophoresis showed that during germination the soluble isoenzymes increased from 1 to 7 in number, while only one particulate isoenzyme was found at any time. This particulate isoenzyme was identical with one of the soluble isoenzymes. A number of methods indicated that the soluble isoenzymes were not simply removed from the particulate fraction and that true isoenzymes were found.

  3. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    Directory of Open Access Journals (Sweden)

    Ferisman Tindaon

    2011-01-01

    Full Text Available The objective of this research was to determine the effects of nitrification inhibitors (NIs such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA,in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT. The toxicity and dose response curve of three NIs were quantified under laboratory conditions using a loamy clay, a sandy loam and a sandy soil. The quantitative determination of DHA was carried out spectrophotometrically. In all experiments, the influence of 5-1000 times the base concentration were examined. To evaluate the rate of inhibition with the increasing NI concentrations, dose reponse curves were presented and no observable effect level =NOEL, as well as effective dose ED10 and ED 50(10% and 50% inhibition were calculated. The NOEL for common microbial activity such as DHA was about 30–70 times higher than base concentration in all investigated soils. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils if it compare to DMPP and DCD. The NOEL,ED10 and ED50 values higher in clay than in loamy or sandy soil. The NIs were generally most effective in sandy soils. The three NIs considered at the present state of knowledge as environmentally safe in use.

  4. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs.

    Science.gov (United States)

    Laganà, G; Bellocco, E; Mannucci, C; Leuzzi, U; Tellone, E; Kotyk, A; Galtieri, A

    2006-01-01

    Lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) electrophoretic tissue patterns of two different orders of Elasmobranchii: Carchariniformes (Galeus melanostomus and Prionace glauca) and Squaliformes (Etmopterus spinax and Scymnorinus licha) were studied. The number of loci expressed for these enzymes was the same of other elasmobranch species. Differences in tissue distribution were noted in LDH from G. melanostomus due to the presence of an additional heterotetramer in the eye tissue. There were also differences in MDH. In fact, all the tissues of E. spinax and G. melanostomus showed two mitochondrial bands. Major differences were noted in the number of isozymes detected in the four compared elasmobranchs. The highest polymorphism was observed in E. spinax and G. melanostomus, two species that live in changeable environmental conditions. The resistance of isozymes after urea treatment was examined; the resulting patterns showed a quite good resistance of the enzymes, higher for LDH than MDH, also at urea concentration much greater than physiological one. These results indicated that the total isozyme resistance can be considered higher in urea accumulators (such as elasmobranchs) than in the non-accumulators (such as teleosts).

  5. Expression, purification, and characterization of formaldehyde dehydrogenase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Zhang, Wangluo; Chen, Shuai; Liao, Yuanping; Wang, Dingli; Ding, Jianfeng; Wang, Yingming; Ran, Xiaoyuan; Lu, Daru; Zhu, Huaxing

    2013-12-01

    As a member of zinc-containing medium-chain alcohol dehydrogenase family, formaldehyde dehydrogenase (FDH) can oxidize toxic formaldehyde to less active formate with NAD(+) as a cofactor and exists in both prokaryotes and eukaryotes. Most FDHs are well known to be glutathione-dependent in the catalysis of formaldehyde oxidation, but the enzyme from Pseudomonas putida is an exception, which is independent of glutathione. To identify novel glutathione-independent FDHs from other bacterial strains and facilitate the corresponding structural and enzymatic studies, high-level soluble expression and efficient purification of these enzymes need to be achieved. Here, we present molecular cloning, expression, and purification of the FDH from Pseudomonas aeruginosa, which is a Gram-negative pathogenic bacterium causing opportunistic human infection. The FDH of P. aeruginosa shows high sequence identity (87.97%) with that of P. putida. Our results indicated that coexpression with molecular chaperones GroES, GroEL, and Tig has significantly attenuated inclusion body formation and improved the solubility of the recombinant FDH in Escherichiacoli cells. A purification protocol including three chromatographic steps was also established to isolate the recombinant FDH to homogeneity with a yield of ∼3.2 mg from 1L of cell culture. The recombinant P. aeruginosa FDH was properly folded and biologically functional, as demonstrated by the mass spectrometric, crystallographic, and enzymatic characterizations of the purified proteins. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Orthodontic Force Application in Correlation with Salivary Lactate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Erik Husin

    2013-07-01

    Full Text Available Orthodontic tooth movement generate mechanical forces to periodontal ligament and alveolar bone. The forces correlate with initial responses of periodontal tissues and involving many metabolic changes. One of the metabolic changes detected in saliva is lactate dehydrogenase (LDH activity. Objectives: To evaluate the correlation between orthodontic interrupted force application, lactate dehydrogenase activity and the distance of tooth movement. Methods: upper premolar, pre-retraction of upper canine and 1, 7, 14, 21 and 28 days post-retraction of upper canine with 100g interrupted orthodontic force. Results: duration of force (F=11.926 p 14 and 28 days post-retraction of canine. The region of retraction correlated with the distance of tooth movement (F=7.377 p=0.007. The duration of force correlated with the distance of tooth movement (F=66.554 p=0.000. retraction of canine. Conclusion: This study concluded that orthodontic interrupted force application on canine could increase the distance of tooth movement and LDH activity in saliva.

  7. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.; Khan, Amir R.

    2016-05-23

    Glutamate dehydrogenases (EC 1.4.1.2–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)+as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD+versusNADP+, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP+cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.

  8. Structural analysis of fungus-derived FAD glucose dehydrogenase.

    Science.gov (United States)

    Yoshida, Hiromi; Sakai, Genki; Mori, Kazushige; Kojima, Katsuhiro; Kamitori, Shigehiro; Sode, Koji

    2015-08-27

    We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 Å and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 Å. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management.

  9. FAD binding properties of a cytosolic version of Escherichia coli NADH dehydrogenase-2.

    Science.gov (United States)

    Villegas, Josefina M; Valle, Lorena; Morán Vieyra, Faustino E; Rintoul, María R; Borsarelli, Claudio D; Rapisarda, Viviana A

    2014-03-01

    Respiratory NADH dehydrogenase-2 (NDH-2) of Escherichia coli is a peripheral membrane-bound flavoprotein. By eliminating its C-terminal region, a water soluble truncated version was obtained in our laboratory. Overall conformation of the mutant version resembles the wild-type protein. Considering these data and the fact that the mutant was obtained as an apo-protein, the truncated version is an ideal model to study the interaction between the enzyme and its cofactor. Here, the FAD binding properties of this version were characterized using far-UV circular dichroism (CD), differential scanning calorimetry (DSC), limited proteolysis, and steady-state and dynamic fluorescence spectroscopy. CD spectra, thermal unfolding and DSC profiles did not reveal any major difference in secondary structure between apo- and holo-protein. In addition, digestion site accessibility and tertiary conformation were similar for both proteins, as seen by comparable chymotryptic cleavage patterns. FAD binding to the apo-protein produced a parallel increment of both FAD fluorescence quantum yield and steady-state emission anisotropy. On the other hand, addition of FAD quenched the intrinsic fluorescence emission of the truncated protein, indicating that the flavin cofactor should be closely located to the protein Trp residues. Analysis of the steady-state and dynamic fluorescence data confirms the formation of the holo-protein with a 1:1 binding stoichiometry and an association constant KA=7.0(±0.8)×10(4)M(-1). Taken together, the FAD-protein interaction is energetically favorable and the addition of FAD is not necessary to induce the enzyme folded state. For the first time, a detailed characterization of the flavin:protein interaction was performed among alternative NADH dehydrogenases.

  10. Crystal structure studies of NADP{sup +} dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Pampa, K.J. [Department of Studies in Microbiology, University of Mysore, Mysore 570 006 (India); Manjula, M. [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India); Abdoh, M.M.M. [Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Kunishima, Naoki [Advanced Protein Crystallography Research Group, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148 (Japan); Lokanath, N.K., E-mail: lokanath@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore 570 006 (India)

    2014-06-20

    Highlights: • We determined the structure of isocitrate dehydrogenase with citrate and cofactor. • The structure reveals a unique novel terminal domain involved in dimerization. • Clasp domain shows significant difference, and catalytic residues are conserved. • Oligomerization of the enzyme is quantized with subunit-subunit interactions. • Novel domain of this enzyme is classified as subfamily of the type IV. - Abstract: NADP{sup +} dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP{sup +} was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.

  11. 11β-Hydroxysteroid Dehydrogenase Activity in the Brain Does Not Contribute to Systemic Interconversion of Cortisol and Cortisone in Healthy Men

    OpenAIRE

    Kilgour, Alixe H M; Semple, Scott; Marshall, Ian; Andrews, Peter; Andrew, Ruth; Walker, Brian R.

    2015-01-01

    Context and Objective: 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) catalyses regeneration of cortisol in liver, adipose tissue, and skeletal muscle, making a substantial contribution to circulating cortisol as demonstrated in humans by combining stable isotope tracer infusion with arteriovenous sampling. In the brain, 11βHSD1 is a potential therapeutic target implicated in age-associated cognitive dysfunction. We aimed to quantify brain 11βHSD1 activity, both to assess its contribution ...

  12. Identification of yak lactate dehydrogenase B gene variants by gene cloning

    Institute of Scientific and Technical Information of China (English)

    ZHENG YuCai; ZHAO XingBo; ZHOU Jing; PIAO Ying; JIN SuYu; HE QingHua; HONG Jian; LINing; WU ChangXin

    2008-01-01

    Native polyacrylamide gel electrophoresis showed that two types of lactate dehydrogenase (LDH) existed in yaks. Based on the electrophoresis characteristics of LDH isoenzymes, yak LDH variants were speculated to be the gene mutation on H subunit encoded by B gene. According to the mobility in electrophoresis, the fast-band LDH type was named LDH-Hf and the slow-band LDH type LDH-Hs. In order to reveal the gene alteration In yak LDH variants, total RNA was extracted from heart tissues of yaks with different LDH variants, and cDNAs of the two variants were reverse transcripted. Two variants of B genes were cloned by RT-PCR. Sequence analysis revealed that four nucleotides differed between LDH-Bf and LDH-Bs, which resulted in two amino acids alteration. By Deepview software analysis of the conformation of yak LDH1 variants and H subunit, these four nucleotides altered two amino acids that generated new hydrogen bonds to change the hydrogen bonds network, and further caused subtle conformstionsl changes between the two LDH variants.

  13. Directed evolution of leucine dehydrogenase for improved efficiency of L-tert-leucine synthesis.

    Science.gov (United States)

    Zhu, Lin; Wu, Zhe; Jin, Jian-Ming; Tang, Shuang-Yan

    2016-07-01

    L-tert-Leucine and its derivatives are used as synthetic building blocks for pharmaceutical active ingredients, chiral auxiliaries, and ligands. Leucine dehydrogenase (LeuDH) is frequently used to prepare L-tert-leucine from the α-keto acid precursor trimethylpyruvate (TMP). In this study, a high-throughput screening method for the L-tert-leucine synthesis reaction based on a spectrophotometric approach was developed. Directed evolution strategy was applied to engineer LeuDH from Lysinibacillus sphaericus for improved efficiency of L-tert-leucine synthesis. After two rounds of random mutagenesis, the specific activity of LeuDH on the substrate TMP was enhanced by more than two-fold, compared with that of the wild-type enzyme, while the activity towards its natural substrate, leucine, decreased. The catalytic efficiencies (k cat/K m) of the best mutant enzyme, H6, on substrates TMP and NADH were all enhanced by more than five-fold as compared with that of the wild-type enzyme. The efficiency of L-tert-leucine synthesis by mutant H6 was significantly improved. A productivity of 1170 g/l/day was achieved for the mutant enzyme H6, compared with 666 g/l/day for the wild-type enzyme.

  14. Identification of yak lactate dehydrogenase B gene variants by gene cloning

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Native polyacrylamide gel electrophoresis showed that two types of lactate dehydrogenase (LDH) existed in yaks. Based on the electrophoresis characteristics of LDH isoenzymes, yak LDH variants were speculated to be the gene mutation on H subunit encoded by B gene. According to the mobility in electrophoresis, the fast-band LDH type was named LDH-Hf and the slow-band LDH type LDH-Hs. In order to reveal the gene alteration in yak LDH variants, total RNA was extracted from heart tissues of yaks with different LDH variants, and cDNAs of the two variants were reverse transcripted. Two variants of B genes were cloned by RT-PCR. Sequence analysis revealed that four nucleotides differed between LDH-Bf and LDH-Bs, which resulted in two amino acids alteration. By Deepview software analysis of the conformation of yak LDH1 variants and H subunit, these four nucleotides altered two amino acids that generated new hydrogen bonds to change the hydrogen bonds network, and further caused subtle conformational changes between the two LDH variants.

  15. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian...... (fast metabolizers) showed an average daily alcohol intake of 4.3 g per day lower than subjects with two copies of the rs1229984(G) allele (slow metabolizers) (P-diff...

  16. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    Science.gov (United States)

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a membraneless ethanol microfluidic fuel cell

    Science.gov (United States)

    Galindo-de-la-Rosa, J.; Arjona, N.; Arriaga, L. G.; Ledesma-García, J.; Guerra-Balcázar, M.

    2015-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldH) enzymes were immobilized by covalent binding and used as the anode in a bi-enzymatic membraneless ethanol hybrid microfluidic fuel cell. The purpose of using both enzymes was to optimize the ethanol electro-oxidation reaction (EOR) by using ADH toward its direct oxidation and AldH for the oxidation of aldehydes as by-products of the EOR. For this reason, three enzymatic bioanode configurations were evaluated according with the location of enzymes: combined, vertical and horizontally separated. In the combined configuration, a current density of 16.3 mA cm-2, a voltage of 1.14 V and a power density of 7.02 mW cm-2 were obtained. When enzymes were separately placed in a horizontal and vertical position the ocp drops to 0.94 V and to 0.68 V, respectively. The current density also falls to values of 13.63 and 5.05 mA cm-2. The decrease of cell performance of bioanodes with separated enzymes compared with the combined bioanode was of 31.7% and 86.87% for the horizontal and the vertical array.

  18. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of gastric cancer patients.

    Science.gov (United States)

    Jelski, Wojciech; Orywal, Karolina; Laniewska, Magdalena; Szmitkowski, Maciej

    2010-12-01

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are present in gastric cancer cells (GC). Moreover, the activity of total ADH and class IV isoenzymes is significantly higher in cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnostics of gastric cancer. The aim of this study was to investigate a potential role of ADH and ALDH as tumor markers for gastric cancer. We defined diagnostic sensitivity, specificity, predictive value for positive and negative results, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 168 patients with gastric cancer before treatment and from 168 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH IV isoenzyme and ADH total in the sera of gastric cancer patients compared to the control. The diagnostic sensitivity for ADH IV was 73%, specificity 79%, positive and negative predictive values were 81 and 72% respectively. Area under ROC curve for ADH IV was 0.67. The results suggest a potential role for ADH IV as marker of gastric cancer.

  19. The diagnostic value of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) measurement in the sera of colorectal cancer patients.

    Science.gov (United States)

    Jelski, Wojciech; Mroczko, Barbara; Szmitkowski, Maciej

    2010-10-01

    The activity of total alcohol dehydrogenase (ADH) and class I isoenzymes is significantly higher in colorectal cancer tissue than in healthy mucosa. The activity of these enzymes in cancer cells is probably reflected in the sera and could thus be helpful for diagnosing colorectal cancer. The aim of this study was to investigate a potential role of ADH and aldehyde dehydrogenase (ALDH) as tumor markers for colorectal cancer. We defined diagnostic sensitivity, specificity, positive and negative predictive values, and receiver-operating characteristics (ROC) curve for tested enzymes. Serum samples were taken from 182 patients with colorectal cancer before treatment and from 160 control subjects. Total ADH activity and class III and IV isoenzymes were measured by photometric, but ALDH activity and ADH I and II by the fluorometric method, with class-specific fluorogenic substrates. There was significant increase in the activity of ADH I isoenzyme and ADH total in the sera of colorectal cancer patients compared to the control. The diagnostic sensitivity for ADH I was 76%, specificity 82%, AND positive and negative predictive values were 85 and 74%, respectively. The sensitivity and specificity of ADH I increased with the stage of the carcinoma. The area under ROC curve for ADH I was 0.72. The results suggest a potential role for ADH I as marker for colorectal cancer.

  20. In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation.

    Science.gov (United States)

    Thitiprasert, Sitanan; Sooksai, Sarintip; Thongchul, Nuttha

    2011-08-01

    Rhizopus oryzae is becoming more important due to its ability to produce an optically pure L: -lactic acid. However, fermentation by Rhizopus usually suffers from low yield because of production of ethanol as a byproduct. Limiting ethanol production in living immobilized R. oryzae by inhibition of alcohol dehydrogenase (ADH) was observed in shake flask fermentation. The effects of ADH inhibitors added into the medium on the regulation of ADH and lactate dehydrogenase (LDH) as well as the production of cell biomass, lactic acid, and ethanol were elucidated. 1,2-diazole and 2,2,2-trifluroethanol were found to be the effective inhibitors used in this study. The highest lactic acid yield of 0.47 g/g glucose was obtained when 0.01 mM 2,2,2-trifluoroethanol was present during the production phase of the pregrown R. oryzae. This represents about 38% increase in yield as compared with that from the simple glucose fermentation. Fungal metabolism was suppressed when iodoacetic acid, N-ethylmaleimide, 4,4'-dithiodipyridine, or 4-hydroxymercury benzoic acid were present. Dramatic increase in ADH and LDH activities but slight change in product yields might be explained by the inhibitors controlling enzyme activities at the pyruvate branch point. This showed that in living R. oryzae, the inhibitors regulated the flux through the related pathways.

  1. The influence of oxygen on radiation-induced structural and functional changes in glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase

    Science.gov (United States)

    Rodacka, Aleksandra; Serafin, Eligiusz; Bubinski, Michal; Krokosz, Anita; Puchala, Mieczyslaw

    2012-07-01

    Proteins are major targets for oxidative damage due to their abundance in cells and high reactivity with free radicals. In the present study we examined the influence of oxygen on radiation-induced inactivation and structural changes of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH). We chose these two enzymes because they occur at high concentrations and participate in the most important processes in organisms; furthermore, they show considerable similarity in their structure. Protein solutions were irradiated with X-rays in doses ranging from 0.1 to 0.7 kGy, in air and N2O. The much higher radiation inactivation of GAPDH as compared to LDH is correlated with substantially greater structural changes in this protein, mainly involving the loss of free thiol groups (-SH). Of lesser importance in the differentiation of the radiosensitivity of the studied enzymes are tryptophan residues. Molecular oxygen, present during irradiation, increased to a significantly greater extent the inactivation and structural changes of GAPDH than that of LDH. The results suggest that the greater effect of oxygen on GAPDH is due to the higher efficiency of the superoxide radical, the higher amount of hydroperoxides generated, and the higher degree of unfolding of this protein.

  2. Structural basis for the dysfunctioning of human 2-oxo acid dehydrogenase complexes

    NARCIS (Netherlands)

    Hengeveld, A.F.; Kok, de A.

    2002-01-01

    2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate

  3. P450BM3 fused to phosphite dehydrogenase allows phosphite-driven selective oxidations

    NARCIS (Netherlands)

    Beyer, Nina; Kulig, Justyna K; Bartsch, Anette; Hayes, Martin A; Janssen, Dick B; Fraaije, Marco W

    2016-01-01

    To facilitate the wider application of the NADPH-dependent P450BM3, we fused the monooxygenase with a phosphite dehydrogenase (PTDH). The resulting monooxygenase-dehydrogenase fusion enzyme acts as a self-sufficient bifunctional catalyst, accepting phosphite as a cheap electron donor for the regener

  4. Role of phosphoenolpyruvate in the NADP-isocitrate dehydrogenase and isocitrate lyase reaction in Escherichia coli.

    Science.gov (United States)

    Ogawa, Tadashi; Murakami, Keiko; Mori, Hirotada; Ishii, Nobuyoshi; Tomita, Masaru; Yoshin, Masataka

    2007-02-01

    Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki' of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.

  5. Role of Phosphoenolpyruvate in the NADP-Isocitrate Dehydrogenase and Isocitrate Lyase Reaction in Escherichia coli▿

    OpenAIRE

    2006-01-01

    Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki′ of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.

  6. Genetics Home Reference: medium-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions MCAD deficiency medium-chain acyl-CoA dehydrogenase deficiency Printable PDF Open ... Javascript to view the expand/collapse boxes. Description Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a ...

  7. A rapid procedure for eliminating chromatofocusing buffer and concentrating minor active subforms of mitochondrial malate dehydrogenase.

    Science.gov (United States)

    Gelpí, J L; Gracia, V; Imperial, S; Mazo, A; Cortés, A

    1990-11-01

    Mitochondrial malate dehydrogenase from several sources contains different molecular forms whose origin is still under discussion. Separation of these subforms has been achieved by chromatofocusing. A simple and rapid method, based on 5' AMP Sepharose chromatography, has been developed to concentrate mitochondrial malate dehydrogenase subforms and simultaneously remove chromatofocusing buffer.

  8. Structural basis for the dysfunctioning of human 2-oxo acid dehydrogenase complexes

    NARCIS (Netherlands)

    Hengeveld, A.F.; Kok, de A.

    2002-01-01

    2-oxo acid dehydrogenase complexes are a ubiquitous family of multienzyme systems that catalyse the oxidative decarboxylation of various 2-oxo acid substrates. They play a key role in the primary energy metabolism: in glycolysis (pyruvate dehydrogenase complex), the citric acid cycle (2-oxoglutarate

  9. ¹³C-metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae.

    Science.gov (United States)

    Tang, Yijin; Sieg, Alex; Trotter, Pamela J

    2011-10-20

    Glutamate dehydrogenases (GDH) interconvert α-ketoglutarate and glutamate. In yeast, NADP-dependent enzymes, encoded by GDH1 and GDH3, are reported to synthesize glutamate from α-ketoglutarate, while an NAD-dependent enzyme, encoded by GDH2, catalyzes the reverse. Cells were grown in acetate/raffinose (YNAceRaf) to examine the role(s) of these enzymes during aerobic metabolism. In YNAceRaf the doubling time of wild type, gdh2Δ, and gdh3Δ cells was comparable at ∼4 h. NADP-dependent GDH activity (Gdh1p+Gdh3p) in wild type, gdh2Δ, and gdh3Δ was decreased ∼80% and NAD-dependent activity (Gdh2p) in wild type and gdh3Δ was increased ∼20-fold in YNAceRaf as compared to glucose. Cells carrying the gdh1Δ allele did not divide in YNAceRaf, yet both the NADP-dependent (Gdh3p) and NAD-dependent (Gdh2p) GDH activity was ∼3-fold higher than in glucose. Metabolism of [1,2-(13)C]-acetate and analysis of carbon NMR spectra were used to examine glutamate metabolism. Incorporation of (13)C into glutamate was nearly undetectable in gdh1Δ cells, reflecting a GDH activity at <15% of wild type. Analysis of (13)C-enrichment of glutamate carbons indicates a decreased rate of glutamate biosynthesis from acetate in gdh2Δ and gdh3Δ strains as compared to wild type. Further, the relative complexity of (13)C-isotopomers at early time points was noticeably greater in gdh3Δ as compared to wild type and gdh2Δ cells. These in vivo data show that Gdh1p is the primary GDH enzyme and Gdh2p and Gdh3p play evident roles during aerobic glutamate metabolism.

  10. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an associati