WorldWideScience

Sample records for 1178nm yb-doped photonic

  1. 30W, 1178nm Yb-doped photonic bandgap fiber amplifier

    DEFF Research Database (Denmark)

    Shirakawa, Akira; Maruyama, Hiroki; Ueda, Ken-ichi;

    2009-01-01

    High-power, high-efficiency ytterbium-doped solid-core photonic-bandgap fiber amplification at the long-wavelength edge of the Yb gain band is reported. Amplified-spontaneous-emission-free, 30W nonpolarized and 25W linearly-polarized 1178nm outputs have been achieved with

  2. Large-mode-area hybrid photonic crystal fiber amplifier at 1178 nm

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Chen, Mingchen; Shirakawa, Akira;

    2015-01-01

    Amplification of 1178 nm light is demonstrated in a large-mode-area single-mode ytterbium-doped hybrid photonic crystal fiber, relying on distributed spectral filtering of spontaneous emission at shorter wavelengths. An output power of 53 W is achieved with 29 dB suppression of parasitic lasing...

  3. 1178 nm all Yb-fiber laser source power-scaled by solid-core photonic bandgap fiber for 589nm generation

    DEFF Research Database (Denmark)

    Maruyama, H.; Shirakawa, A.; Ueda, K.I.;

    2009-01-01

    Here we report an 1178 nm all Yb-fiber laser source power-scaled by solid-core photonic bandgap fiber (SC-PBGF) for 589 nm generation. A 1.4 W output at 589 nm with an input power of 9 W at 1178 nm were obtained. One important advantage of PBGF is distributed filtering. Hence the gain spectrum can...

  4. Guided mode gain competition in Yb-doped rod-type photonic crystal fibers

    DEFF Research Database (Denmark)

    Poli, Federica; Passaro, Davide; Cucinotta, Annamaria;

    2009-01-01

    The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour.......The gain competition among the guided modes in Yb-doped rod-type photonic crystal fibers with a low refractive index core is investigated with a spatial model to demonstrate the fiber effective single-mode behaviour....

  5. Sectioned Core Doping Effect on Higher-Order Mode Amplification in Yb-Doped Rod-Type Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Poli, F.; Lægsgaard, Jesper; Passaro, D.;

    2009-01-01

    The amplification properties of guided modes in Yb-doped rod-type photonic crystal fibers with sectioned core doping have been investigated, evaluating the doped-area radius which provides the effective suppression of both LP 11- and LP02-like modes.......The amplification properties of guided modes in Yb-doped rod-type photonic crystal fibers with sectioned core doping have been investigated, evaluating the doped-area radius which provides the effective suppression of both LP 11- and LP02-like modes....

  6. Linearly polarized intracavity passive Q-switched Yb-doped photonic crystal fibre laser

    Indian Academy of Sciences (India)

    Usha Chakravarty; Antony Kuruvilla; Rajpal Singh; B N Upadhyay; K S Bindra; S M Oak

    2014-02-01

    In this paper we report linearly polarized high average power passive Q-switched ytterbium-doped photonic crystal fibre laser with a Cr4+:YAG crystal as a saturable absorber. An average output power of 9.4 W with pulse duration of 64 ns and pulse repetition rate of 57.4 kHz with a slope efficiency of 52% was achieved. Measured polarization extinction ratio (PER) of the Q-switched laser output was 10.5 dB.

  7. Compact, Low Threshold Nd3+:YVO4 Self-Raman Laser at 1178nm

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-Shan; TAN Hui-Ming; GAO Lan-Lan; PENG Ji-Ying; MIAO Jie-Guang

    2006-01-01

    @@ A compact low-threshold Raman laser at 1178nm is experimentally realized by using a diode-end-pumped actively Q-switched Nd3+ : YVO4 self-Raman laser. The threshold is 370mW at a pulse repetition frequency of 5 kHz. The maximum Raman laser output is 182mW with the pulse duration smaller than 20ns at a pulse repetition frequency of 30 kHz with 1.8W incident power. The optical efficiency from the incident power to the Raman laser is 10% and the slope efficiency is 13.5%.

  8. Coherent combining in an Yb doped double core fiber laser

    CERN Document Server

    Boullet, Johan; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Pagnoux, Dominique; Roy, Philippe; Dussardier, Bernard; Blanc, Wilfried; 10.1364/OL.30.001962

    2012-01-01

    Coherent combining is demonstrated in a clad pumped Yb doped double core fiber laser. A slope efficiency of more than 70 % is achieved with 96 % of the total output power on the fundamental mode of one of the two cores. This high combining efficiency is obtained when both cores are coupled via a biconical fused taper in a Michelson interferometer configuration.

  9. Synthesis and characterization of (Ba,Yb doped ceria nanopowders

    Directory of Open Access Journals (Sweden)

    Branko Matović

    2011-06-01

    Full Text Available Nanometric size (Ba, Yb doped ceria powders with fluorite-type structure were obtained by applying selfpropagating room temperature methods. Tailored composition was: Ce0.95−xBa0.05YbxO2−δ with fixed amount of Ba − 0.05 and varying Yb content “x” from 0.05 to 0.2. Powder properties such as crystallite and particle size and lattice parameters have been studied. Röntgen diffraction analyses (XRD were used to characterize the samples at room temperature. Also, high temperature treatment (up to 1550°C was used to follow stability of solid solutions. The mean diameters of the nanocrystals are determined from the full width at half maxima (FWHM of the XRD peaks. It was found that average diameter of crystallites is less than 3 nm. WilliamsonHall plots were used to separate the effect of the size and strain in the nanocrystals.

  10. Femtosecond pulse generation and amplification in Yb-doped fibre oscillator–amplifier system

    Indian Academy of Sciences (India)

    P K Mukhopadhyay

    2010-11-01

    In recent times ytterbium (Yb) doped fibre-based mode-locked master oscillator and power amplifier have attracted a great deal of interest because of their inherent advantages like flexibility, reliability, compactness, high power handling capability and diffraction limited output beam quality as compared to the solid-state counterpart. But, to successfully develope of high-power femtosecond oscillator–amplifier system based on Yb- doped fibre, an appropriate choice of the mode-locking regime and the amplifier geometry are required. Development of an all-fibre integrated high-power Yb-doped fibre oscillator–amplifier system in which the advantages of a fibre-based system can be fully exploited remained a challenge as it requires the careful optimization of dispersion, nonlinearity, gain and ASE contribution. In this article, femto-second pulse generation in Yb-doped fibre oscillator in different mode-locking regimes are reviewed and the details of development and characterization of an all-fibre, high-power, low-noise amplifier system seeded by an all-normal-dispersion mode-locked Yb-doped fibre laser oscillator is described. More than 10 W of average power is obtained from the fibre oscillator–amplifier system at a repetition rate of 43 MHz with diffraction-limited beam quality. Amplified pulses are de-chirped to sub-160 fs duration in a grating compressor. This is the first 10 W-level source of femtosecond pulses with completely fibre-integrated amplification comprised of commercially available components.

  11. Tunable passively harmonic mode-locked Yb-doped fiber laser with Lyot-Sagnac filter.

    Science.gov (United States)

    Li, Ming; Zou, Xin; Wu, Jian; Shi, Jindan; Qiu, Jifang; Hong, Xiaobin

    2015-10-10

    A novel passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all normal dispersion is proposed and experimentally demonstrated based on a semiconductor saturable absorption mirror and tunable Lyot-Sagnac filter. By only tuning the bandwidth of the filter at fixed pump power, the repetition rate of 9.87 to 167.8 MHz (corresponding to 17th-order harmonic) is obtained. This is the highest repetition rate and harmonic order for a passively harmonic mode-locked dissipative soliton Yb-doped fiber laser with all-normal dispersion to the best of our knowledge. The signal-to-noise ratio and super-mode suppression ratio for all harmonic orders are higher than 65 and 35 dB, respectively, which shows the high stability of the fiber laser. PMID:26479821

  12. Experimental observation of soliton molecule evolution in Yb-doped passively mode-locked fiber lasers

    International Nuclear Information System (INIS)

    We have observed soliton molecules with variable modulation depth of spectra in a passively mode-locked dispersion-managed Yb-doped fiber laser. The soliton molecule we experimentally investigated presents diatomic and tetratomic types. With the enhancement of pump power, the laser alternately operates at solitons molecule, temporal-separation-oscillation solitons, and harmonic mode-locked states. Moreover, the phase of solitons molecule is only locked at low pump, and excess pump would cause phase vibration. (letters)

  13. Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier.

    Science.gov (United States)

    Deng, Yujun; Chien, Ching-Yuan; Fidric, Bernard G; Kafka, James D

    2009-11-15

    We demonstrate the generation of 48 fs pulses with 18 W average power and 226 nJ of pulse energy from a Yb-doped fiber amplifier. The system uses a simple stretcher-free single-stage amplifier configuration operating in the parabolic pulse regime. The gain fiber length and pump wavelength are chosen in order to reduce the gain per unit length and generate both shorter pulses and higher pulse energy.

  14. High-power Yb-doped continuous-wave and pulsed fibre lasers

    Indian Academy of Sciences (India)

    B N Upadhyaya

    2014-01-01

    High-power laser generation using Yb-doped double-clad fibres with conversion efficiencies in excess of 80% have attracted much attention during the last decade due to their inherent advantages in terms of very high efficiency, no misalignment due to in-built intracore fibre Bragg gratings, low thermal problems due to large surface to volume ratio, diffraction-limited beam quality, compactness, reliability and fibre-optic beam delivery. Yb-doped fibres can also provide a wide emission band from ∼1010 nm to ∼1170 nm, which makes it a versatile laser medium to realize continuous-wave (CW), Q-switched short pulse, and mode-locked ultrashort pulse generation for various applications. In this article, a review of Yb-doped CW and pulsed fibre lasers along with our study on self-pulsing dynamics in CW fibre lasers to find its role in high-power fibre laser development and the physical mechanisms involved in its generation has been described. A study on the generation of high-power CWfibre laser of 165Woutput power and generation of high peak power nanosecond pulses from acousto-optic Q-switched fibre laser has also been presented.

  15. Influence of Yb-Doped Nanoporous TiO2 Films on Photovoltaic Performance of Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    XU Wei-Wei; DAI Song-Yuan; HU Lin-Hua; LIANG Lin-Yun; WANG Kong-Jia

    2006-01-01

    @@ Yb-doped TiO2 pastes with different Yb/TiO2 weight ratios are prepared in the sol-gel process to obtain dyesensitized solar cells (DSCs). The nanocrystalline size of Yb-TiO2 becomes smaller and the lattice parameters change. Lattice distortion is observed and dark current is detected. It is found that a part of Yb existing as insulating oxide Yb2Oa state acts as barrier layers at the electrode-electrolyte interface to suppress charge recombination. A Yb-doped TiO2 electrode applied in DSCs leads to a higher open-circuit voltage and a higher fill factor. How the Yb-doped TiO2 films affect the photovoltaic response of DSCs is discussed.

  16. Passive harmonic mode locked all-normal-dispersion Yb-doped fibre lasers

    Institute of Scientific and Technical Information of China (English)

    Kong Ling-Jie; Xiao Xiao-Sheng; Yang Chang-Xi

    2011-01-01

    Passive harmonic mode-locking of dissipative solitons is demonstrated in all-normal dispersion Yb-doped fibre lasers. A difference equation model of the mode-locked fibre lasers is adopted to simulate the intra-cavity nonlinear dynamics. Hysteresis phenomena around the mode-locking threshold, and the effect of introducing linear phase bias are discussed. The passive harmonic mode-locking as one kind of multipulsing operations is revealed. Moreover, the simulation shows the bistability between multipulsing and single-pulse or period multiplication.

  17. Pulsed pumped Yb-doped fiber amplifier at low repetition rate

    Institute of Scientific and Technical Information of China (English)

    Changgeng Ye; Ping Yan; Mali Gong; Ming Lei

    2005-01-01

    A pulsed pumped Yb-doped double-clad fiber (DCF) master-oscillator power amplifier (MOPA) at low repetition rate is reported. Seeded by a passive Q-switched Nd:YAG microchip laser, the fiber amplifier can generate 167-kW peak-power and 0.83-ns duration pulses at 200-Hz repetition rate. Because of the pulsed pump approach, the amplified spontaneous emission (ASE) and the spurious lasing between pulses are well avoided, and the repetition rate can be set freely from single-shot to 1 kHz. Peak power scaling limitations that arise from the fiber facet damage are discussed.

  18. Yb-doped phosphate double-cladding optical fiber laser for high-power applications

    OpenAIRE

    Mura, Emanuele; Lousteau, Joris; Boetti, Nadia Giovanna; Scarpignato, Gerardo Cristian; Milanese, Daniel

    2013-01-01

    A Yb-doped phosphate glass double cladding optical fiber was prepared using a custom designed glass composition (P2O5 - Al2O3 - Li2O - B2O3 - BaO - PbO - La2O3) for high-power amplifier and laser applications. The preform drawing method was followed, with the preform being fabricated using the rotational casting technique. This technique, previously developed for tellurite, fluoride or chalcogenide glass preforms is reported for the first time using rare earth doped phosphate glasses. The mai...

  19. Spectroscopic and crystal-field analysis of new Yb-doped laser materials

    Energy Technology Data Exchange (ETDEWEB)

    Haumesser, Paul-Henri; Gaume, Romain; Antic-Fidancev, Elisabeth; Vivien, Daniel; Viana, Bruno [Laboratoire de Chimie Appliquee de l' Etat Solide UMR 75 74, ENSCP, Paris (France)]. E-mail: viana@ext.jussieu.fr

    2001-06-11

    Crystal-field effects are very important as far as laser performances of Yb-doped materials are concerned. In order to simplify the interpretation of low-temperature spectra, two tools derived from a careful examination of crystal-field interaction are presented. Both approaches are successfully applied in the case of new Yb-doped materials, namely Ca{sub 3}Y{sub 2}(BO{sub 3}){sub 4} (CYB), Ca{sub 3}Gd{sub 2}(BO{sub 3}){sub 4} (CaGB), Sr{sub 3}Y(BO{sub 3}){sub 3} (SrYBO), Ba{sub 3}Lu(BO{sub 3}){sub 3} (BLuB), Y{sub 2}SiO{sub 5} (YSO), Ca{sub 2}Al{sub 2}SiO{sub 7} (CAS) and SrY{sub 4}(SiO{sub 4}){sub 3}O (SYS). The {sup 2}F{sub 7/2} splitting is particularly large in these materials and favourable to a quasi-three-level laser operating scheme. Calculations performed using the point charge electrostatic model for these compounds and using a consistent set of effective atomic charges confirm the experimental results. This should permit to use this model in a predictive approach. (author)

  20. The influence of critical current density of Bi-2212 superconductors by defects after Yb-doping

    Science.gov (United States)

    Lu, Tianni; Zhang, Cuiping; Guo, Shengwu; Wu, Yifang; Li, Chengshan; Zhou, Lian

    2015-12-01

    Bi2Sr2Ca1-xYbxCu2O8+δ (Bi-2212) single crystals with x = 0.000, 0.005, 0.010 and 0.020 have been prepared by self-flux method. The influences of Yb doping on the formation of the dislocations in the lattice structures, as well as the related current carrying capability are investigated. Due to the SQUID measurement and the Bean model calculation, the maximum critical current density (Jc) is obtained when the Yb doping content is x = 0.010, though the Tc and the carrier concentration are not in the optimal region. Based on the HRTEM analyses of the Ca-O and Cu-O2 layers, the optimal dislocation density in the Cu-O2 layers is deduced according to the number of the dislocations per unit area. Besides, the sizes of the dislocations also prove the effectiveness of Yb substitution on the enhancement of the current carrying capability in Bi-2212 single crystals.

  1. Unidirectional dissipative soliton operation in an all-normal-dispersion Yb-doped fiber laser without an isolator.

    Science.gov (United States)

    Li, Daojing; Shen, Deyuan; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-09-10

    We demonstrate self-started unidirectional dissipative soliton operation and noise-like pulse operation in an all-normal-dispersion bidirectional Yb-doped fiber laser mode-locked by nonlinear polarization rotation. The laser works unidirectionally once mode-locking is achieved due to the cavity directional nonlinearity asymmetry along with the nonlinear polarization rotation mode-locking mechanism. PMID:26368963

  2. Unidirectional dissipative soliton operation in an-normal-dispersion bidirectional Yb-doped fiber laser without an isolator

    CERN Document Server

    Li, Daojing; Li, Lei; Chen, Hao; Tang, Dingyuan; Zhao, Luming

    2015-01-01

    We demonstrate self-started unidirectional dissipative soliton operation and noise-like pulse operation in an all-normal-dispersion bidirectional Yb-doped fiber laser mode-locked by nonlinear polarization rotation. The laser works unidirectional once mode locking was achieved due to the cavity directional nonlinearity asymmetry along with the nonlinear polarization rotation mode locking mechanism.

  3. All-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser

    International Nuclear Information System (INIS)

    We propose and demonstrate an all-normal-dispersion multi-wavelength dissipative soliton Yb-doped fiber laser with a periodic birefringence fiber filter, for the first time to our best knowledge. Numerical simulations show that single-, dual-, and multi-wavelength dissipative solitons can be generated under appropriate filter bandwidth and saturation power. Under a certain filter bandwidth, the generated wavelength number of multi-wavelength mode-locked dissipative solitons is related to the saturation power, decreasing with increasing saturation power. The maximal and minimal attainable wavelength spacing of multi-wavelength dissipative solitons are also investigated, which are 21 nm and 4.6 nm, respectively, according to our simulations. Furthermore, the generation of multi-wavelength dissipative solitons has been verified by experiments. Dual- and three-wavelength dissipative solitons with a wavelength spacing of 16.4 nm have been achieved. (letter)

  4. Hybrid femtosecond fiber laser outcrossing Er-doped fiber and Yb-doped fiber

    Science.gov (United States)

    Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo

    2014-07-01

    A hybridized scheme of a fiber femtosecond pulse laser was devised with the aim of grafting the frequency comb of an Er-doped fiber oscillator, stabilized around a 1.550 μm center wavelength, onto the 1.0 μm emission range of an Yb-doped fiber amplifier. Test results showed that the frequency comb is successfully transferred to a new 1.034 μm center wavelength with a spectral bandwidth of 21 nm, upholding an original frequency stability of 3.71 × 10-13 at 10 s averaging. This work demonstrates the feasibility of outcrossing different kinds of fibers to shift the spectral range of the frequency comb over a large operating span without loss of stability.

  5. Recent developments in polycrystalline oxide fiber laser materials: production of Yb-doped polycrystalline YAG fiber

    Science.gov (United States)

    Lee, HeeDong; Keller, Kristin; Sirn, Brian; Parthasarathy, Triplicane; Cheng, Michael; Hopkins, Frank K.

    2011-09-01

    Laser quality, polycrystalline oxide fibers offer significant advantages over state-of-the-art silica fiber for high energy lasers. Advanced ceramic processing technology, along with a novel powder production process, has potential to produce oxide fibers with an outstanding optical quality for use in the fiber laser applications. The production of contaminant-free green fibers with a high packing density, as well as uniform packing distribution, is a key factor in obtaining laserquality fibers. High quality green fibers are dependent on the powder quality combined with the appropriate slurry formulation. These two fundamental technologies were successfully developed at UES, and used to produce Yb-doped yttrium aluminum garnet (YAG) fibers with high optical quality, high chemical purity, and suitable core diameters down to 20-30 microns.

  6. Sintering and optical quality of highly transparent yb-doped yttrium lanthanum oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Maxim; Zayats, Sergey [Institute of Electrophysics UrB of RAS, Amundsen st 106, 620016 Ekaterinburg (Russian Federation); Kopylov, Yury; Kravchenko, Valery [Institute of Radioengineering and Electronics named after V.A. Kotelnikov, RAS, Vvedensky Sq. 1, 141120 Fryazino, Moscow region (Russian Federation)

    2013-06-15

    To produce highly transparent Yb-doped yttrium lanthanum oxide (Yb{sup 3+}:(La{sub x}Y{sub 1-x}){sub 2}O{sub 3}) ceramics two original technologies were used: laser synthesis of nanopowder and pulsed magnetic compacting. Sintering of the compacts in vacuum 3 x 10{sup -4} Pa at 1600-1700 C during 13 hours led to transparent ceramics fabrication. The ceramics with relative density higher than 99.99% and grain size about 40 {mu}m were fabricated. Full transmittance of 1.8 mm thick Yb{sub 0,11}La{sub 0,23}Y{sub 1,66}O{sub 3} ceramics reaches 82.5% rate at 800 nm. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Intervalence charge transfer luminescence: Interplay between anomalous and 5d − 4f emissions in Yb-doped fluorite-type crystals

    Energy Technology Data Exchange (ETDEWEB)

    Barandiarán, Zoila, E-mail: zoila.barandiaran@uam.es; Seijo, Luis [Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2014-12-21

    In this paper, we report the existence of intervalence charge transfer (IVCT) luminescence in Yb-doped fluorite-type crystals associated with Yb{sup 2+}–Yb{sup 3+} mixed valence pairs. By means of embedded cluster, wave function theory ab initio calculations, we show that the widely studied, very broad band, anomalous emission of Yb{sup 2+}-doped CaF{sub 2} and SrF{sub 2}, usually associated with impurity-trapped excitons, is, rather, an IVCT luminescence associated with Yb{sup 2+}–Yb{sup 3+} mixed valence pairs. The IVCT luminescence is very efficiently excited by a two-photon upconversion mechanism where each photon provokes the same strong 4f{sup 14}–1A{sub 1g}→ 4f{sup 13}({sup 2}F{sub 7/2})5de{sub g}–1T{sub 1u} absorption in the Yb{sup 2+} part of the pair: the first one, from the pair ground state; the second one, from an excited state of the pair whose Yb{sup 3+} moiety is in the higher 4f{sup 13}({sup 2}F{sub 5/2}) multiplet. The Yb{sup 2+}–Yb{sup 3+} → Yb{sup 3+}–Yb{sup 2+} IVCT emission consists of an Yb{sup 2+} 5de{sub g} → Yb{sup 3+} 4f{sub 7/2} charge transfer accompanied by a 4f{sub 7/2} → 4f{sub 5/2} deexcitation within the Yb{sup 2+} 4f{sup 13} subshell: [{sup 2}F{sub 5/2}5de{sub g},{sup 2}F{sub 7/2}] → [{sup 2}F{sub 7/2},4f{sup 14}]. The IVCT vertical transition leaves the oxidized and reduced moieties of the pair after electron transfer very far from their equilibrium structures; this explains the unexpectedly large band width of the emission band and its low peak energy, because the large reorganization energies are subtracted from the normal emission. The IVCT energy diagrams resulting from the quantum mechanical calculations explain the different luminescent properties of Yb-doped CaF{sub 2}, SrF{sub 2}, BaF{sub 2}, and SrCl{sub 2}: the presence of IVCT luminescence in Yb-doped CaF{sub 2} and SrF{sub 2}; its coexistence with regular 5d-4f emission in SrF{sub 2}; its absence in BaF{sub 2} and SrCl{sub 2}; the quenching of

  8. Q-Switched Large-Mode-Area Yb-Doped Fibre Laser Using GaAs as Saturable Absorber

    Institute of Scientific and Technical Information of China (English)

    FU Sheng-Gui; GUO Zhan-Cheng; SI Li-Bin; ZHAO Ying; YUAN Shu-Zhong; DONG Xiao-Yi

    2007-01-01

    A passive Q-switched large-mode-area Yb-doped fibre laser is demonstrated using a GaAs wafer as the saturable absorber. A high Yb doping concentration double-clad fibre with a core diameter of 30 μm and a numerical aperture of 0.07 is used to increase the laser gain volume, permitting greater energy storage and higher output power than conventional fibres. The maximum average output power is 7.2 W at 1080nm wavelength, with the shortest pulse duration of 580ns and the highest peak power of 161 W when the laser is pumped with a 25 W diode laser operating at 976 nm. The repetition rate increases with the pump power linearly and the highest repetition rate of 77kHz is obtained in the experiment.

  9. Superconductivity in Yb-doped BaFe{sub 2}As{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.C. [Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 62199, Taiwan, ROC (China); Lee, W.H., E-mail: phywhl@ccu.edu.tw [Department of Physics, National Chung Cheng University, Ming-Hsiung, Chia-Yi 62199, Taiwan, ROC (China); Lan, M.D. [Department of Physics, National Chung Hsing University, Taichung, Taiwan, ROC (China)

    2015-02-15

    Highlights: • Single crystal of (Ba{sub 1−x}Yb{sub x})Fe{sub 2}As{sub 2} (x = 0–0.2) has been grown. • The grown crystals have pure tetragonal ThCr{sub 2}Si{sub 2}-type structure. • (Ba{sub 1−x}Yb{sub x})Fe{sub 2}As{sub 2} (0.05 ≦ x ≦ 0.15) showed a T{sub c,onset} 18–20 K. - Abstract: We report the discovery of superconductivity in Yb-doped BaFe{sub 2}As{sub 2}. Single-crystal specimens of (Ba{sub 1−x}Yb{sub x})Fe{sub 2}As{sub 2} (x = 0–0.2) were grown by using FeAs flux and a slow-cooling method. The superconducting transition temperature for the crystals was determined by dc magnetic susceptibility measurements with a commercial SQUID magnetometer. A clear phase transition from paramagnetic to perfect diamagnetic state was observed around 18–20 K for the samples with nominal composition (Ba{sub 1−x}Yb{sub x})Fe{sub 2}As{sub 2} (0.05 ≦ x ≦ 0.15)

  10. Structural characterization and EXAFS wavelet analysis of Yb doped ZnO by wet chemistry route

    Energy Technology Data Exchange (ETDEWEB)

    Otal, Eugenio H., E-mail: eugenio.otal@citedef.gob.ar [Division of Porous Materials, UNIDEF, CITEDEF, CONICET, S.J.B de la Salle 4397, Villa Martelli (B1603ALO), Buenos Aires (Argentina); Laboratory for Materials Science and Technology, FRSC-UTN, Av. Inmigrantes 555, Río Gallegos 9400 (Argentina); Sileo, Elsa [INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Aguirre, Myriam H. [Dept. of Physics Condensed Matter, University of Zaragoza (Spain); Laboratory of Advanced Microscopy (LMA), Institute of Nanoscience of Aragón (INA), University of Zaragoza (Spain); Fabregas, Ismael O. [Division of Porous Materials, UNIDEF, CITEDEF, CONICET, S.J.B de la Salle 4397, Villa Martelli (B1603ALO), Buenos Aires (Argentina); Kim, Manuela [Division of Porous Materials, UNIDEF, CITEDEF, CONICET, S.J.B de la Salle 4397, Villa Martelli (B1603ALO), Buenos Aires (Argentina); Laboratory for Materials Science and Technology, FRSC-UTN, Av. Inmigrantes 555, Río Gallegos 9400 (Argentina)

    2015-02-15

    Highlights: • Optical and electrical properties of ZnO are influenced by lanthanide doping. • Optical and electrical properties of ZnO are influenced by lanthanide positioning. • Yb is incorporated in the O{sub h} sites of the wurtzite structure. • There is not Yb{sub 2}O{sub 3} clustering or segregation for treatments below 800 °C. - Abstract: Lanthanide doped ZnO are interesting materials for optical and electrical applications. The wide band gap of this semiconductor makes it transparent in the visible range (E{sub gap} = 3.2 eV), allowing a sharp emission from intra shell transition from the lanthanides. From the electrical side, ZnO is a widely used material in varistors and its electrical properties can be tailored by the inclusion of lanthanides. Both applications are influenced by the location of the lanthanides, grain boundaries or lattice inclusion. Yb doped ZnO samples obtained by wet chemistry route were annealed at different temperatures and characterized by Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Rietveld refinement of XRD data, and X-ray Absorption Fine Structure (XAFS). These techniques allowed to follow the changes occurred in the matrix and the Yb environment. The use of the Cauchy continuous wavelet transform allowed identifying a second coordination shell composed of Zn atoms, supporting the observations from XRD Rietveld refinement and XAFS fittings. The information obtained confirmed the incorporation of Yb in O{sub h} sites of the wurtzite structure without Yb{sub 2}O{sub 3} clustering in the lattice.

  11. Mode-locked Yb-doped fiber laser emitting broadband pulses at ultra-low repetition rates

    CERN Document Server

    Bowen, Patrick; Provo, Richard; Harvey, John D; Broderick, Neil G R

    2016-01-01

    We report on an environmentally stable, Yb-doped, all-normal dispersion, mode-locked fibre laser that is capable of creating broadband pulses with ultra-low repetition rates. Specifically, through careful positioning of fibre sections in an all-PM-fibre cavity mode-locked with a nonlinear amplifying loop mirror, we achieve stable pulse trains with repetition rates as low as 506 kHz. The pulses have several nanojules of energy and are compressible down to ultrashort (< 500 fs) durations.

  12. Multiple Dissipative Solitons in a Long-Cavity Normal-Dispersion Mode-Locked Yb-Doped Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guang-Zhen; XIAO Xiao-Sheng; MEI Jia-Wei; YANG Chang-Xi

    2012-01-01

    Transitional operations of multiple dissipative solitons in a long-cavity normal-dispersion Yb-doped fiber laser are experimentally investigated.Multiple dissipative solitons,including a stable soliton pair and a soliton triplet are observed by increasing the pump power or adjusting the polarization controllers.Two main boundaries of the stable asymmetric soliton and oscillating soliton are found between steady mode-locking.Moreover,multiple dissipative solitons with greater quantities of solitons are observed with pump power increasing.The experimental results agree well with a previous numerical study of multiple dissipative solitons.

  13. Yb-doped SnTe semimetal thin films deposited by thermal evaporation: Structural, electrical, and thermoelectric properties

    Science.gov (United States)

    Hmood, A.; Kadhim, A.; Hassam, H. A.

    2014-12-01

    Sn monochalcogenide and Yb-doped Sn1-xYbxTe (0.0 ⩾ x ⩽ 0.1) semimetals, which are known for their usefulness as efficient thermoelectric (TE) materials, were prepared by solid-state microwave technique. Polycrystalline thin films of Sn1-xYbxTe were deposited onto clean glass substrates by using vacuum evaporation technique at 10-6 bar. The structures of the polycrystalline thin films were examined by X-ray diffraction patterns. A rock salt structure was observed. Grain size increased with increasing Yb content but not according to a sequence. The morphology of the nanosheet structures for these thin films was determined by field emission scanning electron microscopy. TE properties were measured at a temperature range of 298-523 K. The carrier concentrations of the films were determined by Hall effect measurements at 300 K.

  14. Gain and Noise Figure of a Double-Pass Waveguide Amplifier Based on Er/Yb-Doped Phosphate Glass

    Institute of Scientific and Technical Information of China (English)

    JIN Guo-Liang; SHAO Gong-Wang; Mu Huan; HU Li-Li; LI Qu

    2005-01-01

    @@ A waveguide amplifier is fabricated by Ag+-Na+ two-step ion exchange on Er/Yb-doped phosphate glass. Thespectroscopic performance of glass and the properties of channel waveguide are characterized. A double-passconfiguration is adopted to measure the gain and noise figure (NF) of the waveguide amplifier, and the comparisonof gain and NF for the single and double-pass configuration of the waveguide amplifier is presented. The resultsshow that the double-pass configuration can make the gain increase from 8.8dB (net gain 2.2dB/cm) of thesingle-pass one to 14.6dB (net gain 3.65dB/cm) for small input power at 1534nm, and the NF are all lower than5.5dB for both the configurations.

  15. MoS2 saturable absorber for single frequency oscillation of highly Yb-doped fiber laser

    Institute of Scientific and Technical Information of China (English)

    Baole Lu; Limei Yuan; Xinyuan Qi; Lei Hou; Bo Sun; Pan Fu; Jintao Bai

    2016-01-01

    In this Letter,a single-frequency fiber laser using a molybdenum disulfide (MoS2) thin film as a saturable absorber is demonstrated.We use a short length of highly Yb-doped fiber as the gain medium and a fiber ferrule with MoS2 film adhered to it by index matching gel (IMG) that acts as the saturable absorber.The saturable absorber can be used to discriminate and select the single longitudinal modes.The maximum output power of the single-frequency fiber laser is 15.3 mW at a pump power of 130 mW and the slope efficiency is 15.3%.The optical signal-to-noise ratio and the laser linewidths are ~60 dB and 5.89 kHz,respectively.

  16. Pulsed laser deposition and thermoelectric properties of In-and Yb-doped CoSb3 skutterudite thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2011-07-29

    In-and Yb-doped CoSb3 thin films were prepared by pulsed laser deposition. Process optimization studies revealed that a very narrow process window exists for the growth of single-phase skutterudite films. The electrical conductivity and Seebeck coefficient measured in the temperature range 300-700 K revealed an irreversible change on the first heating cycle in argon ambient, which is attributed to the enhanced surface roughness of the films or trace secondary phases. A power factor of 0.68 W m-1 K-1 was obtained at ∼700 K, which is nearly six times lower than that of bulk samples. This difference is attributed to grain boundary scattering that causes a drop in film conductivity. Copyright © Materials Research Society 2011.

  17. Three-dimensional modeling of CPA to the multimillijoule level in tapered Yb-doped fibers for coherent combining systems.

    Science.gov (United States)

    Andrianov, Alexey; Anashkina, Elena; Kim, Arkady; Meyerov, Iosif; Lebedev, Sergey; Sergeev, Alexander; Mourou, Gerard

    2014-11-17

    We developed a three-dimensional numerical model of Large-Mode-Area chirped pulse fiber amplifiers which includes nonlinear beam propagation in nonuniform multimode waveguides as well as gain spectrum dynamics in quasi-three-level active ions. We used our model in tapered Yb-doped fiber amplifiers and showed that single-mode propagation is maintained along the taper even in the presence of strong Kerr nonlinearity and saturated gain, allowing extraction of up to 3 mJ of output energy in 1 ns pulse. Energy scaling and its limitation as well as the influence of fiber taper bending and core irregularities on the amplifier performance were studied. We also investigated numerically the capabilities for compression and coherent combining of up to 36 perturbed amplifying channels and showed more than 70% combining efficiency, even with up to 11% of high-order modes in individual channels. PMID:25402067

  18. High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber

    Science.gov (United States)

    Huang, S. S.; Wang, Y. G.; Yan, P. G.; Zhang, G. L.; Zhao, J. Q.; Li, H. Q.; Lin, R. Y.

    2014-01-01

    A high order passive harmonic mode-locking (HML) Yb-doped all-normal-dispersion fiber laser based on a graphene oxide saturable absorber has been experimentally demonstrated. For two different pump powers and different polarization states of the laser cavity, lower order and higher order HML have been achieved. The highest 30th-order harmonic (31.86 MHz) was achieved with subnanosecond pulse duration; this is transitional from a bunched multipulse state.

  19. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    CERN Document Server

    Ryser, Manuel; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2014-01-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063nm. The diode was driven at a repetition rate of 40MHz and delivered 13$\\mu$W of fiber-coupled average output power. For the low output pulse energy of 0.33pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40MHz repetition rate to 1MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72dBs to an output pulse energy of 5.7$\\mu$J, pulse duration of 11ps and peak power of >0.6MW.

  20. Terahertz radiation using log-spiral-based low-temperature-grown InGaAs photoconductive antenna pumped by mode-locked Yb-doped fiber laser.

    Science.gov (United States)

    Kong, Moon Sik; Kim, Ji Su; Han, Sang Pil; Kim, Namje; Moon, Kiwon; Park, Kyung Hyun; Jeon, Min Yong

    2016-04-01

    We demonstrate a terahertz (THz) radiation using log-spiral-based low-temperature-grown (LTG) InGaAs photoconductive antenna (PCA) modules and a passively mode-locked 1030 nm Yb-doped fiber laser. The passively mode-locked Yb-doped fiber laser is easily implemented with nonlinear polarization rotation in the normal dispersion using a 10-nm spectral filter. The laser generates over 250 mW of the average output power with positively chirped 1.58 ps pulses, which are dechirped to 127 fs pulses using a pulse compressor outside the laser cavity. In order to obtain THz radiation, a home-made emitter and receiver constructed from log-spiral-based LTG InGaAs PCA modules were used to generate and detect THz signals, respectively. We successfully achieved absorption lines over 1.5 THz for water vapor in free space. Therefore, we confirm that a mode-locked Yb-doped fiber laser has the potential to be used as an optical source to generate THZ waves. PMID:27136997

  1. Electrically tunable fiber-integrated Yb-doped laser covering 74 nm based on a fiber Bragg grating array

    Science.gov (United States)

    Tiess, T.; Rothhardt, M.; Chojetzki, C.; Jäger, M.; Bartelt, H.

    2015-03-01

    Fiber lasers provide the foundation to combine an excellent beam quality in single mode operation with a robust and highly efficient design. Based on fiber-integrated configurations, they are employed in many different applications ranging from industry over research to medical technology. However, there is lots of potential to approach even new fields of applications e.g. in spectroscopy based on tunable systems with an adjustable emission wavelength. We present a novel tuning concept for pulsed fiber-integrated laser systems using an array of fiber Bragg gratings (FBGs) as discrete spectral filter. Based on stacking many standard FBGs, the bandwidth and filter properties are easy to scale by increasing the number of gratings allowing huge tuning ranges as well as tailored tuning characteristics. In this work, we demonstrate the potential of this electrically controlled tuning concept. Using an Ytterbium (Yb)-doped fiber laser, we investigate the general tuning characteristics. With variable pulse durations in the nanosecond regime, we demonstrate high signal contrast (~45 dB), excellent wavelength stability and narrow linewidth (knowledge, is the largest bandwidth reported based on a monolithic filter design.

  2. A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser

    Science.gov (United States)

    Zaytsev, A. K.; Lin, C. H.; You, Y. J.; Tsai, F. H.; Wang, C. L.; Pan, C. L.

    2013-04-01

    We report the generation of tunable high-energy noise-like pulses with a super-broadband spectrum from a Yb-doped dispersion-mapped fiber ring laser. Self-starting noise-like operation can be maintained over a relatively large range of pumping powers (4-13 W). The corresponding output power varies from 0.1 to 1.45 W. The maximum 3 dB spectral bandwidth of the noise-like pulses is about 48.2 nm while the output energy is as high as 47 nJ, limited by optical damage of the components. The central wavelength of the noise-like pulses can be tuned easily over ˜12 nm. The bandwidth and duration of the generated wave packets can also be controlled. The use of a negative dispersion-delay line and spectral filter are found to be important for generating such high-power noise-like operation. Experimental results are in good agreement with theoretical simulations.

  3. Flexibly controllable multi-pulse mode-locked MOPA Yb-doped fiber laser in all normal dispersion regime

    Science.gov (United States)

    Bu, Chenxi; Wang, Chinhua

    2013-09-01

    A Controllable, high energy, all normal dispersion (ANDi), passively mode-locked Yb-doped fiber laser is demonstrated with a Master Oscillator Power-Amplifier (MOPA) structure. The mode-locking is achieved by nonlinear polarization evolution (NPE). different types of laser pulse are achieved from fundamental mode-locked (FML) single pulse to twin pulse and then to harmonically mode-locked (HML) pulses (the maximum order is 7 times) by adjusting quarter-wave plates (QWPS) and a half-wave plate (HWP) in our system. Using a cascaded long-period fiber grating as the spectral filter, the center wavelength of our laser is fixed at 1034nm.The repetition frequency rate of the FML pulse is 1.53MHz with a pulse width of 817ps. The maximum average energy is 450 mW and the maximum pulse energy of FML single pulse is 294 nJ. Besides, the 517nm green laser output is also achieved by using a LiB3O5 (LBO) crystal as the frequency doubling crystal. The maximum average of the green pulse is 4.71mW.

  4. Lattice dynamics and substrate-dependent transport properties of (In, Yb)-doped CoSb3 skutterudite thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2011-10-24

    Lattice dynamics, low-temperature electrical transport, and high-temperature thermoelectric properties of (In, Yb)-doped CoSb3thin films on different substrates are reported. Pulsed laser deposition under optimized conditions yielded single-phase polycrystalline skutterudite films. Raman spectroscopy studies suggested that In and Yb dopants occupy the cage sites in the skutterudite lattice. Low-temperature electrical transport studies revealed the n-type semiconducting nature of the films with extrinsic and intrinsic conduction mechanisms, in sharp contrast to the degenerate nature reported for identical bulk samples. Calculations yielded a direct bandgap close to 50 meV with no evidence of an indirect gap. The carrier concentration of the films was identical to that reported for the bulk and increased with temperature beyond 250 K. The higher resistivity exhibited is attributed to the enhanced grain boundary scattering in films with a high concentration of grains. The maximum power factor of ∼0.68 W m−1 K−1 obtained at 660 K for the film on glass is found to be nearly four times smaller compared to that reported for the bulk. The observed difference in the power factors of the films on different substrates is explained on the basis of the diffusion of oxygen from the substrates and the formation of highly conducting CoSb2 phase upon the oxidation of CoSb3.

  5. Single-mode amplification in Yb-doped rod-type photonic crystal fibers for high brilliance lasers

    DEFF Research Database (Denmark)

    Poli, F.; Lægsgaard, Jesper; Passaro, D.;

    2009-01-01

    higher-order mode (HOM), stressing the difference between their spatial distributions, with respect to the uniform refractive index core. In the present analysis a rod-type PCF with a 19-missing air-hole core, whose radius is 30 mum, has been considered. Initially, a PCF step-index model has been applied...... a forward-pumped configuration....

  6. Thermal effect-resilient design of large mode area double-cladding Yb-doped photonic crystal fibers

    DEFF Research Database (Denmark)

    Coscelli, Enrico; Poli, Federica; Johansen, Mette Marie;

    2013-01-01

    on the finite-element method has been used to calculate the guided modes of the fibers operating at high power levels. The results demonstrate that resonant structures added to the fiber cross-section can be exploited to provide efficient suppression of high-order modes with a good resilience to...

  7. Density-functional study on the robust ferromagnetism in rare-earth element Yb-doped SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai-Cheng, E-mail: kczhang@yeah.net [College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Li, Yong-Feng [Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal ResourcesInner Mongolia University of Science and Technology, Baotou 014010 (China); School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou 014010 (China); Liu, Yong [State Key Laboratory of Metastable Materials Science and Technology and College of Science, Yanshan University, Qinhuangdao, Hebei 066004 (China); Chi, Feng [College of Engineering, Bohai University, Jinzhou 121013 (China)

    2014-06-01

    So far, little has been known about the ferromagnetism induced by p–f hybridization. We investigate the magnetic properties of Yb-doped SnO{sub 2} by first-principles calculations. We find that the doped system favors the ferromagnetic state and a room-temperature ferromagnetism can be expected in it. The origin of ferromagnetism can be attributed to the p–f hybridization between Yb impurity and its surrounding oxygen atoms. The formation energy of defect complex is calculated and the magnetic mediation of intrinsic vacancies is studied. Our results reveal that the formation energy of the defect complex with Sn vacancy is about 7.3 eV lower in energy than that with oxygen vacancy. This means Sn vacancy is much easier to form than oxygen vacancy in the presence of Yb substitution. The ferromagnetism of the doped system is greatly enhanced in the presence of Sn vacancies. - Highlights: • Room-temperature ferromagnetism can be expected in Yb-doped SnO{sub 2}. • The origin of ferromagnetism can be attributed to the p–f hybridization between Yb and O atoms. • Oxygen vacancies are much hard to form and contribute little to the ferromagnetism. • Sn vacancies are easy to form under oxygen-rich condition and stabilize the ferromagnetism effectively.

  8. Characteristics of Soliton Evolution in the Wave-Breaking-Free Regime in a Passively Mode-Locked Yb-Doped Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    WU Ge; TIAN Xiao-Jian; GAO Bo; SHAN Jiang-Dong; RU Yu-Xing

    2011-01-01

    @@ We focus on several aspects concerning the numerical simulation of a passively mode-locked Yb-doped fiber laser by a non-distributed model.The characteristics of soliton evolution in a wave-breaking-free regime are numerically investigated with the split-step Fourier method.Based on the model,a parabolic-shaped soliton with a nearlylinear chirp and bound soliton pairs are obtained by controlling the intra-cavity average dispersion of the fiber laser.A phenomenon is observed that by keeping the system parameters unchanged,linearly chirped parabolic soliton and bound soliton pairs are attainable under different initial conditions in the transient region between these two kinds of solitons.%We focus on several aspects concerning the numerical simulation of a passively mode-locked Yb-doped fiber laser by a non-distributed model. The characteristics of soliton evolution in a wave-breaking-free regime are numerically investigated with the split-step Fourier method. Based on the model, a parabolic-shaped soliton with a nearly linear chirp and bound soliton pairs are obtained by controlling the intra-cavity average dispersion of the fiber laser. A phenomenon is observed that by keeping the system parameters unchanged, linearly chirped parabolic soliton and bound soliton pairs are attainable under different initial conditions in the transient region between these two kinds of solitons.

  9. 980-nm Q-switched photonic crystal fiber laser by MoS2 saturable absorber

    Science.gov (United States)

    Li, Pingxue; Liang, Boxing; Su, Meng; Zhang, Yuefei; Zhao, Yan; Zhang, Mengmeng; Ma, Chunmei; Su, Ning

    2016-05-01

    We demonstrate a 980-nm Q-switch Yb-doped photonic crystal fiber laser by a multilayer molybdenum sulfide polymer composite as the broadband saturable absorber which is prepared by the chemical vapor deposition method. We achieve passively Q-switching operations at 978 nm with the pulse width of 2.7 and 0.63 μs, corresponding to the repetition rate of 212 and 221 kHz, respectively. The maximum output power is 127 mW. It is the first time that MoS2 Q-switched Yb-doped photonic crystal fiber laser at 980 nm is demonstrated. The experimental results show that few-layer MoS2 is a promising broadband saturable absorber material.

  10. Second Harmonic Generation Using an All-Fiber Q-Switched Yb-Doped Fiber Laser and MgO:c-PPLN

    Directory of Open Access Journals (Sweden)

    Yi Gan

    2008-01-01

    Full Text Available We have experimentally demonstrated an efficient all-fiber passively Q-switched Yb-doped fiber laser with Samarium doped fiber as a saturable absorber. Average output power of 3.4 W at a repetition rate of 250 kHz and a pulse width of 1.1 microseconds was obtained at a pump power of 9.0 W. By using this fiber laser system and an MgO-doped congruent periodically poled lithium niobate (MgO:c-PPLN, second harmonic generation (SHG output at 532 nm was achieved at room temperature. The conversion efficiency is around 4.2% which agrees well with the theoretical simulation.

  11. Sintering of transparent Yb-doped Lu{sub 2}O{sub 3} ceramics using nanopowder produced by laser ablation method

    Energy Technology Data Exchange (ETDEWEB)

    Kijko, V.S. [Ural Federal University named after the first President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg 620002 (Russian Federation); Maksimov, R.N., E-mail: romanmaksimov@e1.ru [Ural Federal University named after the first President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg 620002 (Russian Federation); Institute of Electrophysics UB RAS, Amundsen St.106, Ekaterinburg 620016 (Russian Federation); Shitov, V.A. [Institute of Electrophysics UB RAS, Amundsen St.106, Ekaterinburg 620016 (Russian Federation); Demakov, S.L.; Yurovskikh, A.S. [Ural Federal University named after the first President of Russia B.N. Yeltsin, Mira St. 19, Ekaterinburg 620002 (Russian Federation)

    2015-09-15

    Highlights: • Yb:Lu{sub 2}O{sub 3} nanoparticles synthesized by laser ablation method were investigated. • Transparent Yb:Lu{sub 2}O{sub 3} ceramics were fabricated via vacuum and spark plasma sintering. • Highest transmittance was 79.3% at 1080 nm for vacuum sintered Yb:Lu{sub 2}O{sub 3} sample. - Abstract: Transparent Yb-doped Lu{sub 2}O{sub 3} ceramic samples were fabricated via conventional vacuum and spark plasma sintering. Nanoparticles synthesized by laser ablation method were used as starting material. The morphology and phase evolution of the nanopowder were studied by transmission electron microscopy, simultaneous thermal analysis and X-ray diffraction. The obtained nanoparticles exhibited the monoclinic phase and were fully converted into the main cubic phase after calcination at 1100 °C for 1 h. Conventional vacuum sintering of Yb:Lu{sub 2}O{sub 3} powder compact at 1780 °C for 20 h resulted in a fully-dense ceramics with an average grain size of 1.6 μm and optical transmittance of 79.3% at 1080 nm. Spark plasma sintering of the calcined Yb:Lu{sub 2}O{sub 3} nanoparticles at 1450 °C and 15 kN for 40 min led to a 0.2 μm-grained ceramics exhibiting an optical transmittance of 75.6% at 1080 nm.

  12. All-normal dispersion passively mode-locked Yb-doped fiber laser using MoS2-PVA saturable absorber

    Science.gov (United States)

    Sathiyan, S.; Velmurugan, V.; Senthilnathan, K.; Babu, P. Ramesh; Sivabalan, S.

    2016-05-01

    We demonstrate the generation of a dissipative soliton in an all-normal dispersion ytterbium (Yb)-doped fiber laser using few-layer molybdenum disulfide (MoS2) as a saturable absorber. The saturable absorber is prepared by mixing few-layer MoS2 solution with polyvinyl alcohol (PVA) to form a free-standing composite film. The modulation depth and saturation intensity of the MoS2-PVA film are 11% and 5.86 MW cm-2, respectively. By incorporating the MoS2 saturable absorber in the fiber laser cavity, the mode-locked pulses are generated with a pulse width of 1.55 ns and a 3 dB spectral bandwidth of 0.9 nm centered at 1037.5 nm. The fundamental repetition rate and the average power are measured as 15.43 MHz and 1.5 mW, respectively. These results reveal the feasibility of deploying liquid-phase exfoliated few-layer MoS2 nanosheets for dissipative soliton generation in the near-IR region.

  13. 980-nm all-fiber mode-locked Yb-doped phosphate fiber oscillator based on semiconductor saturable absorber mirror and its amplifier

    Science.gov (United States)

    Li, Ping-Xue; Yao, Yi-Fei; Chi, Jun-Jie; Hu, Hao-Wei; Zhang, Guang-Ju; Liang, Bo-Xing; Zhang, Meng-Meng; Ma, Chun-Mei; Su, Ning

    2016-08-01

    A 980-nm semiconductor saturable absorber mirror (SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 mW and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-mW maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission (ASE) nor harmful oscillation around 1030 nm is observed. Moreover, through a two-stage all-fiber-integrated amplifier, an output power of 740 mW is generated with a pulse width of 200 ps. Project supported by the National Natural Science Foundation of China (Grant No. 61205047).

  14. Luminance Conversion Property of Er and Yb Doped KZnF3 Nanocrystal Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Weidong Lai

    2015-01-01

    Full Text Available In order to make full use of exposure energy, one feasible way is to modify the luminance of crystal by rare earth doping technique. KZnF3:Er3+ and KZnF3:Er3+/Yb3+ nanocrystals of uniform cuboid perovskite type morphology, with average diameter of 130 nm, has been synthesized by hydrothermal method. When Yb3+ ions were codoped with Er3+, absorption peak at 970 nm has been heightened and widened, and the photon absorption cross section increased. The common xenon lamp exposure cannot initiate obvious nonlinear phenomenon of the doped Er3+ and Yb3+, and exposing at 245 nm only excites the fluorescence around 395 nm. Contrarily, under high power IR exposure at 980 nm, obvious upconversion photoluminescence (PL has been observed due to the two-photon process. The PL mechanism of the doped Er3+ ion in KZnF3:Er3+/Yb3+ nanocrystals is confirmed. Furthermore, Yb3+ codoped as sensitizer has modified the PL intensity of Er3+ from green light range to red range, and the primary channel is changed from 4S3/2(Er3+ → 4I15/2(Er3+ of only Er3+ doped KZnF3 nanocrystal to 4F9/2(Er3+ → 4I15/2(Er3+ of Er3+/Yb3+ codoped sample. With exposure energy increasing, such primary transition channel after two-photon excitation is unchanged.

  15. Biological oxygen sensing via two-photon absorption by an Ir(III) complex using a femtosecond fiber laser

    Science.gov (United States)

    Moritomo, Hiroki; Fujii, Akinari; Suzuki, Yasutaka; Yoshihara, Toshitada; Tobita, Seiji; Kawamata, Jun

    2016-09-01

    Near-infrared two-photon absorption of the phosphorescent Ir(III) complex (2,4-pentanedionato-κO 2,κO 4)bis[2-(6-phenanthridinyl-κN)benzo[b]thien-3-yl-κC]iridium (BTPHSA) was characterized. It exhibited a 800-1200 nm two-photon absorption band, and thus could be electronically excited by 1030-nm femtosecond Ti:sapphire and Yb-doped fiber lasers. By using BTPHSA, oxygen concentrations in human embryonic kidney 293 (HEK293) cells were imaged. These results demonstrate two-photon oxygen sensing of live tissues via easily operable excitation sources.

  16. 超长腔碳纳米管锁模多波长掺镱光纤激光器∗%Ultra-long cavity multi-wavelength Yb-doped fiber laser mode-locked by carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    王玉宝; 齐晓辉; 沈阳; 姚繄蕾; 徐志敬; 潘玉寨

    2015-01-01

    We demonstrate an ultra-long cavity multi-wavelength Yb-doped fiber laser mode-locked by carbon nanotubes. The total length of the fiber laser is 1021.2 m. The different regimes of noise-like soliton and soliton rain mode-locking with the multi-wavelength operation are experimentally obtained with a repetition rate of 199.8 kHz. The higher output power and pulse energy from the soliton rain are measured to be 40.3 mW and 201.5 nJ, respectively, with a pulse width of about 102.5 ns.

  17. Thermo-Optical Tuning of Whispering Gallery Modes in Er:Yb Doped Glass Microspheres to Arbitrary Probe Wavelengths

    CERN Document Server

    Watkins, Amy; Chormaic, Síle Nic

    2012-01-01

    We present experimental results on an all-optical, thermally-assisted technique for broad range tuning of microsphere cavity resonance modes to arbitrary probe wavelengths. An Er:Yb co-doped phosphate glass (Schott IOG-2) microsphere is pumped at 978 nm via the supporting stem and the heat generated by absorption of the pump light expands the cavity and changes the refractive index. This is a robust tuning method that decouples the pump from the probe and allows fine tuning of the microsphere's whispering gallery modes. Pump/probe experiments were performed to demonstrate thermo-optical tuning to specific probe wavelengths, including the 5S1/2 F = 3 to 5P3/2 F' = 4 laser cooling transition of 85Rb. This is of particular interest for cavity QED-type experiments, while the broad tuning range achievable is useful for integrated photonic devices, including sensors and modulators.

  18. Photoexcitation of Yb-doped aluminosilicate fibers at 250 nm: evidence for excitation transfer from oxygen deficiency centers to Yb{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C. G. [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Present address: Laser and Optics Research Center, USAF Academy, Colorado Springs, Colorado 80840 (United States); Keister, K. E.; Dragic, P. D.; Eden, J. G. [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Croteau, A. [INO, 2740 Einstein Street, Quebec City, Quebec G1P 4S4 (Canada)

    2010-10-15

    Emission spectra in the {approx}240-1100 nm wavelength region as well as the temporally resolved decay of Yb{sup 3+} and point defect spontaneous emission have been recorded when aluminosilicate optical fibers doped with Yb are irradiated with {approx}160 fs laser pulses having a central wavelength of {approx}250 nm (({Dirac_h}/2{pi}){omega}=5 eV). Photoexcitation of the fibers in this region of the deep ultraviolet (UV) provides access simultaneously to the Type II Si oxygen deficiency center (ODC), the non-bridging oxygen hole center (NBOHC: an oxygen-excess defect), and the Ge ODC. Emission from all of these defects in the ultraviolet and/or visible is observed, as is intense fluorescence at 976 nm from Yb{sup 3+}. Absorption measurements conducted in the {approx}230-265 nm region with a sequence of UV light-emitting diodes reveal a continuum peaking at {approx}248 nm and having a spectral width of {approx}18 nm (FWHM), confirming that the 250 nm laser pump is photoexciting predominantly the ODC. The temporal histories of the optically active defect and rare earth ion emission waveforms, in combination with time-integrated spectra, suggest that the Si ODC(II) triplet state directly excites Yb{sup 3+} as well as at least one other intrinsic defect in the silica network. Prolonged exposure of the Yb-doped fibers to 250 nm radiation yields increased Yb{sup 3+}, NBOHC, and Si ODC(II) singlet emission which is accompanied by a decline in Si ODC(II) triplet fluorescence, thus reinforcing the conclusion--drawn on the basis of luminescence decay constants--that the triplet state of Si ODC(II) is the immediate precursor to the NBOHC and is partially responsible for Yb ion emission at 976 nm. This conclusion is consistent with the observation that exposure of fiber to 5 eV radiation slightly suppresses ODC absorption in the {approx}240-255 nm region while simultaneously introducing an absorption continuum extending from 260 nm to below 235 nm (({Dirac_h}/2{pi

  19. 波长可调节全正色散掺镱锁模光纤激光器的放大特性%Amplification of tunable ANDi Yb- doped mode-locked fiber laser

    Institute of Scientific and Technical Information of China (English)

    华弋; 肖晓晟

    2014-01-01

    高功率,波长可调超短脉冲光源具有重大的应用价值。采用掺镱光纤放大的全正色散锁模光纤激光器能够满足以上优质光源的要求,并且结构紧凑。通过实验全面探索了波长可调节全正色散锁模光纤激光器的放大特性。分析了小信号增益系数随着信号光波长的变化。发现最大增益出现在波长为1030 nm附近,并且增益随着信号光波长的增大而减小,这是由于掺镱光纤的增益谱特性决定的。也分析了增益系数随泵浦光功率的变化,观察增益饱和现象和放大自发辐射噪声。也讨论了种子脉冲在放大器中的时域与频域畸变。发现脉冲因为群速度色散而轻微展宽,频谱因为自相位调制也会发生轻微展宽。%Ultrashort pulse source with high energy and tunable wavelength is highly demanded for a lot of applications. Amplified all-normal-dispersion(ANDi) mode-locked fiber laser with gain medium of Yb-doped fiber is a compact and excellent source that fulfills those requirements. In this paper, amplification of tunable ANDi Yb- doped mode-locked fiber lasers was experimentally investigated. The gain versus signal wavelength was analyzed. It was found that the maximum gain was obtained near 1 030 nm and the gain decreased as wavelength increased, due to the gain spectrum of Yb- doped fiber. The gain versus pump power was also investigated. Gain saturation and the effect of ASE noise on gain were observed. The spectral and temporal distortions of pulse seed induced by fiber amplification were discussed. The pulse was broadened slightlydue to dispersion. The spectrum was distorted by ASE noise and limited gain bandwidth. If the gain is large and the power of amplified signal is high, the spectrum will be broadened by the effect of self-phase modulation(SPM).

  20. Reduction of Photoluminescence Quenching by Deuteration of Ytterbium-Doped Amorphous Carbon-Based Photonic Materials

    OpenAIRE

    Hui-Lin Hsu; Keith R. Leong; I-Ju Teng; Michael Halamicek; Jenh-Yih Juang; Sheng-Rui Jian; Li Qian; Nazir P. Kherani

    2014-01-01

    In situ Yb-doped amorphous carbon thin films were grown on Si substrates at low temperatures (<200 °C) by a simple one-step RF-PEMOCVD system as a potential photonic material for direct integration with Si CMOS back end-of-line processing. Room temperature photoluminescence around 1 µm was observed via direct incorporation of optically active Yb3+ ions from the selected Yb(fod)3 metal-organic compound. The partially fluorinated Yb(fod)3 compound assists the suppression of photoluminescence...

  1. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  2. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  3. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  4. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  5. Enhanced Visible Light Generation from 1 μm Femtosecond Pulses within High-Δ Photonic Crystal Fibers

    International Nuclear Information System (INIS)

    We demonstrate the blue light generated in high-Δ photonic crystal fibers (PCFs). A femtosecond Yb-doped fiber laser, operating at 1039nm, is used to pump a GeO2-doped PCF in the largely anomalous group velocity dispersion (GVD) region. The emitted radiation covers 418.6–544.6nm with 5dB flatness. The calculated result indicates that the cross phase module (XPM) effect induced by higher-mode soliton makes a contribution to the blue component generation. (fundamental areas of phenomenology(including applications))

  6. Multi-mJ mid-infrared kHz OPCPA and Yb-doped pump lasers for tabletop coherent soft x-ray generation

    International Nuclear Information System (INIS)

    We present our recent progress on the development of a mid-infrared (mid-IR), multi-mJ, kHz optical parametric chirped-pulse amplification (OPCPA) system, pumped by a homebuilt picosecond cryogenic Yb:YAG chirped-pulse amplifier, and its application to soft x-ray high-order harmonic generation. The cryogenic Yb:YAG laser operating at 1 kHz repetition rate delivers 42 mJ, 17 ps, 1.03 μm pulses to pump the OPCPA system. Efficient second and fourth harmonic generations from the Yb:YAG system are demonstrated, which provide the pumping capability for OPCPA at various wavelengths. The mid-IR OPCPA system produces 2.6 mJ, 39 fs, 2.1 μm pulses with good beam quality (M 2 = ∼1.5) at 1 kHz repetition rate. The output pulses of the OPCPA are used to generate high-order harmonics in both gas cell and hollow-core fiber targets. A photon flux of ∼2 × 108 photon/s/1% bandwidth at 160 eV in Ar is measured while the cutoff is 190 eV. The direct measurements of the photon flux from x-ray photodiodes have confirmed the generation of water-window soft x-ray photons with a flux ∼106 photon/s/1% bandwidth at 330 eV in Ne. The demonstrated OPCPA and Yb:YAG pump laser technologies provide an excellent platform of energy and power scalable few-cycle mid-IR sources that are suitable for high-flux tabletop coherent soft x-ray generation. (paper)

  7. Metal-to-metal charge transfer between dopant and host ions: Photoconductivity of Yb-doped CaF{sub 2} and SrF{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Barandiarán, Zoila, E-mail: zoila.barandiaran@uam.es; Seijo, Luis [Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Instituto Universitario de Ciencia de Materiales Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2015-10-14

    Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF{sub 2} and Yb/Sr pairs in SrF{sub 2} crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4f{sup N−1}5d excited states of Y b{sup 2+}: these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b{sup 2+} + Ca{sup 2+} (Sr{sup 2+}) → Y b{sup 3+} + Ca{sup +} (Sr{sup +}) electron phototransfer. This mechanism applies to all the observed Y b{sup 2+} 4f–5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF{sub 2}:Y b{sup 2+} because the Y b{sup 3+}–Ca{sup +} states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF{sub 2}:Y b{sup 2+} at the wavelengths of the first 4f–5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b{sup 2+} active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF{sub 2} host, associated with the lowest 4f–5d band.

  8. High pulse energy femtosecond large-mode-area photonic crystal fiber laser

    Institute of Scientific and Technical Information of China (English)

    SONG YouJian; HU MingLie; ZHANG Chi; CHAI Lu; WANG ChingYue

    2008-01-01

    A high pulse energy femtosecond fiber laser based on a large-mode-area photonic crystal fiber is demonstrated. A segment of Yb-doped single-polarization large-mode-area photonic crystal fiber with extremely low nonlinearity is explored as gain media of this fiber laser, resulting in intrinsically environmentally stability. The fiber laser is based on a linear cavity with dispersion compensation free configuration, and the stable mode-locking is obtained by a semiconductor saturable absorber mirror (SESAM). The fiber laser directly generates 2.5 W of average power at a repetition rate of 51.4 MHz,corresponding to a single pulse energy of 50 nJ. The output pulse duration is 4.2 ps, which is dechirped to 410 fs after extracavity dispersion compensation. The nonlinear absorption of SESAM determines the pulse shaping at low output power, while the mode-locking mechanism is under the balance between spectrum broadening from self-phase-modulation and gain filtering at the high output power.

  9. Effect of Sintering Temperature on Microstructure, Chemical Stability and Electrical Properties of Transition Metal or Yb-Doped BaZr0.1Ce0.7Y0.1M0.1O3-δ (M = Fe, Ni, Co and Yb

    Directory of Open Access Journals (Sweden)

    Behzad eMirfakhraei

    2014-03-01

    Full Text Available Perovskite-type BaZr0.1Ce0.7Y0.1M0.1O3-δ (M = Fe, Ni, Co and Yb (BZCY-M oxides were synthesized using the conventional solid-state reaction method at 1350-1550 oC in air in order to investigate the effect of dopants on sintering, crystal structure, chemical stability under CO2 and H2S, and electrical transport properties. The formation of the single-phase perovskite-type structure with an orthorhombic space group Imam was confirmed by Rietveld refinement using powder X-ray diffraction (PXRD for the Fe, Co, Ni and Yb-doped samples. The BZCY-Co and BZCY-Ni oxides show a total electrical conductivity of 0.01 and 8 × 10-3 Scm-1 at 600 oC in wet H2 with an activation energy of 0.36 and 0.41 eV, respectively. Scanning electron microscopy (SEM and energy-dispersive X-ray analysis (EDX revealed Ba and Co rich secondary phase at the grain-boundaries, which may explain the enhancement in the total conductivity of the BZCY-Co. However, ex-solution of Ni at higher sintering temperatures, especially at 1550 oC, decreases the total conductivity of the BZCY-Ni material. The Co and Ni dopants act as a sintering aid and form dense pellets at a lower sintering temperature of 1250 oC. The Fe, Co and Ni-doped BZCY-M samples synthesized at 1350 oC show stability in 30 ppm H2S/H2 at 800 oC, and increasing the firing temperature to 1550 oC, enhanced the chemical stability in CO2 / N2 (1: 2 at 25-900 oC. The BZCY-Co and Ni compounds with high conductivity in wet H2 could be considered as possible anodes for intermediate temperature solid oxide fuel cells (IT-SOFCs.

  10. Photon-photon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1995-04-01

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  11. Photon-photon colliders

    International Nuclear Information System (INIS)

    Since the seminal work by Ginsburg, et at., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention. A 1990 article by V.I. Teinov describes the situation at that time. In March 1994, the first workshop on this subject was held. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons -- the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R ampersand D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy

  12. Photon-photon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, Andrew M.

    1996-01-01

    Since the seminal work by Ginsburg, et al., the subject of giving the Next Linear Collider photon-photon capability, as well as electron-positron capability, has drawn much attention [1]. A 1990 article by V.I. Telnov describes the situation at that time [2]. In March 1994, the first workshop on this subject was held [3]. This report briefly reviews the physics that can be achieved through the photon-photon channel and then focuses on the means of achieving such a collider. Also reviewed is the spectrum of backscattered Compton photons—the best way of obtaining photons. We emphasize the spectrum actually obtained in a collider with both polarized electrons and photons (peaked at high energy and very different from a Compton spectrum). Luminosity is estimated for the presently considered colliders, and interaction and conversion-point geometries are described. Also specified are laser requirements (such as wavelength, peak power, and average power) and the lasers that might be employed. These include conventional and free-electron lasers. Finally, we describe the R&D necessary to make either of these approaches viable and explore the use of the SLC as a test bed for a photon-photon collider of very high energy.

  13. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  14. A new vision of photodarkening in Yb-doped fibers

    OpenAIRE

    Peretti, Romain; Jurdyc, Anne-Marie; Gonnet, Cedric

    2012-01-01

    International audience Yb3+-doped fiber is one of the most promising hosts for high-power fiber lasers [1]. However, in the late 1990s, photodarkening effect, i.e., the creation of color centers induced by light, was observed and reported [2]. Like in other rare-earth-doped materials, a broad visible and near infrared absorption band appears during laser operation, which strongly lowers the laser efficiency. We have shown how thulium impurities, present at the parts-per-billion weights (pp...

  15. High power radially-polarized Yb-doped fiber laser

    OpenAIRE

    Lin, Di; Daniel, J. M. O.; Gecevičius, M.; Beresna, M; Kazansky, P. G.; Clarkson, W. A.

    2014-01-01

    A simple technique for directly generating a radially-polarized output beam from an ytterbium-doped fiber laser using an intracavity spatially-variant waveplate is reported. The laser yielded 32W of output with a corresponding slope efficiency of 65.8% in a radially-polarised beam with beam propagation factor ~2.1 and polarization purity >95%

  16. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  17. Reduction of Photoluminescence Quenching by Deuteration of Ytterbium-Doped Amorphous Carbon-Based Photonic Materials

    Directory of Open Access Journals (Sweden)

    Hui-Lin Hsu

    2014-08-01

    Full Text Available In situ Yb-doped amorphous carbon thin films were grown on Si substrates at low temperatures (<200 °C by a simple one-step RF-PEMOCVD system as a potential photonic material for direct integration with Si CMOS back end-of-line processing. Room temperature photoluminescence around 1 µm was observed via direct incorporation of optically active Yb3+ ions from the selected Yb(fod3 metal-organic compound. The partially fluorinated Yb(fod3 compound assists the suppression of photoluminescence quenching by substitution of C–H with C–F bonds. A four-fold enhancement of Yb photoluminescence was demonstrated via deuteration of the a-C host. The substrate temperature greatly influences the relative deposition rate of the plasma dissociated metal-organic species, and hence the concentration of the various elements. Yb and F incorporation are promoted at lower substrate temperatures, and suppressed at higher substrate temperatures. O concentration is slightly elevated at higher substrate temperatures. Photoluminescence was limited by the concentration of Yb within the film, the concentration of Yb ions in the +3 state, and the relative amount of quenching due to the various de-excitation pathways associated with the vibrational modes of the host a-C network. The observed wide full-width-at-half-maximum photoluminescence signal is a result of the variety of local bonding environments due to the a-C matrix, and the bonding of the Yb3+ ions to O and/or F ions as observed in the X-ray photoelectron spectroscopy analyses.

  18. Microwave Photonics

    OpenAIRE

    A J Seeds; Liu, C. P.; Ismail, T; Fice, M. J.; Pozzi, F.; Steed, R. J.; Rouvalis, E.; Renaud, C.C.

    2010-01-01

    Microwave photonics is the use of photonic techniques for the generation, transmission, processing and reception of signals having spectral components at microwave frequencies. This tutorial reviews the technologies used and gives applications examples.

  19. Photon Structure

    OpenAIRE

    Grindhammer, Guenter

    2001-01-01

    Large pT processes at HERA, initiated by almost real and by virtual photons, provide information on the structure of the photon. We report on the latest measurements of dijets and large pT particle production with the H1 detector. This includes a leading order determination of an effective virtual photon parton density, of the gluon density of the photon, and comparisons with models.

  20. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole

    2002-01-01

    A review is given of the space-time wave mechanics of single photons, a subject with an almost century long history. The Landau-Peierls photon wave function, which is related nonlocally to the electromagnetic field is first described, and thereafter the so-called energy wave function, based...... train quantum electrodynamics. A brief description of particle (photon) position operators is given, and it is shown that photons usually are only algebraically confined in an emission process. Finally, it is demonstrated that the profile of the birth domain of a radio-frequency photon emitted...

  1. Photonic Lantern

    CERN Document Server

    Leon-Saval, Sergio; Bland-Hawthorn, Joss

    2015-01-01

    Photonic lanterns allow for a low-loss transformation of a multimode waveguide into a discrete number of single-mode waveguides and vice versa, thus, enabling the use of single-mode photonic technologies in multimode systems. In this review, we will discuss the theory and function of the photonic lantern, along with several different variants of the technology. We will also discuss some of its applications in more detail.

  2. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  3. Hallo photons calls photon; Allo photon appelle photon

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-09-01

    When a pair of photons is created, it seems that these 2 photons are bound together by a mysterious link. This phenomenon has been discovered at the beginning of the seventies. In this new experiment the 2 photons are separated and have to follow different ways through optic cables until they face a quantum gate. At this point they have to chose between a short and a long itinerary. Statistically they have the same probability to take either. In all cases the 2 photons agree to do the same choice even if the 2 quantum gates are distant of about 10 kilometers. Some applications in ciphering and coding of messages are expected. (A.C.)

  4. Photonic Nanojets

    OpenAIRE

    Heifetz, Alexander; Kong, Soon-Cheol; Alan V. Sahakian; Taflove, Allen; Backman, Vadim

    2009-01-01

    This paper reviews the substantial body of literature emerging since 2004 concerning photonic nanojets. The photonic nanojet is a narrow, high-intensity, non-evanescent light beam that can propagate over a distance longer than the wavelength λ after emerging from the shadow-side surface of an illuminated lossless dielectric microcylinder or microsphere of diameter larger than λ. The nanojet’s minimum beamwidth can be smaller than the classical diffraction limit, in fact as small as ~λ/3 for m...

  5. Photonic lanterns

    Science.gov (United States)

    Leon-Saval, Sergio G.; Argyros, Alexander; Bland-Hawthorn, Joss

    2013-12-01

    Multimode optical fibers have been primarily (and almost solely) used as "light pipes" in short distance telecommunications and in remote and astronomical spectroscopy. The modal properties of the multimode waveguides are rarely exploited and mostly discussed in the context of guiding light. Until recently, most photonic applications in the applied sciences have arisen from developments in telecommunications. However, the photonic lantern is one of several devices that arose to solve problems in astrophotonics and space photonics. Interestingly, these devices are now being explored for use in telecommunications and are likely to find commercial use in the next few years, particularly in the development of compact spectrographs. Photonic lanterns allow for a low-loss transformation of a multimode waveguide into a discrete number of single-mode waveguides and vice versa, thus enabling the use of single-mode photonic technologies in multimode systems. In this review, we will discuss the theory and function of the photonic lantern, along with several different variants of the technology. We will also discuss some of its applications in more detail. Furthermore, we foreshadow future applications of this technology to the field of nanophotonics.

  6. Testing QCD in Photon-Photon Interactions

    OpenAIRE

    Soldner-Rembold, Stefan

    1998-01-01

    At high energies photon-photon interactions are dominated by quantum fluctuations of the photons into fermion-antifermion pairs and into vector mesons. This is called photon structure. Electron-positron collisions at LEP are an ideal laboratory for studying photon structure and for testing QCD.

  7. Photonic crystals

    CERN Document Server

    Busch, Kurt; Wehrspohn, Ralf B; Föll, Helmut

    2006-01-01

    The majority of the contributions in this topically edited book stems from the priority program SPP 1113 ""Photonische Kristalle"" run by the Deutsche Forschungsgemeinschaft (DFG), resulting in a survey of the current state of photonic crystal research in Germany. The first part of the book describes methods for the theoretical analysis of their optical properties as well as the results. The main part is dedicated to the fabrication, characterization and modeling of two- and three-dimensional photonic crystals, while the final section presents a wide spectrum of applications: gas sensors, micr

  8. Vesicle Photonics

    Energy Technology Data Exchange (ETDEWEB)

    Vasdekis, Andreas E.; Scott, E. A.; Roke, Sylvie; Hubbell, J. A.; Psaltis, D.

    2013-04-03

    Thin membranes, under appropriate boundary conditions, can self-assemble into vesicles, nanoscale bubbles that encapsulate and hence protect or transport molecular payloads. In this paper, we review the types and applications of light fields interacting with vesicles. By encapsulating light-emitting molecules (e.g. dyes, fluorescent proteins, or quantum dots), vesicles can act as particles and imaging agents. Vesicle imaging can take place also under second harmonic generation from vesicle membrane, as well as employing mass spectrometry. Light fields can also be employed to transport vesicles using optical tweezers (photon momentum) or directly pertrurbe the stability of vesicles and hence trigger the delivery of the encapsulated payload (photon energy).

  9. Photonic crystals principles and applications

    CERN Document Server

    Gong, Qihuang

    2013-01-01

    IntroductionPrimary Properties of Photonic CrystalsFabrication of Photonic CrystalsPhotonic Crystal All-Optical SwitchingTunable Photonic Crystal FilterPhotonic Crystal LaserPhotonic Crystal Logic DevicesPhotonic Crystal Sensors

  10. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Nanjing University of Posts and Communications, Nanjing 210003 (China); Popa, D., E-mail: dp387@cam.ac.uk; Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C. [Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Ilday, F. Ö. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey)

    2015-12-14

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  11. Photon differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Revall Frisvad, Jeppe; Erleben, Kenny;

    2007-01-01

    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation...

  12. Photon Differentials

    DEFF Research Database (Denmark)

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny;

    2007-01-01

    illumination features. This is often not desirable as these may lose clarity or vanish altogether. We present an accurate method for reconstruction of indirect illumination with photon mapping. Instead of reconstructing illumination using classic density estimation on finite points, we use the correlation...

  13. Photon-Photon Scattering at the Photon Linear Collider

    OpenAIRE

    Jikia, G.; Tkabladze, A.

    1993-01-01

    Photon-photon scattering at the Photon Linear Collider is considered. Explicit formulas for helicity amplitudes due to $W$ boson loops are presented. It is shown that photon-photon scattering should be easily observable at PLC and separation of the $W$ loop contribution (which dominates at high energies) will be possible at $e^+e^-$ c.m. energy of 500~GeV or higher.

  14. Photon Collider Physics with Real Photon Beams

    Energy Technology Data Exchange (ETDEWEB)

    Gronberg, J; Asztalos, S

    2005-11-03

    Photon-photon interactions have been an important probe into fundamental particle physics. Until recently, the only way to produce photon-photon collisions was parasitically in the collision of charged particles. Recent advances in short-pulse laser technology have made it possible to consider producing high intensity, tightly focused beams of real photons through Compton scattering. A linear e{sup +}e{sup -} collider could thus be transformed into a photon-photon collider with the addition of high power lasers. In this paper they show that it is possible to make a competitive photon-photon collider experiment using the currently mothballed Stanford Linear Collider. This would produce photon-photon collisions in the GeV energy range which would allow the discovery and study of exotic heavy mesons with spin states of zero and two.

  15. Microalgae photonics

    Science.gov (United States)

    Floume, Timmy; Coquil, Thomas; Sylvestre, Julien

    2011-05-01

    Due to their metabolic flexibility and fast growth rate, microscopic aquatic phototrophs like algae have a potential to become industrial photochemical converters. Algae photosynthesis could enable the large scale production of clean and renewable liquid fuels and chemicals with major environmental, economic and societal benefits. Capital and operational costs are the main issues to address through optical, process and biochemical engineering improvements. In this perspective, a variety of photonic approaches have been proposed - we introduce them here and describe their potential, limitations and compatibility with separate biotechnology and engineering progresses. We show that only sunlight-based approaches are economically realistic. One of photonics' main goals in the algae field is to dilute light to overcome photosaturation effects that impact upon cultures exposed to full sunlight. Among other approaches, we introduce a widely-compatible broadband spectral adaptation technique called AlgoSun® that uses luminescence to optimize sunlight spectrum in view of the bioconverter's requirements.

  16. Photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Va`vra, J.

    1995-10-01

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF{sub 2} windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission.

  17. Photon detectors

    International Nuclear Information System (INIS)

    J. Seguinot and T. Ypsilantis have recently described the theory and history of Ring Imaging Cherenkov (RICH) detectors. In this paper, I will expand on these excellent review papers, by covering the various photon detector designs in greater detail, and by including discussion of mistakes made, and detector problems encountered, along the way. Photon detectors are among the most difficult devices used in physics experiments, because they must achieve high efficiency for photon transport and for the detection of single photo-electrons. For gaseous devices, this requires the correct choice of gas gain in order to prevent breakdown and wire aging, together with the use of low noise electronics having the maximum possible amplification. In addition, the detector must be constructed of materials which resist corrosion due to photosensitive materials such as, the detector enclosure must be tightly sealed in order to prevent oxygen leaks, etc. The most critical step is the selection of the photocathode material. Typically, a choice must be made between a solid (CsI) or gaseous photocathode (TMAE, TEA). A conservative approach favors a gaseous photocathode, since it is continuously being replaced by flushing, and permits the photon detectors to be easily serviced (the air sensitive photocathode can be removed at any time). In addition, it can be argued that we now know how to handle TMAE, which, as is generally accepted, is the best photocathode material available as far as quantum efficiency is concerned. However, it is a very fragile molecule, and therefore its use may result in relatively fast wire aging. A possible alternative is TEA, which, in the early days, was rejected because it requires expensive CaF2 windows, which could be contaminated easily in the region of 8.3 eV and thus lose their UV transmission

  18. Nanowire photonics

    OpenAIRE

    Peter J. Pauzauskie; Peidong Yang

    2006-01-01

    The development of integrated electronic circuitry ranks among the most disruptive and transformative technologies of the 20th century. Even though integrated circuits are ubiquitous in modern life, both fundamental and technical constraints will eventually test the limits of Moore's law. Nanowire photonic circuitry constructed from myriad one-dimensional building blocks offers numerous opportunities for the development of next-generation optical information processors and spectroscopy. Howev...

  19. Topological photonics

    OpenAIRE

    Lu, Ling; Joannopoulos, John D.; Soljačić, Marin

    2014-01-01

    The application of topology, the mathematics of conserved properties under continuous deformations, is creating a range of new opportunities throughout photonics. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation, even in the presence of impurities. Similarly, the use of carefully designed wavevector-space topologies allows the creation of interfaces that support new states of light with useful and interesting prop...

  20. Calibration processes for photon-photon colliders

    CERN Document Server

    Bartos, E; Galynsky, M V; Kuraev, E A

    2004-01-01

    Processes with creation of a pair charged particles with emission of hard photon and two pairs of charged particles are considered for colliding partially polarized photon photon beams. The effects of circular and linear polarization of the initial photons are discussed in more detail.

  1. Nanowire photonics

    Directory of Open Access Journals (Sweden)

    Peter J. Pauzauskie

    2006-10-01

    Full Text Available The development of integrated electronic circuitry ranks among the most disruptive and transformative technologies of the 20th century. Even though integrated circuits are ubiquitous in modern life, both fundamental and technical constraints will eventually test the limits of Moore's law. Nanowire photonic circuitry constructed from myriad one-dimensional building blocks offers numerous opportunities for the development of next-generation optical information processors and spectroscopy. However, several challenges remain before the potential of nanowire building blocks is fully realized. We cover recent advances in nanowire synthesis, characterization, lasing, integration, and the eventual application to relevant technical and scientific questions.

  2. Physics at High Energy Photon Photon Colliders

    OpenAIRE

    Chanowitz, Michael S.

    1994-01-01

    I review the physics prospects for high energy photon photon colliders, emphasizing results presented at the LBL Gamma Gamma Collider Workshop. Advantages and difficulties are reported for studies of QCD, the electroweak gauge sector, supersymmetry, and electroweak symmetry breaking.

  3. Photon Aided and Inhibited Tunneling of Photons

    CERN Document Server

    liu, xuele

    2013-01-01

    In the light of the interest in the transport of single photons in arrays of waveguides, fiber couplers, photonic crystals, etc., we consider the quantum mechanical process of the tunneling of photons through evanescently or otherwise coupled structures. We specifically examine the issue of tunneling between two structures when one structure already contains few photons. We demonstrate the possibility of both photon aided and inhibited tunneling of photons. The Bosonic nature of photons enhances the tunneling probability. We also show how the multiphoton tunneling probability can be either enhanced or inhibited due to the presence of photons. We find similar results for the higher order tunneling. Finally, we show that the presence of a squeezed field changes the nature of tunneling considerably.

  4. Jets in Photon-Photon Collisions

    OpenAIRE

    Fontannaz, M.

    1994-01-01

    We study jet production in photon-photon reactions at the next-to-leading logarithm accuracy. The discussion of the theoretical uncertainties and the role of the quark and gluon distributions in the photon is emphasized. The phenomenology at TRISTAN energies is discussed and predictions are made for LEP 200.

  5. Photon-Photon Collisions -- Past and Future

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2005-12-02

    I give a brief review of the history of photon-photon physics and a survey of its potential at future electron-positron colliders. Exclusive hadron production processes in photon-photon and electron-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes. There are also important high energy {gamma}{gamma} and e{gamma} tests of quantum chromodynamics, including the production of jets in photon-photon collisions, deeply virtual Compton scattering on a photon target, and leading-twist single-spin asymmetries for a photon polarized normal to a production plane. Since photons couple directly to all fundamental fields carrying the electromagnetic current including leptons, quarks, W's and supersymmetric particles, high energy {gamma}{gamma} collisions will provide a comprehensive laboratory for Higgs production and exploring virtually every aspect of the Standard Model and its extensions. High energy back-scattered laser beams will thus greatly extend the range of physics of the International Linear Collider.

  6. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  7. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  8. Nuclear photonics

    Energy Technology Data Exchange (ETDEWEB)

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G. [Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Max Planck Institut fuer Quantenoptik, D-85748 Garching (Germany); Institut Laue-Langevin, F-38042 Grenoble (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  9. Photon-Photon Interactions via Rydberg Blockade

    OpenAIRE

    Fleischhauer, Michael; Pohl, Thomas; Gorshkov, Alexey Vyacheslavovich; Otterbach, Johannes; Lukin, Mikhail D.

    2011-01-01

    We develop the theory of light propagation under the conditions of electromagnetically induced transparency (EIT) in systems involving strongly interacting Rydberg states. Taking into account the quantum nature and the spatial propagation of light, we analyze interactions involving few-photon pulses. We demonstrate that this system can be used for the generation of nonclassical states of light including trains of single photons with an avoided volume between them, for implementing photon-phot...

  10. Aspherical Photon and Anti-Photon Surfaces

    CERN Document Server

    Gibbons, G W

    2016-01-01

    In this note we identify photon surfaces and anti-photon surfaces in some physically interesting spacetimes, which are not spherically symmetric. All of our examples solve physically reasonable field equations, including for some cases the vacuum Einstein equations, albeit they are not asymptotically flat. Our examples include the vacuum C-metric, the Melvin solution of Einstein-Maxwell theory and generalisations including dilaton fields. The (anti-)photon surfaces are not round spheres, and the lapse function is not always constant.

  11. Monolithic Highly Stable Yb-Doped Femtosecond Fiber Lasers for Applications in Practical Biophotonics

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2012-01-01

    Operational and environmental stability of ultrafast laser systems is critical for their applications in practical biophotonics. Mode-locked fiber lasers show great promise in applications such as supercontinuum sources or multiphoton microscopy systems. Recently, substantial progress has been made...... in the development of all-fiber nonlinear-optical laser control schemes, which resulted in the demonstration of highly stable monolithic, i.e., not containing any free-space elements, lasers with direct fiber-end delivery of femtosecond pulses. This paper provides an overview of the progress in the development...... of such all-fiber mode-locked lasers based on Yb-fiber as gain medium, operating at the wavelength around 1 $\\mu$m, and delivering femtosecond pulses reaching tens of nanojoules of energy....

  12. Demonstration of a homogeneous Yb-doped core fully aperiodic large-pitch fiber laser.

    Science.gov (United States)

    Dauliat, Romain; Benoît, Aurélien; Darwich, Dia; Jamier, Raphaël; Kobelke, Jens; Grimm, Stephan; Schuster, Kay; Roy, Philippe

    2016-08-10

    The first demonstration of a 40 μm core homogeneously ytterbium-doped fully aperiodic large-pitch fiber laser, to the best of our knowledge, is reported here. In this concept, the amplification of unwanted high-order modes is prevented by means of an aperiodic inner-cladding structure, while the core and inner-cladding material has a higher refractive index than pure silica. In a laser configuration, up to 252 W of extracted power, together with an optical-to-optical efficiency of 63% with respect to the incident pump power, have been achieved. While an average M2 of 1.4 was measured, the emitted power becomes temporally unstable when exceeding 95 W, owing to the occurrence of modal instabilities. PMID:27534463

  13. Electrical and microstructural properties of Yb-doped CeO2

    Directory of Open Access Journals (Sweden)

    B. Matović

    2014-06-01

    Full Text Available Nanopowdered Ce1−xYbxO2−δ solid solutions (0 ≤ x ≤ 0.2 were synthesized by a self-propagating room temperature synthesis. XRD and SEM were used to study the properties of these materials as well as the Yb solubility in CeO2 lattice. Results showed that all the obtained powders were solid solutions with a fluorite-type crystal structure and with nanometric particle size. The average size of Ce1−xYbxO2−δ particles was approximately 3 nm. Electrochemical impedance spectroscopy for the sintered pellets depicted that it was possible to separate Rbulk and Rgb in the temperature interval of 550–800 °C. The activation energy for the bulk conduction was 1.03 eV and for grain boundary conduction was 1.14 eV. Grain boundary resistivity dominates over the other resistivities. These measurements confirmed that Yb3+-doped CeO2 material had a potential as electrolyte for intermediate-temperature solid oxide fuel cell applications.

  14. Radiation effects on Yb- and Er/Yb-doped optical fibers: A micro-luminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Tortech, B.; Ouerdane, Y.; Meunier, J. P.; Boukenter, A. [Univ St Etienne, CNRS, UMR 5516, Lab Hubert Curien, F-42000 St Etienne (France); Girard, S. [CEA Bruyeres le Chatel, DIF, 91 (France); Robin, T.; Cadier, B.; Crochet, P. [iXFiber SAS, F-22300 Lannion (France)

    2009-07-15

    The integration of rare-earth doped optical fibers as part of fiber-based systems in space implies the development of waveguides tolerant to the radiation levels associated with the space missions. Erbium (Er)- or Ytterbium/Erbium (Yb/Er)-doped fibers have been shown to be very sensitive to ionizing radiations. Radiations lead to a strong increase of the fiber attenuation around the pump and amplified signal wavelengths. In this paper, we investigate by confocal luminescence microscopy the radiation-induced spectroscopic changes on prototype Yb- or Yb/Er-doped optical fibers. The set of tested fibers allows us to provide new insights into the relative influence of the P, Al doping on the radiation responses of their silica-based host matrix and on the transitions between the energy states of rare-earth ions. (authors)

  15. Tm-Yb Doped Optical Fiber Performance with Variation of Host-Glass Composition

    Directory of Open Access Journals (Sweden)

    Anirban Dhar

    2014-01-01

    Full Text Available The fabrication process of Thulium-Ytterbium doped optical fiber comprising different host glass through the Modified Chemical Vapor Deposition (MCVD coupled with solution doping technique is presented. The material and optical performance of different fibers are compared with special emphasis on their lasing efficiency for 2 µm application.

  16. Tm-Yb Doped Optical Fiber Performance with Variation of Host-Glass Composition

    OpenAIRE

    Anirban Dhar; Atasi Pal; Shyamal Das; Ranjan Sen

    2014-01-01

    The fabrication process of Thulium-Ytterbium doped optical fiber comprising different host glass through the Modified Chemical Vapor Deposition (MCVD) coupled with solution doping technique is presented. The material and optical performance of different fibers are compared with special emphasis on their lasing efficiency for 2 µm application.

  17. Quantum Computing using Photons

    Science.gov (United States)

    Elhalawany, Ahmed; Leuenberger, Michael

    2013-03-01

    In this work, we propose a theoretical model of two-quantum bit gates for quantum computation using the polarization states of two photons in a microcavity. By letting the two photons interact non-resonantly with four quantum dots inside the cavity, we obtain an effective photon-photon interaction which we exploit for the implementation of an universal XOR gate. The two-photon Hamiltonian is written in terms of the photons' total angular momentum operators and their states are written using the Schwinger representation of the total angular momentum.

  18. Controllable photon source

    Science.gov (United States)

    Oszetzky, Dániel; Nagy, Attila; Czitrovszky, Aladár

    2006-10-01

    We have developed our pervious experimental setup using correlated photon pairs (to the calibration of photo detectors) to realize a controllable photon source. For the generation of such photon pairs we use the non-linear process of parametric down conversion. When a photon of the pump beam is incident to a nonlinear crystal with phase matching condition, a pair of photons (signal and idler) is created at the same time with certain probability. We detect the photons in the signal beam with a single photon counting module (SPCM), while delaying those in the idler beam. Recently we have developed a fast electronic unit to control an optical shutter (a Pockels cell) placed to the optical output of the idler beam. When we detect a signal photon with the controlling electronic unit we are also able to open or close the fast optical shutter. Thus we can control which idler photons can propagate through the Pockels cell. So with this photon source we are able to program the number of photons in a certain time window. This controllable photon source that is able to generate a known number of photons with specified wavelength, direction, and polarization could be useful for applications in high-accuracy optical characterisation of photometric devices at the ultra-low intensities. This light source can also serve as a standard in testing of optical image intensifiers, night vision devices, and in the accurate measurement of spectral distribution of transmission and absorption in optical materials.

  19. High energy photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e{sup +}e{sup {minus}} collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly {gamma}{gamma} {yields} W{sup +}W{sup {minus}}, {gamma}{gamma} {yields} Higgs bosons, and higher-order loop processes, such as {gamma}{gamma} {yields} {gamma}{gamma}, Z{gamma} and ZZ. Since each photon can be resolved into a W{sup +}W{sup minus} pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy {gamma}{gamma} tests of quantum chromodynamics, such as the scaling of the photon structure function, t{bar t} production, mini-jet processes, and diffractive reactions.

  20. Jet and hadron production in photon-photon collisions

    OpenAIRE

    Soldner-Rembold, Stefan

    1999-01-01

    Di-jet and inclusive charged hadron production cross-sections measured in photon-photon collisions by OPAL are compared to NLO pQCD calculations. Jet shapes measured in photon-photon scattering by OPAL, in deep-inelastic ep scattering by H1 and in photon-proton scattering by ZEUS are shown to be consistent in similar kinematic ranges. New results from TOPAZ on prompt photon production in photon-photon interactions are presented.

  1. Polychromatic photon absorptiometry

    International Nuclear Information System (INIS)

    Photon absorptiometry is a popular method for determining the mineral contents of body components, such as bone. The single photon absorptiometry introduced by Cameron and Sorenson (1963) has become widely accepted. Dichromatic absorptiometry using two monochromatic photon beams was recently introduced by Witt and Mazess (1978). The photon absorptiometry described here involves as unlimited number of monochromatic photon beams and component materials. Formulation for this polychromatic photon absorptiometry (PCPA) can be described as the linear algebraic expression using the least square method, by measuring photon intensities for each photon beam attenuated by the sample. For example, the lead content of lead-containing acrylic resin sheets was measured by PCPA using fluorescent X-ray from appropriate secondary targets which had been excited by white X-rays. The values obtained were in good agreement with the real contents and proved accurate to within 1%. (author)

  2. Photonic Design for Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  3. Nonlinear Integrated Microwave Photonics

    OpenAIRE

    Marpaung, David; Eggleton, Benjamin J.

    2013-01-01

    Harnessing nonlinear optical effects in a photonic chip scale has been proven useful for a number of key applications in optical communications. Microwave photonics can also benefit from the adoption of such a technology, creating a new concept of nonlinear integrated microwave photonics. Here, we discuss the potential of on-chip nonlinear processing towards the creation of robust and multifunctional microwave photonic (MWP) processors. We also highlight key recent results in the field, inclu...

  4. Photonics. Present and future

    OpenAIRE

    K. I. Silakov; T. T. Silakova

    2011-01-01

    Short review of the literature in the field of photonics, which reflects the new technology of ultra-compact optical communications components, the use of generators to transmission light instead of wires is represented. This is - silicon photonics - finding ways to use semiconductor components and of standard semiconductor technology to create optical devices, silicon photonics - the creation of a silicon photonic waveguide. All of these components can be used in the construction of computer...

  5. Switching to Photonics

    OpenAIRE

    Hinton, Harvard S.

    1992-01-01

    The use of hardware that exploits the interplay of photons and electrons to switch voice, data, and video is discussed. The two directions being taken by current research-guided-wave and free-space photonics-are examined. Photonic time-slot interchanges are described. Multidivisional fabrics, based on a combination of space-division and time-division multiplexing, are considered, as is the wavelength-division-based photonic packet switch, another kind of multidimensional fabric. The use of se...

  6. Measuring photon-photon interactions via photon detection

    OpenAIRE

    Macovei, Mihai A.

    2010-01-01

    The strong non-linearity plays a significant role in physics, particularly, in designing novel quantum sources of light and matter as well as in quantum chemistry or quantum biology. In simple systems, the photon-photon interaction can be determined analytically. However, it becomes challenging to obtain it for more compex systems. Therefore, we show here how to measure strong non-linearities via allowing the sample to interact with a weakly pumped quantized leaking optical mode. We found tha...

  7. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D;

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  8. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  9. Direct photon interferometry

    OpenAIRE

    Peressounko, D.

    2005-01-01

    We consider recent developments in the theory of the two-photon interferometry in ultrarelativistic heavy ion collisions with emphasis on the difference between photon and hadron interferometry. We review the available experimental results and discuss possibilities of measurement of the photon Bose-Einstein correlations in ongoing and future experiments.

  10. Ultrafast photonic crystal optical switching

    Institute of Scientific and Technical Information of China (English)

    GONG Qi-huang; HU Xiao-yong

    2006-01-01

    Photonic crystal,a novel and artificial photonic material with periodic dielectric distribution,possesses photonic bandgap and can control the propagation states of photons.Photonic crystal has been considered to be a promising candidate for the future integrated photonic devices.The properties and the fabrication method of photonic crystal are expounded.The progresses of the study of ultrafast photonic crystal optical switching are discussed in detail.

  11. Inclusive hard processes in photon-photon and photon-proton interactions

    OpenAIRE

    Glasman, Claudia

    1999-01-01

    Measurements of jet, prompt photon, high-pT hadron and heavy quark production in photon-induced processes provide tests of QCD and are sensitive to the photon parton densities. A review of the latest experimental results in photon-photon and photon-proton interactions is presented. Next-to-leading-order QCD calculations for these measurements are discussed.

  12. The effect of polarization entanglement in photon-photon scattering

    CERN Document Server

    Rätzel, Dennis; Menzel, Ralf

    2016-01-01

    It is found that the differential cross section of photon-photon scattering is a function of the degree of entanglement of the two-photon state, and an analytic expression is derived. The interaction between photons in the symmetric Bell state is stronger than between not entangled photons. In contrast, the interaction between photons in the anti-symmetric Bell state is weaker than between not entangled photons.

  13. Single-photon imaging

    CERN Document Server

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  14. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  15. Heavy Quark Pair Production in Polarized Photon--Photon Collisions

    OpenAIRE

    Jikia, George; Tkabladze, Avto

    2000-01-01

    We present the next-to-leading-order cross sections of the heavy quark-antiquark pair production in polarized photon-photon collision for the general case of photon polarizations. The numerical results for top-antitop production cross sections together with production asymmetries are obtained for linearly polarized photon-photon collisions, including one-loop QCD radiative corrections.

  16. Photonic Crystal Waveguide Fabrication

    OpenAIRE

    Høvik, Jens

    2012-01-01

    This research is entirely devoted to the study and fabrication of structures with periodic dielectric constants, also known as photonic crystals (PhCs). These structures show interesting dispersion characteristics which give them a range of prohibited frequencies that are not allowed to propagate within the crystal. This property makes them suited for a wide array of photonic-based components. One-dimensional photonic crystals are already commercialized and are of widespread use in for exampl...

  17. Two photon reactions

    International Nuclear Information System (INIS)

    Some recent results from the field of photon-photon interaction are presented. After a brief general introduction author discusses resonance production, exclusive processes with the four pion final state (γγ→π+π-π+π-), exclusive reaction γγ→psi psi, γγ - 2 body final state and jet production. Total hadronic cross sections for γγ - interactions and the photon structure function are also considered. (M.F.W.)

  18. Integrated microwave photonics

    OpenAIRE

    Marpaung, David; Roeloffzen, Chris; Heideman, Rene; Leinse, Arne; Sales, Salvador; Capmany, Jose

    2012-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the r...

  19. Green silicon photonics

    OpenAIRE

    Jalali, B.; Fathpour, S.; Tsia, K

    2009-01-01

    Silicon photonics have provided low-cost communication components for Internet applications and are now aimed towards providing environmentally friendly and green optical solutions. The need for energy-efficient photonics is due to the excessive energy dissipated in advanced electronics and an increase in power density that has posed a challenge to the most advanced chip-cooling technologies. The two-photon absorption (TPA)-generated free carriers need to be actively removed from the waveguid...

  20. Two-photon physics

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, W.A.

    1981-10-01

    A new experimental frontier has recently been opened to the study of two photon processes. The first results of many aspects of these reactions are being presented at this conference. In contrast, the theoretical development of research ito two photon processes has a much longer history. This talk reviews the many different theoretical ideas which provide a detailed framework for our understanding of two photon processes.

  1. Fractal Photonic Crystal Waveguides

    OpenAIRE

    Monsoriu, Juan A.; Zapata-Rodriguez, Carlos J.; Silvestre, Enrique; Furlan, Walter D.

    2004-01-01

    We propose a new class of one-dimensional (1D) photonic waveguides: the fractal photonic crystal waveguides (FPCWs). These structures are photonic crystal waveguides (PCWs) etched with fratal distribution of grooves such as Cantor bars. The transmission properties of the FPCWs are investigated and compared with those of the conventional 1D PCWs. It is shown that the FPCW transmission spectrum has self-similarity properties associated with the fractal distribution of grooves. Furthermore, FPCW...

  2. Integrated microwave photonics

    CERN Document Server

    Marpaung, David; Heideman, Rene; Leinse, Arne; Sales, Salvador; Capmany, Jose

    2012-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the reduction of size, weight, cost and power consumption. This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics. Key integrated MWP technologies are reviewed and the prospective of the field is discussed.

  3. Photonic Integrated Circuits

    Science.gov (United States)

    Merritt, Scott; Krainak, Michael

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  4. Review on Dark Photon

    Directory of Open Access Journals (Sweden)

    Curciarello Francesca

    2016-01-01

    Full Text Available e+e− collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ε2 between the photon and the dark photon by e+e− collider experiments.

  5. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...... readers with a general interest in photonic crystals, as well as for scientists who are entering the field and desire a broad overview as well as a solid starting point for further specialized stuides. Teh book, therefore, covers bothe general aspects such as the link from classical optics to photonic...

  6. Photonics. Present and future

    Directory of Open Access Journals (Sweden)

    K. I. Silakov

    2011-03-01

    Full Text Available Short review of the literature in the field of photonics, which reflects the new technology of ultra-compact optical communications components, the use of generators to transmission light instead of wires is represented. This is - silicon photonics - finding ways to use semiconductor components and of standard semiconductor technology to create optical devices, silicon photonics - the creation of a silicon photonic waveguide. All of these components can be used in the construction of computer systems linked by powerful optical data networks. Optical communication system will eliminate the "bottleneck" due to the difference in memory bandwidth and processor speed, and improve overall performance computing plate-tformy.

  7. Towards THz integrated photonics

    OpenAIRE

    Hübers, Heinz-Wilhelm

    2010-01-01

    The demonstration of an integrated terahertz transceiver featuring a quantum cascade laser and a Schottky diode mixer promises new applications for compact and convenient terahertz photonic instrumentation.

  8. Nonlinear Integrated Microwave Photonics

    CERN Document Server

    Marpaung, David

    2013-01-01

    Harnessing nonlinear optical effects in a photonic chip scale has been proven useful for a number of key applications in optical communications. Microwave photonics can also benefit from the adoption of such a technology, creating a new concept of nonlinear integrated microwave photonics. Here, we discuss the potential of on-chip nonlinear processing towards the creation of robust and multifunctional microwave photonic (MWP) processors. We also highlight key recent results in the field, including frequency agile MWP filters and ultra-wideband signal generators.

  9. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  10. Sfermion production at photon colliders

    OpenAIRE

    Klasen, M

    2000-01-01

    We calculate total and differential cross sections for sfermion production in $e^+e^-$ annihilation and in photon-photon collisions with arbitrary photon polarization. The total cross section at a polarized photon collider is shown to be larger than the $e^+e^-$ annihilation cross section up to the kinematic limit of the photon collider.

  11. Resonances in photon-photon scattering

    International Nuclear Information System (INIS)

    A quantity called stickiness is introduced which should be largest for J not equal to 0 glueballs and can be measured in two photon scattering and radiative J/psi decay. An argument is reviewed suggesting that light J = 0 glueballs may have large couplings to two photons. The analysis of radiative decays of eta and eta' is reviewed and a plea made to desist from false claims that they are related to GAMMA(π0 → γγ) by SU(3) symmetry. It is shown that two photon studies can refute the difficult-to-refute hypothesis that xi(2220) or zeta(8320) are Higgs bosons. A gallery of rogue resonances and resonance candidates is presented which would usefully be studied in γγ scattering, including especially the low mass dipion. 34 references

  12. Resonances in photon-photon scattering

    International Nuclear Information System (INIS)

    Selected topics in meson spectroscoy are reviewed as they are illuminated by photon-photon collisons. Subjects include the S*/f0 (975) and δ/a0 (980) as /ovr qq/qq candidates, the /iota///eta/ (1460) and θ/f2 (1700) as glueball candidates, and the spin 1 X(1420) seen in tagged events which represents new physics whether its parity is positive, J/sup PC/ = 1++, or negative with exotic J/sup PC/ = 1/sup /minus/+/. 57 refs., 2 figs., 1 tab

  13. Hadronic photon-photon interactions at high energies

    OpenAIRE

    Engel, R.; Ranft, J.

    1995-01-01

    Photon-photon collisions are investigated in the framework of the two-component Dual Parton Model. The model is shown to agree well to hadron production data from hadron-hadron and photon-hadron collisions. The multiparticle production in hadron-hadron, photon-hadron and photon-photon collisions as predicted by the model is compared. Strong differences are only found as function of the transverse momentum variable. The hadron production in photon-photon collisions at present and future electr...

  14. Photonic Crystal Fiber Attenuator

    Institute of Scientific and Technical Information of China (English)

    Joo Beom Eom; Hokyung Kim; Jinchae Kim; Un-Chul Paek; Byeong Ha Lee

    2003-01-01

    We propose a novel fiber attenuator based on photonic crystal fibers. The difference in the modal field diameters of a conventional single mode fiber and a photonic crystal fiber was used. A variable optical attenuator was also achieved by applying macro-bending on the PCF part of the proposed attenuator

  15. Photon mass from inflation.

    Science.gov (United States)

    Prokopec, Tomislav; Törnkvist, Ola; Woodard, Richard

    2002-09-01

    We consider vacuum polarization from massless scalar electrodynamics in de Sitter inflation. The theory exhibits a 3+1 dimensional analog of the Schwinger mechanism in which a photon mass is dynamically generated. The mechanism is generic for light scalar fields that couple minimally to gravity. The nonvanishing of the photon mass during inflation may result in magnetic fields on cosmological scales.

  16. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  17. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and fluoresc

  18. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... are presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  19. Nonlinear Photonics 2014: introduction.

    Science.gov (United States)

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  20. Chirality in photonic systems

    Science.gov (United States)

    Solnyshkov, Dmitry; Malpuech, Guillaume

    2016-10-01

    The optical modes of photonic structures are the so-called TE and TM modes that bring intrinsic spin-orbit coupling and chirality to these systems. This, combined with the unique flexibility of design of the photonic potential, and the possibility to mix photon states with excitonic resonances, sensitive to magnetic field and interactions, allows us to achieve many phenomena, often analogous to other solid-state systems. In this contribution, we review in a qualitative and comprehensive way several of these realizations, namely the optical spin Hall effect, the creation of spin currents protected by a non-trivial geometry, the Berry curvature for photons, and the photonic/polaritonic topological insulator. xml:lang="fr"

  1. Ion photon emission microscope

    Science.gov (United States)

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  2. Photonics in wireless transceivers

    International Nuclear Information System (INIS)

    During the last few years, the cross-fertilization between photonics and radio systems has been helping to overcome some major limitations of the classical radio technologies, setting new paradigms, and promising improved performance and new applications with strong benefits for public communications and safety. In particular, photonics-based wireless systems, albeit still at research level, are moving toward a new generation of multifunctional systems able to manage the wireless communication with several different frequencies and protocols, even simultaneously while also realizing surveillance operations. Photonics matches the new requirements of flexibility for software-defined architectures, thanks to its ultra-wide bandwidths and ease of tunability, and guarantees low footprint and weight, thanks to integrated photonic technologies. Moreover, photonics also allows increased resolution and sensitivity by means of the inherent low phase noise of lasers. (author)

  3. Photon regeneration plans

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.

    2006-12-15

    Precision experiments exploiting low-energy photons may yield information on particle physics complementary to experiments at high-energy colliders, in particular on new very light and very weakly interacting particles, predicted in many extensions of the standard model. Such particles may be produced by laser photons send along a transverse magnetic field. The laser polarization experiment PVLAS may have seen the first indirect signal of such particles by observing an anomalously large rotation of the polarization plane of photons after the passage through a magnetic field. This can be interpreted as evidence for photon disappearance due to particle production. There are a number of experimental proposals to test independently the particle interpretation of PVLAS. Many of them are based on the search for photon reappearance or regeneration, i.e. for ''light shining through a wall''. At DESY, the Axion-Like Particle Search (ALPS) collaboration is currently setting up such an experiment. (orig.)

  4. Roadmap on silicon photonics

    Science.gov (United States)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  5. Unparticle effects in photon-photon scattering

    International Nuclear Information System (INIS)

    Elastic photon-photon scattering can occur in the Standard Model only via loop diagrams and is naturally suppressed. Unparticle can induce tree-level photon-photon scattering through the operator FμνFμνOU for spin-0 unparticle or FμαFανOUμν for spin-2 unparticle. Due to the peculiar CP-conserving phase exp(-idUπ) associated with the time-like unparticle propagator for non-integral scaling dimension dU, the interference effects of the s-channel amplitude with the t- and u-channels ones on the total cross sections as well as the angular distributions are found to be of some significance. We found that the matrix-element squared is independent of whether we used the transverse form or the conformal form for the spin-2 unparticle propagator. In addition, we show that the cross sections via unparticle exchange can be substantially larger than the Standard Model contribution

  6. Unparticle effects in photon-photon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.-F. [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Cheung Kingman [Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China); Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan (China)], E-mail: cheung@phys.nthu.edu.tw; Yuan, T.-C. [Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan (China)

    2008-06-26

    Elastic photon-photon scattering can occur in the Standard Model only via loop diagrams and is naturally suppressed. Unparticle can induce tree-level photon-photon scattering through the operator F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}}O{sub U} for spin-0 unparticle or F{sub {mu}}{sub {alpha}}F{sup {alpha}}{sub {nu}}O{sub U}{sup {mu}}{sup {nu}} for spin-2 unparticle. Due to the peculiar CP-conserving phase exp(-id{sub U}{pi}) associated with the time-like unparticle propagator for non-integral scaling dimension d{sub U}, the interference effects of the s-channel amplitude with the t- and u-channels ones on the total cross sections as well as the angular distributions are found to be of some significance. We found that the matrix-element squared is independent of whether we used the transverse form or the conformal form for the spin-2 unparticle propagator. In addition, we show that the cross sections via unparticle exchange can be substantially larger than the Standard Model contribution.

  7. Investigating photonic quantum computation

    Science.gov (United States)

    Myers, Casey Robert

    The use of photons as qubits is a promising implementation for quantum computation. The inability of photons to interact, especially with the environment, makes them an ideal physical candidate. However, this also makes them a difficult system to perform two qubit gates on. Recent breakthroughs in photonic quantum computing have shown methods around the requirement of direct photon-photon interaction. In this thesis we study three recently discovered schemes for optical quantum computation. We first investigate the so called linear optical quantum computing (LOQC) scheme, exploring a method to improve the original proposal by constructing a photon-number QND detector that succeeds with a high probability. In doing this we present a new type of LOQC teleporter, one that can detect the presence of a single photon in an arbitrary polarisation state when the input state is a sum of vacuum and multi-photon terms. This new type of teleporter is an improvement on the original scheme in that the entangled states required can be made offline with fewer entangling operations. We next investigate the so called quantum bus (qubus) scheme for photonic quantum computing. We show a scheme to measure the party of n qubit states by using a single qubus mode, controlled rotations and displacements. This allows for the syndrome measurements of any stabilizer quantum error correcting code. We extend these results to a fault tolerant scheme to measure an arbitrary Pauli operator of weight n, incorporating so called single bit teleportations. We investigate the construction of a Toffoli gate by using a single qubus mode, controlled rotations and displacements that works with a success probability of at least 25%. We also investigate the use of single bit teleportations to construct a universal set of gates on coherent state type logic and in the construction of cluster states. We finally investigate the optical Zeno gate, a gate that uses the Zeno effect in the form of two photon

  8. Final States in Photon-Photon and Photon-Proton Interactions

    OpenAIRE

    Soldner-Rembold, Stefan

    1998-01-01

    The total hadronic photon-photon cross-section measured by L3 and OPAL and the apparent discrepancy between the results are discussed. OPAL measurements of jet and charged hadron production in photon-photon scattering and preliminary H1 results on neutral pion production in photon-proton scattering are also presented. The mechanism of baryon number transfer in photon-proton interactions at HERA has been studied for the first time by H1.

  9. Single photons on demand

    International Nuclear Information System (INIS)

    Quantum cryptography and information processing are set to benefit from developments in novel light sources that can emit photons one by one. Quantum mechanics has gained a reputation for making counter-intuitive predictions. But we rarely get the chance to witness these effects directly because, being humans, we are simply too big. Take light, for example. The light sources that are familiar to us, such as those used in lighting and imaging or in CD and DVD players, are so huge that they emit billions and billions of photons. But what if there was a light source that emitted just one photon at a time? Over the past few years, new types of light source that are able to emit photons one by one have been emerging from laboratories around the world. Pulses of light composed of a single photon correspond to power flows in the femtowatt range - a million billion times less than that of a table lamp. The driving force behind the development of these single-photon sources is a range of novel applications that take advantage of the quantum nature of light. Quantum states of superposed and entangled photons could lead the way to guaranteed-secure communication, to information processing with unprecedented speed and efficiency, and to new schemes for quantum teleportation. (U.K.)

  10. Direct Photons at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gabor,D.

    2008-07-29

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (p{sub T}) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high p{sub T} direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass e{sup +}e{sup -} pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.

  11. Model of a photon

    Directory of Open Access Journals (Sweden)

    Alexandrov B. L.

    2015-09-01

    Full Text Available The article examines the historical aspect of the appearance of the concept of the photon, which was introduced through the works of Planck, Einstein, Compton, Lewis. It is noted that the photon has both corpuscular characteristics (momentum, mass, energy and wave (frequency, wavelength, which are interconnected. Thus, the photon has dual properties – of a particle and a wave. The article deals with the analysis described in the literature of the photon model proposed by S.M. Polyakov and O.S. Polyakova, F.M. Konarevym-Krauzerom, V.G.Kozlovym and S.I. Chervyakov, as well as with their advantages and disadvantages. A version of the model in the form of a photon of two identical but oppositely charged halfmass, which simultaneously perform translational, rotational and vibrational motion was suggested. We have shown derivation of the amplitude of vibration of the two half-mass photon connected with simple relation with wavelength, described with this photon. On this basis, it is concluded that the state of a photon is characterized by a rotational movement of its oppositely charged half-stuff, which radius (r is the amplitude of the oscillation process of each of the half-mass, and described by oppositely charged half-mass circumference length S in expanded form in a result of the progressive movement is the length wave l. This work displays the wave equation describing the motion of photons in the form of a standing wave which is a complete analog-independent Schrödinger equation for the motion of an electron in a hydrogen atom

  12. Photonic Maxwell's Demon.

    Science.gov (United States)

    Vidrighin, Mihai D; Dahlsten, Oscar; Barbieri, Marco; Kim, M S; Vedral, Vlatko; Walmsley, Ian A

    2016-02-01

    We report an experimental realization of Maxwell's demon in a photonic setup. We show that a measurement at the few-photons level followed by a feed-forward operation allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment stimulates the derivation of an equality relating work extraction to information acquired by measurement. We derive a bound using this relation and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments related to information in thermodynamics. PMID:26894692

  13. Photonics: Technology project summary

    Science.gov (United States)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  14. Fundamentals of microwave photonics

    CERN Document Server

    Urick, V J; McKinney , Jason D

    2015-01-01

    A comprehensive resource to designing andconstructing analog photonic links capable of high RFperformanceFundamentals of Microwave Photonics provides acomprehensive description of analog optical links from basicprinciples to applications.  The book is organized into fourparts. The first begins with a historical perspective of microwavephotonics, listing the advantages of fiber optic links anddelineating analog vs. digital links. The second section coversbasic principles associated with microwave photonics in both the RFand optical domains.  The third focuses on analog modulationformats-starti

  15. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......Density estimation employed in multi-pass global illumination algorithms give cause to a trade-off problem between bias and noise. The problem is seen most evident as blurring of strong illumination features. In particular this blurring erodes fine structures and sharp lines prominent in caustics......, while eliminating noise. We call our method diffusion based photon mapping....

  16. Nanostructured polymers for photonics

    Directory of Open Access Journals (Sweden)

    Chantal Paquet

    2008-04-01

    Full Text Available We review recent progress in the development of polymer nanostructured materials with periodic structures and compositions having applications in photonics and optical data storage. This review provides a brief description of the microfabrication and self-assembly methods used for the production of polymer materials with periodic structures, and highlights the properties and applications of photonic materials derived from block copolymers, colloid crystals, and microfabricated polymers. We conclude with a summary of current and future research efforts and opportunities in the development of polymer materials for photonic applications.

  17. Strained Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  18. Photon collider Higgs factories

    CERN Document Server

    Telnov, V I

    2014-01-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  19. Physics of photonic devices

    CERN Document Server

    Chuang, Shun Lien

    2009-01-01

    The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as:

  20. Single photon quantum cryptography.

    Science.gov (United States)

    Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe

    2002-10-28

    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.

  1. Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption

    OpenAIRE

    Nakanishi, Toshihiro; Kobayashi, Hirokazu; Sugiyama, Kazuhiko; Kitano, Masao

    2009-01-01

    For dissipation-free photon-photon interaction at the single photon level, we analyze one-photon transition and two-photon transition induced by photon pairs in three-level atoms using two-photon wavefunctions. We show that the two-photon absorption can be substantially enhanced by adjusting the time correlation of photon pairs. We study two typical cases: Gaussian wavefunction and rectangular wavefunction. In the latter, we find that under special conditions one-photon transition is complete...

  2. Tomography of photon-added and photon-subtracted states

    NARCIS (Netherlands)

    Bazrafkan, MR; Man'ko, [No Value

    2003-01-01

    The purpose of this paper is to introduce symplectic and optical tomograms of photon-added and photon-subtracted quantum states. Explicit relations for the tomograms of photon-added and photon-subtracted squeezed coherent states and squeezed number states are obtained. Generating functions for the m

  3. Microwave background constraints on mixing of photons with hidden photons

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max-Planck-Institut fuer Physik, Muenchen (Germany); Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-12-15

    Various extensions of the Standard Model predict the existence of hidden photons kinetically mixing with the ordinary photon. This mixing leads to oscillations between photons and hidden photons, analogous to the observed oscillations between different neutrino flavors. In this context, we derive new bounds on the photon-hidden photon mixing parameters using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of the Cosmic Background Explorer. Requiring the distortions of the CMB induced by the photon-hidden photon mixing to be smaller than experimental upper limits, this leads to a bound on the mixing angle {chi}{sub 0}

  4. Photon Polarization in Photonic Crystal Fibers under Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; ZHANG Xiao-fu

    2007-01-01

    Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show that the photon polarization of the incident photon changes a lot due to scattered optical, and its general geometric phase factor, Hamiton number and evolution operator are definited both by the incident and scattered optical.

  5. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S

    2015-01-01

    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  6. Smart packaging for photonics

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.; Carson, R.F.; Sullivan, C.T.; McClellan, G.; Palmer, D.W. [ed.

    1997-09-01

    Unlike silicon microelectronics, photonics packaging has proven to be low yield and expensive. One approach to make photonics packaging practical for low cost applications is the use of {open_quotes}smart{close_quotes} packages. {open_quotes}Smart{close_quotes} in this context means the ability of the package to actuate a mechanical change based on either a measurement taken by the package itself or by an input signal based on an external measurement. One avenue of smart photonics packaging, the use of polysilicon micromechanical devices integrated with photonic waveguides, was investigated in this research (LDRD 3505.340). The integration of optical components with polysilicon surface micromechanical actuation mechanisms shows significant promise for signal switching, fiber alignment, and optical sensing applications. The optical and stress properties of the oxides and nitrides considered for optical waveguides and how they are integrated with micromechanical devices were investigated.

  7. Principles of photonics

    CERN Document Server

    Liu, Jia-Ming

    2016-01-01

    With this self-contained and comprehensive text, students will gain a detailed understanding of the fundamental concepts and major principles of photonics. Assuming only a basic background in optics, readers are guided through key topics such as the nature of optical fields, the properties of optical materials, and the principles of major photonic functions regarding the generation, propagation, coupling, interference, amplification, modulation, and detection of optical waves or signals. Numerous examples and problems are provided throughout to enhance understanding, and a solutions manual containing detailed solutions and explanations is available online for instructors. This is the ideal resource for electrical engineering and physics undergraduates taking introductory, single-semester or single-quarter courses in photonics, providing them with the knowledge and skills needed to progress to more advanced courses on photonic devices, systems and applications.

  8. Photonics Explorer: revolutionizing photonics in the classroom

    Science.gov (United States)

    Prasad, Amrita; Debaes, Nathalie; Cords, Nina; Fischer, Robert; Vlekken, Johan; Euler, Manfred; Thienpont, Hugo

    2012-10-01

    The `Photonics Explorer' is a unique intra-curricular optics kit designed to engage, excite and educate secondary school students about the fascination of working with light - hands-on, in their own classrooms. Developed with a pan European collaboration of experts, the kit equips teachers with class sets of experimental material provided within a supporting didactic framework, distributed in conjunction with teacher training courses. The material has been specifically designed to integrate into European science curricula. Each kit contains robust and versatile components sufficient for a class of 25-30 students to work in groups of 2-3. The didactic content is based on guided inquiry-based learning (IBL) techniques with a strong emphasis on hands-on experiments, team work and relating abstract concepts to real world applications. The content has been developed in conjunction with over 30 teachers and experts in pedagogy to ensure high quality and ease of integration. It is currently available in 7 European languages. The Photonics Explorer allows students not only to hone their essential scientific skills but also to really work as scientists and engineers in the classroom. Thus, it aims to encourage more young people to pursue scientific careers and avert the imminent lack of scientific workforce in Europe. 50 Photonics Explorer kits have been successfully tested in 7 European countries with over 1500 secondary school students. The positive impact of the kit in the classroom has been qualitatively and quantitatively evaluated. A non-profit organisation, EYESTvzw [Excite Youth for Engineering Science and Technology], is responsible for the large scale distribution of the Photonics Explorer.

  9. Possible nonvanishing mass of photon

    International Nuclear Information System (INIS)

    From phenomenological and field-theoretical considerations on photon mass, we first show that photon is not limitted to being massless at the present stage. Next we illustrate a possibility of formulating a local field theory for massive photons coupled with nonconserved currents, while we cannot do for massless photons. (author)

  10. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  11. Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Barkou, Stig Eigil; Broeng, Jes; Bjarklev, Anders Overgaard

    1999-01-01

    Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility.......Photonic bandgap fibers are describes using a new Kagomé cladding structure. These fibers may potentially guide light in low-index regions. Such fibers offer new dispersion properties, and large design flexibility....

  12. Nanostructured polymers for photonics

    OpenAIRE

    Chantal Paquet; Eugenia Kumacheva

    2008-01-01

    We review recent progress in the development of polymer nanostructured materials with periodic structures and compositions having applications in photonics and optical data storage. This review provides a brief description of the microfabrication and self-assembly methods used for the production of polymer materials with periodic structures, and highlights the properties and applications of photonic materials derived from block copolymers, colloid crystals, and microfabricated polymers. We co...

  13. Coherent terahertz photonics.

    OpenAIRE

    A J Seeds; Fice, M. J.; Balakier, K; M Natrella; Mitrofanov, O.; Pepper, M.; Renaud, C.C.; M. Lamponi; M Chtioui; Van Dijk, F.; Aeppli, G.; A G Davies; Dean, P.; Linfield, E

    2013-01-01

    We present a review of recent developments in THz coherent systems based on photonic local oscillators. We show that such techniques can enable the creation of highly coherent, thus highly sensitive, systems for frequencies ranging from 100 GHz to 5 THz, within an energy efficient integrated platform. We suggest that such systems could enable the THz spectrum to realize its full applications potential. To demonstrate how photonics-enabled THz systems can be realized, we review the performance...

  14. Photonics: practically there?

    OpenAIRE

    Paula Gould

    2002-01-01

    Materials that contain a photonic band gap have the potential to manipulate light with remarkable precision. Successful fabrication of such structures, known as photonic crystals, has fueled interest in a whole host of novel optical devices, ranging from miniature lasers and all-optical circuits to smart textiles and biomedical transport systems. Growing confidence that ‘the time is right’ to realize the new technology’s commercial potential has been demonstrated by the emergence of numerous ...

  15. Surface nanoscale axial photonics

    OpenAIRE

    Sumetsky, M.; Fini, J. M.

    2011-01-01

    Dense photonic integration promises to revolutionize optical computing and communications. However, efforts towards this goal face unacceptable attenuation of light caused by surface roughness in microscopic devices. Here we address this problem by introducing Surface Nanoscale Axial Photonics (SNAP). The SNAP platform is based on whispering gallery modes circulating around the optical fiber surface and undergoing slow axial propagation readily described by the one-dimensional Schr\\"odinger e...

  16. Strained Silicon Photonics

    OpenAIRE

    Wehrspohn, Ralf B; Jörg Schilling; Christian Bohley; Clemens Schriever

    2012-01-01

    A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is inves...

  17. Photonics in switching

    CERN Document Server

    Midwinter, John E; Kelley, Paul

    1993-01-01

    Photonics in Switching provides a broad, balanced overview of the use of optics or photonics in switching, from materials and devices to system architecture. The chapters, each written by an expert in the field, survey the key technologies, setting them in context and highlighting their benefits and possible applications. This book is a valuable resource for those working in the communications industry, either at the professional or student level, who do not have extensive background knowledge or the underlying physics of the technology.

  18. Photonic flame effect

    OpenAIRE

    Tcherniega, N. V.; Kudryavtseva, A. D.

    2006-01-01

    We observed new effect which we called photonic flame effect (PFE). Several 3-dimensional photonic crystals (artificial opals) were posed on Cu plate at the temperature of liquid nitrogen (77K). Typical distance between them was 1-5 centimeters. Long-continued optical luminescence was excited in one of them by the ruby laser pulse. Analogous visible luminescence manifesting time delay appeared in other samples of the crystals. Experiments were realized for opal crystals and for nanocomposites...

  19. Photonic bandgap structures

    CERN Document Server

    Marco, Pisco; Antonello, Cutolo

    2012-01-01

    This E-Book covers the research and the development of a novel generation of photonic devices for sensing applications. Key features of this book include a brief review of basic PhCs related design and fabrication concepts, a selection of crossover topics for the development of novel technological platforms for physical, chemical and biological sensing and a description of the main PhCs sensors to date by representing many of the exciting sensing applications that utilize photonic crystal structures.

  20. Photon-Notoph Equations

    CERN Document Server

    Dvoeglazov, V V

    1998-01-01

    In the sixties Ogievetskii and Polubarinov proposed the concept of a notoph, whose helicity properties are complementary to those of a photon. We analyze the theory of antisymmetric tensor fields in the view of the normalization problem. The obtained result is that it is possible to describe both photon and notoph degrees of freedom on the basis of the modified Bargmann-Wigner formalism for the symmetric second-rank spinor. Physical consequences are discussed.

  1. Engineering photonic nanojets

    OpenAIRE

    Kim, Myun-Sik; Scharf, Toralf; Mühlig, Stefan; Rockstuhl, Carsten; Herzig, Hans Peter

    2011-01-01

    Photonic Nanojets are highly localized wave fields emerging directly behind dielectric microspheres; if suitably illuminated. In this contribution we reveal how different illumination conditions can be used to engineer the photonic Nanojets by measuring them in amplitude and phase with a high resolution interference microscope. We investigate how the wavelength, the amplitude distribution of the illumination, its polarization, or a break in symmetry of the axial-symmetric structure and the il...

  2. QUANTUM CRYPTOGRAPHY: Single Photons.

    Science.gov (United States)

    Benjamin, S

    2000-12-22

    Quantum cryptography offers the potential of totally secure transfer of information, but as Benjamin discusses in this Perspective, its practical implementation hinges on being able to generate single photons (rather than two or more) at a time. Michler et al. show how this condition can be met in a quantum dot microdisk structure. Single molecules were also recently shown to allow controlled single-photon emission.

  3. Photonic Quantum Computing

    Science.gov (United States)

    Barz, Stefanie

    2013-05-01

    Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. In this talk I will present a series of experiments in the field of photonic quantum computing. The first experiment is in the field of photonic state engineering and realizes the generation of heralded polarization-entangled photon pairs. It overcomes the limited applicability of photon-based schemes for quantum information processing tasks, which arises from the probabilistic nature of photon generation. The second experiment uses polarization-entangled photonic qubits to implement ``blind quantum computing,'' a new concept in quantum computing. Blind quantum computing enables a nearly-classical client to access the resources of a more computationally-powerful quantum server without divulging the content of the requested computation. Finally, the concept of blind quantum computing is applied to the field of verification. A new method is developed and experimentally demonstrated, which verifies the entangling capabilities of a quantum computer based on a blind Bell test.

  4. Charm and bottom quark production in photon-nucleon and photon-photon collisions

    OpenAIRE

    Szczurek, A.

    2002-01-01

    I discuss mechanisms of heavy quark production in (real) photon-nucleon and (real) photon - (real) photon collisions. In particular, I focuse on application of the Saturation Model. In addition to the main dipole-nucleon or dipole-dipole contribution included in recent analyses, I propose how to calculate within the same formalism the hadronic single-resolved contribution to heavy quark production. At high photon-photon energies this yields a sizeable correction of about 30-40 % for inclusive...

  5. Photonic band gap of 2D complex lattice photonic crystal

    Institute of Scientific and Technical Information of China (English)

    GUAN Chun-ying; YUAN Li-bo

    2009-01-01

    It is of great significance to present a photonic crystal lattice structure with a wide photonic bandgap. A two-dimension complex lattice photonic crystal is proposed. The photonic crystal is composed of complex lattices with triangular structure, and each single cell is surrounded by six scatterers in an hexagon. The photonic band gaps are calculated based on the plane wave expansion (PWE) method. The results indicate that the photonic crystal has tunable large TM polarization band gap, and a gap-midgap ratio of up to 45.6%.

  6. Two-photon Interference with Non-identical Photons

    CERN Document Server

    Liu, Jianbin; Zheng, Huaibin; Chen, Hui; Li, Fu-Li; Xu, Zhuo

    2014-01-01

    The indistinguishability of non-identical photons is dependent on detection system in quantum physics. If two photons with different wavelengths are indistinguishable for a detection system, there can be two-photon interference when these two photons are incident to two input ports of a Hong-Ou-Mandel interferometer, respectively. The reason why two-photon interference phenomena are different for classical and nonclassical light is not due to interference, but due to the properties of light and detection system. These conclusions are helpful to understand the physics and applications of two-photon interference.

  7. Two-photon interference with non-identical photons

    Science.gov (United States)

    Liu, Jianbin; Zhou, Yu; Zheng, Huaibin; Chen, Hui; Li, Fu-li; Xu, Zhuo

    2015-11-01

    Two-photon interference with non-identical photons is studied based on the superposition principle in Feynman's path integral theory. The second-order temporal interference pattern is observed by superposing laser and pseudothermal light beams with different spectra. The reason why there is two-photon interference for photons of different spectra is that non-identical photons can be indistinguishable for the detection system when Heisenberg's uncertainty principle is taken into account. These studies are helpful to understand the second-order interference of light in the language of photons.

  8. CMOS-compatible photonic devices for single-photon generation

    Directory of Open Access Journals (Sweden)

    Xiong Chunle

    2016-09-01

    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  9. CMOS-compatible photonic devices for single-photon generation

    Science.gov (United States)

    Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.

    2016-09-01

    Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  10. Axion mediated photon to dark photon mixing

    CERN Document Server

    Ejlli, Damian

    2016-01-01

    The interaction between dark/mirror sector and ordinary sector is considered, where the two sectors interact with each other by sharing the same QCD axion field. This feature makes possible the mixing between ordinary and dark/mirror photons in ordinary and dark electromagnetic fields. Exact and perturbative solutions of equation of motions describing the evolution of fields in ordinary and dark external magnetic fields are found. User friendly quantities such as transition probability rates, induced phase shifts and angle of rotation of the polarization plane of light are derived. Possible astrophysical and cosmological applications of this mechanism are suggested.

  11. Photonics for life.

    Science.gov (United States)

    Cubeddu, Rinaldo; Bassi, Andrea; Comelli, Daniela; Cova, Sergio; Farina, Andrea; Ghioni, Massimo; Rech, Ivan; Pifferi, Antonio; Spinelli, Lorenzo; Taroni, Paola; Torricelli, Alessandro; Tosi, Alberto; Valentini, Gianluca; Zappa, Franco

    2011-01-01

    Light is strictly connected with life, and its presence is fundamental for any living environment. Thus, many biological mechanisms are related to light interaction or can be evaluated through processes involving energy exchange with photons. Optics has always been a precious tool to evaluate molecular and cellular mechanisms, but the discovery of lasers opened new pathways of interactions of light with biological matter, pushing an impressive development for both therapeutic and diagnostic applications in biomedicine. The use of light in different fields has become so widespread that the word photonics has been utilized to identify all the applications related to processes where the light is involved. The photonics area covers a wide range of wavelengths spanning from soft X-rays to mid-infrared and includes all devices related to photons as light sources, optical fibers and light guides, detectors, and all the related electronic equipment. The recent use of photons in the field of telecommunications has pushed the technology toward low-cost, compact, and efficient devices, making them available for many other applications, including those related to biology and medicine where these requirements are of particular relevance. Moreover, basic sciences such as physics, chemistry, mathematics, and electronics have recognized the interdisciplinary need of biomedical science and are translating the most advanced researches into these fields. The Politecnico school has pioneered many of them,and this article reviews the state of the art of biomedical research at the Politecnico in the field internationally known as biophotonics.

  12. Antigravity Acts on Photons

    Science.gov (United States)

    Brynjolfsson, Ari

    2002-04-01

    Einstein's general theory of relativity assumes that photons don't change frequency as they move from Sun to Earth. This assumption is correct in classical physics. All experiments proving the general relativity are in the domain of classical physics. This include the tests by Pound et al. of the gravitational redshift of 14.4 keV photons; the rocket experiments by Vessot et al.; the Galileo solar redshift experiments by Krisher et al.; the gravitational deflection of light experiments by Riveros and Vucetich; and delay of echoes of radar signals passing close to Sun as observed by Shapiro et al. Bohr's correspondence principle assures that quantum mechanical theory of general relativity agrees with Einstein's classical theory when frequency and gravitational field gradient approach zero, or when photons cannot interact with the gravitational field. When we treat photons as quantum mechanical particles; we find that gravitational force on photons is reversed (antigravity). This modified theory contradicts the equivalence principle, but is consistent with all experiments. Solar lines and distant stars are redshifted in accordance with author's plasma redshift theory. These changes result in a beautiful consistent cosmology.

  13. Photonic Crystal Microchip Laser

    Science.gov (United States)

    Gailevicius, Darius; Koliadenko, Volodymyr; Purlys, Vytautas; Peckus, Martynas; Taranenko, Victor; Staliunas, Kestutis

    2016-09-01

    The microchip lasers, being very compact and efficient sources of coherent light, suffer from one serious drawback: low spatial quality of the beam strongly reducing the brightness of emitted radiation. Attempts to improve the beam quality, such as pump-beam guiding, external feedback, either strongly reduce the emission power, or drastically increase the size and complexity of the lasers. Here it is proposed that specially designed photonic crystal in the cavity of a microchip laser, can significantly improve the beam quality. Experiments show that a microchip laser, due to spatial filtering functionality of intracavity photonic crystal, improves the beam quality factor M2 reducing it by a factor of 2, and increase the brightness of radiation by a factor of 3. This comprises a new kind of laser, the “photonic crystal microchip laser”, a very compact and efficient light source emitting high spatial quality high brightness radiation.

  14. Photonic Feshbach resonance

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Feshbach resonance is a resonance for two-atom scattering with two or more channels,in which a bound state is achieved in one channel.We show that this resonance phenomenon not only exists during the collisions of massive particles,but also emerges during the coherent transport of massless particles,that is,photons confined in the coupled resonator arrays linked by a separated cavity or a tunable two level system(TLS).When the TLS is coupled to one array to form a bound state in this setup,the vanishing transmission appears to display the photonic Feshbach resonance.This process can be realized through various experimentally feasible solid state systems,such as the couple defected cavities in photonic crystals and the superconducting qubit coupled to the transmission line.The numerical simulation based on the finite-different time-domain(FDTD) method confirms our assumption about the physical implementation.

  15. Photon physics with PHENIX

    Energy Technology Data Exchange (ETDEWEB)

    White, S. [Brookhaven National Lab., Upton, NY (United States)

    1995-07-15

    In this Paper the author discusses briefly the physics motivation for extending measurements of particle production with high granularity and particle id capabilities to neutrals in PHENIX. The author then discusses the technique of direct photon measurement in the presence of copious background photons from {pi}{sup o} decays. The experiment will measure relatively low p{sub t} photons near y=0 in the lab frame. This new experimental environment of high multiplicity and low {gamma} momenta will affect both the techniques used and the type of analysis which can be performed. The Phenix Electromagnetic calorimeter is described and its capabilities illustrated with results from simulation and beam tests of the first production array.

  16. Photon kinetics in plasmas

    Directory of Open Access Journals (Sweden)

    V.G. Morozov

    2009-01-01

    Full Text Available We present a kinetic theory of radiative processes in many-component plasmas with relativistic electrons and nonrelativistic heavy particles. Using the non-equilibrium Green's function technique in many-particle QED, we show that the transverse field correlation functions can be naturally decomposed into sharply peaked (non-Lorentzian parts that describe resonant (propagating photons and off-shell parts corresponding to virtual photons in the medium. Analogous decompositions are obtained for the longitudinal field correlation functions and the correlation functions of relativistic electrons. We derive a kinetic equation for the resonant photons with a finite spectral width and show that the off-shell parts of the particle and field correlation functions are essential to calculate the local radiating power in plasmas and recover the results of vacuum QED. The plasma effects on radiative processes are discussed.

  17. Photonics: practically there?

    Directory of Open Access Journals (Sweden)

    Paula Gould

    2002-09-01

    Strange things happen to light when it passes through photonic crystals. A significant variation in refractive index between the material’s periodic lattice structure and its substrate traps transmitted photons in either one area or the other, creating distinct ‘allowed’ and ‘forbidden’ energy regions. Light with wavelengths equivalent to the forbidden region, the so-called photonic bandgap, is stopped from passing further. Wavelengths from the rest of the electromagnetic spectrum, on the other hand, are free to continue their passage through the material unhindered. In effect, the material is able to halt the passage of light just as the periodic potential of semiconductors, such as silicon, bars electrons from occupying the forbidden energy bandgap.

  18. Photonic wires and trumpets for ultrabright single photon sources

    DEFF Research Database (Denmark)

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël;

    2013-01-01

    Photonic wires have recently demonstrated very attractive assets in the field of high-efficiency single photon sources. After presenting the basics of spontaneous emission control in photonic wires, we compare the two possible tapering strategies that can be applied to their output end so...... as to tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...... mirror and tapered tip display jointly a record-high efficiency (0.75±0.1 photon per pulse) and excellent single photon purity. Beyond single photon sources, photonic wires and trumpets appear as a very attractive resource for solid-state quantum optics experiments....

  19. How well does QCD work for photon-photon collisions?

    OpenAIRE

    Wengler, Thorsten

    2002-01-01

    The performance of QCD in describing hadronic photon-photon collisions is investigated in the light of recent measurements from LEP on di-jet production, light hadron transverse momentum spectra, and heavy quark production.

  20. Models for Photon-photon Total Cross-sections

    OpenAIRE

    Godbole, RM; Grau, A.; Pancheri, G.

    1999-01-01

    We present here a brief overview of recent models describing the photon-photon cross-section into hadrons. We shall show in detail results from the eikonal minijet model, with and without soft gluon summation.

  1. The Status of Charmonium Production in Photon-Photon Collisions

    OpenAIRE

    Qiao, Cong-Feng

    2001-01-01

    The status of Charmonium production in photon-photon collisions is briefly reviewed. I would like to mention that although the preliminary data were obtained in experiment, the theoretical investigation is not in a compatible status.

  2. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir...

  3. Germanium for silicon photonics

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Yasuhiko, E-mail: y-ishikawa@material.t.u-tokyo.ac.j [Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Wada, Kazumi [Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2010-01-01

    This paper describes that Ge plays an enabler to integrate active photonic devices on a Si platform. In spite of the large lattice mismatch of {approx} 4% between Ge and Si, high-quality Ge layers can be epitaxially grown on Si by ultrahigh-vacuum chemical vapor deposition. Applications of the Ge layers to near-infrared active photonic devices, i.e., photodiodes, optical modulators and light emitters, are described. Several issues on the device physics as well as the integration with Si electronics are discussed.

  4. Photon-photon interactions with inner coupled double-cavity

    Institute of Scientific and Technical Information of China (English)

    Lai Wen-Xi; Li Hong-Cai; Yang Rong-Can

    2008-01-01

    This paper describes the interaction between two spatial modes of the optical fields with a single atom trapped inner coupled double-cavity.Theoretical derivation and numerical simulation with the experimental available parameters show that photon-photon switching and π phase shift of single photons may be achieved with current experimental technology.As the probe and control fields are in different spatial modes,the system is superior for implementing cavity QED-based photonic quantum networks.

  5. QCD measurements in photon-photon collisions at LEP

    OpenAIRE

    Csilling, Akos

    2000-01-01

    An overview of the latest results of the LEP collaborations on QCD measurements in photon-photon collisions is presented, including measurements of the total hadronic cross-section, the production of heavy quarks and dijets and the structure functions of real and virtual photons.

  6. High brightness single photon sources based on photonic wires

    DEFF Research Database (Denmark)

    Claudon, J.; Bleuse, J.; Bazin, M.;

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency as...

  7. Studying 750 GeV Di-photon Resonance at Photon-Photon Collider

    OpenAIRE

    Hayato Ito; Takeo Moroi; Yoshitaro Takaesu

    2016-01-01

    Motivated by the recent LHC discovery of the di-photon excess at the invariant mass of ~ 750 GeV, we study the prospect of investigating the scalar resonance at a future photon-photon collider. We show that, if the di-photon excess observed at the LHC is due to a new scalar boson coupled to the standard-model gauge bosons, such a scalar boson can be observed and studied at the photon-photon collider with the center-of-mass energy of ~ 1 TeV in large fraction of parameter space.

  8. The Photonic Lantern

    CERN Document Server

    Birks, T A; Yerolatsitis, S; Leon-Saval, S G; Thomson, R R

    2015-01-01

    Photonic lanterns are made by adiabatically merging several single-mode cores into one multimode core. They provide low-loss interfaces between single-mode and multimode systems where the precise optical mapping between cores and individual modes is unimportant.

  9. ALICE Photon Spectrometer

    CERN Multimedia

    Kharlov, Y

    2013-01-01

    PHOS provides unique coverage of the following physics topics: - Study initial phase of the collision of heavy nuclei via direct photons, - Jet-quenching as a probe of deconfinement, studied via high Pτ ϒ and π0, - Signals of chiral-symmetry restoration, - QCD studies in pp collisions via identified neutral spectra.

  10. Photon collider at TESLA

    International Nuclear Information System (INIS)

    High energy photon colliders (γγ, γe) based on backward Compton scattering of laser light is a very natural addition to e+e- linear colliders. In this report, we consider this option for the TESLA project. Recent study has shown that the horizontal emittance in the TESLA damping ring can be further decreased by a factor of four. In this case, the γγ luminosity in the high energy part of spectrum can reach about (1/3)Le+e-. Typical cross-sections of interesting processes in γγ collisions are higher than those in e+e- collisions by about one order of magnitude, so the number of events in γγ collisions will be more than that in e+e- collisions. Photon colliders can, certainly, give additional information and they are the best for the study of many phenomena. The main question is now the technical feasibility. The key new element in photon colliders is a very powerful laser system. An external optical cavity is a promising approach for the TESLA project. A free electron laser is another option. However, a more straightforward solution is ''an optical storage ring (optical trap)'' with a diode pumped solid state laser injector which is today technically feasible. This paper briefly reviews the status of a photon collider based on the linear collider TESLA, its possible parameters and existing problems

  11. A generalized photon propagator

    CERN Document Server

    Itin, Yakov

    2007-01-01

    A covariant gauge independent derivation of the generalized dispersion relation of electromagnetic waves in a medium with local and linear constitutive law is presented. A generalized photon propagator is derived. For Maxwell constitutive tensor, the standard light cone structure and the standard Feynman propagator are reinstated.

  12. Glasses for photonic applications

    NARCIS (Netherlands)

    Richardson, K.; Krol, D.M.; Hirao, K.

    2010-01-01

    Recent advances in the application of glassy materials in planar and fiber-based photonic structures have led to novel devices and components that go beyond the original thinking of the use of glass in the 1960s, when glass fibers were developed for low-loss, optical communication applications. Expl

  13. Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    William J. Wadsworth; Jonathan C. Knight; William H. Reeves; Philip St.J. Russell

    2003-01-01

    By offering greatly enhanced control of light compared to conventional step-index structures, photonic crystal fibres are radically improving the performance of linear and nonlinear fibre devices, including gas-Raman cells, super-continuum generators, soliton systems and cladding-pumped lasers.

  14. Photonic Crystal VCSELs

    Institute of Scientific and Technical Information of China (English)

    D.; S.; Song; J.; W.; Paek; K.; H.; Lee; Y.; H.; Lee

    2003-01-01

    Photonic crystal vertical cavity surface emitting lasers (PC VCSELs) are reviewed. The PC VCSEL shows single-transverse-mode continuous wave operation in the entire current range with side mode suppression ratio 35-40 dB. A simple 3-D plane wave expansion method is found to be very effective in analyzing the modal properties of the PC VCSELs.

  15. Opportunities in microstructured photonics

    OpenAIRE

    Herzig, Hans Peter; Sfez, Tristan; Scharf, Toralf

    2010-01-01

    The progress in novel light sources, detectors, materials and technology enable new opportunities and challenges for diffractive optics and nanoscale photonics. Important are also analysis tools, such as near-field imaging (SNOM). Only structures that can be characterized can be fabricated

  16. Pushing the Photon Limit

    NARCIS (Netherlands)

    Wientjes, Emilie; Renger, Jan; Cogdell, Richard; Hulst, van Niek F.

    2016-01-01

    Nanoantennas are well-known for their effective role in fluorescence enhancement, both in excitation and emission. Enhancements of 3-4 orders of magnitude have been reported. Yet in practice, the photon emission is limited by saturation due to the time that a molecule spends in singlet and especi

  17. Photonic Crystal VCSELs

    Institute of Scientific and Technical Information of China (English)

    D. S. Song; J. W. Paek; K. H. Lee; Y. H. Lee

    2003-01-01

    Photonic crystal vertical cavity surface emitting lasers (PC VCSELs) are reviewed. The PC VCSEL shows single-transverse-mode continuous wave operation in the entire current range with side mode suppression ratio 35-40dB. A simple 3-D plane wave expansion method is found to be very effective in analyzing the modal properties of the PC VCSELs.

  18. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  19. Photons, photon jets and dark photons at 750 GeV and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Basudeb [Tata Institute of Fundamental Research, Mumbai (India); Kopp, Joachim [Mainz Univ. (Germany). PRISMA Cluster of Excellence and Mainz Inst. for Theoretical Physics; Schwaller, Pedro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-03-15

    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to ''photon jets''. For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance S → γγ can be mimicked by a process of the form pp → S → aa → 4γ, where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an e{sup +}e{sup -} pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to S → A'A' → e{sup +}e{sup -}e{sup +}e{sup -}, where there are no photons at all but the dark photon A' decays to e{sup +}e{sup -} pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons.

  20. Multi-photon entanglements

    International Nuclear Information System (INIS)

    The motivation of this thesis was to create higher-order entanglements. The first experimental observation of a four-photon entanglement was presented in the experiment of this thesis. And the visibility of this entanglement was 0.79+-0.06, which is sufficient to make claims of the nonlocality of quantum mechanics. This therefore lays a foundation for experiments showing the nonlocality of teleportation, and the purification of entanglement. The work of this thesis brings together a lot of earlier work done by the Zeilinger Group, and lays a foundation for future experiments. Earlier experiments such as teleportation together with entanglement swapping, which are 'complete teleportation' in as much as the state teleported is entirely undefined, can be combined and re-done with this four-photon entanglement. This result would be the first demonstration of complete, nonlocal teleportation. Also this experiment can be slightly modified and used to perform the first experimental quantum purification of entanglement, which is of vital importance to the fields of quantum information, and also is interesting for fundamental experiments on entanglement. Another direct application of this experiment is to perform the first 'event-ready' testing of Bell's Inequality. Here the four-photon entanglement can be used as a source of entangled photons, whereby the photons have no common source. This would enable an even more stringent testing of Bells theorem. Finally this experiment can be used for the demonstration and investigation of many practical, directly applicable quantum information schemes. For instance quantum cryptography, error correction, and computing. (author)

  1. Photon detector for MEGA

    International Nuclear Information System (INIS)

    During this past August and September, we had beam time at LAMPF for an engineering study of the second prototype cylindrical photon pair spectrometer for MEGA. All of the scintillators in the detector, a total of 40, and 40% of the drift chamber cells were instrumented for this run. The main photon arm activities during the run were to compare event patterns in the chamber to our Monte Carlo generated events, to study the trigger rate and to determine the background rates in the various detector elements. At low beam intensity, the event patterns from the chamber closely resembled those generated from the Monte Carlo. The background rates in the scintillators and the innermost drift chamber layer were close to those anticipated from previous studies. However the background rates in the outer two drift chamber layers were substantially higher than we had expected. This high rate was traced to low energy photons interacting with field and sense wires. The trigger studies during the run have led us to consider alternative strategies including two different first stage triggers and a second stage trigger. The combination of the second stage trigger with either of the two first stage triggers is expected to provide good detection efficiency while keeping the raw trigger rate below that required by the data acquisition system. Detailed discussions of both the background and trigger studies are discussed in this report. Since the run, our work on methods to obtain the z-position in the photon arm drift chambers has continued. Our goal is to obtain the z coordinate to 5 mm FWHM. At this level, the z uncertainty makes a negligible contribution to the overall photon energy resolution and only a small contribution to the angular resolution. We have been studying an option which uses delay lines to provide a direct z determination. The results of our study are discussed in this report

  2. Physics Opportunities at a Photon-Photon Collider

    OpenAIRE

    Brodsky, Stanley J.

    2002-01-01

    The advent of back-scattered laser beams for electron-positron colliders will allow detailed studies of a large array of high energy photon-photon and photon-electron collision processes with polarized beams. These include tests of electroweak theory in photon-photon annihilation such as $\\gamma \\gamma \\to W^+ W^-$, $\\gamma \\gamma \\to $ Higgs bosons, and higher-order loop processes, such as $\\gamma \\gamma \\to \\gamma \\gamma, Z \\gamma, H^0 Z^0$ and $Z Z.$ Methods for measuring the anomalous mag...

  3. Design of Tunable Anisotropic Photonic Crystal Filter as Photonic Switch

    Directory of Open Access Journals (Sweden)

    Majid Seifan

    2014-11-01

    Full Text Available By creating point defects and line defects in photonic crystals, we reach the new sort of photonic crystals. Which allow us to design photonic crystals filters. In this type of photonic crystals the ability to tune up central frequency of filter is important to attention. In this paper, we use foregoing points for designing photonic crystal filters. The main function of this type of filters is coupling between shield of point defect modes and directional line defect modes. By using liquid crystals in this structures we can tune up the central frequency. We exert electric field to excite liquid crystals and design photonic switch. This provided filter is promising to miniaturize integrated circuit photonic crystal

  4. Photonic band gap materials

    Science.gov (United States)

    Cassagne, D.

    Photonic band gap materials Photonic band gap materials are periodic dielectric structures that control the propagation of electromagnetic waves. We describe the plane wave method, which allows to calculate the band structures of photonic crystals. By symmetry analysis and a perturbative approach, we predict the appearance of the low energy photonic band gaps of hexagonal structures. We propose new two-dimensional structures called graphite and boron nitride. Using a transfer matrix method, we calculate the transmission of the graphite structure and we show the crucial role of the coupling with external modes. We study the appearance of allowed modes in the photonic band gap by the introduction of localized defects in the periodicity. Finally, we discuss the properties of opals formed by self-organized silica microspheres, which are very promising for the fabrication of three-dimensional photonic crystals. Les matériaux à bandes interdites photoniques sont des structures diélectriques périodiques qui contrôlent la propagation des ondes électromagnétiques. Nous décrivons la méthode des ondes planes qui permet de calculer les structures de bandes des cristaux photoniques. Par une analyse de la symétrie et une approche perturbative, nous précisons les conditions d'existence des bandes interdites de basse énergie. Nous proposons de nouvelles structures bidimensionnelles appelées graphite et nitrure de bore. Grâce à une méthode de matrices de transfert, nous calculons la transmission de la structure graphite et nous mettons en évidence le rôle fondamental du couplage avec les modes extérieurs. Nous étudions l'apparition de modes permis dans la bande interdite grâce à l'introduction de défauts dans la périodicité. Enfin, nous discutons les propriétés des opales constituées de micro-billes de silice auto-organisées, qui sont très prometteuses pour la fabrication de cristaux photoniques tridimensionnels.

  5. Few-photon optical diode

    OpenAIRE

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficie...

  6. Few-photon optical diode

    CERN Document Server

    Roy, Dibyendu

    2010-01-01

    We propose a novel scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multi-photon transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficiently than the opposite.

  7. A semiconductor photon-sorter

    CERN Document Server

    Bennett, A J; Ellis, D J P; Farrer, I; Ritchie, D A; Shields, A J

    2016-01-01

    Photons do not interact directly with each other, but conditional control of one beam by another can be achieved with non-linear optical media at high field intensities. It is exceedingly difficult to reach such intensities at the single photon level but proposals have been made to obtain effective interactions by scattering photons from single transitions. We report here effective interactions between photons created using a quantum dot weakly coupled to a cavity. We show that a passive single-photon non-linearity can modify the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and sort polarisation correlated photons from an uncorrelated stream using a single spin. These results pave the way for optical switches operated by single quanta of light.

  8. Quantum Imaging with Undetected Photons

    CERN Document Server

    Lemos, Gabriela B; Cole, Garrett D; Ramelow, Sven; Lapkiewicz, Radek; Zeilinger, Anton

    2014-01-01

    Indistinguishable quantum states interfere, but the mere possibility of obtaining information that could distinguish between overlapping states inhibits quantum interference. We present a novel quantum imaging concept that relies on the indistinguishability of the possible sources of a photon that remains undetected. Our experiment uses pair creation in two separate down-conversion crystals. If a pair is created in the first crystal, the undetected photon passes the sample to be imaged, and its mode is made identical to that of an undetected photon created in the second crystal. Because of the pair correlation, the phase and amplitude information imprinted on the undetected photon is also carried by its brother photon, called the signal. Interference of the two signal beams, one arising from each crystal, then reveals the image. The photons passing through the object are never detected, and the signal photons that are detected never interact with the object. We demonstrate the power of the method by exhibitin...

  9. Photonic-powered cable assembly

    Science.gov (United States)

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  10. Two photon physics. Personal recollection

    CERN Document Server

    Ginzburg, Ilya F

    2015-01-01

    The term two--photon processes is used for the reactions in which some system of particles is produced in collision of two photons, either real or virtual. In the study of these processes our main goal was to suggest approach, allowing to extract from the data information on proper two--photon process separating it from mechanism which responsible for the production of photons. Here I present my view for history of two--photon physics. I don't try to give complete review, concentrating mainly on works of our team (which cover essential part of the topic) and some colleagues. My citation is strongly incomplete. I cite here only papers which were essential in our understanding of the problems. The choice of presented details is the result of my discussions with Gleb Kotkin and Valery Serbo. 1. Prehistory. 2. Two photon processes at e^+e^- colliders. 3. Photon colliders. 4. Notes on physical program.

  11. Coupling dynamics for a photonic crystal fib er femtosecond laser nonlinear amplification system%光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究∗

    Institute of Scientific and Technical Information of China (English)

    石俊凯; 柴路; 赵晓薇; 李江; 刘博文; 胡明列; 栗岩锋; 王清月

    2015-01-01

    构建了掺镱大模场面积单偏振光子晶体光纤飞秒激光非线性放大系统.讨论了腔内净色散量和抽运功率对振荡级输出参数的影响和振荡级参数对放大级输出参数的影响.在本实验条件下,当腔内净色散量取较大负色散时,振荡级直接输出的脉冲更宽,且携带更少的啁啾.当振荡级抽运4.53 W时,选择最接近变换极限的脉冲作为种子脉冲,放大级在60 W抽运时输出压缩后无基底的短脉冲,宽度为45.7 fs,平均功率28 W.振荡级抽运功率增加到5.08 W,放大级抽运70 W时,获得最高输出功率34.5 W,对应脉宽53.5 fs.%A femtosecond laser single-stage nonlinear amplification system composed of Yb-doped large-mode-area single-polarization photonic crystal fibers is demonstrated. Effects of net cavity dispersion and pump power on oscillator output parameters and the evolution dynamics of the amplified pulse after compression are discussed for different seed pulse parameters. Under the experimental conditions in this paper, the longer and less chirped pulses are obtained with a larger negative net intracavity dispersion in the oscillator. When a nearly-transform-limited pulse is chosen as seed pulse nder the condition of oscillator pump power of 4.53 W, the shortest nearly-pedestal-free amplified pulse is achieved under the amplifier pump power of 60 W after the dispersion is compensated by a grating pair, in which the pulse duration is 45.7 fs with an average power of 28 W at a repetition frequency of 42 MHz. When the oscillator pump power is increased to 5.08 W and most nearly-transform-limited pulses under the pump condition are selected as the seed pulses, the maximum average power of 34.5 W with a duration of 53.5 fs is obtained at an amplifier pump power of 70 W.

  12. Spatially selective Er/Yb-doped CaF{sub 2} crystal formation by CO{sub 2} laser exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Seon; Lee, Jin-Ho; Lim, Ki-Soo, E-mail: kslim@chungbuk.ac.kr

    2015-04-15

    Highlights: • Oxyfluoride glass–ceramics containing CaF{sub 2} nanocrystals doped with Er{sup 3+} and Yb{sup 3+} ions were formed on the glass surface by CO{sub 2} laser and a heat gun exposure. • Most of Er and Yb ions were distributed inside CaF{sub 2} nanocrystals and fluorine loss was observed in the EDS element maps. • IR-to-VIS upconversion emission efficiency of laser annealed glass ceramics was much increased and compared with that of the furnace-annealed glass ceramics. • Distributed volume of the glass ceramics were estimated by a confocal fluorescence microscope imaging. - Abstract: We report the glass–ceramic precipitation on the oxyfluoride glass surface by spatially selective annealing with a CO{sub 2} laser and a heat gun exposure. X-ray diffraction analysis showed the formation of major CaF{sub 2} and miner Ca{sub 2}SiO{sub 4} nanoparticles. We observed ∼100 nm nanoparticle aggregation by tunneling electron microscopy and element distribution in glass and crystal phases. Spatial distribution of glass ceramics near the glass surface was probed by confocal fluorescence microscope by using much enhanced emission from the Er ions in the laser-treated area. Strong emissions at 365 nm excitation and visible up-conversion emissions at 980 nm excitation also indicated well incorporation of Er and Yb ions into a crystalline environment.

  13. Strong broad green UV-excited photoluminescence in rare earth (RE = Ce, Eu, Dy, Er, Yb) doped barium zirconate

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Urby, R. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Diaz-Torres, L.A., E-mail: ditlacio@cio.mx [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro, Qro. 76000 (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Ciudad de Mexico, D. F. 07730 (Mexico); Meza, O. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico)

    2011-10-25

    Highlights: > Trivalent rare earth (RE) substitution on Zr{sup 4+} sites in BaZrO{sub 3} lead to band gap narrowing. > RE substitution lead to enhanced blue-green intrinsic emission of nanocrystalline BaZrO{sub 3} > Blue-green hue of BaZrO3:RE depends on RE dopant and excitation UV wavelength > BaZrO3: Dy{sup 3+} PL chromatic coordinates correspond to pure white color coordinates of CIE 1931 model - Abstract: The wet synthesis hydrothermal method at 100 deg. C was used to elaborate barium zirconate (BaZrO{sub 3}) unpurified with 0.5 mol% of different rare earth ions (RE = Yb, Er, Dy, Eu, Ce). Morphological, structural and UV-photoluminescence properties depend on the substituted rare earth ionic radii. While the crystalline structure of RE doped BaZrO{sub 3} remains as a cubic perovskite for all substituted RE ions, its band gap changes between 4.65 and 4.93 eV. Under 267 nm excitation the intrinsic green photoluminescence of the as synthesized BaZrO{sub 3}: RE samples is considerably improved by the substitution on RE ions. For 1000 deg. C annealed samples, under 267 nm, the photoluminescence is dominated by the intrinsic BZO emission. It is interesting to notice that Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+} doped samples present whitish emissions that might be useful for white light generation under 267 nm excitation. CIE color coordinates are reported for all samples.

  14. Spatially selective Er/Yb-doped CaF2 crystal formation by CO2 laser exposure

    International Nuclear Information System (INIS)

    Highlights: • Oxyfluoride glass–ceramics containing CaF2 nanocrystals doped with Er3+ and Yb3+ ions were formed on the glass surface by CO2 laser and a heat gun exposure. • Most of Er and Yb ions were distributed inside CaF2 nanocrystals and fluorine loss was observed in the EDS element maps. • IR-to-VIS upconversion emission efficiency of laser annealed glass ceramics was much increased and compared with that of the furnace-annealed glass ceramics. • Distributed volume of the glass ceramics were estimated by a confocal fluorescence microscope imaging. - Abstract: We report the glass–ceramic precipitation on the oxyfluoride glass surface by spatially selective annealing with a CO2 laser and a heat gun exposure. X-ray diffraction analysis showed the formation of major CaF2 and miner Ca2SiO4 nanoparticles. We observed ∼100 nm nanoparticle aggregation by tunneling electron microscopy and element distribution in glass and crystal phases. Spatial distribution of glass ceramics near the glass surface was probed by confocal fluorescence microscope by using much enhanced emission from the Er ions in the laser-treated area. Strong emissions at 365 nm excitation and visible up-conversion emissions at 980 nm excitation also indicated well incorporation of Er and Yb ions into a crystalline environment

  15. Efficient intracavity frequency doubling of an Yb-doped fiber laser using an internal resonant enhancement cavity

    OpenAIRE

    Cieslak, R.; Sahu, J.K.; Clarkson, W. A.

    2010-01-01

    We describe a simple approach for efficient generation of visible light in high-power continuous-wave fiber lasers via second harmonic generation in an internal resonant cavity. Preliminary results for a cladding-pumped Yb fiber laser are presented.

  16. Superconductivity at 31.3 K in Yb-doped La(O/F)FeAs superconductors

    Indian Academy of Sciences (India)

    J Prakash; S J Singh; S Patnaik; A K Ganguli

    2010-01-01

    The effect of ytterbium substitution at the lanthanum site on the superconducting properties of La1-YbO0.8F0.2FeAs ( = 0.10, 0.20 and 0.30) oxypnictides has been investigated. Powder X-ray diffraction studies show the presence of Yb2O3 and LaOF as secondary phases. The superconducting transition temperature (c) of 31.3 (± 0.05) K has been observed in = 0.1 composition which is the maximum c so far in the La(O/F)FeAs superconductor family at ambient pressure. Further increase in leads to suppression and broadening of superconducting transition. The resistive transition curves under different magnetic fields were investigated, leading to determination of upper critical field c2 () of this new superconductor. The value of c2 at zero temperature is estimated to be about 46 T corresponding to coherence length ∼ 27 Å.

  17. The ubiquitous photonic wheel

    CERN Document Server

    Aiello, Andrea

    2016-01-01

    A circularly polarized electromagnetic plane wave carries an electric field that rotates clockwise or counterclockwise around the propagation direction of the wave. According to the handedness of this rotation, its \\emph{longitudinal} spin angular momentum density is either parallel or antiparallel to the propagation of light. However, there are also light waves that are not simply plane and carry an electric field that rotates around an axis perpendicular to the propagation direction, thus yielding \\emph{transverse} spin angular momentum density. Electric field configurations of this kind have been suggestively dubbed "photonic wheels". It has been recently shown that photonic wheels are commonplace in optics as they occur in electromagnetic fields confined by waveguides, in strongly focused beams, in plasmonic and evanescent waves. In this work we establish a general theory of electromagnetic waves {propagating along a well defined direction, which carry} transverse spin angular momentum density. We show th...

  18. Natural photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, Jean Pol, E-mail: jean-pol.vigneron@fundp.ac.be [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium); Simonis, Priscilla [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium)

    2012-10-15

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  19. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    , leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...

  20. Photons in a ball

    Energy Technology Data Exchange (ETDEWEB)

    Mück, Wolfgang, E-mail: mueck@na.infn.it [Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126, Naples (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Via Cintia, 80126, Naples (Italy)

    2015-12-11

    The electromagnetic field inside a spherical cavity of large radius R is considered in the presence of stationary charge and current densities. R provides infra-red regularisation while maintaining gauge invariance. The quantum ground state of physical photons forming the magnetic field is found to be a coherent state with a definite mean occupation number. The electric field, which is determined by the Gauss law constraint, is maintained by a minimum uncertainty coherent state, according to the projection operator approach to the quantisation of constrained systems. The mean occupation number of this state is proportional to the square of the total charge. The results confirm formulae obtained previously from a calculation with a finite photon mass for infra-red regularisation.

  1. Quantum communication with photons

    International Nuclear Information System (INIS)

    Full text: The discovery that transmission of information encoded into single quantum systems enables new forms of communication let to the emergence of the domain of quantum communication. During the last ten years, various key experiments based on photons as carrier of the quantum information have been realized. Today, quantum cryptography systems based on faint laser pulses can be purchased commercially, bi-partite entanglement has been distributed over long distances and has been used for quantum key distribution, and quantum purification, teleportation and entanglement swapping have been demonstrated. I will give a general introduction into this fascinating field and will review experimental achievements in the domain of quantum communication with discrete two-level quantum systems (qubits) encoded into photons. (author)

  2. Natural photonic crystals

    Science.gov (United States)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-10-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  3. Thermally induced photon splitting

    CERN Document Server

    Elmfors, P; Elmfors, Per; Skagerstam, Bo-Sture

    1998-01-01

    We calculate thermal corrections to the non-linear QED effective action for low-energy photon interactions in a background electromagnetic field. The high-temperature expansion shows that at $T \\gg m$ the vacuum contribution is exactly cancelled to all orders in the external field except for a non-trivial two-point function contribution. The high-temperature expansion derived reveals a remarkable cancellation of infrared sensitive contributions. As a result photon-splitting in the presence of a magnetic field is suppressed in the presence of an electron-positron QED-plasma at very high temperatures. In a cold and dense plasma a similar suppression takes place. At the same time Compton scattering dominates for weak fields and the suppression is rarely important in physical situations.

  4. Photon Black Holes

    CERN Document Server

    Hernández, X; Mendoza, S; Sussman, R A

    2005-01-01

    We study the relationship between the energy and entropy of a black body photon gas, within an idealised spherical adiabatic enclosure of radius R, as this is compressed into a self-gravitating regime. We show that this regime approximately coincides with the black hole regime for the system, i.e., R ~ R_{s}, where R_{s} denotes the Schwarzschild radius of the system. The entropy of this system is always below the suggested Holographic bound, even as R \\to R_{s}. A plausible quantum configuration for the photon gas at R \\to R_{s} is suggested, which satisfies all energy, entropy and temperature black hole conditions. Finally we examine our results from the point of view of recent Loop Quantum Gravity ideas.

  5. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole

    2008-01-01

    . To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while......Density estimation employed in multi-pass global illumination algorithms give cause to a trade-off problem between bias and noise. The problem is seen most evident as blurring of strong illumination features. In particular, this blurring erodes fine structures and sharp lines prominent in caustics...... eliminating noise. We demonstrate the applicability of our algorithm through a series of tests. In the tests, we evaluate the visual and computational performance of our algorithm comparing it to existing popular algorithms. Udgivelsesdato: December...

  6. MCNP: Photon benchmark problems

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, D.J.; Hollowell, D.E.; Hendricks, J.S.

    1991-09-01

    The recent widespread, markedly increased use of radiation transport codes has produced greater user and institutional demand for assurance that such codes give correct results. Responding to these pressing requirements for code validation, the general purpose Monte Carlo transport code MCNP has been tested on six different photon problem families. MCNP was used to simulate these six sets numerically. Results for each were compared to the set's analytical or experimental data. MCNP successfully predicted the analytical or experimental results of all six families within the statistical uncertainty inherent in the Monte Carlo method. From this we conclude that MCNP can accurately model a broad spectrum of photon transport problems. 8 refs., 30 figs., 5 tabs.

  7. Phase zone photon sieve

    Institute of Scientific and Technical Information of China (English)

    Jia Jia; Xie Chang-Qing

    2009-01-01

    A novel diffractive optical element, named phase zone photon sieve (PZPS), is presented. There are three kinds of phase plates in PZPSs: PZPS1, PZPS2, and PZPS3. Each of the PZPSs has its own structure and is made on quartz substrate by etching. The three PZPSs have stronger diffraction peak intensity than a photon sieve (PS) when the margin pinhole and zone line width are kept the same. The PZPS3 can produce a smaller central diffractive spot than the ordinary PS with the same number of zones on the Fresnel zone plate. We have given the design method for and the simulation of PZPS and PS. PZPS has potential applications in optical maskless lithography.

  8. Photons in a ball

    Energy Technology Data Exchange (ETDEWEB)

    Mueck, Wolfgang [Universita degli Studi di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' Ettore Pancini' ' , Naples (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Naples (Italy)

    2015-12-15

    The electromagnetic field inside a spherical cavity of large radius R is considered in the presence of stationary charge and current densities. R provides infra-red regularisation while maintaining gauge invariance. The quantum ground state of physical photons forming the magnetic field is found to be a coherent state with a definite mean occupation number. The electric field, which is determined by the Gauss law constraint, is maintained by a minimum uncertainty coherent state, according to the projection operator approach to the quantisation of constrained systems. The mean occupation number of this state is proportional to the square of the total charge. The results confirm formulae obtained previously from a calculation with a finite photon mass for infra-red regularisation. (orig.)

  9. PHOTON: A user's manual

    International Nuclear Information System (INIS)

    PHOTON has proven very useful in the development of the X17 superconducting wiggler beamline. Its use has determined the shielding required from the wiggler device to the very end of the beamline in the hutches and angiography section. Doses calculated by this program have been compared with experimental results from conventional bending magnet beamline with great success. In each case the program consistently overestimated the dose by factors ranging from 2 to 10. The reason for this overestimation is understood and was not refined further in the program in order to maintain some level of safety in the shielding calculations. PHOTON should prove useful in the design of any beamline. Its ability to calculate power deposited and spectra transmitted through nearly arbitrary beamline configurations as well as the scattered radiation doses through shielding walls make it a very powerful tool

  10. Photonics an introduction

    CERN Document Server

    Reider, Georg A

    2016-01-01

    This book provides a comprehensive introduction into photonics, from the electrodynamic and quantum mechanic fundamentals to the level of photonic components and building blocks such as lasers, amplifiers, modulators, waveguides, and detectors. The book will serve both as textbook and as a reference work for the advanced student or scientist. Theoretical results are derived from basic principles with convenient, yet state-of-the-art mathematical tools, providing not only deeper understanding but also familiarization with formalisms used in the relevant technical literature and research articles. Among the subject matters treated are polarization optics, pulse and beam propagation, waveguides, light–matter interaction, stationary and transient behavior of lasers, semiconductor optics and lasers (including low-dimensional systems such as quantum wells), detector technology, photometry, and colorimetry. Nonlinear optics are elaborated comprehensively. The book is intended for both students of physics and elect...

  11. Extreme Photonics & Applications

    CERN Document Server

    Hall, Trevor J; Paredes, Sofia A

    2010-01-01

    "Extreme Photonics & Applications" arises from the 2008 NATO Advanced Study Institute in Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security and Defense. Leading experts in the manipulation of light offered by recent advances in laser physics and nanoscience were invited to give lectures in their fields of expertise and participate in discussions on current research, applications and new directions. The sum of their contributions to this book is a primer for the state of scientific knowledge and the issues within the subject of photonics taken to the extreme frontiers: molding light at the ultra-finest scales, which represents the beginning of the end to limitations in optical science for the benefit of 21st Century technological societies. Laser light is an exquisite tool for physical and chemical research. Physicists have recently developed pulsed lasers with such short durations that one laser shot takes the time of one molecular vibration or one electron rotation in an ...

  12. Photonic crystal optical memory

    Science.gov (United States)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  13. Illuminating WISPs with photons

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Paola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chile Univ., Santiago (Chile). Facultad de Fisica; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-10-15

    Physics beyond the Standard Model naturally gives rise to very light and weakly interacting particles, dubbed WISPs (Weakly Interacting Slim Particles). A prime example is the axion, that has eluded experimental detection for more than thirty years. In this talk we review some of the strongly motivated candidates for such particles, the observational hints for them and the present status of searches with photon regeneration experiments, as well as possible future improvements. (orig.)

  14. Graphene Photonics and Optoelectronics

    OpenAIRE

    Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C.

    2010-01-01

    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, ...

  15. Photonics in photovoltaic systems

    OpenAIRE

    Gambert, Andreas; Luque López, Antonio

    2008-01-01

    This paper gives an overview on photonics for photovoltaic systems. Starting from the spectral and angular distribution of the electromagnetic radiation from the sun, many important optical approaches how to improve the efficiency of solar cells are presented and discussed. Topics include antireflective coatings, various light trapping structures, refractive, reflective and fluorescent concentrators, and components for spectral management. The theoretical background is shortly described and e...

  16. Diamond integrated quantum photonics

    OpenAIRE

    Greentree, Andrew D.; Fairchild, Barbara A.; Hossain, Faruque M.; Steven Prawer

    2008-01-01

    Diamond is a leading contender as the material of choice for the quantum computer industry. This potential arises mainly from the quantum properties of color centers in diamond. However, before diamond can realize its full potential, the technology to fabricate and sculpt diamond as well as, if not better than, silicon must be developed. A comprehensive processing capability for diamond that will allow the fabrication of qubits and their associated photonic structures is required. Here we des...

  17. Lacunar fractal photon sieves

    OpenAIRE

    Gimenez, Fernando; Furlan, Walter D.; Monsoriu, Juan A.

    2007-01-01

    We present a new family of diffractive lenses whose structure is based on the combination of two concepts: photon sieve and fractal zone plates with variable lacunarity. The focusing properties of different members of this family are examined. It is shown that the sieves provide a smoothing effect on the higher order foci of a conventional lacunar fractal zone plate. However, the characteristic self-similar axial response of the fractal zone plates is always preserved.

  18. Hydrophobic photonic crystal fibers.

    Science.gov (United States)

    Xiao, Limin; Birks, T A; Loh, W H

    2011-12-01

    We propose and demonstrate hydrophobic photonic crystal fibers (PCFs). A chemical surface treatment for making PCFs hydrophobic is introduced. This repels water from the holes of PCFs, so that their optical properties remain unchanged even when they are immersed in water. The combination of a hollow core and a water-repellent inner surface of the hydrophobic PCF provides an ultracompact dissolved-gas sensor element, which is demonstrated for the sensing of dissolved ammonia gas. PMID:22139276

  19. Variable frequency photonic crystals

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Yang, Jing-Hai; Li, Hong; Chen, Wan-Jin

    2015-01-01

    In this paper, we have firstly proposed a new one-dimensional variable frequency photonic crystals (VFPCs), and calculated the transmissivity and the electronic field distribution of VFPCs with and without defect layer, and considered the effect of defect layer and variable frequency function on the transmissivity and the electronic field distribution. We have obtained some new characteristics for the VFPCs, which should be help to design a new type optical devices.

  20. Slotted Photonic Crystal Sensors

    Directory of Open Access Journals (Sweden)

    Andrea Di Falco

    2013-03-01

    Full Text Available Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  1. Photonic Molecule Lasers Revisited

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  2. Photonics Explorer Workshop

    Science.gov (United States)

    Prasad, Amrita; Debaes, Nathalie

    2014-07-01

    The Photonics Explorer is an intra-curricular educational kit developed in a European project with a pan-European collaboration of over 35 teachers and science education professors. Unlike conventional educational outreach kits, the Photonics Explorer is specifically designed to integrate seamlessly in school curricula and enhance and complement the teaching and learning of science and optics in the classroom. The kit equips teachers with class sets of experimental components, provided within a supporting didactic framework and is designed for lower and upper secondary students (12-18 years). The kit is provided completely free of charge to teachers in conjunction with teacher training courses. The workshop will provide an overview of the Photonics Explorer intra-curricular kit and give teachers the opportunity to work hands-on with the material and didactic content of two modules, `Light Signals' (lower secondary) and `Diffraction and Interference'(upper secondary). We also aim to receive feedback regarding the content, components and didactic framework from teachers from non- European countries, to understand the relevance of the kit for their teaching and the ability for such a kit to integrate into non-EU curricula.

  3. Photonic Crystal Optical Tweezers

    CERN Document Server

    Wilson, Benjamin K; Bachar, Stephanie; Knouf, Emily; Bendoraite, Ausra; Tewari, Muneesh; Pun, Suzie H; Lin, Lih Y

    2009-01-01

    Non-invasive optical manipulation of particles has emerged as a powerful and versatile tool for biological study and nanotechnology. In particular, trapping and rotation of cells, cell nuclei and sub-micron particles enables unique functionality for various applications such as tissue engineering, cancer research and nanofabrication. We propose and demonstrate a purely optical approach to rotate and align particles using the interaction of polarized light with photonic crystal nanostructures to generate enhanced trapping force. With a weakly focused laser beam we observed efficient trapping and transportation of polystyrene beads with sizes ranging from 10 um down to 190 nm as well as cancer cell nuclei. In addition, we demonstrated alignment of non-spherical particles using a 1-D photonic crystal structure. Bacterial cells were trapped, rotated and aligned with optical intensity as low as 17 uW/um^2. Finite-difference time domain (FDTD) simulations of the optical near-field and far-field above the photonic c...

  4. Integrated photonic quantum walks

    Science.gov (United States)

    Gräfe, Markus; Heilmann, René; Lebugle, Maxime; Guzman-Silva, Diego; Perez-Leija, Armando; Szameit, Alexander

    2016-10-01

    Over the last 20 years quantum walks (QWs) have gained increasing interest in the field of quantum information science and processing. In contrast to classical walkers, quantum objects exhibit intrinsic properties like non-locality and non-classical many-particle correlations, which renders QWs a versatile tool for quantum simulation and computation as well as for a deeper understanding of genuine quantum mechanics. Since they are highly controllable and hardly interact with their environment, photons seem to be ideally suited quantum walkers. In order to study and exploit photonic QWs, lattice structures that allow low loss coherent evolution of quantum states are demanded. Such requirements are perfectly met by integrated optical waveguide devices that additionally allow a substantial miniaturization of experimental settings. Moreover, by utilizing the femtosecond direct laser writing technique three-dimensional waveguide structures are capable of analyzing QWs also on higher dimensional geometries. In this context, advances and findings of photonic QWs are discussed in this review. Various concepts and experimental results are presented covering, such as different quantum transport regimes, the Boson sampling problem, and the discrete fractional quantum Fourier transform.

  5. Photon Statistics of Single-Photon Quantum States in Real Single Photon Detection

    Institute of Scientific and Technical Information of China (English)

    李刚; 李园; 王军民; 彭堃墀; 张天才

    2004-01-01

    @@ Single photon detection (SPD) with high quantum efficiency has been widely used for measurement of different quantum states with different photon distributions.Based on the direct single SPD and double-SPD of HBT configuration, we discuss the effect of a real SPD on the photon statistics measurement and it shows that the measured photon distributions for different quantum states are corrected in different forms.The results are confirmed by experiment with the strongly attenuated coherent light and thermal light.This system can be used to characterize the photon statistics of the fluorescence light from single atom or single molecular.

  6. QED processes in peripheral kinematics at polarized photon-photon and photon-electron colliders

    CERN Document Server

    Bakmaev, S; Galynsky, M V; Kuraev, E A

    2004-01-01

    For experiments on planned electron-photon and photon-photon colliders with detecting the small angles scattered particles the calibration QED processes cross sections are calculated. These processes describe the creation of two jets moving sufficiently close to the beam axes directions. The jets containing two and three particles including charged leptons, photons and pseudoscalar mesons are considered explicitly. Considering the pair production subprocesses we take into account both bremsstrahlung and double photon mechanisms. The obtained results are suitable for further numerical calculations.

  7. Topological Photonic States

    Science.gov (United States)

    He, Cheng; Lin, Liang; Sun, Xiao-Chen; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng

    2014-01-01

    As exotic phenomena in optics, topological states in photonic crystals have drawn much attention due to their fundamental significance and great potential applications. Because of the broken time-reversal symmetry under the influence of an external magnetic field, the photonic crystals composed of magneto-optical materials will lead to the degeneracy lifting and show particular topological characters of energy bands. The upper and lower bulk bands have nonzero integer topological numbers. The gapless edge states can be realized to connect two bulk states. This topological photonic states originated from the topological property can be analogous to the integer quantum Hall effect in an electronic system. The gapless edge state only possesses a single sign of gradient in the whole Brillouin zone, and thus the group velocity is only in one direction leading to the one-way energy flow, which is robust to disorder and impurity due to the nontrivial topological nature of the corresponding electromagnetic states. Furthermore, this one-way edge state would cross the Brillouin center with nonzero group velocity, where the negative-zero-positive phase velocity can be used to realize some interesting phenomena such as tunneling and backward phase propagation. On the other hand, under the protection of time-reversal symmetry, a pair of gapless edge states can also be constructed by using magnetic-electric coupling meta-materials, exhibiting Fermion-like spin helix topological edge states, which can be regarded as an optical counterpart of topological insulator originating from the spin-orbit coupling. The aim of this article is to have a comprehensive review of recent research literatures published in this emerging field of photonic topological phenomena. Photonic topological states and their related phenomena are presented and analyzed, including the chiral edge states, polarization dependent transportation, unidirectional waveguide and nonreciprocal optical transmission, all

  8. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    Yogita Kalra; R K Sinha

    2006-12-01

    The polarization-dependent photonic band gaps (TM and TE polarizations) in two-dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is affected by the changing ellipticity of the constituent air holes/dielectric rods. It is observed that the size of the photonic band gap changes with changing ellipticity of the constituent air holes/dielectric rods. Further, it is reported, how the photonic band gap size is affected by the change in the orientation of the constituent elliptical air holes/dielectric rods in 2D photonic crystals.

  9. Synthetic Landau levels for photons.

    Science.gov (United States)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-30

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons. PMID:27281214

  10. Synthetic Landau levels for photons.

    Science.gov (United States)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-30

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

  11. Synthetic Landau levels for photons

    Science.gov (United States)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-06-01

    Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock-Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen-Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.

  12. Radiative production of invisible charginos in photon photon collision

    CERN Document Server

    Choudhury, D; Rakshit, S; Datta, A; Choudhury, Debajyoti; Mukhopadhyaya, Biswarup; Rakshit, Subhendu; Datta, Anindya

    2003-01-01

    If in a supersymmetric model, the lightest chargino is nearly degenerate with the lightest neutralino, the former can decay into the latter alongwith a soft pion (or a lepton-neutrino pair). Near degeneracy of the chargino and neutralino masses can cause the other decay products (the pion or the lepton) to be almost invisible. Photon-photon colliders offer a possibility of clean detection of such an event through a hard photon tag.

  13. Photon wave functions and quantum interference experiments

    OpenAIRE

    Lapaire, G. G.; Sipe, J. E.

    2006-01-01

    We present a general theory to describe two-photon interference, including a formal description of few photon intereference in terms of single-photon amplitudes. With this formalism, it is possible to describe both frequency entangled and separable two-photon interference in terms of single-photon wave functions. Using this description, we address issues related to the physical interpretation of two-photon interference experiments. We include a discussion on how few-photon interference can be...

  14. Bose-Einstein Condensation of Photons and Photon Pairs

    Institute of Scientific and Technical Information of China (English)

    张建军; 袁建辉; 张俊佩; 成泽

    2012-01-01

    We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equivalent to a two dimension system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phase. We also discuss the quantum phase transition of the system and obtain the critical point analytically. Moreover, we find that the quantum phase transition of the system can be interpreted as second harmonic generation.

  15. Tunable photonic Bloch oscillations in electrically modulated photonic crystals.

    Science.gov (United States)

    Wang, Gang; Huang, Ji Ping; Yu, Kin Wah

    2008-10-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr-type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external-pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump ac or dc electric field, terahertz PBOs can appear and cover a terahertz band in an electromagnetic spectrum.

  16. All-photonic quantum repeaters

    Science.gov (United States)

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  17. Quantum simulation with interacting photons

    Science.gov (United States)

    Hartmann, Michael J.

    2016-10-01

    Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities representing an effectively zero-dimensional volume, this line of research has shifted its focus towards engineering devices where such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of a network. Recent technological progress in several experimental platforms now opens the possibility to employ the systems of strongly interacting photons, these give rise to as quantum simulators. Here we review the recent development and current status of this research direction for theory and experiment. Addressing both, optical photons interacting with atoms and microwave photons in networks of superconducting circuits, we focus on analogue quantum simulations in scenarios where effective photon-photon interactions exceed dissipative processes in the considered platforms.

  18. Photonic crystals in epitaxial semiconductors

    CERN Document Server

    La Rue, R M de

    1998-01-01

    The title of the paper uses the expression "photonic crystals". By photonic crystals, we mean regular periodic structures with a substantial refractive index variation in one-, two- or three- dimensional space. Such crystals can $9 exist naturally, for example natural opal, but are more typically fabricated by people. Under sufficiently strong conditions, i.e., sufficiently large refractive index modulation, correct size of structural components, and $9 appropriate rotational and translational symmetry, these crystals exhibit the characteristics of a photonic bandgap (PBG) structure. In a full photonic bandgap structure there is a spectral stop band for electromagnetic waves $9 propagating in any direction through the structure and with an arbitrary state of polarization. This behavior is of interest both from a fundamental viewpoint and from the point of view of novel applications in photonic devices. The $9 paper gives an outline review of work on photonic crystals carried out by the Optoelectronics Researc...

  19. Photons, photon jets, and dark photons at 750 GeV and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Basudeb [Tata Institute of Fundamental Research, Mumbai (India); Kopp, Joachim [Johannes Gutenberg University, PRISMA Cluster of Excellence, Mainz Institute for Theoretical Physics, Mainz (Germany); Schwaller, Pedro [DESY, Hamburg (Germany)

    2016-05-15

    In new physics searches involving photons at the LHC, one challenge is to distinguish scenarios with isolated photons from models leading to ''photon jets''. For instance, in the context of the 750 GeV diphoton excess, it was pointed out that a true diphoton resonance S → γγ can be mimicked by a process of the form pp → S → aa → 4γ, where S is a new scalar with a mass of 750 GeV and a is a light pseudoscalar decaying to two collinear photons. Photon jets can be distinguished from isolated photons by exploiting the fact that a large fraction of photons convert to an e{sup +}e{sup -} pair inside the inner detector. In this note, we quantify this discrimination power, and we study how the sensitivity of future searches differs for photon jets compared to isolated photons. We also investigate how our results depend on the lifetime of the particle(s) decaying to the photon jet. Finally, we discuss the extension to S → A{sup '}A{sup '} → e{sup +}e{sup -}e{sup +}e{sup -}, where there are no photons at all but the dark photon A{sup '} decays to e{sup +}e{sup -} pairs. Our results will be useful in future studies of the putative 750 GeV signal, but also more generally in any new physics search involving hard photons. (orig.)

  20. CERN manufactured hybrid photon detectors

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    These hybrid photon detectors (HPDs) produce an electric signal from a single photon. An electron is liberated from a photocathode and accelerated to a silicon pixel array allowing the location of the photon on the cathode to be recorded. The electronics and optics for these devices have been developed in close collaboration with industry. HPDs have potential for further use in astrophysics and medical imaging.

  1. Innovative Concepts in Microwave Photonics

    OpenAIRE

    Capmany Francoy, José; Sales Maicas, Salvador; Gasulla Mestre, Ivana; Mora Almerich, José; Lloret Soler, Juan Antonio; Sancho Durá, Juan

    2012-01-01

    This paper reports the work carried by ITEAM researchers on novel concepts in the field of Microwave Photonics (MWP). It includes activities related to the general modelling of MWP systems, the use of novel multicore fibers and recent advances in the emergent and hot topic of integrated microwave photonics. Capmany Francoy, J.; Sales Maicas, S.; Gasulla Mestre, I.; Mora Almerich, J.; Lloret Soler, JA.; Sancho Durá, J. (2012). Innovative Concepts in Microwave Photonics. Waves...

  2. Photonic zitterbewegung and its interpretation

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Yong; Xiong Cai-Dong; Qiu Qi; Liao-Yun

    2012-01-01

    In terms of the volume-integrated Poynting vector,we present a quantum field-theory investigation of the zitterbewegung (ZB) of photons,and show that this ZB occurs only in the presence of virtual longitudinal and scalar photons.To present a heuristic explanation for such a ZB,by assuming that the space time is sufficiently close to the fiat Minkowski space,we show that the gravitational interaction can result in the ZB of photons.

  3. Recent Breakthroughs in Microwave Photonics

    OpenAIRE

    Gasulla Mestre, Ivana; Lloret Soler, Juan Antonio; Sancho Durá, Juan; Sales Maicas, Salvador; Capmany Francoy, José

    2011-01-01

    We present a brief review of recent accomplishments in the field of Microwave Photonics (MWP). Recent research across a broad range of MWP applications is summarized, including photonic generation of microwave, millimeter, and Terahertz waves; broadband optical beamforming for phased array antennas; tunable, reconfigurable, and adaptive microwave photonic filtering, as well as the application of slow and fast light effects to the implementation of tunable microwave phase shifting and true tim...

  4. Nanowire-based Quantum Photonics

    OpenAIRE

    Bulgarini, G.

    2014-01-01

    In this thesis work, I studied individual quantum dots embedded in one-dimensional nanostructures called nanowires. Amongst the effects given by the nanometric dimensions, quantum dots enable the generation of single light particles: photons. Single photon emitters and detectors are central building blocks of future communication technologies. As the miniaturization in electronics is driving towards the quantum limit, we envision future telecommunication as based on single photons. Single pho...

  5. Electromagnetic waves and photons

    CERN Document Server

    Hofmann, Ralf

    2015-01-01

    We explore how the thermal ground states of two mixing and pure SU(2) Yang-Mills theories, SU(2)$_{\\tiny\\mbox{CMB}}$ of scale $\\Lambda_{\\tiny\\mbox{CMB}}\\sim 10^{-4}\\,$eV and SU(2)$_{e}$ of scale $\\Lambda_{e}\\sim 5\\times 10^5\\,$eV, associate either wave or particle aspects to electromagnetic disturbances during thermalisation towards the photon gas of a blackbody, in realising the photoelectric effect, and through the frequency dependence of the monochromatic, nonthermal beam structure in Thomson/Compton scattering.

  6. Spaceborne Photonics Institute

    Science.gov (United States)

    Venable, D. D.; Farrukh, U. O.; Han, K. S.; Hwang, I. H.; Jalufka, N. W.; Lowe, C. W.; Tabibi, B. M.; Lee, C. J.; Lyons, D.; Maclin, A.

    1994-01-01

    This report describes in chronological detail the development of the Spaceborne Photonics Institute as a sustained research effort at Hampton University in the area of optical physics. This provided the research expertise to initiate a PhD program in Physics. Research was carried out in the areas of: (1) modelling of spaceborne solid state laser systems; (2) amplified spontaneous emission in solar pumped iodine lasers; (3) closely simulated AM0 CW solar pumped iodine laser and repeatedly short pulsed iodine laser oscillator; (4) a materials spectroscopy and growth program; and (5) laser induced fluorescence and atomic and molecular spectroscopy.

  7. Nonresonance adiabatic photon trap

    CERN Document Server

    Popov, S S; Burdakov, A V; Ushkova, M Yu

    2016-01-01

    Concept of high efficiency photon storage based on adiabatic confinement between concave mirrors is presented and experimentally investigated. The approach is insensitive to typical for Fabri-Perot cells requirements on quality of accumulated radiation, tolerance of resonator elements and their stability. Experiments have been carried out with the trap, which consists from opposed concave cylindrical mirrors and conjugated with them spherical mirrors. In result, high efficiency for accumulation of radiation with large angular spread and spectrum width has been confirmed. As radiation source a commercial fiber laser has been used.

  8. Photonics in photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Andreas [Concentrix Solar GmbH, Boetzinger Str. 31, 79111 Freiburg (Germany); Luque, Antonio [Universidad Politecnica de Madrid, Instituto de Energia Solar, 28040 Madrid (Spain)

    2008-12-15

    This paper gives an overview on photonics for photovoltaic systems. Starting from the spectral and angular distribution of the electromagnetic radiation from the sun, many important optical approaches how to improve the efficiency of solar cells are presented and discussed. Topics include antireflective coatings, various light trapping structures, refractive, reflective and fluorescent concentrators, and components for spectral management. The theoretical background is shortly described and examples of the experimental and also of the commercial realisation are given. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Jaynes Cummings Photonic Superlattices

    CERN Document Server

    Longhi, Stefano

    2011-01-01

    A classical realization of the Jaynes-Cummings (JC) model, describing the interaction of a two-level atom with a quantized cavity mode, is proposed based on light transport in engineered waveguide superlattices. The optical setting enables to visualize in Fock space dynamical regimes not yet accessible in quantum systems, providing new physical insights into the deep strong coupling regime of the JC model. In particular, bouncing of photon number wave packets in Hilbert space and revivals of populations are explained as generalized Bloch oscillations in an inhomogeneous tight-binding lattice.

  10. Hologram of a single photon

    Science.gov (United States)

    Chrapkiewicz, Radosław; Jachura, Michał; Banaszek, Konrad; Wasilewski, Wojciech

    2016-09-01

    The spatial structure of single photons is becoming an extensively explored resource to facilitate free-space quantum communication and quantum computation as well as for benchmarking the limits of quantum entanglement generation with orbital angular momentum modes or reduction of the photon free-space propagation speed. Although accurate tailoring of the spatial structure of photons is now routinely performed using methods employed for shaping classical optical beams, the reciprocal problem of retrieving the spatial phase-amplitude structure of an unknown single photon cannot be solved using complementary classical holography techniques that are known for excellent interferometric precision. Here, we introduce a method to record a hologram of a single photon that is probed by another reference photon, on the basis of a different concept of the quantum interference between two-photon probability amplitudes. As for classical holograms, the hologram of a single photon encodes the full information about the photon's ‘shape’ (that is, its quantum wavefunction) whose local amplitude and phase are retrieved in the demonstrated experiment.

  11. Dirac tensor with heavy photon

    Energy Technology Data Exchange (ETDEWEB)

    Bytev, V.V.; Kuraev, E.A. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Scherbakova, E.S. [Hamburg Univ. (Germany). 1. Inst. fuer Theoretische Physik

    2012-01-15

    For the large-angles hard photon emission by initial leptons in process of high energy annihilation of e{sup +}e{sup -} {yields} to hadrons the Dirac tensor is obtained, taking into account the lowest order radiative corrections. The case of large-angles emission of two hard photons by initial leptons is considered. This result is being completed by the kinematics case of collinear hard photons emission as well as soft virtual and real photons and can be used for construction of Monte-Carlo generators. (orig.)

  12. Tutorials in complex photonic media

    CERN Document Server

    Noginov, Mikhail A; McCall, Martin W; Zheludev, Nikolay I

    2010-01-01

    The field of complex photonic media encompasses many leading-edge areas in physics, chemistry, nanotechnology, materials science, and engineering. In Tutorials in Complex Photonic Media , leading experts have brought together 19 tutorials on breakthroughs in modern optics, such as negative refraction, chiral media, plasmonics, photonic crystals, and organic photonics. This text will help students, engineers, and scientists entering the field to become familiar with the interrelated aspects of the subject. It also serves well as a supplemental text in introductory and advanced courses on optica

  13. Photonic crystal fibers in biophotonics

    Science.gov (United States)

    Tuchin, Valery V.; Skibina, Julia S.; Malinin, Anton V.

    2011-12-01

    We observed recent experimental results in area of photonic crystal fibers appliance. Possibility of creation of fiberbased broadband light sources for high resolution optical coherence tomography is discussed. Using of femtosecond pulse laser allows for generation of optical radiation with large spectral width in highly nonlinear solid core photonic crystal fibers. Concept of exploitation of hollow core photonic crystal fibers in optical sensing is demonstrated. The use of photonic crystal fibers as "smart cuvette" gives rise to efficiency of modern optical biomedical analysis methods.

  14. Few-photon optical diode

    International Nuclear Information System (INIS)

    We propose a scheme of realizing an optical diode at the few-photon level. The system consists of a one-dimensional waveguide coupled asymmetrically to a two-level system. The two or multiphoton transport in this system is strongly correlated. We derive exactly the single and two-photon current and show that the two-photon current is asymmetric for the asymmetric coupling. Thus the system serves as an optical diode which allows transmission of photons in one direction much more efficiently than the opposite.

  15. Photon Differentials in Space and Time

    DEFF Research Database (Denmark)

    Schjøth, Lars; Frisvad, Jeppe Revall; Erleben, Kenny;

    2011-01-01

    We present a novel photon mapping algorithm for animations. We extend our previous work on photon differentials [12] with time differentials. The result is a first order model of photon cones in space an time that effectively reduces the number of required photons per frame as well as efficiently...... reduces temporal aliasing without any need for in-between-frame photon maps....

  16. Sidewall roughness measurement of photonic wires and photonic crystals

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen;

    2007-01-01

    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...

  17. Quantum photonics with quantum dots in photonic wires

    DEFF Research Database (Denmark)

    Munsch, Mathieu; Kuhlmann, Andreas; Cadeddu, Davide;

    2016-01-01

    We present results from the spectroscopy of a single quantum dot in a photonic wire. The device presents a high photon extraction efficiency, and strong hybrid coupling to mechanical modes. We use resonance fluorescence to probe the emitter’s properties with the highest sensitivity. Weperform...

  18. Exclusive Channels in Photon-Photon Collisions at LEP

    OpenAIRE

    Braccini, S.

    2002-01-01

    The study of exclusive channels in photon-photon collisions at e+e- colliders allows to investigate the structure and the properties of hadrons in a very clean experimental environment. A concise review of the most recent results obtained at LEP is presented.

  19. Study of the photon identification efficiency with ALICE photon spectrometer

    Institute of Scientific and Technical Information of China (English)

    MAO Ya-Xian; ZHOU Dai-Cui; XU Chun-Cheng; YIN Zhong-Bao

    2008-01-01

    The efficiency for the detection and identification of photons with the ALICE PHOton Spectrometer PHOS has been studied with the Monte-Carlo generated data. In particular, the influence on the efficiency of the PHOS-module edge-effect and of the material in front of PHOS have been examined.

  20. The ubiquitous photonic wheel

    Science.gov (United States)

    Aiello, Andrea; Banzer, Peter

    2016-08-01

    A circularly polarized electromagnetic plane wave carries an electric field that rotates clockwise or counterclockwise around the propagation direction of the wave. According to the handedness of this rotation, its longitudinal spin angular momentum (AM) density is either parallel or antiparallel to the propagation of light. However, there are also light waves that are not simply plane and carry an electric field that rotates around an axis perpendicular to the propagation direction, thus yielding transverse spin AM density. Electric field configurations of this kind have been suggestively dubbed ‘photonic wheels’. It has been recently shown that photonic wheels are commonplace in optics as they occur in electromagnetic fields confined by waveguides, in strongly focused beams, in plasmonic and evanescent waves. In this work we establish a general theory of electromagnetic waves propagating along a well defined direction, and carrying transverse spin AM density. We show that depending on the shape of these waves, the spin density may be either perpendicular to the mean linear momentum (globally transverse spin) or to the linear momentum density (locally transverse spin). We find that the latter case generically occurs only for non-diffracting beams, such as the Bessel beams. Moreover, we introduce the concept of meridional Stokes parameters to operationally quantify the transverse spin density. To illustrate our theory, we apply it to the exemplary cases of Bessel beams and evanescent waves. These results open a new and accessible route to the understanding, generation and manipulation of optical beams with transverse spin AM density.

  1. Smart photonic carbon brush

    Science.gov (United States)

    Morozov, Oleg G.; Kuznetsov, Artem A.; Morozov, Gennady A.; Nureev, Ilnur I.; Sakhabutdinov, Airat Z.; Faskhutdinov, Lenar M.; Artemev, Vadim I.

    2016-03-01

    Aspects of the paper relate to a wear monitoring system for smart photonic carbon brush. There are many applications in which regular inspection is not feasible because of a number of factors including, for example, time, labor, cost and disruptions due to down time. Thus, there is a need for a system that can monitor the wear of a component while the component is in operation or without having to remove the component from its operational position. We propose a new smart photonic method for characterization of carbon brush wear. It is based on the usage of advantages of the multiplicative response of FBG and LPFG sensors and its double-frequency probing. Additional measuring parameters are the wear rate, the brush temperature, the engine rotation speed, the hangs control, and rotor speed. Sensor is embedded in brush. Firstly the change of sensor length is used to measure wear value and its central wavelength shift for temperature ones. The results of modeling and experiments are presented.

  2. Spin photonics and spin-photonic devices with dielectric metasurfaces

    CERN Document Server

    Liu, Yachao; Ke, Yougang; Zhou, Xinxing; Luo, Hailu; Wen, Shuangchun

    2015-01-01

    Dielectric metasurfaces with spatially varying birefringence and high transmission efficiency can exhibit exceptional abilities for controlling the photonic spin states. We present here some of our works on spin photonics and spin-photonic devices with metasurfaces. We develop a hybrid-order Poincare sphere to describe the evolution of spin states of wave propagation in the metasurface. Both the Berry curvature and the Pancharatnam-Berry phase on the hybrid-order Poincare sphere are demonstrated to be proportional to the variation of total angular momentum. Based on the spin-dependent property of Pancharatnam-Berry phase, we find that the photonic spin Hall effect can be observed when breaking the rotational symmetry of metasurfaces. Moreover, we show that the dielectric metasurfaces can provide great flexibility in the design of novel spin-photonic devices such as spin filter and spin-dependent beam splitter.

  3. Robust Adaptive Photon Tracing using Photon Path Visibility

    DEFF Research Database (Denmark)

    Hachisuka, Toshiya; Jensen, Henrik Wann

    2011-01-01

    algorithm is the use of visibility of photon path as the importance function which ensures that our sampling algorithm focuses on paths that are visible from the given viewpoint. Our sampling algorithm builds on two recent developments in Markov chain Monte Carlo methods: adaptive Markov chain sampling...... and replica exchange. Using these techniques, each photon path is adaptively mutated and it explores the sampling space efficiently without being stuck at a local peak of the importance function. We have implemented this sampling approach in the progressive photon mapping algorithm which provides visibility...... information in a natural way when a photon path contributes to a measurement point. We demonstrate that the final algorithm is strikingly simple, yet effective at sampling photons under lighting conditions that would be difficult for existing Monte Carlo ray tracing-based methods....

  4. Broadband photon-photon interactions mediated by cold atoms in a photonic crystal fiber

    Science.gov (United States)

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-05-01

    We demonstrate theoretically that photon-photon attraction can be engineered in the continuum of scattering states for pairs of photons propagating in a hollow-core photonic crystal fiber filled with cold atoms. The atoms are regularly spaced in an optical lattice configuration and the photons are resonantly tuned to an internal atomic transition. We show that the hard-core repulsion resulting from saturation of the atomic transitions induces bunching in the photonic component of the collective atom-photon modes (polaritons). Bunching is obtained in a frequency range as large as tens of GHz, and can be controlled by the inter-atomic separation. We provide a fully analytical explanation for this phenomenon by proving that correlations result from a mismatch of the quantization volumes for atomic excitations and photons in the continuum. Even stronger correlations can be observed for in-gap two-polariton bound states. Our theoretical results use parameters relevant for current experiments and suggest a simple and feasible way to induce interactions between photons.

  5. Photon Production Within Storage Capsules

    CERN Document Server

    Rittmann, P D

    2003-01-01

    This report provides tables and electronic worksheets that list the photon production rate within SrF2 and CsC1 storage capsules, particularly the continuous spectrum of bremsstrahlung photons from the slowing down of the emitted electrons (BREMCALC).

  6. Photonic nanowires for quantum optics

    DEFF Research Database (Denmark)

    Munsch, M.; Claudon, J.; Bleuse, J.;

    Photonic nanowires (PWs) are simple dielectric structures for which a very efficient and broadband spontaneous emission (SE) control has been predicted [1]. Recently, a single photon source featuring a record high efficiency was demonstrated using this geometry [2]. Using time-resolved micro-phot...

  7. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z energies from 1 keV to 100 GeV.

  8. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  9. Measuring the Photon Fragmentation Function at HERA

    CERN Document Server

    Ridder, A G D; Poulsen, E

    2006-01-01

    The production of final state photons in deep inelastic scattering originates from photon radiation off leptons or quarks involved in the scattering process. Photon radiation off quarks involves a contribution from the quark-to-photon fragmentation function, corresponding to the non-perturbative transition of a hadronic jet into a single, highly energetic photon accompanied by some limited hadronic activity. Up to now, this fragmentation function was measured only in electron-positron annihilation at LEP. We demonstrate by a dedicated parton-level calculation that a competitive measurement of the quark-to-photon fragmentation function can be obtained in deep inelastic scattering at HERA. Such a measurement can be obtained by studying the photon energy spectra in $\\gamma + (0+1)$-jet events, where $\\gamma$ denotes a hadronic jet containing a highly energetic photon (the photon jet). Isolated photons are then defined from the photon jet by imposing a minimal photon energy fraction. For this so-called democratic...

  10. Spectral compression of single photons

    CERN Document Server

    Lavoie, Jonathan; Wright, Logan G; Fedrizzi, Alessandro; Resch, Kevin J

    2013-01-01

    Photons are critical to quantum technologies since they can be used for virtually all quantum information tasks: in quantum metrology, as the information carrier in photonic quantum computation, as a mediator in hybrid systems, and to establish long distance networks. The physical characteristics of photons in these applications differ drastically; spectral bandwidths span 12 orders of magnitude from 50 THz for quantum-optical coherence tomography to 50 Hz for certain quantum memories. Combining these technologies requires coherent interfaces that reversibly map centre frequencies and bandwidths of photons to avoid excessive loss. Here we demonstrate bandwidth compression of single photons by a factor 40 and tunability over a range 70 times that bandwidth via sum-frequency generation with chirped laser pulses. This constitutes a time-to-frequency interface for light capable of converting time-bin to colour entanglement and enables ultrafast timing measurements. It is a step toward arbitrary waveform generatio...

  11. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance is...... provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...... modes in contiguous fibre segments curved at different radii. Overall microbend loss is expressed as a statistical mean of mismatch losses. Extending a well proven, established formula for macrobending losses in stop index fibres, we provide an estimate of macrobend losses in an air-guiding photonic...

  12. Surface-wave photonic quasicrystal

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Xu, Hongyi; Zhang, Baile

    2016-01-01

    In developing strategies of manipulating surface electromagnetic waves, it has been recently recognized that a complete forbidden band gap can exist in a periodic surface-wave photonic crystal, which has subsequently produced various surface-wave photonic devices. However, it is not obvious whether such a concept can be extended to a non-periodic surface-wave system that lacks translational symmetry. Here we experimentally demonstrate that a surface-wave photonic quasicrystal that lacks periodicity can also exhibit a forbidden band gap for surface electromagnetic waves. The lower cutoff of this forbidden band gap is mainly determined by the maximum separation between nearest neighboring pillars. Point defects within this band gap show distinct properties compared to a periodic photonic crystal for the absence of translational symmetry. A line-defect waveguide, which is crafted out of this surface-wave photonic quasicrystal by shortening a random row of metallic rods, is also demonstrated to guide and bend sur...

  13. Photon intensity interferometry with multidetectors

    International Nuclear Information System (INIS)

    The technique of two-photon interferometry in heavy ion collisions at the intermediate energies is discussed and the importance of a new methodology, used in the treatment of the experimental data, is evidenced. For the first time, both the relative momentum, qrel, and the relative energy, q0, of the two correlated photons have been simultaneously used to extract the source size and lifetime of the emitting source. As an application, the performances of the BaF2 ball of the MEDEA multidetector as a photon intensity interferometer have been evaluated. The response of such a detector to correlated pairs of photons has been studied through full GEANT3 simulations. The effects of the experimental filter on the photon correlation function have been investigated, and the noise, induced in the correlation signal by cosmic radiation, neutral pion decay, and γ-conversion, has also been estimated. ((orig.))

  14. Quantum Simulation with Interacting Photons

    CERN Document Server

    Hartmann, Michael J

    2016-01-01

    We review the theoretical and experimental developments in recent research on quantum simulators with interacting photons. Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities representing an effectively zero-dimensional volume, this line of research has now shifted its focus towards engineering devices where such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of a network. Recent technological progress in several experimental platforms now opens the possibility to employ the systems of strongly interacting photons these give rise to as quantum simulators. Here we review the recent development and current status of this research direction for theory and experiment. Addressing both, optical photons interacting with atoms and microwave photons in networks of superconducting c...

  15. Photon counting digital holography

    Science.gov (United States)

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario; Pavičić, Mladen

    2016-05-01

    Digital holography uses electronic sensors for hologram recording and numerical method for hologram reconstruction enabling thus the development of advanced holography applications. However, in some cases, the useful information is concealed in a very wide dynamic range of illumination intensities and successful recording requires an appropriate dynamic range of the sensor. An effective solution to this problem is the use of a photon-counting detector. Such detectors possess counting rates of the order of tens to hundreds of millions counts per second, but conditions of recording holograms have to be investigated in greater detail. Here, we summarize our main findings on this problem. First, conditions for optimum recording of digital holograms for detecting a signal significantly below detector's noise are analyzed in terms of the most important holographic measures. Second, for time-averaged digital holograms, optimum recordings were investigated for exposures shorter than the vibration cycle. In both cases, these conditions are studied by simulations and experiments.

  16. Photonics a short course

    CERN Document Server

    Degiorgio, Vittorio

    2014-01-01

    This book will serve as a concise, self-contained, up-to-date introduction to Photonics, to be used as a textbook for undergraduate students or as a reference book for researchers and professionals. Blending theory with technical descriptions, the book covers a wide range of topics, including the general mechanism of laser action, continuous and pulsed laser operation, optical propagation in isotropic and anisotropic media, operating principles and structure of passive optical components, electro-optical and acousto-optical modulation, solid-state lasers, semiconductor lasers and LEDs, nonlinear optics, and optical fiber components and devices.. The book concludes with an overview of applications, including optical communications, telemetry and sensing, industrial and biomedical applications, solid-state lighting, displays, and photovoltaics.

  17. Photonics a short course

    CERN Document Server

    Degiorgio, Vittorio

    2016-01-01

    This extended and revised edition will serve as a concise, self-contained, up-to-date introduction to Photonics for undergraduate students. It can also be used as a primer by researchers and professionals who start working in the field. Blending theory with technical descriptions, the book covers a wide range of topics, including the general mechanism of laser action, continuous and pulsed laser operation, optical propagation in isotropic and anisotropic media, operating principles and structure of passive optical components, electro-optic and acousto-optic modulation, solid-state lasers, semiconductor lasers and LEDs, nonlinear optical phenomena, and optical fiber components and devices. The book concludes with an overview of applications, including optical communications, telemetry and sensing, industrial and biomedical applications, solid-state lighting, displays, and photovoltaics. This second edition includes a set of problems at the end of all but the last chapter. These problems deal with numerical c...

  18. Photon enhanced thermionic emission

    Science.gov (United States)

    Schwede, Jared; Melosh, Nicholas; Shen, Zhixun

    2014-10-07

    Photon Enhanced Thermionic Emission (PETE) is exploited to provide improved efficiency for radiant energy conversion. A hot (greater than 200.degree. C.) semiconductor cathode is illuminated such that it emits electrons. Because the cathode is hot, significantly more electrons are emitted than would be emitted from a room temperature (or colder) cathode under the same illumination conditions. As a result of this increased electron emission, the energy conversion efficiency can be significantly increased relative to a conventional photovoltaic device. In PETE, the cathode electrons can be (and typically are) thermalized with respect to the cathode. As a result, PETE does not rely on emission of non-thermalized electrons, and is significantly easier to implement than hot-carrier emission approaches.

  19. Regenerative photonic therapy: Review

    Science.gov (United States)

    Salansky, Natasha; Salansky, Norman

    2012-09-01

    After four decades of research of photobiomodulation phenomena in mammals in vitro and in vivo, a solid foundation is created for the use of photobiomodulation in regenerative medicine. Significant accomplishments are achieved in animal models that demonstrate opportunities for photo-regeneration of injured or pathological tissues: skin, muscles and nerves. However, the use of photobiomodulation in clinical studies leads to controversial results while negative or marginal clinical efficacy is reported along with positive findings. A thor ough analysis of requirements to the optical parameters (dosimetry) for high efficacy in photobimodulation led us to the conclusion that there are several misconceptions in the clinical applications of low level laser therapy (LLLT). We present a novel appr oach of regenerative photonic therapy (RPT) for tissue healing and regeneration that overcomes major drawbacks of LLLT. Encouraging clinical results on RPT efficacy are presented. Requirements for RPT approach and vision for its future development for tissue regeneration is discussed.

  20. Diamond integrated quantum photonics

    Directory of Open Access Journals (Sweden)

    Andrew D. Greentree

    2008-09-01

    Full Text Available Diamond is a leading contender as the material of choice for the quantum computer industry. This potential arises mainly from the quantum properties of color centers in diamond. However, before diamond can realize its full potential, the technology to fabricate and sculpt diamond as well as, if not better than, silicon must be developed. A comprehensive processing capability for diamond that will allow the fabrication of qubits and their associated photonic structures is required. Here we describe the remarkable properties of diamond color centers, and the techniques being developed to engineer qubits and sculpt monolithic structures around them. Finally we outline some of the new proposals that use engineered diamond to realize tasks not possible with existing technologies.

  1. Perovskite photonic sources

    Science.gov (United States)

    Sutherland, Brandon R.; Sargent, Edward H.

    2016-05-01

    The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.

  2. Photonic Floquet Topological Insulators

    CERN Document Server

    Rechtsman, Mikael C; Plotnik, Yonatan; Lumer, Yaakov; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander

    2012-01-01

    The topological insulator is a fundamentally new phase of matter, with the striking property that the conduction of electrons occurs only on its surface, not within the bulk, and that conduction is topologically protected. Topological protection, the total lack of scattering of electron waves by disorder, is perhaps the most fascinating and technologically important aspect of this material: it provides robustness that is otherwise known only for superconductors. However, unlike superconductivity and the quantum Hall effect, which necessitate low temperatures or magnetic fields, the immunity to disorder of topological insulators occurs at room temperature and without any external magnetic field. For this reason, topological protection is predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Recently, a large theoretical effort has been directed towards bringing the concept into the domain of photonics: achieving topological protection of light at optical frequencies. ...

  3. Photonic quantum information: science and technology.

    Science.gov (United States)

    Takeuchi, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.

  4. Photon Exchange in Nucleus-Nucleus Collisions

    OpenAIRE

    Bertulani, Carlos A.

    2002-01-01

    The strong electromagnetic fields in peripheral heavy ion collisions give rise to photon-photon and photon-nucleus interactions. I present a general survey of the photon-photon and photon-hadron physics accessible in these collisions. Among these processes I discuss the nuclear fragmentation through the excitation of giant resonances, the Coulomb dissociation method for application in nuclear astrophysics, and the production of particles.

  5. Spatial photon correlations in multiple scattering media

    DEFF Research Database (Denmark)

    Smolka, Stephan; Muskens, O.; Lagendijk, A.;

    2010-01-01

    We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations.......We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations....

  6. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  7. Nonlocal hyperconcentration on entangled photons using photonic module system

    Science.gov (United States)

    Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen; Zhang, Ru; Wang, Chuan

    2016-06-01

    Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.

  8. Photon-efficient imaging with a single-photon camera

    Science.gov (United States)

    Shin, Dongeek; Xu, Feihu; Venkatraman, Dheera; Lussana, Rudi; Villa, Federica; Zappa, Franco; Goyal, Vivek K.; Wong, Franco N. C.; Shapiro, Jeffrey H.

    2016-06-01

    Reconstructing a scene's 3D structure and reflectivity accurately with an active imaging system operating in low-light-level conditions has wide-ranging applications, spanning biological imaging to remote sensing. Here we propose and experimentally demonstrate a depth and reflectivity imaging system with a single-photon camera that generates high-quality images from ~1 detected signal photon per pixel. Previous achievements of similar photon efficiency have been with conventional raster-scanning data collection using single-pixel photon counters capable of ~10-ps time tagging. In contrast, our camera's detector array requires highly parallelized time-to-digital conversions with photon time-tagging accuracy limited to ~ns. Thus, we develop an array-specific algorithm that converts coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes. By overcoming the coarse time resolution of the array, our framework uniquely achieves high photon efficiency in a relatively short acquisition time.

  9. Photonic crystals, amorphous materials, and quasicrystals

    International Nuclear Information System (INIS)

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states. (focus issue)

  10. Reconstruction of photon statistics using low performance photon counters

    OpenAIRE

    G. Zambra; Paris, M. G. A.

    2006-01-01

    The output of a photodetector consists of a current pulse whose charge has the statistical distribution of the actual photon numbers convolved with a Bernoulli distribution. Photodetectors are characterized by a nonunit quantum efficiency, i.e. not all the photons lead to a charge, and by a finite resolution, i.e. a different number of detected photons leads to a discriminable values of the charge only up to a maximum value. We present a detailed comparison, based on Monte Carlo simulated exp...

  11. Higher-order photon correlations in pulsed photonic crystal nanolasers

    CERN Document Server

    Elvira, David; Verma, V; Braive, Remy; Beaudoin, Gregoire; Robert-Philip, Isabelle; Sagnes, Isabelle; Baek, Burm; Nam, Sae Woo; Dauler, Eric A; Abram, Izo; Stevens, Martin J; Beveratos, Alexios

    2011-01-01

    We report on the higher-order photon correlations of a high-$\\beta$ nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single photon detector we measured g$^{(n)}(\\vec{0})$ with $n$=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of dipoles and photons involved in the lasing process.

  12. Photonic Landau levels on cones

    Science.gov (United States)

    Schine, Nathan; Ryou, Albert; Gromov, Andrey; Sommer, Ariel; Simon, Jonathan

    2016-05-01

    We present the first experimental realization of a bulk magnetic field for optical photons. By using a non-planar ring resonator, we induce an image rotation on each round trip through the resonator. This results in a Coriolis/Lorentz force and a centrifugal anticonfining force, the latter of which is cancelled by mirror curvature. Using a digital micromirror device to control both amplitude and phase, we inject arbitrary optical modes into our resonator. Spatial- and energy- resolved spectroscopy tracks photonic eigenstates as residual trapping is reduced, and we observe photonic Landau levels as the eigenstates become degenerate. We show that there is a conical geometry of the resulting manifold for photon dynamics and present a measurement of the local density of states that is consistent with Landau levels on a cone. While our work already demonstrates an integer quantum Hall material composed of photons, we have ensured compatibility with strong photon-photon interactions, which will allow quantum optical studies of entanglement and correlation in manybody systems including fractional quantum Hall fluids.

  13. Photonic nanojets in optical tweezers

    International Nuclear Information System (INIS)

    Photonic nanojets have been brought into attention ten years ago for potential application in ultramicroscopy, because of its sub-wavelength resolution that can enhance detection and interaction with matter. For these novel applications under development, the optical trapping of a sphere acts as an ideal framework to employ photonic nanojets. In the present study, we generated nanojets by using a highly focused incident beam, in contrast to traditional plane waves. The method inherits the advantage of optical trapping, especially for intracellular applications, with the microsphere in equilibrium on the beam propagation axis and positioned arbitrarily in space. Moreover, owing to optical scattering forces, when the sphere is in equilibrium, its center shifts with respect to the focal point of the incident beam. However, when the system is in stable equilibrium with a configuration involving optical tweezers, photonic nanojets cannot be formed. To overcome this issue, we employed double optical tweezers in an unorthodox configuration involving two collinear and co-propagating beams, the precise positioning of which would turn on/off the photonic nanojets, thereby improving the applicability of photonic nanojets. - Highlights: • Photonic nanojets from an optically trapped microsphere are presented. • Electromagnetic beams are described by using beam shape coefficients. • Beam shape coefficients are determined by generalized Lorenz–Mie theory. • Scheme to turn on and off a photonic nanojet is described

  14. Measurement of Ultra-Short Single-Photon Pulse Duration with Two-Photon Interference

    Institute of Scientific and Technical Information of China (English)

    LV Fan; SUN Fang-Wen; ZOU Chang-Ling; HAN Zheng-Fu; GUO Guang-Can

    2011-01-01

    We proposed a protocol of measuring the duration of ultra-short single-photon pulse with two-photon interference.The pulse duration can be obtained from the width of the visibility of two-photon Hong-Ou-Mandel interference or the indistinguishability of the two photons. Moreover, the shape of a single-photon pulse can be measured with ultra-short single-photon pulses through the two-photon interference.%@@ We proposed a protocol of measuring the duration of ultra-short single-photon pulse with two-photon interference.The pulse duration can be obtained from the width of the visibility of two-photon Hong-Ou-Mandel interference or the indistinguishability of the two photons.Moreover, the shape of a single-photon pulse can be measured with ultra-short single-photon pulses through the two-photon interference.

  15. Single photon source characterization with a superconducting single photon detector

    CERN Document Server

    Hadfield, R H; Miller, A J; Mirin, R P; Nam, S W; Schwall, R E; Stevens, M J; Gruber, Steven S.; Hadfield, Robert H.; Miller, Aaron J.; Mirin, Richard P.; Nam, Sae Woo; Schwall, Robert E.; Stevens, Martin J.

    2005-01-01

    Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons on demand at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g (2) (tau). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.

  16. Heralded amplification of photonic qubits.

    Science.gov (United States)

    Bruno, Natalia; Pini, Vittorio; Martin, Anthony; Verma, Varun B; Nam, Sae Woo; Mirin, Richard; Lita, Adriana; Marsili, Francesco; Korzh, Boris; Bussières, Félix; Sangouard, Nicolas; Zbinden, Hugo; Gisin, Nicolas; Thew, Rob

    2016-01-11

    We demonstrate postselection free heralded qubit amplification for Time-Bin qubits and single photon states in an all-fibre, telecom-wavelength, scheme that highlights the simplicity, stability and potential for fully integrated photonic solutions. Exploiting high-efficiency superconducting detectors, the gain, fidelity and the performance of the amplifier are studied as a function of loss. We also demonstrate the first heralded single photon amplifier with independent sources. This provides a significant advance towards demonstrating device-independent quantum key distribution as well as fundamental tests of quantum mechanics over extended distances. PMID:26832244

  17. Photonics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Jeppesen, Palle; Jepsen, Peter Uhd; Lodahl, Peter;

    2010-01-01

    DTU Fotonik, Department of Photonics Engineering at the Technical University of Denmark has about 200 employees including 60 PhD students. The ambition is to be among the world’s leading University departments within photonics research, education and innovation. To fulfil this ambition, DTU Fotonik...... tries to attract excellent researchers and students from all over the world and to collaborate with world leading research institutes and companies. The activities span from quantum photonics, nanotechnology and metamaterials over nonlinear fiber optics, optical sensors and diode lasers & LED systems...

  18. Summary of Lepton Photon 2011

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC

    2012-03-14

    In this lecture, I summarize developments presented at the Lepton Photon 2011 conference and give my perspective on the current situation in high-energy physics. I am grateful to the organizers of Lepton Photon 2011 for providing us a very pleasant and simulating week in Mumbai. This year's Lepton Photon conference has covered the full range of subjects that fall within the scope of high-energy physics, including connections to cosmology, nuclear physics, and atomic physics. The experiments that were discussed detect particles ranging in energy from radio frequencies to EeV.

  19. Surface state photonic bandgap cavities

    OpenAIRE

    Rahachou, A. I.; Zozoulenko, I. V.

    2005-01-01

    We propose and analyze a new type of a resonant high-Q cavity for lasing, sensing or filtering applications, which is based on a surface states of a finite photonic crystal. We demonstrate that such the cavity can have a Q factor comparable with that one of conventional photonic band-gap defect mode cavities. At the same time, the distinguished feature of the surface mode cavity is that it is situated directly at the surface of the photonic crystal. This might open up new possibilities for de...

  20. Random photonic crystal optical memory

    Science.gov (United States)

    Wirth Lima, A., Jr.; Sombra, A. S. B.

    2012-10-01

    Currently, optical cross-connects working on wavelength division multiplexing systems are based on optical fiber delay lines buffering. We designed and analyzed a novel photonic crystal optical memory, which replaces the fiber delay lines of the current optical cross-connect buffer. Optical buffering systems based on random photonic crystal optical memory have similar behavior to the electronic buffering systems based on electronic RAM memory. In this paper, we show that OXCs working with optical buffering based on random photonic crystal optical memories provides better performance than the current optical cross-connects.

  1. Spin-photon entangling diode

    DEFF Research Database (Denmark)

    Flindt, Christian; Sørensen, A. S.; Lukin, M. D.;

    2007-01-01

    We propose a semiconductor device that can electrically generate entangled electron spin-photon states, providing a building block for entanglement of distant spins. The device consists of a p-i-n diode structure that incorporates a coupled double quantum dot. We show that electronic control...... of the diode bias and local gating allow for the generation of single photons that are entangled with a robust quantum memory based on the electron spins. Practical performance of this approach to controlled spin-photon entanglement is analyzed....

  2. Quantum computation in photonic crystals

    CERN Document Server

    Angelakis, D G; Yannopapas, V; Ekert, A; Angelakis, Dimitris G.; Santos, Marcelo Franca; Yannopapas, Vassilis; Ekert, Artur

    2004-01-01

    Quantum computers require technologies that offer both sufficient control over coherent quantum phenomena and minimal spurious interactions with the environment. We show, that photons confined to photonic crystals, and in particular to highly efficient waveguides formed from linear chains of defects doped with atoms can generate strong non-linear interactions which allow to implement both single and two qubit quantum gates. The simplicity of the gate switching mechanism, the experimental feasibility of fabricating two dimensional photonic crystal structures and integrability of this device with optoelectronics offers new interesting possibilities for optical quantum information processing networks.

  3. Photonic Microresonator Research and Applications

    CERN Document Server

    Chremmos, Ioannis; Uzunoglu, Nikolaos

    2010-01-01

    Photonic Microresonator Research and Applications explores advances in the fabrication process that enable nanometer waveguide separations. The technology surrounding the design and fabrication of optical microresonators has matured to a point where there is a need for commercialization. Consequently, there is a need for device research involving more advanced architectures and more esoteric operating princples. This volume discusses these issues, while also: Showing a reader how to design and fabricate microresonators Discussing microresonators in photonic crystals, microsphere circuits, and sensors, and provides application oriented examples Covering the latest in microresonator research with contributions from the leading researchers Photonic Microresonator Research and Applications would appeal to researchers and academics working in the optical sciences.

  4. Electrons and Photons at ATLAS

    CERN Document Server

    Heim, Sarah; The ATLAS collaboration

    2016-01-01

    The performance of the reconstruction, calibration and identification of electrons and photons with the ATLAS detector at the LHC is a key component to realize the ATLAS full physics potential, both in the searches for new physics and in precision measurements. The algorithms used for the reconstruction and identification of electrons and photons with the ATLAS detector during LHC run 2 are presented. Measurements of the identification efficiencies are derived from data. The results from the 2015 pp collision data set at sqrt(s)=13 TeV are reported. The electron and photon energy calibration procedure and its performance are also discussed.

  5. Manufacturing method of photonic crystal

    Science.gov (United States)

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  6. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    OpenAIRE

    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard

    1995-01-01

    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  7. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    OpenAIRE

    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard

    1994-01-01

    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  8. The photonic nanowire: A highly efficient single-photon source

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2014-01-01

    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  9. Photon statistics characterization of a single photon source

    OpenAIRE

    Alleaume, Romain; Treussart, Francois; Courty, Jean-Michel; Roch, Jean-Francois

    2003-01-01

    n a recent experiment, we reported the time-domain intensity noise measurement of a single photon source relying on single molecule fluorescence control. In this article we present data processing, starting from photocount timestamps. The theoretical analytical expression of the time-dependent Mandel parameter Q(T) of an intermittent single photon source is derived from ONOFF dynamics . Finally, source intensity noise analysis using the Mandel parameter is quantitatively compared to the usual...

  10. Ultrafast Optical Switching Using Photonic Molecules in Photonic Crystal Waveguides

    CERN Document Server

    Zhao, Yanhui; Qiu, Kangsheng; Gao, Yunan; Xu, Xiulai

    2015-01-01

    We study the coupling between photonic molecules and waveguides in photonic crystal slab structures using finite-difference time-domain method and coupled mode theory. In a photonic molecule with two cavities, the coupling of cavity modes results in two super-modes with symmetric and anti-symmetric field distributions. When two super-modes are excited simultaneously, the energy of electric field oscillates between the two cavities. To excite and probe the energy oscillation, we integrate photonic molecule with two photonic crystal waveguides. In coupled structure, we find that the quality factors of two super-modes might be different because of different field distributions of super-modes. After optimizing the radii of air holes between two cavities of photonic molecule, nearly equal quality factors of two super-modes are achieved, and coupling strengths between the waveguide modes and two super-modes are almost the same. In this case, complete energy oscillations between two cavities can be obtained with a p...

  11. EDITORIAL: Photonic terahertz technology

    Science.gov (United States)

    Lisauskas, Alvydas; Löffler, Torsten; Roskos, Hartmut G.

    2005-07-01

    In recent years, when reading newspapers and journals or watching TV, one has been able to find feature presentations dealing with the prospects of terahertz (THz) technology and its potential impact on market applications. THz technology aims to fill the THz gap in the electro-magnetic spectrum in order to make the THz frequency regime, which spans the two orders of magnitude from 100 GHz to 10 THz, accessible for applications. From the lower-frequency side, electronics keeps pushing upwards, while photonic approaches gradually improve our technological options at higher frequencies. The popular interest reflects the considerable advances in research in the THz field, and it is mainly advances in the photonic branch, with the highlight being the development of the THz quantum cascade laser, which in recent years have caught the imagination of the public, and of potential users and investors. This special issue of Semiconductor Science and Technology provides an overview of key scientific developments which currently represent the cutting edge of THz photonic technology. In order to be clear about the implications, we should define exactly what we mean by 'THz photonic technology', or synonymously 'THz photonics'. It is characterized by the way in which THz radiation (or a guided THz wave) is generated, namely by the use of lasers. This may be done in one of two fundamentally different schemes: (i) by laser action in the terahertz frequency range itself (THz lasers), or (ii) by down-conversion processes (photomixing) involving the radiation of lasers which operate in the visible, near-infrared or infrared spectral ranges, either in pulsed or continuous-wave mode. The field of THz photonics has grown so considerably that it is out of the question to cover all its aspects in a single special issue of a journal. We have elected, instead, to focus our attention on two types of development with a potentially strong impact on the THz field: first, on significant advances

  12. Pushing the Photon Limit: Nanoantennas Increase Maximal Photon Stream and Total Photon Number.

    Science.gov (United States)

    Wientjes, Emilie; Renger, Jan; Cogdell, Richard; van Hulst, Niek F

    2016-05-01

    Nanoantennas are well-known for their effective role in fluorescence enhancement, both in excitation and emission. Enhancements of 3-4 orders of magnitude have been reported. Yet in practice, the photon emission is limited by saturation due to the time that a molecule spends in singlet and especially triplet excited states. The maximal photon stream restricts the attainable enhancement. Furthermore, the total number of photons emitted is limited by photobleaching. The limited brightness and observation time are a drawback for applications, especially in biology. Here we challenge this photon limit, showing that nanoantennas can actually increase both saturation intensity and photostability. So far, this limit-shifting role of nanoantennas has hardly been explored. Specifically, we demonstrate that single light-harvesting complexes, under saturating excitation conditions, show over a 50-fold antenna-enhanced photon emission stream, with 10-fold more total photons, up to 10(8) detected photons, before photobleaching. This work shows yet another facet of the great potential of nanoantennas in the world of single-molecule biology.

  13. Holographic Solar Photon Thrusters

    Science.gov (United States)

    Johnson, Les; Matloff, Greg

    2006-01-01

    A document discusses a proposal to incorporate holographic optical elements into solar photon thrusters (SPTs). First suggested in 1990, SPTs would be systems of multiple reflective, emissive, and absorptive surfaces (solar sails) that would be attached to spacecraft orbiting the Earth to derive small propulsive forces from radiation pressures. An SPT according to the proposal would include, among other things, a main sail. One side of the sail would be highly emissive and would normally face away from the Earth. The other side would be reflective and would be covered by white-light holographic images that would alternately become reflective, transmissive, and absorptive with small changes in the viewing angle. When the spacecraft was at a favorable orbital position, the main sail would be oriented to reflect sunlight in a direction to maximize the solar thrust; when not in a favorable position, the main sail would be oriented to present a substantially absorptive/emissive aspect to minimize the solar drag. By turning the main sail slightly to alternate between the reflective and absorptive/ emissive extremes, one could achieve nearly a doubling or halving of the radiational momentum transfer and, hence, of the solar thrust.

  14. Photonic MEMS switch applications

    Science.gov (United States)

    Husain, Anis

    2001-07-01

    As carriers and service providers continue their quest for profitable network solutions, they have shifted their focus from raw bandwidth to rapid provisioning, delivery and management of revenue generating services. Inherently transparent to data rate the transmission wavelength and data format, MEMS add scalability, reliability, low power and compact size providing flexible solutions to the management and/or fiber channels in long haul, metro, and access networks. MEMS based photonic switches have gone from the lab to commercial availability and are now currently in carrier trials and volume production. 2D MEMS switches offer low up-front deployment costs while remaining scalable to large arrays. They allow for transparent, native protocol transmission. 2D switches enable rapid service turn-up and management for many existing and emerging revenue rich services such as storage connectivity, optical Ethernet, wavelength leasing and optical VPN. As the network services evolve, the larger 3D MEMS switches, which provide greater scalability and flexibility, will become economically viable to serve the ever-increasing needs.

  15. The Photon Underproduction Crisis

    CERN Document Server

    Kollmeier, Juna A; Oppenheimer, Benjamin D; Haardt, Francesco; Katz, Neal; Davé, Romeel A; Fardal, Mark; Madau, Piero; Danforth, Charles; Ford, Amanda B; Peeples, Molly S; McEwen, Joseph

    2014-01-01

    We examine the statistics of the low-redshift Lyman-alpha forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Cosmic Origins Spectrograph (COS). We find that the value of the metagalactic photoionization rate required by our simulations to match the observed properties of the low-redshift Lyman-alpha forest is a factor of 5 larger than the value predicted by state-of-the art models for the evolution of this quantity. This mismatch results in the mean flux decrement of the Lyman-alpha forest being underpredicted by at least a factor of 2 (a 10-sigma discrepancy with observations) and a column density distribution of Lyman-alpha forest absorbers systematically and significantly elevated compared to observations over nearly two decades in column density. We examine potential resolutions to this mismatch and find that either conventional sources of ionizing photons (galaxies an...

  16. THE PHOTON UNDERPRODUCTION CRISIS

    Energy Technology Data Exchange (ETDEWEB)

    Kollmeier, Juna A. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Weinberg, David H.; McEwen, Joseph [Astronomy Department and CCAPP, Ohio State University, Columbus, OH 43210 (United States); Oppenheimer, Benjamin D.; Danforth, Charles [Astronomy Department, University of Colorado, Boulder, CO 80309 (United States); Haardt, Francesco [Dipartimento di Scienza e Alta Tecnologia, Università dell' Insubria, Via Valleggio 11, I-22100 Como (Italy); Katz, Neal; Fardal, Mark [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Ford, Amanda B. [Astronomy Department, University of Arizona, Tucson, AZ 85721 (United States); Peeples, Molly S., E-mail: jak@obs.carnegiescience.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2014-07-10

    We examine the statistics of the low-redshift Lyα forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Cosmic Origins Spectrograph (COS). We find that the value of the metagalactic photoionization rate (Γ{sub HI}) required by our simulations to match the observed properties of the low-redshift Lyα forest is a factor of five larger than the value predicted by state-of-the art models for the evolution of this quantity. This mismatch in Γ{sub HI} results in the mean flux decrement of the Lyα forest being overpredicted by at least a factor of two (a 10σ discrepancy with observations) and a column density distribution of Lyα forest absorbers systematically and significantly elevated compared to observations over nearly two decades in column density. We examine potential resolutions to this mismatch and find that either conventional sources of ionizing photons (galaxies and quasars) must contribute considerably more than current observational estimates or our theoretical understanding of the low-redshift universe is in need of substantial revision.

  17. Photon management in solar cells

    CERN Document Server

    Rau, Uwe; Gombert, Andreas

    2015-01-01

    Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, appl...

  18. Photon Scattering in Muon Collisions

    CERN Document Server

    Klasen, M

    1998-01-01

    We estimate the benefit of muon colliders for photon physics. We calculate the rate at which photons are emitted from muon beams in different production mechanisms. Bremsstrahlung is reduced, beamstrahlung disappears, and laser backscattering suffers from a bad conversion of the incoming to the outgoing photon beam in addition to requiring very short wavelengths. As a consequence, the cross sections for jet photoproduction in $\\mu p$ and $\\mu^+\\mu^-$ collisions are reduced by factors of 2.2 and 5 compared to $ep$ and $e^+e^-$ machines. However, the cross sections remain sizable and measurable giving access to the photon and proton parton densities down to $x$ values of $10^{-3}$ to $10^{-4}$.

  19. Diamond based photonic crystal microcavities.

    Science.gov (United States)

    Tomljenovic-Hanic, S; Steel, M J; de Sterke, C Martijn; Salzman, J

    2006-04-17

    Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band structures and quality factors of microcavities in photonic crystal slabs in diamond, and compare the results with those of the more commonly-used silicon platform. We find that, in spite of the lower index contrast, diamond based photonic crystal microcavities can exhibit quality factors of Q=3.0x10(4), sufficient for proof of principle demonstrations in the quantum regime. PMID:19516502

  20. Femtosecond Photon-Counting Receiver

    Science.gov (United States)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  1. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Deepak Kumar

    2002-08-01

    Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  2. Photonic molecules and spectral engineering

    CERN Document Server

    Boriskina, Svetlana V

    2012-01-01

    This chapter reviews the fundamental optical properties and applications of pho-tonic molecules (PMs) - photonic structures formed by electromagnetic coupling of two or more optical microcavities (photonic atoms). Controllable interaction between light and matter in photonic atoms can be further modified and en-hanced by the manipulation of their mutual coupling. Mechanical and optical tunability of PMs not only adds new functionalities to microcavity-based optical components but also paves the way for their use as testbeds for the exploration of novel physical regimes in atomic physics and quantum optics. Theoretical studies carried on for over a decade yielded novel PM designs that make possible lowering thresholds of semiconductor microlasers, producing directional light emission, achieving optically-induced transparency, and enhancing sensitivity of microcavity-based bio-, stress- and rotation-sensors. Recent advances in material science and nano-fabrication techniques make possible the realization of opt...

  3. Ramsey interference with single photons

    CERN Document Server

    Clemmen, Stéphane; Ramelow, Sven; Gaeta, Alexander L

    2016-01-01

    Interferometry using discrete energy levels in nuclear, atomic or molecular systems is the foundation for a wide range of physical phenomena and enables powerful techniques such as nuclear magnetic resonance, electron spin resonance, Ramsey-based spectroscopy and laser/maser technology. It also plays a unique role in quantum information processing as qubits are realized as energy superposition states of single quantum systems. Here, we demonstrate quantum interference of different energy states of single quanta of light in full analogy to energy levels of atoms or nuclear spins and implement a Ramsey interferometer with single photons. We experimentally generate energy superposition states of a single photon and manipulate them with unitary transformations to realize arbitrary projective measurements, which allows for the realization a high-visibility single-photon Ramsey interferometer. Our approach opens the path for frequency-encoded photonic qubits in quantum information processing and quantum communicati...

  4. New Applications for Microwave Photonics

    OpenAIRE

    A J Seeds; Fice, M. J.; Liu, C. P.; Ponnampalam, L.; Pozzi, F.; Renaud, C.C.; Rouvalis, E.; Steed, R. J.

    2009-01-01

    A photonic technique for generating high-purity millimetre-wave or terahertz signals based on heterodyne of two phase-locked optical sources is described. Technology requirements and potential applications are discussed.

  5. Topological states in photonic systems

    Science.gov (United States)

    Lu, Ling; Joannopoulos, John D.; Soljačić, Marin

    2016-07-01

    Optics played a key role in the discovery of geometric phase. It now joins the journey of exploring topological physics, bringing bosonic topological states that equip us with the ability to make perfect photonic devices using imperfect interfaces.

  6. Novel Photonic RF Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging on recent breakthroughs in broadband photonic devices and components for RF and microwave applications, SML proposes a new type of broadband microwave...

  7. QUANTUM CRYPTOGRAPHY WITH PHOTON PAIRS

    Directory of Open Access Journals (Sweden)

    Anand Sharma,

    2010-07-01

    Full Text Available Quantum cryptographic systems use quantum mechanical concepts that are based on qubit superposition of states, and on the no cloning or no copying theorem to establish unbreakable cipher keys. The basic idea of quantum cryptography is to send the key in the form of photons over a public channel, encoding the zeros and one on quantum states in such a way that any eavesdropping attempt can be detected. Using optical communications the most commonly quantum mechanical property used is the polarization state of photon. However, in most quantum cryptographic algorithms a random polarization state is required. The photons are ideal for low loss transport, either in free space or in optical fibers, i.e. we have the full arsenal of fiber optic technology at our disposal. In this paper we are describing the process of quantum cryptography with photon pairs.

  8. Photon scattering in muon collisions.

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, M.

    1997-12-18

    The authors estimate the benefit of muon colliders for photon physics. They calculate the rate at which photons are emitted from muon beams in different production mechanisms. Bremsstrahlung is reduced, beamstrahlung disappears, and laser backscattering suffers from a bad conversion of the incoming to the outgoing photon beam in addition to requiring very short wavelengths. As a consequence, the cross sections for jet photoproduction in {mu}p and {mu}{sup +} {mu}{sup {minus}} collisions are reduced by factors of 2.2 and 5 compared to ep and e{sup +} e{sup {minus}} machines. However, the cross sections remain sizable and measurable giving access to the photon and proton parton densities down to x values of 10{sup {minus}3} to 10{sup {minus}4}.

  9. National Photonics Skills Standard for Technicians.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This document defines "photonics" as the generation, manipulation, transport, detection, and use of light information and energy whose quantum unit is the photon. The range of applications of photonics extends from energy generation to detection to communication and information processing. Photonics is at the heart of today's communication…

  10. Two photons are better than one

    Science.gov (United States)

    2008-04-01

    Single-photon emission is a well-explored process. But in recent years interest in two-photon emission has grown. Nature Photonics spoke to Meir Orenstein and Alex Hayat in Israel about their latest work, which reports two-photon emission in a semiconductor.

  11. Photon final states at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, Mario; /University Coll. London

    2008-04-01

    The authors present here several recent measurements involving associate production of photons and jets at the Tevatron. In particular, inclusive photon + met from D0, and photon + b-jets and photon + b-jet + leptons + MET from CDF are described in some detail. These measurements offer a good test of QCD predictions in rather complex final states.

  12. Band Gaps of an Amorphous Photonic Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Yi-Quan; FENG Zhi-Fang; HU Xiao-Yong; CHENG Bing-Ying; ZHANG Dao-Zhong

    2004-01-01

    @@ A new kind of amorphous photonic materials is presented. Both the simulated and experimental results show that although the disorder of the whole dielectric structure is strong, the amorphous photonic materials have two photonic gaps. This confirms that the short-range order is an essential factor for the formation of the photonic gaps.

  13. Technologies and Applications of Microwave Photonic Antennas

    OpenAIRE

    Y. Yashchyshyn; Chizh, A.; Malyshev, S.; Modelski, J

    2010-01-01

    This paper describes the development of microwave photonic antennas concepts and their applications. The experimental study of the transmitting and receiving photonic antenna are shown. The transmitting photonic antenna consists of photodiode integrated with microstrip E-shaped patch antenna, and receiving photonic antenna consists of laser diode integrated directly with the Vivaldi antenna.

  14. Recent progress in medical photonics

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The field of medical photonics is rapidly expanding, and a wide variety of optical technologies and instruments have recently been developed for diagnostic, therapeutic and basic science applications in medicine. This review presents the recent advances and application of medical photonics, and the obtained results from our laboratory are highlighted. Finally, the challenges and future prospects for the transition from technological exploration to clinical studies are discussed.

  15. New nanomaterials for photonic application

    Science.gov (United States)

    Minh, Le Quoc; Anh, Tran Kim; Binh, Nguyen Thanh; Mien, Vu Doan

    2012-06-01

    A brief survey of the development of new nanomaterials for photonic application will be presented. Based on the photoresponsive sol gel nanohybrid of polymethamethyl acrylate, silica, and zirconia (ASZ) or titania (AST) have been fabricated some planar light guiding structures and devices. The lanthanide containing nanosphere with core/shell structures have been synthesized in using a modified solgel process. The opal like photonic crystal structures have been fabricated by self assembling technique.

  16. Photon factory activity report, 1993

    International Nuclear Information System (INIS)

    This issue is the annual report of the Photon Factory, National Laboratory of High Energy Physics. First the outline of the Photon Factory is presented. Injector linac, light source, beamlines and instrumentation, synchrotron radiation facility at the Tristan accumulation ring, and the Tristan super light facility are described in detail. The facility is open to researchers. The user's reports are collected as well. (J.P.N.)

  17. Soft photon registration at Nuclotron

    CERN Document Server

    Kokoulina, Elena; Golovkin, V; Golovnya, S; Gorokhov, S; Kholodenko, A; Kiryakov, A; Lobanov, I; Polkovnikov, M; Ronzhin, V; Ryadovikov, V; Tsyupa, Yu; Vorobiev, A; Avdeichikov, V; Balandin, V; Dunin, V; Gavrishchuk, O; Isupov, A; Kuzmin, N; Nikitin, V; Petukhov, Yu; Reznikov, S; Rogov, V; Rufanov, I; Zhidkov, N; Zolin, L; Bogdanova, G; Popov, V; Volkov, V; Kutov, A; Kazakov, A; Pokatashkin, G; Salyanko, R

    2015-01-01

    First results of a soft photon yield in nucleus-nuclear interactions at 3.5 GeV per nucleon are presented. These photons have been registered at Nuclotron (LHEP, JINR) by an electromagnetic calorimeter built in the SVD Collaboration. The obtained spectra confirm the excess yield in the energy region less than 50 MeV in comparison with theoretical predictions and agree with previous experiments at high-energy interactions.

  18. Modeling of photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Barkou, Stig Eigil

    1999-01-01

    Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated.......Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated....

  19. Silicon Photonics: The Inside Story

    OpenAIRE

    Jalali, Bahram

    2008-01-01

    The electronic chip industry embodies the height of technological sophistication and economics of scale. Fabricating inexpensive photonic components by leveraging this mighty manufacturing infrastructure has fueled intense interest in silicon photonics. If it can be done economically and in an energy efficient manner, empowering silicon with optical functionality will bring optical communications to the realm of computers where limitations of metallic interconnects are threatening the industr...

  20. Hybrid Materials for Integrated Photonics

    OpenAIRE

    Paolo Bettotti

    2014-01-01

    In this review materials and technologies of the hybrid approach to integrated photonics (IP) are addressed. IP is nowadays a mature technology and is the most promising candidate to overcome the main limitations that electronics is facing due to the extreme level of integration it has achieved. IP will be based on silicon photonics in order to exploit the CMOS compatibility and the large infrastructures already available for the fabrication of devices. But silicon has severe limits especiall...

  1. Optical tornadoes in photonic crystals

    OpenAIRE

    Onoda, Masaru; Ochiai, Tetsuyuki

    2008-01-01

    Based on an optical analogy of spintronics, the generation of optical tornadoes is theoretically investigated in two-dimensional photonic crystals without space-inversion symmetry. We address its close relation to the Berry curvature in crystal momentum space, which represents the non-trivial geometric property of a Bloch state. It is shown that the Berry curvature is easily controlled by tuning two types of dielectric rods in a honeycomb photonic crystal. Then, Bloch states with large Berry ...

  2. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard;

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  3. Photon factory activity report, 1992

    International Nuclear Information System (INIS)

    This issue is the annual report of the Photon Factory, National laboratory of High Energy Physics. First, the outline of the Photon Factory is presented. Injector linac, light source, beamlines and instrumentation, the Tristan synchrotron radiation facility at the accumulation ring, and the Tristan super light facility are described in detail. The facility is open to researchers. The user's reports are collected as well. (J.P.N.) (435 refs.)

  4. Spinor wave equation of photon

    CERN Document Server

    Wu, Xiang-Yao; Liu, Xiao-Jing; Zhang, Si-Qi; Wang, Jing; Li, Hong; Fan, Xi-Hui; Li, Jing-Wu

    2012-01-01

    In this paper, we give the spinor wave equations of free and unfree photon, which are the differential equation of space-time one order. For the free photon, the spinor wave equations are covariant, and the spinors $\\psi$ are corresponding to the the reducibility representations $D^{10}+D^{01}$ and $D^{10}+D^{01}+D^{1/2 1/2}$ of the proper Lorentz group.

  5. Spatial filtering with photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maigyte, Lina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona 08010 (Spain)

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  6. Topological Photonics for Continuous Media

    Science.gov (United States)

    Silveirinha, Mario

    Photonic crystals have revolutionized light-based technologies during the last three decades. Notably, it was recently discovered that the light propagation in photonic crystals may depend on some topological characteristics determined by the manner how the light states are mutually entangled. The usual topological classification of photonic crystals explores the fact that these structures are periodic. The periodicity is essential to ensure that the underlying wave vector space is a closed surface with no boundary. In this talk, we prove that it is possible calculate Chern invariants for a wide class of continuous bianisotropic electromagnetic media with no intrinsic periodicity. The nontrivial topology of the relevant continuous materials is linked with the emergence of edge states. Moreover, we will demonstrate that continuous photonic media with the time-reversal symmetry can be topologically characterized by a Z2 integer. This novel classification extends for the first time the theory of electronic topological insulators to a wide range of photonic platforms, and is expected to have an impact in the design of novel photonic systems that enable a topologically protected transport of optical energy. This work is supported in part by Fundacao para a Ciencia e a Tecnologia Grant Number PTDC/EEI-TEL/4543/2014.

  7. Ultra-broadband photonic internet

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2011-06-01

    In this paper, there is presented a review of our today's understanding of the ultimately broadband photonic Internet. A simple calculation is presented showing the estimate of the throughput of the core photonic network branches. Optoelectronic components, circuits, systems and signals, together with analogous electronic entities and common software layers, are building blocks of the contemporary Internet. Participation of photonics in development of the physical layer in the future Internet will probably increase. The photonics leads now to a better usage of the available bandwidth (increase of the spectral efficiency measured in Bit/s/Hz), increase in the transmission rate (from Gbps, via Tbps up to probably Pbps), increase in the transmission distance without signal regeneration (in distortion compensated active optical cables), increase in energy/power efficiency measured in W/Gbps, etc. Photonics may lead, in the future, to fully transparent optical networks and, thus, to essential increase in bandwidth and network reliability. It is expected that photonics (with biochemistry, electronics and mechatronics) may build psychological and physiological interface for humans to the future global network. The following optical signal multiplexing methods were considered, which are possible without O/E/O conversion: TDM-OTDM, FDM-CO-OFDM, OCDM-OCDMA, WDM-DWDM.

  8. Photon Luminescence of the Moon

    Science.gov (United States)

    Wilson, T.L.; Lee, K.T.

    2009-01-01

    Luminescence is typically described as light emitted by objects at low temperatures, induced by chemical reactions, electrical energy, atomic interactions, or acoustical and mechanical stress. An example is photoluminescence created when photons (electromagnetic radiation) strike a substance and are absorbed, resulting in the emission of a resonant fluorescent or phosphorescent albedo. In planetary science, there exists X-ray fluorescence induced by sunlight absorbed by a regolith a property used to measure some of the chemical composition of the Moon s surface during the Apollo program. However, there exists an equally important phenomenon in planetary science which will be designated here as photon luminescence. It is not conventional photoluminescence because the incoming radiation that strikes the planetary surface is not photons but rather cosmic rays (CRs). Nevertheless, the result is the same: the generation of a photon albedo. In particular, Galactic CRs (GCRs) and solar energetic particles (SEPs) both induce a photon albedo that radiates from the surface of the Moon. Other particle albedos are generated as well, most of which are hazardous (e.g. neutrons). The photon luminescence or albedo of the lunar surface induced by GCRs and SEPs will be derived here, demonstrating that the Moon literally glows in the dark (when there is no sunlight or Earthshine). This extends earlier work on the same subject [1-4]. A side-by-side comparison of these two albedos and related mitigation measures will also be discussed.

  9. What is a photon?

    Science.gov (United States)

    Kracklauer, A. F.

    2015-09-01

    The linguistic and epistemological constraints on finding and expressing an answer to the title question are reviewed. First, it is recalled that "fields" are defined in terms of their effect on "test charges" and not in terms of any, even idealistically considered, primary, native innate qualities of their own. Thus, before fields can be discussed, the theorist has to have already available a defined "test particle" and field source. Clearly, neither the test nor the engendering particles can be defined as elements of the considered field without redefining the term "field." Further, the development of a theory as a logical structure (i.e., an internally self consistent conceptual complex) entails that the subject(s) of the theory (the primitive elements) and the rules governing their interrelationships (axioms) cannot be deduced by any logical procedure. They are always hypothesized on the basis of intuition supported by empirical experience. Given hypothesized primitive elements and axioms it is possible, in principle, to test for the 'completion' of the axiom set (i.e., any addition introduces redundancy) and for self consistency. Thus, theory building is limited to establishing the self consistency of a theory's mathematical expression and comparing that with the external, ontic world. Finally, a classical model with an event-by-event simulation of an EPR-B experiment to test a Bell Inequality is described. This model leads to a violation of Bell's limit without any quantum input (no nonlocal interaction nor entanglement), thus substantiating previous critical analysis of the derivation of Bell inequalities. On the basis of this result, it can be concluded that the electromagnetic interaction possesses no preternatural aspects, and that the usual models in terms of waves, fields and photons are all just imaginary constructs with questionable relation to a presumed reality.

  10. The photon blockade effect in optomechanical systems

    OpenAIRE

    Rabl, Peter

    2011-01-01

    We analyze the photon statistics of a weakly driven optomechanical system and discuss the effect of photon blockade under single photon strong coupling conditions. We present an intuitive interpretation of this effect in terms of displaced oscillator states and derive analytic expressions for the cavity excitation spectrum and the two photon correlation function $g^{(2)}(0)$. Our results predict the appearance of non-classical photon correlations in the combined strong coupling and sideband r...

  11. Formation of η' mesons in photon-photon collisions

    International Nuclear Information System (INIS)

    This thesis describes an experiment performed at the positron electron storage ring PEP at the Stanford Linear Accelerator Center on the formation of the η' resonance which is observed in its decay mode ρ0γ, where the ρ decays into a π+π- pair. Some general features of the relatively new subject of photon-photon physics are introduced. The η' and the coupling of photons to the η' are discussed in the context of the quark model. It is shown how the mixing angle in the nonet of pseudoscalar mesons can be derived from ratios of γγ widths. The kinematics of the two-photon exchange process, the formation of the η' resonance by the two virtual photons and its subsequent electromagnetic decay into ρ0γ are discussed. The selected sample of events is used to determine the γγ width of the η' under the conventional assignment JP = 0- for the η' and JP = 1- for the ρ. The result is combined with measurements by other experiments to a world average, which is used to determine the mixing angle for the pseudoscalar nonet under various assumptions. The decay angular and energy distributions are investigated in detail. (Auth.)

  12. gPhoton: The GALEX Photon Data Archive

    CERN Document Server

    Million, Chase; Shiao, Bernie; Seibert, Mark; Loyd, Parke; Tucker, Michael; Smith, Myron; Thompson, Randy; White, Richard L

    2016-01-01

    gPhoton is a new database product and software package that enables analysis of GALEX ultraviolet data at the photon level. The project's stand-alone, pure-Python calibration pipeline reproduces the functionality of the original mission pipeline to reduce raw spacecraft data to lists of time-tagged, sky-projected photons, which are then hosted in a publicly available database by the Mikulski Archive at Space Telescope (MAST). This database contains approximately 130 terabytes of data describing approximately 1.1 trillion sky-projected events with a timestamp resolution of five milliseconds. A handful of Python and command line modules serve as a front-end to interact with the database and to generate calibrated light curves and images from the photon-level data at user-defined temporal and spatial scales. The gPhoton software and source code are in active development and publicly available under a permissive license. We describe the motivation, design, and implementation of the calibration pipeline, database,...

  13. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Olaf; Diehl, Markus; Schoerner-Sadenius, Thomas; Steinbrueck, Georg (eds.)

    2010-01-15

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  14. PHOTON09. Proceedings of the international conference on the structure and interactions of the photon including the 18th international workshop on photon-photon collisions and the international workshop on high energy photon linear colliders

    International Nuclear Information System (INIS)

    The following topics were dealt with: Electroweak and new physics, photon-collider technology, low-energy photon experiments, prompt photons, photon structure, jets and heavy flavours, vacuum polarization and light-by-light scattering, small-x processes, diffraction, total cross sections, exclusive channels and resonances, photons in astroparticle physics. (HSI)

  15. Silicon photonics: some remaining challenges

    Science.gov (United States)

    Reed, G. T.; Topley, R.; Khokhar, A. Z.; Thompson, D. J.; Stanković, S.; Reynolds, S.; Chen, X.; Soper, N.; Mitchell, C. J.; Hu, Y.; Shen, L.; Martinez-Jimenez, G.; Healy, N.; Mailis, S.; Peacock, A. C.; Nedeljkovic, M.; Gardes, F. Y.; Soler Penades, J.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Cheben, P.; Mashanovich, G. Z.

    2016-03-01

    This paper discusses some of the remaining challenges for silicon photonics, and how we at Southampton University have approached some of them. Despite phenomenal advances in the field of Silicon Photonics, there are a number of areas that still require development. For short to medium reach applications, there is a need to improve the power consumption of photonic circuits such that inter-chip, and perhaps intra-chip applications are viable. This means that yet smaller devices are required as well as thermally stable devices, and multiple wavelength channels. In turn this demands smaller, more efficient modulators, athermal circuits, and improved wavelength division multiplexers. The debate continues as to whether on-chip lasers are necessary for all applications, but an efficient low cost laser would benefit many applications. Multi-layer photonics offers the possibility of increasing the complexity and effectiveness of a given area of chip real estate, but it is a demanding challenge. Low cost packaging (in particular, passive alignment of fibre to waveguide), and effective wafer scale testing strategies, are also essential for mass market applications. Whilst solutions to these challenges would enhance most applications, a derivative technology is emerging, that of Mid Infra-Red (MIR) silicon photonics. This field will build on existing developments, but will require key enhancements to facilitate functionality at longer wavelengths. In common with mainstream silicon photonics, significant developments have been made, but there is still much left to do. Here we summarise some of our recent work towards wafer scale testing, passive alignment, multiplexing, and MIR silicon photonics technology.

  16. Photon statistics measurement by use of single photon detection

    Institute of Scientific and Technical Information of China (English)

    XIAO Liantuan; JIANG Yuqiang; ZHAO Yanting; YIN Wangbao; ZHAO Jianming; JIA Suotang

    2004-01-01

    The direct measurement of the Mandel para- meter of weak laser pulses, with 10 ns pulse duration time and the mean number of photon per pulsebeing approximately 0.1, is investigated by recording every photocount event. With the Hanbury Brown and Twiss detection scheme, and not more than one photon per pulse being detected during the sample time by single-photon counters, we have found that the single mode diode laser with driving current lower than the threshold yields a sub-Poissonian statistics. In addition, when the diode laser driving current is much higher than the threshold, it is validated that the Mandel parameter QC of the Poissonian coherent state is nearly The experimental results are in good agreement with theoretical prediction considering the measurement error.

  17. Investigation of a photon counting avalanche photodiode from Hamamatsu photonics

    Science.gov (United States)

    Britvitch, I.; Musienko, Y.; Renker, D.

    2006-11-01

    Multi-cell avalanche photodiodes (APDs) operating in Geiger mode have been shown to be a very promising alternative to photomultiplier tubes for the detection of single photons at room temperature. Like a photomultiplier they have high gain and a fast rise time and they are insensitive to pickup. Beyond it they operate in high magnetic fields, are compact and need a relatively low bias voltage. It is expected that the MOS production technique makes them cheap. Recently PSI and Hamamatsu Photonics worked together for the development of a radiation-hard APD for CMS ECAL and had very good success. The development continued based on a similar design for a photon counting multielement Geiger-mode APD with an area of 1×1 mm 2. The properties of this device have been measured and will be reported.

  18. Investigation of a photon counting avalanche photodiode from Hamamatsu photonics

    Energy Technology Data Exchange (ETDEWEB)

    Britvitch, I. [ETH Zuerich (Switzerland); Musienko, Y. [Northeastern University, Boston (United States); Renker, D. [Paul Scherrer Institute, Villigen PSI, 5232 Villigen (Switzerland)]. E-mail: dieter.renker@psi.ch

    2006-11-01

    Multi-cell avalanche photodiodes (APDs) operating in Geiger mode have been shown to be a very promising alternative to photomultiplier tubes for the detection of single photons at room temperature. Like a photomultiplier they have high gain and a fast rise time and they are insensitive to pickup. Beyond it they operate in high magnetic fields, are compact and need a relatively low bias voltage. It is expected that the MOS production technique makes them cheap. Recently PSI and Hamamatsu Photonics worked together for the development of a radiation-hard APD for CMS ECAL and had very good success. The development continued based on a similar design for a photon counting multielement Geiger-mode APD with an area of 1x1 mm{sup 2}. The properties of this device have been measured and will be reported.

  19. Main Factors for Affecting Photonic Bandgap of Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    LI Xia; XUE Wei; JIANG Yu-rong; YU Zhi-nong; WANG Hua-qing

    2007-01-01

    The factors affecting one dimensional (1D) and two dimensional (2D) photonic crystals (PhCs) are systemically analyzed in this paper by numerical simulation.Transfer matrix method (TMM) is employed for 1D PCs, both finite difference time domain method (FDTD) and plane wave expansion method (PWE) are employed for 2D PCs.The result shows that the photonic bandgaps (PBG) are directly affected by crystal type, crystal lattice constant, modulation of refractive index and periodicity, and it is should be useful for design of different type photonic crystals with the required PBG and functional devices.Finally, as an example, a near-IR 1D PCs narrow filter was designed.

  20. Photonics Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Elizabeth [UNLV Research Foundation, Las Vegas, NV (United States)

    2010-01-15

    During the period August 2005 through October 2009, the UNLV Research Foundation (UNLVRF), a non-profit affiliate of the University of Nevada, Las Vegas (UNLV), in collaboration with UNLV's Colleges of Science and Engineering; Boston University (BU); Oak Ridge National Laboratory (ORNL); and Sunlight Direct, LLC, has managed and conducted a diverse and comprehensive research and development program focused on light-emitting diode (LED) technologies that provide significantly improved characteristics for lighting and display applications. This final technical report provides detailed information on the nature of the tasks, the results of the research, and the deliverables. It is estimated that about five percent of the energy used in the nation is for lighting homes, buildings and streets, accounting for some 25 percent of the average home's electric bill. However, the figure is significantly higher for the commercial sector. About 60 percent of the electricity for businesses is for lighting. Thus replacement of current lighting with solid-state lighting technology has the potential to significantly reduce this nation's energy consumption by some estimates, possibly as high as 20%. The primary objective of this multi-year R&D project has been to develop and advance lighting technologies to improve national energy conversion efficiencies; reduce heat load; and significantly lower the cost of conventional lighting technologies. The UNLVRF and its partners have specifically focused these talents on (1) improving LED technologies; (2) optimizing hybrid solar lighting, a technology which potentially offers the benefits of blending natural with artificial lighting systems, thus improving energy efficiency; and (3) building a comprehensive academic infrastructure within UNLV which concentrates on photonics R&D. Task researchers have reported impressive progress in (1) the development of quantum dot laser emitting diodes (QDLEDs) which will ultimately improve

  1. Experimental Results on Two-Photon Physics from LEP

    OpenAIRE

    Nisius, Richard

    1999-01-01

    This review covers selected results from the LEP experiments on the structure of quasi-real and virtual photons. The topics discussed are the total hadronic cross-section for photon-photon scattering, hadron production, jet cross-sections, heavy quark production for photon-photon scattering, photon structure functions, and cross-sections for the exchange of two virtual photons.

  2. The Variation of Photon Speed with Photon Frequency in Quantum Gravity

    OpenAIRE

    Dubey, Anuj Kumar; Sen, A.K.; Nath, Sonarekha

    2016-01-01

    In the present work, we have derived an expression of Planck mass or Planck energy by equating the Compton wavelength with Kerr gravitational radius of the Kerr rotating body. Then we have derived the modified expression for the photon energy-momentum dispersion relation and hence derived the variation of the photon propagation speed with photon frequency. We have found that the photon propagation speed, depends on the frequency of the photon, polarization state of photon, the rotation parame...

  3. A quantum photonic dissipative transport theory

    Science.gov (United States)

    Lei, Chan U.; Zhang, Wei-Min

    2012-05-01

    In this paper, a quantum transport theory for describing photonic dissipative transport dynamics in nanophotonics is developed. The nanophotonic devices concerned in this paper consist of on-chip all-optical integrated circuits incorporating photonic bandgap waveguides and driven resonators embedded in nanostructured photonic crystals. The photonic transport through waveguides is entirely determined from the exact master equation of the driven resonators, which is obtained by explicitly eliminating all the degrees of freedom of the waveguides (treated as reservoirs). Back-reactions from the reservoirs are fully taken into account. The relation between the driven photonic dynamics and photocurrents is obtained explicitly. The non-Markovian memory structure and quantum decoherence dynamics in photonic transport can then be fully addressed. As an illustration, the theory is utilized to study the transport dynamics of a photonic transistor consisting of a nanocavity coupled to two waveguides in photonic crystals. The controllability of photonic transport through the external driven field is demonstrated.

  4. Schematic driven silicon photonics design

    Science.gov (United States)

    Chrostowski, Lukas; Lu, Zeqin; Flückiger, Jonas; Pond, James; Klein, Jackson; Wang, Xu; Li, Sarah; Tai, Wei; Hsu, En Yao; Kim, Chan; Ferguson, John; Cone, Chris

    2016-03-01

    Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is very common for the design to begin at the physical component level. In order to build large integrated photonic systems, it is crucial to design using a schematic-driven approach. This includes simulations based on schematics, schematic-driven layout, layout versus schematic verification, and post-layout simulations. This paper describes such a design framework implemented using Mentor Graphics and Lumerical Solutions design tools. In addition, we describe challenges in silicon photonics related to manufacturing, and how these can be taken into account in simulations and how these impact circuit performance.

  5. Entangled photons and quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zhensheng, E-mail: yuanzs@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Bao Xiaohui [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Lu Chaoyang; Zhang Jun; Peng Chengzhi [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Pan Jianwei, E-mail: pan@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany)

    2010-12-15

    This article reviews the progress of quantum communication that utilizes photonic entanglement. We start with a survey of various methods for generating entangled photons, followed by an introduction of the theoretical principles and the experimental implementations of quantum key distribution. We then move on to a discussion of more involved quantum communication protocols including quantum dense coding, teleportation and quantum communication complexity. After that, we review the progress in free-space quantum communication, decoherence-free subspace, and quantum repeater protocols which are essential ingredients for long-distance quantum communication. Practical realizations of quantum repeaters, which require an interface between photons and quantum memories, are discussed briefly. Finally, we draw concluding remarks considering the technical challenges, and put forward an outlook on further developments of this field.

  6. Photonic quantum technologies (Presentation Recording)

    Science.gov (United States)

    O'Brien, Jeremy L.

    2015-09-01

    The impact of quantum technology will be profound and far-reaching: secure communication networks for consumers, corporations and government; precision sensors for biomedical technology and environmental monitoring; quantum simulators for the design of new materials, pharmaceuticals and clean energy devices; and ultra-powerful quantum computers for addressing otherwise impossibly large datasets for machine learning and artificial intelligence applications. However, engineering quantum systems and controlling them is an immense technological challenge: they are inherently fragile; and information extracted from a quantum system necessarily disturbs the system itself. Of the various approaches to quantum technologies, photons are particularly appealing for their low-noise properties and ease of manipulation at the single qubit level. We have developed an integrated waveguide approach to photonic quantum circuits for high performance, miniaturization and scalability. We will described our latest progress in generating, manipulating and interacting single photons in waveguide circuits on silicon chips.

  7. Photon Factory activity report, 1991

    International Nuclear Information System (INIS)

    The Photon Factory is a national synchrotron radiation research facility affiliated with the National Laboratory for High Energy Physics located in Tsukuba Science City. The Photon Factory consists of a 2.5 GeV electron/positron linear accelerator, a 2.5 GeV electron/positron storage ring, beam lines and experimental stations. All the facilities for synchrotron radiation research are open to scientists. A part of the accumulation ring of the TRISTAN main ring has been used as a synchrotron radiation source in the energy range from 5.8 to 6.5 GeV. The Photon Factory is composed of three divisions of Injector Linac, Light Source and Instrumentation. The researches of each divisions are reviewed, and the users' short reports are collected. The list of published papers with author index is also included in the publication. (K.I.) 233 refs

  8. The Single-Photon Router

    CERN Document Server

    Hoi, Io-Chun; Johansson, Göran; Palomaki, Tauno; Peropadre, Borja; Delsing, Per

    2011-01-01

    We have embedded an artificial atom, a superconducting "transmon" qubit, in an open transmission line and investigated the strong scattering of incident microwave photons ($\\sim6$ GHz). When an input coherent state, with an average photon number $N\\ll1$ is on resonance with the artificial atom, we observe extinction of up to 90% in the forward propagating field. We use two-tone spectroscopy to study scattering from excited states and we observe electromagnetically induced transparency (EIT). We then use EIT to make a single-photon router, where we can control to what output port an incoming signal is delivered. The maximum on-off ratio is around 90% with a rise and fall time on the order of nanoseconds, consistent with theoretical expectations. The router can easily be extended to have multiple output ports and it can be viewed as a rudimentary quantum node, an important step towards building quantum information networks.

  9. The myth of the photon

    CERN Document Server

    Marshall, T W; Marshall, Trevor W.; Santos, Emilio

    1997-01-01

    We have shown that all "single-photon" and "photon-pair" states, produced in atomic transitions, and in parametric down conversion by nonlinear optical crystals, may be represented by positive Wigner densities of the relevant sets of mode amplitudes. The light fields of all such states are represented as a real probability ensemble (not a pseudoensemble) of solutions of the unquantized Maxwell equation. The local realist analysis of light-detection events in spatially separated detectors requires a theory of detection which goes beyond the currently fashionable single-mode photon theory. It also requires us to recognize that there is a payoff between detector efficiency and signal-noise discrimination. Using such a theory, we have demonstrated that all experimental data, both in atomic cascades and in parametric down conversions, have a consistent local realist explanation based on the unquantized Maxwell field. Finally we discuss current attempts to demonstrate Schroedinger-cat-like behaviour of microwave ca...

  10. Single-photon decision maker

    CERN Document Server

    Naruse, Makoto; Drezet, Aurelien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-01-01

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions.

  11. Quantum photonics hybrid integration platform

    International Nuclear Information System (INIS)

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO2 cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement

  12. Optical properties of photonic crystals

    CERN Document Server

    Sakoda, Kazuaki

    2001-01-01

    The interaction between the radiation field and matter is the most fundamen­ tal source of dynamics in nature. It brings about the absorption and emission of photons, elastic and inelastic light scattering, the radiative lifetime of elec­ tronic excited states, and so on. The huge amount of energy carried from the sun by photons is the source of all activities of creatures on the earth. The absorption of photons by chlorophylls and the successive electronic excita­ tion initiate a series of chemical reactions that are known as photosynthesis, which support all life on the earth. Radiative energy is also the main source of all meteorological phenomena. The fundamentals of the radiation field and its interaction with matter were clarified by classical electromagnetism and quantum electrodynamics. These theories, we believe, explain all electromagnetic phenomena. They not only provide a firm basis for contemporary physics but also generate a vast range of technological applications. These include television, ...

  13. Speckle statistics of entangled photons

    Science.gov (United States)

    Klein, Avraham; Agam, Oded; Spivak, Boris

    2016-07-01

    We consider the propagation of several entangled photons through an elastically scattering medium and study statistical properties of their speckle patterns. We find the spatial correlations of multiphoton speckles and their sensitivity to changes of system parameters. Our analysis covers both the directed-wave regime, where rays propagate almost ballistically while experiencing small-angle diffusion, and the real-space diffusive regime. We demonstrate that long-range correlations of the speckle patterns dominate experimental signatures for large-aperture photon detectors. We also show that speckle sensitivity depends strongly on the number of photons N in the incoming beam, increasing as √{N } in the directed-wave regime and as N in the diffusive regime.

  14. Silicon Photonics: The Inside Story

    CERN Document Server

    Jalali, Bahram

    2008-01-01

    The electronic chip industry embodies the height of technological sophistication and economics of scale. Fabricating inexpensive photonic components by leveraging this mighty manufacturing infrastructure has fueled intense interest in silicon photonics. If it can be done economically and in an energy efficient manner, empowering silicon with optical functionality will bring optical communications to the realm of computers where limitations of metallic interconnects are threatening the industry's future. The field is making stunning progress and stands to have a bright future, as long as the community recognizes the real challenges, and maintains an open mind with respect to its applications. This talk will review recent 'game changing' developments and discuss promising applications beyond data communication. It will conclude with recent observation of extreme-value statistical behavior in silicon photonics, a powerful example of how scientific discoveries can unexpectedly emerge in the course of technology d...

  15. Quantum photonics hybrid integration platform

    Energy Technology Data Exchange (ETDEWEB)

    Murray, E.; Floether, F. F. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ellis, D. J. P.; Meany, T.; Bennett, A. J., E-mail: anthony.bennet@crl.toshiba.co.uk; Shields, A. J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Lee, J. P. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Engineering Department, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  16. Detecting itinerant single microwave photons

    Science.gov (United States)

    Sathyamoorthy, Sankar Raman; Stace, Thomas M.; Johansson, Göran

    2016-08-01

    Single-photon detectors are fundamental tools of investigation in quantum optics and play a central role in measurement theory and quantum informatics. Photodetectors based on different technologies exist at optical frequencies and much effort is currently being spent on pushing their efficiencies to meet the demands coming from the quantum computing and quantum communication proposals. In the microwave regime, however, a single-photon detector has remained elusive, although several theoretical proposals have been put forth. In this article, we review these recent proposals, especially focusing on non-destructive detectors of propagating microwave photons. These detection schemes using superconducting artificial atoms can reach detection efficiencies of 90% with the existing technologies and are ripe for experimental investigations. xml:lang="fr"

  17. Speckle statistics of entangled photons

    CERN Document Server

    Klein, Avraham; Spivak, Boris

    2016-01-01

    We consider the propagation of several entangled photons through an elastically scattering medium and study statistical properties of their speckle patterns. We find the spatial correlations of multiphoton speckles and their sensitivity to changes of system parameters. Our analysis covers both the directed-wave regime, where rays propagate almost ballistically while experiencing small-angle diffusion, and the real-space diffusive regime. We demonstrate that long-range correlations of the speckle patterns dominate experimental signatures for large-aperture photon detectors. We also show that speckle sensitivity depends strongly on the number of photons $N$ in the incoming beam, increasing as $\\sqrt{N}$ in the directed-wave regime and as $N$ in the diffusive regime.

  18. Apparatus for photon activation positron annihilation analysis

    Science.gov (United States)

    Akers, Douglas W.

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  19. Waveguide-QED-Based Photonic Quantum Computation

    Science.gov (United States)

    Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.

    2013-08-01

    We propose a new scheme for quantum computation using flying qubits—propagating photons in a one-dimensional waveguide interacting with matter qubits. Photon-photon interactions are mediated by the coupling to a four-level system, based on which photon-photon π-phase gates (controlled-not) can be implemented for universal quantum computation. We show that high gate fidelity is possible, given recent dramatic experimental progress in superconducting circuits and photonic-crystal waveguides. The proposed system can be an important building block for future on-chip quantum networks.

  20. Photonic processes in Born-Infeld theory

    OpenAIRE

    Davila, Jose Manuel; Schubert, Christian; Trejo, Maria Anabel

    2013-01-01

    We study the processes of photon-photon scattering and photon splitting in a magnetic field in Born-Infeld theory. In both cases we combine the terms from the tree-level Born-Infeld Lagrangian with the usual one-loop QED contributions, where those are approximated by the Euler-Heisenberg Lagrangian, including also the interference terms. For photon-photon scattering we obtain the total cross section in the low-energy approximation. For photon splitting we compute the total absorption coeffici...

  1. Highly efficient sources of single indistinguishable photons

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2013-01-01

    Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable and the source should be electr......Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable and the source should...

  2. Neuro-photonics using GPC

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    stimulating light at single neuronal processes, neurons or groups of neurons. The underlying laser technique combines our patented Generalized Phase Contrast (GPC) with socalled temporal focusing to shape two-photon excitation for this purpose. The laser excitation patterns are generated automatically from...... fluorescence images of neurons and shaped to cover the cell body or dendrites, or distributed groups of cells. The temporal focusing GPC two-photon excitation patterns can generate large photocurrents in Channelrhodopsin-2–expressing cultured cells and neurons and in mouse acute cortical slices. The amplitudes...

  3. Wigner distribution of twisted photons

    CERN Document Server

    Mirhosseini, Mohammad; Chen, Changchen; Rafsanjani, Seyed Mohammad Hashemi; Boyd, Robert W

    2015-01-01

    We present the first experimental characterization of the azimuthal Wigner distribution of a photon. Our protocol fully characterizes the transverse structure of a photon in conjugate bases of orbital angular momentum (OAM) and azimuthal angle (ANG). We provide a test of our protocol by characterizing pure superpositions and incoherent mixtures of OAM modes in a seven-dimensional space. The time required for performing measurements in our scheme scales only linearly with the dimension size of the state under investigation. This time scaling makes our technique suitable for quantum information applications involving a large number of OAM states.

  4. Quantum photonics hybrid integration platform

    OpenAIRE

    Murray, E.; Ellis, D. J. P.; Meany, T.; Floether, F.F.; Lee, J P; Griffiths, J. P.; Jones, G.A.C.; Farrer, I.; Ritchie, D. A.; Bennett, A J; Shields, A.J.

    2015-01-01

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO2 cladding. A tuneable Mach Zehnder interferometer (MZI) modulat...

  5. Photon propagators at finite temperature

    International Nuclear Information System (INIS)

    We have used the real time formalism to compute the one-loop finite temperature corrections to the photon self energies in spinor and scalar QED. We show that, for a real photon, only the transverse components develop the temperature-dependent masses, while, for an external static electromagnetic field applied to the finite temperature system, only the static electric field is screened by thermal fluctuations. After showing how to compute systematically the imaginary parts of the finite temperature Green functions, we have attempted to give a microscopic interpretation of the imaginary parts of the self energies. (author)

  6. Polymers for electronic & photonic application

    CERN Document Server

    Wong, C P

    2013-01-01

    The most recent advances in the use of polymeric materials by the electronic industry can be found in Polymers for Electronic and Photonic Applications. This bookprovides in-depth coverage of photoresis for micro-lithography, microelectronic encapsulants and packaging, insulators, dielectrics for multichip packaging,electronic and photonic applications of polymeric materials, among many other topics. Intended for engineers and scientists who design, process, and manufacturemicroelectronic components, this book will also prove useful for hybrid and systems packaging managers who want to be info

  7. Pendellosung effect in photonic crystals

    CERN Document Server

    Savo, S; Miletto, C; Andreone, A; Dardano, P; Moretti, L; Mocella, V

    2008-01-01

    At the exit surface of a photonic crystal, the intensity of the diffracted wave can be periodically modulated, showing a maximum in the "positive" (forward diffracted) or in the "negative" (diffracted) direction, depending on the slab thickness. This thickness dependence is a direct result of the so-called Pendellosung phenomenon, consisting of the periodic exchange inside the crystal of the energy between direct and diffracted beams. We report the experimental observation of this effect in the microwave region at about 14 GHz by irradiating 2D photonic crystal slabs of different thickness and detecting the intensity distribution of the electromagnetic field at the exit surface and inside the crystal itself.

  8. Quantum cryptography with entangled photons

    Science.gov (United States)

    Jennewein; Simon; Weihs; Weinfurter; Zeilinger

    2000-05-15

    By realizing a quantum cryptography system based on polarization entangled photon pairs we establish highly secure keys, because a single photon source is approximated and the inherent randomness of quantum measurements is exploited. We implement a novel key distribution scheme using Wigner's inequality to test the security of the quantum channel, and, alternatively, realize a variant of the BB84 protocol. Our system has two completely independent users separated by 360 m, and generates raw keys at rates of 400-800 bits/s with bit error rates around 3%.

  9. Atom-photon entanglement in the system with competing k-photon and l-photon transitions

    Institute of Scientific and Technical Information of China (English)

    Wu Qin; Fang Mao-Fa; Hu Yao-Hua

    2007-01-01

    We have investigated the evolution of the atomic quantum entropy and the entanglement of atom-photon in the system with competing k-photon and l-photon transitions by means of fully quantum theory, and examined the effects of competing photon numbers (k and l), the relative coupling strength between the atom and the two-mode field(λ/g),and the initial photon number of the field on the atomic quantum entropy and the entanglement of atom-photon.The results show that the multiphoton competing transitions or the large relative coupling strength can lead to the strong entanglement between atoms and photons. The maximal atom-photon entanglement can be prepared via the appropriate selection of system parameters and interaction time.

  10. Dow Corning photonics: the silicon advantage in automotive photonics

    Science.gov (United States)

    Clapp, Terry V.; Paquet, Rene; Norris, Ann; Pettersen, Babette

    2005-02-01

    The Automotive Market offers several opportunities for Dow Corning to leverage the power of silicon-based materials. Dow Corning Photonics Solutions has a number of developments that may be attractive for the emergent photonics needs in automobiles, building on 40 years of experience as a leading Automotive supplier with a strong foundation of expertise and an extensive product offering- from encapsulents and highly reliable resins, adhesives, insulating materials and other products, ensuring that the advantage of silicones are already well-embedded in Automotive systems, modules and components. The recent development of LED encapsulants of exceptional clarity and stability has extended the potential for Dow Corning"s strength in Photonics to be deployed "in-car". Demonstration of board-level and back-plane solutions utilising siloxane waveguide technology offers new opportunities for systems designers to integrate optical components at low cost on diverse substrates. Coupled with work on simple waveguide technology for sensors and data communications applications this suite of materials and technology offerings is very potent in this sector. The harsh environment under hood and the very extreme thermal range that materials must sustain in vehicles due to both their engine and the climate is an applications specification that defines the siloxane advantage. For these passive optics applications the siloxanes very high clarity at the data-communications wavelengths coupled with extraordinary stability offers significant design advantage. The future development of Head-Up-Displays for instrumentation and data display will offer yet more opportunities to the siloxanes in Automotive Photonics.

  11. A photon-photon collider in a vacuum hohlraum

    Science.gov (United States)

    Pike, O. J.; Mackenroth, F.; Hill, E. G.; Rose, S. J.

    2014-06-01

    The ability to create matter from light is amongst the most striking predictions of quantum electrodynamics. Experimental signatures of this have been reported in the scattering of ultra-relativistic electron beams with laser beams, intense laser-plasma interactions and laser-driven solid target scattering. However, all such routes involve massive particles. The simplest mechanism by which pure light can be transformed into matter, Breit-Wheeler pair production (γγ' --> e+e-), has never been observed in the laboratory. Here, we present the design of a new class of photon-photon collider in which a gamma-ray beam is fired into the high-temperature radiation field of a laser-heated hohlraum. Matching experimental parameters to current-generation facilities, Monte Carlo simulations suggest that this scheme is capable of producing of the order of 105 Breit-Wheeler pairs in a single shot. This would provide the first realization of a pure photon-photon collider, representing the advent of a new type of high-energy physics experiment.

  12. Chargino Production and Decay in Photon-Photon-Collisions

    CERN Document Server

    Mayer, T; Franke, F; Fraas, H

    2003-01-01

    We discuss the pair production of charginos in collisions of polarized photons $\\gamma\\gamma \\rightarrow \\tilde{\\chi}_i^+ \\tilde{\\chi}_i^-$, ($i=1,2$) and the subsequent leptonic decay of the lighter chargino $\\tilde{\\chi}_1^+ \\rightarrow \\tilde{\\chi}_1^0 e^+ \

  13. Measuring the photon fragmentation function at HERA

    Science.gov (United States)

    Gehrmann-de Ridder, A.; Gehrmann, T.; Poulsen, E.

    2006-08-01

    The production of final state photons in deep inelastic scattering originates from photon radiation off leptons or quarks involved in the scattering process. Photon radiation off quarks involves a contribution from the quark-to-photon fragmentation function, corresponding to the non-perturbative transition of a hadronic jet into a single, highly energetic photon accompanied by some limited hadronic activity. Up to now, this fragmentation function was measured only in electron positron annihilation at LEP. We demonstrate by a dedicated parton-level calculation that a competitive measurement of the quark-to-photon fragmentation function can be obtained in deep inelastic scattering at HERA. Such a measurement can be obtained by studying the photon energy spectra in γ+(0+1)-jet events, where γ denotes a hadronic jet containing a highly energetic photon (the photon jet). Isolated photons are then defined from the photon jet by imposing a minimal photon energy fraction. For this so-called democratic clustering approach, we study the cross sections for isolated γ+(0+1)-jet and γ+(1+1)-jet production as well as for the inclusive isolated photon production in deep inelastic scattering.

  14. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper;

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  15. Nuclear Resonance Fluorescence Using Different Photon Sources

    International Nuclear Information System (INIS)

    Nuclear resonance fluorescence (NRF) is a photon-based active interrogation approach that provides isotope-specific signatures that can be used to detect and characterize samples. As NRF systems are designed to address specific applications, an obvious first question to address is the type of photon source to be employed for the application. Our collaboration has conducted a series of NRF measurements using different photon sources to begin to examine this issue. The measurements were designed to be as similar as possible to facilitate a straightforward comparison of the different sources. Measurements were conducted with a high-duty factor electron accelerator using bremsstrahlung photons, with a pulsed linear accelerator using bremsstrahlung photons, and with a narrow bandwidth photon source using Compton backscattered photons. We present our observations on the advantages and disadvantages of each photon source type. Issues such as signal rate, the signal-to-noise ratio, and absorbed dose are discussed

  16. Efficient quantum computing using coherent photon conversion

    CERN Document Server

    Langford, N K; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-01-01

    Single photons provide excellent quantum information carriers, but current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed single photons, while linear-optics gates are inherently probabilistic. Here, we introduce a deterministic scheme for photonic quantum information. Our single, versatile process---coherent photon conversion---provides a full suite of photonic quantum processing tools, from creating high-quality heralded single- and multiphoton states free of higher-order imperfections to implementing deterministic multiqubit entanglement gates and high-efficiency detection. It fulfils all requirements for a scalable photonic quantum computing architecture. Using photonic crystal fibres, we experimentally demonstrate a four-colour nonlinear process usable for coherent photon conversion and show that current technology provides a feasible path towards deterministic operation. Our scheme, based on interacting bosonic fie...

  17. Polymer-based photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Edrington, A.C.; Urbas, A.M.; Fink, Y.; Thomas, E.L. [Massachusetts Inst. of Tech., Cambridge (United States). Dept. of Materials Science and Engineering; DeRege, P. [Firmenich, Inc., Port Newark, NJ (United States); Chen, C.X.; Swager, T.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemistry; Hadjichristidis, N. [Athens Univ. (Greece). Dept. of Chemistry; Xenidou, M.; Fetters, L.J. [ExxonMobil Research Corp., Annandale, NJ (United States); Joannopoulos, J.D. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

    2001-03-16

    The development of polymers as photonic crystals is highlighted, placing special emphasis on self-assembled block copolymers. 1D self-assembled multilayers as well as 2D and 3D self-assembled structures are examined, then intricate block polymer structures such as that shown in the Figure are discussed as are birefringent multilayer and elastomeric films. (orig.)

  18. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin;

    2007-01-01

    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index...

  19. Photon Physics of Revised Electromagnetics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2006-04-01

    Full Text Available Conventional theory, as based on Maxwell’s equations and associated quantum electrodynamical concepts in the vacuum, includes the condition of zero electric field divergence. In applications to models of the individual photon and to dense light beams such a theory exhibits several discrepancies from experimental evidence. These include the absence of angular momentum (spin, and the lack of spatially limited geometry in the directions transverse to that of the propagation. The present revised theory includes on the other hand a nonzero electric field divergence, and this changes the field equations substantially. It results in an extended quantum electrodynamical approach, leading to nonzero spin and spatially limited geometry for photon models and light beams. The photon models thereby behave as an entirety, having both particle and wave properties and possessing wave-packet solutions which are reconcilable with the photoelectric effect, and with the dot-shaped marks and interference patterns on a screen by individual photons in a two-slit experiment.

  20. A photon-proton marriage

    OpenAIRE

    Bylinkin, A. A.; Rostovtsev, A. A.

    2012-01-01

    The shapes of invariant differential cross section for charged hadron production as function of hadron's transverse momentum and rapidity in ep collisions at HERA machine are considered. The particle spectra shapes observed in pp and gamma-gamma collisions before have shown very different properties. This difference could be directly measured in the "mixed" type collisions of photon and proton at HERA experiments.

  1. Reflectivity of metallodielectric photonic glasses

    NARCIS (Netherlands)

    Velikov, K.P.; Vos, W.L.; Moroz, A.; Blaaderen, van A.

    2004-01-01

    We report on the fabrication and optical properties of metallodielectric photonic glasses of colloidal silver spheres with a radius ranging from 200 to 420 nm and volume fractions around 60%. Strong modulations (~25%) in the optical reflectivity were observed in the visible range for these structure

  2. Reflectivity of metallodielectric photonic glasses

    NARCIS (Netherlands)

    Velikov, K.; Vos, W.L.; Moroz, A.; van Blaaderen, A.

    2004-01-01

    We report on the fabrication and optical properties of metallodielectric photonic glasses of colloidal silver spheres with a radius ranging from 200 to 420 nm and volume fractions around 60%. Strong modulations (∼25%) in the optical reflectivity were observed in the visible range for these structure

  3. [Photonic crystals for analytical chemistry].

    Science.gov (United States)

    Chen, Yi; Li, Jincheng

    2009-09-01

    Photonic crystals, originally created to control the transmission of light, have found their increasing value in the field of analytical chemistry and are probable to become a hot research area soon. This review is hence composed, focusing on their analytical chemistry-oriented applications, including especially their use in chromatography, capillary- and chip-based electrophoresis.

  4. A PHOTONIC BAND GAP FIBRE

    DEFF Research Database (Denmark)

    1999-01-01

    An optical fibre having a periodicidal cladding structure provididing a photonic band gap structure with superior qualities. The periodical structure being one wherein high index areas are defined and wherein these are separated using a number of methods. One such method is the introduction...

  5. Hybrid Materials for Integrated Photonics

    Directory of Open Access Journals (Sweden)

    Paolo Bettotti

    2014-01-01

    Full Text Available In this review materials and technologies of the hybrid approach to integrated photonics (IP are addressed. IP is nowadays a mature technology and is the most promising candidate to overcome the main limitations that electronics is facing due to the extreme level of integration it has achieved. IP will be based on silicon photonics in order to exploit the CMOS compatibility and the large infrastructures already available for the fabrication of devices. But silicon has severe limits especially concerning the development of active photonics: its low efficiency in photons emission and the limited capability to be used as modulator require finding suitable materials able to fulfill these fundamental tasks. Furthermore there is the need to define standardized processes to render these materials compatible with the CMOS process and to fully exploit their capabilities. This review describes the most promising materials and technological approaches that are either currently implemented or may be used in the coming future to develop next generations of hybrid IP devices.

  6. Luneburg lens in silicon photonics

    OpenAIRE

    Di Falco, Andrea; Kehr, Susanne C; Leonhardt, Ulf

    2011-01-01

    The Luneburg lens is an aberration-free lens that focuses light from all directions equally well. We fabricated and tested a Luneburg lens in silicon photonics. Such fully-integrated lenses may become the building blocks of compact Fourier optics on chips. Furthermore, our fabrication technique is sufficiently versatile for making perfect imaging devices on silicon platforms. (C) 2011 Optical Society of America

  7. Nonlinear photonics of fullerene solutions

    OpenAIRE

    Sheka, E. F.; RAZBIRIN B.S.; STARUKHIN A.N.; NELSON D.K.; Degunov, M. Yu.; Lyubovskaya, R.N.; Troshin, P. A.; Kamanina, N. V.

    2009-01-01

    Newly observed enhanced linear optical features of fullerene solutions (Raman scattering and one-photon luminescence) are due to clusterization of fullerene molecules themselves as well as their composites with solvent molecules. A direct connection between the enhanced linear effects and nonlinear behavior of the solutions is discussed and empirical and computational tests of the solutions nonlinear optics efficacy are suggested.

  8. Photonic analogies of gravitational attractors

    KAUST Repository

    San-Román-Alerigi, Damián P.

    2013-01-01

    In our work we demonstrate a Gaussian-like refractive index mapping to realize light trapping. Our study shows that this centro-symmetrical photonic structure is able to mime the light geodesics described by celestial mechanics. Possible applications are discussed. © 2013 IEEE.

  9. Weak localization of photon noise

    NARCIS (Netherlands)

    Scalia, Paolo S.; Muskens, Otto L.; Lagendijk, Ad

    2013-01-01

    We present an experimental study of coherent backscattering (CBS) of photon noise from multiple scattering media. We use a pseudothermal light source with a microsecond coherence time to produce a noise spectrum covering a continuous transition, from wave fluctuations to shot noise over several MHz.

  10. One-dimensional photonic quasicrystals

    CERN Document Server

    Ghulinyan, Mher

    2015-01-01

    In this chapter, first we will address principal aspects of 1D quasiperiodicity with a particular focus on 1D Fibonacci chains. Further, the rest of the chapter will be dedicated to the electromagnetic counterpart of 1D Fibonacci structures as a relatively simplest case of the large class of photonic quasicrystals.

  11. Imprinted photonic crystal chemical sensors

    NARCIS (Netherlands)

    Boersma, A.; Burghoorn, M.M.A.; Saalmink, M.

    2011-01-01

    In this paper we present the use of Photonic Crystals as chemical sensors. These 2D nanostructured sensors were prepared by nano-imprint lithography during which a nanostructure is transferred from a nickel template into a responsive polymer, that is be specifically tuned to interact with the chemic

  12. etab Decay into Two Photons

    CERN Document Server

    Fabiano, N

    2003-01-01

    We discuss the theoretical predictions for the two photon decay width of the pseudoscalar etab meson. Predictions from potential models are examined. It is found that various models are in good agreement with each other. Results for etab are also compared with those from Upsilon data through the NRQCD procedure.

  13. Dimensionality reduction in computational photonics

    NARCIS (Netherlands)

    Ivanova, Olena

    2010-01-01

    In telecommunication, optical chips modulate, switch or amplify light, enabling a large amount of data to be transmitted through optical fibers. Moreover, such chips are also used in very sensitive medical and environmental sensors. Instead of electrons, optical chips handle photons; they manipulate

  14. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.;

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  15. Resonant interaction of photons with gravitational waves

    International Nuclear Information System (INIS)

    The interaction of photons with a low-amplitude gravitational wave propagating in a flat space-time is studied by using an exact model of photon dynamics. The existence of nearly resonant interactions between the photons and the gravitational waves, which can take place over large distances, can lead to a strong photon acceleration. Such a resonant mechanism can eventually be useful to build consistent new models of gamma-ray emitters

  16. Biomedical photonics handbook therapeutics and advanced biophotonics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents recent fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers,

  17. Medium-induced multi-photon radiation

    CERN Document Server

    Ma, Hao; Tywoniuk, Konrad

    2011-01-01

    We study the spectrum of multi-photon radiation off a fast quark in medium in the BDMPS/ASW approach. We reproduce the medium-induced one-photon radiation spectrum in dipole approximation, and go on to calculate the two-photon radiation in the Moli\\`{e}re limit. We find that in this limit the LPM effect holds for medium-induced two-photon ladder emission.

  18. Entangled-photon coincidence fluorescence imaging

    OpenAIRE

    Scarcelli, Giuliano; Yun, Seok H.

    2008-01-01

    We describe fluorescence imaging using the second-order correlation of entangled photon pairs. The proposed method is based on the principle that one photon of the pair carries information on where the other photon has been absorbed and has produced fluorescence in a sample. Because fluorescent molecules serve as “detectors” breaking the entanglement, multiply-scattered fluorescence photons within the sample do not cause image blur. We discuss experimental implementations.

  19. Medium-induced multi-photon radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hao; Salgado, Carlos A [Departamento de Fisica de PartIculas, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Tywoniuk, Konrad [Lund University (Sweden)

    2011-01-01

    We study the spectrum of multi-photon radiation off a fast quark in medium in the BDMPS/ASW approach. We reproduce the medium-induced one-photon radiation spectrum in dipole approximation, and go on to calculate the two-photon radiation in the Moliere limit. We find that in this limit the LPM effect holds for medium-induced two-photon ladder emission.

  20. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron;

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  1. Polarization properties of photonic bandgap fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard

    2000-01-01

    We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components.......We present the first analysis of polarization properties of photonic bandgap fibers. Strong birefringence may be obtained for modest non-uniformities in and around the core region, suggesting the use of photonic bandgap fibers as polarization maintaining components....

  2. Photonic spin filter with dielectric metasurfaces.

    Science.gov (United States)

    Ke, Yougang; Liu, Yachao; Zhou, Junxiao; Liu, Yuanyuan; Luo, Hailu; Wen, Shuangchun

    2015-12-28

    We propose a photonic spin filter whose structure is similar to that of conventional spatial filter, but the two plano-convex lenses are replaced by Pancharatnam-Berry phase ones. The dielectric metasurface with high transmission and conversion efficiency is designed to work as Pancharatnam-Berry phase lens. The photonic spin filter can sort desired spin photons from the input beam with mixed spin states, and thereby facilitate possible applications in spin-based photonics. PMID:26831976

  3. Testing PVLAS axions with resonant photon splitting

    CERN Document Server

    Gabrielli, E; Gabrielli, Emidio; Giovannini, Massimo

    2007-01-01

    The photon splitting gamma -> gamma gamma in a time-independent and inhomogeneous magnetized background is considered when neutral and ultralight spin-0 particles are coupled to two-photons. Depending on the inhomogeneity scale of the external field, resonant photon splitting can occur. If an optical laser crosses a magnetic field of few Tesla with typical inhomogeneity scale of the order of the meter, a potentially observable rate of photon splittings is expected for the PVLAS range of couplings and masses.

  4. Perturbative corrections to photon coincidence spectroscopy

    OpenAIRE

    Horvath, L.; Sanders, B. C.

    2000-01-01

    Photon coincidence spectroscopy is a promising technique for probing the nonlinear regime of cavity quantum electrodynamics in the optical domain, however its accuracy is mitigated by two factors: higher-order photon correlations, which contribute to an enhanced pair count rate, and non-simultaneity of emitted photon pairs from the optical cavity. We show that the technique of photon coincidence spectroscopy is effective in the presence of these effects if the quantitative predictions are adj...

  5. Five-photon double ionization of helium

    Science.gov (United States)

    Li, Y.; Pindzola, M. S.; Colgan, J.

    2016-03-01

    A time-dependent close-coupling method is used to calculate the five-photon double ionization of He. It is found that the generalized cross section used in the past for two-photon double ionization of He cannot be extended to five-photon double ionization of He. Therefore only five-photon double ionization probabilities that depend on specific radiation field pulses can be calculated.

  6. Continuous variable teleportation of single photon states

    OpenAIRE

    Ide, Toshiki; Hofmann, Holger Friedrich; Kobayashi, Takayoshi; Furusawa, Akira

    2001-01-01

    The properties of continuous-variable teleportation of single-photon states are investigated. The output state is different from the input state due to the nonmaximal entanglement in the Einstein-Podolsky-Rosen beams. The photon statistics of the teleportation output are determined and the correlation between the field information b obtained in the teleportation process and the change in photon number is discussed. The results of the output photon statistics are applied to the transmission of...

  7. Perspectives for inclusive quarkonium production in photon-photon collisions at the LHC

    OpenAIRE

    Klasen, M; Lansberg, J. P

    2008-01-01

    We report on the current status of knowledge on inclusive quarkonium production in high-energy photon-photon collisions. As a perspective for the LHC, we compute various production cross sections via direct photon-photon fusion in ultra-peripheral pp, pA and AA collisions at the LHC using the tree-level quarkonium amplitude generator MadOnia.

  8. Very Efficient Single-Photon Sources Based on Quantum Dots in Photonic Wires

    DEFF Research Database (Denmark)

    Gerard, Jean-Michel; Claudon, Julien; Bleuse, Joel;

    2014-01-01

    We review the recent development of high efficiency single photon sources based on a single quantum dot in a photonic wire. Unlike cavity-based devices, very pure single photon emission and efficiencies exceeding 0.7 photon per pulse are jointly demonstrated under non-resonant pumping conditions...... optical properties of "one-dimensional atoms"....

  9. A High-Efficiency Photonic Nanowire Single-Photon Source Featuring An Inverted Conical Taper

    DEFF Research Database (Denmark)

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper;

    2011-01-01

    A photonic nanowire single-photon source design incorporating an inverted conical tapering is proposed. The inverted taper allows for easy electrical contacting and a high photon extraction efficiency of 89 %. Unlike cavity-based approaches, the photonic nanowire features broadband spontaneous...

  10. Quantum theory of two-photon interference

    OpenAIRE

    Wu, Xiang-Yao; Zhang, Bo-Jun; Liu, Xiao-Jing; LI Hong; Zhang, Si-Qi; Jing WANG; Wu, Yi-Heng; Li, Jing-Wu

    2012-01-01

    In this paper, we study two-photon interference with the approach of photon quantum theory, with specific attention to the two-photon interference experiment carried out by Milena D'Angelo et al. (Phys. Rev. Lett 87:013602, 2001). We find the theoretical result is accordance with experiment data.

  11. Photon Differential Splatting for Rendering Caustics

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Schjøth, Lars; Erleben, Kenny;

    2014-01-01

    on heuristics rather than knowledge of the local flux density. We use photon differentials to determine the size and shape of the splats such that we achieve adaptive anisotropic flux density estimation in photon splatting. As compared to previous work that uses photon differentials, we present the first method...

  12. Application of Photonic Crystals in Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    LIU Guang-yu; WANG Li-jun; ZHANG Yan; PENG Biao; SUN Yan-fang; LI Te; CUI Jin-jiang; NING Yong-qiang; QIN Li; LIU Yun

    2007-01-01

    Photonic crystals (PCs) have attracted much considerable research attention in the past two decades. They are artificially fabricated periodic dielectric structures. The periodic dielectric structures have photonic band gap (PBG) and are referred to as photonic band gap materials. This paper mainly introduces one-dimensional (1-D) and 2D PCs applied in the semiconductor lasers.

  13. Two-Photon Exclusive Processes in QCD

    OpenAIRE

    Brodsky, Stanley J.

    2000-01-01

    Exclusive two-photon reactions such as Compton scattering at large angles, deeply virtual Compton scattering, and hadron production in photon-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes and skewed parton distributions.

  14. Review of Two-Photon Interactions

    OpenAIRE

    Urner, David

    2003-01-01

    Presented are recent results of two-photon interactions. Topics inlcude photon structure functions, inclusive hadron production, differential cross sections derived from tagged 2-photon fusion events and results in exclusive hadron production, particularly the observations of the eta_c prime.

  15. The First-Quantized Theory of Photons

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-Yong; XIONG Cai-Dong; Keller Ole

    2007-01-01

    In near-field optics and optical tunnelling theory, photon wave mechanics, I.e. The first-quantized theory of photons, allows us to address the spatial field localization problem in a flexible manner which links smoothly to classical electromagnetics. We develop photon wave mechanics in a rigorous and unified way, based on which field quantization is obtained in a new way.

  16. Two-order Interference of Single Photon

    Institute of Scientific and Technical Information of China (English)

    JIANG Yunkun; LI Jian; SHI Baosen; FAN Xiaofeng; GUO Guangcan

    2000-01-01

    A pair of photons called signal and idler photons, respectively, are produced through the nonlinear process of type-I spontaneous parametric downconversion in BBO crystal pumped by the second-harmonic wave of a Ti:sapphire femtosecond laser pulse. The two-order interference phenomenon of the signal photon in Michelson interferometer is observed and give an analysis in detail.

  17. Single-Photon Technologies Based on Quantum-Dots in Photonic Crystals

    DEFF Research Database (Denmark)

    Lehmann, Tau Bernstorff

    In this thesis, the application of semiconductor quantum-dots in photonic crystals is explored as aresource for single-photon technology.Two platforms based on photonic crystals, a cavity and a waveguide, are examined as platformssingle-photon sources. Both platforms demonstrate strong single-photon...... purity under quasi-resonantexcitation. Furthermore the waveguide based platform demonstrates indistinguishable single-photonsat timescales up to 13 ns.A setup for active demultiplexing of single-photons to a three-fold single-photon state is proposed.Using a fast electro-optical modulator, single-photons...... from a quantum-dot are routed on timescalesof the exciton lifetime. Using active demultiplexing a three-fold single-photon state is generated at anextracted rate of 2:03 ±0:49 Hz.An on-chip power divider integrated with a quantum-dot is investigated. Correlation measurementof the photon statistic...

  18. Spying on photons with photons: quantum interference and information

    CERN Document Server

    Ataman, Stefan

    2016-01-01

    The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100 % visibility if the quantum state is carefully engineered.

  19. Spying on photons with photons: quantum interference and information

    Science.gov (United States)

    Ataman, Stefan

    2016-07-01

    The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100% visibility if the quantum state is carefully engineered.

  20. Photonic Crystal Fiber Source of Quantum Correlated Photon Pairs in the 1550 nm Telecom Band

    International Nuclear Information System (INIS)

    A source of quantum correlated photon pairs in the 1550nm telecom band obtained by a pumping 11m photonic crystal fiber with 10 ps pulse trains is experimentally demonstrated. We investigate how the birefringence of the fiber influences the purity of the photon pairs. We also present the frequency correlation of the signal and idler photon pairs. The experimental results are useful for developing a compact source of photon pairs well suited for quantum communication