WorldWideScience

Sample records for 10kw high power

  1. Trade Study on Aggregation of Multiple 10-KW Solid Ozide Fuel Cell Power Modules

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, B.

    2004-12-03

    According to the Solid State Energy Conversion Alliance (SECA) program guidelines, solid oxide fuel cells (SOFC) will be produced in the form of 3-10 kW modules for residential use. In addition to residential use, these modules can also be used in apartment buildings, hospitals, etc., where a higher power rating would be required. For example, a hospital might require a 250 kW power generating capacity. To provide this power using the SECA SOFC modules, 25 of the 10 kW modules would be required. These modules can be aggregated in different architectures to yield the necessary power. This report will show different approaches for aggregating numerous SOFC modules and will evaluate and compare each one with respect to cost, control complexity, ease of modularity, and fault tolerance.

  2. Review of the State-of-the-Art in Power Electronics Suitable for 10-KW Military Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.

    2003-12-19

    The purpose of this report is to document the technological opportunities of integrating power electronics-based inverters into a TEP system, primarily in the 10-kW size range. The proposed enhancement offers potential advantages in weight reduction, improved efficiency, better performance in a wider range of generator operating conditions, greater versatility and adaptability, and adequate reliability. In order to obtain strong assurance of the availability of inverters that meet required performance and reliability levels, a market survey was performed. The survey obtained positive responses from several manufacturers in the motor drive and distributed generation industries. This study also includes technology reviews and assessments relating to circuit topologies, reliability issues, vulnerability to pulses of electromagnetic energy, potential improvements in semiconductor materials, and potential performance improvement through cryogenics.

  3. High-accuracy instrument for measuring high-power laser beams

    Science.gov (United States)

    Wang, Weiping; Xiong, Limin

    1998-08-01

    Some methods are introduced in the paper, to reduce the damage to the detector as the laser power is high as 10 kw. To measure the high-power laser accurately, several couples of pieces having high transmittance, low thermal effect, and low reflectivity are used to measure the high-power laser mode accurately. The beam cutter with a slit of 0.01 mm width is used to measure the high-power beam divergence, and the reflective method is used to measure the high-power laser polarization. Directness, simplicity and effectiveness, are the designed considerations in the paper, as these factors contribute to advancing the instrument's accuracy.

  4. High power microwave sources

    International Nuclear Information System (INIS)

    High power microwaves have known a great expansion with intense relativistic electron beams. CEA-CESTA evolved several HPM sources on electron beam generator CESAR, as the planar VIRCATOR, the REDITRON and the coaxial VIRCATOR. We obtained microwave frequencies located between 2 and 8 GHz with power of some hundreds until 1 gigawatt. Several measurements have been improved to qualify these sources: frequency, power density, energy, wave polarization, modes visualization. A hollow beam generator, relativistic klystron electric source, has also been built to improve a recurrent system and obtain gigawatt microwave power. (author)

  5. High power fiber lasers

    Institute of Scientific and Technical Information of China (English)

    LOU Qi-hong; ZHOU Jun

    2007-01-01

    In this review article, the development of the double cladding optical fiber for high power fiber lasers is reviewed. The main technology for high power fiber lasers, including laser diode beam shaping, fiber laser pumping techniques, and amplification systems, are discussed in de-tail. 1050 W CW output and 133 W pulsed output are ob-tained in Shanghai Institute of Optics and Fine Mechanics, China. Finally, the applications of fiber lasers in industry are also reviewed.

  6. Resonant High Power Combiners

    CERN Document Server

    Langlois, Michel; Peillex-Delphe, Guy

    2005-01-01

    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  7. Applicability of the beamed power concept to lunar rovers, construction, mining, explorers and other mobile equipment

    Science.gov (United States)

    Christian, Jose L., Jr.

    1989-01-01

    Some of the technical issues dealing with the feasibility of high power (10 Kw to 100 Kw) mobile manned equipment for settlement, exploration and exploitation of Lunar resources are addressed. Short range mining/construction equipment, a moderate range (50 Km) exploration vehicle, and an unlimited range explorer are discussed.

  8. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  9. High Power Cryogenic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Smith

    2011-08-01

    The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

  10. Switching power converters medium and high power

    CERN Document Server

    Neacsu, Dorin O

    2013-01-01

    An examination of all of the multidisciplinary aspects of medium- and high-power converter systems, including basic power electronics, digital control and hardware, sensors, analog preprocessing of signals, protection devices and fault management, and pulse-width-modulation (PWM) algorithms, Switching Power Converters: Medium and High Power, Second Edition discusses the actual use of industrial technology and its related subassemblies and components, covering facets of implementation otherwise overlooked by theoretical textbooks. The updated Second Edition contains many new figures, as well as

  11. High Power Switching Transistor

    Science.gov (United States)

    Hower, P. L.; Kao, Y. C.; Carnahan, D. C.

    1983-01-01

    Improved switching transistors handle 400-A peak currents and up to 1,200 V. Using large diameter silicon wafers with twice effective area as D60T, form basis for D7 family of power switching transistors. Package includes npn wafer, emitter preform, and base-contact insert. Applications are: 25to 50-kilowatt high-frequency dc/dc inverters, VSCF converters, and motor controllers for electrical vehicles.

  12. High power ultrafast lasers

    Energy Technology Data Exchange (ETDEWEB)

    Backus, S.; Durfee, C.G. III; Murnane, M.M.; Kapteyn, H.C. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099 (United States)

    1998-03-01

    In this article, we review progress in the development of high peak-power ultrafast lasers, and discuss in detail the design issues which determine the performance of these systems. Presently, lasers capable of generating terawatt peak powers with unprecedented short pulse duration can now be built on a single optical table in a small-scale laboratory, while large-scale lasers can generate peak power of over a petawatt. This progress is made possible by the use of the chirped-pulse amplification technique, combined with the use of broad-bandwidth laser materials such as Ti:sapphire, and the development of techniques for generating and propagating very short (10{endash}30 fs) duration light pulses. We also briefly summarize some of the new scientific advances made possible by this technology, such as the generation of coherent femtosecond x-ray pulses, and the generation of MeV-energy electron beams and high-energy ions. {copyright} {ital 1998 American Institute of Physics.}

  13. High-power electronics

    CERN Document Server

    Kapitsa, Petr Leonidovich

    1966-01-01

    High-Power Electronics, Volume 2 presents the electronic processes in devices of the magnetron type and electromagnetic oscillations in different systems. This book explores the problems of electronic energetics.Organized into 11 chapters, this volume begins with an overview of the motion of electrons in a flat model of the magnetron, taking into account the in-phase wave and the reverse wave. This text then examines the processes of transmission of electromagnetic waves of various polarization and the wave reflection from grids made of periodically distributed infinite metal conductors. Other

  14. High power coaxial ubitron

    Science.gov (United States)

    Balkcum, Adam J.

    In the ubitron, also known as the free electron laser, high power coherent radiation is generated from the interaction of an undulating electron beam with an electromagnetic signal and a static periodic magnetic wiggler field. These devices have experimentally produced high power spanning the microwave to x-ray regimes. Potential applications range from microwave radar to the study of solid state material properties. In this dissertation, the efficient production of high power microwaves (HPM) is investigated for a ubitron employing a coaxial circuit and wiggler. Designs for the particular applications of an advanced high gradient linear accelerator driver and a directed energy source are presented. The coaxial ubitron is inherently suited for the production of HPM. It utilizes an annular electron beam to drive the low loss, RF breakdown resistant TE01 mode of a large coaxial circuit. The device's large cross-sectional area greatly reduces RF wall heat loading and the current density loading at the cathode required to produce the moderate energy (500 keV) but high current (1-10 kA) annular electron beam. Focusing and wiggling of the beam is achieved using coaxial annular periodic permanent magnet (PPM) stacks without a solenoidal guide magnetic field. This wiggler configuration is compact, efficient and can propagate the multi-kiloampere electron beams required for many HPM applications. The coaxial PPM ubitron in a traveling wave amplifier, cavity oscillator and klystron configuration is investigated using linear theory and simulation codes. A condition for the dc electron beam stability in the coaxial wiggler is derived and verified using the 2-1/2 dimensional particle-in-cell code, MAGIC. New linear theories for the cavity start-oscillation current and gain in a klystron are derived. A self-consistent nonlinear theory for the ubitron-TWT and a new nonlinear theory for the ubitron oscillator are presented. These form the basis for simulation codes which, along

  15. High power beam analysis

    Science.gov (United States)

    Aharon, Oren

    2014-02-01

    In various modern scientific and industrial laser applications, beam-shaping optics manipulates the laser spot size and its intensity distribution. However the designed laser spot frequently deviates from the design goal due to real life imperfections and effects, such as: input laser distortions, optical distortion, heating, overall instabilities, and non-linear effects. Lasers provide the ability to accurately deliver large amounts of energy to a target area with very high accuracy. Thus monitoring beam size power and beam location is of high importance for high quality results and repeatability. Depending on the combination of wavelength, beam size and pulse duration , laser energy is absorbed by the material surface, yielding into processes such as cutting, welding, surface treatment, brazing and many other applications. This article will cover the aspect of laser beam measurements, especially at the focal point where it matters the most. A brief introduction to the material processing interactions will be covered, followed by fundamentals of laser beam propagation, novel measurement techniques, actual measurement and brief conclusions.

  16. High power evaluation of X-band high power loads

    CERN Document Server

    Matsumoto, Shuji; Syratchev, Igor; Riddone, Germana; Wuensch, Walter

    2010-01-01

    Several types of X-band high power loads developed for several tens of MW range were designed, fabricated and used for high power tests at X-band facility of KEK. Some of them have been used for many years and few units showed possible deterioration of RF performance. Recently revised-design loads were made by CERN and the high power evaluation was performed at KEK. In this paper, the main requirements are recalled, together with the design features. The high power test results are analysed and presented

  17. High Efficiency Power Converter for Low Voltage High Power Applications

    DEFF Research Database (Denmark)

    Nymand, Morten

    , and remote power generation for light towers, camper vans, boats, beacons, and buoys etc. A review of current state-of-the-art is presented. The best performing converters achieve moderately high peak efficiencies at high input voltage and medium power level. However, system dimensioning and cost are often...

  18. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    J C Travers

    2010-11-01

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium. The most common experimental arrangements are described, including both continuous wave fibre laser systems with over 100 W pump power, and picosecond mode-locked, master oscillator power fibre amplifier systems, with over 10 kW peak pump power. These systems can produce broadband supercontinua with over 50 and 1 mW/nm average spectral power, respectively. Techniques for numerical modelling of the supercontinuum sources are presented and used to illustrate some supercontinuum dynamics. Some recent experimental results are presented.

  19. High-powered manoeuvres

    CERN Multimedia

    Anaïs Schaeffer

    2013-01-01

    This week, CERN received the latest new transformers for the SPS. Stored in pairs in 24-tonne steel containers, these transformers will replace the old models, which have been in place since 1981.     The transformers arrive at SPS's access point 4 (BA 4). During LS1, the TE-EPC Group will be replacing all of the transformers for the main converters of the SPS. This renewal campaign is being carried out as part of the accelerator consolidation programme, which began at the start of April and will come to an end in November. It involves 80 transformers: 64 with a power of 2.6 megavolt-amperes (MVA) for the dipole magnets, and 16 with 1.9 MVA for the quadrupoles. These new transformers were manufactured by an Italian company and are being installed outside the six access points of the SPS by the EN-HE Group, using CERN's 220-tonne crane. They will contribute to the upgrade of the SPS, which should thus continue to operate as the injector for the LHC until 2040....

  20. Applications of high power microwaves

    International Nuclear Information System (INIS)

    The authors address a number of applications for HPM technology. There is a strong symbiotic relationship between a developing technology and its emerging applications. New technologies can generate new applications. Conversely, applications can demand development of new technological capability. High-power microwave generating systems come with size and weight penalties and problems associated with the x-radiation and collection of the electron beam. Acceptance of these difficulties requires the identification of a set of applications for which high-power operation is either demanded or results in significant improvements in peRFormance. The authors identify the following applications, and discuss their requirements and operational issues: (1) High-energy RF acceleration; (2) Atmospheric modification (both to produce artificial ionospheric mirrors for radio waves and to save the ozone layer); (3) Radar; (4) Electronic warfare; and (5) Laser pumping. In addition, they discuss several applications requiring high average power than border on HPM, power beaming and plasma heating

  1. High Power Betavoltaic Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation will dramatically improve the performance of tritium-powered betavoltaic batteries through the development of a high-aspect ratio, expanded...

  2. High Power Amplifier and Power Supply

    Science.gov (United States)

    Duong, Johnny; Stride, Scot; Harvey, Wayne; Haque, Inam; Packard, Newton; Ng, Quintin; Ispirian, Julie Y.; Waian, Christopher; Janes, Drew

    2008-01-01

    A document discusses the creation of a high-voltage power supply (HVPS) that is able to contain voltages up to -20 kV, keep electrical field strengths to below 200 V/mil (approximately equal to 7.87 kV/mm), and can provide a 200-nanosecond rise/fall time focus modulator swinging between cathode potential of 16.3 kV and -19.3 kV. This HVPS can protect the 95-GHz, pulsed extended interaction klystron (EIK) from arcs/discharges from all sources, including those from within the EIK fs vacuum envelope. This innovation has a multi-winding pulse transformer design, which uses new winding techniques to provide the same delays and rise/fall times (less than 10 nanoseconds) at different potential levels ranging from -20 kV to -16 kV. Another feature involves a high-voltage printed-wiring board that was corona-free at -20 kV DC with a 3- kV AC swing. The corona-free multilayer high-voltage board is used to simulate fields of less than 200 V/mil (approximately equal to 7.87 kV/mm) at 20 kV DC. Drive techniques for the modulator FETs (field-effect transistors) (four to 10 in a series) were created to change states (3,000-V swing) without abrupt steps, while still maintaining required delays and transition times. The packing scheme includes a potting mold to house a ten-stage modulator in the space that, in the past, only housed a four-stage modulator. Problems keeping heat down were solved using aluminum oxide substrate in the high-voltage section to limit temperature rise to less than 10 while withstanding -20 kV DC voltage and remaining corona-free.

  3. Diamond for High Power / High Temperature Electronics

    OpenAIRE

    Kohn, E.; Kubovic, M.; Hernandez-Guillen, F.; Denisenko, A.

    2004-01-01

    Diamond is a wide bandgap semiconductor with extremely attractive properties but also many technological difficulties. Doping is restricted to deep impurities and substrate size is very limited. Nevertheless in proof of concept experiments, the potential for high power, high temperature and high frequency applications can already well be estimated. In addition, first passive MEMS elements for advanced circuit applications have also been demonstrated, however still on n...

  4. Integrated high power VCSEL systems

    Science.gov (United States)

    Moench, Holger; Conrads, Ralf; Gronenborn, Stephan; Gu, Xi; Miller, Michael; Pekarski, Pavel; Pollmann-Retsch, Jens; Pruijmboom, Armand; Weichmann, Ulrich

    2016-03-01

    High power VCSEL systems are a novel laser source used for thermal treatment in industrial manufacturing. These systems will be applied in many applications, which have not used a laser source before. This is enabled by the unique combination of efficiency, compactness and robustness. High power VCSEL system technology encompasses elements far beyond the VCSEL chip itself: i.e. heat sinks, bonding technology and integrated optics. This paper discusses the optimization of these components and processes specifically for building high-power laser systems with VCSEL arrays. New approaches help to eliminate components and process steps and make the system more robust and easier to manufacture. New cooler concepts with integrated electrical and mechanical interfaces have been investigated and offer advantages for high power system design. The bonding process of chips on sub-mounts and coolers has been studied extensively and for a variety of solder materials. High quality of the interfaces as well as good reliability under normal operation and thermal cycling have been realized. A viable alternative to soldering is silver sintering. The very positive results which have been achieved with a variety of technologies indicate the robustness of the VCSEL chips and their suitability for high power systems. Beam shaping micro-optics can be integrated on the VCSEL chip in a wafer scale process by replication of lenses in a polymer layer. The performance of VCSEL arrays with integrated collimation lenses has been positively evaluated and the integrated chips are fully compatible with all further assembly steps. The integrated high power systems make the application even easier and more robust. New examples in laser material processing and pumping of solid state lasers are presented.

  5. High-power RF compressor

    International Nuclear Information System (INIS)

    We discuss here the possibility of rapidly compressing resonant RF fields in a coaxial cavity with a moving, magnetically confined plasma ring. The possibility of accelerating a plasma ring and various acceleration configurations was discussed earlier. Since the ring velocity can be high, compression to high energy density and high power can be achieved before significant resistive loss or vaporization of the cavity walls occurs. An example is given of compressing 105 J of lambda = 15 cm stored energy to 2 x 106 J of lambda = 1.0 cm RF energy with the energy released in 3 nsec for a maximum power of 6 x 1014 W. A proof of principle plasma ring accelerator experiment could provide a significant test by compressing 125 joules of 14 cm RF to 1.25 kJ of 1.4 cm radiation, released in 5 nsec for a very respectable peak power of 2.5 x 1011 W

  6. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  7. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  8. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  9. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  10. High power neutron production targets

    Energy Technology Data Exchange (ETDEWEB)

    Wender, S. [Los Alamos National Lab., NM (United States)

    1996-06-01

    The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.

  11. High Power Thin Disk Laser

    OpenAIRE

    Giesen, Adolf

    2011-01-01

    In this talk, the latest results for thin disk lasers will be presented. Thin disk lasers can be operated in cw-mode as well as in pulsed mode with pulse durations from 100 fs to microseconds. Results from different institutes and companies will be shown demonstrating the power/energy scalability of the thin disk laser design with good beam quality and high efficiency, simultaneously. Several German companies are selling thin disk lasers with up to 16 kW output power (cw) and with up to 1 kW...

  12. High power vircator source development

    International Nuclear Information System (INIS)

    The vircator in its modern form is an essentially new class of microwave tube. It has the attributes of conceptual simplicity, high output power capacity and wide tunability. Frequencies ranging from 800 MHz to over 40 GHz have been witnessed. These features have already been demonstrated experimentally at MRC, on a small scale. Furthermore, experimental work in other laboratories, and the results of particle code simulations, have clearly indicated that the vircator is a source of extraordinarily high power. Hence, it has some unique applications. The virtual cathode oscillator results when the beam current injected into a waveguide or cavity resonator exceeds the space-charge limiting current. The limiting current is defined by the beam energy and waveguide or resonator geometry. The lack of a stable steady state equilibrium for the beam under these conditions results in formation of a virtual cathode, which is a stable oscillatory state of the electron beam

  13. High-power active devices

    CERN Document Server

    Carroll, E

    2006-01-01

    Very high-power (HP) electronics represents a small part of the electronics market. In semiconductor terms, HP represents a world device market of 600 million euros out of a total 200 billion euros for all semiconductors—a mere 0.3 per cent. At the multi-megawatt spectral end, the numbers are even smaller, so that it is quite common for electronics engineers to be unaware of developments in Very High Power (VHP). In this presentation we discuss the categories of VHP active devices, the basic topologies in which they operate, and the trend towards higher voltage and current. New press-pack technologies are introduced and the salient differences between Insulated Gate Bipolar Transistors (IGBTs) and Integrated Gate Commutated Thyristors (IGCTs) are compared. Finally, recent developments in turn-off ratings for both these devices are presented.

  14. High power, high beam quality regenerative amplifier

    Science.gov (United States)

    Hackel, L.A.; Dane, C.B.

    1993-08-24

    A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

  15. High power cladding light strippers

    Science.gov (United States)

    Wetter, Alexandre; Faucher, Mathieu; Sévigny, Benoit

    2008-02-01

    The ability to strip cladding light from double clad fiber (DCF) fibers is required for many different reasons, one example is to strip unwanted cladding light in fiber lasers and amplifiers. When removing residual pump light for example, this light is characterized by a large numerical aperture distribution and can reach power levels into the hundreds of watts. By locally changing the numerical aperture (N.A.) of the light to be stripped, it is possible to achieve significant attenuation even for the low N.A. rays such as escaped core modes in the same device. In order to test the power-handling capability of this device, one hundred watts of pump and signal light is launched from a tapered fusedbundle (TFB) 6+1x1 combiner into a high power-cladding stripper. In this case, the fiber used in the cladding stripper and the output fiber of the TFB was a 20/400 0.06/0.46 N.A. double clad fiber. Attenuation of over 20dB in the cladding was measured without signal loss. By spreading out the heat load generated by the unwanted light that is stripped, the package remained safely below the maximum operating temperature internally and externally. This is achieved by uniformly stripping the energy along the length of the fiber within the stripper. Different adhesive and heat sinking techniques are used to achieve this uniform removal of the light. This suggests that these cladding strippers can be used to strip hundreds of watts of light in high power fiber lasers and amplifiers.

  16. High frequency, high power capacitor development

    Science.gov (United States)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  17. High-power pulsed lasers

    International Nuclear Information System (INIS)

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization

  18. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  19. High Power Wideband Class-E Power Amplifier

    OpenAIRE

    Ortega González, Francisco Javier

    2010-01-01

    This letter shows a high-power, high-efficiency, wideband Class-E RF power amplifier designed upon the load admittance synthesis concept and built using an uncomplicated low-loss load network with a low loss wideband admittance transformer as the main component. It uses a power Silicon LDMOS transistor to provide up to 145 W at 28 V peak power, up to 86% drain efficiency over 35% fractional bandwidth (from 85 to 120 MHz) and 15.6 dB gain at peak power without any adjustments. These are clear ...

  20. Review of Power System Stability with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Chen, Zhe

    2015-01-01

    and reliable choices currently are the strong outside connections or sufficient reserve capacity constructions, many novel theories and approaches are invented to investigate the stability issues, looking forward to an extra-high penetration or totally renewable resource based power systems. These analyzing......This paper presents an overview of researches on power system stability with high wind power penetration including analyzing methods and improvement approaches. Power system stability issues can be classified diversely according to different considerations. Each classified issue has special...... analyzing methods and stability improvement approaches. With increasing wind power penetration, system balancing and the reduced inertia may cause a big threaten for stable operation of power systems. To mitigate or eliminate the wind impacts for high wind penetration systems, although the practical...

  1. Evaluation, analysis, and documentation support for the 10-kw Signature Suppressed Lightweight Electric Energy Plant (SLEEP). Technical report, April 1987-March 1988

    Energy Technology Data Exchange (ETDEWEB)

    Morsch, B.A.; Main, B.W.; Buckman, A.F.; Feaney, L.M.; Gist, J.Y.

    1988-03-14

    The US Army identified the need for a Signature Suppressed, Lightweight Electric Energy Plant (SLEEP) to improve the survivability of forward deployed units. The US Army Belvoir Research, Development and Engineering Center has the responsibility for procuring generators to meet this requirement. This study was to investigate power-generation technology and determine the most-effective technology to meet the SLEEP requirement. The Stirling was identified as the most-promising technology for SLEEP. Commercial systems and improvements to existing systems cannot meet this requirement. Procurement of SLEEP was determined to be well suited for the Army Streamlined Acquisition Program.

  2. Simplified High-Power Inverter

    Science.gov (United States)

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  3. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  4. Modeling lifetime of high power IGBTs in wind power applications

    DEFF Research Database (Denmark)

    Busca, Cristian

    2011-01-01

    The wind power industry is continuously developing bringing to the market larger and larger wind turbines. Nowadays reliability is more of a concern than in the past especially for the offshore wind turbines since the access to offshore wind turbines in case of failures is both costly and difficult...... an overview of the different aspects of lifetime modeling of high power IGBTs in wind power applications. In the beginning, wind turbine reliability survey results are briefly reviewed in order to gain an insight into wind turbine subassembly failure rates and associated downtimes. After that the...... most common high power IGBT failure mechanisms and lifetime prediction models are reviewed in more detail....

  5. High Power Fiber Laser Test Bed

    Data.gov (United States)

    Federal Laboratory Consortium — This facility, unique within DoD, power-combines numerous cutting-edge fiber-coupled laser diode modules (FCLDM) to integrate pumping of high power rare earth-doped...

  6. High Power Performance of Rod Fiber Amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Michieletto, Mattia; Kristensen, Torben;

    2015-01-01

    An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W.......An improved version of the DMF rod fiber is tested in a high power setup delivering 360W of stable signal power. Multiple testing degrades the fiber and transverse modal instability threshold from >360W to ~290W....

  7. Development of high-power switching power supply

    International Nuclear Information System (INIS)

    We report the development of high power switching power supply to charge a PFN for klystron modulator which is used as RF source of the KEK electron/positron injector linac. This power supply has a maximum output voltage of 43 kV and the charging power of 30 kJ/s. It consists of two high frequency inverters, a high frequency transformer, and a diode bridge circuit, and series resonance circuits to charges the PFN. The output voltage stability is less than 0.2%p-p for 5% deviation of AC 420 V 3-phase input. Also interlock system for abnormal charging such as miss fire of thyratron. The continuous running test at a rated output power is performed at KEK. (author)

  8. High power HBT technologies : present and trends

    OpenAIRE

    Floriot, D.; Delage, S. L.; Piotrowicz, S.; Chartier, E.; Auxemery, P.

    2001-01-01

    The HBT technology is now mature and offers a great variety of RF products for telecom applications, specially power amplifiers for which a high level of linearity is requested. The reliability has been the limiting factor in the supplying of high power amplifiers and nowadays only medium HPA are available in catalogue. Also, regarding the huge quantities of papers published in the mid 90s relating the interest of this technology for high PAE / Power, very few of the competitors have been suc...

  9. High-speed Power Line Communications

    Directory of Open Access Journals (Sweden)

    Matthew N. O. Sadiku,

    2015-11-01

    Full Text Available This is the idea of using existing power lines for communication purposes. Power line communications (PLC enables network communication of voice, data, and video over direct power lines. High-speed PLC involves data rates in excess of 10 Mbps. PLC has attracted a lot of attention and has become an interesting subject of research lately.

  10. High power pulse magnetic field power supply system

    International Nuclear Information System (INIS)

    The magnetic field power supply system, control system and experiment results of the power supply of HL-2A device are presented. The total pulse capacity of this power supply is about 250 MVA. The released energy is 1300 MJ in one discharge pulse. The highest DC output voltage of these power supplies is 3510 V and the highest current is 45 kA. All these power supplies are operated in pulsed mode. The pulse duration is 5 s, and the period is 10 min. The main circuit of this power supply consists of flywheel generator set, thyristor convertor and silicon diode rectifier. Many key technologies such as output balance technology of 2 motor generators with diode rectifiers paralleled directly, current balance technology of paralleled rectifiers, constant-angle phase shift control technology which is adequate for dynamic change in large frequency range, all-turn-off detection of 6-phase rectifier with high current, advanced monitoring system and measurement of pulsed high voltage and high current are adopted in HL-2A power supply system. The experiment results show that the performance of power supplies can satisfied the requirement of experiment very well. (authors)

  11. Fiber MOPAs with high control and high power

    OpenAIRE

    Nilsson, J.; Yoo, S.; Dupriez, P.; Farrell, C.; Abidin, M.S.Z.; Ji, J; Maran, J.-N.; Codemard, C. A.; Jeong, Y.; Sahu, J.K.; Richardson, D J; Payne, D. N.

    2008-01-01

    High power fiber sources have reached several kilowatts of output power, and are now leading contenders for many applications. Important attractions include control, efficiency, manufacturability, and reliability. We will exemplify opportunities and limitations for these revolutionary sources.

  12. Packaging of high power semiconductor lasers

    CERN Document Server

    Liu, Xingsheng; Xiong, Lingling; Liu, Hui

    2014-01-01

    This book introduces high power semiconductor laser packaging design. The characteristics and challenges of the design and various packaging, processing, and testing techniques are detailed by the authors. New technologies, in particular thermal technologies, current applications, and trends in high power semiconductor laser packaging are described at length and assessed.

  13. High power laser perforating tools and systems

    Science.gov (United States)

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  14. Automated System Tests High-Power MOSFET's

    Science.gov (United States)

    Huston, Steven W.; Wendt, Isabel O.

    1994-01-01

    Computer-controlled system tests metal-oxide/semiconductor field-effect transistors (MOSFET's) at high voltages and currents. Measures seven parameters characterizing performance of MOSFET, with view toward obtaining early indication MOSFET defective. Use of test system prior to installation of power MOSFET in high-power circuit saves time and money.

  15. High efficiency solar photovoltaic power module concept

    Science.gov (United States)

    Bekey, I.

    1978-01-01

    The investigation of a preliminary concept for high efficiency solar power generation in space is presented. The concept was a synergistic combination of spectral splitting, tailored bandgap cells, high concentration ratios, and cool cell areas.

  16. High-power optics lasers and applications

    CERN Document Server

    Apollonov, Victor V

    2015-01-01

    This book covers the basics, realization and materials for high power laser systems and high power radiation interaction with  matter. The physical and technical fundamentals of high intensity laser optics and adaptive optics and the related physical processes in high intensity laser systems are explained. A main question discussed is: What is power optics? In what way is it different from ordinary optics widely used in cameras, motion-picture projectors, i.e., for everyday use? An undesirable consequence of the thermal deformation of optical elements and surfaces was discovered during studies of the interaction with powerful incident laser radiation. The requirements to the fabrication, performance and quality of optical elements employed within systems for most practical applications are also covered. The high-power laser performance is generally governed by the following: (i) the absorption of incident optical radiation (governed primarily by various absorption mechanisms), (ii) followed by a temperature ...

  17. Powering the High-Luminosity Triplets

    CERN Document Server

    Ballarino, A

    2015-01-01

    The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.

  18. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS

    International Nuclear Information System (INIS)

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department

  19. High Power Picosecond Laser Pulse Recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  20. High average-power induction linacs

    Energy Technology Data Exchange (ETDEWEB)

    Prono, D.S.; Barrett, D.; Bowles, E.; Caporaso, G.J.; Chen, Yu-Jiuan; Clark, J.C.; Coffield, F.; Newton, M.A.; Nexsen, W.; Ravenscroft, D.

    1989-03-15

    Induction linear accelerators (LIAs) are inherently capable of accelerating several thousand amperes of /approximately/ 50-ns duration pulses to > 100 MeV. In this paper we report progress and status in the areas of duty factor and stray power management. These technologies are vital if LIAs are to attain high average power operation. 13 figs.

  1. Driver Circuit For High-Power MOSFET's

    Science.gov (United States)

    Letzer, Kevin A.

    1991-01-01

    Driver circuit generates rapid-voltage-transition pulses needed to switch high-power metal oxide/semiconductor field-effect transistor (MOSFET) modules rapidly between full "on" and full "off". Rapid switching reduces time of overlap between appreciable current through and appreciable voltage across such modules, thereby increasing power efficiency.

  2. Highly integrated low power radars

    CERN Document Server

    Saponara, Sergio; Ragonese, Egidio

    2014-01-01

    In recent years, advances in radio detection and ranging technology, sustained by new achievements in the fields of signal processing and electronic components, have permitted the adoption of radars in many civil and defense applications.This resource discusses how highly integrated radar has been adopted by several new markets such as contactless vital sign monitoring (heart rate, breath rate) or harbour traffic control, as well as several applications for vehicle driver assistance. You are provided with scenarios, applications, and requirements, while focusing on the trade-offs between flexi

  3. Low Power Design with High-Level Power Estimation and Power-Aware Synthesis

    CERN Document Server

    Ahuja, Sumit; Shukla, Sandeep Kumar

    2012-01-01

    Low-power ASIC/FPGA based designs are important due to the need for extended battery life, reduced form factor, and lower packaging and cooling costs for electronic devices. These products require fast turnaround time because of the increasing demand for handheld electronic devices such as cell-phones, PDAs and high performance machines for data centers. To achieve short time to market, design flows must facilitate a much shortened time-to-product requirement. High-level modeling, architectural exploration and direct synthesis of design from high level description enable this design process. This book presents novel research techniques, algorithms,methodologies and experimental results for high level power estimation and power aware high-level synthesis. Readers will learn to apply such techniques to enable design flows resulting in shorter time to market and successful low power ASIC/FPGA design. Integrates power estimation and reduction for high level synthesis, with low-power, high-level design; Shows spec...

  4. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work seeks to develop and optimize an electrode-less plasma propulsion system that is based on a high power helicon (HPH) that is being developed...

  5. High Power Helicon Plasma Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new thruster has been conceived and tested that is based on a high power helicon (HPH) plasma wave. In this new method of propulsion, an antenna generates and...

  6. Coupling output of multichannel high power microwaves

    Science.gov (United States)

    Li, Guolin; Shu, Ting; Yuan, Chengwei; Zhang, Jun; Yang, Jianhua; Jin, Zhenxing; Yin, Yi; Wu, Dapeng; Zhu, Jun; Ren, Heming; Yang, Jie

    2010-12-01

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  7. Drivers for High Power Laser Diodes

    Institute of Scientific and Technical Information of China (English)

    Yankov P; Todorov D; Saramov E

    2006-01-01

    During the last year the high power laser diodes jumped over the 1 kW level of CW power for a stack,and the commercial 1 cm bars reached 100 W output optical power at the standard wavelengths around 800 nm and 980 nm. The prices are reaching the industry acceptable levels. All Nd:YAG and fiber industrial lasers manufacturers have developed kW prototypes. Those achievements have set new requirements for the power supplies manufactuers-high and stable output current, and possibilities for fast control of the driving current, keeping safe the expensive laser diode. The fast switching frequencies also allow long range free space communications and optical range finding. The high frequencies allow the design of a 3D laser radar with high resolution and other military applications. The prospects for direct laser diode micro machining are also attractive.

  8. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  9. High power regenerative laser amplifier

    Science.gov (United States)

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  10. Methods for High Power EM Pulse Measurement

    OpenAIRE

    Fiala, P.; Drexler, P.

    2006-01-01

    There are some suitable methods for the measurement of ultra-short solitary electromagnetic pulses that can be generated by high power pulsed generators. The measurement methods properties have to correspond to the fact whether we want to measure pulses of voltage, current or free-space electromagnetic wave. The need for specific measurement methods occurred by the development of high power microwave pulse generator. Applicable methods are presented in this paper. The method utilizing Faraday...

  11. Development of high precision switching power supply

    International Nuclear Information System (INIS)

    A high precision switching power supply was developed for the PFN modulator of RIKEN SACLA. The maximum output voltage is 50 kV, and the maximum repetition rate is 120 pps. The switching power supply consists of main and sub switching circuits. In the sub circuit, the pulse-width-modulation (PWM) method was used in order to obtain high precision charging voltage stability ( < 100 ppm–pp). The switching power supply was tested, and a charging voltage stability of 1 Vpp (20 ppm–pp) and a repetition rate of 120 pps were achieved. (author)

  12. High Power Density Power Electronic Converters for Large Wind Turbines

    DEFF Research Database (Denmark)

    Senturk, Osman Selcuk

    In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids. For the......In large wind turbines (in MW and multi-MW ranges), which are extensively utilized in wind power plants, full-scale medium voltage (MV) multi-level (ML) voltage source converters (VSCs) are being more preferably employed nowadays for interfacing these wind turbines with electricity grids...... as 3L-NPC-VSC, 3L active NPC VSC (3L-ANPC-VSC), and 3L neutralpoint-piloted VSC (3L-NPP-VSC) and are proven to be high power density and highly reliable solution in the MV converter market, are selected and employed as the gridside VSC of a large wind turbine as well as the 3L H-Bridge VSCs (3L......-HB-VSCs). As the switch technology for realizing these 3L-VSCs, press-pack IGBTs are chosen to ensure high power density and reliability. Based on the selected 3L-VSCs and switch technology, the converter electro-thermal models are developed comprehensively, implemented practically, and validated via a full-scale 3L...

  13. Short pulse high power fiber laser systems

    OpenAIRE

    Malinowski, A.; Piper, A; Price, J.H.V.; He, F.; Ibsen, M; Nilsson, J.; Richardson, D J

    2005-01-01

    We review the rapid recent progress in the development of short pulse high-power fiber laser and amplifier devices. Use of cladding pump technology now provides a route to compact and efficient laser and amplifier systems with high beam quality and high output powers. A new Yb-fiber CPA system incorporating a CFBG stretcher with both 2nd and 3rd order dispersion is presented for high pulse energy applications. In addition, a simplified Yb-fiber parabolic amplifier system is also shown to be s...

  14. Modeling of an AC Power System for High Power Spacecraft

    Science.gov (United States)

    Stankovic, A. V.; Birchenough, A. G.; Kenny, B.; Kimnach, G.

    2004-02-01

    This paper presents an analysis and simulation of an AC power system for a high power spacecraft that primarily supplies rectified loads. Two different configurations consisting of a three-phase PM synchronous generator and an associated power electronics converter are compared and analyzed. The first configuration consists of a three-phase PM synchronous generator and a three-phase diode bridge supplying a DC load. The second configuration consists of a three-phase PM synchronous generator and a three-phase PWM rectifier supplying the DC load. The modeling equations for both systems are derived. The comparisons between the two different configurations are summarized in a table in terms of efficiency, harmonic content and DC voltage ripple. The simulation results obtained by using SIMULINK are presented.

  15. The NASA CSTI High Capacity Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Schmitz, P. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Vandersande, J. [Jet Propulsion Lab., Pasadena, CA (United States)

    1994-09-01

    The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

  16. Small high cooling power space cooler

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T. V.; Raab, J.; Durand, D.; Tward, E. [Northrop Grumman Aerospace Systems Redondo Beach, Ca, 90278 (United States)

    2014-01-29

    The small High Efficiency pulse tube Cooler (HEC) cooler, that has been produced and flown on a number of space infrared instruments, was originally designed to provide cooling of 10 W @ 95 K. It achieved its goal with >50% margin when limited by the 180 W output ac power of its flight electronics. It has also been produced in 2 stage configurations, typically for simultaneously cooling of focal planes to temperatures as low as 35 K and optics at higher temperatures. The need for even higher cooling power in such a low mass cryocooler is motivated by the advent of large focal plane arrays. With the current availability at NGAS of much larger power cryocooler flight electronics, reliable long term operation in space with much larger cooling powers is now possible with the flight proven 4 kg HEC mechanical cooler. Even though the single stage cooler design can be re-qualified for those larger input powers without design change, we redesigned both the linear and coaxial version passive pulse tube cold heads to re-optimize them for high power cooling at temperatures above 130 K while rejecting heat to 300 K. Small changes to the regenerator packing, the re-optimization of the tuned inertance and no change to the compressor resulted in the increased performance at 150 K. The cooler operating at 290 W input power achieves 35 W@ 150 K corresponding to a specific cooling power at 150 K of 8.25 W/W and a very high specific power of 72.5 W/Kg. At these powers the cooler still maintains large stroke, thermal and current margins. In this paper we will present the measured data and the changes to this flight proven cooler that were made to achieve this increased performance.

  17. Protection Related to High-power Targets

    CERN Document Server

    Plum, M A

    2016-01-01

    Target protection is an important part of machine protection. The beam power in high-intensity accelerators is high enough that a single wayward pulse can cause serious damage. Today's high-power targets operate at the limit of available technology, and are designed for a very narrow range of beam parameters. If the beam pulse is too far off centre, or if the beam size is not correct, or if the beam density is too high, the target can be seriously damaged. We will start with a brief introduction to high-power targets and then move to a discussion of what can go wrong, and what are the risks. Next we will discuss how to control the beam-related risk, followed by examples from a few different accelerator facilities. We will finish with a detailed example of the Oak Ridge Spallation Neutron Source target tune up and target protection.

  18. Tapered fiber based high power random laser.

    Science.gov (United States)

    Zhang, Hanwei; Du, Xueyuan; Zhou, Pu; Wang, Xiaolin; Xu, Xiaojun

    2016-04-18

    We propose a novel high power random fiber laser (RFL) based on tapered fiber. It can overcome the power scaling limitation of RFL while maintaining good beam quality to a certain extent. An output power of 26.5 W has been achieved in a half-open cavity with one kilometer long tapered fiber whose core diameter gradually changes from 8 μm to 20 μm. The steady-state light propagation equations have been modified by taking into account the effective core area to demonstrate the tapered RFL through numerical calculations. The numerical model effectively describes the power characteristics of the tapered fiber based RFL, and both the calculating and experimental results show higher power exporting potential compared with the conventional single mode RFL. PMID:27137338

  19. High Power Test for Klystron Stability

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung-Tae; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. Nine sets of 1MW klystrons have been operated for the 100-MeV proton linac. The klystron filament heating time was approximately 5700 hours in 2014. During the high power operation of the klystron, unstable RF waveforms appeared at the klystron output, and we have checked and performed cavity frequency adjustments, magnet and heater current, reflection from a circulator, klystron test without a circulator, and the frequency spectrum measurement. The problems may be from harmonic power stay between the klystron and the circulator. A harmonic filter of waveguide type is designed to eliminate the harmonic power. Nine sets of the klystrons have been operated for the KOMAC 100-MeV proton linac. Some klystrons have unstable RF waveforms at specific power level. We have checked and tested the cavity frequency adjustment, reflection from a circulator, high power test without a circulator, and frequency spectrum at the unstable RF. The unstable RF may be from harmonic power stay between the klystron and the circulator. To eliminate the harmonic power, a harmonic filter of waveguide type is designed.

  20. Advances in industrial high-power lasers

    Science.gov (United States)

    Schlueter, Holger

    2005-03-01

    Four major types of laser sources are used for material processing. Excluding Excimer lasers, this paper focuses on advances in High Power CO2 lasers, Solid State Lasers and Diode Lasers. Because of their unrivaled cost to brightness relationship the fast axial flow CO2 laser remains unrivaled for flat-sheet laser cutting. Adding approximately a kW of output power ever four years, this laser type has been propelling the entire sheet metal fabrication industry for the last two decades. Very robust, diffusion cooled annular discharge CO2 lasers with 2kW output power have enabled robot mounted lasers for 3D applications. Solid State Lasers are chosen mainly because of the option of fiber delivery. Industrial applications still rely on lamp-pumped Nd:YAG lasers with guaranteed output powers of 4.5 kW at the workpiece. The introduction of the diode pumped Thin Disc Laser 4.5 kW laser enables new applications such as the Programmable Focus Optics. Pumping the Thin Disc Laser requires highly reliable High Power Diode Lasers. The necessary reliability can only be achieved in a modern, automated semiconductor manufacturing facility. For Diode Lasers, electro-optical efficiencies above 65% are as important as the passivation of the facets to avoid Burn-In power degradation.

  1. Advanced High Voltage Power Device Concepts

    CERN Document Server

    Baliga, B Jayant

    2012-01-01

    Advanced High Voltage Power Device Concepts describes devices utilized in power transmission and distribution equipment, and for very high power motor control in electric trains and steel-mills. Since these devices must be capable of supporting more than 5000-volts in the blocking mode, this books covers operation of devices rated at 5,000-V, 10,000-V and 20,000-V. Advanced concepts (the MCT, the BRT, and the EST) that enable MOS-gated control of power thyristor structures are described and analyzed in detail. In addition, detailed analyses of the silicon IGBT, as well as the silicon carbide MOSFET and IGBT, are provided for comparison purposes. Throughout the book, analytical models are generated to give a better understanding of the physics of operation for all the structures. This book provides readers with: The first comprehensive treatment of high voltage (over 5000-volts) power devices suitable for the power distribution, traction, and motor-control markets;  Analytical formulations for all the device ...

  2. Review of High Power Pulse Transformer Design

    Science.gov (United States)

    Zhang, Zhao; Tan, Xiaohua

    Vacuum devices generally work under high power pulse voltage of order 103 V to 106 V, and this pulse voltage could be generated by high power pulse transformer. Relatively, pulse transformer has the advantages of compact structure and excellent repetitiveness. It is expected of short rise-time, wide pulse-width and high energy transferring efficiency in most applications. Aiming at this purpose, it is feasible to select magnetic core with high permeability and high saturation magnetic flux density, use closed core and take some special measures to diminish leakage inductance in the making-process. This paper is a brief summary of high power pulse transformer design. In this paper, the principle, types and characteristics specification of high power pulse transformer are presented, and the design methods of electrical, magnetic and structure parameters are summarized. The methods of shortening rise time, diminishing droop and expanding output pulse-width (electrical parameter design), testing magnetic core materials (magnetic parameter design) and minimizing leakage inductance (structure parameter design) are emphasized.

  3. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  4. High power infrared QCLs: advances and applications

    Science.gov (United States)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  5. High Power Diode Lasers Technology and Applications

    CERN Document Server

    Bachmann, Friedrich; Poprawe, Reinhart

    2007-01-01

    In a very comprehensive way this book covers all aspects of high power diode laser technology for materials processing. Basics as well as new application oriented results obtained in a government funded national German research project are described in detail. Along the technological chain after a short introduction in the second chapter diode laser bar technology is discussed regarding structure, manufacturing technology and metrology. The third chapter illuminates all aspects of mounting and cooling, whereas chapter four gives wide spanning details on beam forming, beam guiding and beam combination, which are essential topics for incoherently coupled multi-emitter based high power diode lasers. Metrology, standards and safety aspects are the theme of chapter five. As an outcome of all the knowledge from chapter two to four various system configurations of high power diode lasers are described in chapter six; not only systems focussed on best available beam quality but especially also so called "modular" set...

  6. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    entitled "High Efficiency Reversible Fuel Cell Power Converter" and it presents the design of a high efficiency dc-dc converter developed and optimized for bidirectional fuel cell applications. First, a brief overview of fuel cell and energy storage technologies is presented. Different system topologies...... as well as different dc-ac and dc-dc converter topologies are presented and analyzed. A new ac-dc topology for high efficiency data center applications is proposed and an efficiency characterization based on the fuel cell stack I-V characteristic curve is presented. The second part discusses the main...... of magnetic components especially for large production volumes. At last, the complete converter design is presented in detailed and characterized in efficiency terms. Both benefits, provided by SiC power devices and by a redesign of the converter layout increased the converter power density up to 2.2 k...

  7. High Power Microwave Sources : design and experiments

    OpenAIRE

    Möller, Cecilia

    2011-01-01

    High-Power Microwaves (HPM) can be used to intentionally disturb or destroy electronic equipment at a distance by inducing high voltages and currents. This thesis presents results from experiments with a narrow band HPM source, the vircator. The high voltages needed to generate HPM puts the vircator under great stress, especially the electrode materials. Several electrode materials have been tested for endurance and their influence on the characteristics of the microwave pulse. With the prope...

  8. Website Design Guidelines: High Power Distance and High Context Culture

    OpenAIRE

    Tanveer Ahmed; Haralambos Mouratidis; David Preston

    2009-01-01

    This paper aims to address the question of offering a culturally adapted website for a local audience. So far, in the website design arena the vast majority of studies examined mainly Western and the American (low power distance and low context) culture disregarding possible cultural discrepancies. This study fills this gap and explores the key cultural parameters that are likely to have an impact on local website design for Asian-Eastern culture high power distance and high context correlati...

  9. E3000 High Power SADM development

    Science.gov (United States)

    Bamford, Steve G.; McMahon, Paul

    2003-09-01

    Astrium UK has been actively involved in the study, design, development, manufacture and test of Solar Array Drive Mechanisms (SADMs) and Bearing and Power Transfer Assemblies (BAPTAs) since the early 1970s having delivered 105 of these mechanisms to 22 spacecraft programs. As a result Astrium UK has accumulated in excess of 700 years of failure free SADM operation in-orbit. During that period power transfer requirements have grown steadily from below 1kW to 9.9kW and beyond. With this increase in power handling capability comes the associated problem of handling and dissipating the heat being generated within the SADM. The Eurostar 2000 family of SADMs were designed to handle up to 5.6kW for the E2000 family of spacecraft but the High Power SADM was conceived to meet the needs of the much bigger Eurostar 3000 family of spacecraft that could potentially grow to 15kW.

  10. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... devices at very high frequencies, switching loss needs to reduced or eliminated, as it would become prohibitively large. In addition, as the frequency increases, hard-switched gate driving becomes less and less of an option, as it embodies the same loss mechanism. A low-loss gate drive methods may need...... response of VHF converters, on/off control schemes are often used for their output control. The options presented so far demonstrated excellent performance, but with very strict timing constraints on all functional blocks in the feedback loop. Therefore, an on/off control method is proposed which allows...

  11. High power collimated diode laser stack

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan-yuan; FANG Gao-zhan; MA Xiao-yu; LIU Su-ping; FENG Xiao-ming

    2006-01-01

    A high power collimated diode laser stack is carried out based on fast-axis collimation and stack packaging techniques.The module includes ten typical continuous wave (cw) bars and the total output power can be up to 368W at 48.6A.Using a cylindrical lens as the collimation elements,we can make the fast-axis divergence and the slow-axis divergence are 0.926 40 and 8.2060 respectively.The light emitting area is limited in a square area of 18.3 mm×11 mm.The module has the advantage of high power density and offers a wide potential applications in pumping and material processing.

  12. High Power Disk Loaded Guide Load

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.; /SLAC

    2006-02-22

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  13. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystron-like interaction with the accelerating cavities leading to enhanced momentum spread. In this paper, the author describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  14. High power electronic devices cooling at minimum ventilation power

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Giampietro [University of Bologna, Department of Energetic, Nuclear, and Environmental Control Engineering, Bologna (Italy)

    2008-01-15

    In the present work, the cooling of a high power electronic device is studied. The device is in contact with a heat dissipator crossed by air. The air motion through the dissipator is forced by a fan whose supplied power is to be minimized. A finite element dynamic model of the dissipator is firstly created, taking geometrical and physical properties into account as well as steady state experimental data. A simplified model is then obtained, which reproduces the time pattern of the maximum dissipator temperature as a response of the thermal flux removed from the electronic device and the mass flow rate of the air. Afterwards, the simplified model is utilized to build a control system which allows the electronic device to be correctly cooled at minimum air ventilation power during transition to steady states. Genetic algorithms are used to find the parameters of the finite element model and of the control system. Some functioning conditions of the electronic device are lastly considered and discussed. (orig.)

  15. Continuous high-power gas lasers

    Science.gov (United States)

    Hertzberg, A.

    1979-01-01

    High power gas laser concepts are discussed with emphasis on the role that fluid mechanics has played in their development. Consideration is given to three types of systems: gasdynamic lasers, HF supersonic diffusion lasers, and electric discharge lasers. Flow effects and aerodynamic windows in such lasers are briefly described. Future directions of research are outlined.

  16. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  17. High power bipolar lead-acid batteries

    Science.gov (United States)

    Halpert, Gerald; Attia, Alan

    1991-01-01

    The Jet Propulsion Laboratory (JPL), with interest in advanced energy storage systems, is involved in the development of a unique lead acid battery design. This battery utilizes the same combination of lead and lead dioxide active materials present in the automobile starting battery. However, it can provide 2 to 10 times the power while minimizing volume and weight. The typical starting battery is described as a monopolar type using one current collector for both the positive and negative plate of adjacent cells. Specific power as high as 2.5 kW/kg was projected for 30 second periods with as many as 2000 recharge cycles.

  18. MI high power operation and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Kourbanis, Ioanis; /Fermilab

    2008-09-01

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing both the beam intensity and power. The current high power MI operation will be described along with the near future plans.

  19. Website Design Guidelines: High Power Distance and High Context Culture

    Directory of Open Access Journals (Sweden)

    Tanveer Ahmed

    2009-06-01

    Full Text Available This paper aims to address the question of offering a culturally adapted website for a local audience. So far, in the website design arena the vast majority of studies examined mainly Western and the American (low power distance and low context culture disregarding possible cultural discrepancies. This study fills this gap and explores the key cultural parameters that are likely to have an impact on local website design for Asian-Eastern culture high power distance and high context correlating with both Hofstede’s and Hall’s cultural dimensions. It also reviews how website localisation may be accomplished more effectively by extracting the guidelines from two different yet compatible cultural dimensions: high power distance and high context.

  20. High impact data visualization with Power View, Power Map, and Power BI

    CERN Document Server

    Aspin, Adam

    2014-01-01

    High Impact Data Visualization with Power View, Power Map, and Power BI helps you take business intelligence delivery to a new level that is interactive, engaging, even fun, all while driving commercial success through sound decision-making. Learn to harness the power of Microsoft's flagship, self-service business intelligence suite to deliver compelling and interactive insight with remarkable ease. Learn the essential techniques needed to enhance the look and feel of reports and dashboards so that you can seize your audience's attention and provide them with clear and accurate information. Al

  1. High Power UV LED Industrial Curing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  2. High power, high efficiency diode pumped Raman fiber laser

    Science.gov (United States)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Dahan, Asaf; Ter-Gabrielyan, Nikolay; Pattnaik, Radha K.; Dubinskii, Mark

    2016-06-01

    We demonstrate a high power high efficiency Raman fiber laser pumped directly by a laser diode module at 976 nm. 80 Watts of CW power were obtained at a wavelength of 1020 nm with an optical-to-optical efficiency of 53%. When working quasi-CW, at a duty cycle of 30%, 85 W of peak power was produced with an efficiency of 60%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the 2nd Stokes. In addition, significant brightness enhancement of the pump beam is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge, this is the highest power Raman fiber laser directly pumped by laser diodes, which also exhibits a record efficiency for such a laser. In addition, it is the highest power Raman fiber laser (regardless of pumping source) demonstrated based on a GRIN fiber.

  3. Fast Decoupled Power Flow for Power System with High Voltage Direct Current Transmission Line System

    OpenAIRE

    Prechanon Kumkratug

    2010-01-01

    Problem statement: High voltage direct current transmission line system has been widely applied for control power flow in power system. The power flow analysis was the one of powerful tools by which the power system equipped was analyzed both for planning and operation strategies. Approach: This study presented the method to analyze power flow of power system consisted of HVDC system. HVDC was modeled as the complex power injections. The presented complex power injected was incorporated into ...

  4. Industrial Applications of High Power Ultrasonics

    Science.gov (United States)

    Patist, Alex; Bates, Darren

    Since the change of the millennium, high-power ultrasound has become an alternative food processing technology applicable to large-scale commercial applications such as emulsification, homogenization, extraction, crystallization, dewatering, low-temperature pasteurization, degassing, defoaming, activation and inactivation of enzymes, particle size reduction, extrusion, and viscosity alteration. This new focus can be attributed to significant improvements in equipment design and efficiency during the late 1990 s. Like most innovative food processing technologies, high-power ultrasonics is not an off-the-shelf technology, and thus requires careful development and scale-up for each and every application. The objective of this chapter is to present examples of ultrasonic applications that have been successful at the commercialization stage, advantages, and limitations, as well as key learnings from scaling up an innovative food technology in general.

  5. Methods for High Power EM Pulse Measurement

    Directory of Open Access Journals (Sweden)

    P. Fiala

    2006-12-01

    Full Text Available There are some suitable methods for the measurement of ultra-short solitary electromagnetic pulses that can be generated by high power pulsed generators. The measurement methods properties have to correspond to the fact whether we want to measure pulses of voltage, current or free-space electromagnetic wave. The need for specific measurement methods occurred by the development of high power microwave pulse generator. Applicable methods are presented in this paper. The method utilizing Faraday's induction law allows the measurement of generated current. For the same purpose the magneto-optic method can be utilized, with its advantages. For measurement of output microwave pulse of the generator the calorimetric method was designed and realized.

  6. Power Supplies for High Energy Particle Accelerators

    Science.gov (United States)

    Dey, Pranab Kumar

    2016-06-01

    The on-going research and the development projects with Large Hadron Collider at CERN, Geneva, Switzerland has generated enormous enthusiasm and interest amongst all to know about the ultimate findings on `God's Particle'. This paper has made an attempt to unfold the power supply requirements and the methodology adopted to provide the stringent demand of such high energy particle accelerators during the initial stages of the search for the ultimate particles. An attempt has also been made to highlight the present status on the requirement of power supplies in some high energy accelerators with a view that, precautionary measures can be drawn during design and development from earlier experience which will be of help for the proposed third generation synchrotron to be installed in India at a huge cost.

  7. High-Power Wind Turbine: Performance Calculation

    Directory of Open Access Journals (Sweden)

    Goldaev Sergey V.

    2015-01-01

    Full Text Available The paper is devoted to high-power wind turbine performance calculation using Pearson’s chi-squared test the statistical hypothesis on distribution of general totality of air velocities by Weibull-Gnedenko. The distribution parameters are found by numerical solution of transcendental equation with the definition of the gamma function interpolation formula. Values of the operating characteristic of the incomplete gamma function are defined by numerical integration using Weddle’s rule. The comparison of the calculated results using the proposed methodology with those obtained by other authors found significant differences in the values of the sample variance and empirical Pearson. The analysis of the initial and maximum wind speed influence on performance of the high-power wind turbine is done

  8. High-Power Distance in Culture

    Institute of Scientific and Technical Information of China (English)

    郝煦

    2016-01-01

    Different countries own different cultures.It is inevitable that the cultural difference has great impact on us. It is especially important in intercultural communication. Chinese culture is different from other cultures from western countries. It is a culture that attaches great importance to high-power distance. This concept is already rooted deeply in people's heart. It is shown in people's lives in different aspects. It is very easy to notice this trait in class, working place and family.

  9. High power microwave generation in vircators

    International Nuclear Information System (INIS)

    Vircator as high-power microwave source has recently become an intensive area of research. It is the device in which own beams fields dominate. Triod with reflex cathode investigated by H. Barkhausen and K. Kurz has been considered as low current analog of vircator. It is shown that such analogy is not correct, but parametric amplifier which is based on triod with reflex cathode is real analog of vircator. The theory of vircator is developed for broad range of electron velocities

  10. High-Efficiency and High-Power CMOS Power Amplifiers for Millimeter-Wave Applications /

    OpenAIRE

    Agah, Amir

    2013-01-01

    This research focuses on the analysis and design of stacked-FET power amplifiers for millimeter-wave applications. We analyze the loss mechanisms in the stacked-FET PA circuit to develop the fundamental bounds on PAE and output power. Two-stack power amplifiers are designed and implemented at 45 and 90GHz achieving 19 and 15.8dbm output power with 34% and 11% PAE, respectively. The gate resistance of the stacked-FET PA is demonstrated to be a dominant source of loss at high frequency. To over...

  11. High-power LEDs for plant cultivation

    Science.gov (United States)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  12. High-power LED package requirements

    Science.gov (United States)

    Wall, Frank; Martin, Paul S.; Harbers, Gerard

    2004-01-01

    Power LEDs have evolved from simple indicators into illumination devices. For general lighting applications, where the objective is to light up an area, white LED arrays have been utilized to serve that function. Cost constraints will soon drive the industry to provide a discrete lighting solution. Early on, that will mean increasing the power densities while quantum efficiencies are addressed. For applications such as automotive headlamps & projection, where light needs to be tightly collimated, or controlled, arrays of die or LEDs will not be able to satisfy the requirements & limitations defined by etendue. Ultimately, whether a luminaire requires a small source with high luminance, or light spread over a general area, economics will force the evolution of the illumination LED into a compact discrete high power package. How the customer interfaces with this new package should be an important element considered early on in the design cycle. If an LED footprint of adequate size is not provided, it may prove impossible for the customer, or end user, to get rid of the heat in a manner sufficient to prevent premature LED light output degradation. Therefore it is critical, for maintaining expected LED lifetime & light output, that thermal performance parameters be defined, by design, at the system level, which includes heat sinking methods & interface materials or methdology.

  13. Industrial Applications of High Average Power FELS

    CERN Document Server

    Shinn, Michelle D

    2005-01-01

    The use of lasers for material processing continues to expand, and the annual sales of such lasers exceeds $1 B (US). Large scale (many m2) processing of materials require the economical production of laser powers of the tens of kilowatts, and therefore are not yet commercial processes, although they have been demonstrated. The development of FELs based on superconducting RF (SRF) linac technology provides a scaleable path to laser outputs above 50 kW in the IR, rendering these applications economically viable, since the cost/photon drops as the output power increases. This approach also enables high average power ~ 1 kW output in the UV spectrum. Such FELs will provide quasi-cw (PRFs in the tens of MHz), of ultrafast (pulsewidth ~ 1 ps) output with very high beam quality. This talk will provide an overview of applications tests by our facility's users such as pulsed laser deposition, laser ablation, and laser surface modification, as well as present plans that will be tested with our upgraded FELs. These upg...

  14. Optimized VCSELs for high-power arrays

    Science.gov (United States)

    Moench, Holger; Kolb, Johanna S.; Engelhardt, Andreas P.; Gerlach, Philipp; Jaeger, Roland; Pollmann-Retsch, Jens; Weichmann, Ulrich; Witzigmann, Bernd

    2014-02-01

    High-power VCSEL systems with multi kilowatt output power require a good electro-optical efficiency at the point of operation i.e. at elevated temperature. The large number of optimization parameters can be structured in a way that separates system and assembly considerations from the minimization of electrical and optical losses in the epitaxially grown structure. Temperature dependent functions for gain parameters, internal losses and injection efficiency are derived from a fit to experimental data. The empirical description takes into account diameter dependent effects like current spreading or temperature dependent ones like voltage drops over hetero-interfaces in the DBR mirrors. By evaluating experimental measurements of the light output and voltage characteristics over a large range of temperature and diameter, wafer-characteristic parameters are extracted allowing to predict the performance of VCSELs made from this material in any array and assembly configuration. This approach has several beneficial outcomes: Firstly, it gives a general description of a VCSEL independent of its geometry, mounting and detuning, secondly, insights into the structure and the underlying physics can be gained that lead to the improvement potential of the structure and thirdly the performance of the structure in arrays and modules can be predicted. Experimental results validate the approach and demonstrate the significantly improved VCSEL efficiency and the benefit in high power systems.

  15. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions

    DEFF Research Database (Denmark)

    Basit, Abdul; Hansen, Anca Daniela; Sørensen, Poul Ejnar;

    2014-01-01

    . For this purpose, the power system model has been developed that represents the relevant dynamic features of power plants and compensates for power imbalances caused by the forecasting error during critical weather conditions. The regulating power plan, as an input time series for the developed power system model......Secure power system operation of a highly wind power integrated power system is always at risk during critical weather conditions, e.g. in extreme high winds. The risk is even higher when 50% of the total electricity consumption has to be supplied by wind power, as the case for the future Danish......, is provided by the hour-ahead power balancing model, i.e. Simulation power Balancing model (SimBa. The regulating power plan is prepared from day-ahead power production plan and hour-ahead wind power forecast. The wind power (forecasts and available) are provided by the Correlated Wind power fluctuations (Cor...

  16. The JLab high power ERL light source

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  17. Microstructured fibers for high power applications

    Science.gov (United States)

    Baggett, J. C.; Petrovich, M. N.; Hayes, J. R.; Finazzi, V.; Poletti, F.; Amezcua, R.; Broderick, N. G. R.; Richardson, D. J.; Monro, T. M.; Salter, P. L.; Proudley, G.; O'Driscoll, E. J.

    2005-10-01

    Fiber delivery of intense laser radiation is important for a broad range of application sectors, from medicine through to industrial laser processing of materials, and offers many practical system design and usage benefits relative to free space solutions. Optical fibers for high power transmission applications need to offer low optical nonlinearity and high damage thresholds. Single-mode guidance is also often a fundamental requirement for the many applications in which good beam quality is critical. In recent years, microstructured fiber technology has revolutionized the dynamic field of optical fibers, bringing with them a wide range of novel optical properties. These fibers, in which the cladding region is peppered with many small air holes, are separated into two distinct categories, defined by the way in which they guide light: (1) index-guiding holey fibers (HFs), in which the core is solid and light is guided by a modified form of total internal reflection, and (2) photonic band-gap fibers (PBGFs) in which guidance in a hollow core can be achieved via photonic band-gap effects. Both of these microstructured fiber types offer attractive qualities for beam delivery applications. For example, using HF technology, large-mode-area, pure silica fibers with robust single-mode guidance over broad wavelength ranges can be routinely fabricated. In addition, the ability to guide light in an air-core within PBGFs presents obvious power handling advantages. In this paper we review the fundamentals and current status of high power, high brightness, beam delivery in HFs and PBGFs, and speculate as to future prospects.

  18. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  19. Photovoltaics for high capacity space power systems

    Science.gov (United States)

    Flood, Dennis J.

    1988-01-01

    The anticipated energy requirements of future space missions will grow by factors approaching 100 or more, particularly as a permanent manned presence is established in space. The advances that can be expected in solar array performance and lifetime, when coupled with advanced, high energy density storage batteries and/or fuel cells, will continue to make photovoltaic energy conversion a viable power generating option for the large systems of the future. The specific technologies required to satisfy any particular set of power requirements will vary from mission to mission. Nonetheless, in almost all cases the technology push will be toward lighter weight and higher efficiency, whether of solar arrays of storage devices. This paper will describe the content and direction of the current NASA program in space photovoltaic technology. The paper will also discuss projected system level capabilities of photovoltaic power systems in the context of some of the new mission opportunities under study by NASA, such as a manned lunar base, and a manned visit to Mars.

  20. Recent progress in high power ultrafast MIXSELs

    Science.gov (United States)

    Alfieri, C. G. E.; Waldburger, D.; Link, S. M.; Gini, E.; Golling, M.; Tilma, B. W.; Mangold, M.; Keller, U.

    2016-03-01

    The modelocked integrated external-cavity surface emitting laser (MIXSEL) is the most compact technology of ultrafast semiconductor disk laser, combining in the same epitaxial structure an active region and a saturable absorber for stable and self-starting passive modelocking in a linear straight cavity. Here we present the first MIXSEL structure able to produce sub-300-fs pulses at an average output power of 235 mW and 3.35 GHz pulse repetition rate, resulting in a record-high peak power of 240 W. At 10 GHz repetition rate the same MIXSEL generated 279-fs pulses with 310 mW of average output power. An optimized antireflection coating for dispersion minimization together with a reduced field enhancement inside the structure enabled the sensible improvement and the record performances of this novel MIXSEL. Furthermore, thanks to the development of suitable saturable absorbers with fast recovery dynamics and low saturation fluence, we demonstrate the first entirely MOVPE-grown MIXSEL.

  1. Characteristics of high power LEDs at high and low temperature*

    Institute of Scientific and Technical Information of China (English)

    Guo Weling; Jia Xuejiao; Yin Fei; Cui Bifeng; Gao Wei; Liu Ying; Yan Weiwei

    2011-01-01

    The high power light emitting diodes (LEDs) based on InGaN and AlGaInP individually are tested on line at temperatures from -30 to 100 ℃. The data are fitted to measure the relationship between temperature and the properties of forward voltage, relative light intensity, wavelength, and spectral bandwidth of two different kinds of LEDs. Why these properties changed and how these changes reflected on applicatons are also analyzed and compared with each other. The results show that temperature has a great influence on the performance and application of power LEDs. For applications at low temperature, the forward voltage rising and the peak wavelength blue-shifting must be considered; and at high temperature, the relative light intensity decreasing and the peak wavelength red-shifting must be considered

  2. Optimal Operation of Plug-In Electric Vehicles in Power Systems with High Wind Power Penetrations

    DEFF Research Database (Denmark)

    Hu, Weihao; Su, Chi; Chen, Zhe;

    2013-01-01

    The Danish power system has a large penetration of wind power. The wind fluctuation causes a high variation in the power generation, which must be balanced by other sources. The battery storage based Plug-In Electric Vehicles (PEV) may be a possible solution to balance the wind power variations...... in the power systems with high wind power penetrations. In this paper, the integration of plug-in electric vehicles in the power systems with high wind power penetrations is proposed and discussed. Optimal operation strategies of PEV in the spot market are proposed in order to decrease the energy cost for PEV...... owners. Furthermore, the application of battery storage based aggregated PEV is analyzed as a regulation services provider in the power system with high wind power penetrations. The western Danish power system where the total share of annual wind power production is more than 27% of the electrical energy...

  3. Series-Tuned High Efficiency RF-Power Amplifiers

    DEFF Research Database (Denmark)

    Vidkjær, Jens

    2008-01-01

    An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits.......An approach to high efficiency RF-power amplifier design is presented. It addresses simultaneously efficiency optimization and peak voltage limitations when transistors are pushed towards their power limits....

  4. Improved Collectors for High Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Ives, R. Lawrence; Singh, Amarjit; Read, Michael; Borchard, Phillipp; Neilson, Jeff

    2009-05-20

    High power gyrotrons are used for electron cyclotron heating, current drive and parasitic mode suppression in tokamaks for fusion energy research. These devices are crucial for successful operation of many research programs around the world, including the ITER program currently being constructed in France. Recent gyrotron failures resulted from cyclic fatigue of the copper material used to fabricated the collectors. The techniques used to collect the spent beam power is common in many gyrotrons produced around the world. There is serious concern that these tubes may also be at risk from cyclic fatigue. This program addresses the cause of the collector failure. The Phase I program successfully demonstrated feasibility of a mode of operation that eliminates the cyclic operation that caused the failure. It also demonstrated that new material can provide increased lifetime under cyclic operation that could increase the lifetime by more than on order of magnitude. The Phase II program will complete that research and develop a collector that eliminates the fatigue failures. Such a design would find application around the world.

  5. Bidirectional pumped high power Raman fiber laser.

    Science.gov (United States)

    Xiao, Q; Yan, P; Li, D; Sun, J; Wang, X; Huang, Y; Gong, M

    2016-03-21

    This paper presents a 3.89 kW 1123 nm Raman all-fiber laser with an overall optical-to-optical efficiency of 70.9%. The system consists of a single-wavelength (1070nm) seed and one-stage bidirectional 976 nm non-wavelength-stabilized laser diodes (LDs) pumped Yb-doped fiber amplifier. The unique part of this system is the application of non-wavelength-stabilized LDs in high power bidirectional pumping configuration fiber amplifier via refractive index valley fiber combiners. This approach not only increases the pump power, but also shortens the length of fiber by avoiding the usage of multi-stage amplifier. Through both theoretical research and experiment, the bidirectional pumping configuration presented in this paper proves to be able to convert 976 nm pump laser to 1070 nm laser via Yb3+ transfer, which is then converted into 1123 nm Raman laser via the first-order Raman effect without the appearance of any higher-order Raman laser. PMID:27136862

  6. Survey on modern pulsed high power lasers

    International Nuclear Information System (INIS)

    The requirements to be met by lasers for particle acceleration are partially similar to those already known for fusion lasers. The power level wanted in both caes is up to 100 TW or even more. The pulse durations favourable for laser accelerators are in the range from 1 ps to 1000 ps whereas fusion lasers require several ns. The energy range for laser accelerators is thus correspondingly smaller than that for fusion lasers: 1-100 kJ versus several 100 kJ. The design criteria of lasers meeting the requirements are discussed in the following. The CO2, iodine, Nd:glass and excimer lasers are treated in detail. The high repetition rate aspect will not be particularly addressed since for the present generation of lasers the wanted rates of far above 1 Hz are completely out of scope. Moreover, for the demonstration of principle these rates are not needed. (orig./HSI)

  7. High power solid state laser modulator

    Science.gov (United States)

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  8. Multiphoton imaging with high peak power VECSELs

    Science.gov (United States)

    Mirkhanov, Shamil; Quarterman, Adrian H.; Swift, Samuel; Praveen, Bavishna B.; Smyth, Conor J. C.; Wilcox, Keith G.

    2016-03-01

    Multiphoton imaging (MMPI) has become one of thee key non-invasive light microscopy techniques. This technique allows deep tissue imaging with high resolution and less photo-damage than conventional confocal microscopy. MPI is type of laser-scanning microscopy that employs localized nonlinear excitation, so that fluorescence is excited only with is scanned focal volume. For many years, Ti: sapphire femtosecond lasers have been the leading light sources for MPI applications. However, recent developments in laser sources and new types of fluorophores indicate that longer wavelength excitation could be a good alternative for these applications. Mode-locked VECSEELs have the potential to be low cost, compact light sources for MPI systems, with the additional advantage of broad wavelength coverage through use of different semiconductor material systems. Here, we use a femtosecond fibber laser to investigate the effect average power and repetition rate has on MPI image quality, to allow us to optimize our mode-locked VVECSELs for MPI.

  9. Splitting of high power, cw proton beams

    CERN Document Server

    Facco, Alberto; Berkovits, Dan; Yamane, Isao

    2007-01-01

    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  10. Switching transients in high-frequency high-power converters using power MOSFET's

    Science.gov (United States)

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  11. Evolution of Very High Frequency Power Supplies

    DEFF Research Database (Denmark)

    Knott, Arnold; Andersen, Toke Meyer; Kamby, Peter;

    2013-01-01

    The ongoing demand for smaller and lighter power supplies is driving the motivation to increase the switching frequencies of power converters. Drastic increases however come along with new challenges, namely the increase of switching losses in all components. The application of power circuits used...

  12. Method and apparatus for improved high power impulse magnetron sputtering

    Science.gov (United States)

    Anders, Andre

    2013-11-05

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  13. High power accelerators and wastewater treatment

    International Nuclear Information System (INIS)

    The problems of environmental damage and degradation of natural resources are receiving increasing attention throughout the world. The increased population, higher living standards, increased urbanization and enhanced industrial activities of humankind are all leading to degradation of the environment. Increasing urbanization has been accompanied by significant water pollution. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. Therefore, cost-effective treatment of the municipal and industrial wastewater containing refractory pollutant with electron beam is actively studied in EB TECH Co.. Electron beam treatment of wastewater is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis (hydrated electron, OH free radical and H atom). However, to have advantages over existing processes, the electron beam process should have cost-effective and reliable in operation. Therefore high power accelerators (400kW∼1MW) are developed for environmental application and they show the decrease in the cost of construction and operation of electron beam plant. In other way to reduce the cost for wastewater treatment, radical reactions accompanied by the other processes are introduced, and the synergistic effect upon the use of combined methods such as electron beam treatment with ozonation, biological treatment and physico-chemical adsorption and others also show the improvement of the effect of electron beam treatment for the wastewater purification. (author)

  14. High Power Combiner/Divider Design for Dual Band RF Power Amplifiers

    OpenAIRE

    Flattery, Kyle; Amin, Shoaib; Rönnow, Daniel; Mahamat, Yaya; Eroglu, Abdullah

    2015-01-01

    Design of low loss with an enhanced thermal profile power divider/combiner for high power dual-band Radio Frequency (RF) power amplifier applications is given. The practical implementation, low loss and substrate characteristics make this type of combiner ideal for high power microwave applications.  The combiner operational frequencies are chosen to operate at 900 MHz and 2.14 GHz, which are common frequencies for concurrent dual band RF power amplifiers. The analytical results are verified ...

  15. The SPES High Power ISOL production target

    Science.gov (United States)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  16. Test of a High Power Target Design

    CERN Multimedia

    2002-01-01

    %IS343 :\\\\ \\\\ A high power tantalum disc-foil target (RIST) has been developed for the proposed radioactive beam facility, SIRIUS, at the Rutherford Appleton Laboratory. The yield and release characteristics of the RIST target design have been measured at ISOLDE. The results indicate that the yields are at least as good as the best ISOLDE roll-foil targets and that the release curves are significantly faster in most cases. Both targets use 20 -25 $\\mu$m thick foils, but in a different internal geometry.\\\\ \\\\Investigations have continued at ISOLDE with targets having different foil thickness and internal geometries in an attempt to understand the release mechanisms and in particular to maximise the yield of short lived isotopes. A theoretical model has been developed which fits the release curves and gives physical values of the diffusion constants.\\\\ \\\\The latest target is constructed from 2 $\\mu$m thick tantalum foils (mass only 10 mg) and shows very short release times. The yield of $^{11}$Li (half-life of ...

  17. Design concept and performance considerations for fast high power semiconductor switching for high repetition rate and high power excimer laser

    Science.gov (United States)

    Goto, Tatsumi; Kakizaki, Kouji; Takagi, Shigeyuki; Satoh, Saburoh; Shinohe, Takashi; Ohashi, Hiromichi; Endo, Fumihiko; Okamura, Katsuya; Ishii, Akira; Teranishi, Tsuneharu; Yasuoka, Koichi

    1997-07-01

    A semiconductor switching power supply has been developed, in which a novel structure semiconductor device, metal-oxide-semiconductor assisted gate-triggered thyristor (MAGT) was incorporated with a single stage magnetic pulse compression circuit (MPC). The MAGT was specially designed to directly replace thyratrons in a power supply for a high repetition rate laser. Compared with conventional high power semiconductor switching devices, it was designed to enable a fast switching, retaining a high blocking voltage and to extremely reduce the transient turn-on power losses, enduring a higher peak current. A maximum peak current density of 32 kA/cm2 and a current density risetime rate di/dt of 142 kA/(cm2×μs) were obtained at the chip area with an applied anode voltage of 1.5 kV. A MAGT switching unit connecting 32 MAGTs in series was capable of switching on more than 25 kV-300 A at a repetition rate of 5 kHz, which, coupled with the MPC, was equivalent to the capability of a high power thyratron. A high repetition rate and high power XeCl excimer laser was excited by the power supply. The results confirmed the stable laser operation of a repetition rate of up to 5 kHz, the world record to our knowledge. An average output power of 0.56 kW was obtained at 5 kHz where the shortage of the total discharge current was subjoined by a conventional power supply with seven parallel switching thyratrons, simultaneously working, for the MAGT power supply could not switch a greater current than that switched by one thyratron. It was confirmed by those excitations that the MAGT unit with the MPC could replace a high power commercial thyratron directly for excimer lasers. The switching stability was significantly superior to that of the thyratron in a high repetition rate region, judging from the discharge current wave forms. It should be possible for the MAGT unit, in the future, to directly switch the discharge current within a rise time of 0.1 μs with a magnetic assist.

  18. Radiation of long and high power arcs

    Science.gov (United States)

    Cressault, Y.; Bauchire, J. M.; Hong, D.; Rabat, H.; Riquel, G.; Sanchez, F.; Gleizes, A.

    2015-10-01

    The operators working on electrical installations of low, medium and high voltages can be accidentally exposed to short-circuit arcs ranging from a few kA to several tens of kA. To protect them from radiation, according to the exposure limits, we need to characterize the radiation emitted by the powerful arc. Therefore, we have developed a general experimental and numerical study in order to estimate the spectral irradiance received at a given distance from the arc. The experimental part was based on a very long arc (up to 2 m) with high ac current (between 4 and 40 kA rms, duration 100 ms) using 3 kinds of metallic contacts (copper, steel and aluminium). We measured the irradiance received 10m from the axis of the arc, and integrated on 4 spectral intervals corresponding to the UV, visible, IRA  +  B and IRC. The theoretical part consisted of calculating the radiance of isothermal plasmas in mixtures of air and metal vapour, integrated over the same spectral intervals as defined in the experiments. The comparison between the theoretical and experimental results has allowed the defining of three isothermal radiation sources whose combination leads to a spectral irradiation equivalent to the experimental one. Then the calculation allowed the deduction of the spectral description of the irradiance over all the wavelength range, between 200 nm and 20 μm. The final results indicate that the influence of metal is important in the visible and UVA ranges whereas the IR radiation is due to the air plasma and surrounding hot gas and fumes.

  19. High power microwave system based on power combining and pulse compression of conventional klystrons

    CERN Document Server

    Xiong, Zheng-Feng; Cheng, Cheng; Ning, Hui; Tang, Chuan-Xiang

    2015-01-01

    A high power microwave system based on power combining and pulse compression of conventional klystrons is introduced in this paper. This system mainly consists of pulse modulator, power combiner, driving source of klystrons and pulse compressor. A solid state induction modulator and pulse transformer were used to drive two 50 MW S-band klystrons with pulse widths 4 {\\mu}s in parallel, after power combining and pulse compression, the tested peak power had reached about 210 MW with pulse widths nearly 400 ns at 25 Hz, while the experimental maximum output power was just limited by the power capacity of loads. This type of high power microwave system has widely application prospect in RF system of large scale particle accelerators, high power radar transmitters and high level electromagnetic environment generators.

  20. High Precision Current Measurement for Power Converters

    CERN Document Server

    Cerqueira Bastos, M

    2015-01-01

    The accurate measurement of power converter currents is essential to controlling and delivering stable and repeatable currents to magnets in particle accelerators. This paper reviews the most commonly used devices for the measurement of power converter currents and discusses test and calibration methods.

  1. High Precision Current Measurement for Power Converters

    OpenAIRE

    Bastos, M. Cerqueira

    2016-01-01

    The accurate measurement of power converter currents is essential to controlling and delivering stable and repeatable currents to magnets in particle accelerators. This paper reviews the most commonly used devices for the measurement of power converter currents and discusses test and calibration methods.

  2. High-power converters for space applications

    Science.gov (United States)

    Park, J. N.; Cooper, Randy

    1991-01-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  3. High-power converters for space applications

    Science.gov (United States)

    Park, J. N.; Cooper, Randy

    1991-06-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  4. Power Law Decay in High Intensity Turbulence

    Science.gov (United States)

    Koster, Timothy; Puga, Alejandro; Nguyen, Baolong; Larue, John

    2015-11-01

    In the study reported herein, the region where the power decay law is applicable for active grid generated turbulence is found by an iterative approach which determines the largest range where the ratio of the dissipation from the power law and the dissipation from the temporal velocity derivative are unity. The square of the Taylor microscale, as noted by Batchelor (1953), is linearly related to downstream distance relative to the virtual origin and can be used in a straightforward manner to find the virtual origin. The fact that the decay of downstream velocity variance is described by a power law is shown to imply power law behavior for various other parameters such as the dissipation, the integral length scale, the Taylor microscale, the Kolmogorov microscale and the Taylor Reynolds number and that there is an algebraic relationship between the various power law exponents. Results are presented for various mean velocities to show the decay exponent as a function of the Taylor Reynolds number.

  5. Advanced high-power transfer through rotary interfaces

    Science.gov (United States)

    Jacobson, P.

    1984-01-01

    A roll-ring design that is uniquely suited for rotary signal/power transfer in space applications is described. Two high-power configurations of the roll ring were developed. Present lab-proven hardware is available with power transfer capability of 2 kW at 200 amps and higher power units with 100-kW capability are in the design stage. Theoretical analysis indicated that power levels of kW are possible.

  6. An overview of the reliability prediction related aspects of high power IGBTs in wind power applications

    DEFF Research Database (Denmark)

    Busca, Christian; Teodorescu, Remus; Blaabjerg, Frede;

    2011-01-01

    high power Insulated Gate Bipolar Transistors (IGBTs) in the context of wind power applications. At first the latest developments and future predictions about wind energy are briefly discussed. Next the dominant failure mechanisms of high power IGBTs are described and the most commonly used lifetime...... prediction models are reviewed. Also the concept of Accelerated Life Testing (ALT) is briefly reviewed....

  7. High-power microwaves for defense and accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Manheimer, W. (Plasma Physics Division, Naval Research Laboratory, Washington, DC 20337 (United States))

    1992-03-11

    This paper discusses high-power microwaves for application to the Defense Department and to the powering of large accelerators. The microwave sources discussed are the SLAC klystron, the relativistic klystron, the magnetron and the vircator.

  8. Advanced Capacitors for High-Power Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the consumer and industrial requirements for compact, high-power-density, electrical power systems grow substantially over the next decade; there will be a...

  9. High Power Photonic Crystal Fibre Raman Laser

    Institute of Scientific and Technical Information of China (English)

    YAN Pei-Guang; RUAN Shuang-Chen; YU Yong-Qin; GUO Chun-Yu; GUO Yuan; LIU Cheng-Xiang

    2006-01-01

    A cw Raman laser based on a 100-m photonic crystal fibre is demonstrated with up to 3.8 W output power at the incident pump power of 12 W, corresponding to an optical-to-optical efficiency of about 31.6%. The second order Stokes light, which is firstly reported in a cw photonic crystal fibre Raman laser, is obtained at 1183nm with an output power of 1.6 W and a slope efficiency of about 45.7%.

  10. High power densities from high-temperature material interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  11. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  12. A New Power Combining and Outphasing Modulation System for High-Efficiency Power Amplification

    OpenAIRE

    Perreault, David J.

    2010-01-01

    This paper describes a new power combining and outphasing system that provides both high efficiency and linear output control. Whereas conventional outphasing systems utilize two power amplifiers, the system introduced here combines power from four or more amplifiers. The proposed technique overcomes the loss and reactive loading problems of previous outphasing systems. It provides ideally lossless power combining, along with resistive loading of the individual power amplifiers over a very wi...

  13. High power microwave system based on power combining and pulse compression of conventional klystrons

    OpenAIRE

    Xiong, Zheng-Feng; Chen, Huai-Bi; Cheng, Cheng; Ning, Hui; Tang, Chuan-Xiang

    2015-01-01

    A high power microwave system based on power combining and pulse compression of conventional klystrons is introduced in this paper. This system mainly consists of pulse modulator, power combiner, driving source of klystrons and pulse compressor. A solid state induction modulator and pulse transformer were used to drive two 50 MW S-band klystrons with pulse widths 4 {\\mu}s in parallel, after power combining and pulse compression, the tested peak power had reached about 210 MW with pulse widths...

  14. Controlled Compact High Voltage Power Lines

    Directory of Open Access Journals (Sweden)

    Postolati V.

    2016-04-01

    Full Text Available Nowadays modern overhead transmission lines (OHL constructions having several significant differences from conventional ones are being used in power grids more and more widely. Implementation of compact overhead lines equipped with FACTS devices, including phase angle regulator settings (compact controlled OHL, appears to be one of the most effective ways of power grid development. Compact controlled AC HV OHL represent a new generation of power transmission lines embodying recent advanced achievements in design solutions, including towers and insulation, together with interconnection schemes and control systems. Results of comprehensive research and development in relation to 110–500kV compact controlled power transmission lines together with theoretical basis, substantiation, and methodological approaches to their practical application are presented in the present paper.

  15. Unique Power Dense, Configurable, Robust, High-Voltage Power Supplies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Princeton Power will develop and deliver three small, lightweight 50 W high-voltage power supplies that have a configurable output voltage range from 500 to 50...

  16. Marine applications of power supply and conditioning interfaces for high power pulse devices

    OpenAIRE

    Rutan, Ronald J.

    2002-01-01

    Numerous high power pulse devices are being considered for marine applications, particularly military vessels to include Electro Magnetic Aircraft Launching System, Electro Thermal Gun (ETG), Particle Beam Weapons, High Powered Lasers, and Rail Guns which are directly considered in this thesis. Currently marine vessels do not have the power generation capability to deliver the massive power over the short duration required. The weight, volume, and environment constraints inherent in marine ve...

  17. Novel DC/DC Converters For High-Power Distributed Power Systems

    OpenAIRE

    Francisco Venustiano, Canales Abarca

    2003-01-01

    One of the requirements for the next generation of power supplies for distributed power systems (DPSs) is to achieve high power density with high efficiency. In the traditional front-end converter based on the two-stage approach for high-power three-phase DPSs, the DC-link voltage coming from the power factor correction (PFC) stage penalizes the second-stage DC/DC converter. This DC/DC converter not only has to meet the characteristics demanded by the load, but also must process energy w...

  18. High power single-frequency Innoslab amplifier.

    Science.gov (United States)

    Han, Ke-Zhen; Ning, Jian; Zhang, Bai-Tao; Wang, Yi-Ran; Zhang, Hai-Kun; Nie, Hong-Kun; Sun, Xiao-Li; He, Jing-Liang

    2016-07-10

    A laser diode array (LDA) end-pumped continuous-wave single-frequency Innoslab amplifier has been demonstrated. The Gaussian ray bundle method was used to model the light propagation in the Innoslab amplifier for the first time to the best of our knowledge. With discrete reflectors, the maximum output of 60 W with a linewidth of 44 MHz was achieved under the pump power of 245 W, corresponding to the optical-optical efficiency of 24.5%. The beam quality factor M2 at the output power of 51 W in the horizontal and vertical direction was measured to be 1.4 and 1.3, respectively. The long-term power instability in 2 h was less than 0.25%. PMID:27409308

  19. Coordinated Frequency Control of Wind Turbines in Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Tarnowski, Germán Claudio

    The integration of large amounts of wind power in power systems presents huge challenges. In particular, with the increase of wind power generation, more regulation reserves would be necessary, the capability of the power system to offer conventional regulating power would be reduced and the dyna......The integration of large amounts of wind power in power systems presents huge challenges. In particular, with the increase of wind power generation, more regulation reserves would be necessary, the capability of the power system to offer conventional regulating power would be reduced...... stability and high wind power penetration or in islanding situations are addressed. The review of relevant theoretical concepts is supported by measurements carried out on an isolated power system characterized by high wind power penetration. Different mathematical and simulation models are used in several...... particular views. These models were developed and verified during this work, basedaround a particular manufacturer’s wind turbine and on said isolated power system withwind power. The capability of variable speed wind turbines for providing Inertial Response is analysed. To perform this assessment, a control...

  20. Modelling aluminium wire bond reliability in high power OMP devices

    NARCIS (Netherlands)

    Kregting, R.; Yuan, C.A.; Xiao, A.; Bruijn, F. de

    2011-01-01

    In a RF power application such as the OMP, the wires are subjected to high current (because of the high power) and high temperature (because of the heat from IC and joule-heating from the wire itself). Moreover, the wire shape is essential to the RF performance. Hence, the aluminium wire is preferre

  1. Advanced pulsed and CW high-power fiber lasers

    OpenAIRE

    Nilsson, J.; Grudinin, A.B.; Turner, P.W.

    2000-01-01

    We examine design issues for high-energy pulsed as well as for high-power cw fiber lasers. Power handling and pump scalability are primary issues for kilowatt fiber lasers. Special core designs are needed for high-energy pulse generation.

  2. High specific power flexible integrated IMM photovoltaic blanket Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Originally designed for space applications, multi-junction solar cells have a high overall power conversion efficiency (>30%) which compares favorably to...

  3. High-Power Electroabsorption Modulator Using Intrastep Quantum Well

    Institute of Scientific and Technical Information of China (English)

    CHENG Yuan-Bing; PAN Jiao-Qing; ZHOU Fan; ZHU Hong-Liang; ZHAO Ling-Juan; WANG Wei

    2007-01-01

    An electroabsorption modulator using the intrastep quantum well (IQW) active region is fabricated for optical network systems. The strain-compensated InGaAsP/InGaAsP IQW shows good material quality and improved modulation properties, high extinction ratio efficiency 10 dB/V and low capacitance (< 0.42 pF), with which an ultra high frequency (> 15 GHz) can be obtained. High-speed measurement under high-power excitation shows no power saturation up to excitation power of 21 dBm. To our knowledge, the input optical power is the highest reported for multi-quantum well EAMs without heat sinks.

  4. High Efficiency Hall Thruster Discharge Power Converter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek leveraged previous, internally sponsored, high power, Hall thruster discharge converter development which allowed it to design, build, and test new printed...

  5. High-voltage power supply based on piezoelectric transformer

    OpenAIRE

    Kryvoshei, Dmytro; Paerand, Yuriy

    2012-01-01

    High-voltage power supply based on piezoelectric transformer instead of traditional electromagnetic transformer is offered in the paper. The structure of the power supply is represented. The power supply operation principle is described, the diagrams that illustrate its operation are given.

  6. High Power PCU For Alphabus: PSR100V

    Science.gov (United States)

    Soubrier, L.; Trehet, E.

    2011-10-01

    Astrium, supported by ESA, has developed and qualified a new Power Conditioning Unit (PCU) in the frame of the Alphabus development for high power communications satellites. Thanks to its modular architecture, the PSR100V is able to supply 100 V power bus from 8kW to 20kW with optimized recurring costs.

  7. High power gas laser - Applications and future developments

    Science.gov (United States)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  8. High Performance Power Module for Hall Effect Thrusters

    Science.gov (United States)

    Pinero, Luis R.; Peterson, Peter Y.; Bowers, Glen E.

    2002-01-01

    Previous efforts to develop power electronics for Hall thruster systems have targeted the 1 to 5 kW power range and an output voltage of approximately 300 V. New Hall thrusters are being developed for higher power, higher specific impulse, and multi-mode operation. These thrusters require up to 50 kW of power and a discharge voltage in excess of 600 V. Modular power supplies can process more power with higher efficiency at the expense of complexity. A 1 kW discharge power module was designed, built and integrated with a Hall thruster. The breadboard module has a power conversion efficiency in excess of 96 percent and weighs only 0.765 kg. This module will be used to develop a kW, multi-kW, and high voltage power processors.

  9. Trends in high-power ultrafast lasers

    Science.gov (United States)

    Saraceno, Clara; Emaury, Florian; Diebold, Andreas; Graumann, Ivan; Golling, Matthias; Keller, Ursula

    2016-05-01

    Ultrafast laser sources are one of the main achievements of the past decades. Finding new avenues to obtain higher average powers and pulse energies from these sources is currently a topic of important research efforts both for scientific and industrial applications. SESAM modelocked thin-disk lasers are one of the most promising laser technology to reach this goal from table-top systems: recently, average powers of 275 W and pulse energies of 80 μJ were demonstrated directly from a modelocked oscillators without additional external amplification. In this presentation, we will review the current state-of-the art of such table-top systems and present guidelines for future kilowatt-class systems.

  10. A Dynamic Programming based method for optimizing power system restoration with high wind power penetration

    DEFF Research Database (Denmark)

    Hu, Rui; Hu, Weihao; Li, Pengfei;

    2016-01-01

    to its stable limits. Once the blackout happens, a well-designed restoration strategy is significant. This paper focuses on how to ameliorate the power system restoration procedures to adapt the high wind power penetration and how to take full advantages of the wind power plants during the...... and relatively low cost. Thus, many countries are increasing the wind power penetration in their power system step by step, such as Denmark, Spain and Germany. The incremental wind power penetration brings a lot of new issues in operation and programming. The power system sometimes will operate close...... restoration. In this paper, the possibility to exploit the stochastic wind power during restoration was discussed, and a Dynamic Programming (DP) method was proposed to make wind power contribute in the restoration rationally as far as possible. In this paper, the method is tested and verified by a modified...

  11. Multidisciplinary Modelling Tools for Power Electronic Circuits:with Focus on High Power Modules

    OpenAIRE

    Bahman, Amir Sajjad

    2015-01-01

    This thesis presents multidisciplinary modelling techniques in a Design For Reliability (DFR) approach for power electronic circuits. With increasing penetration of renewable energy systems, the demand for reliable power conversion systems is becoming critical. Since a large part of electricity is processed through power electronics, highly efficient, sustainable, reliable and cost-effective power electronic devices are needed. Reliability of a product is defined as the ability to perform wit...

  12. Measurement of H!gh Power Current-Stabilized Power Supply with High Stability

    Institute of Scientific and Technical Information of China (English)

    YanHuaihai; FengXiuming; BaiZhen; ZhouZhongzu

    2003-01-01

    The DC power supply system of HIRFL has been upgraded since 1999, these new power supplies are used mainly as high frequency ZVS soft-switching converters or thyristor phase-controlled rectifiers. Each power supply is strictly tested before being put into operation, especially for long-term current stability, current ripple, efficiency, repeatability, EMI and so on. The tested results indicated that performances of power supplies satisfy requirement of HIRFL.

  13. A portable high power microwave source with permanent magnets

    Science.gov (United States)

    Li, Wei; Zhang, Jun; Li, Zhi-qiang; Yang, Jian-Hua

    2016-06-01

    A high power microwave source with permanent magnets is proposed in this paper. The source has the length 330 mm, maximum diameter 350 mm, and total weight 50 kg, including 25 kg of permanent magnets. 1 GW of microwave power with Gaussian radiation pattern and 24% of microwave power generation efficiency in a pulse duration of 75 ns are obtained in the experiment. Operating frequency of the source is 2.32 GHz. Such a small size, light weight, and highly stable in operation source will be used in portable repetitive high power microwave generation systems.

  14. Self-commutating converters for high power applications

    CERN Document Server

    Arrillaga, Jos; Watson, Neville R; Murray, Nicholas J

    2010-01-01

    For very high voltage or very high current applications, the power industry still relies on thyristor-based Line Commutated Conversion (LCC), which limits the power controllability to two quadrant operation. However, the ratings of self-commutating switches such as the Insulated-Gate Bipolar Transistor (IGBT) and Integrated Gate-Commutated Thyristor (IGCT), are reaching levels that make the technology possible for very high power applications. This unique book reviews the present state and future prospects of self-commutating static power converters for applications requiring either ultr

  15. Development of high coherence high power 193nm laser

    Science.gov (United States)

    Tanaka, Satoshi; Arakawa, Masaki; Fuchimukai, Atsushi; Sasaki, Yoichi; Onose, Takashi; Kamba, Yasuhiro; Igarashi, Hironori; Qu, Chen; Tamiya, Mitsuru; Oizumi, Hiroaki; Ito, Shinji; Kakizaki, Koji; Xuan, Hongwen; Zhao, Zhigang; Kobayashi, Yohei; Mizoguchi, Hakaru

    2016-03-01

    We have been developing a hybrid 193 nm ArF laser system that consists of a solid state seeding laser and an ArF excimer laser amplifier for power-boosting. The solid state laser consists of an Yb-fiber-solid hybrid laser system and an Er-fiber laser system as fundamentals, and one LBO and three CLBO crystals for frequency conversion. In an ArF power amplifier, the seed laser passes through the ArF gain media three times, and an average power of 110 W is obtained. As a demonstration of the potential applications of the laser, an interference exposure test is performed.

  16. 29 W High Power CW Supercontinuum Source

    CERN Document Server

    Cumberland, B A; Popov, S V; Taylor, J R

    2008-01-01

    A 29 W CW supercontinuum spanning from 1.06 to 1.67 um is generated in a short length of PCF with two zero dispersion wavelengths. The continuum has the highest spectral power density, greater than 50 mW/nm up to 1.4 um, reported to date. The use of a short length of PCF enables the continuum to expand beyond the water loss at 1.4 um. The dynamics of the continuum evolution are studied experimentally and numerically with close attention given to the effects of the water loss and the second zero dispersion wavelength.

  17. Laser Cooled High-Power Fiber Amplifier

    OpenAIRE

    Nemova, Galina

    2009-01-01

    A theoretical model for laser cooled continuous-wave fiber amplifier is presented. The amplification process takes place in the Tm3+-doped core of the fluoride ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) glass fiber. The cooling process takes place in the Yb3+:ZBLAN fiber cladding. It is shown that for each value of the pump power and the amplified signal there is a distribution of the concentration of the Tm3+ along the length of the fiber amplifier, which provides its athermal operation. The influence ...

  18. Improved cutting performance in high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    2003-01-01

    Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described.......Recent results in high power laser cutting especially with focus on cutting of mild grade steel types for shipbuilding are described....

  19. In-volume heating using high-power laser diodes

    NARCIS (Netherlands)

    Denisenkov, V.S.; Kiyko, V.V.; Vdovin, G.V.

    2015-01-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface heatin

  20. 1.55 Micron High Peak Power Fiber Amplifier Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, we propose to demonstrate and build a 1.55 micron single frequency high energy and high peak power fiber amplifier by developing an innovative...

  1. High density operation for reactor-relevant power exhaust

    Science.gov (United States)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  2. High-power microwave diplexers for advanced ECRH systems

    International Nuclear Information System (INIS)

    In electron cyclotron resonance heating systems, high-power multiplexers can be employed as power combiners, adjustable power dividers, fast switches to toggle the power between two launchers, as well as frequency sensitive directional couplers to combine heating and diagnostic applications on one launcher. In the paper, various diplexer designs for quasi-optical and corrugated waveguide transmission systems are discussed. Numerical calculations, low-power tests and especially high-power experiments performed at the ECRH system of W7-X are shown, which demonstrate the capability of these devices. Near term plans for applications on ASDEX Upgrade and FTU are presented. Based on the present results, options for implementation of power combiners and fast switches in the ECRH system of ITER is discussed.

  3. Low reflectance high power RF load

    Energy Technology Data Exchange (ETDEWEB)

    Ives, R. Lawrence; Mizuhara, Yosuke M.

    2016-02-02

    A load for traveling microwave energy has an absorptive volume defined by cylindrical body enclosed by a first end cap and a second end cap. The first end cap has an aperture for the passage of an input waveguide with a rotating part that is coupled to a reflective mirror. The inner surfaces of the absorptive volume consist of a resistive material or are coated with a coating which absorbs a fraction of incident RF energy, and the remainder of the RF energy reflects. The angle of the reflector and end caps is selected such that reflected RF energy dissipates an increasing percentage of the remaining RF energy at each reflection, and the reflected RF energy which returns to the rotating mirror is directed to the back surface of the rotating reflector, and is not coupled to the input waveguide. Additionally, the reflector may have a surface which generates a more uniform power distribution function axially and laterally, to increase the power handling capability of the RF load. The input waveguide may be corrugated for HE11 mode input energy.

  4. High performance magnet power supply optimization

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, L.T.

    1988-01-01

    The power supply system for the joint LBL--SLAC proposed accelerator PEP provides the opportunity to take a fresh look at the current techniques employed for controlling large amounts of dc power and the possibility of using a new one. A basic requirement of +- 100 ppM regulation is placed on the guide field of the bending magnets and quadrupoles placed around the 2200 meter circumference of the accelerator. The optimization questions to be answered by this paper are threefold: Can a firing circuit be designed to reduce the combined effects of the harmonics and line voltage combined effects of the harmonics and line voltage unbalance to less than 100 ppM in the magnet field. Given the ambiguity of the previous statement, is the addition of a transistor bank to a nominal SCR controlled system the way to go or should one opt for an SCR chopper system running at 1 KHz where multiple supplies are fed from one large dc bus and the cost--performance evaluation of the three possible systems.

  5. 3-D Printed High Power Microwave Magnetrons

    Science.gov (United States)

    Jordan, Nicholas; Greening, Geoffrey; Exelby, Steven; Gilgenbach, Ronald; Lau, Y. Y.; Hoff, Brad

    2015-11-01

    The size, weight, and power requirements of HPM systems are critical constraints on their viability, and can potentially be improved through the use of additive manufacturing techniques, which are rapidly increasing in capability and affordability. Recent experiments on the UM Recirculating Planar Magnetron (RPM), have explored the use of 3-D printed components in a HPM system. The system was driven by MELBA-C, a Marx-Abramyan system which delivers a -300 kV voltage pulse for 0.3-1.0 us, with a 0.15-0.3 T axial magnetic field applied by a pair of electromagnets. Anode blocks were printed from Water Shed XC 11122 photopolymer using a stereolithography process, and prepared with either a spray-coated or electroplated finish. Both manufacturing processes were compared against baseline data for a machined aluminum anode, noting any differences in power output, oscillation frequency, and mode stability. Evolution and durability of the 3-D printed structures were noted both visually and by tracking vacuum inventories via a residual gas analyzer. Research supported by AFOSR (grant #FA9550-15-1-0097) and AFRL.

  6. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems, Phase II Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems with power levels of 30 to ≥100 kWe will be needed for planetary surface bases. Development of high temperature, high efficiency...

  7. Design and development of power supplies for high power IOT based RF amplifier

    International Nuclear Information System (INIS)

    Design, development, circuit topology, function of system components and key system specifications of different power supplies for biasing electrodes of Thales Inductive Output Tube (IOT) based high power RF amplifier are presented in this paper. A high voltage power supply (-30 kV, 3.2A dc) with fast (∼microsecond) crowbar protection circuit is designed, developed and commissioned at VECC for testing the complete setup. Other power supplies for biasing grid electrode (300V, 0.5A dc) and Ion Pump (3 kV, 0.1mA dc) of IOT are also designed, developed and tested with actual load. A HV Deck (60kV Isolation) is specially designed in house to place these power supplies which are floating at 30 kV. All these power supplies are powered by an Isolation Transformer (5 kVA, 60 kV isolation) designed and developed in VECC. (author)

  8. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  9. High efficiency fuel cell/advanced turbine power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Morehead, H. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  10. Overview on the high power excimer laser technology

    Science.gov (United States)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  11. High voltage, magnetically switched pulsed power systems

    International Nuclear Information System (INIS)

    The principles of magnetic switching are briefly described. Then the results of experiments on the following substantive topics for magnetic switching are presented: material properties and how they relate to switch performance, risetime limitations, and core insulation. Magnetic switching is then evaluated from a system perspective. An idealized pulse power system with 200 kJ or stored energy and a 40 ns output pulse is examined. The multi-megavolt electrical insulation requirements impose limitations on the switches. The cost of the magnetically switched system exceeds the cost of the conventional superpower generator system by up to 75%. The potential for reliability, reproducibility, and repetitive pulse capability must be evaluated for each application to offset the increased cost

  12. High power UV and VUV pulsed excilamps

    Science.gov (United States)

    Tarasenko, V.; Erofeev, M.; Lomaev, M.; Rybka, D.

    2008-07-01

    Emission characteristics of a nanosecond discharge in inert gases and its halogenides without preionization of the gap from an auxiliary source have been investigated. A volume discharge, initiated by an avalanche electron beam (VDIAEB) was realized at pressures up to 12 atm. In xenon at pressure of 1.2 atm, the energy of spontaneous radiation in the full solid angle was sim 45 mJ/cm^3, and the FWHM of a radiation pulse was sim 110 ns. The spontaneous radiation power rise in xenon was observed at pressures up to 12 atm. Pulsed radiant exitance of inert gases halogenides excited by VDIAEB was sim 4.5 kW/cm^2 at efficiency up to 5.5 %.

  13. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes;

    2016-01-01

    Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three-Port-Converters respec......Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three......-Port-Converters respectively for 1-10Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power for the 10 Wp version. Furthermore, a modelling tool for L2L products has been developed and a laboratory for feeding in component data not available in the datasheets to the model is described....

  14. Designing high efficient solar powered lighting systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes;

    Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three-Port-Converters respec......Some major challenges in the development of L2L products is the lack of efficient converter electronics, modelling tools for dimensioning and furthermore, characterization facilities to support the successful development of the products. We report the development of 2 Three......-Port-Converters respectively for 1-10Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power for the 10 Wp version. Furthermore, a modelling tool for L2L products has been developed and a laboratory for feeding in component data not available in the datasheets to the model is described....

  15. SOLAR POWERING OF HIGH EFFICIENCY ABSORPTION CHILLER

    Energy Technology Data Exchange (ETDEWEB)

    Randy C. Gee

    2004-11-15

    This is the Final Report for two solar cooling projects under this Cooperative Agreement. The first solar cooling project is a roof-integrated solar cooling and heating system, called the Power Roof{trademark}, which began operation in Raleigh, North Carolina in late July 2002. This system provides 176 kW (50 ton) of solar-driven space cooling using a unique nonimaging concentrating solar collector. The measured performance of the system during its first months of operation is reported here, along with a description of the design and operation of this system. The second solar cooling system, with a 20-ton capacity, is being retrofit to a commercial office building in Charleston, South Carolina but has not yet been completed.

  16. Experiments on high power EB evaporation of niobium

    International Nuclear Information System (INIS)

    Full text: The versatility of electron beam evaporation makes the deposition of many new and unusual materials possible. This technique offers freedom from contamination and precise control. High power electron guns are especially used for obtaining high evaporation rates for large area coatings. This paper deals with the coating experiments carried out on an indigenously developed high power strip electron gun with niobium as evaporant at 40 kW on S.S. substrate. The practical problems of conditioning the gun and venting the vacuum system after the high power operation are also discussed. The coating rate was calculated by weight difference method

  17. High power photoconductive semiconductor switches treated with amorphic diamond coatings

    International Nuclear Information System (INIS)

    Our recent efforts have resulted in implementation and demonstration of several intense photoconductively switched stacked Blumlein pulsers producing high power output pulses with risetimes as fast as 200 ps. A single GaAs photoconductive switch triggered with a low power laser diode array commutates these devices. During the avalanche-mode photoconductive switching of these pulsers at high powers, current filamentation associated with the high gain GaAs switches produces such high current density that switches are damaged near the metal-semiconductor interface and the lifetime is limited. This report presents progress toward improving the switch operation and lifetime by advanced treatments with the amorphic diamond coatings

  18. Pulsed power drivers for ICF and high energy density physics

    International Nuclear Information System (INIS)

    This document presents the advantages of the use of nanosecond pulsed power for the generating of high energy and high power at a low cost and high efficiency. The Sandia National Laboratories Particle-beam Fusion program applies these pulse techniques to the Inertial Fusion Energy national goal. Pulsed power has also been used to generate intense, high-energy X-ray sources for application to X-ray laser and radiation effects science research. Results of experiments performed on the Saturn accelerator as well as a design concept for the proposed Jupiter facility are also presented. (TEC). 16 refs., 8 figs

  19. High power industrial picosecond laser from IR to UV

    Science.gov (United States)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  20. Application of parallel connected power-MOSFET elements to high current d.c. power supply

    International Nuclear Information System (INIS)

    The low aspect ratio spherical torus (ST), which has single turn toroidal field coil, requires the extremely high d.c. current like as 20 MA to energize the coil. Considering the ratings of such extremely high current and low voltage, power-MOSFET element is employed as the switching device for the a.c./d.c. converter of power supply. One of the advantages of power-MOSFET element is low on-state resistance, which is to meet the high current and low voltage operation. Recently, the capacity of power-MOSFET element has been increased and its on-state resistance has been decreased, so that the possibility of construction of high current and low voltage a.c./d.c. converter with parallel connected power-MOSFET elements has been growing. With the aim of developing the high current d.c. power supply using power-MOSFET, the basic characteristics of parallel operation with power-MOSFET elements are experimentally investigated. And, the synchronous rectifier type and the bi-directional self commutated type a.c./d.c. converters using parallel connected power-MOSFET elements are proposed

  1. RF Couplers for High Power Superconducting Ion Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rusnak, B

    2005-09-23

    Superconducting Radio Frequency (SRF) accelerating structures present a unique design environment for the high-power radio frequency (RF) antennas that deliver power to the cavity to establish the electromagnetic fields and ultimately accelerate beam. These RF couplers need to reliably transmit high power RF with low reflection and insertion loss, while simultaneously maintaining cavity vacuum, minimizing heat leak into the cryomodule, and not adversely affecting the RF cavity or cryomodule mechanics upon cool down. While a majority of research and development (R&D) on SRF couplers have been focused on electron accelerators, advances made in high-power ion accelerator design for the Spallation Neutron Source (SNS), the Japan Proton Accelerator Research Complex (JPARC), and the Rare Isotope Accelerator (RIA) have necessitated developing high-power RF couplers for these applications as well. This paper examines the present state of RF coupler development and R&D for superconducting ion accelerator applications.

  2. Power start up of the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    After accomplishing the physical start-up of the reactor, the power start-up was carried out in February 1984. The power of the reactor has reached: 10 KW on 6/2/1984, 100 KW on 7/2/1984, 200 KW and 300 KW on 8/2/1984; 400 KW and nominal power 500 KW on 9/2/1984. The reactivity temperature coefficient and the xenon poisoning were determined. 3 figs., 12 tabs

  3. A Low Power Low Voltage High Performance CMOS Current Mirror

    OpenAIRE

    Sirish Rao,; Sampath Kumar V

    2015-01-01

    The current mirrors are one of the most important circuits in designing the analog and mixed-mode circuit. A low power and low voltage high-performance CMOS current mirror with optimized input and output resistance are presented in this paper. SPICE simulations confirm the high-performance CMOS current mirror with power supply close to the threshold voltage of the transistor. In this paper, for achieving the low input resistance and a very high output resistance, the combination o...

  4. GaN High Power Devices

    Energy Technology Data Exchange (ETDEWEB)

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHI,G.C.; CHU,S.N.G.

    2000-07-17

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers, GaN/AlGaN heterojunction bipolar transistors, GaN heterostructure and metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  5. ACIGA's high optical power test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ju, L [School of Physics, University of Western Australia, Perth (Australia); Aoun, M [Computer and Information Science, Edith Cowan University, Perth (Australia); Barriga, P [School of Physics, University of Western Australia, Perth (Australia)] [and others

    2004-03-07

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with {approx}10{sup 6} W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties.

  6. Primary reserve studies for high wind power penetrated systems

    DEFF Research Database (Denmark)

    Das, Kaushik; Altin, Müfit; Hansen, Anca Daniela;

    2015-01-01

    With high penetration of non-synchronous wind generations replacing conventional generators, the inertia of power system will reduce. A large disturbance in such a power system can cause faster frequency change in this power system and might invoke emergency defence strategies like underfrequency....... This paper further explores the capabilities of wind turbines to provide support during underfrequency to prevent load shedding. Maximum wind penetration possible without causing load shedding following a large disturbance is also investigated....

  7. Benefits of Nanostructuring Electrodes for High-Energy and High-Power Lithium Batteries

    Institute of Scientific and Technical Information of China (English)

    Joachim; Maier

    2007-01-01

    1 Results One of the greatest challenges for our society is providing powerful electrochemical energy storage devices with both high energy and high power densities. Rechargeable lithium-based batteries are amongst the most promising candidates in terms of energy density,the achievement of high power density is hindered by kinetic problems of the electrode materials.This contribution that emphasizes the power of nanostructuring for electrodes in lithium-based batteries,deals with several nanostructured ...

  8. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  9. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  10. High power CO lasers and their application potential

    Science.gov (United States)

    Maisenhaelder, F.

    1989-06-01

    Industrial applications of high-power CO lasers are examined. The characteristics specific to CO lasers are briefly reviewed, and applications where the CO laser seems to promise wavelength-related advantages over other lasers are examined. Experimentally demonstrated applications in the drilling and cutting of metals, isotope separation and photochemistry, and laser medicine are addressed, Developments in the high power range in Japan, Soviet Union, and Germany are described, and a comparison is made between high power CO and CO2 gas lasers for civil applications.

  11. High performance protection circuit for power electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, PO 5 Box 700, 400293 Cluj-Napoca (Romania)

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  12. High performance protection circuit for power electronics applications

    International Nuclear Information System (INIS)

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit

  13. High performance protection circuit for power electronics applications

    Science.gov (United States)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  14. MGX: a high-power, pulsed microwave generator development project

    Energy Technology Data Exchange (ETDEWEB)

    Scarpetti, R.; Vogtlin, G.; Lundberg, R.; Burkhart, S.; Hofer, W.

    1983-06-03

    A high-power, short-pulse microwave source, MGX, is being developed at Lawrence Livermore National Laboratory. It will be used for high-power microwave vulnerability and lethality studies, investigation of air breakdown, and high-power microwave diagnostic development. The microwave source, a virtual cathode oscillator (VIRCATOR), is initially designed to operate at 8 GHz, with an output power greater than 1 GW, and 70 ns pulse width. The pulsed power source is a modified one-unit FXR Blumlein system charged to approximately 650 kV. A new insulator and electron-beam diode have been designed. In addition, a water-breakdown gap has been included to suppress diode prepulse and to sharpen the pulse rise time. The VIRCATOR has been extensively modeled with the MASK code at LLNL. Preliminary results are presented.

  15. Dry Dilution Refrigerator with High Cooling Power

    Science.gov (United States)

    Uhlig, K.

    2008-03-01

    We present the construction concept and cooling capacity measurements of a 3,4He dilution refrigerator (DR), which was pre-cooled by a commercial pulse tube refrigerator (PTR). No cryogens are needed for the operation of this type of cryostat. The condensation of the helium mash was done in an integrated Joule-Thomson circuit, which was part of the dilution unit. The composition of the dilution unit was standard, but its components (still, heat exchangers, mixing chamber) were designed for high 3He flow. For thermometry, calibrated RuO chip resistance thermometers were available. In order to condense the mixture before an experiment, the fridge was operated like a Joule-Thomson liquefier with a relatively high inlet pressure (4 bar), where the liquid fraction of the circulating 3,4He mixture was accumulated in the dilution unit. The condensation took about 2 hours, and after 2 more hours of running, the temperature of the mixing chamber approached its minimum temperature of 10 mK. The maximum flow rate of the fridge was 1 mmol/s, and the refrigeration capacity of the mixing chamber was 700 μW at 100 mK. High cooling capacity, ease of operation and reliability distinguish this type of milli-Kelvin cooler.

  16. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  17. Progress in high-power high-speed VCSEL arrays

    Science.gov (United States)

    Carson, Richard F.; Warren, Mial E.; Dacha, Preethi; Wilcox, Thomas; Maynard, John G.; Abell, David J.; Otis, Kirk J.; Lott, James A.

    2016-03-01

    Flip-chip bonding enables a unique architecture for two-dimensional arrays of VCSELs. Such arrays feature scalable power outputs and the capability to separately address sub-array regions while maintaining fast turn-on and turn-off response times. These substrate-emitting VCSEL arrays can also make use of integrated micro-lenses for beam shaping and directional control. Advances in the performance of these laser arrays will be reviewed and emerging applications are discussed.

  18. High power cooled mini-DIL pump lasers

    Science.gov (United States)

    Liang, Bo; Zayer, Nadhum; Chen, Bob; He, Dylan; Pliska, Tomas

    2009-11-01

    The miniature dual-inline (mini-DIL) pump laser becomes more attactive for compact optical amplifiers designs due to the advantage of smaller footprint, lower power consumption and lower cost. In this paper we report the development of a new generation of small form factor, high power "cooled" mini-DIL 980-nm pump lasers module for compact EDFA application.

  19. Amplified spontaneous emission pulses for high-power supercontinuum generation

    Directory of Open Access Journals (Sweden)

    Huan Huan Liu

    2016-03-01

    Full Text Available The authors demonstrate an incoherent light source based on a reflective semiconductor optical amplifier as pump for high-power supercontinuum generation for the first time. The obtained power level is about 160 mW and 20 dB spectral bandwidth is around 170 nm.

  20. Electron accleration using high power laser

    Science.gov (United States)

    Najmudin, Zulfikar

    1998-04-01

    The 30 TW Nd:Glass Vulcan laser has been used to extensively study the Forward Raman Scatter instability in plasmas. This instability is of interest since it produces large amplitude relativistic plasma waves, which can trap and accelerate plasma electrons to high energies. Recently we have accelerated particles up to 100 MeV with this process. This is beyond the expected classical dephasing energy, for the plasma waves in our experiment which have a Lorentz factor γ ≈ 7. The greater acceleration has been attributed to the dynamics of the beam loading process of the plasma waves due to wavebreaking. By imaging the small angle Thomson scattered light from an orthogonally injected probe beam, we observe the dimensions of the accelerating plasma wave. It is seen that electron energies are almost independent of the length of the plasma wave. This is because the dephasing length is of the order of the Rayleigh length (≈ 100 μm). However the plasma wave is seen to extend to lengths as great as 3.5 mm. This is indicative of a high intensity being present throughout the length of the gas jet used, and indicates the presence of channelling of the laser beam. However the unstable nature of FRS, means that it is unsuitable for next generation high energy particle acclerators. For this we require much more controllable acceleration over greater distances. This can be achieved with the laser wakefield accelerator. For this purpose we have also been performing experiments at the LULI short pulse facility at Ecole Polytechnique. In these experiments we have been able to accelerate large numbers of injected electrons at 3 MeV to 4 MeV and above, after carefully taking into consideration sources of noise.

  1. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  2. Calorimetric Measuring Systems for Characterizing High Frequency Power Losses in Power Electronic Components and Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Pedersen, John Kim; Ritchie, Andrew Ewen

    2002-01-01

    High frequency power losses in power electronic components and systems are very difficult to measure. The same applies to the efficiency of high-efficiency systems and components. An important method to measure losses with high accuracy is the calorimetric measuring systems. This paper describes...... two different calorimetric measuring systems, one for power losses up to 50 W and one for power losses up to 1500 W. These differ in size and also the systems which can be analysed. The basic concept of calorimetry is discussed and the overall performance of the two systems is specified. Methods to...... calibrate such systems are proposed and different applications of the system are given. Two practical examples end the description of the research. It is concluded that such systems have a relative long time-constant but they are accurate and useful for precise power loss measurement....

  3. Development of high voltage power supply for nuclear radiation detectors

    International Nuclear Information System (INIS)

    The purpose of this thesis is to develop a versatile NIM compatible high voltage power supply for proper operation of nuclear radiation detectors especially for those high resolution detectors such as semiconductor detectors, and proportional counters which require high voltage power supply with very low output ripple and high output stability. A driven type dc-ac inverter and a voltage multiplier are applied to convert a low de voltage to high dc voltage. The filter circuit is used to reduce the output ripple when the power supply is loaded and a close-loop voltage control circuit is used to minimize the drift in the output voltage. Adjustment of the output level for desired value is done through a three turn high precision potentiometer. Besides, micro-circuits are used in order to reduce undesirable temperature effect and at the same time to minimize size and weight of the high voltage module

  4. The Quest for Ultimate Broadband High Power Microwaves

    CERN Document Server

    Podgorski, Andrew S

    2014-01-01

    Paper describes High Power Microwave research of combining GW peak power to achieve MV/m and GV/m radiated fields in 1 to 500 GHz band. To achieve such fields multiple independently triggered broadband GW sources, supplying power to multiple spatially distributed broadband radiators/antennas are used. Single TW array is used as an ultimate microwave weapon in 1 to 5 GHz range while multiple TW arrays provide GV/m radiating field at plasma frequencies in 300 GHz range leading to fusion power.

  5. High Power Local Oscillator Sources for 1-2 THz

    Science.gov (United States)

    Mehdi, Imran; Thomas, Bertrand; Lin, Robert; Maestrini, Alain; Ward, John; Schlecht, Erich; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Maiwald, Frank

    2010-01-01

    Recent results from the Heterodyne Instrument for Far-Infrared (HIFI) on the Herschel Space Telescope have confirmed the usefulness of high resolution spectroscopic data for a better understanding of our Universe. This paper will explore the current status of tunable local oscillator sources beyond HIFI and provide demonstration of how power combining of GaAs Schottky diodes can be used to increase both power and upper operating frequency for heterodyne receivers. Availability of power levels greater than 1 watt in the W-band now makes it possible to design a 1900 GHz source with more than 100 microwatts of expected output power.

  6. High power microwave sources; Generateur microondes de grande puissance

    Energy Technology Data Exchange (ETDEWEB)

    Angles, M. [CEA Cesta, 33 - Bordeaux (France)

    1998-03-01

    High power microwaves have known a great expansion with intense relativistic electron beams. CEA-CESTA evolved several HPM sources on electron beam generator CESAR, as the planar VIRCATOR, the REDITRON and the coaxial VIRCATOR. We obtained microwave frequencies located between 2 and 8 GHz with power of some hundreds until 1 gigawatt. Several measurements have been improved to qualify these sources: frequency, power density, energy, wave polarization, modes visualization. A hollow beam generator, relativistic klystron electric source, has also been built to improve a recurrent system and obtain gigawatt microwave power. (author) 7 refs.

  7. High and low voltage power supply

    International Nuclear Information System (INIS)

    A converter is designed to convert 2 bateries input voltage of 1.5 volt each, to obtain the desired dc output voltage to perform a low voltage of 10 volt, 3mA and a high voltage of 600 volt, 20 A. The L.V. of 10 volt is operated to provide some transistor bias voltages, to a preamplifier and a discriminator, and the H.V. of 600 volt supply a GM tube (type 18555) bias voltage. The converter comprise of a blocking oscillator, a transformer, a double ended clipper, a rectifier and a filter. The waveform of the ac voltage to be generated in the blocking oscillator is square wave approximately. The 2N 2907-type transistor as a blocking oscillator operates in the linear region. The saturation region of the 58T3-type ferrite transformer never been reached. Even the efficiency is rather low; the bat-tery life can reach 25 hours approximately. (author)

  8. Atmospheric propagation and combining of high-power lasers.

    Science.gov (United States)

    Nelson, W; Sprangle, P; Davis, C C

    2016-03-01

    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions. PMID:26974640

  9. High-power lasers for directed-energy applications.

    Science.gov (United States)

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers. PMID:26560609

  10. High-power lasers for directed-energy applications.

    Science.gov (United States)

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  11. Atmospheric propagation and combining of high-power lasers.

    Science.gov (United States)

    Nelson, W; Sprangle, P; Davis, C C

    2016-03-01

    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions.

  12. Control of high power IGBT modules in the active region for fast pulsed power converters

    CERN Document Server

    Cravero, J M; Garcia Retegui, R; Maestri, S; Uicich, G

    2014-01-01

    At CERN, fast pulsed power converters are used to supply trapezoidal current in different magnet loads. These converters perform output current regulation by using a high power IGBT module in its ohmic region. This paper presents a new strategy for pulsed current control applications using a specifically designed IGBT driver.

  13. Mechanisms of metallization degradation in high power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Kristensen, Peter Kjær; Pedersen, Kristian Bonderup;

    2016-01-01

    investigate the metallization degradation by passive thermal cycling of unpackaged high-power diode chips in different controlled atmospheres. The electrical degradation of the metallization is characterized by sheet resistance measurements, while the microstructural damage is investigated by scanning...

  14. High Power Room Temperature Terahertz Local Oscillator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  15. High Power Uplink Amplifier for Deep Space Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Critical to the success of delivering on the promise of deep space optical communications is the creation of a stable and reliable high power multichannel optical...

  16. High Power Room Temperature Terahertz Local Oscillator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The motivation of the proposed SBIR is to develop, demonstrate and commercialize a compact, low-mass, high output power (1-10 milliwatt), tunable source of CW THz...

  17. Social power and recognition of emotional prosody: High power is associated with lower recognition accuracy than low power.

    Science.gov (United States)

    Uskul, Ayse K; Paulmann, Silke; Weick, Mario

    2016-02-01

    Listeners have to pay close attention to a speaker's tone of voice (prosody) during daily conversations. This is particularly important when trying to infer the emotional state of the speaker. Although a growing body of research has explored how emotions are processed from speech in general, little is known about how psychosocial factors such as social power can shape the perception of vocal emotional attributes. Thus, the present studies explored how social power affects emotional prosody recognition. In a correlational study (Study 1) and an experimental study (Study 2), we show that high power is associated with lower accuracy in emotional prosody recognition than low power. These results, for the first time, suggest that individuals experiencing high or low power perceive emotional tone of voice differently.

  18. Development of a high power NPC inverter

    International Nuclear Information System (INIS)

    It has been widely reported that the Common-Mode-Current disturbs a stable operation in various accelerator complex. The reason why we have such an undesired noise current is that, in an inverter circuit, the potential of neutral point will be fluctuated between high-voltage to ground-potential during each switching modes. In the Neutral-Point-Clamped (NPC) inverters, on the other hands, the neutral point of output terminals can be always clamped to the ground-potential if we chose a proper switching algorism. So that no voltage will be applied across the neutral-point and the ground potential. This is the reason why we have initiated a development of the NPC inverter to apply it into the accelerator complex. In an inverter circuit, undesirable surge voltage will be applied during its switching period. This surge voltage exceeds the maximum rating of an IGBT in worst case. Moreover, the surge voltage will increase the switching loss in devices. It is important to reduce this surge voltage to secure a stable operation of the inverter circuit. Details of our approach to minimize the surge voltage and the operational results of a developed NPC inverter are reviewed in this article. (author)

  19. Thermally induced nonlinear mode coupling in high power fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas T.;

    2013-01-01

    Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W.......Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W....

  20. Advanced waveguides for high power optical fibre sources

    OpenAIRE

    Soh, Daniel Beom Soo

    2005-01-01

    This thesis reports on theoretical and experimental studies of wavelength-selective waveguide structures for high-power Nd3+- and Yb3+-doped fibre lasers. Cladding-pumped high-power fibre lasers based on these novel waveguide designs and operating at desired unconventional wavelengths were investigated through numerical simulations and fibre laser experiments. Rare earth doped fibres have typically multiple emission bands of different effective strengths. Stimulate emission from strong ba...

  1. Establishment of high ground power supply center at Onagawa Nuclear Power Station

    International Nuclear Information System (INIS)

    A large earthquake occurred on March 11, 2011 and tsunami was generated following it. The East Japan suffered serious damage by the earthquake and tsunami. This is called the Great East Japan Earthquake. Onagawa Nuclear Power Station (NPS) is located closest to the epicenter of Great East Japan Earthquake. We experienced intense shake by the earthquake and some flooding from the tsunami, however, we have succeeded safely cold shutdown of the reactors. In this paper, we introduce the reinforcement of power supply to increase reliability and power supply center with high voltage electric power supply trucks which is original treatment at Onagawa NPS. (author)

  2. Optical power supply unit utilizing high power laser diode module developed for fiber laser pumping

    Science.gov (United States)

    Sakamoto, Akira; Kiyoyama, Wataru; Yamauchi, Ryozo

    2014-05-01

    High power laser diode developed for fiber laser pumping is evaluated as a light source for an optical power supply unit. The output power of the newly developed laser diode module exceeds 15 W with 105 μm core fiber. It is estimated that more than 1600 mW power supply can be achieved with the single emitter laser diode module and a polycrystalline silicon cell over 1 km away from the light source. This unit can be used for sensor nodes in the fiber sensor network.

  3. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power HEMT testing, and battery design. In summary, we have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). And finally, we are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  4. High Efficiency, High Temperature Foam Core Heat Exchanger for Fission Surface Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fission-based power systems are anticipated for various planetary surface human base applications with power levels of 30?100+ kWe. The development of high...

  5. High Performance Plasma Channel Insulators for High Power Hall Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA missions for planetary exploration require high power, long-life Hall thrusters. However, thruster power and lifetime are limited by the erosion of plasma...

  6. Enhancing Plasma Surface Modification using high Intensity and high Power Ultrasonic Acoustic Waves

    DEFF Research Database (Denmark)

    2010-01-01

    high intensity and high power acoustic waves (102) by at least one ultrasonic high intensity and high power acoustic wave generator (101 ), wherein the ultrasonic acoustic waves are directed to propagate towards said surface (314) of the object (100) so that a laminar boundary layer (313) of a gas or a...

  7. Investigation of a High-Power, High-Pressure Spark Gap Switch with High Repetition Rate

    OpenAIRE

    Rahaman, Hasibur

    2007-01-01

    Micro plasmas in a pressurized spark gap switch were under investigation in the present dissertation. In contrast to the requirements of commonly used high power switches, this work was focused on investigations of a high repetition rate and simultaneously maintaining a fast switching time at a low energy transfer per pulse. The spark gap was operating in a free running mode, without any triggering. The breakdown was only initiated by overvoltage. For this particular switch, a theoretical cha...

  8. Design of 1 MHz solid state high frequency power supply

    International Nuclear Information System (INIS)

    A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)

  9. High Power High Thrust Ion Thruster (HPHTion): 50 CM Ion Thruster for Near-Earth Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in high power, photovoltaic technology has enabled the possibility of reasonably sized, high specific power, high power, solar arrays. At high specific...

  10. Using a Balun Transformer Combiner for High Power RF Experiments

    Science.gov (United States)

    Kaufman, M. C.; Pesavento, P. V.

    2011-10-01

    A novel coaxial power combiner design has been duplicated that has distinct advantages over other combiner geometries that can handle high power. This design is being applied to combine four 3 kW power supplies to obtain a 12 kW, 5 MHz system for an ICRF antenna on HSX. In the past, Wilkinson type combiners have had limited application to high power systems because of the lack of non-inductive, high power, 100 Ω balance loads. With this new design, standard 50 Ω dummy loads can be used instead for the balance load. The cost is considerably lower than lumped element combiner designs which are dominated by capacitor costs. At such a relatively low frequency, a 3-dB quarter-wave coupled-line coupler becomes impractically long, and a conventional branch-line hybrid requires 35 Ω-line, which is commercially unavailable. The balun combiner uses less transmission line than a ring hybrid and has good bandwidth characteristics even away from its best line impedance. Theoretical calculations and modeling were performed for line impedances from 65 Ω to 75 Ω. Measurements from a low-power test device show excellent agreement with theory, and construction of the high power system is underway. Work supported by US DOE under Contract No DE-AC05-00OR22725.

  11. On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers

    Science.gov (United States)

    Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.

    2013-01-01

    A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.

  12. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Science.gov (United States)

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed. PMID:27131709

  13. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    Science.gov (United States)

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  14. High-power laser source evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Back, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Decker, C. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davis, J. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dixit, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grun, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Managan, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Serduke, F. J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonson, G. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suter, L. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wuest, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ze, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1998-07-01

    Robust Nuclear-Weapons-Effects Testing (NWET) capability will be needed for the foreseeable future to ensure the performance and reliability, in nuclear environments, of the evolving U.S. stockpile of weapons and other assets. Ongoing research on the use of high-energy lasers to generate environments of utility in nuclear weapon radiation effects simulations is addressed in the work described in this report. Laser-driven hohlraums and a variety of other targets have been considered in an effort to develop NWET capability of the highest possible fidelity in above-ground experiments. The envelope of large-system test needs is shown as the gray region in fig. 1. It does not represent the spectrum of any device; it is just the envelope of the spectral region of outputs from a number of possible devices. It is a goal of our laser-only and ignition-capsule source development work to generate x rays that fall somewhere in this envelope. One of the earlier appearances of this envelope is in ref. 1. The Defense Special Weapons Agency provided important support for the work described herein. A total of $520K was provided in the 1997 IACROs 97-3022 for Source Development and 97-3048 for Facilitization. The period of performance specified in the Statement of Work ran from 28 February 1997 until 30 November 1997. This period was extended, by agreement with DSWA, for two reasons: 1) despite the stated period of performance, funds were not available at LLNL to begin this work until somewhat later in the fiscal year, and 2) we agreed to stretch the current resources until follow-on funds were in hand, to minimize effects of ramping down and up again. The tasks addressed in this report are the following: 1) Non-ignition-source model benchmarking and design. This involves analysis of existing and new data on laser-only sources to benchmark LASNEX predictions 2) Non-ignition-source development experiments 3) Ignition capsule design to improve total x-ray output and simplify target

  15. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    Science.gov (United States)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  16. Pulsed power drivers for ICF and high energy density physics

    Science.gov (United States)

    Ramirez, Juan J.; Matzen, M. Keith; McDaniel, Dillon H.

    Nanosecond Pulsed Power Science and Technology has its origins in the 1960s and over the past decade has matured into a flexible and robust discipline capable of addressing key physics issues of importance to Inertial Confinement Fusion (ICF) and high Energy Density Physics. The major leverage provided by pulsed power is its ability to generate and deliver high energy and high power at low cost and high efficiency. A low-cost, high-efficiency driver is important because of the very large capital investment required for multi-megajoule ignition-class systems. High efficiency is of additional importance for a commercially viable inertial fusion energy option. Nanosecond pulsed power has been aggressively and successfully developed at Sandia over the past twenty years. This effort has led to the development of unique multi-purpose facilities supported by highly capable diagnostic, calculational and analytic capabilities. The Sandia Particle-beam Fusion Program has evolved as part of an integrated national ICF Program. It applies the low-cost, high-efficiency leverage provided by nanosecond pulsed power systems to the longer-term goals of the national program, i.e., the Laboratory Microfusion Facility and Inertial Fusion Energy. A separate effort has led to the application of nanosecond pulsed power to the generation of intense, high-energy laboratory x-ray sources for application to x-ray laser and radiation effects science research. Saturn is the most powerful of these sources to date. It generates (approximately) 500 kilojoules of x-rays from a magnetically driven implosion (Z-pinch). This paper describes results of x-ray physics experiments performed on Saturn, plans for a new Z-pinch drive capability for PBFA-2, and a design concept for the proposed (approximately) 15 MJ Jupiter facility. The opportunities for ICF-relevant research using these facilities will also be discussed.

  17. Concentric Parallel Combining Balun for Millimeter-Wave Power Amplifier in Low-Power CMOS with High-Power Density

    Science.gov (United States)

    Han, Jiang-An; Kong, Zhi-Hui; Ma, Kaixue; Yeo, Kiat Seng; Lim, Wei Meng

    2016-07-01

    This paper presents a novel balun for a millimeter-wave power amplifier (PA) design to achieve high-power density in a 65-nm low-power (LP) CMOS process. By using a concentric winding technique, the proposed parallel combining balun with compact size accomplishes power combining and unbalance-balance conversion concurrently. For calculating its power combination efficiency in the condition of various amplitude and phase wave components, a method basing on S-parameters is derived. Based on the proposed parallel combining balun, a fabricated 60-GHz industrial, scientific, and medical (ISM) band PA with single-ended I/O achieves an 18.9-dB gain and an 8.8-dBm output power at 1-dB compression and 14.3-dBm saturated output power (P sat) at 62 GHz. This PA occupying only a 0.10-mm2 core area has demonstrated a high-power density of 269.15 mW/mm2 in 65 nm LP CMOS.

  18. Mode profiling of optical fibers at high laser powers

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Pedersen, David Bue; Simonsen, R.B.;

    2008-01-01

    This paper describes the development of a measuring equipment capable of analysing the beam profile at high optical powers emitted by delivery fibers used in manufacturing processes. Together with the optical delivery system, the output beam quality from the delivery fiber and the shape...... is obtained. Choosing a highly reflective rod material and a sufficiently high rotation speed, these measurements can be done with high laser powers, without any additional optical elements between the fiber and analyzer. The performance of the analyzer was evaluated by coupling laser light into different...

  19. Design Challenges in High Power Free-Electron Laser Oscillators

    CERN Document Server

    Benson, S V

    2005-01-01

    Several FELs have now demonstrated high power lasing and several projects are under construction to deliver higher power or shorter wavelengths. This presentation will summarize progress in upgrading FEL oscillators towards higher power and will discuss some of the challenges these projects face. The challenges fall into three categories: 1. energy recovery with large exhaust energy spread, 2. output coupling and maintaining mirror figure in the presence of high intracavity power loading, and 3. high current operation in an energy recovery linac (ERL). Progress in all three of these areas has been made in the last year. Energy recovery of over 12% of exhaust energy spread has been demonstrated and designs capable of accepting even larger energy spreads have been proposed. Cryogenic transmissive output couplers for narrow band operation and both hole and scraper output coupling have been developed. Investigation of short Rayleigh range operation has started as well. Energy recovery of over 20 mA CW has been de...

  20. High Efficiency, High Linearity, Switch Mode Power Amplifiers for Varying envelop Signal Applications

    DEFF Research Database (Denmark)

    Tong, Tian; Sira, Daniel; Nielsen, Michael;

    2009-01-01

    Transmission of big h-order modulated signals at sufficient linearity while maintaining high power efficiency is always a challenge in modern communication application. Using conventional transmitter topologies, high linearity and high efficiency are two conflicting parameters somehow. However...... using switch-mode power amplifier aided by various linearization techniques can present a feasible way to achieve both high linearity and high power efficiency. In this paper two different implementations of the switch-mode power amplifier a re p resented for varying envelop applications: the RF pulse...

  1. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  2. Power performance improvements for high pressure ripple energy harvesting

    International Nuclear Information System (INIS)

    A hydraulic pressure energy harvester (HPEH) device, which utilizes a housing in order to isolate a piezoelectric stack from the hydraulic fluid via a mechanical interface, generates power by converting the dynamic pressure within the system into electricity. Energy harvester prototypes were designed for generating low-power electricity from pressure ripples. These devices generate low-power electricity from off-resonance dynamic pressure excitation. The power produced per volume of piezoelectric material is analyzed to increase the power density; this is accomplished through evaluating piezoelectric stack characteristics, adding an inductor to the system circuit, and solving for optimal loading in order to achieve maximum power output. The prototype device utilizes a piezoelectric stack with high overall capacitance, which allows for inductance matching without using an active circuit. This work presents an electromechanical model and the experimental results of the HPEH devices using a parallel connection of inductive and resistive loads as the energy harvesting circuit. A non-ideal inductive load case is also considered and successfully modeled by accounting for the parasitic resistance of the inductive load. Various HPEH prototypes are fabricated, modeled, and compared in terms of their normalized power density levels, and milli-Watt level average power generation is demonstrated. The highest power density is reported for the single-crystal HPEH prototype. (paper)

  3. Power performance improvements for high pressure ripple energy harvesting

    Science.gov (United States)

    Skow, E. A.; Cunefare, K. A.; Erturk, A.

    2014-10-01

    A hydraulic pressure energy harvester (HPEH) device, which utilizes a housing in order to isolate a piezoelectric stack from the hydraulic fluid via a mechanical interface, generates power by converting the dynamic pressure within the system into electricity. Energy harvester prototypes were designed for generating low-power electricity from pressure ripples. These devices generate low-power electricity from off-resonance dynamic pressure excitation. The power produced per volume of piezoelectric material is analyzed to increase the power density; this is accomplished through evaluating piezoelectric stack characteristics, adding an inductor to the system circuit, and solving for optimal loading in order to achieve maximum power output. The prototype device utilizes a piezoelectric stack with high overall capacitance, which allows for inductance matching without using an active circuit. This work presents an electromechanical model and the experimental results of the HPEH devices using a parallel connection of inductive and resistive loads as the energy harvesting circuit. A non-ideal inductive load case is also considered and successfully modeled by accounting for the parasitic resistance of the inductive load. Various HPEH prototypes are fabricated, modeled, and compared in terms of their normalized power density levels, and milli-Watt level average power generation is demonstrated. The highest power density is reported for the single-crystal HPEH prototype.

  4. High-power, electron beam-induced switching in diamond

    International Nuclear Information System (INIS)

    The authors are developing a high-voltage, high-average-power, electron beam-controlled diamond switch that could significantly impact high power solid-state electronics in industrial and defense applications. An electron beam-controlled, thin film diamond could switch, with high efficiency, well over 100 kW average power at MHz frequencies greater than 5kV. This performance is due to the excellent thermal and electronic properties of diamond, the high efficiency achieved with electron beam control, and the demonstrated effectiveness of microchannel cooling. The authors' electron beam penetration-depth measurements agree with their Monte Carlo calculations. They have not observed electron beam damage in diamond for beam energies up to 150 keV. This report describes their experimental and calculational results and research objectives

  5. High Speed Peltier Calorimeter for the Calibration of High Bandwidth Power Measurement Equipment

    CERN Document Server

    Frost, Damien F

    2015-01-01

    Accurate power measurements of electronic components operating at high frequencies are vital in determining where power losses occur in a system such as a power converter. Such power measurements must be carried out with equipment that can accurately measure real power at high frequency. We present the design of a high speed calorimeter to address this requirement, capable of reaching a steady state in less than 10 minutes. The system uses Peltier thermoelectric coolers to remove heat generated in a load resistance, and was calibrated against known real power measurements using an artificial neural network. A dead zone controller was used to achieve stable power measurements. The calibration was validated and shown to have an absolute accuracy of +/-8 mW (95% confidence interval) for measurements of real power from 0.1 to 5 W.

  6. Progress at SLAC on high-power rf pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Nantista, C.; Ruth, R.D. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Kroll, N.M. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)]|[California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics

    1992-06-01

    Rf pulse compression is a technique for augmenting the peak power output of a klystron (typically 50--100 MW) to obtain the high peak power required to drive a linear collider at a high accelerating gradient (typically 200 MW/m is required for a gradient of 100 MV/m). The SLED pulse compression system, with a power gain of about 2.6, has been operational on the SLAC linac for more than a decade. Recently, a binary pulse-compression system with a power gain of about 5.2 has been tested up to an output power of 120 MW. Further high-power tests are in progress. Our current effort is focused on prototyping a so-called SLED-II pulse-compression system with a power gain of four. Over-moded TE{sub 01}-mode circular waveguide components, some with novel technical features, are used to reduce losses at the 11.4-GHz operating frequency.

  7. Progress at SLAC on high-power rf pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.; Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Nantista, C.; Ruth, R.D. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Kroll, N.M. (Stanford Linear Accelerator Center, Menlo Park, CA (United States) California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics)

    1992-06-01

    Rf pulse compression is a technique for augmenting the peak power output of a klystron (typically 50--100 MW) to obtain the high peak power required to drive a linear collider at a high accelerating gradient (typically 200 MW/m is required for a gradient of 100 MV/m). The SLED pulse compression system, with a power gain of about 2.6, has been operational on the SLAC linac for more than a decade. Recently, a binary pulse-compression system with a power gain of about 5.2 has been tested up to an output power of 120 MW. Further high-power tests are in progress. Our current effort is focused on prototyping a so-called SLED-II pulse-compression system with a power gain of four. Over-moded TE[sub 01]-mode circular waveguide components, some with novel technical features, are used to reduce losses at the 11.4-GHz operating frequency.

  8. A high-power switch-mode dc power supply for dynamic loads

    Energy Technology Data Exchange (ETDEWEB)

    Shimer, D.W.; Lange, A.C. [Lawrence Livermore National Lab., CA (United States); Bombay, J.N. [Kaiser Engineers, Oakland, CA (United States)

    1994-06-23

    High-voltage dc power supplies are often required to operate with highly dynamic loads, such as arcs. A switch-mode dc power supply can offer significant advantages over conventional thyristor-based dc power supplies under such conditions. It can quickly turn off the supply to extinguish the arc, and it can quickly recover after the arc. It has a relatively small output filter capacitance, which results in small stored energy available to the arc. A 400-kW, 50-kV switch-mode dc power supply for an electron-beam gun that exploits these advantages was designed and tested. It uses four 100-kW, current-source-type dc-dc converters with inputs in parallel and outputs in series. The dc-dc converters operate at 20 kHz in the voltage regulator part and 10 kHz in the inverter, transformer, and output rectifier part of the circuit. Insulated gate bipolar transistors (IGBTs) are used as the power switches. Special techniques are used to protect the power supply and load against arcs and hard shorts. The power supply has an efficiency of 93%, an output voltage ripple of 1%, and fast dynamic response. In addition, it is nearly one-third the size of conventional power supplies.

  9. Development of Discrete Power Supply with Charge Pump Method for High Powered Sonar System

    Directory of Open Access Journals (Sweden)

    Kristian Ismail

    2012-07-01

    Full Text Available Power supply is one of the electronic devices that can provide electric energy for electronic systems or other systems. There are several types of power supplies that can be applied depend on the requirement and functions. One example is the use of power supply for sonar systems. Sonar system is a device which can be used to detect a target under water. The sonar system is an electronic circuit that requires a power supply with specific characteristics when the sonar functions as a transmitter and a receiver in the specific span time (when on and the specific lag time (when off. This paper discusses the design of power supply for high-powered sonar systems with discrete methods in which high power supply is only applied when the acoustic waves radiated under water. Charge pump was used to get the appropriate output voltage from lower input voltage. Charge pump utilized a combination of series and parallel connections of capacitors. The working mode of this power supply used the lag time as the calculation of time to charge charge pump capacitors in parallel while the span time was used for the calculation of discharging the charge pump capacitors in series.

  10. LCA of electricity systems with high wind power penetration

    DEFF Research Database (Denmark)

    Turconi, Roberto; O' Dwyer, C. O.; Flynn, D.;

    Electricity systems are shifting from being based on fossil fuels towards renewable sources to enhance energy security and mitigate climate change. However, by introducing high shares of variable renewables - such as wind and solar - dispatchable power plants are required to vary their output...... assessment (LCA). Cycling emissions from dispatchable generators due to part-load operation and start-ups [3] were included for the first time in LCA. Part-load operations significantly affected the average power plant efficiency, with all units seeing an average yearly efficiency 1-11% lower than optimal....... Given that similar penalties were seen for power plant with the same role in the system (i.e. load following, mid merit, and base load), it is suggested that only power plants within the same category should be compared. Since power production technologies are typically modeled in LCA assuming steady-state...

  11. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  12. GaN Electronics For High Power, High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    PEARTON,S.J.; REN,F.; ZHANG,A.P.; DANG,G.; CAO,X.A.; LEE,K.P.; CHO,H.; GILA,B.P.; JOHNSON,J.W.; MONIER,C.; ABERNATHY,C.R.; HAN,JUNG; BACA,ALBERT G.; CHYI,J.-I.; LEE,C.-M.; NEE,T.-E.; CHUO,C.-C.; CHU,S.N.G.

    2000-06-12

    A brief review is given of recent progress in fabrication of high voltage GaN and AlGaN rectifiers. GaN/AlGaN heterojunction bipolar transistors and GaN metal-oxide semiconductor field effect transistors. Improvements in epitaxial layer quality and in fabrication techniques have led to significant advances in device performance.

  13. A New Very-High-Efficiency R4 Converter for High-Power Fuel Cell Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael Andreas E.

    2009-01-01

    A new very high efficiency 10 kW isolated R4 boost converter for low-voltage high-power fuel cell applications is presented. Using a new concept for partially paralleling of isolated boost converters, only the critical high ac-current parts are paralleled. Four 2.5 kW power stages, consisting...

  14. Shipbuilding power lies in high-end market

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The 2011 edition of Guideline Index for Readjusting Industrial Structure issued by the National Development and Reform Commission underlines the construction of high-end ships and the upgrading of shipbuilding technology.This shows that ifChina's shipbuilding industry is to become powerful,it should go all out to open up the fields of high-end ship construction so that the industry may have a greater share in the world market.Therefore,the power of our shipbuilding industry lies in the high-end market.

  15. High Power Operation of the JLab IR FEL Driver Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Beard; Stephen Benson; George Biallas; James Boyce; Donald Bullard; James Coleman; David Douglas; H. Dylla; Richard Evans; Pavel Evtushenko; Christopher Gould; Albert Grippo; Joseph Gubeli; David Hardy; Carlos Hernandez-Garcia; J. Hovater; Kevin Jordan; John Klopf; Rui Li; Steven Moore; George Neil; Benard Poelker; Thomas Powers; Joseph Preble; Robert Rimmer; Daniel Sexton; Michelle D. Shinn; Christopher Tennant; Richard Walker; Gwyn Williams; Shukui Zhang

    2007-08-01

    Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

  16. Iron loss in high-power arc steelmaking furnaces

    Directory of Open Access Journals (Sweden)

    V. P. Karasyov

    2016-07-01

    Full Text Available There is considered the power operating mode of a high-power arc steelmaking furnaces (ASMF in the period of the flat bath. It is revealed that electric energy is mainly spent for heating and overheating the foamed slag. Heat transferring from slag to metal is carried out by the convective agitation of the bath. For agitation there is used intensive purging of the bath with oxygen that causes increased iron losses with the running foamed slag. There are noted the negative points of working with the foamed slag. It is recommended to expand R&D in the field of optimizing the power operating mode of high-power ASMF.

  17. A Lemon Cell Battery for High-Power Applications

    Science.gov (United States)

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.

    2007-04-01

    This article discusses the development of a lemon cell battery for high-power applications. The target application is the power source of a dc electric motor for a model car constructed by first-year engineering students as part of their introductory course design project and competition. The battery is composed of a series of lemon juice cells made from UV vis cuvets that use a magnesium anode and copper cathode. Dilution of the lemon juice to reduce the rate of corrosion of the magnesium anode and the addition of table salt to reduce the internal resistance of the cell are examined. Although our specific interest is the use of this lemon cell battery to run an electric dc motor, high-power applications such as radios, portable cassette or CD players, and other battery-powered toys are equally appropriate for demonstration and laboratory purposes using this battery.

  18. High Power Laser Hybrid Welding - Challenges and Perspectives

    Science.gov (United States)

    Nielsen, Steen Erik

    High power industrial lasers at power levels up to 100 kW is now available on the market. Therefore, welding of thicker materials has become of interest for the heavy metal industry e.g. shipyards and wind mill producers. Further, the power plant industry, producers of steel pipes, heavy machinery and steel producers are following this new technology with great interest. At Lindø Welding Technology (LWT), which is a subsidiary to FORCE Technology, a 32-kwatt disc laser is installed. At this laser facility, welding procedures related to thick section steel applications are developed. Material thicknesses between 40 and 100 mm are currently of interest. This paper describes some of the challenges that are related to the development of the high power hybrid laser welding process as well as to the perspectives for the technology as a production tool for the heavy metal industry.

  19. Quantum dot amplifiers with high output power and low noise

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2003-01-01

    Quantum dot semiconductor optical amplifiers have been theoretically investigated and are predicted to achieve high saturated output power, large gain, and low noise figure. We discuss the device dynamics and, in particular, show that the presence of highly inverted barrier states does not limit...

  20. Cryostat for a high-temperature superconducting power cable

    NARCIS (Netherlands)

    Chevtchenko, O.A.; Smit, J.J.; Geschiere, A.

    2010-01-01

    Cryostat for a high-temperature superconducting power cable, comprising concentric tubes, an annular region between said tubes, wherein a multilayer thermal insulation and getter material for supporting high vacuum conditions are provided in said annular region, and wherein the multilayer insulation

  1. Air Cooling for High Temperature Power Electronics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  2. High power RF systems for the BNL ERL project

    Energy Technology Data Exchange (ETDEWEB)

    Zaltsman, A.; Lambiase, R.

    2011-03-28

    The Energy Recovery Linac (ERL) project, now under construction at Brookhaven National Laboratory, requires two high power RF systems. The first RF system is for the 703.75 MHz superconducting electron gun. The RF power from this system is used to drive nearly half an Ampere of beam current to 2 MeV. There is no provision to recover any of this energy so the minimum amplifier power is 1 MW. It consists of 1 MW CW klystron, transmitter and power supplies, 1 MW circulator, 1 MW dummy load and a two-way power splitter. The second RF system is for the 703.75 MHz superconducting cavity. The system accelerates the beam to 54.7 MeV and recovers this energy. It will provide up to 50 kW of CW RF power to the cavity. It consists of 50 kW transmitter, circulator, and dummy load. This paper describes the two high power RF systems and presents the test data for both.

  3. Design of high power solid-state pulsed laser resonators

    International Nuclear Information System (INIS)

    Methods and configurations for the design of high power solid-state pulsed laser resonators, operating in free running, are presented. For fundamental mode high power resonators, a method is proposed for the design of a resonator with joined stability zones. In the case of multimode resonators, two configurations are introduced for maximizing the laser overall efficiency due to the compensation of the astigmatism induced by the excitation. The first configuration consists in a triangular ring resonator. The results for this configuration are discussed theoretically, showing that it is possible to compensate the astigmatism of the thermal lens virtually in a 100%; however this is only possible for a specific pumping power. The second configuration proposes a dual-active medium resonator, rotated 90 degree one from the other around the optical axis, where each active medium acts as an astigmatic lens of the same dioptric power. The reliability of this configuration is corroborated experimentally using a Nd:YAG dual-active medium resonator. It is found that in the pumping power range where the astigmatism compensation is possible, the overall efficiency is constant, even when increasing the excitation power with the consequent increase of the thermal lens dioptric power. (Author)

  4. High-Power Microwave Switch Employing Electron Beam Triggering

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-09-19

    A high-power active microwave pulse compressor is described that modulates the quality factor Q of the energy storage cavity by a new means involving mode conversion controlled by a triggered electron-beam discharge through a switch cavity. The electron beam is emitted from a diamond-coated molybdenum cathode. This report describes the principle of operation, the design of the switch, the configuration used for the test, and the experimental results. The pulse compressor produced output pulses with 140 - 165 MW peak power, power gain of 16 - 20, and pulse duration of 16 - 20 ns at a frequency of 11.43 GHz.

  5. High-power phase locking of a fiber amplifier array

    Science.gov (United States)

    Shay, T. M.; Baker, J. T.; Sanchez, A. D.; Robin, C. A.; Vergien, C. L.; Zeringue, C.; Gallant, D.; Lu, Chunte A.; Pulford, Benjamin; Bronder, T. J.; Lucero, Arthur

    2009-02-01

    We report high power phase locked fiber amplifier array using the Self-Synchronous Locking of Optical Coherence by Single-detector Electronic-frequency Tagging technique. We report the first experimental results for a five element amplifier array with a total locked power of more than 725-W. We will report on experimental measurements of the phase fluctuations versus time when the control loop is closed. The rms phase error was measured to be λ/60. Recent results will be reported. To the best of the authors' knowledge this is the highest fiber laser power to be coherently combined.

  6. Computational component analysis techniques for high temperature power plant applications

    OpenAIRE

    Rouse, James Paul

    2014-01-01

    There is a trend in the power industry for high temperature components (such as steam pipe work) to be operated in an increasingly arduous fashion. This would involve the use of elevated steam temperatures/pressures and a greater frequency of start up/shut down cycles. Such generation strategies are being adopted due to the need for thermally efficient power supply that can match fluctuating market demands. If these generation strategies are to be implemented safely it is critical that carefu...

  7. Treatment of multicomponent microbarographic signals excited by high power explosions

    International Nuclear Information System (INIS)

    A method for analysis of microbarographic signals recorded on a sensor network is developed, the aim is the localization of the source with maximum accuracy. It is shown that the method using the interspectral matrix finds a direct application in the discrimination of waves from high power explosion in a noisy environment. Its powerfulness is demonstrated on actual signals (explosion of the volcano Mt St Helens) allowing interesting results on propagation mechanisms (Brunt period, Lamb modes and acoustic modes)

  8. Status Of The Novosibirsk High Power Free Electron Laser

    CERN Document Server

    Bolotin, V P; Knyazev, B A; Kolobanov, E I; Kotenkov, V V; Kubarev, V V; Kulipanov, G N; Matveenko, A N; Medvedev, L E; Miginsky, S V; Mironenko, L A; Oreshkov, A D; Ovchar, V K; Popik, V M; Salikova, T V; Scheglov, M A; Serednyakov, S I; Shevchenko, O A; Skrinsky, A N; Vinokurov, N A; Zaigraeva, N S

    2004-01-01

    The first stage of Novosibirsk high power free electron laser (FEL) was commissioned in 2003. It is based on normal conducting CW energy recovery linac. Now the FEL provides electromagnetic radiation in the wavelength range 120-180 micron. The average power is 200 W. The measured linewidth is 0.3%, which is close to the Fourier-transform limit. The assembly of user beamline is in progress. Plans of future developments are discussed.

  9. Power Input of High-Speed Rotary Impellers

    OpenAIRE

    K. R. Beshay; J. Kratěna; I. Fořt; O. Brůha

    2001-01-01

    This paper presents the results of an experimental investigation of the power input of pitched blade impellers and standard Rushton turbine impellers in a cylindrical vessel provided with four radial baffles at its wall under a turbulent regime of flow of an agitated liquid. The influence of the geometry of the pitched blade impellers (pitch angle, number of blades) and the off-bottom impeller clearance of both high-speed impellers tested on the impeller power input is determined in two sizes...

  10. High Power High Thrust Ion Thruster (HPHTion): 50 CM Ion Thruster for Near-Earth Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in high power, photovoltaic technology has enabled the possibility of reasonably sized, high specific power, high power, solar arrays. New thin film solar...

  11. RF power requirements for a high intensity proton collider

    International Nuclear Information System (INIS)

    In the new generation of circular accelerators or colliders where the average beam currents are pushed up to their ultimate limits, the power exchanged between the RF power source and the beam becomes much larger than the losses in the RF system itself (cavity, amplifier, circulator load). This situation of high beam loading has been analyzed previously with respect to the stability of the radiofrequency system. Without any electronic loops, one obtains the well known high current Robinson stability limit, which is somewhat modified by the presence of the phase, amplitude and tuning loops. To go beyond these limits the usual recipe is to employ RF feedback around the power amplifier-cavity combination. The beam current thresholds are simply increased by the RF feedback loop gain, without changing the static RF power balance. However when transient effects are considered, the peak RF power demanded by RF feedback may dominate the static power requirements, in particular for hadron storage rings where φB (synchronous phase angle) equals zero. During acceleration or storage periodic transient beam loading is due to the non-uniform structure of the beam. With high RF feedback gains and therefore large equivalent cavity bandwidths this effect becomes more and more important, especially for large machines with a low revolution frequency. In addition, non-periodic transient beam loading effects occur during the filling phase of the machine, when newly injected particles are added to the already circulating beam

  12. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    Science.gov (United States)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  13. Toward High-Power Klystrons With RF Power Conversion Efficiency on the Order of 90%

    CERN Document Server

    Baikov, Andrey Yu; Syratchev, Igor

    2015-01-01

    The increase in efficiency of RF power generation for future large accelerators is considered a high priority issue. The vast majority of the existing commercial high-power RF klystrons operates in the electronic efficiency range between 40% and 55%. Only a few klystrons available on the market are capable of operating with 65% efficiency or above. In this paper, a new method to achieve 90% RF power conversion efficiency in a klystron amplifier is presented. The essential part of this method is a new bunching technique - bunching with bunch core oscillations. Computer simulations confirm that the RF production efficiency above 90% can be reached with this new bunching method. The results of a preliminary study of an L-band, 20-MW peak RF power multibeam klystron for Compact Linear Collider with the efficiency above 85% are presented.

  14. High voltage generator circuit with low power and high efficiency applied in EEPROM

    Institute of Scientific and Technical Information of China (English)

    Liu Yan; Zhang Shilin; Zhao Yiqiang

    2012-01-01

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM).The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique.The high efficiency is dependent on the zero threshold voltage (Vth) MOSFET and the charge transfer switch (CTS) charge pump.The proposed high voltage generator circuit has been implemented in a 0.35μm EEPROM CMOS process.Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits.This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.

  15. High voltage generator circuit with low power and high efficiency applied in EEPROM

    International Nuclear Information System (INIS)

    This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory (EEPROM). The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique. The high efficiency is dependent on the zero threshold voltage (Vth) MOSFET and the charge transfer switch (CTS) charge pump. The proposed high voltage generator circuit has been implemented in a 0.35 μm EEPROM CMOS process. Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48 μW and a higher pumping efficiency (83.3%) than previously reported circuits. This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation. (semiconductor integrated circuits)

  16. EVALUATION OF POWER SPECTRAL DENSITY OF PASSIVE INTERMODULATION DISTORTION IN HIGH-POWER COMMUNICATION SATELLITE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Zhang Shiquan; Ge Debiao

    2005-01-01

    In order to analyze the deleterious effects of Passive InterModulation (PIM) on high power communication satellite systems, the basic concept of PIM is introduced, and an equation for the power spectral density of the n-th order PIM distortion insuch systems is derived by applying flat signal-power spectrum assumption and Fourier transform method. It is indicated that PIM level generally decreases with order and the lowest frequency receive channel in the receive band is the channel of most affected by PIM interference.

  17. High-quality Wind Power Scenario Forecasts for Decision-making Under Uncertainty in Power Systems

    DEFF Research Database (Denmark)

    Delikaraoglou, Stefanos; Pinson, Pierre

    2014-01-01

    The large scale integration of wind generation in existing power systems requires novel operational strategies and market clearing mechanisms to account for the variable nature of this energy source. An efficient method to cope with this uncertainty is stochastic optimization which however requires...... high-quality forecasts in the form of scenarios. The main goal of this work is to release a public dataset of wind power forecasts to be used as a reference for future research. To that extent, we provide a complete framework to describe wind power uncertainty in terms of single...

  18. Electric Vehicles for Improved Operation of Power Systems with High Wind Power Penetration

    DEFF Research Database (Denmark)

    Larsen, Esben; Chandrashekhara, Divya K; Østergaard, Jacob

    2008-01-01

    In a power system with a high share of wind energy the wind fluctuation causes a variation in the power generation, which must be compensated from other sources. The situation in Denmark with a penetration of more than 20% wind in yearly average is presented. The introduction of electric drive...... vehicles (EDV) as flexible loads can improve the system operation. Bidirectional power exchange through batteries (vehicle to grid) can be seen as a storage system in the grid. An analysis of possible economical incentives for the vehicle owners will be shown. By control of EDV charging through a price...

  19. The Improved Power of the Central Lobe in the Beam Combination and High Power Output

    Institute of Scientific and Technical Information of China (English)

    LIU Hou-Kang; WEI Yun-Rong; DONG Jing-Xing; LOU Qi-Hong; XUE Yu-Hao; LI Zhen; HE Bing; ZHOU Jun; DING Ya-Qian; JIAO Meng-Li; LIU Chi; QI Yun-Feng

    2012-01-01

    In order to increase the power fraction of the central lobe in the coherent beam combination of lasers in an array,the effects of the distance factor of near-field distribution on far-field interference patterns are calculated and demonstrated experimentally.An improved beam array of interwoven distribution is demonstrated to enable the power in the central lobe to reach 41%.An optimized mirror array is carefully designed to obtain a high duty ratio,which is up to 53.3% at a high power level.By using these optimized methods and designs,the passive phase locking of eight Yb-doped fiber amplifiers with ring cavities are obtained,and a pleasing interference pattern with 87% visibility is observed.The maximum coherent output power of the system is up to 1066 W.%In order to increase the power fraction of the central lobe in the coherent beam combination of lasers in an array, the effects of the distance factor of near-field distribution on far-field interference patterns are calculated and demonstrated experimentally. An improved beam array of interwoven distribution is demonstrated to enable the power in the central lobe to reach 41%. An optimized mirror array is carefully designed to obtain a high duty ratio, which is up to 53.3% at a high power level. By using these optimized methods and designs, the passive phase locking of eight Yb-doped fiber amplifiers with ring cavities are obtained, and a pleasing interference pattern with 87% visibility is observed. The maximum coherent output power of the system is up to 1066 W.

  20. Power Requirements Determined for High-Power-Density Electric Motors for Electric Aircraft Propulsion

    Science.gov (United States)

    Johnson, Dexter; Brown, Gerald V.

    2005-01-01

    Future advanced aircraft fueled by hydrogen are being developed to use electric drive systems instead of gas turbine engines for propulsion. Current conventional electric motor power densities cannot match those of today s gas turbine aircraft engines. However, if significant technological advances could be made in high-power-density motor development, the benefits of an electric propulsion system, such as the reduction of harmful emissions, could be realized.

  1. High Power Fiber Lasers and Applications to Manufacturing

    Science.gov (United States)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  2. High-power laser chains used for laser isotope separation

    Science.gov (United States)

    Lompre, Louis A.

    2000-01-01

    Since 1985, France has chosen to focus on the selective photo-ionization process called SILVA for uranium enrichment. The general SILVA schedule has led to the construction of a pilot facility called ASTER, aimed to a general assessment of SILVA. It utilizes a mid power dye laser chain pumped by copper vapor laser chains. An alternative solution to pump dye laser is under development. It is based on high-power diode-pumped frequency doubled Nd:YAG modules. Performances as high as 150 Watts, at 532 nm, 10 kHz and pulse duration shorter than 75 ns have been obtained. The electrical efficiency overpasses 5 percent. The paper will give a description of the high power laser chains used or proposed for laser isotope separation.

  3. Optical Fiber for High-Power Optical Communication

    Directory of Open Access Journals (Sweden)

    Kenji Kurokawa

    2012-09-01

    Full Text Available We examined optical fibers suitable for avoiding such problems as the fiber fuse phenomenon and failures at bends with a high power input. We found that the threshold power for fiber fuse propagation in photonic crystal fiber (PCF and hole-assisted fiber (HAF can exceed 18 W, which is more than 10 times that in conventional single-mode fiber (SMF. We considered this high threshold power in PCF and HAF to be caused by a jet of high temperature fluid penetrating the air holes. We showed examples of two kinds of failures at bends in conventional SMF when the input power was 9 W. We also observed the generation of a fiber fuse under a condition that caused a bend-loss induced failure. We showed that one solution for the failures at bends is to use optical fibers with a low bending loss such as PCF and HAF. Therefore, we consider PCF and HAF to be attractive solutions to the problems of the fiber fuse phenomenon and failures at bends with a high power input.

  4. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    of technologies for very high frequency switch mode power supplies. At these highly elevated frequencies normal bulky magnetics with heavy cores consisting of rare earth materials, can be replaced by air core inductors embedded in the printed circuit board. This is investigated thoroughly and both spirals...... of 70%, weight reduction of 81%, cost reduction of 56% and efficiency gain of 4.5%-points can be achieved with a very high frequency class DE converter, compared to a commercial product....

  5. High-level power analysis and optimization techniques

    Science.gov (United States)

    Raghunathan, Anand

    1997-12-01

    This thesis combines two ubiquitous trends in the VLSI design world--the move towards designing at higher levels of design abstraction, and the increasing importance of power consumption as a design metric. Power estimation and optimization tools are becoming an increasingly important part of design flows, driven by a variety of requirements such as prolonging battery life in portable computing and communication devices, thermal considerations and system cooling and packaging costs, reliability issues (e.g. electromigration, ground bounce, and I-R drops in the power network), and environmental concerns. This thesis presents a suite of techniques to automatically perform power analysis and optimization for designs at the architecture or register-transfer, and behavior or algorithm levels of the design hierarchy. High-level synthesis refers to the process of synthesizing, from an abstract behavioral description, a register-transfer implementation that satisfies the desired constraints. High-level synthesis tools typically perform one or more of the following tasks: transformations, module selection, clock selection, scheduling, and resource allocation and assignment (also called resource sharing or hardware sharing). High-level synthesis techniques for minimizing the area, maximizing the performance, and enhancing the testability of the synthesized designs have been investigated. This thesis presents high-level synthesis techniques that minimize power consumption in the synthesized data paths. This thesis investigates the effects of resource sharing on the power consumption in the data path, provides techniques to efficiently estimate power consumption during resource sharing, and resource sharing algorithms to minimize power consumption. The RTL circuit that is obtained from the high-level synthesis process can be further optimized for power by applying power-reducing RTL transformations. This thesis presents macro-modeling and estimation techniques for switching

  6. Theory and Modeling of High-Power Gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory Semeon [Univ. of Maryland, College Park, MD (United States)

    2016-04-29

    This report summarized results of the work performed at the Institute for Research in Electronics and Applied Physics of the University of Maryland (College Park, MD) in the framework of the DOE Grant “Theory and Modeling of High-Power Gyrotrons”. The report covers the work performed in 2011-2014. The research work was performed in three directions: - possibilities of stable gyrotron operation in very high-order modes offering the output power exceeding 1 MW level in long-pulse/continuous-wave regimes, - effect of small imperfections in gyrotron fabrication and alignment on the gyrotron efficiency and operation, - some issues in physics of beam-wave interaction in gyrotrons.

  7. Optical design of high power excimer laser system

    International Nuclear Information System (INIS)

    Image relay and angular multiplexing,which should be considered together in the design of high power excimer laser system, is reviewed. It's important to select proper illumination setup and laser beam shaping techniques. Given the complex and special angular multiplexing scheme in high power excimer laser systems, some detailed conceptual layout schemes are given in the paper. After a brief description of lens array and reflective telescope objective, which combine the incoming beams to a common focus, a new schematic layout which uses the final targeting optics and one optical delay line array, to realize multiplexing and de-multiplexing simultaneously is first proposed in the paper. (authors)

  8. High-power FEL design issues - a critical review

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.; Madey, J.M.J.; O`Shea, P.G. [Duke Univ., Durham, NC (United States)

    1995-12-31

    The high-average power capability of FELs has been much advertised but little realized. In this paper we provide a critical analysis of the technological and economic issues associated with high-average power FEL operation from the UV to near IR. The project of IR FEL for the Siberian Center of photochemical researches is described. The distinguished features of this project are the use of the race-track microtron-recuperator and the {open_quotes}electron output of radiation{close_quotes}. The building for the machine is under reconstruction now. About half of hardware has been manufactured. The assembly of installation began.

  9. Suppressing voltage transients in high voltage power supplies

    International Nuclear Information System (INIS)

    A high voltage power supply for an X-ray tubes includes voltage adjusting means, a high voltage transformer, switch means connected to make and interrupt the primary current of the transformer, and over-voltage suppression means to suppress the voltage transient produced when the current is switched on. In order to reduce the power losses in the suppression means, an impedance is connected in the transformer primary circuit on operation of the switch means and is subsequently short-circuited by a switch controlled by a timer after a period which is automatically adjusted to the duration of the transient overvoltage. (U.K.)

  10. High efficiency USC power plant - present status and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Blum, R. [Faelleskemikerne I/S Fynsvaerket (Denmark); Hald, J. [Elsam/Elkraft/TU Denmark (Denmark)

    1998-12-31

    Increasing demand for energy production with low impact on the environment and minimised fuel consumption can be met with high efficient coal fired power plants with advanced steam parameters. An important key to this improvement is the development of high temperature materials with optimised mechanical strength. Based on the results of more than ten years of development a coal fired power plant with an efficiency above 50 % can now be realised. Future developments focus on materials which enable an efficiency of 52-55 %. (orig.) 25 refs.

  11. Active Snubber Circuit for High Power Inverter Leg

    DEFF Research Database (Denmark)

    Rasmussen, Tonny Wederberg; Johansen, Morten Holst

    2009-01-01

    Abstract— High power converters in the conventional 6 pulse configuration with 6 switching elements IGBTs (Insulated Gate Bipolar Transistor) are pushed to the limit of power. Especially the switching loss is high. This reduces the switching frequency due to cooling problems. Passive snubber...... circuits have been introduced to reduce the loss even though some of the loss is removed from the IGBT to the snubber resistance. This paper takes also the next step to introduce the active Undeland snubber which in principle is lossless. The paper describes this solution together with some simulations...

  12. High Speed, Low Power Current Comparators with Hysteresis

    Directory of Open Access Journals (Sweden)

    Neeraj K. Chasta

    2012-02-01

    Full Text Available This paper, presents a novel idea for analog current comparison which compares input signal current and reference currents with high speed, low power and well controlled hysteresis. Proposed circuit is based on current mirror and voltage latching techniques which produces rail to rail output voltage as a result of current comparison. The same design can be extended to a simple current comparator without hysteresis (or very less hysteresis, where comparator gives high accuracy (less than 50nA and speed at the cost of moderate power consumption. The comparators are designed optimally and studied at 180 nm CMOS process technology for a supply voltage of 3V.

  13. High Speed, Low Power Current Comparators with Hysteresis

    Directory of Open Access Journals (Sweden)

    Neeraj K. Chasta

    2012-03-01

    Full Text Available This paper, presents a novel idea for analog current comparison which compares input signal current and reference currents with high speed, low power and well controlled hysteresis. Proposed circuit is based on current mirror and voltage latching techniques which produces rail to rail output voltage as a result of current comparison. The same design can be extended to a simple current comparator without hysteresis (or very less hysteresis, where comparator gives high accuracy (less than 50nA and speed at the cost of moderate power consumption. The comparators are designed optimally and studied at 180nm CMOS process technology for a supply voltage of 3V.

  14. High-power synchronously pumped femtosecond Raman fiber laser.

    Science.gov (United States)

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results. PMID:26030549

  15. Using high-power light emitting diodes for photoacoustic imaging

    DEFF Research Database (Denmark)

    Hansen, René Skov

    The preliminary result of using a high-power light emitting diode, LED, for photoacoustic imaging is presented. The pulsed light source is created by a 1Watt red Luxeon LED. The LED delivers light pulses with 25W peak power when supplied by 40A peak, 60ns wide current pulses. The phantom used...... for the experiment consists of a 3mm high x 5mm wide slice of green colored gelatine overlaid by a 3cm layer of colorless gelatine. The light pulses from the LED is focused on the green gelatine. The photoacoustic response from the green gelatine is detected by a single transducer on the opposite (top) surface...

  16. High Speed, Low Power Current Comparators with Hysteresis

    CERN Document Server

    Chasta, Neeraj K

    2012-01-01

    This paper, presents a novel idea for analog current comparison which compares input signal current and reference currents with high speed, low power and well controlled hysteresis. Proposed circuit is based on current mirror and voltage latching techniques which produces rail to rail output voltage as a result of current comparison. The same design can be extended to a simple current comparator without hysteresis (or very less hysteresis), where comparator gives high accuracy (less than 50nA) and speed at the cost of moderate power consumption. The comparators are designed optimally and studied at 180nm CMOS process technology for a supply voltage of 3V.

  17. High stable power control of a laser diode

    Institute of Scientific and Technical Information of China (English)

    YANG Jiu-ru; LI Cheng; YE Hong-an; L(U) Guo-hui; JIA Shi-lou

    2006-01-01

    In this paper,the low and the high frequency noises of a laser diode have been analyzed. Based on the analysis a novel scheme that adapts analog and digital hybrid techniques is proposed to stabilize the output power of a laser diode. With the hybrid controller,the low and the high frequency noises of a laser diode are conspicuously reduced.By accurate calculation,the short-term stability of the output power of laser diode reaches ±0.55‰, and the long-term stability is ±0.7‰.

  18. High Power RF Test Facility at the SNS

    International Nuclear Information System (INIS)

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavities have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducting and superconducting accelerating cavities and components

  19. High power diode lasers for solid-state laser pumps

    Science.gov (United States)

    Linden, Kurt J.; McDonnell, Patrick N.

    1994-02-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  20. High-power UV-B LEDs with long lifetime

    Science.gov (United States)

    Rass, Jens; Kolbe, Tim; Lobo-Ploch, Neysha; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian; Enslin, Johannes; Guttmann, Martin; Reich, Christoph; Mogilatenko, Anna; Glaab, Johannes; Stoelmacker, Christoph; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2015-03-01

    UV light emitters in the UV-B spectral range between 280 nm and 320 nm are of great interest for applications such as phototherapy, gas sensing, plant growth lighting, and UV curing. In this paper we present high power UV-B LEDs grown by MOVPE on sapphire substrates. By optimizing the heterostructure design, growth parameters and processing technologies, significant progress was achieved with respect to internal efficiency, injection efficiency and light extraction. LED chips emitting at 310 nm with maximum output powers of up to 18 mW have been realized. Lifetime measurements show approximately 20% decrease in emission power after 1,000 operating hours at 100 mA and 5 mW output power and less than 30% after 3,500 hours of operation, thus indicating an L50 lifetime beyond 10,000 hours.

  1. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  2. Thin film diamond. Electronic devices for high temperature, high power and high radiation applications

    International Nuclear Information System (INIS)

    In the ideal form diamond displays extreme physical, optical and electronic properties, making this material interesting for many device applications. However, natural or high pressure, high temperature synthesised forms of diamond are not useful since they are only available as small irregular crystallites and are expensive. The emergence of commercially accessible techniques for the formation of thin films of diamond over relatively large areas has changed this situation, enabling the prospects for the use of diamond as an electronic material to be truly evaluated. Thin film diamond is a defective polycrystalline material. It is difficult to dope n- and p-type and resists conventional chemical etching. Thus, despite the superlative properties of ideal diamond, the realisation of useful devices from this material is far from simple. This thesis considers how the problems may be overcome such that high performance diamond devices can be realised for use in high temperature, high power and high radiation environments. Following a review of the current state-of-the-art in diamond device technology the experimental techniques used throughout this study are summarised. Field effect transistors (FETs) have been designed for operation at high (>300 deg. C) temperatures. Boron-doped (p-type) diamond was used to form the active channel, with insulating diamond acting as the gate to the FET structure. Polycrystalline diamond devices with the highest yet reported transconductance values, which display full turn-off characteristics have been produced. To enable room temperature operation, where boron is an ineffective dopant, a novel doping approach has been established using hydrogen; devices with transconductance, power handling and full pinch-off characteristic have been realised for the first time with this approach. More complex devices require patterning of the diamond substrate material; reactive ion etching using oxygen and chlorinated fluorocarbons have been studied

  3. Recent advances in phosphate laser glasses for high power applications

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  4. High-Power, High-Efficiency 1.907nm Diode Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight developed high-power, high-efficiency laser diodes emitting at 1907nm for the pumping of solid-state lasers during the Phase I. The innovation brought to...

  5. High-Power, High-Efficiency 1.907nm Diode Lasers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — nLight proposes to develop high-power, high-efficiency laser diodes emitting at 1907nm. Performance is expected to improve from the current state-of-the-art...

  6. Two photon absorption in high power broad area laser diodes

    Science.gov (United States)

    Dogan, Mehmet; Michael, Christopher P.; Zheng, Yan; Zhu, Lin; Jacob, Jonah H.

    2014-03-01

    Recent advances in thermal management and improvements in fabrication and facet passivation enabled extracting unprecedented optical powers from laser diodes (LDs). However, even in the absence of thermal roll-over or catastrophic optical damage (COD), the maximum achievable power is limited by optical non-linear effects. Due to its non-linear nature, two-photon absorption (TPA) becomes one of the dominant factors that limit efficient extraction of laser power from LDs. In this paper, theoretical and experimental analysis of TPA in high-power broad area laser diodes (BALD) is presented. A phenomenological optical extraction model that incorporates TPA explains the reduction in optical extraction efficiency at high intensities in BALD bars with 100μm-wide emitters. The model includes two contributions associated with TPA: the straightforward absorption of laser photons and the subsequent single photon absorption by the holes and electrons generated by the TPA process. TPA is a fundamental limitation since it is inherent to the LD semiconductor material. Therefore scaling the LDs to high power requires designs that reduce the optical intensity by increasing the mode size.

  7. FINFET-BASED LOW POWER & HIGH SPEED SRAM CELL DESIGN

    Directory of Open Access Journals (Sweden)

    SHILPA SAXENA

    2016-07-01

    Full Text Available In digital circuits designing the SRAM design constraints are very important. In the integrated circuits fabrication the majority of space is taken by the memories.. The design considerations of SRAM consist of: increased speed and reduced power. CMOS devices are shrinking to nanometer regime, thereby, increasing short channel effects and process parameter variations that degrades the reliability of the circuit as well as performance. To solve these issues of CMOS, FinFET proves to be better technology, without sacrificing reliability and performance for its applications and the circuit design. The use of FinFETs, transmission gates are used in the access path of the SRAM Cell and the Sleep transistors power gating technique are used for low leakage power and high performance. The transient and dc analysis of the proposed ST11T, ST13T and with sleep transistors SRAM cell has been obtained using Cadence Virtuoso tool and BSIMCMG model 107.0.0 for 22nm FinFETs to achieve high performance. It can be observed from the results that the percentage improvement of 97.30% in power dissipation 27.77% in delay, 98.05% in PDP and 38.37% increase in speed is obtained for the proposed finFET-based ST13T circuit with power gating technique are that shows the high performance for SRAM Cell as compared to design based on CMOS technology.

  8. BBO sapphire compound for high-power frequency conversion

    Science.gov (United States)

    Rothhardt, Carolin; Rothhardt, Jan; Klenke, Arno; Peschel, Thomas; Eberhardt, Ramona; Limpert, Jens; Tünnermann, Andreas

    2015-02-01

    Lasers used for diverse applications from industry to fundamental science tend to increasing output powers. Some applications require frequency conversion via nonlinear optical crystals, which suffer from the formation of temperature gradients at high power operation which causes thermal lensing or destruction of the crystal due to tensile stresses. To avoid these unwanted effects we joined a beta barium borate (BBO) crystal with sapphire disks serving as effective heat spreaders due to their high thermal conductivity (thermal conductivity κ = 42 W/Km). Therefore, smooth and flat crystal surfaces were joined by plasma-activated bonding. The joining relies on covalent bonds, which are formed via a condensation reaction of the surfaces which are first connected by Van der Waals forces. The cleaned surfaces are activated by plasma and brought into contact, pressed together and heat treated at a temperature of about 100°C. Special attention has been paid to the cleaning of the surfaces. Therefor the surfaces have been evaluated before and after treatment by means of atomic force microscopy. A stable connection has been formed successfully, which has been tested in a proof of principle experiment and demonstrated efficient second harmonic generation at up to 253 W of input power. Compared to a bare single BBO crystal it could be shown that the temperature within the crystal compound is significantly reduced. Such hybrid structures pave the way for frequency conversion at kilowatts of average power for future high power lasers.

  9. High Power Combline Filter for Deep Space Applications

    Directory of Open Access Journals (Sweden)

    A. V. G. Subramanyam

    2014-01-01

    Full Text Available An S-band, compact, high power filter, for use in the Mars Orbiter Mission (MOM of Indian Space Research Organization (ISRO, has been designed and tested for multipaction. The telemetry, tracking, and commanding (TT&C transponder of MOM is required to handle continuous RF power of 200 W in the telemetry path besides simultaneously maintaining an isolation of greater than 145 dBc to its sensitive telecommand path. This is accomplished with the help of a complex diplexer, requiring high power, high rejection transmit path filter, and a low power receive path filter. To reduce the complexity in the multipaction-free design and testing, the transmit path filter of the diplexer is split into a low rejection filter integral to the diplexer and an external high rejection filter. This paper highlights the design and space qualification phases of this high rejection filter. Multipaction test results with 6 dB margin are also presented. Major concerns of this filter design are isolation, insertion loss, and multipaction. Mission performance of the on-board filter is normal.

  10. Wind power bidding in electricity markets with high wind penetration

    International Nuclear Information System (INIS)

    Highlights: • We analyze the pricing systems and wind power trading in electricity markets. • We propose a model that captures the relation between market prices and wind power. • A probabilistic bidding model can increase profits for wind power producers. • Profit maximizing bidding strategies carry risks for power system operators. • We conclude that modifications of current market designs may be needed. - Abstract: Objective: The optimal day-ahead bidding strategy is studied for a wind power producer operating in an electricity market with high wind penetration. Methods: A generalized electricity market is studied with minimal assumptions about the structure of the production, bidding, or consumption of electricity. Two electricity imbalance pricing schemes are investigated, the one price and the two price scheme. A stochastic market model is created to capture the price effects of wind power production and consumption. A bidding algorithm called SCOPES (Supply Curve One Price Estimation Strategy) is developed for the one price system. A bidding algorithm called MIMICS (Multivariate Interdependence Minimizing Imbalance Cost Strategy) is developed for the two price system. Results: Both bidding strategies are shown to have advantages over the assumed “default” bidding strategy, the point forecast. Conclusion: The success of these strategies even in the case of high deviation penalties in a one price system and the implicit deviation penalties of the two price system has substantial implications for power producers and system operators in electricity markets with a high level of wind penetration. Practice implications: From an electricity market design perspective, the results indicate that further penalties or regulations may be needed to reduce system imbalance

  11. Power combination of a self-coherent high power microwave source

    International Nuclear Information System (INIS)

    In our previous work, generating two phase-locked high power microwaves (HPMs) in a single self-coherent HPM device has been demonstrated. In this paper, after optimizing the structure of the previous self-coherent source, we design a power combiner with a folded phase-adjustment waveguide to realize power combination between its two sub-sources. Further particle-in-cell simulation of the combined source shows that when the diode voltage is 687 kV and the axial magnetic field is 0.8 T, a combined output microwave with 3.59 GW and 9.72 GHz is generated. The impedance of the combined device is 36 Ω and the total power conversion efficiency is 28%

  12. Inductance effects in the high-power transmitter crowbar system

    Science.gov (United States)

    Daeges, J.; Bhanji, A.

    1987-01-01

    The effective protection of a klystron in a high-power transmitter requires the diversion of all stored energy in the protected circuit through an alternate low-impedance path, the crowbar, such that less than 1 joule of energy is dumped into the klystron during an internal arc. A scheme of adding a bypass inductor in the crowbar-protected circuit of the high-power transmitter was tested using computer simulations and actual measurements under a test load. Although this scheme has several benefits, including less power dissipation in the resistor, the tests show that the presence of inductance in the portion of the circuit to be protected severely hampers effective crowbar operation.

  13. TE_01 High Power Disk Loaded Guide Load

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.; /SLAC

    2005-06-01

    A method to design a matching section from a smooth guide to a disk-loaded guide, using a variation of broadband matching, [1, 2] is described. Using this method, we show how to design high power loads, attenuators and filters. The load consists of a disk-loaded coaxial guide operating in the TE{sub 01}-mode. We use this mode because it has no electric field terminating on a conductor, has no axial currents, and has no current at the cylinder-disk interface. A high power load design that has -35 dB reflection and a 200 MHz, -20 dB bandwidth, is presented. It is expected that it will carry the 600 MW output peak power of the pulse compression network. We use coaxial geometry and stainless steel material to increase the attenuation per cell.

  14. Modeling, fabrication and high power optical characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Lysenko, Oleg

    2015-01-01

    This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 1...... from the linear propagation regime of surface plasmon polaritons at the average input power of 100 mW and above. Possible reasons for this deviation are heating of the waveguides and subsequent changes in the coupling and propagation losses.......This paper describes modeling, fabrication and high power optical characterization of thin gold films embedded in silicon dioxide. The propagation vector of surface plasmon polaritons has been calculated by the effective index method for the wavelength range of 750-1700 nm and film thickness of 15...

  15. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given. PMID:23455291

  16. High-Power ZBLAN Glass Fiber Lasers: Review and Prospect

    Directory of Open Access Journals (Sweden)

    Xiushan Zhu

    2010-01-01

    Full Text Available ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF, considered as the most stable heavy metal fluoride glass and the excellent host for rare-earth ions, has been extensively used for efficient and compact ultraviolet, visible, and infrared fiber lasers due to its low intrinsic loss, wide transparency window, and small phonon energy. In this paper, the historical progress and the properties of fluoride glasses and the fabrication of ZBLAN fibers are briefly described. Advances of infrared, upconversion, and supercontinuum ZBLAN fiber lasers are addressed in detail. Finally, constraints on the power scaling of ZBLAN fiber lasers are analyzed and discussed. ZBLAN fiber lasers are showing promise of generating high-power emissions covering from ultraviolet to mid-infrared considering the recent advances in newly designed optical fibers, beam-shaped high-power pump diodes, beam combining techniques, and heat-dissipating technology.

  17. Thermal effects in high average power optical parametric amplifiers.

    Science.gov (United States)

    Rothhardt, Jan; Demmler, Stefan; Hädrich, Steffen; Peschel, Thomas; Limpert, Jens; Tünnermann, Andreas

    2013-03-01

    Optical parametric amplifiers (OPAs) have the reputation of being average power scalable due to the instantaneous nature of the parametric process (zero quantum defect). This Letter reveals serious challenges originating from thermal load in the nonlinear crystal caused by absorption. We investigate these thermal effects in high average power OPAs based on beta barium borate. Absorption of both pump and idler waves is identified to contribute significantly to heating of the nonlinear crystal. A temperature increase of up to 148 K with respect to the environment is observed and mechanical tensile stress up to 40 MPa is found, indicating a high risk of crystal fracture under such conditions. By restricting the idler to a wavelength range far from absorption bands and removing the crystal coating we reduce the peak temperature and the resulting temperature gradient significantly. Guidelines for further power scaling of OPAs and other nonlinear devices are given.

  18. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  19. High Power Diode Lasers with External Feedback: Overview and Prospects

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2012-01-01

    In summary, different external-cavity feedback techniques to improve the spatial beam quality and narrow the linewidth of the output beam from both BALs and TDLs are presented. Broad-area diode laser system with external-cavity feedback around 800 nm can produce several Watts of output power...... with a good beam quality. Tapered diode laser systems with external-cavity feedback around 800 and 1060 nm can deliver more than 2 W output power with diffraction-limited beam quality and can be operated in single-longitudinal mode. These high-brightness, narrow linewidth, and tunable external-cavity diode...... lasers emerge as the next generation of compact lasers that have the potential of replacing conventional high power laser systems in many existing applications....

  20. High-power green diode laser systems for biomedical applications

    DEFF Research Database (Denmark)

    Müller, André

    Due to their unique characteristics, diode lasers are increasingly attractive for numerous applications. For example, in the biomedical field the provided output power, spatial quality, and wavelength coverage of diode lasers has enabled their applications in, e.g., dermatology, diffuse...... spectroscopy and imaging, and fluorescence measurements. A major challenge in diode laser technology is to obtain high-power laser emission at wavelengths lasers...... in conjunction with optical coherence tomography, two-photon microscopy or coherent anti-Stokes Raman scattering microscopy. In order to provide high-power green diode laser emission, nonlinear frequency conversion of state-of-the-art near-infrared diode lasers represents a necessary means. However, the obtained...

  1. In-volume heating using high-power laser diodes

    Science.gov (United States)

    Denisenkov, Valentin S.; Kiyko, Vadim V.; Vdovin, Gleb V.

    2015-03-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface heating with different approaches to make the heat distribution more uniform and the process more efficient. High-power lasers can in theory provide in-bulk heating which can sufficiently increase the uniformity of heat distribution thus making the process more efficient. We chose two media (vegetable fat and glucose) for feasibility experiments. First, we checked if the media have necessary absorption coefficients on the wavelengths of commercially available laser diodes (940-980 nm). This was done using spectrophotometer at 700-1100 nm which provided the dependences of transmission from the wavelength. The results indicate that vegetable fat has noticeable transmission dip around 925 nm and glucose has sufficient dip at 990 nm. Then, after the feasibility check, we did numerical simulation of the heat distribution in bulk using finite elements method. Based on the results, optimal laser wavelength and illuminator configuration were selected. Finally, we carried out several pilot experiments with high-power diodes heating the chosen media.

  2. Functionally graded materials produced with high power lasers

    NARCIS (Netherlands)

    De Hosson, J. T. M.; Ocelik, V.

    2003-01-01

    In this keynote paper two examples will be present of functionally graded materials produced with high power Nd:YAG lasers. In particular the conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of A18Si and Ti6Al4V alloys are presented. The formation of

  3. Rapid heating of matter using high power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Woosuk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-08

    This slide presentation describes motivation (uniform and rapid heating of a target, opportunity to study warm dense matter, study of nuclear fusion reactions), rapid heating of matter with intense laser-driven ion beams, visualization of the expanding warm dense gold and diamond, and nuclear fusion experiments using high power lasers (direct heating of deuterium spheres (radius ~ 10nm) with an intense laser pulse.

  4. China——A High-Power Distance Country

    Institute of Scientific and Technical Information of China (English)

    郝煦

    2008-01-01

    <正>Intercultural communication is getting more and more important.Chinese culture is different from other cultures.It is a culture that attaches great importance to high-power distance. This concept is acceptable deeply in people’s heart.

  5. In-situ strain observation in high power laser cladding

    NARCIS (Netherlands)

    Ocelik, V.; Bosgra, J.; de Hosson, J. Th. M.

    2009-01-01

    The modern experimental technique - so called Digital Image Correlation - is applied during high power laser surface treatments for in-situ observation of displacements and strains near the processing area during and a short time after laser processing. An experimental setup has been designed and te

  6. TE(01) High Power Disk Loaded Guide Load

    CERN Document Server

    Farkas, Zoltan D

    2005-01-01

    A method to design a matching section from a smooth guide to a disk loaded guide, using a variation of broadband matching* is described. Using this method, we show how to design high power loads, filters and attenuators. The load consists of a disk loaded coaxial guide, operating in the T01

  7. Durable cathodes for high-power inert-gas arcs

    Science.gov (United States)

    Decker, A. J.; Gettleman, C. C.; Goldman, G. C.; Hall, J. H.; Pollack, J. L.

    1971-01-01

    Cathode design minimizes evaporation of electrode material which may deposit on associated optical surfaces. It also results in stable operation and precise positioning of arc relative to optical collector. Innovation applies to high power light sources and to arcs used in industrial furnaces.

  8. High Power Electric Propulsion for Deep Space Missions

    Science.gov (United States)

    Polk, Jay

    2011-01-01

    Slide presentation reviews: (1) An Electric Propulsion Primer (2) The Flexible Path and the Electric Path (2a) A New Plan for Human Exploration (2b)The Role of Electric Propulsion (3) High Power Electric Thrusters (3a)Hall Thrusters (3b) Magnetoplasmadynamic Thrusters (4)Challenges for the Next Generation of Advanced Propulsion Technologist

  9. High power laser matrix AlGaAs

    International Nuclear Information System (INIS)

    High power diode arrays operating in the 808 nm wavelength range have been developed and their more important profiles assessed. The work on these devices is in progress yet preliminary results already obtained show their capability to be used as pumps of solid state Nd:YAG lasers. (author)

  10. High Resolution PV Power Modeling for Distribution Circuit Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  11. High School Principals as Leaders: Styles and Sources of Power

    Science.gov (United States)

    Brinia, Vasiliki; Papantoniou, Eva

    2016-01-01

    Purpose: The purpose of this paper is to present the characteristics of leadership (style adopted, sources of power exercised and factors affecting leadership) of high school principals in Greece. Design/Methodology/Approach: In total, 235 school principals were surveyed using questionnaires. These questionnaires assessed how often they adopted…

  12. Optimisation of High-Power Amplifiers using non linear models

    NARCIS (Netherlands)

    Hek, A.P. de; Bogaart, F.L.M. van den

    1999-01-01

    This paper identifies the areas where the use of non-linear simulations for the design of high-power amplifiers is useful. The identified areas are: operating class selection, determination source and load impedance for matching network design, overall amplifier simulations and stability analysis un

  13. High power microwave generation in virtual cathode systems

    International Nuclear Information System (INIS)

    Pulsed high-power microwave generation by means of high current accelerator system has recently become an intensive area of research, the most promising among them being virtual cathode devices or vircators. There are two mechanisms which lead to production of high-power microwaves in vircators. The first deals with electrons, oscillating near the anode and the second with virtual cathode (VC) oscillating as a whole. Generally both mechanisms are presented, but in a given device one may dominate the other. If the anode is thick enough to absorb reflected electrons thus preventing the authors from reentering the diode region, the first mechanism vanished. In this paper the authors discuss the second mechanism, which is realized, for example, in reditron. Anode plasma produced by high-current electron beam passing through the anode is taken into account

  14. High temperature SMES for improving power system stabilities

    Institute of Scientific and Technical Information of China (English)

    CHENG ShiJie; TANG YueJin

    2007-01-01

    Superconducting magnetic energy storage (SMES) system has been proven very effective to improve power system stabilities. It is realized with superconductivity technology, power electronics and control theory. In order to promote the application of such kind control device and to further investigate the properties of the controller, a detail mathematic model of such control device is developed. Based on the developed model, extensive analysis including time domain simulation is carried out to investigate the characteristic of the SMES to compensate the unba- lanced dynamic active and reactive power of AC power system. The capability of SMES to increase power system transient and small signal perturbation stabilities are analyzed. A prototype SMES is developed, in which the conduction cooling and the high temperature superconductive techniques are used. The performance of the prototype is experimentally investigated in a laboratory environment. Very encouraging results are obtained. After a brief introduction of the SMES control system and the principle of its capability to improve power system stabilities, the details of the mathematic model, the theoretical analysis, the developed device and the experiment test results are all given in this paper.

  15. High temperature SMES for improving power system stabilities

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Superconducting magnetic energy storage (SMES) system has been proven very effective to improve power system stabilities. It is realized with superconductivity technology, power electronics and control theory. In order to promote the applica-tion of such kind control device and to further investigate the properties of the controller, a detail mathematic model of such control device is developed. Based on the developed model, extensive analysis including time domain simulation is carried out to investigate the characteristic of the SMES to compensate the unba- lanced dynamic active and reactive power of AC power system. The capability of SMES to increase power system transient and small signal perturbation stabilities are analyzed. A prototype SMES is developed, in which the conduction cooling and the high temperature superconductive techniques are used. The performance of the prototype is experimentally investigated in a laboratory environment. Very en-couraging results are obtained. After a brief introduction of the SMES control sys-tem and the principle of its capability to improve power system stabilities, the de-tails of the mathematic model, the theoretical analysis, the developed device and the experiment test results are all given in this paper.

  16. Coherent beam combiner for a high power laser

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd A.

    2002-01-01

    A phase conjugate laser mirror employing Brillouin-enhanced four wave mixing allows multiple independent laser apertures to be phase locked producing an array of diffraction-limited beams with no piston phase errors. The beam combiner has application in laser and optical systems requiring high average power, high pulse energy, and low beam divergence. A broad range of applications exist in laser systems for industrial processing, especially in the field of metal surface treatment and laser shot peening.

  17. First observations of power MOSFET burnout with high energy neutrons

    International Nuclear Information System (INIS)

    Single event burnout was seen in power MOSFETs exposed to high energy neutrons. Devices with rated voltage ≥400 volts exhibited burnout at substantially less than the rated voltage. Tests with high energy protons gave similar results. Burnout was also seen in limited tests with lower energy protons and neutrons. Correlations with heavy-ion data are discussed. Accelerator proton data gave favorable comparisons with burnout rates measured on the APEX spacecraft. Implications for burnout at lower altitudes are also discussed

  18. Beamline considerations for a compact, high current, high power linear RF electron accelerator

    International Nuclear Information System (INIS)

    A design for a compact, high current, high power linear electron accelerator using an rf power source is investigated. It consists of adjacent cavities into which rf power is injected and through which electron pulses pass. The source is assumed to be capable of delivering sufficient rf power to the desired location at the proper phase. Beamline issues such as cavity loading, energy extraction, longitudinal and transverse pulse focusing, and beam breakup are considered. A device which, given the required source, can deliver beam parameters comparable to existing induction accelerators but which is more than an order of magnitude smaller appears feasible

  19. High-temperature materials for nuclear power plant piping

    International Nuclear Information System (INIS)

    The authors discuss the properties and problems of austenitic high-temperature steels or Ni alloys used as materials for pipelines with high operating temperatures in nuclear power plants, e.g. sodium-cooled fast breeders (5500C) and high-temperature reactors (7500C or 9500C). Sturcture and properties (mechanical and technical) of materials are described, e.g. cyclic strength, fatigue life, fracture mechanics, corrosion. Unresolved problems, e.g. multiaxial leads on pipe geometries and accumulation of defects at very high temperatures, are discussed. (orig.)

  20. Robust focusing optics for high-power laser welding

    Science.gov (United States)

    McAllister, Blake

    2014-02-01

    As available power levels from both fiber and disc lasers rapidly increase, so does the need for more robust beam delivery solutions. Traditional transmissive optics for 1 micron lasers have proven to be problematic in the presence of higher power densities and are more susceptible to focal shift. A new, fully-reflective, optical solution has been developed using mirrors rather than lenses and windows to achieve the required stable focal spot, while still protecting the delicate fiber end. This patent-approved beam focusing solution, referred to as high power reflective focusing optic (HPRFO), involves specialty mirrors and a flowing gas orifice that prevents ingress of contaminants into the optically sensitive region of the assembly. These mirrors also provide a unique solution for increasing the distance between the sensitive optics and the contamination-filled region at the work, without sacrificing spot size. Longer focal lengths and lower power densities on large mass, water-cooled, copper mirrors deliver the robustness needed at increasingly high power levels. The HPRFO exhibits excellent beam quality and minimal focal shift at a fraction of commercially available optics, and has demonstrated consistent reliability on applications requiring 15 kW with prolonged beam-on times.

  1. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  2. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Toshiyuki, E-mail: ueno@ec.t.kanazawa-u.ac.jp [Kanazawa University, Kakuma-machi, Kanazawa-city, Ishikawa 920-1192 (Japan)

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  3. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    International Nuclear Information System (INIS)

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm3 under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm3. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator

  4. A high power ZnO thin film piezoelectric generator

    Science.gov (United States)

    Qin, Weiwei; Li, Tao; Li, Yutong; Qiu, Junwen; Ma, Xianjun; Chen, Xiaoqiang; Hu, Xuefeng; Zhang, Wei

    2016-02-01

    A highly efficient and large area piezoelectric ZnO thin film nanogenerator (NG) was fabricated. The ZnO thin film was deposited onto a Si substrate by pulsed laser ablation at a substrate temperature of 500 °C. The deposited ZnO film exhibited a preferred c-axis orientation and a high piezoelectric value of 49.7 pm/V characterized using Piezoelectric Force Microscopy (PFM). Thin films of ZnO were patterned into rectangular power sources with dimensions of 0.5 × 0.5 cm2 with metallic top and bottom electrodes constructed via conventional semiconductor lithographic patterning processes. The NG units were subjected to periodic bending/unbending motions produced by mechanical impingement at a fixed frequency of 100 Hz at a pressure of 0.4 kg/cm2. The output electrical voltage, current density, and power density generated by one ZnO NG were recorded. Values of ∼95 mV, 35 μA cm-2 and 5.1 mW cm-2 were recorded. The level of power density is typical to that produced by a PZT NG on a flexible substrate. Higher energy NG sources can be easily created by adding more power units either in parallel or in series. The thin film ZnO NG technique is highly adaptable with current semiconductor processes, and as such, is easily integrated with signal collecting circuits that are compatible with mass production. A typical application would be using the power harvested from irregular human foot motions to either to operate blue LEDs directly or to drive a sensor network node in mille-power level without any external electric source and circuits.

  5. Electron beam diagnostic for profiling high power beams

    Science.gov (United States)

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  6. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power.

    Science.gov (United States)

    Rudin, B; Wittwer, V J; Maas, D J H C; Hoffmann, M; Sieber, O D; Barbarin, Y; Golling, M; Südmeyer, T; Keller, U

    2010-12-20

    High-power ultrafast lasers are important for numerous industrial and scientific applications. Current multi-watt systems, however, are based on relatively complex laser concepts, for example using additional intracavity elements for pulse formation. Moving towards a higher level of integration would reduce complexity, packaging, and manufacturing cost, which are important requirements for mass production. Semiconductor lasers are well established for such applications, and optically-pumped vertical external cavity surface emitting lasers (VECSELs) are most promising for higher power applications, generating the highest power in fundamental transverse mode (>20 W) to date. Ultrashort pulses have been demonstrated using passive modelocking with a semiconductor saturable absorber mirror (SESAM), achieving for example 2.1-W average power, sub-100-fs pulse duration, and 50-GHz pulse repetition rate. Previously the integration of both the gain and absorber elements into a single wafer was demonstrated with the MIXSEL (modelocked integrated external-cavity surface emitting laser) but with limited average output power (design combined with an improved thermal management by wafer removal and mounting of the 8-µm thick MIXSEL structure directly onto a CVD-diamond heat spreader. The simple straight cavity with only two components has generated 28-ps pulses at 2.5-GHz repetition rate and an average output power of 6.4 W, which is higher than for any other modelocked semiconductor laser. PMID:21197032

  7. Solid-state microwave high-power amplifiers

    CERN Document Server

    Sechi, Franco

    2009-01-01

    This practical resource offers expert guidance on the most critical aspects of microwave power amplifier design. This comprehensive book provides descriptions of all the major active devices, discusses large signal characterization, explains all the key circuit design procedures. Moreover you gain keen insight on the link between design parameters and technological implementation, helping you achieve optimal solutions with the most efficient utilization of available technologies. The book covers a broad range of essential topics, from requirements for high-power amplifiers, device models, phas

  8. High-output-power polarization-insensitive SOA

    Science.gov (United States)

    Morito, Ken

    2002-05-01

    An 1550 nm semiconductor optical amplifier (SOA) with a very thin tensile-strained bulk active layer and active width-tapered spot-size converters was developed. The SOA module exhibited a record high saturation output power of +17 dBm together with a low noise figure of 7 dB, large gain of 19 dB and small polarization sensitivity of 0.2 dB. A good eye pattern without waveform distortion due to the pattern effect was obtained for amplified 10 Gb/s NRZ signals up to an average output power of +12 dBm.

  9. Tunable Single-Longitudinal-Mode High-Power Fiber Laser

    Directory of Open Access Journals (Sweden)

    Jonas K. Valiunas

    2012-01-01

    Full Text Available We report a novel CW tunable high-power single-longitudinal-mode fiber laser with a linewidth of ∼9 MHz. A tunable fiber Bragg grating provided wavelength selection over a 10 nm range. An all-fiber Fabry-Perot filter was used to increase the longitudinal mode spacing of the laser cavity. An unpumped polarization-maintaining erbium-doped fiber was used inside the cavity to eliminate mode hopping and increase stability. A maximum output power of 300 mW was produced while maintaining single-longitudinal-mode operation.

  10. Status of the Novosibirsk high-power terahertz FEL

    International Nuclear Information System (INIS)

    The first stage of Novosibirsk high-power free electron laser (FEL) was commissioned in 2003. It is based on the normal conducting CW energy recovery linac (ERL). Now the FEL provides electromagnetic radiation in the wavelength range 120-230 μm. The maximum average power is 400 W. The minimum measured linewidth is 0.3%, which is close to the Fourier-transform limit. Four user stations are in operation now. Manufacturing of the second stage of the FEL (based on the four-turn ERL) is in progress

  11. The Linac4 DTL Prototype: Low and High Power Measurements

    CERN Document Server

    De Michele, G; Marques-Balula, J; Ramberger, S

    2012-01-01

    The prototype of the Linac4 Drift Tube Linac (DTL) has undergone low power measurements in order to verify the RF coupling and to adjust the post-coupler lengths based on bead-pull and spectrum measurements. Following the installation at the test stand, the cavity has been subjected to high power operation at Linac4 and SPL duty cycles. Saturation effects and multipacting have been observed and linked to X-ray emission. Voltage holding is reported in the presence of magnetic fields from permanent magnet quadrupoles (PMQ) installed in the first drift tubes.

  12. High-current Standing Wave Linac With Gyrocon Power Source

    CERN Document Server

    Karliner, M M; Makarov, I G; Nezhevenko, O A; Ostreiko, G N; Persov, B Z; Serdobintsev, G V

    2004-01-01

    A gyrocon together with high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. 2.2 amps of pulsed current have been obtained at electron energy of 20 MeV. The achieved energy conversion efficiency is about 55%.

  13. Stopping powers of metallic elements for high energy ions

    International Nuclear Information System (INIS)

    The stopping powers of metallic elements have been measured for 55, 65 and 73 MeV protons and for 13 MeV/u 4He and 12C ions using a high resolution magnetic spectrograph. Analyzing experimental data for protons with the Bethe-Bloch formula, we deduced mean excitation energies for 10 metallic elements. The magnitude of the Barkas correction was extracted from the stopping power difference for 4He and 12C ions at the same velocity which was found to consistent with that measured in previous experiments. (Author)

  14. Langevin power curve analysis for numerical WEC models with new insights on high frequency power performance

    CERN Document Server

    Mücke, Tanja A; Milan, Patrick; Peinke, Joachim

    2015-01-01

    Based on the Langevin equation it has been proposed to obtain power curves for wind turbines from high frequency data of wind speed measurements u(t) and power output P (t). The two parts of the Langevin approach, power curve and drift field, give a comprehensive description of the conversion dynamic over the whole operating range of the wind turbine. The method deals with high frequent data instead of 10 min means. It is therefore possible to gain a reliable power curve already from a small amount of data per wind speed. Furthermore, the method is able to visualize multiple fixed points, which is e.g. characteristic for the transition from partial to full load or in case the conversion process deviates from the standard procedures. In order to gain a deeper knowledge it is essential that the method works not only for measured data but also for numerical wind turbine models and synthetic wind fields. Here, we characterize the dynamics of a detailed numerical wind turbine model and calculate the Langevin power...

  15. Power processing unit options for high powered nuclear electric propulsion using MPD thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Krauthamer, S.; Frisbee, R.H. [California Inst. of Technology, Pasadena, CA (United States). Jet Propulsion Lab.; Das, R.S.L. [California Inst. of Technology, Pasadena, CA (United States). Jet Propulsion Lab.]|[California State Univ., Long Beach, CA (United States)

    1995-12-31

    An electric propulsion vehicle designed to transport cargo in support of a piloted expedition to Mars will require electrical power in the range of megawatts. This paper summarizes an evaluation of various megawatt-class power processing unit (PPU) design and technology options for high-power nuclear electric propulsion (NEP) vehicles using turboalternators and advanced magnetoplasmadynamic (MPD) thrusters. A baseline system uses a low-voltage turboalternator, rectifiers and thrusters. However, there are other options. Four such design and technology options with the potential of improving overall system efficiency and reducing cabling mass are analyzed. The first option uses high-voltage AC from a wye-connected turboalternator and a step-down transformer, the second option uses a six-phase star-connected turboalternator instead of the wye-connected alternator in the baseline configuration, the third option uses PPU rectifier electronics located near the thrusters with a remotely-located radiator, and the fourth option uses cryogenic power conversion electronics and cabling to reduce losses. It is found that the third option has the potential of providing maximum overall power conversion efficiency and reducing mass. Presently, the fourth option appears to have maximum complexity of design and implementation, is costly, and is somewhat uncertain even through it can be the most attractive option in the future.

  16. Research on calorimeter for high-power microwave measurements

    International Nuclear Information System (INIS)

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement

  17. Overview of High Power Vacuum Dry RF Load Designs

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  18. Research on calorimeter for high-power microwave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi’an, Shaanxi 710024 (China)

    2015-12-15

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement.

  19. Potential of high-average-power solid state lasers

    International Nuclear Information System (INIS)

    We discuss the possibility of extending solid state laser technology to high average power and of improving the efficiency of such lasers sufficiently to make them reasonable candidates for a number of demanding applications. A variety of new design concepts, materials, and techniques have emerged over the past decade that, collectively, suggest that the traditional technical limitations on power (a few hundred watts or less) and efficiency (less than 1%) can be removed. The core idea is configuring the laser medium in relatively thin, large-area plates, rather than using the traditional low-aspect-ratio rods or blocks. This presents a large surface area for cooling, and assures that deposited heat is relatively close to a cooled surface. It also minimizes the laser volume distorted by edge effects. The feasibility of such configurations is supported by recent developments in materials, fabrication processes, and optical pumps. Two types of lasers can, in principle, utilize this sheet-like gain configuration in such a way that phase and gain profiles are uniformly sampled and, to first order, yield high-quality (undistorted) beams. The zig-zag laser does this with a single plate, and should be capable of power levels up to several kilowatts. The disk laser is designed around a large number of plates, and should be capable of scaling to arbitrarily high power levels

  20. Next High Performance and Low Power Flash Memory Package Structure

    Institute of Scientific and Technical Information of China (English)

    Jung-Hoon Lee

    2007-01-01

    In general, SAND flash memory has advantages in low power consumption, storage capacity, and fast erase/write performance in contrast to NOR flash. But, main drawback of the SAND flash memory is the slow access time for random read operations. Therefore, we proposed the new SAND flash memory package for overcoming this major drawback. We present a high performance and low power SAND flash memory system with a dual cache memory. The proposed SAND flash package consists of two parts, i.e., an SAND flash memory module, and a dual cache module. The new SAND flash memory system can achieve dramatically higher performance and lower power consumption compared with any conventional NAND-type flash memory module. Our results show that the proposed system can reduce about 78% of write operations into the flash memory cell and about 70% of read operations from the flash memory cell by using only additional 3KB cache space. This value represents high potential to achieve low power consumption and high performance gain.

  1. High power high linearity waveguide photodiodes : measurement, modeling, and characterization for analog optical links

    OpenAIRE

    Draa, Meredith Nicole

    2010-01-01

    As analog optical links continue to mature and fulfill communication needs, the requirements for output power and linearity continue to be a main focus. The receiver end of a link is a limiting factor for such applications, and therefore photodiode research continues to be at the forefront of these issues. In order to compete, photodiodes need to be able to maintain high bandwidth, high power and high linearity simultaneously. The study of photodiodes for analog links has focused on linearity...

  2. High-Power Ka-Band Window and Resonant Ring

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2006-11-29

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs.

  3. New developments for high power electron beam equipment

    International Nuclear Information System (INIS)

    High power electron guns for industrial use work in the range of power of more than 10 kW up to 1200 kW. The only suitable principle for this purpose is that used in axial guns. Elements necessary for these EB guns and their design are described. The outstanding properties required for applications in production and R ampersand D can only be achieved if the equipment is supplemented by a high voltage supply, beam guidance supply, vacuum generator and the various devices for observation, measurement and control. Standard rules for both the technical demands in application and dimensioning of some of the necessary components are explained. Special developments, such as high speed deflection, observation by BSE-camera and arc-free electron beam systems are also presented

  4. Transient Plasma Photonic Crystals for High-Power Lasers

    Science.gov (United States)

    Lehmann, G.; Spatschek, K. H.

    2016-06-01

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  5. CAS Accelerator Physics (High-Power Hadron Machines) in Spain

    CERN Multimedia

    CAS

    2011-01-01

    The CERN Accelerator School (CAS) and ESS-Bilbao jointly organised a specialised course on High-Power Hadron Machines, held at the Hotel Barceló Nervión in Bilbao, Spain, from 24 May to 2 June, 2011.   CERN Accelerator School students. After recapitulation lectures on the essentials of accelerator physics and review lectures on the different types of accelerators, the programme focussed on the challenges of designing and operating high-power facilities. The particular problems for RF systems, beam instrumentation, vacuum, cryogenics, collimators and beam dumps were examined. Activation of equipment, radioprotection and remote handling issues were also addressed. The school was very successful, with 69 participants of 22 nationalities. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. In addition to the academic programme, the participants w...

  6. High power 303 GHz gyrotron for CTS in LHD

    Science.gov (United States)

    Yamaguchi, Y.; Kasa, J.; Saito, T.; Tatematsu, Y.; Kotera, M.; Kubo, S.; Shimozuma, T.; Tanaka, K.; Nishiura, M.

    2015-10-01

    A high-power pulsed gyrotron is under development for 300 GHz-band collective Thomson scattering (CTS) diagnostics in the Large Helical Device (LHD). High-density plasmas in the LHD require a probe wave with power exceeding 100 kW in the sub-terahertz region to obtain sufficient signal intensity and large scattering angles. At the same time, the frequency bandwidth should be less than several tens of megahertz to protect the CTS receiver using a notch filter against stray radiations. Moreover, duty cycles of ~ 10% are desired for the time domain analysis of the CTS spectrum. At present, a 77 GHz gyrotron for electron cyclotron heating is used as a CTS wave source in the LHD. However, the use of such a low-frequency wave suffers from refraction, cutoff and absorption at the electron cyclotron resonance layer. Additionally, the signal detection is severely affected by background noise from electron cyclotron emission. To resolve those problems, high-power gyrotrons in the 300 GHz range have been developed. In this frequency range, avoiding mode competition is critical to realizing high-power and stable oscillation. A moderately over-moded cavity was investigated to isolate a desired mode from neighbouring modes. After successful tests with a prototype tube, the practical one was constructed with a cavity for TE22,2 operation mode, a triode electron gun forming intense laminar electron beams, and an internal mode convertor. We have experimentally confirmed single mode oscillation of the TE22,2 mode at the frequency of 303.3 GHz. The spectrum peak is sufficiently narrow. The output power of 290 kW has been obtained at the moment.

  7. Development of High Power Lasers for Materials Interactions

    International Nuclear Information System (INIS)

    The Lawrence Livermore National Laboratory (LLNL) has a long history of developing high power lasers for use in basic science and applications. The Laser Science and Technology Program W and T at LLNL supports advanced lasers and optics development both for the National Ignition Facility (NIF) as well as for high power lasers and optics technology for a broader range of government, military and industrial applications. The NIF laser is currently under construction with the first of the 192 beamlines being activated. When finished NIF will have an output energy of 2 MJ at 351 nm. This system will be used for studies of high energy density physics, equation of state and inertial confinement fusion. It is now generally acknowledged that the future of laser missile defense lies with solid state lasers. The leading laser technology for theater missile defense is under development within the Laser Science and Technology Program W and T and funded by the US Army SMDC. This high average power technology is based on a solid state laser operated in a heat capacity mode. In the concept the heat producing lasing cycle is separated in time from the cooling cycle thus reducing thermal gradients and allowing significantly greater average output power. Under the current program, an LLNL developed laser has achieved a record setting 13 kW of average power in 20 second duration bursts. We have also performed target lethality experiments showing a previously unrecognized advantage of a pulsed laser format. The LLNL work is now focused on achieving improved output beam quality and in developing a 100 kW output with diode pumping of a large aperture crystal gain medium on a compact mobile platform. The Short Pulse Laser Group of LS and T has been developing high power short pulse laser systems for a number of applications. Of great importance is petawatt (1012 Watt) and greater power output to support experiments on the NIF. We are developing a system of 5 kJ class output and 5 to 10

  8. Cascade Protector for Hardening Electronic Devices against High Power Microwaves

    Directory of Open Access Journals (Sweden)

    Geng Yang

    2009-01-01

    Full Text Available Since the increasing front part of incident microwave pulses may pass through plasma limiter before it generates plasma (the breakdown time of low pressure Xe in plasma limiter is 10 ns, single plasma limiters are not adequate for protecting sensitive electronic components against high power microwaves (HPM. A cascade protector, which consists of a plasma limiter and a PIN limiter in waveguide, is proposed. The numerical results show that under HPM attack (10 GW, 1GHz, and 100 ns pulse width, the microwave power leakage through the cascade protector is about 0.4 W. In the same electromagnetic environment, the power leakage through single plasma limiter is approximate 347 W.Defence Science Journal, 2009, 59(1, pp.55-57, DOI:http://dx.doi.org/10.14429/dsj.59.1485

  9. Power/energy use cases for high performance computing.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven; Elmore, Ryan; Munch, Kristin

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  10. High average power supercontinuum generation in a fluoroindate fiber

    Science.gov (United States)

    Swiderski, J.; Théberge, F.; Michalska, M.; Mathieu, P.; Vincent, D.

    2014-01-01

    We report the first demonstration of Watt-level supercontinuum (SC) generation in a step-index fluoroindate (InF3) fiber pumped by a 1.55 μm fiber master-oscillator power amplifier (MOPA) system. The SC is generated in two steps: first ˜1 ns amplified laser diode pulses are broken up into soliton-like sub-pulses leading to initial spectrum extension and then launched into a fluoride fiber to obtain further spectral broadening. The pump MOPA system can operate at a changeable repetition frequency delivering up to 19.2 W of average power at 2 MHz. When the 8-m long InF3 fiber was pumped with 7.54 W at 420 kHz, output average SC power as high as 2.09 W with 27.8% of slope efficiency was recorded. The achieved SC spectrum spread from 1 to 3.05 μm.

  11. High-power diode lasers and their direct industrial applications

    Science.gov (United States)

    Loosen, Peter; Treusch, Hans-Georg; Haas, C. R.; Gardenier, U.; Weck, Manfred; Sinnhoff, V.; Kasperowski, S.; vor dem Esche, R.

    1995-04-01

    The paper summarizes activities of the two Fraunhofer-Institutes ILT and IPT concerning the development of high-power laser-diode stacks and their direct industrial applications. With microchannel coolers in copper technology and ultra-precision machined micro-optics a stack of 330 - 400 W total power with a maximum intensity of the focused beam of 2 104 W/cm2 has been built and tested in first applications. By further improvements of the lens-fabrication and -alignment technology as well as increase of the number of stacked diodes an output power in the kW-range and intensities up to about 105 W/cm2 shall be achieved in the near future. Applications of such laser sources in surface technology, in the processing of plastics, in laser-assisted machining and in brazing are discussed.

  12. High Power Light Gas Helicon Plasma Source for VASIMR

    Science.gov (United States)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  13. High-density power management architecture for portable applications

    Science.gov (United States)

    Ahsanuzzaman, S. M.

    This thesis introduces a power management architecture (PMA) and its on-chip implementation, designed for battery-powered portable applications. Compared to conventional two-stage PMA architectures, consisting of a front-end inductive converter followed by a set of point-of-load (PoL) buck converters, the presented PMA has improved power density. The new architecture, named MSC-DB, is based on a hybrid converter topology that combines a fixed ratio multi-output switched capacitor converter (MSC) and a set of differential-input buck (DB) converters, to achieve low volume and high power processing efficiency. The front-end switched capacitor stage has a higher power density than the conventionally used inductive converters. The downstream differential-input buck converters enable tight output voltage regulation, and allow for a drastic reduction of output filter inductors without the need for increasing switching frequency, hence limiting switching losses and improving the efficiency of the system. Furthermore, the new PMA provides battery cells balancing feature, not existing in conventional systems. The PMA architecture is implemented both as a discrete prototype and as an application-specific integrated circuit (IC) module. The on-chip implemented architecture is fabricated in a standard 0.13microm CMOS process and operates at 9.3 MHz switching frequency. Experimental comparisons with a conventional two-cell battery input architecture, providing 15 W of total power in three different voltage outputs, demonstrate up to a 50% reduction in the inductances of the downstream converter stages and up to a 53% reduction in losses, equivalent to the improvement of the power processing efficiency of a 12%. Moreover, the fabricated IC module is co-packaged with low-profile thin-film inductors, to demonstrate the effectiveness of the introduced architecture in reducing the volume of PMAs for portable applications and possibly providing complete on-chip implementation of PMAs

  14. Development in Russia of high power gyrotrons for fusion

    International Nuclear Information System (INIS)

    Full text: Electron cyclotron systems of fusion installations are based on powerful millimetre wave sources - gyrotrons, which are capable to produce now microwave power up to 1 MW in very long (hundreds of seconds) pulses. The paper presents the latest achievements in development at IAP/GYCOM of MW power level gyrotrons for fusion installations. Among them are a new versions of 170 GHz gyrotron for ITER and multi-frequency (105-140 GHz) gyrotron for Asdex-Up. The gyrotrons are equipped with diamond CVD windows and depressed collectors. The most efforts were spent for development of ITER gyrotron. The tests are carried out at specially prepared test stand in Kurchatov Institute. The following gyrotron output parameters were demonstrated so far in many pulses: 1MW/30 sec and 0.64 MW/300 sec. Also a gyrotron with a higher power -1.5 MW was designed and tested in short pulses. The tests continue. In two tested long-pulse dual-frequency gyrotrons, power in the output Gaussian beam exceeding 0.9MW at 140GHz and 0.7MW at 105GHz was attained at specified 10-s pulse duration. The multi-frequency gyrotron should operate at least at four frequencies in the frequency range 105GHz-140 GHz. Two window concepts for the gyrotron are considered: Brewster window and two-disc adjustable window. Last years significant efforts were done by IAP/GYCOM in order to solve the whole scope of problems associated with the use of CVD diamond windows in gyrotrons: growing of discs, their cutting and polishing, and then high-temperature brazing and mounting to a tube. Two setups for growing diamond discs have been put into operation. The first discs grown at IAP have acceptable mechanical and electrical parameters. The IAP/GYCOM discs have been successfully brazed at near 800 deg. C temperature to metal constructions and tested with high-power gyrotrons. (author)

  15. DEVELOPMENT OF HIGH-VOLTAGE HIGH-FREQUENCY POWER SUPPLY FOR OZONE GENERATION

    Directory of Open Access Journals (Sweden)

    NACERA HAMMADI

    2016-05-01

    Full Text Available A high-voltage high-frequency power supply for ozone generation is presented in this paper. Ozone generation is intended to be used in air and in water disinfection. A power stage consisting of a single-phase full bridge inverter for regulating the output power, a current push-pull inverter (driver and a control circuit are described and analyzed. This laboratory build power supply using a high voltage ferrite transformer and a PIC microcontroller was employed to energize a dielectric barrier discharge (DBD ozone generator. The inverter working on the basis of control strategy is of simple structure and has a variation range of the working frequency in order to obtain the optimal frequency value. The experimental results concerning electrical characterization and water treatment using a cylindrical DBD ozone generator supplied by this power supply are given in the end.

  16. CVD Diamond Sink Application in High Power 3D MCMs

    Institute of Scientific and Technical Information of China (English)

    XIE Kuo-jun; JIANG Chang-shun; LI Cheng-yue

    2005-01-01

    As electronic packages become more compact, run at faster speeds and dissipate more heat, package designers need more effective thermal management materials. CVD diamond, because of its high thermal conductivity, low dielectric loss and its great mechanical strength, is an excellent material for three dimensional (3D) multichip modules (MCMs) in the next generation compact high speed computers and high power microwave components. In this paper, we have synthesized a large area freestanding diamond films and substrates, and polished diamond substrates, which make MCMs diamond film sink becomes a reality.

  17. Performance and trends of high power light emitting diodes

    Science.gov (United States)

    Bierhuizen, Serge; Krames, Michael; Harbers, Gerard; Weijers, Gon

    2007-09-01

    We will discuss the performance, progress and trend of High Power Light Emitting Diodes (HP-LEDs), suitable for high luminance applications like micro-display projection, car headlamps, spot lamps, theatre lamps, etc. Key drivers for the high luminance applications are LED parameters such as internal quantum efficiency, extraction efficiency, drive current, operating temperature and optical coupling efficiency, which are important for most applications as they also enable higher lumen/$ ratios. Historical progress, prospects for improving these parameters and potential optical luminance enhancement methods to meet the demands for the various illumination applications are presented.

  18. Application possibilities of plasmas generated by high power laser ablation

    OpenAIRE

    Torrisi, L.

    2009-01-01

    High-power pulsed lasers emitting IR and visible radiation with intensities ranging between 10^8 and 10^16 W/cm2, pulse duration from 0.4 to 9 ns and energy from 100 mJ up to 600 J, operating in single mode or in repetition rate, can be employed to produce non-equilibrium plasma in vacuum by irradiating solid targets. Such a laser-produced plasma generates highly charged and high-energy ions of various elements, as well as soft and hard X-ray radiations. Heavy ions with charge state up to 58+...

  19. Cutting-Edge High-Power Ultrafast Thin Disk Oscillators

    Directory of Open Access Journals (Sweden)

    Thomas Südmeyer

    2013-04-01

    Full Text Available A growing number of applications in science and industry are currently pushing the development of ultrafast laser technologies that enable high average powers. SESAM modelocked thin disk lasers (TDLs currently achieve higher pulse energies and average powers than any other ultrafast oscillator technology, making them excellent candidates in this goal. Recently, 275 W of average power with a pulse duration of 583 fs were demonstrated, which represents the highest average power so far demonstrated from an ultrafast oscillator. In terms of pulse energy, TDLs reach more than 40 μJ pulses directly from the oscillator. In addition, another major milestone was recently achieved, with the demonstration of a TDL with nearly bandwidth-limited 96-fs long pulses. The progress achieved in terms of pulse duration of such sources enabled the first measurement of the carrier-envelope offset frequency of a modelocked TDL, which is the first key step towards full stabilization of such a source. We will present the key elements that enabled these latest results, as well as an outlook towards the next scaling steps in average power, pulse energy and pulse duration of such sources. These cutting-edge sources will enable exciting new applications, and open the door to further extending the current performance milestones.

  20. A smart repetitive-rate wideband high power microwave source

    International Nuclear Information System (INIS)

    A smart repetitive-rate wideband High Power Microwave (HPM) source based on the A6 Magnetron with Diffraction Output is described in this paper. The length of the HPM source is 30 cm and its weight is 35 kg. Computer simulations show that the source can produce microwave with central frequency of 1.91 GHz and bandwidth of about 11%. Experimental measurements show that the output microwave power from the source reaches in maximum 110 MW when the input electric power from the pulsed driver is ∼500 MW, which gives the power conversion efficiency 22%. Central frequency of the output HPM in the experiment is 1.94 GHz with the bandwidth ranging from 1.82 GHz to 2.02 GHz. The jitter of the output HPM power is lower than 3 dB when the source operates in the repetition mode with 50 Hz rate

  1. High power laser beam delivery monitoring for laser safety

    Science.gov (United States)

    Corder, D. A.; Evans, D. R.; Tyrer, J. R.; Freeland, C. M.; Myler, J. K.

    1997-07-01

    The output of high power lasers used for material processing presents extreme radiation hazards. In normal operation this hazard is removed by the use of local shielding to prevent accidental exposure and system design to ensure efficient coupling of radiation into the workpiece. Faults in laser beam delivery or utilization can give rise to hazardous levels of laser radiation. A passive hazard control strategy requires that the laser system be enclosed such that the full laser power cannot burn through the housing under fault conditions. Usually this approach is too restrictive. Instead, active control strategies can be used in which a fault condition is detected and the laser cut off. This reduces the requirements for protective housing. In this work a distinction is drawn between reactive and proactive strategies. Reactive strategies rely on detecting the effects of an errant laser beam, whereas proactive strategies can anticipate as well as detect fault conditions. This can avoid the need for a hazardous situation to exist. A proactive strategy in which the laser beam is sampled at the final turning mirror is described in this work. Two control systems have been demonstrated; the first checks that beam power is within preset limits, the second monitors incoming beam power and position, and the radiation reflected back from the cutting head. In addition to their safety functions the accurate monitoring of power provides an additional benefit to the laser user.

  2. Generation Expansion Planning with High Penetration of Wind Power

    Science.gov (United States)

    Sharan, Ishan; Balasubramanian, R.

    2016-08-01

    Worldwide thrust is being provided in generation of electricity from wind. Planning for the developmental needs of wind based power has to be consistent with the objective and basic framework of overall resource planning. The operational issues associated with the integration of wind power must be addressed at the planning stage. Lack of co-ordinated planning of wind turbine generators, conventional generating units and expansion of the transmission system may lead to curtailment of wind power due to transmission inadequacy or operational constraints. This paper presents a generation expansion planning model taking into account fuel transportation and power transmission constraints, while addressing the operational issues associated with the high penetration of wind power. For analyzing the operational issues, security constrained unit commitment algorithm is embedded in the integrated generation and transmission expansion planning model. The integrated generation and transmission expansion planning problem has been formulated as a mixed integer linear problem involving both binary and continuous variables in GAMS. The model has been applied to the expansion planning of a real system to illustrate the proposed approach.

  3. A novel power source for high-precision, highly efficient micro w-EDM

    International Nuclear Information System (INIS)

    The study presents the development of a novel power source for high-precision, highly efficient machining of micropart microstructures using micro wire electrical discharge machining (w-EDM). A novel power source based on a pluri resistance–capacitance (pRC) circuit that can generate a high-frequency, high-peak current with a short pulse train is proposed and designed to enhance the performance of micro w-EDM processes. Switching between transistors is precisely controlled in the designed power source to create a high-frequency short-pulse train current. Various microslot cutting tests in both aluminum and copper alloys are conducted. Experimental results demonstrate that the pRC power source creates instant spark erosion resulting in markedly less material for removal, diminishing discharge crater size, and consequently an improved surface finish. A new evaluation approach for spark erosion ability (SEA) to assess the merits of micro EDM power sources is also proposed. In addition to increasing the speed of micro w-EDM by increasing wire feed rates by 1.6 times the original feed rate, the power source is more appropriate for machining micropart microstructures since there is less thermal breaking. Satisfactory cutting of an elaborate miniature hook-shaped structure and a high-aspect ratio microstructure with a squared-pillar array also reveal that the developed pRC power source is effective, and should be very useful in the manufacture of intricate microparts. (paper)

  4. Study of a High Voltage Ion Engine Power Supply

    Science.gov (United States)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested

  5. High Power Light Gas Helicon Plasma Source For VASMIR

    Science.gov (United States)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  6. Investigating Enhancement Mode Gallium Nitride Power FETs in High Voltage, High Frequency Soft Switching Converters

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    An increased attention has been detected to develop smaller and lighter high voltage power converters in the range of 50V to 400V domain. The main applications for these converters are mainly focused for Power over Ethernet (PoE), LED lighting and AC adapters. This work will discuss a study of us...

  7. Freeform beam shaping for high-power multimode lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2014-03-01

    Widening of using high power multimode lasers in industrial laser material processing is accompanied by special requirements to irradiance profiles in such technologies like metal or plastics welding, cladding, hardening, brazing, annealing, laser pumping and amplification in MOPA lasers. Typical irradiance distribution of high power multimode lasers: free space solid state, fiber-coupled solid state and diodes lasers, fiber lasers, is similar to Gaussian. Laser technologies can be essentially improved when irradiance distribution on a workpiece is uniform (flattop) or inverse-Gauss; when building high-power pulsed lasers it is possible to enhance efficiency of pumping and amplification by applying super-Gauss irradiance distribution with controlled convexity. Therefore, "freeform" beam shaping of multimode laser beams is an important task. A proved solution is refractive field mapping beam shaper like Shaper capable to control resulting irradiance profile - with the same unit it is possible to get various beam profiles and choose optimum one for a particular application. Operational principle of these devices implies transformation of laser irradiance distribution by conserving beam consistency, high transmittance, providing collimated low divergent output beam. Using additional optics makes it possible to create resulting laser spots of necessary size and round, elliptical or linear shape. Operation out of focal plane and, hence, in field of lower wavefront curvature, allows extending depth of field. The refractive beam shapers are implemented as telescopes and collimating systems, which can be connected directly to fiber-coupled lasers or fiber lasers, thus combining functions of beam collimation and irradiance transformation.

  8. GaInP high-power lasers

    CERN Document Server

    Lichtenstein, N

    2002-01-01

    The following work deals with the realization, characterization and modeling of GaInP / AlGaInP high power semiconductor laser diodes in the visible wavelength range. In addition to the exploration and optimization of efficiency, temperature stability and maximum output power of multi-mode lasers especially methods for longitudinal and lateral mode stabilization of high power laser diodes have been investigated. Although often the focus of optimization is on the threshold current density, in this work the performance of the laser diode for an operation point around 1 Watt under continous wave operation is regarded as the figure of merit. It turns out that low carrier densities are key for an efficient reduction of the heterobarrier leakage currents. In addition, large optical cavity structures with low internal losses enable high external quantum efficiencies even for long cavities. Finally high laser effiency as well as an efficient cooling leads to a reduced temperature load for the devices. Based on these ...

  9. Evaluation of high power irradiation performance for HANARO fuel

    International Nuclear Information System (INIS)

    A test fuel assembly for the high power irradiation test was developed along the localization plan of HANARO fuel in KAERI. The test fuel assembly was manufactured based on the technical specification of HANARO fuel and the design drawings. In order to fulfill the requirement to prove HANARO fuel integrity when irradiated at a power greater than 112.8 kW/m, which was imposed during HANARO licensing, and to verify the irradiation performance of HANARO fuel, the in-pile irradiation test of HANARO fuel has been performed. Test fuel assembly was made of 30 aluminum dummy elements and 6 fuel elements which are located in the outer ring of the hexagonal fuel assembly and composed of 3 pulverized and 3 atomized U3Si fuels. The test assembly was irradiated in CT hole for 173.7 reactor operation days with the highest neutron flux in HANARO core. The reactor physics calculations by HANAFMS showed average discharge burnup of 63 at%U-235, maximum local burnup of 77 at%U-235, average linear power of 83 kW/m and maximum linear power of 121.6 kW/m. Detailed non-destructive and destructive PIE(Post-Irradiation Examination), such as the measurement of burnup distribution, fuel swelling, clad corrosion, dimensional changes, fuel rod bending strength, micro-structure, etc. have been performed in the IMEF(Irradiated Material Examination Facility). The measured results have been analysed/compared with the predicted performance values and the design criteria described in the safety analysis report for the irradiation performance of HANARO fuel. It has been verified that HANARO fuel maintains proper in-pile performance and integrity even at the high power of 121 kW/m up to the high burnup of 77 at%U-235

  10. Plasma relaxation mechanics of pulsed high power microwave surface flashover

    Science.gov (United States)

    Beeson, S.; Dickens, J.; Neuber, A.

    2013-09-01

    Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N2, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

  11. Thick target for high-power ISOL facilities

    Science.gov (United States)

    Bricault, Pierre G.

    2016-06-01

    The future frontier of the Isotope Separation On-Line (ISOL) method is to increase the intensity of the Radioactive Isotope Beams (RIB) by many orders of magnitude in order to satisfy challenging experiments such as Rn-Electric Dipole Moment, Fr-Parity Non Conservation… and in general for radiative proton-capture relevant for nuclear astrophysics processes. The most direct method to obtain higher RIB intensity is to increase the driver beam intensity. New techniques were developed such as composite targets, where the target material is deposited onto a high thermal conductive substrate allowing a better heat dissipation. Combined with high-power target using radial finned for radiative cooling, these targets are capable of dissipating up to 20 kW depending on the target material operating temperature. Another method to increase RIB intensity is the use of indirect ISOL method, where secondary particle beam (n or γ) interacts with a fissile target material. By decoupling the power deposition in the system composed of a converter and ISOL target allows for much higher primary beam power. Indirect ISOL-target method permit reach several hundred of kW to MW of driver beam power, allowing the production of intense fission products beams. This paper reviews the thick ISOL target approach for producing intense radioactive ion beams.

  12. Silicon Carbide High-Temperature Power Rectifiers Fabricated and Characterized

    Science.gov (United States)

    1996-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high power, and/or high-radiation conditions will enable significant improvements to a far ranging variety of applications and systems. These improvements range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. In the case of jet engines, uncooled operation of 300 to 600 C SiC power actuator electronics mounted in key high-temperature areas would greatly enhance system performance and reliability. Because silicon cannot function at these elevated temperatures, the semiconductor device circuit components must be made of SiC. Lewis' HTIES group recently fabricated and characterized high-temperature SiC rectifier diodes whose record-breaking characteristics represent significant progress toward the realization of advanced high-temperature actuator control circuits. The first figure illustrates the 600 C probe-testing of a Lewis SiC pn-junction rectifier diode sitting on top of a glowing red-hot heating element. The second figure shows the current-versus voltage rectifying characteristics recorded at 600 C. At this high temperature, the diodes were able to "turn-on" to conduct 4 A of current when forward biased, and yet block the flow of current ($quot;turn-off") when reverse biases as high as 150 V were applied. This device represents a new record for semiconductor device operation, in that no previous semiconductor electronic device has ever simultaneously demonstrated 600 C functionality

  13. A thermosyphon heat pipe cooler for high power LEDs cooling

    Science.gov (United States)

    Li, Ji; Tian, Wenkai; Lv, Lucang

    2016-08-01

    Light emitting diode (LED) cooling is facing the challenge of high heat flux more seriously with the increase of input power and diode density. The proposed unique thermosyphon heat pipe heat sink is particularly suitable for cooling of high power density LED chips and other electronics, which has a heat dissipation potential of up to 280 W within an area of 20 mm × 22 mm (>60 W/cm2) under natural air convection. Meanwhile, a thorough visualization investigation was carried out to explore the two phase flow characteristics in the proposed thermosyphon heat pipe. Implementing this novel thermosyphon heat pipe heat sink in the cooling of a commercial 100 W LED integrated chip, a very low apparent thermal resistance of 0.34 K/W was obtained under natural air convection with the aid of the enhanced boiling heat transfer at the evaporation side and the enhanced natural air convection at the condensation side.

  14. High power and compact switchable bismuth based multiwavelength fiber laser

    International Nuclear Information System (INIS)

    A compact switchable multiwavelength fibre laser (SWFL) is proposed and demonstrated using a bismuth based erbium doped fibre amplifier (Bi-EDFA) and a Sagnac loop mirror (SLM) in a ring cavity. The proposed compact SWFL can generate up to 6 switchable wavelengths with an average peak power of 11 dBm and also shows good stability over time with a high side mode signal ratio (SMSR) of 40 dB that negates minor fluctuations in the laser output. The Bi-EDF based gain medium gives the SWFL a large usable bandwidth of up to 80 nm, and it is expected that this will allow the SWFL to be used as a tunable laser source for high power applications to meet increasing demand

  15. Advanced Electrodes for High Power Li-ion Batteries

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2013-03-01

    Full Text Available While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future.

  16. High-power thermoelectric generators based on nanostructured silicon

    Science.gov (United States)

    Pennelli, G.; Macucci, M.

    2016-05-01

    The low thermal conductivity of silicon nanowires and nanostructures opens interesting opportunities for energy harvesting through the direct, high-efficiency, conversion of waste heat into electrical power. We present solutions for the fabrication and interconnection of a high number of suspended silicon nanostructures, within CMOS compatible top-down processes. Mechanical stability and thermoelectric properties of these devices will be analysed by means of finite element simulations, and opportunities for practical applications will be discussed. It will be shown that, despite the reduced dimensions needed for a strong suppression of thermal conductivity, a considerable amount of electrical power can be delivered to the load as a result of the presence of many interconnected devices on the same chip.

  17. Design and Simulation of High-power LED Array Packaging

    Institute of Scientific and Technical Information of China (English)

    TIAN Da-lei; GUAN Rong-feng; WANG Xing

    2008-01-01

    Thermal management is one of the key technologies for high-power Light emitting diode(LED) entering into the general illuminating field. Successful thermal management depends on optimal packaging structure and selected packaging materials. In this paper, the aluminum is employed as a substrate of LED, 3×3 array chips are placed on the substrate, heat dissipation performance is simulated using finite element analysis(FEA) software, analyzed are the influences on the temperature of the chip with different convection coefficient, and optical properties are simulated using optical analysis software. The results show that the packaging structure can not only effectually improve the thermal performance of high-power LED array but also increase the light extraction efficiency.

  18. Basic aspects of high-power semiconductor laser simulation

    CERN Document Server

    Wenzel, Hans

    2013-01-01

    The aim of this paper is to review some of the models and solution techniques used in the simulation of high-power semiconductor lasers and to address open questions. We discuss some of the peculiarities in the description of the optical field of wide-aperture lasers. As an example, the role of the substrate as a competing waveguide in GaAs-based lasers is studied. The governing equations for the investigation of modal instabilities and filamentation effects are presented and the impact of the thermal-lensing effect on the spatiotemporal behavior of the optical field is demonstrated. We reveal the factors that limit the output power at very high injecton currents based on a numerical solution of the thermodynamic based drift-diffusion equations and elucidate the role of longitudinal spatial holeburning.

  19. High-power CW LINAC for food irradiation

    International Nuclear Information System (INIS)

    The continuing high profile food poisoning incidents are beginning to attract food processors using electron and γ-ray sterilization technologies. The present method of choice uses radioactive isotopes but high-power electron particle accelerators are proving an increasingly attractive alternative. We are developing a family of compact industrial continuous wave linear accelerators which produce electrons with energies from 600 keV in increments of ∼600 keV and with beam power of 30 kW increasing in increments of 30 kW. Here, we describe the performance of our 1st section that accelerates 15 keV gun electrons to relativistic energies and then we sketch the design of the less demanding subsequent sections that we are now constructing

  20. Management of the high-level nuclear power facilities

    International Nuclear Information System (INIS)

    This thesis approaches current issues in the management of the high power nuclear facilities and as such it appears to be important particularly for nuclear power plant operation topics. Of special interest are the failure events entailing possible catastrophic situations. The contents is structured onto ten chapters. The first chapter describes the operation regimes of the nuclear high power facilities. Highlighted here are the thesis scope and the original features of the work. The second chapter deals with operational policies developed in order to ensure the preventive maintenance of the nuclear installations. Also managing structures are described devoted to practical warranting the equipment safety function of non-classical power stations. In the third chapter cases of nuclear accidents are analyzed especially stressing the probabilistic risk and the operation regimes having in view the elimination of catastrophic events. In the fourth and fifth chapters the control of nuclear radiation emission is treated focusing the quality issue of nuclear installations required to avoid hazardous effects at level of nuclear reactor operation stage. At the same time set of operational measures is given here for preventing risks, catastrophes and chaotic situations. The chapter five presents both theoretical and practical approaches of the nuclear reactor core management concerning particularly the fuel testing, the water primary system and the quality of the involved equipment. In the sixth and seventh chapters issues of risk-quality correlations are approached as well as the structure of expert systems for monitoring the operational regimes of nuclear facilities. The efficiency of the power systems with nuclear injection is discussed and some original ideas developed in this work are evidenced in the eighth and ninth chapters. Presented are here both the operational principles and models of raising the efficiency of the interconnected nuclear stations and prices' policy

  1. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes

    Science.gov (United States)

    Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie

    2013-01-01

    Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of

  2. Digital controlling system to the set of high power LEDs

    Science.gov (United States)

    Gilewski, Marian; Gryko, Lukasz; Zajac, Andrzej

    2013-07-01

    In the paper is described the concept and architecture of the multi-channel control system for set of high-power LEDs. The broadband source of radiation for prototype illuminator is dedicated to the investigation of Low Level Laser Therapy procedures. The general scheme of the system, detailed schemes, control algorithm and its implementation description in FPGA structure is presented. The temperature conditions and the opportunity to work with a microcomputer are characterized.

  3. Recent results in mirror based high power laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Nielsen, Jakob Skov; Elvang, Mads;

    2004-01-01

    In this paper, recent results in high power laser cutting, obtained in reseach and development projects are presented. Two types of mirror based focussing systems for laser cutting have been developed and applied in laser cutting studies on CO2-lasers up to 12 kW. In shipyard environment cutting...... speed increase relative to state-of-the-art cutting of over 100 % has been achieved....

  4. PECVD diamond-based high performance power diodes

    OpenAIRE

    Gürbüz, Yaşar; Gurbuz, Yasar; Kang, Weng Poo; Davidson, Jimmy L.; Kerns, David V.; Zhou, Q.

    2005-01-01

    In this study, we have designed, fabricated, characterized, and analyzed plasma-enhanced chemical vapor deposition (PECVD) diamond-based Schottky diodes for high power electronics applications. We have elaborated four critical issues in the synthetic-diamond semiconductor technology: 1) growth, 2) doping, 3) Schottky contact, and 4) different device structures in order to achieve better performance parameters. We have obtained 500 V of breakdown voltage on one device and 100 A/cm/sup 2/ of cu...

  5. High power fiber delivery for laser ignition applications.

    Science.gov (United States)

    Yalin, Azer P

    2013-11-01

    The present contribution provides a concise review of high power fiber delivery research for laser ignition applications. The fiber delivery requirements are discussed in terms of exit energy, intensity, and beam quality. Past research using hollow core fibers, solid step-index fibers, and photonic crystal and bandgap fibers is summarized. Recent demonstrations of spark delivery using large clad step-index fibers and Kagome photonic bandgap fibers are highlighted.

  6. A New Hard Switching Bidirectional Converter With High Power Density

    OpenAIRE

    Bahador Fani; Majid Delshad; Daryoosh Nazarpour

    2010-01-01

    In this paper, a new isolated dc-dc bidirectional converter is proposed. This converter consists of two transformers (flyback and forward) and only one switch in primary side and one switch in secondary side of transformers. In this converter energy transfers to the output in both on and off switch states so power density of this converter is high This converter controlled by PWM signal. Also this converter operates over a wide input voltage range. Theoretical analysis is presented and compu...

  7. High-power pulse trains excited by modulated continuous waves

    OpenAIRE

    Wang, Yan; Song, Lijun; Li, Lu; Malomed, Boris A.

    2015-01-01

    Pulse trains growing from modulated continuous waves (CWs) are considered, using solutions of the Hirota equation for solitons on a finite background. The results demonstrate that pulses extracted from the maximally compressed trains can propagate preserving their shape and forming robust arrays. The dynamics of double high-power pulse trains produced by modulated CWs in a model of optical fibers, including the Raman effect and other higher-order terms, is considered in detail too. It is demo...

  8. High power millimeter and submillimeter wave lasers and gyrotrons

    Science.gov (United States)

    Temkin, R. J.; Cohn, D. R.; Danly, B. G.; Kreischer, K. E.; Woskoboinikow, P.

    1985-10-01

    High power sources of coherent radiation in the millimeter and submillimeter wavelength range are useful in a number of applications, including plasma heating, plasma diagnostics, radar and communications. Two of the most important sources in this wavelength range are the optically pumped laser and the gyrotron. Major recent advances in both laser and gyrotron research are described. Possible techniques for improving the efficiency and operating characteristics of these devices are also reviewed.

  9. Practical applications of high-power ion beams

    International Nuclear Information System (INIS)

    The results of experimental investigations on the practical applications of high-power ion beams are presented. These include the use of 200-300 keV, 50-250 A/cm2, 60 ns duration beams for modification of properties of metals and production of unique compounds in the surface layer of the target, pulse beam machining or implanted silicon hardening of cutting tools, reconditioning and cleaning machine parts

  10. High-Performance, Reliable Solar Power for Smallsat Constellations

    OpenAIRE

    Stern, Theodore; Walmsley, Nick

    2013-01-01

    Small satellites used in satellite constellations require high-performance, reliable solar power. Even with constellation redundancy, the risk to mission performance of solar panel failure is significant, and so extensive qualification and acceptance testing is normally implemented to assure reliability of customized solar panel designs To minimize these costs and risks, a modular, laminated solar panel design has been developed that combines highefficiency solar cells and space-qualified mat...

  11. Ion sources for high-power hadron accelerators

    OpenAIRE

    Faircloth, Dan

    2013-01-01

    Ion sources are a critical component of all particle accelerators. They create the initial beam that is accelerated by the rest of the machine. This paper will introduce the many methods of creating a beam for high-power hadron accelerators. A brief introduction to some of the relevant concepts of plasma physics and beam formation is given. The different types of ion source used in accelerators today are examined. Positive ion sources for producing H+ ions and multiply charged heavy ions are ...

  12. Power Input of High-Speed Rotary Impellers

    Directory of Open Access Journals (Sweden)

    K. R. Beshay

    2001-01-01

    Full Text Available This paper presents the results of an experimental investigation of the power input of pitched blade impellers and standard Rushton turbine impellers in a cylindrical vessel provided with four radial baffles at its wall under a turbulent regime of flow of an agitated liquid. The influence of the geometry of the pitched blade impellers (pitch angle, number of blades and the off-bottom impeller clearance of both high-speed impellers tested on the impeller power input is determined in two sizes of the cylindrical vessel (0.3 m and 0.8 m diameter of vessel. A strain gauge torquemeter is used in the small vessel and a phase shift mechanical torquemeter is used in the large vessel. All results of the experiments correspond to the condition that the Reynolds number modified for the impeller exceeds ten thousand. The results of this study show that the significant influence of the separating disk thickness of the turbine impeller corresponds fairly well to the empirical equations presented in the literature. Both the influence of the number of impeller blades and the blade pitch angle of the pitched blade impeller were expressed quantitatively by means of the power dependence of the recently published correlations: the higher the pitch angle and the number of blades, the higher the values of the impeller power input. Finally, it follows from results of this study that the impeller off-bottom clearance has a weak influence on the power input of the Rushton turbine impeller, but with decreasing impeller off-bottom clearance the power input of the pitched blade impeller increases significantly.

  13. Progress on high-power magnetrons and vircators

    International Nuclear Information System (INIS)

    The PI Microwave Group is studying two very different types of High-Power Microwave Sources: Relativistic Magnetrons and Virtual Cathode Oscillators. The vircator is a broad band tunable microwave source producing short pulses with a 1 GHz bandwidth. The frequency is tunable using the AK gap, efficiency is ≅ 1%. In a high current diode the dominant radiation mechanism is the oscillation of the virtual cathode, not the reflexing of electrons. Radiation occurs after diode pinch and is accompanied by partion of the electron population into a reflexing electron component and a propagating beam component. Recent experiments have studied the interaction of the vircator with a resonant cavity. The cavity suppress frequencies not in resonance with the cavity modes and thereby limits bandwidths to less than 100 MHz. Overall efficiency is improved by a factor of about 4 by non-linear feedback interaction between the cavity and the oscillating virtual cathode. Magnetrons are a fixed frequency, high-power source with a narrow bandwidth. Recent experiments have extracted power from six waveguides of a 2.8 GHz device operating in the π mode. Configurations using this multi-arm device for production of propagating pulses are described

  14. High Power Fiber Bundle Array Coupled LDA Module

    Institute of Scientific and Technical Information of China (English)

    QU Zhou; LIU Yang; ZHAO Chong-guang; WANG Ji; YIN Hong-he; WANG Li-jun

    2006-01-01

    An optical fiber bundle array coupling module with high output power is presented in this paper. The device integrated the coupling technique of the high power laser diode array (LDA) and the micro-ball lenses fiber array. This module can efficiently couple the output laser of the LDA into 19 fibers array with micro-ball lens endsurface. The difference of the couple efficiency between the flat-end fiber and micro-ball-end fiber is discussed.The micro-ball lenses fiber array made of 19 fibers have the same fiber core diameter of 200 μm, and then the endsurfaces of 19 fibers are fused to 19 micro-ball lenses. The micro-ball lenses fiber array are fixed precisely in the neighborhood on the V-grooves, and the fiber array has the same arrange period with the semiconductor laser units of LDA. This configuration of micro-ball lens fiber array can greatly reduce the divergence of the laser beam from all directions, and a very efficient laser beam homogenizer and shaper are obtained. Finally, high output power of 30.1 W of the fiber coupled LDA is achieved, and the maximal coupling efficiency is >83% with the numeral aperture (NA) of 0.16.

  15. High power VCSEL device with periodic gain active region

    Science.gov (United States)

    Ning, Y. Q., II; Qin, L.; Sun, Y. F.; Li, T.; Cui, J. J.; Peng, B.; Liu, G. Y.; Zhang, Y.; Liu, Y.; Wang, L. J.; Cui, D. F.; Xu, Z. Y.

    2007-11-01

    High power vertical cavity surface emitting lasers with large aperture have been fabricated through improving passivation, lateral oxidation and heat dissipation techniques. Different from conventional three quantum well structure, a periodic gain active region with nine quantum wells was incorporated into the VCSEL structure, with which high efficiency and high power operation were expected. The nine quantum wells were divided into three groups with each of them located at the antinodes of the cavity to enhance the coupling between the optical field and the gain region. Large aperture and bottom-emitting configuration was used to improve the beam quality and the heat dissipation. A maximum output power of 1.4W was demonstrated at CW operation for a 400μm-diameter device. The lasing wavelength shifted to 995.5nm with a FWHM of 2nm at a current of 4.8A due to the internal heating and the absence of active water cooling. A ring-shape farfield pattern was induced by the non-homogeneous lateral current distribution in large diameter device. The light intensity at the center of the ring increased with increasing current. A symmetric round light spot at the center and single transverse mode operation with a divergence angle of 16° were observed with current beyond 4.8A.

  16. Comparison of stress distributions and failure modes during thermal cycling and power cycling on high power IGBT modules

    OpenAIRE

    BOUARROUDJ, M; Khatir, Z.; OUSTEN, JP; L. Dupont; Lefebvre, S; BADEL, F

    2007-01-01

    The paper presents experimental investigations on both power and thermal cycling conditions on 600V-200A six-pack IGBT power modules. Both types of cycles are compared in term of thermomechanical stresses by using Finite Element simulations. Finally, combined stresses are simulated in order to assess the real conditions of use of these devices in automotive applications. IGBT, High temperature electronics, Hybrid Power Integration, Power electronic modules, Packaging, Power cycling, Thermal c...

  17. Optimization Studies for ISOL Type High-Powered Targets

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [Oak Ridge National Laboratory; Ronningen, Reginald Martin [Michigan State University

    2013-09-24

    The research studied one-step and two-step Isotope Separation on Line (ISOL) targets for future radioactive beam facilities with high driver-beam power through advanced computer simulations. As a target material uranium carbide in the form of foils was used because of increasing demand for actinide targets in rare-isotope beam facilities and because such material was under development in ISAC at TRIUMF when this project started. Simulations of effusion were performed for one-step and two step targets and the effects of target dimensions and foil matrix were studied. Diffusion simulations were limited by availability of diffusion parameters for UCx material at reduced density; however, the viability of the combined diffusion?effusion simulation methodology was demonstrated and could be used to extract physical parameters such as diffusion coefficients and effusion delay times from experimental isotope release curves. Dissipation of the heat from the isotope-producing targets is the limiting factor for high-power beam operation both for the direct and two-step targets. Detailed target models were used to simulate proton beam interactions with the targets to obtain the fission rates and power deposition distributions, which were then applied in the heat transfer calculations to study the performance of the targets. Results indicate that a direct target, with specification matching ISAC TRIUMF target, could operate in 500-MeV proton beam at beam powers up to ~40 kW, producing ~8 1013 fission/s with maximum temperature in UCx below 2200 C. Targets with larger radius allow higher beam powers and fission rates. For the target radius in the range 9-mm to 30-mm the achievable fission rate increases almost linearly with target radius, however, the effusion delay time also increases linearly with target radius.

  18. High-frequency resonant tunnelling diode oscillator with high-output power

    Science.gov (United States)

    Wang, Jue; Alharbi, Khalid; Ofiare, Afesomeh; Khalid, Ata; Cumming, David; Wasige, Edward

    2015-10-01

    In this paper, a prototype G-band (140 GHz-220 GHz) monolithic microwave integrated circuit (MMIC) resonant tunneling diode (RTD) oscillator is reported. The oscillator employs two In0.53Ga0.47As/AlAs RTD devices in the circuit to increase the output power. The measured output power was about 0.34 mW (-4.7 dBm) at 165.7 GHz, which is the highest power reported for RTD oscillator in G-band frequency range. This result demonstrates the validity of the high frequency/high power RTD oscillator design. It indicates that RTD devices, as one of the terahertz (THz) source candidates, have promising future for room-temperature THz applications in such as imaging, wireless communication and spectroscopy analysis, etc. By optimizing RTD oscillator design, it is expected that considerably higher power (>1 mW) at THz frequencies (>300 GHz) will be obtained.

  19. The Paralleling of High Power High Frequency Amplifier Based on Synchronous and Asynchronous Control

    Institute of Scientific and Technical Information of China (English)

    程荣仓; 刘正之

    2004-01-01

    The vertical position of plasma in the HT-7U Tokamak is inherently unstable. In order to realize active stabilization, the response rate of the high-power high-frequency amplifier feeding the active control coils must be fast enough. This paper analyzes the paralleling scheme of the power amplifier through two kinds of control mode. One is the synchronous control; the other is the asynchronous control. Via the comparison of the two kinds of control mode, both of their characteristics are given in the text. At last, the analyzed result is verified by a small power experiment.

  20. Amplification of Short Pulse High Power UV Laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    At recent year, with the development of CPA and other amplification technology, laser intensity achieves great increase and laser power can be high to PW(105) now, this ultrashort pulse lasers offer scientists a route to investigate laser-matter interaction in an absolute new regime.So far the researches on ultrashort pulse laser-matter interaction concentrated on infrared regime, yet ultraviolet laser has the advantage in intense field physics and ICF researches for its short wavelength and less nonlinear effects. KrF excimer is the best medium in UV ultrashort pulse amplification for its small saturation energy and high contrast ratio accessible.

  1. LCLS-II high power RF system overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    Yeremian, Anahid Dian

    2015-10-07

    A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS-II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more SSAs identical to the linac SSAs but run at 2 kW. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper.

  2. Discharge Physics of High Power Impulse Magnetron Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2010-10-13

    High power impulse magnetron sputtering (HIPIMS) is pulsed sputtering where the peak power exceeds the time-averaged power by typically two orders of magnitude. The peak power density, averaged over the target area, can reach or exceed 107 W/m2, leading to plasma conditions that make ionization of the sputtered atoms very likely. A brief review of HIPIMS operation is given in a tutorial manner, illustrated by some original data related to the self-sputtering of niobium in argon and krypton. Emphasis is put on the current-voltage-time relationships near the threshold of self-sputtering runaway. The great variety of current pulse shapes delivers clues on the very strong gas rarefaction, self-sputtering runaway conditions, and the stopping of runaway due to the evolution of atom ionization and ion return probabilities as the gas plasma is replaced by metal plasma. The discussions are completed by considering instabilities and the special case of ?gasless? self-sputtering.

  3. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  4. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  5. Optical Parametric Amplification for High Peak and Average Power

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, I

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  6. Recent advances in high power RF systems of Indus synchrotron

    International Nuclear Information System (INIS)

    In Indus accelerator complex at Raja Ramanna Centre for Advanced Technology, three major RF systems namely booster synchrotron RF system, Indus-1 Storage ring RF System and Indus-2 Storage ring RF System were commissioned and are running in round the clock operation mode for beam line users. High Power RF amplifier system of a particle accelerator required for energizing the Resonating structures is complex in nature and to run it smoothly with better performance various up gradations are needed. Booster and Indus-1 RF system operating at 31.6 MHz were conventional tetrode tube based system and were being used for more than 10 years. Indus-2 RF system consists of four Klystron based amplifier system with maximum output power of 64 kW each at 505.8 MHz. With recent advances in solid state RF amplifying devices and its inherent advantages like graceful degradation, low maintenance, better quality of signal, absence of high voltage points as compared to traditional tube based RF amplifiers, SSPAs of several tens of kW of RF power level are being successfully deployed in RF systems of Indus synchrotron. Booster RF system and Indus-1 RF system has been already replaced by Solid State RF amplifier system and is working satisfactorily. Presently three Klystron based RF systems for Indus-2 are already replaced with Solid State RF amplifier system with total installed power of 200 kW. In particle accelerators the beam parameters depend highly on the stability of the RF field. Due to dynamic beam loading conditions the variations in RF parameters of accelerating structures needs to be controlled precisely, hence low level RF feedback control system plays vital role. Considering revolutionary development in the field of digital electronics and inherent advantages of digital systems, FPGA based digital LLRF control system development work was taken up. In this paper recent up gradation in RF Systems of Indus Synchrotron will be presented. (author)

  7. The High Value CVT Concept--Cost Effective and Powerful

    Institute of Scientific and Technical Information of China (English)

    A. Englisch,; A. Teubert; A. Gotz; E. Muller; E. Simon; B. Walter; A. Baumgartner

    2011-01-01

    Based on the comprehensive comparison of vehicle performance in economy,engine power,driving smoothness,and efficiency cost as well as pollutant emission etc,the paper discussed the high value CVT concept from an angle of the cost effective and powerful for vehicle.In the paper,it researched the related technical detail in CVT.By means of realizing the continuous change in transmission ratio,it could obtain the optimal matching between transmission system and engine operating mode,and enhance the characteristic of fuel oil in economy,and also improve the convenience in manipulation for driver and make passenger comfortable.For easy to understand the concept,the paper made the comparison analysis in many aspects such as performance,transmission specification,high value CVT hybrid,orifice torque sensor,hydraulic system,high value CVT em,new chain portfolio and assessment of the high value CVT on the NEDC.Finally it showed the potential advantages of CVT technology development,and proposed future developing trends to realize technical scheme of high value CVT.

  8. Laser welding of polymers using high-power diode lasers

    Science.gov (United States)

    Bachmann, Friedrich G.; Russek, Ulrich A.

    2003-09-01

    Laser welding of polymers using high power diode lasers offers specific process advantages over conventional technologies, such as short process times while providing optically and qualitatively valuable weld seams, contactless yielding of the joining energy, absence of process induced vibrations, imposing minimal thermal stress and avoiding particle generation. Furthermore this method exhibits high integration capabilities and automatization potential. Moreover, because of the current favorable cost development within the high power diode laser market laser welding of polymers has become more and more an industrially accepted joining method. This novel technology permits both, reliable high quality joining of mechanically and electronically highly sensitive micro components and hermetic sealing of macro components. There are different welding strategies available, which are adaptable to the current application. Within the frame of this discourse scientific and also application oriented results concerning laser transmission welding of polymers using preferably diode lasers are presented. Besides the used laser systems the fundamental process strategies as well as decisive process parameters are illustrated. The importance of optical, thermal and mechanical properties is discussed. Applications at real technical components will be presented, demonstrating the industrial implementation capability and the advantages of a novel technology.

  9. New Primary-Parallel Boost Converter for High-Power High-Gain Applications

    DEFF Research Database (Denmark)

    Nymand, Morten; Andersen, Michael A. E.

    2009-01-01

    Abstract—A new simple and low cost method for paralleling multiple power stages in high-power high-gain isolated full-bridge boost converters is presented. A small current balancing transformer and serial connection of transformer secondary windings provides ideal current sharing between paralleled...... and manufacturing. Extension of the principle to other isolated boost converter topologies are demonstrated as well as extension to higher numbers of parallel operated power stages. Test results from a 3 kW experimental prototype converter are presented, verifying converter operation and demonstrating current...... sharing capability. Very high converter efficiency is achieved. Worst case efficiency at minimum input voltage and maximum power is 96.9 %. Maximum efficiency is 98 %....

  10. Environmental impacts of high voltage power lines and stations

    International Nuclear Information System (INIS)

    Environmental pollution due to high voltage power lines and stations (over 400 kV) shows up in several ways: high frequency (radio and TV range) radio waves; sound pollution (noises); various direct and indirect effects on living beings; aestethic pollution. The indirect effects of electromagnetic field may result in inducing high electric potential to earth insulated objects as cars, shelters and farming equipment, fencing, etc. which on human touch lead to discharge currents which only disappear by interrupting the contact. At high currents, due to muscle contraction, the man often cannot release the touched object, hence serious or even lethal accidents may happen. In depth analysis of such phenomena is possible by separating the electric and magnetic field effects. We shall concentrate on the electric field since the magnetic field effects are much less significant. 6 refs

  11. CHRONICLE: International forum on advanced high-power lasers and applications (AHPLA '99)

    Science.gov (United States)

    Afanas'ev, Yurii V.; Zavestovskaya, I. N.; Zvorykin, V. D.; Ionin, Andrei A.; Senatsky, Yu V.; Starodub, Aleksandr N.

    2000-05-01

    A review of reports made on the International Forum on Advanced High-Power Lasers and Applications, which was held at the beginning of November 1999 in Osaka (Japan), is presented. Five conferences were held during the forum on High-Power Laser Ablation, High-Power Lasers in Energy Engineering, High-Power Lasers in Civil Engineering and Architecture, High-Power Lasers in Manufacturing, and Advanced High-Power Lasers. The following trends in the field of high-power lasers and their applications were presented: laser fusion, laser applications in space, laser-triggered lightning, laser ablation of materials by short and ultrashort pulses, application of high-power lasers in manufacturing, application of high-power lasers in mining, laser decommissioning and decontamination of nuclear reactors, high-power solid-state and gas lasers, x-ray and free-electron lasers. One can find complete information on the forum in SPIE, vols. 3885-3889.

  12. High power compatible internally sensed optical phased array.

    Science.gov (United States)

    Roberts, Lyle E; Ward, Robert L; Francis, Samuel P; Sibley, Paul G; Fleddermann, Roland; Sutton, Andrew J; Smith, Craig; McClelland, David E; Shaddock, Daniel A

    2016-06-13

    The technical embodiment of the Huygens-Fresnel principle, an optical phased array (OPA) is an arrangement of optical emitters with relative phases controlled to create a desired beam profile after propagation. One important application of an OPA is coherent beam combining (CBC), which can be used to create beams of higher power than is possible with a single laser source, especially for narrow linewidth sources. Here we present an all-fiber architecture that stabilizes the relative output phase by inferring the relative path length differences between lasers using the small fraction of light that is back-reflected into the fiber at the OPA's glass-air interface, without the need for any external sampling optics. This architecture is compatible with high power continuous wave laser sources (e.g., fiber amplifiers) up to 100 W per channel. The high-power compatible internally sensed OPA was implemented experimentally using commercial 15 W fiber amplifiers, demonstrating an output RMS phase stability of λ/194, and the ability to steer the beam at up to 10 kHz. PMID:27410363

  13. Vacuum Window Design for High-Power Lasers

    CERN Document Server

    Shaftan, T V

    2005-01-01

    One of the problems in the high-power lasers design is in outcoupling of a powerful laser beam out of a vacuum volume into atmosphere. Usually the laser device is located inside a vacuum tank. The laser radiation is transported to the outside world through the transparent vacuum window. While considered transparent, some of the light passing through the glass is absorbed and converted to heat. For most applications, these properties are academic curiosities; however, in multi-kilowatt lasers, the heat becomes significant and can lead to a failure. The absorbed power can result in thermal stress, reduction of light transmission and, consequently, window damage. Modern optical technology has developed different types of glass (Silica, BK7, diamond, etc.) that have high thermal conductivity and damage threshold. However, for kilo- and megawatt lasers the issue still remains open. In this paper we present a solution that may relieve the heat load on the output window. We discuss advantages and issues of this part...

  14. Features of the high frequency power transformer calculation

    Directory of Open Access Journals (Sweden)

    D.A. Zabarilo

    2013-06-01

    Full Text Available Purpose. The windings of power transformers have low resistance value and a most inductance, which reduces the rate of rise of current in the windings. Therefore, when the estimated amount of current is set one should make sure of the possibility of achieving it. As inductance is characterized by a short-circuit voltage, it is necessary to develop a technique for determining the maximum magnitude of the current in the windings of the transformer according to the short-circuit voltage and operating frequency. Methodology. The classical method of calculation of transient processes to determine the value of the transient current of the transformer windings to achieve purpose is used. Findings. The nature of the transient current in the windings of high-frequency transformer, which is powered by a voltage inverter is investigated and analyzed. Originality. The method for determining the maximum amount of current depending on the short-circuit voltage and frequency of the applied voltage with other set-up parameters was proposed. Practical value. The proposed method allows determining the maximum value of the current in the windings of the high-frequency transformer including its RL-parameters. This will let compare the value of a given current with possible depending on short-circuit voltage and frequency of the applied voltage. Research material may be applied for power transformers design.

  15. High-Power, High-Speed Electro-Optic Pockels Cell Modulator

    Science.gov (United States)

    Hawthorne, Justin; Battle, Philip

    2013-01-01

    Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.

  16. The importance of high vehicle power for passenger car emissions

    Science.gov (United States)

    Carslaw, David C.; Williams, Martin L.; Tate, James E.; Beevers, Sean D.

    2013-04-01

    In this paper we use a quantile regression technique to explore the emissions characteristics of petrol and diesel passenger cars to reveal the importance of high vehicle power on exhaust emissions. A large database of ≈67,000 passenger cars from vehicle emission remote sensing data was used from surveys from several campaigns around the UK. Most previous remote sensing studies have focused on presenting mean emission estimates by vehicle type over time. However, as shown in the current work, considerably more insight can be gained into vehicle emission characteristics if techniques are used that can describe and model the full distribution of vehicle emissions as a function of important explanatory variables. For post-2000 model year (Euro 3-5) diesel cars it is shown that there is a strong dependence of vehicle specific power for emissions of NOx that was absent in earlier models and is absent for other pollutants such as CO, hydrocarbons and 'smoke'. Furthermore, we also find a stronger dependence on vehicle specific power for older catalyst-equipped petrol vehicles (Euro 1/2) on emissions of NOx that is less important for other emissions such as CO and hydrocarbons. Moreover, it is shown that while the rated maximum power output of petrol cars has remained almost constant over the past 15-20 years, the power output from diesel cars has increased markedly by about 50%. These results suggest that changes to vehicle technology, driving conditions and driver behaviour have become more important determinants of passenger car NOx emissions in recent years and may help explain why urban ambient concentrations of NOx have not decreased as much as anticipated.

  17. Thulium heat source for high-endurance and high-energy density power systems

    Science.gov (United States)

    Walter, C. E.; Kammeraad, J. E.; Vankonynenburg, R.; Vansant, J. H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5 to 50 kW(sub th) coupled with a power conversion efficiency of approximately 30 percent, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered.

  18. A High-Voltage class-D power amplifier with switching frequency regulation for improved high-efficiency output power range

    NARCIS (Netherlands)

    Ma, Haifeng; Zee, van der Ronan; Nauta, Bram

    2015-01-01

    This paper describes the power dissipation analysis and the design of an efficiency-improved high-voltage class-D power amplifier. The amplifier adaptively regulates its switching frequency for optimal power efficiency across the full output power range. This is based on detecting the switching outp

  19. High Performance Computing - Power Application Programming Interface Specification.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  20. Advanced targeted monitoring of high temperature components in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Roos, E.; Maile, K.; Jovanovic, A. [MPA Stuttgart (Germany)

    1998-12-31

    The article presents the idea of targeted monitoring of high-temperature pressurized components in fossil-fueled power plants, implemented within a modular software system and using, in addition to pressure and temperature data, also displacement and strain measurement data. The concept has been implemented as a part of a more complex company-oriented Internet/Intranet system of MPA Stuttgart (ALIAS). ALIAS enables to combine smoothly the monitoring results with those of the off-line analysis, e. g. sensitivity analyses, comparison with preceding experience (case studies), literature search, search in material databases -(experimental and standard data), nonlinear FE-analysis, etc. The concept and the system have been implemented in real plant conditions several power plants in Germany and Europe: one of these applications and its results are described more in detail in the presentation. (orig.) 9 refs.

  1. Development of high power quantum well lasers at RRCAT

    CERN Document Server

    Sharma, T K; Dixit, V K; Singh, S D; Pal, S; Porwal, S; Kumar, Ravi; Khakha, Alexander; Jangir, R; Kheraj, V; Rawat, P; Nath, A K

    2014-01-01

    We at RRCAT have recently developed high power laser diodes in the wavelength range of 740 to 1000 nm. A typical semiconductor laser structure is consisted of about 10 epilayers with different composition, thickness and doping values. For example, a laser diode operating at 0.8 micron has either GaAs or GaAsP quantum well as an active layer. The quantum well is sandwiched between AlGaAs wider bandgap waveguide and cladding layers. The complete laser structure is grown by metal organic vapour phase epitaxy technique and devices are fabricated through standard procedure using photolithography. We recently achieved about 5.3 Watt peak power at 853 nm. These laser diodes were tested under pulsed operation at room temperature for 500 nanosecond pulse duration with a duty cycle of 1:1000. Laser diode arrays consisting of 6-10 elements were also developed and tested for operation in pulsed mode at room temperature.

  2. Investigation of 7 GHz high power pulsed magnicon amplifier

    International Nuclear Information System (INIS)

    The magnicon is a microwave amplifier in which the beam is modulated by means of its circular deflection. Presented in this reports is a frequency doubling amplifier developed as a prototype of the microwave energy source for linear colliders. The magnicon is driven by a beam with a power of up to 100 MW and a microperveance of 0.83, the source of which is a thermionic electron gun with a very high convergence (up to 2000:1 in area). During the investigation the following results were obtained: a power of 30 MW, an efficiency of 35%, and a gain of 55 dB. This paper presents the tube design, problems faced and overcome during the investigation, and possible methods of further improving the device

  3. High-power ultrasonic processing: Recent developments and prospective advances

    Science.gov (United States)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  4. Architecture for a High-to-Medium-Voltage Power Converter

    Science.gov (United States)

    Vorpenian, Vatche

    2008-01-01

    A power converter now undergoing development is required to operate at a DC input potential ranging between 5.5 and 10 kV and a DC output potential of 400 V at a current up to 25 A. This power converter is also required to be sufficiently compact and reliable to fit and operate within the confines of a high-pressure case to be lowered to several miles (approx.5 km) below the surface of the ocean. The architecture chosen to satisfy these requirements calls for a series/ parallel arrangement of 48 high-frequency, pulse-width-modulation (PWM), transformer-isolation DC-to-DC power converter blocks. The input sides of the converter blocks would be connected in series so that the input potential would be divided among them, each of them being exposed to an input potential of no more than 10 kV/48 . 210 V. The series connection of inputs would also enforce a requirement that all the converter blocks operate at the same input current. The outputs of the converter blocks would be connected in a matrix comprising 6 parallel legs, each leg being a cascade of eight outputs wired in series (see figure). All the converter blocks would be identical within the tolerances of the values of their components. A single voltage feedback loop would regulate the output potential. All the converter blocks would be driven by the same PWM waveform generated by this feedback loop. The power transformer of each converter block would have a unity turns ratio and would be capable of withstanding as much as 10 kVDC between its primary and secondary windings. (Although, in general, the turns ratio could be different from unity, the simplest construction for minimizing leakage and maximizing breakdown voltage is attained at a turns ratio of unity.)

  5. Non-Equilibrium Phenomena in High Power Beam Materials Processing

    Science.gov (United States)

    Tosto, Sebastiano

    2004-03-01

    The paper concerns some aspects of non-equilibrium materials processing with high power beams. Three examples show that the formation of metastable phases plays a crucial role to understand the effects of beam-matter interaction: (i) modeling of pulsed laser induced thermal sputtering; (ii) formation of metastable phases during solidification of the melt pool; (i) possibility of carrying out heat treatments by low power irradiation ``in situ''. The case (i) deals with surface evaporation and boiling processes in presence of superheating. A computer simulation model of thermal sputtering by vapor bubble nucleation in molten phase shows that non-equilibrium processing enables the rise of large surface temperature gradients in the boiling layer and the possibility of sub-surface temperature maximum. The case (ii) concerns the heterogeneous welding of Cu and AISI 304L stainless steel plates by electron beam irradiation. Microstructural investigation of the molten zone has shown that dwell times of the order of 10-1-10-3 s, consistent with moderate cooling rates in the range 10^3-10^5 K/s, entail the formation of metastable Cu-Fe phases. The case (iii) concerns electron beam welding and post-welding treatments of 2219 Al base alloy. Electron microscopy and positron annihilation have explained why post-weld heat transients induced by low power irradiation of specimens in the as welded condition enable ageing effects usually expected after some hours of treatment in furnace. The problem of microstructural instability is particularly significant for a correct design of components manufactured with high power beam technologies and subjected to severe acceptance standards to ensure advanced performances during service life.

  6. Design and Implementation of High Efficiency, High Power Density Front-End Converter for High Voltage Capacitor Charger

    OpenAIRE

    Kang, Yonghan

    2005-01-01

    Pulse power system is widely used for medical, industrial and military applications. The operational principle of the pulse power system is that the energy from the input source is stored in the capacitor bank or superconducting inductive device through a dc-dc converter. Then, when a discharging signal exists, the stored energy is released to the load through pulse forming network (PFN) generating high peak power pulse up to gigawatts within several tens of or hundreds of microseconds. ...

  7. Numerical analysis of phase change materials for thermal control of power battery of high power dissipations

    Science.gov (United States)

    Xia, X.; Zhang, H. Y.; Deng, Y. C.

    2016-08-01

    Solid-fluid phase change materials have been of increasing interest in various applications due to their high latent heat with minimum volume change. In this work, numerical analysis of phase change materials is carried out for the purpose of thermal control of the cylindrical power battery cells for applications in electric vehicles. Uniform heat density is applied at the battery cell, which is surrounded by phase change material (PCM) of paraffin wax type and contained in a metal housing. A two-dimensional geometry model is considered due to the model symmetry. The effects of power densities, heat transfer coefficients and onset melting temperatures are examined for the battery temperature evolution. Temperature plateaus can be observed from the present numerical analysis for the pure PCM cases, with the temperature level depending on the power densities, heat transfer coefficients, and melting temperatures. In addition, the copper foam of high thermal conductivity is inserted into the copper foam to enhance the heat transfer. In the modeling, the local thermal non-equilibrium between the metal foam and the PCM is taken into account and the temperatures for the metal foam and PCM are obtained respectively.

  8. The high-temperature sodium coolant technology in nuclear power installations for hydrogen power engineering

    Science.gov (United States)

    Kozlov, F. A.; Sorokin, A. P.; Alekseev, V. V.; Konovalov, M. A.

    2014-05-01

    In the case of using high-temperature sodium-cooled nuclear power installations for obtaining hydrogen and for other innovative applications (gasification and fluidization of coal, deep petroleum refining, conversion of biomass into liquid fuel, in the chemical industry, metallurgy, food industry, etc.), the sources of hydrogen that enters from the reactor plant tertiary coolant circuit into its secondary coolant circuit have intensity two or three orders of magnitude higher than that of hydrogen sources at a nuclear power plant (NPP) equipped with a BN-600 reactor. Fundamentally new process solutions are proposed for such conditions. The main prerequisite for implementing them is that the hydrogen concentration in sodium coolant is a factor of 100-1000 higher than it is in modern NPPs taken in combination with removal of hydrogen from sodium by subjecting it to vacuum through membranes made of vanadium or niobium. Numerical investigations carried out using a diffusion model showed that, by varying such parameters as fuel rod cladding material, its thickness, and time of operation in developing the fuel rods for high-temperature nuclear power installations (HT NPIs) it is possible to exclude ingress of cesium into sodium through the sealed fuel rod cladding. However, if the fuel rod cladding loses its tightness, operation of the HT NPI with cesium in the sodium will be unavoidable. Under such conditions, measures must be taken for deeply purifying sodium from cesium in order to minimize the diffusion of cesium into the structural materials.

  9. Ka-Band TWT High-Efficiency Power Combiner for High-Rate Data Transmission

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee; Vaden, Karl R.; Lesny, Gary G.; Glass, Jeffrey L.

    2007-01-01

    A four-port magic-T hybrid waveguide junction serves as the central component of a high-efficiency two-way power combiner circuit for transmitting a high-rate phase-modulated digital signal at a carrier frequency in the Ka-band (between 27 and 40 GHz). This power combiner was developed to satisfy a specific requirement to efficiently combine the coherent outputs of two traveling-wavetube (TWT) amplifiers that are typically characterized by power levels on the order of 100 W or more. In this application, the use of a waveguide-based power combiner (instead of a coaxial-cable- or microstrip-based power combiner, for example) is dictated by requirements for low loss, high power-handling capability, and broadband response. Combiner efficiencies were typically 90 percent or more over both the linear and saturated output power regions of operation of the TWTs . Figure 1 depicts the basic configuration of the magic-T hybrid junction. The coherent outputs of the two TWTs enter through ports 1 and 4. As a result of the orientations of the electromagnetic fields, which also provides a needed high port-to-port isolation, of these two input signals and the interior design of the magic-T junction, the input powers are divided so as to add in phase at one output port (port 2), and to be opposite in phase and hence cancel each other at the opposite coplanar output port (port 3). The net result is that the output power at port 2 is essentially double that of the output of one TWT, minus the power lost in the magic-T hybrid junction. Optimum performance as a high-efficiency power combiner thus requires a balance of both power and phase at the input ports of the magic-T. Replicas of this two-way combiner can be arranged in a binary configuration to obtain a 2n-way (where n is an integer) combiner. For example, Figure 2 illustrates the use of three two-way combiners to combine the outputs of four TWTs.

  10. Topics in high voltage pulsed power plasma devices and applications

    Science.gov (United States)

    Chen, Hao

    Pulsed power technology is one of the tools that is used by scientists and engineers nowadays to produce gas plasmas. The transient ultra high power is able to provide a huge pulse of energy which is sometimes greater than the ionization energy of the gas, and therefore separates the ions and electrons to form the plasma. Sometimes, the pulsed power components themselves are plasma devices. For example, the gas type switches can "turn on" the circuit by creating the plasma channel between the switch electrodes. Mini Back Lighted Thyratron, or as we call it, mini-BLT, is one of these gas type plasma switches. The development of the reduced size and weight "mini-BLT" is presented in this dissertation. Based on the operation characteristics testing of the mini-BLT, suggestions of optimizing the design of the switch are proposed. All the factors such as the geometry of the hollow electrodes and switch housing, the gas condition, the optical triggering source, etc. are necessary to consider when we design and operate the mini-BLT. By reducing the diameter of the cylindrical gas path between the electrodes in the BLT, a novel high density plasma source is developed, producing the plasma in the "squeezed" capillary. The pulsed power generator, of course, is inevitably used to provide the ionization energy for hydrogen gas sealed in the capillary. Plasma diagnostics are necessarily analyzed and presented in detail to properly complete and understand the capillary plasma. This high density plasma source (1019 cm-3) has the potential applications in the plasma wakefield accelerator. The resonant oscillation behavior of the particles in plasmas allows for dynamically generated accelerating electric fields that have orders of magnitude larger than those available in the conventional RF accelerators. Finally, the solid state switches are introduced as a comparison to the gas type switch. Pulsed power circuit topologies such as the Marx Bank, magnetic pulse compression and diode

  11. A Power System Emergency Control Scheme in the Presence of High Wind Power Penetration

    DEFF Research Database (Denmark)

    Hoseinzadeh, Bakhtyar

    The main goal of the project is to improve existing protection technology by localizing the load shedding scheme in grids with high share of dispersed generation dominantly provided by renewable energy sources, i.e. wind, wave, solar, biomass, etc. The higher complexity and lower predictability....... Utilization of all of locally measurable variables, e.g. frequency, its rate of change, voltage drop, power flow direction under an integrated decentralized plan is done in this project, in order to improve the grid reliability. The proposed scheme benefits from a decentralized strategy, which reduces...... developed in this project may also constitute the lower level of a hierarchical control strategy, which can be activated in case of losing the communication with the control center. Modern power protection relays often provide several protection schemes inside of one common package. However, they normally...

  12. Experimental astrophysics with high power lasers and Z pinches

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A; Drake, R P; Ryutov, D D

    2004-12-10

    With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

  13. Wide band-gap materials for high power electronics

    International Nuclear Information System (INIS)

    The wide gap semiconductors are the basis for the third generation of microelectronics and specially for the high end of the temperature range. In this presentation we will review the prospects and status of two members of this group: Diamond and Silicon Carbide (SiC). The two are at different stages of technological development and their respective modes of application at present are quite different. SiC devices can operate at up to 105 deg C. High power and high frequency devices have been demonstrated. Diamond is not yet ready for real electronic devices but its many extreme properties find their applications in several cases. The prospects of the future applications will be described in view of the semiconducting characteristics of these materials

  14. Solar Power for Near Sun, High-Temperature Missions

    Science.gov (United States)

    Landis, Geoffrey A.

    2008-01-01

    Existing solar cells lose performance at the high temperatures encountered in Mercury orbit and inward toward the sun. For future missions designed to probe environments close to the sun, it is desirable to develop array technologies for high temperature and high light intensity. Approaches to solar array design for near-sun missions include modifying the terms governing temperature of the cell and the efficiency at elevated temperature, or use of techniques to reduce the incident solar energy to limit operating temperature. An additional problem is found in missions that involve a range of intensities, such as the Solar Probe + mission, which ranges from a starting distance of 1 AU from the sun to a minimum distance of 9.5 solar radii, or 0.044 AU. During the mission, the solar intensity ranges from one to about 500 times AM0. This requires a power system to operate over nearly three orders of magnitude of incident intensity.

  15. Analysis of cutting-edge techniques in the high voltage and high power adjustable speed drive systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The high voltage and high power adjustable speed drive (ASD) system is one of the most attractive fields in power electronics, and it is also a very crucial technique for energy saving and emission reduction. This paper discussed and analyzed the main cutting-edge knowledge and issues in the process of exploiting the high voltage and high power ASD system.

  16. Noise reduction of high-power supercontinuum sources by back seeding

    OpenAIRE

    Moselund, Peter Morten; Frosz, Michael Henoch; Thomsen, Carsten L.; Bang, Ole

    2009-01-01

    We investigate noise reduction in seeded supercontinuum generation at powers above the supercontinuum generation threshold and show that seeding of supercontinuum is also beneficial at high pump powers.

  17. Overview of high-temperature materials for high-energy space power systems

    Science.gov (United States)

    Saunders, N. T.

    1982-01-01

    The current state of technology and some of the more pressing research needs and challenges associated with the possible use of high temperature materials in future high energy space power systems are discussed. Particularly, emphasis is on the need to improve and quantify the fundamental understanding of the effects of the following: (1) fast neutron radiation on the properties and behavior of nuclear reactor fuels and claddings; and (2) long term, high temperature, space (vacuum) exposure on the properties of refractory metals considered for use as structural materials in various power conversion systems.

  18. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    Science.gov (United States)

    Morris, J. F. (Inventor)

    1985-01-01

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. If the receiver requires gratr thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparative low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  19. Geothermic Power Plants of high capacity - how far?

    Directory of Open Access Journals (Sweden)

    R.H. Kozłowski

    2011-12-01

    Full Text Available Purpose: Over the past two hundred years, the mankind has exploited more than 50 percent of all natural resources, including energy minerals. The twenty-first century will be, out of necessity the period of intensive development of energy based on renewable resources.Design/methodology/approach: The average geothermic gradient for the Earth`s crust (30°C/1km can give us 10-20 MWe as a result (electrical energy from one deep borehole heat exchanger. The value of electrical energy may be increased by introduction of a binary system with low-boiling medium into the energy system.Findings: Geothermic power plant of high capacity characterized by the fact that the steam superheater section, which is traditional in a conventional power plants, is replaced by the system of heat exchanger in the form of u-tubes with a single length ranging from 1000 meters to up to several thousand meters, initially placed in a metal casing with a transition to the rock layers of high temperature.Research limitations/implications: From the hot rock mass we can collect renewable resources of ,,dry” ascending energy from the paleo heat flow coming from the great nuclear furnace - the magma.Practical implications: The subject invention is the use of geothermic energy using a closed water cycle in heat exchangers, made of high-temperature creep resisting steam superheater steel tubes or titanium pipes. Thermal energy of water vapour, which is obtained in this way, is transformed into mechanical energy in the turbine, powering the generator.Originality/value: The role of a condenser can be fulfilled by a cascade system of thermal energy utilization( heat engineering, production of drinking water through desalination process, horticultural greenhouses, recreation, water pools, balneotherapy, heating sport fields, runways at airports and other transportation hubs.

  20. Safety approaches for high power modular laser operation

    Science.gov (United States)

    Handren, R. T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  1. Photoinjector RF cavity design for high power CW FEL

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey); Schrage, D. L. (Dale L.); Wood R. L. (Richard L.); Young, L. M. (Lloyd M.); Schultheiss, T. (Thomas); Christina, V.; Rathke, J. (John)

    2002-01-01

    The project is under way to develop a key enabling technology for high-power CW FEL: an RF photoinjector capable of producing continuous average current greater than 100 mA. The specific aim is a 700 MHz pi-mode, normal-conducting RF photoinjector, 3 nC of bunch charge, 100 mA of current (at 33.3-MHz bunch repetition rate) and emittance less than 10 mm-mrad. This level of performance will enable robust 100-kW-class FEL operation with electron beam energy 400 MeV, thereby reducing the size and cost of the FEL. This design is scalable to the MW power level by increasing the electron bunch repetition rate from 33.3 MHz to a higher value. The major challenges are emittance control and high heat flux within the CW 700-MHz RF cavities. Results of RF cavity design and cooling schemes are presented, including both high-velocity water and liquid nitrogen cooling options.

  2. Development of a high power free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Chul; Kim, Sun Kook; Jung, Yung Wook; Cho, Sung Oh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    A millimeter-wave free electron laser (FEL) driven by a recirculating electrostatic accelerator has been developed. The wavelength of the FEL is tunable in the range of 3 - 12 mm by tuning the energy of the electron beam. The output power is estimated to be 1 kW. The electrostatic accelerator is composed of high-current electron gun, acceleration tube, high-voltage generator, high-voltage terminal, deceleration tube, electron collator, and vacuum pumps. Two types of LaB{sub 6}-based thermionic electron guns (triode gun and diode gun) and their power supplies have been developed. The voltage of the guns is 30 kV and the output current is - 2 A. A beam-focusing planar undulator and a permanent-magnet helical undulator have been developed and 3D trajectories of electron beam in the undulators have been calculated to find optimal input condition of electron beam. 135 figs, 15 pix, 17 tabs, 98 refs. (Author).

  3. Overview on thermal and mechanical challenges of high power RF electronic packaging

    NARCIS (Netherlands)

    Yuan, C.A.; Kregting, R.; Driel, W. van; Gielen, A.W.J.; Xiao, A.; Zhang, G.Q.

    2011-01-01

    High Power RF electronics is one of the essential parts for wireless communication, including the personal communication, broadcasting, microwave radar, etc. Moreover, high efficient high power electronics has entered the ISM market, such as the power generator of microwave oven. Power electronics r

  4. A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; de Vega, Angel Ruiz;

    2014-01-01

    This paper presents a real time measurement of on-state forward voltage and estimating the junction temperature for a high power IGBT module during a power converter operation. The power converter is realized as it can be used for a wind turbine system. The peak of the junction temperature...

  5. High-Speed Power System Transient Stability Simulation Using Highly Dedicated Hardware

    OpenAIRE

    Nagel, Ira; Fabre, Laurent; Pastre, Marc; Krummenacher, Francois; Cherkaoui, Rachid; Kayal, Maher

    2013-01-01

    This paper presents a fully analog demonstrator based on power system emulation for high-speed power system stability analysis.Abenchmark using a fixed two-machine topology has been implemented. The characteristics of the emulated components (i.e., generators and transmission lines) are reprogrammable and short circuits can be emulated at different distances from the generator. This first realization is limited to transient stability analysis, as the main focus during designwas put on computa...

  6. Low power very high frequency resonant converter with high step down ratio

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...... is with a large input inductor. The power stages are designed with the same specs and efficiencies from 60.7−82.9% are achieved....

  7. High performance computing in power and energy systems

    CERN Document Server

    Khaitan, Siddhartha Kumar

    2012-01-01

    The twin challenge of meeting global energy demands in the face of growing economies and populations and restricting greenhouse gas emissions is one of the most daunting ones that humanity has ever faced. Smart electrical generation and distribution infrastructure will play a crucial role in meeting these challenges. We would  need to develop capabilities to handle large volumes of data generated by the power system components like PMUs, DFRs and other data acquisition devices as well as by the capacity to process these data at high resolution via multi-scale and multi-period simulations, casc

  8. High power transcranial beam steering for ultrasonic brain therapy.

    OpenAIRE

    PERNOT, mathieu; Aubry, Jean-François; Tanter, Mickaël; Thomas, Jean-Louis; Fink, Mathias

    2003-01-01

    International audience A sparse phased array is specially designed for non-invasive ultrasound transskull brain therapy. The array is made of 200 single elements corresponding to a new generation of high power transducers developed in collaboration with Imasonic (Besançon, France). Each element has a surface of 0.5 cm2 and works at 0.9 MHz central frequency with a maximum 20 W cm(-2) intensity on the transducer surface. In order to optimize the steering capabilities of the array, several t...

  9. Switching speed limitations of high power IGBT modules

    DEFF Research Database (Denmark)

    Incau, Bogdan Ioan; Trintis, Ionut; Munk-Nielsen, Stig

    2015-01-01

    In this paper the switching speed limits of high power IGBT modules are investigated. The limitation of turn-on and turn-off switching speeds of the IGBTs are experimentally detected in a pulse tester. Different dc-bus stray inductances are considered, as well as the worst case scenario...... for the blocking dc-link voltage. Switching losses are analyzed upon a considerable variation of resistor value from turn-on gate driver side. Short circuit operations are investigated along with safe operating area for entire module to validate electrical capabilities under extreme conditions....

  10. Dual Band High Efficiency Power Amplifier Based on CRLH Lines

    Directory of Open Access Journals (Sweden)

    D. Segovia-Vargas

    2009-12-01

    Full Text Available In this paper we propose the use of Composite Right/Left Hand (CRLH and Extended Composite Right/Left Hand (ECRLH transmission lines for the design of dual band high efficiency power amplifiers working in CE class. The harmonic termination can be synthesized using the meta-lines is particularly suitable for CE class amplifiers, which have a termination not as sensitive to the third harmonic as F class amplifier. This paper presents the design procedure and the design equations. The nonlinear phase response of a CRLH and ECRLH transmission line has been utilized to design arbitrary dual-band amplifiers.

  11. A New Hard Switching Bidirectional Converter With High Power Density

    Directory of Open Access Journals (Sweden)

    Bahador Fani

    2010-01-01

    Full Text Available In this paper, a new isolated dc-dc bidirectional converter is proposed. This converter consists of two transformers (flyback and forward and only one switch in primary side and one switch in secondary side of transformers. In this converter energy transfers to the output in both on and off switch states so power density of this converter is high This converter controlled by PWM signal. Also this converter operates over a wide input voltage range. Theoretical analysis is presented and computer simulation and experimental results verify the converter analysis.

  12. High-power pulse trains excited by modulated continuous waves

    CERN Document Server

    Wang, Yan; Li, Lu; Malomed, Boris A

    2015-01-01

    Pulse trains growing from modulated continuous waves (CWs) are considered, using solutions of the Hirota equation for solitons on a finite background. The results demonstrate that pulses extracted from the maximally compressed trains can propagate preserving their shape and forming robust arrays. The dynamics of double high-power pulse trains produced by modulated CWs in a model of optical fibers, including the Raman effect and other higher-order terms, is considered in detail too. It is demonstrated that the double trains propagate in a robust form, with frequencies shifted by the Raman effect.

  13. High-Efficiency, Low-Weight Power Transformer

    Science.gov (United States)

    Welsh, J. P.

    1986-01-01

    Technology for design and fabrication of radically new type of conductioncooled high-power (25 kVA) lightweight transformer having outstanding thermal and electrical characteristics. Fulfills longstanding need for conduction-cooled transformers and magnetics with low internal thermal resistances. Development techniques limited to conductive heat transfer, since other techniques such as liquid cooling, forced liquid cooling, and evaporative cooling of transformers impractical in zero-gravity space environment. Transformer uniquely designed: mechanical structure also serves as thermal paths for conduction cooling of magnetic core and windings.

  14. Comparison of advanced high power underground cable designs

    International Nuclear Information System (INIS)

    In this paper, advanced high power underground cable designs are compared in the light of available literature, of reports and information supplied by participating industries (AEG, BICC, CGE, Pirelli, Siemens), spontaneous contributions by EdF, France, BBC and Felten and Guilleaume Kabelwerke A.G., Germany, and Hitachi, Furukawa, Fujikura and Sumitomo, Japan, and earlier studies carried out at German public research centres. The study covers cables with forced cooling by oil or water, SF6-cables, polyethylene cables, cryoresistive and superconducting cables. (orig.)

  15. Discharge current modes of high power impulse magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Zhongzhen Wu

    2015-09-01

    Full Text Available Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

  16. High-Voltage Power Supply System for Laser Isotope Separation

    International Nuclear Information System (INIS)

    This report presents several concepts for Laser High-Voltage Power Supply (HVPS) Systems for a Laser Isotope Separation facility. Selection of equipments and their arrangement into operational systems is based on proven designs and on application concepts now being developed. This report has identified a number of alternative system arrangements and has provided preliminary cost estimates for each. The report includes a recommendation for follow-on studies that will further define the optimum Laser HVPS Systems. Brief descriptions are given of Modulator/Regulator circuit trade-offs, system control interfaces, and their impact on costs

  17. High power amplification of a tailored-pulse fiber laser

    Science.gov (United States)

    Saby, Julien; Sangla, Damien; Caplette, Stéphane; Boula-Picard, Reynald; Drolet, Mathieu; Reid, Benoit; Salin, François

    2013-02-01

    We demonstrate the amplification of a 1064nm pulse-programmable fiber laser with Large Pitch Rod-Type Fibers of various Mode field diameters from 50 to 70 μm. We have developed a high power fiber amplifier at 1064nm delivering up to 100W/1mJ at 15ns pulses and 30W/300μJ at 2ns with linearly polarized and diffraction limited output beam (M²LBO crystals leading to 50W at 532nm and 25W at 355nm with a diffraction limited output. Similar experiments performed at 1032nm are also reported.

  18. Reliability of high power laser diodes with external optical feedback

    Science.gov (United States)

    Bonsendorf, Dennis; Schneider, Stephan; Meinschien, Jens; Tomm, Jens W.

    2016-03-01

    Direct diode laser systems gain importance in the fields of material processing and solid-state laser pumping. With increased output power, also the influence of strong optical feedback has to be considered. Uncontrolled optical feedback is known for its spectral and power fluctuation effects, as well as potential emitter damage. We found that even intended feedback by use of volume Bragg gratings (VBG) for spectral stabilization may result in emitter lifetime reduction. To provide stable and reliable laser systems design, guidelines and maximum feedback ratings have to be found. We present a model to estimate the optical feedback power coupled back into the laser diode waveguide. It includes several origins of optical feedback and wide range of optical elements. The failure thresholds of InGaAs and AlGaAs bars have been determined not only at standard operation mode but at various working points. The influence of several feedback levels to laser diode lifetime is investigated up to 4000h. The analysis of the semiconductor itself leads to a better understanding of the degradation process by defect spread. Facet microscopy, LBIC- and electroluminescence measurements deliver detailed information about semiconductor defects before and after aging tests. Laser diode protection systems can monitor optical feedback. With this improved understanding, the emergency shutdown threshold can be set low enough to ensure laser diode reliability but also high enough to provide better machine usability avoiding false alarms.

  19. High-Power Solar Electric Propulsion for Future NASA Missions

    Science.gov (United States)

    Manzella, David; Hack, Kurt

    2014-01-01

    NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.

  20. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...