WorldWideScience

Sample records for 10be concentration measurements

  1. A comparison of new calculations of 10be production in the earths polar atmosphere by cosmic rays with 10be concentration measurements in polar ice cores between 1939-2005 - a troubling lack of concordance paper #1

    CERN Document Server

    Webber, W R

    2010-01-01

    Using new calculations of 10Be production in the Earths atmosphere which are based on direct measurements of the 11-year solar modulation effects on galactic cosmic rays and spacecraft measurements of the cosmic ray energy spectrum, we have calculated the yearly average production of 10Be in the Earths atmosphere by galactic and solar cosmic rays since 1939. During the last six 11-year cycles the average amplitude of these production changes is 36%. These predictions are compared with measurements of 10Be concentration in polar ice cores in both the Northern and Southern hemisphere over the same time period. We find a large scatter between the predicted and measured yearly average data sets and a low cross correlation ~0.30. Also the normalized regression line slope between 10Be production changes and 10Be concentration changes is found to be only 0.4-0.6; much less than the value of 1.0 expected for a simple proportionality between these quantities, as is typically used for historical projections of the rela...

  2. Climate-induced fluctuations of 10Be concentration in Lake Baikal sediments

    International Nuclear Information System (INIS)

    Sedimentary 10Be records covering the last 150 kyr were obtained from three cores collected at the Academician Ridge (BDP-96/hole2 core and VER96/st.3 core) and at the Buguldeika Saddle (BDP-93/hole2 core) in Lake Baikal. The 10Be concentrations of the three cores varied between 0.5x109 and 1.5x109 atoms/g, and coincidently dropped at the stratigraphic intervals of marine oxygen isotope stages (MIS) 2, 4, 5d and 6. The depositional fluxes of 10Be, on the other hand, generally rose in those stages having an increase in the dry bulk densities and sediment accumulation rates. These results are consistent with previous work (Horiuchi et al., 1999), suggesting that the dilution effects of low-10Be-concentration particles principally controlled the fluctuations of the 10Be concentrations of Lake Baikal sediments. Low-10Be-concentration particles have been intensively produced by mechanical weathering and physical erosion under the cold and dry climatic conditions during the peak glaciation period, and have been directly brought from the source areas into the lake as a result of the thin vegetative cover of the watershed

  3. 10Be concentrations of Red soils in Southwest Japan and its possibility of dating

    Science.gov (United States)

    Maejima, Y.; Matsuzaki, H.; Nakano, C.

    2004-08-01

    10Be concentrations of six Red soils distributed in Southwest Japan ranged from 0.8 × 108 to 2.7 × 109 atoms g-1, and minimum absolute ages were estimated by inventory of meteoric 10Be. The results are follows: Red soils on Toyota derived from granite (⩽25 ka), Kashii derived from Tertiary shale (⩽24 ka), Akiyoshidai derived from limestone (⩽110 ka), Okinawa Island derived from Kunigami gravel bed (⩽9 ka) and Ogasawara Island derived from agglomerate and Boninite (⩽22 and ⩽7 ka) were obtained, respectively. Soil age except with Akiyoshidai indicated younger age. It suggested that the loss of 10Be from the soil was caused by leaching of 10Be or by soil erosion, and 10Be is susceptible to leaching out from these Red soils under the humid climate condition such as Southwest Japan.

  4. 10Be and 7Be concentrations in New Zealand rain (september 1995 to august 1997)

    International Nuclear Information System (INIS)

    Monthly rain collections at Lower Hutt, New Zealand (41deg 15 min S; 174 deg 55 min E) between September 1995 and August 1997 have been analysed for 10Be and 7Be, principally to determine flux rates for on-going Be isotope studies of soil, loess, marine sediments and ground water. 10Be concentrations show considerable variation, ranging from 0.5 to 5.0 x 104 atoms cm-3 rain, or 1.2 to 4.2 x 105 atoms cm-2. However, average annual fluxes are relatively constant: 2.7 x 104 atoms cm-3 rain or 31.0 x 105 atoms cm-2 (1995-96); 2.5 x 104 atoms cm-3 rain or 28.1 x 105 atoms cm-2 (1996-97). These results are similar to those derived from 1987 rain sampled at the same location, 2.5 x 104 atoms cm-3 or 28.6 x 105 atoms cm-2, and are similar to published results from other mid-latitude, continental sites in India and USA. 7Be concentrations are also highly variable, ranging from 0.7 to 3.0 x 104 atoms cm-3 or 0.3 to 2.9 x 105 atoms cm-2 (Dec 95 to Aug 97). 7Be/10Be is more constant through the same period, ranging from 0.42 to 0.69, with a mean value of 0.59±0.06 (1σ). Analysis of New Zealand rain collected at Dunedin (45deg 52 min S; 170deg 65 min E) and Auckland (Leigh; 36deg 20 min S; 174deg 50 min E) also began in 1997. Early results for Dunedin indicate similar 7Be/10Be, but generally lower and more variable results for both 7Be and 10Be, compared with Lower Hutt

  5. Meteoric 10Be in Lake Cores as a Measure of Climatic and Erosional Change

    Science.gov (United States)

    Jensen, R. E.; Dixon, J. L.

    2015-12-01

    Utilization of meteoric 10Be as a paleoenvironmental proxy has the potential to offer new insights into paleoprecipitation records and paleoclimate models, as well as to long-term variations in erosion with climate. The delivery of meteoric 10Be to the surface varies with precipitation and its strong adsorption to sediment has already proven useful in studies of erosion. Thus, it is likely meteoric 10Be concentrations in lake sediments vary under both changing climate and changing sediment influx. Assessment of the relative importance of these changes requires the comparison of 10Be concentrations in well-dated lake cores with independent paleoenvironmental proxies, including oxygen isotope, pollen, and charcoal records, as well as variation in geochemical composition of the sediments. Blacktail Pond details 15,000 years of climatic change in the Yellowstone region. We develop a new model framework for predicting meteoric 10Be concentrations with depth in the core, based on sedimentation rates of both lake-derived and terrigenous sediments and changes in the flux of meteoric 10Be with precipitation. Titanium concentrations and previously determined 10Be concentrations in wind-derived loess provide proxies for changing delivery of 10Be to the lake by terrigenous sources. We use existing paleoenvironmental data obtained from this core and the surrounding region to develop models for changing rainfall across the region and predict meteoric 10Be delivery to the lake by precipitation. Based on a suite of ~10 models, sedimentation rate is the primary control of meteoric 10Be in the Blacktail Pond core unless terrestrial input is very high, as it was post-glacial in the early Holocene when the lake experienced a high influx of loess and terrigenous sediments. We used these models to inform sample selection for 10Be analysis along the Blacktail pond core. Core sediments are processed for meteoric 10Be analysis using sequential digestions and standard extraction procedures

  6. Constraining Regolith Production on a Hillslope Over Long Timescales: Interpreting In Situ 10Be Concentrations on an Evolving Landscape

    Science.gov (United States)

    Foster, M. A.; Anderson, R. S.; Duehnforth, M.; Kelly, P. J.

    2011-12-01

    numerical hillslope model in which regolith thickness and 10Be concentration are tracked at all hillslope positions. 10Be concentration in rock immediately subjacent to the regolith is updated both by decay and by production at a rate governed by the instantaneous regolith thickness (e.g. Riggins et al., 2011). Vertically averaged 10Be concentration in the regolith is updated by vertically averaged production rate, decay, addition from rock released at the base of the regolith, and advection of regolith. The resulting field of 10Be in bedrock at the regolith interface, from which one deduces long term average regolith production rates, varies both in time and in space. Our model indicates that regolith thickness fluctuates by tens of percent from the average condition over the timescale of glacial-interglacial cycles. The resulting shifts in 10Be concentrations at the base of regolith are of similar magnitude, with greater shifts of 10Be concentrations in regolith. We will employ this model tuned to the Gordon Gulch sites to interpret measured 10Be concentrations.

  7. A Comparison Of New Calculations Of The Yearly 10Be Production In The Earths Polar Atmosphere By Cosmic Rays With Yearly 10Be Measurements In Multiple Greenland Ice Cores Between 1939 And 1994 - A Troubling Lack Of Concordance Paper #2

    CERN Document Server

    Webber, W R; Webber, C W

    2010-01-01

    We have compared the yearly production rates of 10Be by cosmic rays in the Earths polar atmosphere over the last 50-70 years with 10Be measurements from two separate ice cores in Greenland. These ice cores provide measurements of the annual 10Be concentration and 10Be flux levels during this time. The scatter in the ice core yearly data vs. the production data is larger than the average solar 11 year production variations that are being measured. The cross correlation coefficients between the yearly 10Be production and the ice core 10Be measurements for this time period are <0.4 in all comparisons between ice core data and 10Be production, including 10Be concentrations, 10Be fluxes and in comparing the two separate ice core measurements. In fact, the cross correlation between the two ice core measurements, which should be measuring the same source, is the lowest of all, only ~0.2. These values for the correlation coefficient are all indicative of a "poor" correlation. The regression line slopes for the bes...

  8. Measurement of 26Al for atmospheric and climate research and the potential of 26Al/ 10Be ratios

    Science.gov (United States)

    Auer, M.; Kutschera, W.; Priller, A.; Wagenbach, D.; Wallner, A.; Wild, E. M.

    2007-06-01

    The measurement of the paired cosmogenic radionuclides 26Al and 10Be in environmental samples has potential applications in atmospheric and climate research. For this study, we report the first measurements of the 26Al/10Be atomic ratio in tropospheric aerosol samples from sites in Europe and Antarctica performed at the Vienna Environmental Research Accelerator (VERA). These initial results show that the 26Al/10Be atomic ratio in tropospheric aerosols averages 1.78 × 10-3 and does not vary significantly between the different locations. We also report results of systematic investigations of the ionization and detection efficiency which we performed to improve the measurement precision for 26Al by AMS. Maximum detection efficiencies of up to 9 × 10-4 (in units of 26Al atoms detected/initial) were achieved for chemically pure Al2O3, while for atmospheric samples we reached efficiencies of up to 2.2 × 10-4.

  9. Unsteady late Pleistocene incision of streams bounding the Colorado Front Range from measurements of meteoric and in situ 10Be

    Science.gov (United States)

    Dühnforth, Miriam; Anderson, Robert S.; Ward, Dylan J.; Blum, Alex

    2012-03-01

    Dating of gravel-capped strath terraces in basins adjacent to western U.S. Laramide Ranges is one approach to document the history of late Cenozoic fluvial exhumation. We use in situ 10Be measurements to date the broad surfaces adjacent to the eastern edge of the Rocky Mountains in Colorado, and compare these calculated ages with results from meteoric 10Be measurements. We analyze three sites near Boulder, Colorado (Gunbarrel Hill, Table Mountain, and Pioneer) that have been mapped as the oldest terrace surfaces with suggested ages ranging from 640 ka to the Plio-Pleistocene transition. Our in situ 10Be results reveal abandonment ages of 95 ± 129 ka at Table Mountain, 175 ± 27 ka at Pioneer, and ages of 251 ± 10 ka and 307 ± 15 ka at Gunbarrel Hill. All are far younger than previously thought. Inventories of meteoric 10Be support this interpretation, yielding ages that are comparable to Table Mountain and ˜20% lower than Pioneer in situ ages. We argue that lateral beveling by rivers dominated during protracted times of even moderate glacial climate, and that vertical incision rates of several mm/yr likely occurred during times of very low sediment supply during the few interglacials that were characterized by particularly warm climate conditions. In contrast to the traditional age chronology in the area, our ages suggest that the deep exhumation of the western edge the High Plains occurred relatively recently and at an unsteady pace.

  10. Relief evolution of the Continental Rift of Southeast Brazil revealed by in situ-produced 10Be concentrations in river-borne sediments

    Science.gov (United States)

    Salgado, André Augusto Rodrigues; Rezende, Eric de Andrade; Bourlès, Didier; Braucher, Régis; da Silva, Juliana Rodrigues; Garcia, Ricardo Alexandrino

    2016-04-01

    This study aims to quantify the denudation dynamics of the Brazilian passive margin along a segment of the Continental Rift of Southeast Brazil. The denudation rates of 30 basins that drain both horsts of the continental rift, including the mountain ranges of the Serra do Mar (seaside horst); and the Serra da Mantiqueira (continental horst); were derived from 10Be concentrations measured in sand-sized river sediment. The mean denudation rate ranges from 9.2 m Ma-1 on the plateau of the Serra do Mar to 37.1 m Ma-1 along the oceanic escarpment of the Serra do Mar. The seaward-facing scarps of both mountain ranges exhibit mean denudation rates that are approximately 1.5 times those of the inland-facing scarps. The escarpments of the horst nearer to the ocean (Serra do Mar) exhibit higher denudation rates (mean 30.2 m Ma-1) than the escarpments of the continental horst (Serra da Mantiqueira) (mean 16.5 m Ma-1). The parameters that impact these denudation rates include the catchment relief, the slope gradient, the rock and the climate. The incongruent combination of a mountainous landscape and moderate to low 10Be-based denudation rates averaging at ∼20 m Ma-1 suggests a reduction in intraplate tectonic activity beginning in the Middle Quaternary or earlier.

  11. 10Be concentrations in an ice core from Akademii Nauk (Russian Arctic) for validation of the age-depth relationship: development of a sample scheme

    OpenAIRE

    Albedyll, Luisa von

    2015-01-01

    This bachelor’s thesis aims to develop a sample scheme for the Akademii Nauk ice core from the Russian Arctic in order to reconstruct the long-term variations of the 10Be concentration. These long-term variations are assumed to vary globally simultaneous and are therefore used to synchronize different 10Be records for the purpose of dating (“wiggle matching”). This is done in order to validate an existing age-depth relationship of this ice core covering a time span of around 3 000...

  12. Patterns of landscape evolution on the central and northern Tibetan Plateau investigated using in-situ produced 10Be concentrations from river sediments

    Science.gov (United States)

    Li, Yingkui; Li, Dewen; Liu, Gengnian; Harbor, Jon; Caffee, Marc; Stroeven, Arjen P.

    2014-07-01

    Quantifying long-term erosion rates across the Tibetan Plateau and its bordering mountains is of critical importance to an understanding of the interaction between climate, tectonic movement, and landscape evolution. We present a new dataset of basin-wide erosion rates from the central and northern Tibetan Plateau derived using in-situ produced 10Be concentrations of river sediments. Basin-wide erosion rates from the central plateau range from 10.1±0.9 to 36.8±3.2 mm/kyr, slightly higher than published local erosion rates measured from bedrock surfaces. These values indicate that long-term downwearing of plateau surfaces proceeds at low rates and that the landscape is demonstrably stable in the central plateau. In contrast, basin-wide erosion rates from the Kunlun Shan on the northern Tibetan Plateau range from 19.9±1.7 to 163.2±15.9 mm/kyr. Although the erosion rates of many of these basins are much higher than the rates from the central plateau, they are lower than published basin-wide erosion rates from other mountains fringing the Tibetan Plateau, probably because the basins in the Kunlun Shan include both areas of low-relief plateau surface and high-relief mountain catchments and may also result from retarded fluvial sediment transport in an arid climate. Significantly higher basin-wide erosion rates derived from the Tibetan Plateau margin, compared to the central plateau, reflect a relatively stable plateau surface that is being dissected at its margins by active fluvial erosion.

  13. High-precision Penning trap mass measurements of 9,10Be and the one-neutron halo nuclide 11Be

    Science.gov (United States)

    Ringle, R.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Smith, M.; Lapierre, A.; Ryjkov, V. L.; Delheij, P.; Drake, G. W. F.; Lassen, J.; Lunney, D.; Dilling, J.

    2009-05-01

    Penning trap mass measurements of 9Be, 10Be (t1 / 2 = 1.51 My), and the one-neutron halo nuclide 11Be (t1 / 2 = 13.8 s) have been performed using TITAN at TRIUMF. The resulting 11Be mass excess (ME = 20 177.60 (58) keV) is in agreement with the current Atomic Mass Evaluation (AME03) [G. Audi, et al., Nucl. Phys. A 729 (2003) 337] value, but is over an order of magnitude more precise. The precision of the mass values of 9,10Be have been improved by about a factor of four and reveal a ≈ 2 σ deviation from the AME mass values. Results of new atomic physics calculations are presented for the isotope shift of 11Be relative to 9Be, and it is shown that the new mass values essentially remove atomic mass uncertainties as a contributing factor in determining the relative nuclear charge radius from the isotope shift. The new mass values of 10,11Be also allow for a more precise determination of the single-neutron binding energy of the halo neutron in 11Be.

  14. Measurement of heme concentration.

    Science.gov (United States)

    Sinclair, P R; Gorman, N; Jacobs, J M

    2001-05-01

    Heme (iron protoporphyrin IX) is a prosthetic group for a number of hemoproteins in different tissues (e.g., hemoglobin, myoglobin, cytochrome P-450s, mitochondrial cytochromes, catalases, and peroxidases). Mutations in the biosynthetic pathway can affect the synthesis and/or degradation of heme. Several assays are provided in this unit for quantifying heme: a spectrophotometric assay based on the characteristic absorption spectrum of oxidized and reduced form of the hemochrome formed by replacing the nitrogen ligands with pyridine; a fluorescence assay based on removal of the iron by a heated, strong oxalic acid solution to produce fluorescent protoporphyrin; a reversed-phase HPLC assay to measure heme and intermediates in the synthetic pathway; and a radiometric assay to measure newly synthesized heme in tissue culture cells.

  15. Meridional transport and deposition of atmospheric 10Be

    Directory of Open Access Journals (Sweden)

    J. Feichter

    2009-01-01

    Full Text Available 10Be concentrations measured in ice cores exhibit larger temporal variability than expected based on theoretical production calculations. To investigate whether this is due to atmospheric transport a general circulation model study is performed with the 10Be production divided into stratospheric, tropospheric tropical, tropospheric subtropical and tropospheric polar sources. A control run with present day 10Be production rate is compared with a run during a geomagnetic minimum. The present 10Be production rate is 4–5 times higher at high latitudes than in the tropics whereas during a period of no geomagnetic dipole field it is constant at all latitudes. The 10Be deposition fluxes, however, show a very similar latitudinal distribution in both the present day and the geomagnetic minimum run indicating that 10Be is well mixed in the atmosphere before its deposition. This is also confirmed by the fact that the contribution of 10Be produced in the stratosphere is dominant (55%–70% and relatively constant at all latitudes. The contribution of stratospheric 10Be is approximately 70% in Greenland and 60% in Antarctica reflecting the weaker stratosphere-troposphere air exchange in the Southern Hemisphere.

  16. Meteoric 10Be in soil profiles - A global meta-analysis

    Science.gov (United States)

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  17. Meteoric 10Be in soil profiles - A global meta-analysis

    Science.gov (United States)

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-12-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied. The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile. In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  18. Galactic bursts signature in Antarctica 10Be

    CERN Document Server

    Omerbashich, M

    2006-01-01

    I detected a very strong (25 %var) period of 3592+-57 years at 99% confidence level in the 10Be deposition rates from Vostok, Antarctica ice core raw (gapped, unaltered) data. The period was verified at 99% confidence level against the 10Be concentration raw data at both Vostok, as 3700+-57 years at very strong 38 %var, and Taylor Dome, Antarctica, as 3800+-61 years at very strong 23 %var. The noisy Mg concentration data from Taylor Dome also show an extremely strong (44 %var) period of 3965+-16 years. The Vostok data also show the Hallstadzeit Solar cycle, as 2296+-57 years at 12 %var, perhaps its best estimate yet. I use for all analyses the 99% confidence strict Gauss-Vanicek spectral analysis (GVSA) that estimates periods in incomplete records. Based on recent 500-parsec Galactic Center (GC) GeV/TeV Gamma ray surveys by the H.E.S.S. and INTEGRAL telescopes, the GC extremely active central region makes the best candidate host for bursts leaving the discovered signature. A previously reported 3600 years per...

  19. Short and long-term delivery rates of meteoric 10Be to terrestrial soils

    Science.gov (United States)

    Graly, Joseph A.; Reusser, Lucas J.; Bierman, Paul R.

    2011-02-01

    Well-constrained, long-term average meteoric 10Be deposition rates are important when meteoric 10Be is used as a chronometer or tracer of Earth surface processes. To constrain meteoric 10Be delivery to terrestrial soils, we estimate time-integrated 10Be deposition rates from meteoric 10Be inventories measured in dated soils and compare these results to a new synthesis of short-term measurements of 10Be in precipitation. Comparison of these long-term rates to short-term measurements suggests that short-term measurements likely predict long-term meteoric 10Be deposition rates within uncertainties of ~ 20%. In precipitation measurements, it is possible to deconvolve the contribution of atmospherically-produced "primary" meteoric 10Be from "recycled" meteoric 10Be delivered by terrestrial dust if a second isotope is measured that quantifies either the recycled or primary components of meteoric 10Be deposition. We use dust-concentration dependent differences between 7Be and 10Be measurements to make new estimates of the recycled contribution to total meteoric 10Be flux delivered to the Earth's surface. These dust-corrected data show a strong linear dependence between precipitation amount and primary meteoric 10Be flux. Concentrations of primary meteoric 10Be in mid- and low-latitude precipitation vary predictably by latitude between 0.63 · 10 4 and 2.05 · 10 4 atoms/cm 3 of precipitation, providing a first-order estimate of primary meteoric 10Be deposition for a given latitude and precipitation rate.

  20. Surface exposure dating using in situ cosmogenic 10Be

    International Nuclear Information System (INIS)

    Surface exposure dating using in situ cosmogenic 10Be in quartz is an important new tool in Quaternary research. We give an introduction into the method and describe, how 10Be surface exposure ages are measured and calculated at the Institute of Soil Science and Soil Geography at the University of Bayreuth, Germany. (author)

  1. Authigenic 10Be/9Be ratios and 10Be-fluxes (230Thxs-normalized) in central Baffin Bay sediments during the last glacial cycle: Paleoenvironmental implications

    Science.gov (United States)

    Simon, Quentin; Thouveny, Nicolas; Bourlès, Didier L.; Nuttin, Laurence; Hillaire-Marcel, Claude; St-Onge, Guillaume

    2016-05-01

    Authigenic 10Be/9Be ratios and 10Be-fluxes reconstructed using the 230Thxs normalization, proxies of the cosmogenic radionuclide 10Be production rate in the atmosphere, have been measured in a sedimentary core from Baffin Bay (North Atlantic) spanning the last 136 ka BP. The normalization applied on the exchangeable (authigenic) 10Be concentrations using the authigenic 9Be isotope and 230Thxs methods yield equivalent results strongly correlated with sedimentological parameters (grain-size and mineralogy). Lower authigenic beryllium (Be) concentrations and 10Be/9Be ratios are associated with coarse-grained carbonate-rich layers, while higher authigenic Be values are related to fine-grained felspar-rich sediments. This variability is due to: i) sediment composition control over beryllium-scavenging efficiency and, ii) glacial history that contributed to modify the 10Be concentration in Baffin Bay by input and boundary scavenging condition changes. Most paleo-denudation rates inferred from the 10Be/9Be ratio vary weakly around 220 ± 76 tons.km-2.yr-1 (0.09 ± 0.03 mm.yr-1) corresponding to relatively steady weathering fluxes over the last glacial cycle except for six brief intervals characterized by sharp increases of the denudation rate. These intervals are related to ice-surging episodes coeval with Heinrich events and the last deglaciation period. An average freshwater flux of 180.6 km3.yr-1 (0.006 Sv), consistent with recent models, has been calculated in order to sustain glacially-derived 10Be inputs into Baffin Bay. It is concluded that in such environments, the authigenic 10Be measured mainly depends on climatic effects related to the glacial dynamics, which masks the 10Be production variation modulated by geomagnetic field changes. Altogether, these results challenge the simple interpretation of 10Be-concentration variation as a proxy of Interglacial/Glacial (interstadial/stadial) cycles in Arctic and sub-Arctic regions. They rather suggest the effect of

  2. 10Be in last deglacial climate simulated by ECHAM5-HAM – Part 1: Climatological influences on 10Be deposition

    Directory of Open Access Journals (Sweden)

    U. Heikkilä

    2013-07-01

    Full Text Available Reconstruction of solar irradiance has only been possible for the Holocene so far. During the last deglaciation two solar proxies (10Be and 14C deviate strongly, both of them being influenced by climatic changes in a different way. This work addresses the climate influence on 10Be deposition by means of ECHAM5-HAM atmospheric aerosol-climate model simulations, forced by sea surface temperatures and sea ice extent created by the coupled climate system model CSIRO Mk3L. Three time slice simulations were performed during the last deglaciation: 10 000 BP ("10k", 11 000 BP ("11k" and 12 000 BP ("12k", each 30 yr long. The same 10Be production rate was used in each simulation to isolate the impact of climate on 10Be deposition. The changes are found to follow roughly the reduction in the greenhouse gas concentrations within the simulations. The 10k and 11k simulations produce a surface cooling which is symmetrically amplified in the 12k simulation. The precipitation rate is only slightly reduced at high latitudes, but there is a northward shift in the polar jet in the Northern Hemisphere and the stratospheric westerly winds are significantly weakened. These changes occur where the sea ice change is largest in the deglaciation simulations. This leads to a longer residence time of 10Be in the stratosphere by 30 (10k and 11k to 80 (12k days, heavily increasing the atmospheric concentrations. Furthermore the shift of westerlies in the troposphere leads to an increase of tropospheric 10Be concentrations, especially at high latitudes. The contribution of dry deposition generally increases, but decreases where sea ice changes are largest. In total, the 10Be deposition rate changes by no more than 20% at mid- to high latitudes, but by up to 50% in the tropics. We conclude that on "long" time scales (a year to a few years, climatic influences on 10Be deposition remain small even though atmospheric concentrations can vary significantly. Averaged over a longer

  3. 10Be distribution in soils from Merced River terraces, California

    Science.gov (United States)

    Pavich, M.J.; Brown, L.; Harden, J.; Klein, J.; Middleton, R.

    1986-01-01

    The distribution and residence time of cosmogenic 10Be in clay-rich soil horizons is fundamental to understanding and modelling the migration of 10Be on terrestrial sediments and in groundwater solutions. We have analyzed seven profiles of clay-rich soils developed from terrace sediments of the Merced River, California. The terraces and soils of increasing age are used to compare the 10Be inventory with a simple model of accumulation, decay and erosion. The data show that the distribution of 10Be varies with soil horizon clay content, that the residence time of 10Be in these horizons exceeds 105 years, and that to a rough approximation the inventory of 10Be in a thoroughly sampled soil profile fits the equation: N = (q - Em)(1 - e-????)/?? where q is delivery rate, E is erosion rate, m is the concentration of 10Be in the eroding surface layer, ?? is the decay constant, and t is the age of the depositional unit from which the soil has developed. The general applicability of this model is uncertain and warrants further testing in well-calibrated terrace sequences. ?? 1986.

  4. {sup 10}Be application to soil development on Marion Island, southern Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Haussmann, N. [Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602 (South Africa); Aldahan, A., E-mail: ala.aldahan@geo.uu.s [Department of Earth Sciences, Uppsala University (Sweden); Department of Geology, United Arab Emirates University, Al-Ain (United Arab Emirates); Boelhouwers, J. [Department of Earth Sciences, Uppsala University (Sweden); Possnert, G. [Tandem Laboratory, Department of Engineering Science, Uppsala University (Sweden)

    2010-04-15

    Marion Island, located in the southern Indian Ocean, constitutes the summit of an active shield volcano. It is a small terrestrial environment where glacially abraded bedrock became exposed c x 10 kyr ago. These conditions provide an interesting possibility for the assessment of {sup 10}Be accumulation rates and their application to soil erosion studies on the island. {sup 10}Be concentrations were measured in precipitation, soil profiles and an Azorella selago cushion plant. The data reveal a {sup 10}Be precipitation flux several times higher than model prediction. Estimation of the {sup 10}Be accumulation based on the soil inventory suggests a span between 2000 and 7000 yr. This time span is not in accordance with the accepted notion that the island was covered with ice about 10,000 yr ago and suggests either removal of {sup 10}Be from the soil profile, an overestimated Holocene {sup 10}Be-flux or a delayed soil development history. Our results provide new data on {sup 10}Be concentrations from the sub-Antarctic islands and contribute towards enlarging the southern-hemisphere {sup 10}Be database.

  5. Nonlinear optical measurements of glucose concentration

    Science.gov (United States)

    Yakovlev, V. V.

    2008-02-01

    Diabetes mellitus is a metabolic disease that currently affects about 7% of the US population, or roughly about 20 million people. Effectively controlling diabetes requires regular measurements of the blood sugar levels to ensure the one time insulin injection when the concentration of glucose reaches a critical level. In this report, nonlinear Raman microspectroscopy is demonstrated to be a promising new way of continuous and noninvasive way of measuring the glucose concentration.

  6. Measurement of HD concentration by gas chromatography

    International Nuclear Information System (INIS)

    Gas chromatography has been used for the on-line measurement of deuterium hydride (HD) which is used in a Tritium Removal Pilot Facility for the demonstration of the removal of the tritium mainly generated in CANDU reactors. Two methods with different carrier gases, neon and hydrogen, are tested and compared each other. It was showed that both the methods could be possible to measure the concentration of H2 and HD. However, the method with a column packed with alumina showed difficulty in the application due to quite long measurement time and reproducibility. The other method using hydrogen as a carrier gas could measure the concentration accurately within comparably short period

  7. Do Fungi Transport 10Be During Wood Degradation?

    Science.gov (United States)

    Conyers, G.; Granger, D. E.

    2010-12-01

    Meteoric cosmogenic 10Be is increasingly used to determine erosion and soil transport rates. To calculate these rates, it is assumed that 10Be is a conservative passive tracer of soil particles. However, there is experimental evidence that beryllium is mobilized in natural soils complexed with organic acids. For example, up to 50% of beryllium can be mobilized by humic acids in soils at pH 7 (Takahashi et al., 1999). Beryllium is also known to be taken up in plants such as tobacco and vegetables (World Health Organization, 1990) at ppm levels, primarily as organic acid chelates. It is not known to what extent biological beryllium transport in the environment affects the cosmogenic 10Be budget, or how it influences beryllium mobility. In this study, we address a problem recognized early in the development of meteoric 10Be methods. It has been observed that decayed organic matter in soils and sediments contains very high concentrations of 10Be of up to 109-1010 atoms/g (Lundberg, et al., 1983). On the other hand, living trees contain much lower concentrations of 106 atoms/g (Klein et al., 1982). The driving question for this study is how 10Be becomes bound to decayed organic matter. Direct fallout seems unlikely as the residence time of organic matter in soil is too short. One possibility is that 10Be is transported by fungi. Wood-degrading fungi are known to transport and bioaccumulate metals from large areas, facilitated by acids such as oxalic acid in the fungal hyphae. To test the hypothesis that fungi transport 10Be, we analyzed both intact and fungally degraded wood of oak, hickory, and hemlock. From these data, we reached two conclusions (observations?): 1) Oak has a 10Be concentration of about 2x106 at/g, similar to that observed by Klein et al. (1982). Hickory has a significantly higher concentration of about 3x107 atoms/g, confirming observations that hickory bioaccumulates beryllium. Using these data, the inventory of 10Be in a temperate forest is expected

  8. Production Rate of Cosmogenic 10Be in Magnetite

    Science.gov (United States)

    Granger, D. E.; Rogers, H. E.; Riebe, C. S.; Lifton, N. A.

    2013-12-01

    Cosmogenic 10Be is widely used for determining exposure ages, soil production rates, and catchment-wide erosion rates. To date, measurements have been almost exclusively in the mineral quartz (SiO2), which is resistant to weathering and easily cleaned of meteoric 10Be contamination. However, this limits the method to quartz-bearing rocks and requires specialized laboratories due to the need for large quantities of hydrofluoric acid (HF). Here, we present initial results for 10Be production in the mineral magnetite (Fe3O4). Magnetite offers several advantages over quartz; it is (1) present in mafic rocks, (2) easily collected in the field, (3) quickly and easily separated in the lab, and (4) digested without HF. In addition, 10Be can be measured in both detrital quartz and magnetite from the same catchment to yield information about the intensity of chemical weathering (Rogers et al., this conference). The 10Be production rate in magnetite relative to quartz was determined for a granitic boulder from Mt. Evans, Colorado, USA. The boulder was crushed and homogenized to facilitate production rate comparisons among various minerals. We separated magnetite using a combination of hand magnets, froth flotation, and a variety of selective chemical dissolutions in dithionite-citrate-bicarbonate solution, 5% nitric acid (HNO3) and 1% HF/HNO3. Six aliquots of magnetite were analyzed for 10Be and compared to quartz. Three aliquots that were not exposed to 1% HF/HNO3 were contaminated with meteoric 10Be, probably associated with residual mica. Three aliquots that were exposed to 1% HF/HNO3 treatments agreed to within 2% measurement uncertainty. Our preliminary results indicate that the relative production rate by mass of 10Be in magnetite and quartz is 0.462 × 0.012. Our results are similar to theoretically predicted values. Recently updated excitation functions for neutron and proton spallation reactions allow us to partition 10Be production in quartz and magnetite among

  9. Radon concentration measurements in bituminous coal mines

    International Nuclear Information System (INIS)

    Radon measurements were carried out in Kozlu, Karadon and Uezuelmez underground coal mines of Zonguldak bituminous coal basin in Turkey. Passive-time integrating method, which is the most widely used technique for the measurement of radon concentration in air, was applied by using nuclear etched track detectors (CR-39) in the study area. The radon concentration measurements were performed on a total of 42 points in those three mines. The annual exposure, the annual effective dose and lifetime fatality risk, which are the important parameters for the health of workers, were estimated based on chronic occupational exposure to the radon gas, which is calculated using UNCEAR-2000 and ICRP-65 models. The radon concentrations at several coal production faces are higher than the action level of 1000 Bq m-3. It is suggested that the ventilation rates should be rearranged to reduce the radon concentration. (authors)

  10. Radon concentration measurements in bituminous coal mines.

    Science.gov (United States)

    Fisne, Abdullah; Okten, Gündüz; Celebi, Nilgün

    2005-01-01

    Radon measurements were carried out in Kozlu, Karadon and Uzülmez underground coal mines of Zonguldak bituminous coal basin in Turkey. Passive-time integrating method, which is the most widely used technique for the measurement of radon concentration in air, was applied by using nuclear etched track detectors (CR-39) in the study area. The radon concentration measurements were performed on a total of 42 points in those three mines. The annual exposure, the annual effective dose and lifetime fatality risk, which are the important parameters for the health of workers, were estimated based on chronic occupational exposure to the radon gas, which is calculated using UNCEAR-2000 and ICRP-65 models. The radon concentrations at several coal production faces are higher than the action level of 1000 Bq m(-3). It is suggested that the ventilation rates should be rearranged to reduce the radon concentration.

  11. Measurements of natural 41Ca concentrations

    International Nuclear Information System (INIS)

    Atomic mass spectroscopic examinations on 41Ca were carried out in the UNILAC accelerator. A sensitivity of about 10-15 was achieved. This would allow the measurement of present natural 41Ca concentrations as soon as the problem of the transmission determination is solved. In this respect suggestions were worked out and their feasibility discussed. The detection of 41Ca-ions is especially free of background when high UNILAC-energies are applied. An estimation showed a background level corresponding with a 41Ca concentration of less then 10-17 referred to 40Ca. Besides an independent concept for the electromagnetic concentration of 41Ca with variable concentration factors was developed. After being concentrated up to 50 respectively 25 times the initial concentration in the GSI mass separator, the 41Ca concentration of three recent deer bones found in the Odenwald was measured by atomic mass spectroscopy in the 14UD-Pelletron Tandem in Rehovot (Israel). The measured 41Ca concentrations ranged between 10-14 to 10-13 with consideration of the concentration factor. A theoretical study of the 41Ca production in the earth's surface based on cosmic radiation illustrates the influence of trace elements on the neutron flux and thus on the 41Ca production. This influence might be a possible explanation for the observed amplitude of variation of the 41Ca concentration in recent bones which are of decisive importance for the feasibility of 41Ca-related dating. In this work a method is suggested that does not depend on the amplitude of variation mentioned above and which would allow the determination of the erosion rate of rocks by its 41Ca concentrations. (orig./HP)

  12. Cosmogenic 10Be, 21Ne and 36Cl in sanidine and quartz from Chilean ignimbrites

    Science.gov (United States)

    Ivy-Ochs, S.; Kober, F.; Alfimov, V.; Kubik, P. W.; Synal, H.-A.

    2007-06-01

    Our initial results indicate that three cosmogenic nuclides: 10Be, 21Ne and 36Cl can be analyzed in sanidine. To uncover complex exposure histories or marked changes in denudation rates over time several nuclides with different half-lives (or stable) must be measured. Because of its shorter half-life, the combination of 36Cl and a long-lived nuclide 10Be or stable nuclide 21Ne will provide more information than the pairs 10Be and 26Al or 10Be and 21Ne (in quartz). Sanidine (alkali feldspar) is a common high temperature mineral and often dominates the phenocryst assemblage in silicic to intermediate volcanic rocks. Bedrock surfaces studied come from the Oxaya (erupted 19-23 Ma) and Lauca (erupted 2.7 Ma) ignimbrites of northern Chile. Quartz and sanidine phenocrysts coexist; therefore, we can check the viability of sanidine through direct comparison with nuclide concentrations in quartz. In addition, as quartz has no target for 36Cl in significant abundance we show that the unique power of sanidine is that 36Cl can be measured. We have obtained very good agreement between 10Be and 21Ne concentrations measured in sanidine and coexisting quartz. No meteoric 10Be was apparent in these sanidines. Concentrations of all three nuclides in mineral separates from rock sample CN309 from the Lauca ignimbrite in the Western Cordillera agree well and correspond to minimum exposure ages of 30-50 ka. 10Be and 21Ne measured in both sanidine and quartz from three rock samples from the Oxaya ignimbrite (CN19, CN23, CN104a) in the Western Escarpment record low average landscape modification rates (<0.70 m/Ma) over the last several million years. In contrast, 36Cl data from sanidine in CN23 seem to indicate shorter minimum exposures and more rapid maximum erosion rates.

  13. Long-term cosmogenic 10Be catchment-wide erosion rates in the Kruger National Park

    Science.gov (United States)

    Glotzbach, Christoph; Paape, Alexander; Reinwarth, Bastian; Baade, Jussi; Miller, Jordan; Rowntree, Kate

    2015-04-01

    In this study we estimated long-term catchment-wide erosion rates in the central and southern Kruger National Park with cosmogenic 10Be analyses. Samples were collected in small catchments (2-100 km2) upstream of dams, which were used to determine short-term sediment yield rates. 10Be-derived erosion rates vary from 4-15 mm/kyr. Although there are significant site-specific differences in geomorphic parameters and precipitation we could not identify a single parameter controlling long-term erosion. Geomorphic fieldwork reveals that an unknown fraction of sampled sand-sized channel sediments derived from partly extensive and up to a few-meters deep gully erosion, which may lead to an overestimation of 10Be-derived erosion rates. Cosmogenic nuclide production is rapidly decreasing with depth and consequently the measured 10Be concentration of stream sediments is a mixture of (i) sand with high 10Be concentration from colluvial creep or sheet flow from hillslopes and (ii) sand with low 10Be concentration from gully erosion. To correct erosion rates, we quantify sediments derived from gullies using a combination of mapping gullies using remote sensing data and field work and geochemical characterisation of intact hillslopes and gully side walls.

  14. Reconstruction of solar activity for the last millennium using $^{10}$Be data

    CERN Document Server

    Usoskin, I G; Solanki, S K; Schüssler, M; Alanko, K

    2003-01-01

    In a recent paper (Usoskin et al., 2002a), we have reconstructed the concentration of the cosmogenic $^{10}$Be isotope in ice cores from the measured sunspot numbers by using physical models for $^{10}$Be production in the Earth's atmosphere, cosmic ray transport in the heliosphere, and evolution of the Sun's open magnetic flux. Here we take the opposite route: starting from the $^{10}$Be concentration measured in ice cores from Antarctica and Greenland, we invert the models in order to reconstruct the 11-year averaged sunspot numbers since 850 AD. The inversion method is validated by comparing the reconstructed sunspot numbers with the directly observed sunspot record since 1610. The reconstructed sunspot record exhibits a prominent period of about 600 years, in agreement with earlier observations based on cosmogenic isotopes. Also, there is evidence for the century scale Gleissberg cycle and a number of shorter quasi-periodicities whose periods seem to fluctuate in the millennium time scale. This invalidate...

  15. Applications of 10Be, 14C, and 32Si to geological questions

    International Nuclear Information System (INIS)

    Radiometric dating is regarded as fundamental to any modern timescale calibration. In terms of available isotopic dating and tracing tools in environmental sciences, the cosmogenic isotopes stand out because of their application in the range from the very recent up to the middle Miocene. At IGNS, three long-lived cosmogenic isotopes can be measured. 14C (half life=5730 years) and 10Be (half-life = 1.5 Ma) are measured by Accelerator Mass Spectrometry (AMS) of 10Be/9Be and 14C/13C ratios, while 32Si (half-life > 140 years) is measured by radioactive decay counting of its daughter-product 32P. The main advantage of AMS over decay counting is the relatively small amount of sample material needed. AMS has made it feasible to measure ultra-low concentrations of long-lived isotopes such as 10Be. (author)

  16. Measurement of solid concentration using Terahertz technique

    Institute of Scientific and Technical Information of China (English)

    Liu Yi'an; Huang Zhiyao; Ji Haifeng; Wang Baoliang; Li Haiqing

    2007-01-01

    Terahertz(THz)technique is a new measurement technique that has emerged in recent years. For the measurement of solid concentration, a radiation attenuation method and a phase delay method were developed, which are based on the Beer-Lambert law. Experimental work was carried out on a terahertz time-domain spectroscopy system (THz-TDS). Results obtained verify that the terahertz technique may provide a possible new solution to the problem of solid concentration measurement and the two proposed measurement methods are effective. Experiment results also indicate that the phase delay method is more accurate than the radiation attenuation method and the size of the particles affects the measurement results of both methods.

  17. Using meteoric 10Be to constrain the age and structure of the frontal wedge at the Japan Trench

    Science.gov (United States)

    Regalla, C.; Bierman, P. R.; Rood, D.; Motoyama, I.; Fisher, D. M.

    2013-12-01

    We present new meteoric 10Be concentration data from marine sediments recovered during International Ocean Drilling Program (IODP) Exp. 343 that help constrain the age and internal structure of the frontal prism at the Japan trench in the vicinity of the 2011 Tohoku-oki M9 earthquake rupture. Exp. 343 recovered sediments from an ~200 m interval of the frontal wedge at site C0019. Core and log observations identify the plate boundary décollement at ~820 mbsf, which separates a deformed sedimentary wedge from relatively undeformed underthrust sediments. However, reconstructions of the structural evolution of the wedge are difficult because of similarity in lithology between sediments from the incoming and overriding plate, and the chaotic character of seismic reflectors in the frontal wedge. We utilize the radiogenic decay of 10Be (t1/2 =1.36 Ma) in marine sediments to constrain variations in sediment age with depth in core C0019. Meteoric 10Be was isolated from marine sediments at the University of Vermont using total fusion and 10Be/9Be ratios were measured at the Scottish Universities Environmental Research Centre. Concentrations of meteoric 10Be in core C0019 range from 1.7x107 to 2.1x109 atm/g and are consistent with 10Be concentrations at nearby DSDP sites 436 and 434. We calculate 10Be sediment ages for analyzed samples assuming a range of initial 10Be concentrations from 1.6 to 2.1x109 atm/g. These concentrations are constrained by a 10Be sample co-located with a radiolarian micropaleontology sample at 780 mbsf that yields a Quaternary age, and from previously reported 10Be concentrations for Quaternary sediments in nearby DSDP cores. 10Be and radiolarian micropaleontology samples from similar depths yield consistent ages for late Miocene to Quaternary sediments (R2 = 0.89). Calculated 10Be ages range from 0-10 Ma, with ~50% of analyzed samples yielding ages 10Be concentrations (109 to 107 atm/g) occurs across the plate boundary décollement between cores 16

  18. Tracing hillslope sediment production and transport with in situ and meteoric 10Be

    Science.gov (United States)

    Jungers, Matthew C.; Bierman, Paul R.; Matmon, Ari; Nichols, Kyle; Larsen, Jennifer; Finkel, Robert

    2009-12-01

    We use in situ-produced and meteoric 10Be, analyzed in soils from 28 pits on four hillcrest-parallel transects along a 14° hillslope in the Great Smoky Mountains, North Carolina, as tracers of soil production and transport. We rely upon amalgamation both to investigate and smooth spatial variability in 10Be concentrations. Lidar indicates that the hillslope is topographically complex and that soil is moved downslope diffusively until it encounters the ephemeral channel network and is rapidly exported. In situ-produced 10Be, measured in depth profiles, indicates that over millennial timescales, soils are mixed above the soil-saprolite boundary. In contrast, meteoric 10Be concentrations increase with depth and are correlated to concurrent increases of dithionite-extractable Al and pH, observations explained by similar Al and Be mobility in the soil. The concentrations of both meteoric and in situ-produced 10Be increase downslope proportional to the maximum soil particle path length. The data suggest virtual downslope soil velocities of 1.1-1.7 cm yr-1 in a well-mixed active transport layer ˜60 cm thick. The thickness of this transport layer is constant downslope and depends on the rooting depth and consequent root wad thickness of downed trees on the slope, both of which reflect depth to the soil/saprolite boundary. Both meteoric and in situ-produced 10Be suggest that soil production is balanced by surface denudation at rates between 10 and 13 m Myr-1. Soil residence times on the slope range from 21 to 33 kyr based on the meteoric 10Be inventories. Major element geochemical analysis suggests little if any elemental loss during soil transport downslope.

  19. Measurement of Odour Concentration from Livestock Farm

    OpenAIRE

    Lukman Ismail; Zaini Sakawi; Mohamad Khalil Saipi

    2014-01-01

    Odourpollution originated from livestock farms is a form of harmful air pollution.Odour pollution causes health issues to the surrounding local communities. Yet, odour pollution issues have not been given deserving attention by the relevant authorities and the Malaysian public. To raise the awareness, this study highlights a case of odour pollution generated from cattle and buffalo farms in Bandar Baru Bangi, Selangor.Odour measurement was taken using an instrument called Concentration Meter ...

  20. Measuring protein concentration with entangled photons

    CERN Document Server

    Crespi, Andrea; Matthews, Jonathan C F; Politi, Alberto; Neal, Chris R; Ramponi, Roberta; Osellame, Roberto; O'Brien, Jeremy L

    2011-01-01

    Optical interferometry is amongst the most sensitive techniques for precision measurement. By increasing the light intensity a more precise measurement can usually be made. However, in some applications the sample is light sensitive. By using entangled states of light the same precision can be achieved with less exposure of the sample. This concept has been demonstrated in measurements of fixed, known optical components. Here we use two-photon entangled states to measure the concentration of the blood protein bovine serum albumin (BSA) in an aqueous buffer solution. We use an opto-fluidic device that couples a waveguide interferometer with a microfluidic channel. These results point the way to practical applications of quantum metrology to light sensitive samples.

  1. Measurement of Odour Concentration from Livestock Farm

    Directory of Open Access Journals (Sweden)

    Lukman Ismail

    2014-08-01

    Full Text Available Odourpollution originated from livestock farms is a form of harmful air pollution.Odour pollution causes health issues to the surrounding local communities. Yet, odour pollution issues have not been given deserving attention by the relevant authorities and the Malaysian public. To raise the awareness, this study highlights a case of odour pollution generated from cattle and buffalo farms in Bandar Baru Bangi, Selangor.Odour measurement was taken using an instrument called Concentration Meter Xp-369 Series III. Measurement was taken during various weather and times, usually on normal days and after rains. Observationswere conducted at different times inthe mornings, evenings and nights. Ten stations were selected as locations for measuring the odour concentration within two kilometres from the livestock farms. The results indicated that after rain odour concentration gave higher readings compared to those of normal days.This phenomenon was caused by the meteorological factors such as temperature, comparative humidity; and variation in wind speed and directions on normal days and after rains.Enhancement of livestock management is suggested for mitigating the odour pollution.

  2. Unexpected Delivery of Meteoric 10Be to Critical Zone Soils, Front Range, Colorado

    Science.gov (United States)

    Ouimet, W. B.; Dethier, D. P.; Bierman, P. R.; Wyshnytsky, C.; Rood, D. H.

    2011-12-01

    Using meteoric 10Be in geomorphic studies requires knowing its long-term delivery rate to the earth surface. Delivery rates vary by latitude due to the influence of geomagnetic field intensity and solar activity and locally due to differences in precipitation and rates of dustfall accumulation, which are responsible for depositing primary and recycled meteoric 10Be to geomorphic surfaces, respectively. Because influences on delivery rate vary in space and time, recent studies emphasize the use of inventory sites where the total concentration of meteoric 10Be is measured on stable landforms of known age to determine site-specific, long-term delivery rates. To date, measured long-term delivery rates typically have fallen within the range of expected rates for the site's latitude and modern annual rate of precipitation, including minor contributions of dust to the total inventory of meteoric 10Be. Here, we present the results of a meteoric 10Be inventory measured on a Pinedale (~15 ka) moraine within the Boulder Creek Critical Zone Observatory, Front Range, Colorado. We report a long-term delivery rate of meteoric 10Be for this site of 4.2 to 4.6 × 106 atoms/cm2/yr, significantly higher than the expected delivery rate (1 to 1.3 × 106 atoms/cm2/yr) for it's latitude (40 degrees) and annual precipitation rate (85-95 cm/yr). A detailed analysis of soils in the Front Range (of various age) indicate that long-term dust accumulation rates are less than ~0.1 grams/cm2/kyr and therefore do not significantly influence the total amount of meteoric 10Be delivered to geomorphic surfaces. When applied to measured concentrations of meteoric 10Be in soils within the Gordon Gulch CZO catchment, our high, inventory-based delivery rate suggests that hillslopes are 10 to 40 ka younger (all post-LGM) than suggested by published precipitation based delivery rates. Furthermore, this result, combined with a long-term delivery rate calibrated nearby on the High Plains (1200 m lower in

  3. Measuring concentrations of elements using neutron radiation

    International Nuclear Information System (INIS)

    An apparatus for measuring the concentrations of elements in a material by the capture gamma method is claimed. The apparatus comprises either an isotope source or a neutron generator as the neutron source, a semi-conductor detector as the gamma-radiation detector, and a moderator which is, at least in part, heavy water. The detector is adapted to be placed adjacent to or inside a specimen in the flux of slow neutrons so that sufficient moderator is disposed between the source and the sample-detector combination that only relatively few fast neutrons will reach the detector

  4. Intercomparison of soil radon concentration measurements

    International Nuclear Information System (INIS)

    In October last year the first intercomparison of measurements of the soil radon concentrations between various laboratories in Slovakia was realised. The organisation of this intercomparison was conducted by the Slovak Legal Metrology in Banska Bystrica together with the Slovak National Accreditation Service in Bratislava (SNAS). The scientific guarantee of the exercise was the State metrological Centre for radon quantities, which is working at the Research base of Slovak Medical University in Bratislava. The main objective of the intercomparison was to verify the correctness of the methods for the soil radon measurements of the authorised laboratories for radon volume activities in soil air. The intercomparison (signed as SLM ILC 3/03) was performed as a 'circular' metrology comparison, in accordance with a methodical directive MSA 0117-98, published by SNAS. Six laboratories were participating on the intercomparison and there have been two stages of the work one in the radon chamber of the State metrological Centre and the second in the real field conditions. The results of the exercise have confirmed the capability of the participating laboratories for licensing of their measurements as authorised laboratories. The achieved accuracy, as well as the level of technical skill of the participants are a significant step for quality assurance improvement and for optimisation of the soil radon measurements. (authors)

  5. Cosmogenic 10Be and Paleoaccumulation Rates at WAIS Divide from 12-19 kyr BP

    Science.gov (United States)

    Welten, K. C.; Woodruff, T. E.; Caffee, M. W.

    2012-12-01

    Concentrations of cosmogenic 10Be in polar ice samples are affected by variations in solar activity, geomagnetic field strength, atmospheric mixing and annual snow accumulation rates. We are presently engaged in a study to obtain a continuous 10Be record in a deep ice core (WDC06A) that was drilled at the West Antarctic Ice Sheet (WAIS) Divide, a site with an average snow accumulation rate of ~20 cm weq/yr, similar to the GISP2 site in Greenland. We previously reported 10Be in annual layers in the top 114 m of WDC06A (Woodruff et al. 2011) and 10Be and 36Cl at decadal resolution in the top 560 m (Welten et al. 2009), and are now measuring 10Be in samples from a depth of 1800-2500 m, corresponding to preliminary ages of 10-20 kyr BP. We separated 10Be from ice samples of 300-600 g, following procedures described previously (Finkel and Nishiizumi 1997) and measured 10Be concentrations by accelerator mass spectrometry at PRIME lab. So far, we measured 10Be in 50 ice samples with ages between 12.3-13.9 kyr BP, at a resolution of ~30 yr/sample, and 50 samples from 15.6-19.0 kyr BP at an average resolution of ~70 yr/sample. The 10Be depth profile shows a relative constant value of (28 ± 3) x 10^3 atoms/g for samples younger than 18 kyr BP and a value of (41 ± 3) x 10^3 atoms/g for ice from 18.2-19.0 kyr BP. These values are 50-120% higher than the average concentration of 18.4 x 10^3 atoms/g for WAIS Divide ice samples from the last 420 year of snow accumulation. Although the higher 10Be concentrations in ice from the last glacial stage can be partly attributed to a 10-20% lower geomagnetic field strength (and thus a higher global 10Be production rate), they are mainly due to lower snow accumulation rates during the last glacial stage. After applying corrections for changes in geomagnetic field strength based on the SINT-800 record, we derive average snow accumulation rates of 13-15 cm weq/yr for the age interval of 12-18 kyr BP and of ~10 cm weq/yr for 18.2-19.0 kyr

  6. Linking ice sheet and lake sediment archives of {sup 10}Be, 1468-1980 CE

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, Ann-Marie, E-mail: berggrenannmarie@gmail.com [Dept. of Earth Sciences, Uppsala University, Villav 16, SE-752 36 Uppsala (Sweden); Aldahan, Ala [Dept. of Earth Sciences, Uppsala University, Villav 16, SE-752 36 Uppsala (Sweden); Dept. of Geology, United Arab Emirates University, P.O. Box 17551, Al Ain (United Arab Emirates); Possnert, Goeran [Tandem Laboratory, Uppsala University, P.O. Box 529, SE-751 20 Uppsala (Sweden); Haltia-Hovi, Eeva [Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 5.2 Climate Dynamics and Landscape Evolution, Telegrafenberg, D-14473 Potsdam (Germany); Dept. of Geology, University of Turku, FI-20014-Turku (Finland); Saarinen, Timo [Dept. of Geology, University of Turku, FI-20014-Turku (Finland)

    2013-01-15

    As part of understanding and reconstructing our climate history it is important to investigate the link between climate and solar activity. Ice cores and ocean sediments have provided information on a range of timescales on atmospheric {sup 10}Be production, which is a proxy for past solar activity due to its cosmogenic nature of production. We here present results from the first, to our knowledge, multi-centennial and annual resolution study of {sup 10}Be in varved lake sediments. Varves were sampled over an interval covering the period 1468-2006 CE in sediment cored from Lake Lehmilampi in eastern Finland. The measured concentrations were converted into annual {sup 10}Be deposition rates by using the weights of dried samples as an estimation of sedimentation rates and scaling the result from sampling to catchment area size. We compare the lake catchment {sup 10}Be deposition rates to those derived from the Greenlandic ice cores NGRIP and Dye-3 along with past solar activity. Sediment {sup 10}Be concentrations range 2.1-17.6 Multiplication-Sign 10{sup 8} atoms g{sup -1}. The high end of this range is represented by a limited number of samples, and the average is near the lower end at 4.1 Multiplication-Sign 10{sup 8} atoms g{sup -1}. The deposition rates range 0.5-3.9 Multiplication-Sign 10{sup 6} atoms cm{sup -2} year{sup -1}, with an average of 1.8 Multiplication-Sign 10{sup 6} atoms cm{sup -2} year{sup -1} (0.057 atoms cm{sup -2} s{sup -1}). We note higher {sup 10}Be deposition during the Spoerer ({approx}1415-1535 CE) and Maunder ({approx}1645-1715 CE) solar minima, and also at the onset of the Dalton ({approx}1790-1830 CE) minimum. Equally high {sup 10}Be values in the 1840s and lower deposition during the Dalton minimum are not consistent with contemporaneous solar activity. Although this may in part be a result of incomplete measurements in the 19th century, it also shows the complexity of deposition and the intricacy of reconstructing past solar activity

  7. 10Be-derived Himalayan denudation rates and sediment budgets in the Ganga basin

    Science.gov (United States)

    Lupker, Maarten; Blard, Pierre-Henri; Lavé, Jérôme; France-Lanord, Christian; Leanni, Laetitia; Puchol, Nicolas; Charreau, Julien; Bourlès, Didier

    2012-06-01

    The Himalayas represent the archetype of mountain building due to active continental collision and are considered in many studies as the locus of intense interactions between climate, denudation and tectonics. Estimates of modern denudation rates across the entire range remain, however, relatively sparse. In this study, in situ-produced cosmogenic 10Be concentrations were measured in detritic quartz in order to determine basin-scale denudation rates for the central part of the Himalayan range. River sand was sampled over several years in the main trans-Himalayan rivers, from the Himalayan front to the Ganga outlet in Bangladesh. The calculated 10Be denudation rates of the trans-Himalayan river basins range from 0.5 to 2.4 mm yr-1 (average 1.3 mm yr-1) and vary by up to a factor of 3 between sampling years. These denudation rates strongly contrast with the 0.007 mm yr-1 denudation rate of southern tributary basins draining the Indian craton. This work also shows that in the Ganga basin, no systematic evolution of average 10Be concentrations is observed during floodplain transfer, implying that distal samples can be used to estimate the integrated denudation rate of the whole central Himalayan range. Samples from the Ganga in Bangladesh display remarkably low variability in 10Be concentration, implying an average Himalayan denudation rate of 1.0-1.1 mm yr-1. However, within the floodplain, several samples suggest a recent perturbation of sediment transport dynamics with a recent increase in the relative sediment contribution from southern tributaries. The Himalayan sediment flux, deduced from the 10Be denudation rate of the range, is 610±230 Mt yr-1. This flux is consistent, within uncertainty, with sediment fluxes derived from sediment gauging. The similarity of the two flux estimates suggests that Himalayan erosion fluxes have remained stable over the last centuries, even if the large uncertainties associated with each method hamper more precise assessments.

  8. Analytical Methods for Uranium Concentration Measurements

    International Nuclear Information System (INIS)

    A survey of analytical procedures for the determination of uranium, as performed for NMM in the United States of America, is presented. Methods are outlined for the measurement of the element in a variety of materials, i.e. ores, concentrates, uranium metal, alloys, ceramics, compounds of uranium, scrap processing solutions, residues, and waste stream products. It is not intended as a complete résumé dealing with the subject, but it does offer measurement methods believed to give precise and accurate results of a high order. Because of the monetary value of the materials, and the transfer activities from one installation to another, involving payments or credits, burn-up charges, use charges, etc., it is essential that such methods are used. Methods of analysis to a large extent are dictated by the types of material to be analysed. The use of gravimetric methods are reviewed pertaining to product materials, which are generally defined as uranium metal, or compounds of the metal, such as oxides, halides, or nitrates. A pyro-hydrolysis technique is included under this heading. Non-volatile metallic impurities are determined spectroscopically, and the gravimetric results are corrected accordingly. Volumetric procedures, the ''workhorse'' methods for determining uranium, are thoroughly explored. The technique is applicable to all types of material, providing the uranium available for measurement is present in milligram quantities. Due to the valence states of uranium, reduction-oxidation schemes are particularly attractive. Dissolution problems, separation of interfering elements, reduction steps, and oxidation titrations of reduced uranium are discussed. The application of certain spectrophotometric and fluorometric procedures for analysing low-grade materials are included. Various separation steps incorporated in the procedures before the determination of uranium are reviewed. Along these lines the utilization of differential colorimetry is examined for determining

  9. Dynamics of erosion in a compressional mountain range revealed by 10Be paleoerosion rates

    Science.gov (United States)

    Val, P.; Hoke, G. D.; Fosdick, J. C.; Wittmann, H.

    2015-12-01

    The temporal evolution of erosion over million-year timescales is key to understanding the evolution of mountain ranges and adjacent fold-and-thrust belts. While models of orogenic wedge evolution predict an instantaneous response of erosion to pulses of rock uplift, stream-power based landscape evolution models predict catchment-wide erosion maxima that lag behind a rock uplift pulse. Here, we explore the relationships between rock uplift, erosion, and sediment deposition in the Argentine Precordillera fold-and-thrust belt at 30°S where extensive previous work documents deformation, climate and sediment accumulation histories. Sandstone samples spanning 8.8 to 1.8 Ma were collected from the previously dated wedge-top (Iglesia) and foredeep basins (Bermejo) for quartz purification and 10Be extraction. 10Be concentrations due to burial and exhumation were estimated and subtracted from the measured concentrations and yielded the inherited 10Be concentrations, which were then corrected for sample magnetostratigraphic age. The inherited concentrations were then used to calculate paleoerosion rates. We modeled various pre-burial and post-burial exposure scenarios in order to assess potential sources of uncertainty in the recovered paleoerosion rates. The modeling results reveal that pre-burial and post-burial exposure periods only marginally affect our results. By combining the 10Be-derived paleoerosion rates and geomorphic observations with detrital zircon provenance, we document the isolation of the wedge-top basin, which was later reconnected by an upstream migrating pulse of erosion in a process that was directly controlled by thrust activity and base level. The data further indicate that the attainment of maximum upland erosion rates lags maximum rates of deformation and subsidence over million-year timescales. The magnitudes and causes of the erosional delays shed new light on the catchment erosional response to tectonic deformation and rock uplift in orogenic

  10. Field methods for measuring concentrated flow erosion

    Science.gov (United States)

    Castillo, C.; Pérez, R.; James, M. R.; Quinton, J. N.; Taguas, E. V.; Gómez, J. A.

    2012-04-01

    techniques (3D) for measuring erosion from concentrated flow (pole, laser profilemeter, photo-reconstruction and terrestrial LiDAR) The comparison between two- and three-dimensional methods has showed the superiority of the 3D techniques for obtaining accurate cross sectional data. The results from commonly-used 2D methods can be subject to systematic errors in areal cross section that exceed magnitudes of 10 % on average. In particular, the pole simplified method has showed a clear tendency to understimate areas. Laser profilemeter results show that further research on calibrating optical devices for a variety of soil conditions must be carried out to improve its performance. For volume estimations, photo-reconstruction results provided an excellent approximation to terrestrial laser data and demonstrate that this new remote sensing technique has a promising application field in soil erosion studies. 2D approaches involved important errors even over short measurement distances. However, as well as accuracy, the cost and time requirements of a technique must be considered.

  11. Studies of Be migration in the JET tokamak using AMS with 10Be marker

    Science.gov (United States)

    Bykov, I.; Bergsåker, H.; Possnert, G.; Zhou, Y.; Heinola, K.; Pettersson, J.; Conroy, S.; Likonen, J.; Petersson, P.; Widdowson, A.

    2016-03-01

    The JET tokamak is operated with beryllium limiter tiles in the main chamber and tungsten coated carbon fiber composite tiles and solid W tiles in the divertor. One important issue is how wall materials are migrating during plasma operation. To study beryllium redistribution in the main chamber and in the divertor, a 10Be enriched limiter tile was installed prior to plasma operations in 2011-2012. Methods to take surface samples have been developed, an abrasive method for bulk Be tiles in the main chamber, which permits reuse of the tiles, and leaching with hot HCl to remove all Be deposited at W coated surfaces in the divertor. Quantitative analysis of the total amount of Be in cm2 sized samples was made with inductively coupled plasma atomic emission spectroscopy (ICP-AES). The 10Be/9Be ratio in the samples was measured with accelerator mass spectrometry (AMS). The experimental setup and methods are described in detail, including sample preparation, measures to eliminate contributions in AMS from the 10B isobar, possible activation due to plasma generated neutrons and effects of diffusive isotope mixing. For the first time marker concentrations are measured in the divertor deposits. They are in the range 0.4-1.2% of the source concentration, with moderate poloidal variation.

  12. Chemical species concentration measurement via wireless sensors

    OpenAIRE

    Hayes, Jer; Beirne, Stephen; Kiernan, Breda M.; Slater, Conor; Lau, King-Tong; Diamond, Dermot

    2008-01-01

    This paper describes studies carried out to investigate the viability of using wireless cameras as a tool in monitoring changes in air quality. A camera is used to monitor the change in colour of a chemically responsive polymer within view of the camera as it is exposed to varying chemical species concentration levels. The camera captures this image and the colour change is analyzed by averaging the RGB values present. This novel chemical sensing approach is compared with an established chemi...

  13. Reprocessing of {sup 10}B-contaminated {sup 10}Be AMS targets

    Energy Technology Data Exchange (ETDEWEB)

    Simon, K.J., E-mail: ksz@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee NSW 2232 (Australia); Pedro, J.B. [Institute of Marine and Antarctic Studies, Private Bag 129, Hobart TAS 7001 (Australia); Antarctic Climate and Ecosystems Cooperative Research Centre, Private Bag 80, Hobart TAS 7001 (Australia); Smith, A.M.; Child, D.P.; Fink, D. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee NSW 2232 (Australia)

    2013-01-15

    {sup 10}Be accelerator mass spectrometry (AMS) is an increasingly important tool in studies ranging from exposure age dating and palaeo-geomagnetism to the impact of solar variability on the Earth's climate. High levels of boron in BeO AMS targets can adversely impact the quality of {sup 10}Be measurements through interference from the isobar {sup 10}B. Numerous methods in chemical sample preparation and AMS measurement have been employed in order to reduce the impact of excessive boron rates. We present details of a method developed to chemically reprocess a set of forty boron-contaminated BeO targets derived from modern Antarctic ice. Previously, the excessive boron levels in these samples, as measured in an argon-filled absorber cell preceding the ionisation detector, had precluded routine AMS measurement. The procedure involved removing the BeO + Nb mixture from the target holders and dissolving the BeO in hot concentrated H{sub 2}SO{sub 4}. The solution was then heated with HF to remove the boron as volatile BF{sub 3} before re-precipitating as Be(OH){sub 2} and calcining to BeO. This was again mixed with niobium and pressed into fresh target holders. Following reprocessing, the samples gave boron rates reduced by 10-100 Multiplication-Sign , which were sufficiently low and similar to previous successful batches of ice core, snow and associated blank samples, thus allowing a successful {sup 10}Be measurement in the absence of any boron correction. Overall recovery of the BeO for this process averaged 40%. Extensive testing of relevant processing equipment and reagents failed to determine the source of the boron. As a precautionary measure, a similar H{sub 2}SO{sub 4} + HF step has been subsequently added to the standard ice processing method.

  14. Using 10Be records to identify possible 14C calibration uncertainties during the Holocene

    Science.gov (United States)

    Raimund, Muscheler

    2010-05-01

    The Intcal04 and Intcal09 radiocarbon calibration records are based on multiple tree-ring 14C data sets for Holocene period (Reimer et al. 2004, Reimer et al. 2009). While the dendrochronolgical dating of the trees is supposedly free of errors there are differences between various 14C data sets that underlie the 14C calibration curve. Due to lack of knowledge about the reasons for the differences the Intcal04/09 calibration curves provide a smoothed average of the underlying 14C records. Therefore, problems in one or several of the underlying 14C records would translate directly into errors in the 14C age calibration. Additional knowledge about expected variations in the 14C production rate could help to improve the calibration record since it would allow us to assess how well the different 14C records represent the atmospheric 14C concentration. I propose that 10Be records could be used as additional criteria to chose which of the published 14C records should be preferred (or given stronger weight) for the construction of the calibration curve. Alternatively, 10Be records could point to periods where 14C data should be re-measured in order to improve the calibration curve. I will show for some case studies that the 10Be records from the Greenland ice cores (Muscheler et al. 2004, Vonmoos et al. 2006) indeed provide useful information to scrutinise the Intcal04/09 calibration curve, which could help to improve the 14C calibration curve during the Holocene. Especially shorter-term changes are strongly dampened in the Intcal04/09 calibration record. However, 10Be and some 14C records do exhibit more variability as compared to the calibration record. Therefore, the combined 10Be/14C approach could add confidence that these should be reflected in the 14C calibration record. References: Muscheler, R., Beer, J. et al., 2004. Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records. Earth and Planetary Science Letters

  15. 10Be-derived denudation rates from the Burdekin catchment: The largest contributor of sediment to the Great Barrier Reef

    Science.gov (United States)

    Croke, Jacky; Bartley, Rebecca; Chappell, John; Austin, Jenet M.; Fifield, Keith; Tims, Stephen G.; Thompson, Chris J.; Furuichi, Takahisa

    2015-07-01

    Terrestrial cosmogenic nuclides (TCNs) such as Beryllium-10 (10Be) are now routinely used to reconstruct erosional rates over tens of thousands of years at increasingly large basin scales (> 100,000 km2). In Australia, however, the approach and its assumptions have not been systematically tested within a single, large drainage basin. This study measures 10Be concentrations in river sediments from the Burdekin catchment, one of Australia's largest coastal catchments, to determine long-term (> 10,000 years), time-integrated rates of sediment generation and denudation. A nested-sampling design was used to test for effects of increasing catchment scale on nuclide concentrations with upstream catchment areas ranging from 4 to 130,000 km2. Beryllium-10 concentrations in sediment samples collected from the upstream headwater tributaries and mid-stream locations range from 1.8 to 2.89 × 105 atoms g- 1 and data confirm that nuclide concentrations are well and rapidly mixed downstream. Sediment from the same tributaries consistently yielded 10Be concentrations in the range of their upstream samples. Overall, no decrease in 10Be concentrations can be observed at the range of catchment scales measured here. The mean denudation rate for all river sediment samples throughout the Fanning subcatchment (1100 km2) is 18.47 m Ma- 1, which compares with the estimate at the end of the Burdekin catchment (130,000 km2) of 16.22 m Ma- 1. Nuclide concentrations in the lower gradient western and southern catchments show a higher degree of variability, and several complications emerged as a result of the contrasting geomorphic processes and settings. This study confirms the ability of TCNs to determine long-term denudation rates in Australia and highlights some important considerations in the model assumptions that may affect the accuracy of limited sampling in large, low-gradient catchments with long storage times.

  16. Loess 10Be evidence for an asynchronous Brunhes-Matuyama magnetic polarity reversal

    Science.gov (United States)

    Zhou, W.; Beck, W.; Kong, X.; An, Z.; Qiang, X.; Wu, Z.; Xian, F.; Ao, H.

    2015-12-01

    In Chinese loess the Brunhes-Matuyama (B-M) geomagnetic reversal appears to occur about 25 ka prior to the established axial dipole reversal age found in many marine sediments, i.e., in Chinese loess this magnetic reversal boundary is found in glacial loess unit L8 which is thought to be correlated with Marine Isotope Stage 20 (MIS 20), in marine sediment records, however, this boundary is commonly found in interglacial period of MIS 19[1-2], leading to the debate on uncertainties of paleoclimatic correlation between the Chinese loess-paleosol sequences and marine sediments[3-5]. Based on this issue, here we propose to use the cosmogenic 10Be to address this conundrum. 10Be is a long-lived radionuclide produced in the atmosphere by cosmic ray spallation reactions and carried to the ground attached to aerosols. Its atmospheric production rate is inversely proportional to the geomagnetic field intensity [6]. This allows us to reconstruct past geomagnetic field intensity variations using 10Be concentrations recorded in different sedimentary archives. We carried out both the 10Be studies and paleogeomagnetic measurements in Luochuan and Xifeng sections in Chinese Loess Plateau. Both loess profiles show that 10Be production rate was at a maximum-an indication of the dipole field reversal-at ca. 780 ± 3 ka BP., in paleosol unit S7 corresponding to MIS 19, proving that the timing of B-M reversal recorded in Chinese loess is synchronous with that seen in marine records [1]. These results reaffirmed the conventional paleoclimatic correlation of loess-paleosol sequences with marine isotope stages and the standard loess timescale as correct. However, it is ~25 ka younger than the age (depth) of the paleogeomagnetic measurements, which show that the B-M boundary is in L8 in these two Chinese loess-paleosol sequences, demonstrating that loess magnetic overprinting has occurred. 1.Tauxe, L., et al., 1996, EARTH PLANET SC LETT, 140, 133-1462.Zhou, L.P., and Shackleton, 1999

  17. Study on utilizing ultrasonic for measurement of sediment concentration distribution

    Institute of Scientific and Technical Information of China (English)

    JiaChunjuan; TangMaoguan

    1998-01-01

    In the course of sedimentation research, the measurement of sediment concentration and its distribution is very important. At present, most traditional methods are arduous and cannot measure the sediment timely and successively. In order to seek the new measurement method,the paper reports utilizing ultrasonic measurement. When ultrasonic wave spreads along the depth in aqueous suspensions, the scatter intensity of sediment particles changes the depth and sediment concentration. Based on this principle,

  18. Working fluid concentration measurement in solar air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.J.; Basurto-Pensado, M.A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001. Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos (Mexico); Jimenez-Heredia, A.H.; Sanchez-Mondragon, J.J. [Departamento de Optica, Instituto Nacional de Astrofisica Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Apartado Postal 51 y 216, C.P. 72000, Puebla (Mexico)

    2006-02-15

    In order to evaluate on-line corrosive electrolyte concentration in solar air conditioning systems, an optical technique to determine the concentration is being proposed. With this optical sensing method, it is possible to measure the percentage concentration of the aqueous corrosive lithium bromide solution at temperatures ranging from 25{sup o}C to 70{sup o}C and a maximum concentration of 60%. The measurement system is based on the refractive index of the solution and the data correlation, at several temperature and concentration values. The results of this work present a direct method for concentration measurement of corrosive liquids and also show the correlation among the three parameters: refractive index, temperature and weight concentration. This correlation can be used to develop the optical device for solar air conditioning systems to control and improve efficiency. (author)

  19. Novel Fiber Optic Fluorometer for the Measurement of Alga Concentration

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel fluorometer based on fiber optics is briefly introduced for the measurement of alga concentration. Both the exciting light and the fluorescence from alga chlorophyll are transmitted along a fiber cable. By this way, we can get alga concentration by measuring its chlorophyll-a fluorescence intensity. The experiment results show that this instrument is characterized by good sensitivity, linearity and accuracy.

  20. Long-term erosion and interglacial period exposure in Western Greenland from meteoric 10Be in ice-bound sediment

    Science.gov (United States)

    Graly, J. A.; Corbett, L.; Bierman, P. R.; Neumann, T.; Rood, D. H.; Finkel, R. C.

    2010-12-01

    To examine the history of surface exposure and erosion in areas of Western Greenland presently covered by ice, we measured the concentration of meteoric 10Be in ice-bound fine sediment at three locations: Kangerlussuaq (67.1°N), Ilulissat (69.4°N), and Upernavik (72.5°N). Meteoric 10Be concentrations at Ilulissat and Upernavik range from 2×106 to 2×108 atoms/g and are statistically indistinguishable from each other. Meteoric 10Be concentrations at Kangerlussuaq range from 2×106 to 5×107 atoms/g and are significantly lower than the values found at the northern two sites. Through comparison to typical meteoric 10Be distribution in soils, source soil ages can be estimated at each of these locations. These estimates suggest on the order of 105 years of exposure at the northern sites and on the order of 104 years of exposure at Kangerlussuaq. Because meteoric 10Be is lost from the soil system both by erosion and isotope decay, these exposure ages represent a minimum length of cumulative interglacial exposure. This exposure signal likely developed over several Late Pliocene and Pleistocene interglacial periods and prior to the onset of Northern hemisphere glaciation, ~2.7 Ma before present. To further constrain the glacial history of Western Greenland implied from the meteoric 10Be data, we constructed forward models of interglacial period exposure and glacial period erosion. The high levels of meteoric 10Be at Upernavik and Ilulissat imply erosion rates below 5 m/My and some preservation of pre-glacial regolith. The lower levels of meteoric 10Be at Kangerlussuaq can be explained with erosion rates as high as 20 m/My. Because of the substantial debris fluxes in modern Kangerlussuaq glaciers [Knight, et al., 2002], erosion rates greater than 10 m/My are likely. Meteoric 10Be inventories at Kangerlussuaq under 10-20 m/My of long-term erosion imply substantial interglacial exposure and the slow evacuation of sediment by glacial transport. These results suggest that

  1. Analysis of longitudinal momentum distribution of 10Be in 9Be(11Be, 10Be)X reaction

    International Nuclear Information System (INIS)

    We have analyzed the longitudinal momentum distribution of 10Be fragment coming from one neutron stripping from 11Be on 9Be target at 60AMeV beam energy within the framework of zero and first order eikonal approximation. It has been found that the inclusion of first order correction term in the eikonal approximation results in a substantial improvement in the matching between the predicted and experimental results especially in tail region of the spectrum. (author)

  2. Measuring the Degree of Market Concentration in Thailand Insurance Industry

    OpenAIRE

    Sivalap Sukpaiboonwat; Chucheep Piputsitee; Arunee Punyasavatsut

    2014-01-01

    This paper investigates market structure of life insurance and non-life insurance industry in Thailand. This paper uses the Concentration Ratio and the Herfindahl-Hirschman Index to measure the degree of market concentration. The paper also analyzes various data from all type of insurance premium, balance sheet and income statement to measure the concentration and competition trend. An analysis of life insurance premium, group market is unconcentrated where as ordinary and industry markets ar...

  3. A Numerical Model to Assess Soil Fluxes from Meteoric 10Be Data

    Science.gov (United States)

    Campforts, B.; Govers, G.; Vanacker, V.; Vanderborght, J.; Smolders, E.; Baken, S.

    2015-12-01

    Meteoric 10Be may be mobile in the soil system. The latter hampers a direct translation of meteoric 10Be inventories into spatial variations in erosion and deposition rates. Here, we present a spatially explicit 2D model that allows us to simulate the behaviour of meteoric 10Be in the soil system. The Be2D model is then used to analyse the potential impact of human-accelerated soil fluxes on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile including particle migration, chemical leaching and bioturbation, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes from creep, water and tillage erosion. Model simulations show that meteoric 10Be inventories can indeed be related to erosion and deposition, across a wide range of geomorphological and pedological settings. However, quantification of the effects of vertical mobility is essential for a correct interpretation of the observed spatial patterns in 10Be data. Moreover, our simulations suggest that meteoric 10Be can be used as a tracer to unravel human impact on soil fluxes when soils have a high retention capacity for meteoric meteoric 10Be. Application of the Be2D model to existing data sets shows that model parameters can reliably be constrained, resulting in a good agreement between simulated and observed meteoric 10Be concentrations and inventories. This confirms the suitability of the Be2D model as a robust tool to underpin quantitative interpretations of spatial variability in meteoric 10Be data for eroding landscapes.

  4. Cosmic ray event of A.D. 774-775 shown in quasi-annual 10Be data from the Antarctic Dome Fuji ice core

    Science.gov (United States)

    Miyake, Fusa; Suzuki, Asami; Masuda, Kimiaki; Horiuchi, Kazuho; Motoyama, Hideaki; Matsuzaki, Hiroyuki; Motizuki, Yuko; Takahashi, Kazuya; Nakai, Yoichi

    2015-01-01

    content in tree rings and 10Be concentration records in polar ice core provide information about past cosmic ray intensities. The A.D. 774-775 cosmic ray event has been identified by 14C measurement in several tree rings from all over the world. Although the quasi-decadal 10Be Dome Fuji data in the Antarctic ice core also shows a sharp peak around A.D. 775, annual 10Be variations in the Dome Fuji core or in other cores have not been revealed. We have measured quasi-annual 10Be concentrations from approximately A.D. 763-794 in the Dome Fuji ice core, and detected a clear increase (~80% above the baseline) in 10Be concentration around A.D. 775. However, an accurate height of this increase is not straightforwardly estimated due to the background variation in 10Be concentration. The 10Be increase can be due to the same cosmic ray event as shown in the 14C content in A.D. 774-775.

  5. Combined measurements of velocity and concentration in experimental turbidity currents

    Science.gov (United States)

    Felix, M.; Sturton, S.; Peakall, J.

    2005-08-01

    Three different sets of experimental turbidity currents were run in which velocity and concentration were measured simultaneously, for several different heights above the bed. One set with cohesive sediment had an initial volumetric concentration of 16% kaolinite, and the other two sets with non-cohesive sediment had concentrations of 28% and 4% silica flour. Velocity was measured at 104-122 Hz using an Ultrasonic Doppler Velocimetry Profiler and concentration was measured at 10 Hz using an Ultrasonic High Concentration Meter. The similarity of changes in velocity and concentration at the same measurement heights are described and it is shown that the similarity depends on flow concentration and position in the flow. The measurements are analysed using cross-correlations and wavelet analysis. Velocity measurements are compared with analytical solutions for flow around a semisphere and flow around a half body. Measurements and analyses indicate that turbulence is diminished by stratification, decoupling of regions where turbulence is generated and by reduction of vertical flow in the turbidity currents.

  6. Potentials and pitfalls of depth profile (10Be), burial isochron (26Al/10Be) and palaeomagnetic techniques for dating Early Pleistocene terrace deposits of the Moselle valley (Germany)

    Science.gov (United States)

    Rixhon, Gilles; Cordier, Stéphane; May, Simon Matthias; Kelterbaum, Daniel; Szemkus, Nina; Keulertz, Rebecca; Dunai, Tibor; Binnie, Steven; Hambach, Ulrich; Scheidt, Stephanie; Brueckner, Helmut

    2016-04-01

    Throughout the river network of the Rhenish Massif the so-called main terraces complex (MTC) forms the morphological transition between a wide upper palaeovalley and a deeply incised lower valley. The youngest level of this complex (YMT), directly located at the edge of the incised valley, represents a dominant geomorphic feature; it is often used as a reference level to identify the beginning of the main middle Pleistocene incision episode (Demoulin & Hallot, 2009). Although the main terraces are particularly well preserved in the lower Moselle valley, a questionable age of ca. 800 ka is assumed for the YMT, mainly based on the uncertain extrapolation of controversially interpreted palaeomagnetic data obtained in the Rhine valley. In this study, we applied terrestrial cosmogenic nuclide (TCN) dating (10Be/26Al) and palaeomagnetic dating to Moselle fluvial sediments of the MTC. To unravel the spatio-temporal characteristics of the Pleistocene evolution of the valley, several sites along the lower Moselle were sampled following two distinct TCN dating strategies: depth profiles where the original terrace (palaeo-) surface is well preserved and did not experience a major post-depositional burial (e.g., loess cover); and the isochron technique, where the sediment thickness exceeds 4.5-5 m. One terrace deposit was sampled for both approaches (reference site). In addition, palaeomagnetic sampling was systematically performed in each terrace sampled for TCN measurements. The TCN dating techniques show contrasting results for our reference site. Three main issues are observed for the depth profile method: (i) an inability of the modeled profile to constrain the 10Be concentration of the uppermost sample; (ii) an overestimated density value as model output; and (iii) a probable concentration steady state of the terrace deposits. By contrast, the isochron method yields a burial age estimate of 1.26 +0.29/-0.25 Ma, although one sample showed a depleted 26Al/10Be ratio

  7. Module for measurement of CO2 concentration in exhaled air

    Science.gov (United States)

    Puton, Jaroslaw; Palko, Tadeusz; Knap, Andrzej; Jasek, Krzysztof; Siodlowski, Boguslaw

    2003-09-01

    The objective of this work consists in working out of a detection module for capnography (carbon dioxide concentration measurement in anaesthesiology and intensive care). The principle of operation of the module consists of the NDIR method. The basic assumption for construction of this model was using of directly modulated thermal IR source in it. A few models of IR sources were worked out. Their heaters were made from thick platinum layers and foil. Limits of modulation frequency for IR sources were greater than 30 Hz. The detection module consists of an optical part, analogue electronics and microprocessor system with a suitable program. The time dependent concentration of CO2, end tidal concentration of CO2, mean concentration of N2O and breath frequency are output values of the detection module. Measurements are executed 30 times per second. The accuracy of CO2 concentration measurement equals to 5%.

  8. Intercomparison of number concentration measurements by various aerosol particle counters

    Science.gov (United States)

    Ankilov, A.; Baklanov, A.; Colhoun, M.; Enderle, K.-H.; Gras, J.; Julanov, Yu.; Kaller, D.; Lindner, A.; Lushnikov, A. A.; Mavliev, R.; McGovern, F.; Mirme, A.; O'Connor, T. C.; Podzimek, J.; Preining, O.; Reischl, G. P.; Rudolf, R.; Sem, G. J.; Szymanski, W. W.; Tamm, E.; Vrtala, A. E.; Wagner, P. E.; Winklmayr, W.; Zagaynov, V.

    Total aerosol particle number concentrations, as measured by means of 16 different measurement systems, have been quantitatively compared during an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (ICCP-IUGG). The range of measuring instruments includes Pollak counters (PCO) in use already for several decades, presently available commercial particle counters, as well as laboratory prototypes. The operation of the instruments considered was based on different measurement principles: (1) adiabatic expansion condensation particle counter, (2) flow diffusion condensation particle counter, (3) turbulent mixing condensation particle counter, (4) laser optical particle counter, and (5) electrostatic particle measurement system. Well-defined test aerosols with various chemical compositions were considered: DEHS, sodium chloride, silver, hydrocarbons, and tungsten oxide. The test aerosols were nearly monodispersed with mean particle diameters between 4 and 520 nm, the particle number concentrations were varied over a range from about 4×10 1 to 7×10 6 cm -3. A few measurements were performed with two-component aerosol mixtures. For simultaneous concentration measurements, the various instruments considered were operated under steady state conditions in a linear flow system. A series of at least 10 single concentration measurements was performed by each individual instrument at each set of test aerosol parameters. The average of the concentration data measured by the various instruments was defined as a common reference. The number concentrations obtained from the various instruments typically agreed within a factor of about two over the entire concentration range considered. The agreement of the measured concentrations is notable considering the various different measurement principles applied in this study, and particularly in view of the

  9. Direct measurement of surface carbon concentrations. [in lunar soil

    Science.gov (United States)

    Filleux, C.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    Measurements of surface concentrations of carbon in lunar soils and soil breccias provide information on the origin of carbon in the regolith. The reaction C-12 (d, p sub zero) is used to measure 'surface' and 'volume' concentrations in lunar samples. This method has a depth resolution of 1 micron, which permits only a 'surface' and a 'volume' component to be measured. Three of four Apollo 16 double drive tube samples show a surface carbon concentration of about 8 by 10 to the 14th power/sq cm, whereas the fourth sample gave 4 by 10 to the 14th power/sq cm. It can be convincingly shown that the measured concentration does not originate from fluorocarbon or hydrocarbon contaminants. Surface adsorbed layers of CO or CO2 are removed by a sputter cleaning procedure using a 2-MeV F beam. It is shown that the residual C concentration of 8 by 10 to the 14th power/sq cm cannot be further reduced by increased F fluence, and it is therefore concluded that it is truly lunar. If one assumes that the measured surface C concentration is a steady-state concentration determined only by a balance between solar-wind implantation and sputtering, a sputter erosion rate of 0.1 A/yr is obtained. However, it would be more profitable to use an independently derived sputter erosion rate to test the hypothesis of a solar-wind origin of the surface carbon.

  10. Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, Part 2: Insights from meteoric 10Be

    Science.gov (United States)

    West, Nicole; Kirby, Eric; Bierman, Paul; Slingerland, Rudy; Ma, Lin; Rood, Dylan; Brantley, Susan

    2013-09-01

    Regolith-mantled hillslopes are ubiquitous features of most temperate landscapes, and their morphology reflects the climatically, biologically, and tectonically mediated interplay between regolith production and downslope transport. Despite intensive research, few studies have quantified both of these mass fluxes in the same field site. Here we present an analysis of 87 meteoric 10Be measurements from regolith and bedrock within the Susquehanna Shale Hills Critical Zone Observatory (SSHO), in central Pennsylvania. Meteoric 10Be concentrations in bulk regolith samples (n = 73) decrease with regolith depth. Comparison of hillslope meteoric 10Be inventories with analyses of rock chip samples (n = 14) from a 24 m bedrock core confirms that >80% of the total inventory is retained in the regolith. The systematic downslope increase of meteoric 10Be inventories observed at SSHO is consistent with 10Be accumulation in slowly creeping regolith (~ 0.2 cm yr-1). Regolith flux inferred from meteoric 10Be varies linearly with topographic gradient (determined from high-resolution light detection and ranging-based topography) along the upper portions of hillslopes at SSHO. However, regolith flux appears to depend on the product of gradient and regolith depth where regolith is thick, near the base of hillslopes. Meteoric 10Be inventories at the north and south ridgetops indicate minimum regolith residence times of 10.5 ± 3.7 and 9.1 ± 2.9 ky, respectively, similar to residence times inferred from U-series isotopes in Ma et al. (2013). The combination of our results with U-series-derived regolith production rates implies that regolith production and erosion rates are similar to within a factor of two on SSHO hillcrests.

  11. Traceable measurements of the activity concentration in air

    CERN Document Server

    Paul, A; Forkel-Wirth, Doris; Müller, A; Marcos, A

    2002-01-01

    The nuclear reactions induced by high energetic protons in heavy targets such as UC/sub 2/ and ThC cause a particular, complex radiation protection task at facilities like ISOLDE: the measurement of a mixture of different isotopes of the radioactive noble gas radon and the radon progenies in air. The knowledge of their respective activity concentration is fundamental for exposure assessments. Due to the complex mixture of activity concentrations in air, its precise determination is quite difficult. Therefore, a new procedure for taking reference samples was developed and implemented for the traceable measurement of the activity concentration of radioactive ions (e.g., radon progenies) in air. This technique is combined by measuring alpha -particles with a multi-wire ionization chamber for the parallel on-line determination of the activity concentration of different radon isotopes. (10 refs).

  12. Concentration of Radon Progeny in Air by Alpha Spectrometry Measurement

    International Nuclear Information System (INIS)

    The concentration of radon progeny in air has been determined by alpha spectrometry measurement of 214 Po and 318 Po. A known volume of air was passed through a filter, then the alpha activity was directly measured on this filter. (Author) 15 refs

  13. Liver Metabolite Concentrations Measured with 1H MR Spectroscopy

    OpenAIRE

    Ouwerkerk, Ronald; PETTIGREW, RODERIC I.; Gharib, Ahmed M.

    2012-01-01

    In vivo measurement of liver choline concentrations in healthy humans is feasible, and even measurement of glycogen can be achieved in some patients at 3.0 T with point-resolved 1H MR spectroscopy by using navigator-guided synchronization to respiratory motion and state-of-the-art B0 field shimming techniques.

  14. Meteoric 10Be as a tool to investigate human induced soil fluxes: a conceptual model

    Science.gov (United States)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; De Vente, Joris; Boix-Fayos, Carolina; Minella, Jean; Baken, Stijn; Smolders, Erik

    2014-05-01

    Spanish farmlands and (iii) strongly weathered Brazilian soils, relatively recently taken into cultivation. Model results confirm the hypothesis that meteoric 10Be can be a useful tracer to investigate human induced soil fluxes. However, interpretation of meteoric 10Be inventories along the profile must be performed with sufficient care: it is of utmost importance to jointly interpret meteoric 10Be inventories and depth dependent concentration. Long periods of human disturbance are clearly recognizable in the modeled meteoric 10Be signatures whereas the recognition of shorter periods of human impact critically depends on the boundary conditions. A sensitivity analysis points towards the essential role of soil chemistry in controlling depth dependent meteoric 10Be concentrations and associated lateral meteoric 10Be movement. The Be2D model is a step forward in unraveling the dynamic interplay between vertical meteoric 10Be migration and horizontal soil fluxes and is therefore very suited to underpin empirical work. In a first phase the Be2D model can be used as an exploration tool to select sampling locations whereas in a later phase, the model may be used to extrapolate experimental observations to the broader landscape scale. Sadler, P., 1981. Sediment accumulation rates and the completeness of stratigraphic sections. J. Geol. 89, 569-584.

  15. Geomagnetic field intensity and quantitative paleorainfall reconstruction from Chinese loess using 10Be and magnetic susceptibility

    Science.gov (United States)

    Beck, W.; zhou, W.; Li, C.; Wu, Z.; White, L.; Xian, F.

    2011-12-01

    7Be is produced in the atmosphere by cosmic ray spallation reactions and carried to the ground attached to aerosols, usually encapsulated in rain or snow. Numerous studies have shown that its flux to the ground is proportional to rainfall amount. Unfortunately, with a half life of only a few weeks, this observation has little relevance for reconstruction past rainfall amounts in paleosoils. Fortunately, 7Be has a long-lived sister isotope (10Be) with a half life of ~1.5 Ma which can be used for such purposes. There are a number of complications, however. First, 10Be atmospheric production rate changes when the geomagnetic field intensity changes. Secondly, 10Be half life is long enough that 10Be which fell to the ground attached to dust some time in the past can become resuspended, meaning that there are two sources of 10Be, one meteoric, and the other recycled aeolian dust. Fortunately, we have found a method to deconvolute this knotty situation and have applied it to soils of the Chinese Loess Plateau, allowing us to reconstruct records of both geomagnetic field intensity and paleorainfall. To do so, we use the additional parameters magnetic susceptibility and coercivity to help define the inherited amount of each component, and to define what fraction of the variations in 10Be are associated with magnetic field fluctuations, versus that linked to rainfall variations. We also use a sediment age/depth model to convert 10Be concentration to 10Be flux, and finally, we use the modern 7Be vs. rainfall relationship and 10Be/7Be atmospheric production rate ratio to calculate quantitative paleorainfall rates. We have used these techniques to generate several such records ranging from the Holocene to MIS13 (Circa 525 ka BP), and will compare some of these to U-series dated speleothem records of δ18O.

  16. Control Rights, Pyramids, and the Measurement of Ownership Concentration

    OpenAIRE

    Edwards, Jeremy S.S.; Alfons J. Weichenrieder

    2009-01-01

    Abstract The recent corporate governance literature has emphasised the distinction between control and cash-flow rights but has disregarded measurement issues. Control rights may be measured by immediate shareholder votes, the voting rights as traced through ownership chains, or voting power indices that may or may not trace ownership through chains. We compare the ability of various measures to identify the effects of ownership concentration on share valuation using a German panel...

  17. Dual 10Be isotope systems constrain the source of sediment and rate of erosion for the tropical Barron River catchment, Queensland, Australia

    Science.gov (United States)

    Nichols, K. K.; Bierman, P. R.; Reusser, L. J.; Portenga, E.; Matmon, A.; Rood, D. H.

    2010-12-01

    In order to understand source of sediment and rate of erosion for Barron River catchment, which heads on the Atherton Tablelands of northeast Australia, crosses the northern Queensland escarpment and drains into the Coral Sea, we collected fluvial sediment and measured both in situ and meteoric 10Be contents on the medium sand fraction. We collected fourteen samples from rivers and streams including large regional drainages and small tributaries. The upland basins are characterized by lower relief and less precipitation than the steeper and wetter escarpment basins. One sample is quartz sand from the Coral Sea beach at Yorkey's Knob, below the escarpment. Sand from the Barron River upstream of the escarpment integrates the upland basins and has an in situ 10Be concentration of 2.31±0.84 x105atoms/g and an erosion rate of 17.2 m/My (calculated using the CRONOS on-line calculator). This is similar to a major upland tributary (2.51±0.40 x105 atoms/g; 15.2 m/My) and two smaller upstream tributaries (20.5 m/My and 21.4 m/My). Escarpment streams have less in situ 10Be in their sediment (mean = 1.64±0.55 x 105 atoms/g, n=8) and higher basin area-weighted erosion rates (37.2 m/My). Based on the in situ measurements, the uplands are eroding at approximately half the rate of the escarpment basins. The beach sand has an in situ 10Be concentration (2.75±0.19 x 105 atoms/g) similar to the upland sediment suggesting that the source of beach sand is the larger but more slowly eroding Tablelands. In contrast, the meteoric 10Be concentrations of Barron River sand-sized sediment collected above the escarpment is ~4 fold lower (2.55x107 atoms/g) than the average meteoric 10Be concentration of the 8 escarpment samples (9.94±4.49 x107 atoms/g). This discrepancy cannot be explained by differences in annual average precipitation which ranges only from 1.9 to 2.3 m/yr but likely results from the deep mobility of meteoric 10Be in oxic Tableland soils. Considering meteoric 10Be as a

  18. Using 10-Be in sediment to understand the long-term behavior of the Greenland Ice Sheet

    Science.gov (United States)

    Bierman, Paul; Rood, Dylan; Corbett, Lee; Nelson, Alice; Shakun, Jeremy

    2013-04-01

    We have used in situ and meteoric cosmogenic 10-Be, measured in sediment and rock, to understand better the history and erosional processes of the Greenland Ice Sheet over the many thousand to several million-year time scale. Measured concentrations of in situ 10-Be constrain Holocene emergence histories at the head of Igaliku fiord in southern Greenland. We sampled two well-preserved gravel beach ridges that are the highest marine deposits. Below one beach ridge, we sampled 4 quartzite outcrops at progressively lower elevations and above a nearby beach ridge, we sampled an erratic boulder and the underlying bedrock. We also sampled a beach ridge at a similar elevation at Qassiarsuk on Tunulliarfik Fiord about 20 km away. The data show rapid emergence after 11 ky. All three beach ridges (average and standard error of 6, 6 and 10 clast ages) have the same age (10.98±0.09, 11.07±0.51ky, and 10.96±0.33 ky). Ages of outcrops below the beach ridges are in stratigraphic order and show steady emergence; the outcrop just above modern high water has an age of 8.80 ky. The bedrock/boulder ages from above the beach ridge are slightly younger (10.45 and 10.73 ky, respectively), consistent with inheritance of about 1400 atoms/g 10-Be in beach clasts. Low levels of inheritance in deglacial beach gravels are consistent with the 10-Be content of clasts collected directly from the GIS in western Greenland. Most clasts have the equivalent of only a few hundred to a few thousand atoms/g 10-Be. Sand-sized sediment collected from outwash streams exiting the ice margin at Kangerlussuaq (western Greenland), Narsarsuaq (southern Greenland), and Tasilaq (eastern Greenland) has two to five thousand atoms/g of 10-Be - several times the median amount of in situ 10-Be measured in clasts collected from the ice. These data indicate efficient erosion by the ice sheet of both pre-glacial and interglacial regolith at least near the ice sheet margins. In contrast, chemical and meteoric 10-Be

  19. Online measurement of urea concentration in spent dialysate during hemodialysis

    Science.gov (United States)

    Olesberg, Jonathon T.; Armitage, Ben; Arnold, Mark A.; Flanigan, Michael

    2002-05-01

    We describe on-line optical measurements of urea concentration during the regular hemodialysis treatment of several patients. The spectral measurements were performed in the effluent dialysate stream after the dialysis membrane using an FTIR spectrometer equipped with a flow-through cell. Spectra were recorded across the 5000-4000 cm-1 (2.0-2.5 micrometers at 1-minute intervals. Optically determined concentrations matched concentrations obtained from standard chemical assays with a root-mean-square error of 0.29 mM for urea (0.8 mg/dl urea nitrogen), 0.03 mM for creatinine, 0.11 mM for lactate, and 0.22 mM for glucose. The observed concentration ranges were 0-11 mM for urea, 0-0.35 mM for creatinine, 0-0.75 mM for lactate, and 9-12.5 mM for glucose.

  20. Remote atomic information concentration without Bell-state measurement

    Institute of Scientific and Technical Information of China (English)

    Wu Zhen-Zhen; Fang Mao-Fa

    2006-01-01

    This paper proposes a scheme for information concentration of two remote two-level atoms in cavity QED. This scheme does not involve the Bell-state measurement. During the interaction between atom and cavity, the cavity frequency is large-detuned from the atomic transition frequency, thus the scheme is insensitive to both the cavity decay and the thermal field. This idea can directly be generalized in the case of multi-atom information concentration.

  1. Measuring Concentrations of Particulate 140La in the Air

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Colin E.; Kernan, Warnick J.; Keillor, Martin E.; Kirkham, Randy R.; Sorom, Rich D.; Van Etten, Don M.

    2016-05-01

    Air sampling systems were deployed to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device experiments. The air samplers were positioned 100-600 meters downwind of the release point. The filters were collected immediately and analyzed in the field. Quantities for total activity collected on the air filters are reported along with additional information to compute the average or integrated air concentrations.

  2. Quality assurance in accelerator mass spectrometry: Results from an international round-robin exercise for 10Be

    International Nuclear Information System (INIS)

    Highlights: ► First round-robin exercise for 10Be with 10 AMS facilities to improve accuracy. ► All data traceable to NIST SRM 4325. ► Multivariate statistical investigations reveal bias, i.e. two distinguished groups. ► Maximum discrepancies of 6–31% between two single facilities depending on ratio. ► Findings should be considered when using AMS data from different facilities. - Abstract: The first international round-robin exercise for the measurement of the long-lived radionuclide 10Be has been conducted. Ten participating accelerator mass spectrometry (AMS) facilities have each measured three samples at the 10−12 to 10−1410Be/9Be level. All results have been made traceable to the NIST SRM 4325 standard to avoid additional discrepancies that arise when different facilities use different calibration materials. Hence, the data concentrates on pure measurement distinctions. Multivariate statistical investigations have been performed to reveal a bias between facilities, i.e. two distinguished groups could be identified. Maximum discrepancies between two single facilities are in the range of 6–31% depending on the absolute 10Be/9Be value. These findings should be considered when comparing 10Be data produced at one AMS facility with that produced at another facility, which is e.g. often the case for in situ 10Be dating studies. Round-robin exercises are a very helpful tool as part of an overall quality assurance scheme to improve the accuracy, and not only the precision, of AMS data.

  3. Measurement of indoor radon concentration in kindergartens in Sofia, Bulgaria.

    Science.gov (United States)

    Ivanova, Kremena; Stojanovska, Zdenka; Tsenova, Martina; Badulin, Viktor; Kunovska, Bistra

    2014-11-01

    As a part of the systematic survey of indoor radon in Bulgaria, the indoor radon concentration was measured in 296 kindergarten buildings of Sofia city during 3 months (February to April 2013) using the CR-39 nuclear tract detectors. In 256 buildings at least two frequently occupied rooms (mainly playrooms) were observed. Altogether, 922 measurements were performed. The frequency distribution was well described by the lognormal function. The measured radon concentrations range between 9 and 1415 Bq m(-3) with a geometric mean of 101 Bq m(-3) (2.08) and an arithmetic mean 132 Bq m(-3) with a standard deviation of 118 Bq m(-3). The radon concentrations obtained in this survey were compared with that in Sofia city dwellings obtained from a previous study. A detailed statistical analysis of the building factors was presented.

  4. A measure of the concentration of rare events.

    Science.gov (United States)

    Prieto Curiel, Rafael; Bishop, Steven

    2016-01-01

    We introduce here an index, which we call the Rare Event Concentration Coefficient (RECC), that is a measure of the dispersion/concentration of events which have a low frequency but tend to have a high level of concentration, such as the number of crimes suffered by a person. The Rare Event Concentration Coefficient is a metric based on a statistical mixture model, with a value closer to zero meaning that events are homogeneously distributed, and a value closer to one meaning that the events have a higher degree of concentration. This measure may be used to compare the concentration of events over different time periods and over different regions. Other traditional approaches for the dispersion/concentration of a variable tend to be blind to structural changes in the pattern of occurrence of rare events. The RECC overcomes this issue and we show here two simple applications, first by using the number of burglaries suffered in Netherlands and then by using the number of volcanic eruptions in the world. PMID:27577532

  5. A measure of the concentration of rare events

    Science.gov (United States)

    Prieto Curiel, Rafael; Bishop, Steven

    2016-01-01

    We introduce here an index, which we call the Rare Event Concentration Coefficient (RECC), that is a measure of the dispersion/concentration of events which have a low frequency but tend to have a high level of concentration, such as the number of crimes suffered by a person. The Rare Event Concentration Coefficient is a metric based on a statistical mixture model, with a value closer to zero meaning that events are homogeneously distributed, and a value closer to one meaning that the events have a higher degree of concentration. This measure may be used to compare the concentration of events over different time periods and over different regions. Other traditional approaches for the dispersion/concentration of a variable tend to be blind to structural changes in the pattern of occurrence of rare events. The RECC overcomes this issue and we show here two simple applications, first by using the number of burglaries suffered in Netherlands and then by using the number of volcanic eruptions in the world. PMID:27577532

  6. Assessing soil fluxes using meteoric 10Be: development and application of the Be2D model

    Science.gov (United States)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; Baken, Stijn; Smolders, Erik; Vanderborght, Jan

    2015-04-01

    Meteoric 10Be is a promising and increasingly popular tool to better understand soil fluxes at different timescales. Unlike other, more classical, methods such as the study of sedimentary archives it enables a direct coupling between eroding and deposition sites. However, meteoric 10Be can be mobilized within the soil. Therefore, spatial variations in meteoric 10Be inventories cannot directly be translated into spatial variations in erosion and sedimentation rates: a correct interpretation of measured 10Be inventories requires that both lateral and vertical movement of meteoric 10Be are accounted for. Here, we present a spatially explicit 2D model that allows to simulate the behaviour of meteoric 10Be in the soil system over timescales of up to 1 million year and use the model to investigate the impact of accelerated erosion on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility within the soil profile, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes. Different types of erosion such as creep, water and tillage erosion are supported. Model runs show that natural soil fluxes can be well reconstructed based on meteoric 10Be inventories, and this for a wide range of geomorphological and pedological conditions. However, extracting signals of human impact and distinguishing them from natural soil fluxes is only feasible when the soil has a rather high retention capacity so that meteoric 10Be is retained in the top soil layer. Application of the Be2D model to an existing data set in the Appalachian Mountains [West et al.,2013] using realistic parameter values for the soil retention capacity as well as for vertical advection resulted in a good agreement between simulated and observed 10Be inventories. This confirms the robustness of the model. We

  7. Measuring concentrations of volatile organic compounds in vinyl flooring.

    Science.gov (United States)

    Cox, S S; Little, J C; Hodgson, A T

    2001-08-01

    The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics. To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce -200 0.78-cm2 disks. The disks were milled to a powder at -140 degrees C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 microg/g VF for n-hexadecane to 130 microg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix. PMID:11518293

  8. Measurement of radon concentrations at Super-Kamiokande

    OpenAIRE

    Collaboration, Super-Kamiokade; :; al, Y. Takeuchi et

    1999-01-01

    Radioactivity from radon is a major background for observing solar neutrinos at Super-Kamiokande. In this paper, we describe the measurement of radon concentrations at Super-Kamiokande, the method of radon reduction, and the radon monitoring system. The measurement shows that the current low-energy event rate between 5.0 MeV and 6.5 MeV implies a radon concentration in the Super-Kamiokande water of less than 1.4 mBq/m$^3$.

  9. 10Be climate fingerprints during the Eemian in the NEEM ice core, Greenland

    Science.gov (United States)

    Sturevik-Storm, Anna; Aldahan, Ala; Possnert, Göran; Berggren, Ann-Marie; Muscheler, Raimund; Dahl-Jensen, Dorthe; Vinther, Bo M.; Usoskin, Ilya

    2014-09-01

    Several deep Greenland ice cores have been retrieved, however, capturing the Eemian period has been problematic due to stratigraphic disturbances in the ice. The new Greenland deep ice core from the NEEM site (77.45°N, 51.06°W, 2450 m.a.s.l) recovered a relatively complete Eemian record. Here we discuss the cosmogenic 10Be isotope record from this core. The results show Eemian average 10Be concentrations about 0.7 times lower than in the Holocene which suggests a warmer climate and approximately 65-90% higher precipitation in Northern Greenland compared to today. Effects of shorter solar variations on 10Be concentration are smoothed out due to coarse time resolution, but occurrence of a solar maximum at 115.26-115.36 kyr BP is proposed. Relatively high 10Be concentrations are found in the basal ice sections of the core which may originate from the glacial-interglacial transition and relate to a geomagnetic excursion about 200 kyr BP.

  10. The influence of thoron on instruments measuring radon activity concentration.

    Science.gov (United States)

    Michielsen, N; Bondiguel, S

    2015-11-01

    Thoron, the isotope 220 of radon, is a radionuclide whose concentration may influence the measurement of the activity concentration of (222)Rn in the air. If in the case of continuous and active sampling measuring instruments, using a pump for example, the influence of thoron on radon measurement is obvious and is taken into account in the apparatus, it is often assumed that in the case of a passive sampling, by diffusion through a filter for example, this thoron influence is negligible. This is due to the very short radioactive half-life of thoron, 55.6 s (3.82 d for (222)Rn), and the assumption that the diffusion time of thoron in the detection chamber is long enough beside that of the thoron half-life. The objective of this study is to check whether this assumption is true or not for different kinds of commercial electronic apparatus used to measure radon activity concentration from soil to dwellings. First of all, the devices were calibrated in activity concentration of radon, and then they were exposed to a controlled thoron atmosphere. The experiments concerning the thoron aimed to investigate the sensitivity to thoron in the radon measuring mode of the apparatus. Results of these experiments show that all devices have a very quick answer to thoron atmosphere, even though the sensitivities vary from one instrument to another. Results clearly show that this influence on radon measurement due to the thoron is observed also after the exposition because of the decay of (212)Pb and its progenies. In conclusion, the sensitivity to thoron in the radon measuring mode depends strongly on the type of instruments. The results of the present investigation show that for some apparatus, the influence of thoron cannot be disregarded especially when measuring radon in soil.

  11. River fluxes to the sea from the ocean's 10Be/9Be ratio

    Science.gov (United States)

    von Blanckenburg, F.; Bouchez, J.

    2013-12-01

    The ratio of the meteoric cosmogenic radionuclide 10Be to the stable isotope 9Be is proposed here to be a flux proxy of terrigenous input into the oceans. The ocean's dissolved 10Be/9Be is set by (1) the flux of meteoric 10Be produced in the atmosphere; (2) the denudational flux of the rivers discharging into a given ocean basin; (3) the fraction of 9Be that is released from primary minerals during weathering (meaning the 9Be transported by rivers in either the dissolved form or adsorbed onto sedimentary particles and incorporated into secondary oxides); and (4) the fraction of riverine 10Be and 9Be actually released into seawater. Using published 10Be/9Be data of rivers for which independent denudation rate estimates exist we first find that the global average fraction of 9Be released during weathering into river waters and their particulate load is 20% and does not depend on denudation rate. We then evaluate this quantitative denudation rate proxy by using published dissolved seawater Be isotope data and a compilation of global river loads (15Gt/yr). We find that the measured global average oceanic dissolved 10Be/9Be ratio of about 0.9E-7 is satisfied by the mass balance if only 6.5% of the dissolved and reactive riverine Be is eventually released to the open ocean by boundary exchange. Except for the South Atlantic and the South Pacific, in which the 10Be/9Be ratio is dominated by Be advected through ocean circulation, good agreement results between 10Be/9Be ratios predicted by denudation rates and measured ocean 10Be/9Be ratios when we establish this mass balance for individual ocean basins. As the seawater 10Be/9Be ratio is faithfully recorded in marine chemical precipitates the 10Be/9Be ratio extracted from authigenic sediments can now serve to estimate relative changes in terrigenous input into the oceans back through time on a global and on a basin scale.

  12. River fluxes to the sea from the oceanʼs 10Be/9Be ratio

    Science.gov (United States)

    von Blanckenburg, Friedhelm; Bouchez, Julien

    2014-02-01

    The ratio of the meteoric cosmogenic radionuclide 10Be to the stable isotope 9Be is proposed here to be a flux proxy of terrigenous input into the oceans. The ocean's dissolved 10Be/9Be is set by (1) the flux of meteoric 10Be produced in the atmosphere; (2) the denudational flux of the rivers discharging into a given ocean basin; (3) the fraction of 9Be that is released from primary minerals during weathering (meaning the 9Be transported by rivers in either the dissolved form or adsorbed onto sedimentary particles and incorporated into secondary oxides); and (4) the fraction of riverine 10Be and 9Be actually released into seawater. Using published 10Be/9Be data of rivers for which independent denudation rate estimates exist we first find that the global average fraction of 9Be released during weathering into river waters and their particulate load is 20% and does not depend on denudation rate. We then evaluate this quantitative proxy for terrigenous inputs by using published dissolved seawater Be isotope data and a compilation of global river loads. We find that the measured global average oceanic dissolved 10Be/9Be ratio of about 0.9×10-7 is satisfied by the mass balance if only about 6% of the dissolved and adsorbed riverine Be is eventually released to the open ocean after escaping the coastal zone. When we establish this mass balance for individual ocean basins good agreement results between 10Be/9Be ratios predicted from known river basin denudation rates and measured ocean 10Be/9Be ratios. Only in the South Atlantic and the South Pacific the 10Be/9Be ratio is dominated by advected Be and in these basins the ratio is a proxy for ocean circulation. As the seawater 10Be/9Be ratio is faithfully recorded in marine chemical precipitates the 10Be/9Be ratio extracted from authigenic sediments can now serve to estimate relative changes in terrigenous input into the oceans back through time on a global and on an ocean basin scale.

  13. Measure concentration through non-Lipschitz observables and functional inequalities

    CERN Document Server

    Guillin, Arnaud

    2012-01-01

    Non-Gaussian concentration estimates are obtained for invariant probability measures of reversible Markov processes. We show that the functional inequalities approach combined with a suitable Lyapunov condition allows us to circumvent the classical Lipschitz assumption of the observables. Our method is general and covers diffusions as well as pure-jump Markov processes on unbounded spaces.

  14. Measurements of indoor radon concentration with CSR detectors

    International Nuclear Information System (INIS)

    The measurements of indoor radon concentration in representative dwellings in Shenyang City were made by CSR detectors, and the results were compared with those obtained by the grab sampling technique. It was shown that the results of the latter were 15%-50% less, and CSR detectors were more suitable for the environment radon investigation

  15. Measurements of radon activity concentrations in air at Niska spa

    International Nuclear Information System (INIS)

    Radon activity concentrations in air were measured in the recreational-tourist center of Niska Banja. Alpha Guard PQ 2000/ MC50 instrumentation (Genitron instruments, Frankfurt) was used. The observed indoor radon concentrations in the air of the Radon Hotel pool lay within the range of 0.980-1.908 kBq/m3 and were directly dependent on the exhalation of radon from thermomineral waters. Radon concentrations were also measured outdoors, at locations for capping thermomineral water, as well as at locations for draining used water from the Radon Hotel pool. Outdoor radon concentrations as high as over 500 Bq/m3 were observed. Gamma dose rates were measured in parallel and found to lie within the range of 72-420 nSv/h. The gamma doses correlated well with the observed radon levels. The largest gamma dose rates in air were measured in the pool of Radon Hotel and at the site where this thermomineral water is being capped

  16. Photopyroelectric measurement of dry matter content in tomato puree concentrates

    NARCIS (Netherlands)

    Neamtu, C.; Dadarlat, D.; Bicanic, D.D.

    2006-01-01

    The photopyroelectric (PPE) method, in both front and back configuration, was used to measure the thermal effusivity and diffusivity of several tomato puree concentrates. These results were used to construct a calibration curve which was used at a later stage to determine dry matter content of tomat

  17. Practical considerations for measuring hydrogen concentrations in groundwater

    Science.gov (United States)

    Chapelle, F.H.; Vroblesky, D.A.; Woodward, J.C.; Lovley, D.R.

    1997-01-01

    Several practical considerations for measuring concentrations of dissolved molecular hydrogen (H2) in groundwater including 1 sampling methods 2 pumping methods and (3) effects of well casing materials were evaluated. Three different sampling methodologies (a downhole sampler, a gas- stripping method, and a diffusion sampler) were compared. The downhole sampler and gas-stripping methods gave similar results when applied to the same wells, the other hand, appeared to The diffusion sampler, on overestimate H2 concentrations relative to the downhole sampler. Of these methods, the gas-stripping method is better suited to field conditions because it is faster (~ 30 min for a single analysis as opposed to 2 h for the downhole sampler or 8 h for the diffusion sampler), the analysis is easier (less sample manipulation is required), and the data computations are more straightforward (H2 concentrations need not be corrected for water sample volume). Measurement of H2 using the gas-stripping method can be affected by different pumping equipment. Peristaltic, piston, and bladder pumps all gave similar results when applied to water produced from the same well. It was observed, however, that peristaltic-pumped water (which draws water under a negative pressure) enhanced the gas-stripping process and equilibrated slightly faster than either piston or bladder pumps (which push water under a positive pressure). A direct current(dc) electrically driven submersible pump was observed to produce H2 and was not suitable for measuring H2 in groundwater. Measurements from two field sites indicate that iron or steel well casings, produce H2, which masks H2 concentrations in groundwater. PVC-cased wells or wells cased with other materials that do not produce H2 are necessary for measuring H2 concentrations in groundwater.Several practical considerations for measuring concentrations of dissolved molecular hydrogen in groundwater including sampling methods, pumping methods, and effects of

  18. Calibrating a long-term meteoric 10Be accumulation rate in soil

    Science.gov (United States)

    Reusser, Lucas; Graly, Joseph; Bierman, Paul; Rood, Dylan

    2010-10-01

    Using 13 samples collected from a 4.1 meter profile in a well-dated and stable New Zealand fluvial terrace, we present the first long-term accumulation rate for meteoric 10Be in soil (1.68 to 1.72 × 106 at/(cm2·yr)) integrated over the past ˜18 ka. Site-specific accumulation data, such as these, are prerequisite to the application of meteoric 10Be in surface process studies. Our data begin the process of calibrating long-term meteoric 10Be delivery rates across latitude and precipitation gradients. Our integrated rate is lower than contemporary meteoric 10Be fluxes measured in New Zealand rainfall, suggesting that long-term average precipitation, dust flux, or both, at this site were less than modern values. With accurately calibrated long-term delivery rates, such as this, meteoric 10Be will be a powerful tool for studying rates of landscape change in environments where other cosmogenic nuclides, such as in situ 10Be, cannot be used.

  19. Particle trajectories on hillslopes: Implications for particle age and 10Be structure

    Science.gov (United States)

    Anderson, Robert S.

    2015-09-01

    Many geomorphic systems act as conveyor belts onto which material is loaded at a particular rate and is transported in one direction toward another system that serves as a sink. As the material travels, it ages, it changes in grain size, it accumulates cosmogenic radionuclides, it adsorbs or releases nutrients, and it weathers. Here I address the hillslope conveyor. As many geochemical processes are depth-dependent, the depth history of a particle becomes important to know. I calculate soil particle trajectories in the horizontal-depth plane and address three cases, one in which horizontal speeds decline exponentially with depth, a second in which they are uniform with depth, and a third in which horizontal speeds are also uniform but all profile values are vertically well-mixed. Vertical speeds are governed by continuity in an incompressible medium and by the boundary condition of zero vertical particle speed at the soil surface. Particle trajectories must therefore become surface parallel at the surface. Knowledge of soil particle trajectories allows calculation of residence times and concentration profiles of 10Be in the soil. The results inform strategies for interpretation of nuclide concentrations in soils and stream sediments and for inference of transport rate profiles. In all steady cases, the particle age and 10Be structure are uniform with distance from the divide. When significant vertical gradients in horizontal speed occur, the patterns of particle age and of 10Be concentration are dominated by the depth scale of the transport process. In unmixed cases, the particle age and 10Be concentration in near-surface samples can greatly exceed the vertically averaged values, reflecting the fact that the vertical speeds of particles slow dramatically as they near the surface. In cases in which horizontal speed varies significantly with depth, the vertically averaged concentration of 10Be within the soil can significantly underpredict the mean 10Be concentration

  20. Reusable glucose fiber sensor for measuring glucose concentration in serum

    Institute of Scientific and Technical Information of China (English)

    Cheng-Chih Hsu; Yi-Cheng Chen; Ju-Yi Lee; Chyan-Chyi Wu

    2011-01-01

    We demonstrate a glucose fiber sensor for measuring glucose concentration in serum. High resolution and rapid measurement are achieved through the integration of highly selective enzymes and heterodyne interferometry. The best resolution and response time obtained are 0.14mg/dL and 1.3 s, respectively. The stability of the sensor is also verified by investigating the initial phase variation. Experimental results show that the fiber sensor can be reused more than 10 times.%We demonstrate a glucose fiber sensor for measuring glucose concentration in serum.High resolution and rapid measurement are achieved through the integration of highly selective enzymes and heterodyne interferometry.The best resolution and response time obtained are 0.14 mg/dL and 1.3 s,respectively.The stability of the sensor is also verified by investigating the initial phase variation.Experimental results show that the fiber sensor can be reused more than 10 times.Fiber sensors have attracted considerable attention over the past two decades.Various kinds of fiber sensors have been proposed for measnring specific chemical concentrations[1-8].Most previously reported methods[1-5] involved measuring the variations in fluorescence intensity[2-4] or transmitted light[3,4].Hence,avoiding the inflnence of snrrounding light and the use of expensive photon detection equipment are important requirements.Furthermore,procedures for manufacturing optical biosensors are complicated[3] and qualitv is difficult to control[4]..

  1. Market power in electricity markets: Beyond concentration measures

    International Nuclear Information System (INIS)

    The wave of electricity market restructuring both within the US and abroad has brought the issue of horizontal market power to the forefront of energy policy. Traditionally, estimation and prediction of market power has relied heavily on concentration measures. In this paper, the authors discuss the weaknesses of concentration measures as a viable measure of market power in the electricity industry, and they propose an alternative method based on market simulations that take advantage of existing plant level data. The authors discuss results from previous studies they have performed, and present new results that allow for the detection of threshold demand levels where market power is likely to be a problem. In addition, the authors analyze the impact of that recent divestitures in the California electricity market will have on estimated market power. They close with a discussion of the policy implications of the results

  2. Be2D: A model to understand the distribution of meteoric 10Be in soilscapes

    Science.gov (United States)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard

    2016-04-01

    force optimisation allows reliably parameter constraining, resulting in a good agreement between simulated and observed meteoric 10Be concentrations and inventories. Our simulations suggest that meteoric 10Be can be used as a tracer to unravel human impact on soil fluxes when soils have a high affinity to sorb meteoric 10Be.

  3. Radon concentration measurements in the desert caves of Saudi Arabia

    International Nuclear Information System (INIS)

    Beneath the harsh deserts of Saudi Arabia lie dark chambers and complex mazes filled with strange shapes and wondrous beauty. Radon concentration measurements have been carried out in the desert caves of Al-Somman Plateau in the Eastern Province of Saudi Arabia. Passive radon dosimeters, based on alpha particle etch track detectors with an inlet filter, were used in this study. A total of 59 dosimeters were placed in five caves for a period of six months. Out of 59 dosimeters, 37 could be collected for analysis. Measurements showed significant variations in radon concentrations in caves depending upon their natural ventilation. The results of the study show that the average radon concentration in the different caves ranges from 74 up to 451Bqm-3. The average radon concentration in four of the caves was low in the range 74-114Bqm-3. However, one cave showed an average radon concentration of 451Bqm-3. Radon is not a problem for tourists in the majority of caves. However, sometimes it may imply some limitation to the working time of guides

  4. Measurement of indoor radon concentration levels in Islamabad, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S.U.; Anwar, J. [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Matiullah [PD, PINSTECH Nilore, Islamabad (Pakistan)], E-mail: matiullah@pieas.edu.pk

    2008-08-15

    Indoor radon measurement survey has been carried out in properly selected houses of the city of Islamabad. In this regard, CR-39-based NRPB radon dosimeters were used. The dosimeters were installed at head heights in bedroom and living room of each house. For intercomparison purpose, houses having basements were also selected. In such houses, dosimeters were installed in basements, ground floor and first floor. All the dosimeters were exposed to radon for a period of three months. After exposure, CR-39 detectors were etched for 16 h in 6 M NaOH at 80{sup 0}C and were counted under an optical microscope. The observed track densities were then related to radon concentration levels using a calibration factor of 2.7trackscm{sup -2}h{sup -1}(kBqm{sup -3}){sup -1}. Measured indoor radon concentration levels were found to vary from 11 to 78Bqm{sup -3}. The average radon concentration levels in bedrooms and sitting/living rooms in basements were found to be 40 and 32Bqm{sup -3}, respectively. In bedrooms and living rooms, on ground floor, the average radon concentration levels were found to be 30 and 27Bqm{sup -3}, whereas on first floor the average values were 29 and 27Bqm{sup -3}, respectively. The radon concentration levels found in this study are below the action level recommended by the ICRP.

  5. Measurements of atmospheric carbon dioxide concentration above the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Voskresenskii, A.I.; Kamenogradskii, N.E.

    1984-01-01

    Changes in the composition of the atmosphere can have a destabilizing effect on the climate. One change is related to an increase in the concentration of carbon dioxide as a result of the combustion of organic fuels. The most effective procedures for monitoring the atmospheric carbon dioxide concentration are discussed, taking into account suitable analytic methods and the most appropriate locations for the conduction of the measurements. It is found that polar and oceanic regions are best suited for the performance of the considered measurements. The analytic procedure selected is based on a spectroscopic approach utilizing the absorption of solar radiation by carbon dioxide at a wavelength of 2.06 microns. A description is given of measurements conducted on Soviet expeditions to the Antarctic during the time from 1979 to 1981. The concentration of atmospheric carbon dioxide as a function of geographic latitude is shown in graphs, taking into account data for January, February, March, and April. Water vapor concentrations are also shown. 11 references.

  6. Ultrasonic spectrum for particle concentration measurement in multicomponent suspensions

    Science.gov (United States)

    Zhan, Xiaobin; Jiang, Shulan; Yang, Yili; Liang, Jian; Shi, Tielin; Li, Xiwen

    2016-02-01

    This paper studies the feasibility of applying the ultrasonic spectrum technique to the measurement of particle concentrations in multicomponent suspensions. A combination of the kernel partial least squares (KPLS) model and the interval selection methods is implemented to build the relationship between the ultrasonic spectra of the first reflected pulses and the particle concentrations. First of all, the interval selection methods are used to select optimal spectral interval(s) from full spectra. Then, the KPLS models with optimal spectral interval(s) are tuned, built and evaluated to obtain the optimal model. Finally, the optimal KPLS model is employed to measure the particle concentrations in the mixing process and its online prediction ability is evaluated. In comparison with the linear partial least squares (PLS) models, the optimal KPLS model shows the best performance. The results demonstrate that particle concentrations in multicomponent suspensions can be measured online by the ultrasonic spectrum technique, and the KPLS model with optimal spectral interval(s) shows the superiority in model calibration.

  7. Measurement of mean radon concentrations in the Tokai districts

    International Nuclear Information System (INIS)

    This paper describes an electrostatic integrating radon monitor designed for the environmental radon monitoring and longterm measurements of mean radon concentrations in outdoor and indoor air. The position of the collecting electrode within the monitor was determined based on the calculation of the internal electric field. The radon exchange rate between the monitor and the outside air through the filter was 0.75 h-1. The exchange rate can make the radon concentration inside the monitor to follow thoroughly the outside concentration. Since the electrostatic collection of RaA+ (218Po+) atoms depends on the humidity of the air, the inside of the monitor was dehumidified with a diphosphorus pentaoxide (P2O5) drying agent which is powerful and dose not absorb radon gas. From the relationship between track density and radon exposure, the calibration factor was derived to be 0.52 ± 0.002 tracks cm-2 (Bq m-3 h)-1. The detection limit of mean radon level is 1.2 Bq m-3 for an exposure time fo 2 months. The mean radon concentrations in various environments were measured through the year using the monitors this developed. The annual mean outdoor radon level in the Tokai districts was 7.0 Bq m-3. The mean radon concentrations was found to vary from 3.5 to 11.7 Bq m-3 depending upon the geographical conditions even in this relatively small region. The annual indoor radon concentrations at Nagoya and Sapporo ranged from 6.4 to 11.9 Bq m-3 and from 15.5 to 121.1 Bq m-3, respectively, with the type of building material and the ventilation rate. The mean radon concentrations in tightly built houses selected at Sapporo are about 10 times as high as those in drafty houses at Nagoya. (author)

  8. Radon concentration measurements in the AMASRA coal mine, Turkey

    International Nuclear Information System (INIS)

    In this study, the results of atmospheric radon measurements that were performed for the Amasra underground coal mine in Zonguldak bituminous coal basin (Turkey) are presented. The radon measurements were performed for 40 days between November 2004 and December 2004 using passive nuclear etched track detectors. The radon concentrations vary from a minimum value 49 Bq m-3 in a site located at +40 m to a maximum value 223 Bq m-3 in a site located at -100 m. Mean concentration is 117 (Bq m-3). This value is well below the action level of 500-1500 Bq m-3 recommended by the International Commission on Radiological Protection (ICRP) (1993). The mean effective dose value for workers of this mine of 3.4 μSv per day was obtained. This result shows that protection against radiological hazards would not be necessary for workers of this mine(2). (authors)

  9. Laser metrology in fluid mechanics granulometry, temperature and concentration measurements

    CERN Document Server

    Boutier, Alain

    2013-01-01

    In fluid mechanics, non-intrusive measurements are fundamental in order to improve knowledge of the behavior and main physical phenomena of flows in order to further validate codes.The principles and characteristics of the different techniques available in laser metrology are described in detail in this book.Velocity, temperature and concentration measurements by spectroscopic techniques based on light scattered by molecules are achieved by different techniques: laser-induced fluorescence, coherent anti-Stokes Raman scattering using lasers and parametric sources, and absorption sp

  10. EVIDENCE FOR MULTIPLE SOURCES OF {sup 10}Be IN THE EARLY SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wielandt, Daniel; Krot, Alexander N.; Bizzarro, Martin [Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350 (Denmark); Nagashima, Kazuhide; Huss, Gary R. [Hawai' i Institute of Geophysics and Planetology, University of Hawai' i at Manoa, HI 96822 (United States); Ivanova, Marina A. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow 119991 (Russian Federation)

    2012-04-01

    Beryllium-10 is a short-lived radionuclide (t{sub 1/2} = 1.4 Myr) uniquely synthesized by spallation reactions and inferred to have been present when the solar system's oldest solids (calcium-aluminum-rich inclusions, CAIs) formed. Yet, the astrophysical site of {sup 10}Be nucleosynthesis is uncertain. We report Li-Be-B isotope measurements of CAIs from CV chondrites, including CAIs that formed with the canonical {sup 26}Al/{sup 27}Al ratio of {approx}5 Multiplication-Sign 10{sup -5} (canonical CAIs) and CAIs with Fractionation and Unidentified Nuclear isotope effects (FUN-CAIs) characterized by {sup 26}Al/{sup 27}Al ratios much lower than the canonical value. Our measurements demonstrate the presence of four distinct fossil {sup 10}Be/{sup 9}Be isochrons, lower in the FUN-CAIs than in the canonical CAIs, and variable within these classes. Given that FUN-CAI precursors escaped evaporation-recondensation prior to evaporative melting, we suggest that the {sup 10}Be/{sup 9}Be ratio recorded by FUN-CAIs represents a baseline level present in presolar material inherited from the protosolar molecular cloud, generated via enhanced trapping of galactic cosmic rays. The higher and possibly variable apparent {sup 10}Be/{sup 9}Be ratios of canonical CAIs reflect additional spallogenesis, either in the gaseous CAI-forming reservoir, or in the inclusions themselves: this indicates at least two nucleosynthetic sources of {sup 10}Be in the early solar system. The most promising locale for {sup 10}Be synthesis is close to the proto-Sun during its early mass-accreting stages, as these are thought to coincide with periods of intense particle irradiation occurring on timescales significantly shorter than the formation interval of canonical CAIs.

  11. Orbital forcing of the East Asian summer monsoon based on quantitative paleorainfall records from Chinese Loess using 10Be

    Science.gov (United States)

    Beck, W.; White, L.; Cheng, L.; Wu, Z.; zhou, W.; Kong, X.

    2013-12-01

    Here we outline a method for deriving quantitative records of paleoprecipitation using meteoric 10Be flux as recorded in Quaternary loess sediments, and apply this method to derive a ~500ka rainfall record from Chinese loess. The method involves measuring loess 10Be concentration by AMS, then applying corrections for radioactive decay, recycled 10Be in reaerosolized dust, and for variations in geomagnetic field to correct for atmospheric 10Be production rate variations. 10Be flux is calculated by multiplying the corrected 10Be concentrations with loess accumulation rate, where the later is derived from a (non-orbitally tuned) timescale determined from correlating variations in loess magnetic susceptibility with U/Th dated Chinese speleothem δ18O records. The dependence of 10Be flux on rainfall rate is determined using modern observations of 7Be flux in rainfall, and atmospheric 10Be/7Be cosmogenic nuclide production ratios. Modern rainfall on the Chinese Loess Plateau has been shown to be primarily a function of East Asian Summer Monsoon (EASM) intensity. Our 10Be rainfall proxy shows that glacial to peak interglacial rainfall rates in this region have varied by about a factor of two over the last 0.5 Ma. Our results suggests EASM intensity during interglacials MIS11, MIS 9c and MIS13 were all comparable (~850 mm/yr), but slightly less (by ~8%) than for MIS1, and about 15% less than for MIS5e, which is similar to the high latitude ice volume pattern of response except for MIS11. We note that the 10Be rainfall record of MIS13 differs from typical Chinese loess magnetic susceptibility records that suggest MIS13 was the strongest EASM of the last 6 interglacials. Our record instead indicates a relative subdued MIS13 EASM, more consistent with the Antarctic EPICA ice core deuterium or marine δ18O records. We correlate our results with orbital forced solar insolation variations at high and low latitudes as well as with interhemispheric insolation gradients. We find

  12. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    Science.gov (United States)

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco

    2016-01-01

    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude. PMID:26361271

  13. Ambient sesquiterpene concentration and its link to air ion measurements

    Directory of Open Access Journals (Sweden)

    B. Bonn

    2006-12-01

    Full Text Available Ambient air ion size distributions have been measured continuously at the Finnish boreal forest site in Hyytiälä since spring 2003. In general, these measurements show a maximum of air ions below 1.0 nm in diameter. But this physical characterization does not provide any information about the ion's chemical composition, which is one key question regarding the explanation of nucleation events observed. In this study we propose a link of the observed maximum of negative air ions between 0.56 and 0.75 nm to the so-called stabilised Criegee biradical, formed in the reaction of biogenic sesquiterpenes with ozone and predominantly destroyed by its reaction with ambient water vapour. Calculations of the electron and proton affinities of 120 kJ mol−1 (1.24 eV and of 960 kJ mol−1 support this link. Other possible candidates such as sulphuric acid derived clusters are unable to explain the observations made. By using this approach, we are able to calculate the ambient concentration of sesquiterpenes at the air ion instrument inlet with a high time resolution on the daily and seasonal scale. The estimated concentration is found to reveal the same seasonal pattern as emission measurements conducted at shoot level. As expected for biogenic VOCs, the concentration is obtained highest during summer (maximum values of about 100 pptv and smallest during winter (minimum less than 1 pptv. Because of the sesquiterpenes high reactivity and its low ambient concentrations, this approach can be a first step in understanding their emission and their impact on atmospheric chemistry in more detail. The findings presented are highly relevant for emission budgets too, since boreal forests are extended over large areas of the globe.

  14. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    Science.gov (United States)

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco

    2016-01-01

    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude.

  15. Earth surface erosion and weathering from the 10Be (meteoric)/9Be ratio

    Science.gov (United States)

    von Blanckenburg, F.; Bouchez, J.; Wittmann, H.; Dannhaus, N.

    2012-12-01

    A perfect clock of the stability of the Earth surface is one that combines a first isotope the flux of which depends on the release rate during erosion, and a second isotope produced at constant rate. The ratio of the meteoric cosmogenic nuclide 10Be to stable 9Be is such a system. We provide a quantitative framework for its use. In a weathering zone some of the 9Be, present typically in 2.5ppm concentrations in silicate minerals, is released and partitioned between a reactive phase (adsorbed to clay and hydroxide surfaces, given the high partition coefficients at intermediate pH), and into the dissolved phase. The combined mass flux of both phases is defined by the soil formation rate and a mineral dissolution rate - and is hence proportional to the chemical weathering rate and the denudation rate. At the same time, the surface of the weathering zone is continuously exposed to fallout of meteoric 10Be. This 10Be percolates into the weathering zone where it mixes with dissolved 9Be. Both isotopes may exchange with the adsorbed Be, given that equilibration rate of Be is fast relative to soil residence times. Hence a 10Be/9Be(reactive) ratio results in soils from which the total denudation rate can be calculated. A prerequisite is that the flux of meteoric 10Be is known from field experiments or from global production models [1], that the 9Be concentration in bedrock (mostly 2.5ppm) is known [2], and that the reactive Be can be chemically extracted from soil or sediment [3]. In rivers, when reactive Be and dissolved Be equilibrate, a catchment-wide denudation rate can be determined from both sediment and a sample of filtered river water, where the sediment 10Be/9Be ratio is independent of grain size. We have tested this approach in sediment-bound Be and dissolved Be in water of the Amazon and Orinoco basin. The reactive Be was extracted from sediment by combined hydroxylamine and HCl leaches [2]. In the Amazon trunk stream, the Orinoco, Apure, and La Tigra river 10Be

  16. Constraints on the sedimentation history of San Francisco Bay from 14C and 10Be

    Science.gov (United States)

    VanGeen, A.; Valette-Silver, N. J.; Luoma, S.N.; Fuller, C.C.; Baskaran, M.; Tera, F.; Klein, J.

    1999-01-01

    Industrialization and urbanization around San Francisco Bay as well as mining and agriculture in the watersheds of the Sacramento and San Joaquin rivers have profoundly modified sedimentation patterns throughout the estuary. We provide some constraints on the onset of these erosional disturbances with 10Be data for three sediment cores: two from Richardson Bay, a small embayment near the mouth of San Francisco Bay, and one from San Pablo Bay, mid-way between the river delta and the mouth. Comparison of pre-disturbance sediment accumulation determined from three 14C-dated mollusk shells in one Richardson Bay core with more recent conditions determined from the distribution of 210Pb and 234Th [Fuller, C.C., van Geen, A., Baskaran, M, Anima, R.J., 1999. Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 239,240Pu.] shows that the accumulation rate increased by an order of magnitude at this particular site. All three cores from San Francisco Bay show subsurface maxima in 10Be concentrations ranging in magnitude from 170 to 520 x 106 atoms/g. The transient nature of the increased 10Be input suggests that deforestation and agricultural develop- ment caused basin-wide erosion of surface soils enriched in 10Be. probably before the turn of the century.

  17. Reactive and dissolved meteoric 10Be/9Be ratios in the Amazon basin

    Science.gov (United States)

    Wittmann, Hella; Dannhaus, Nadine; von Blanckenburg, Friedhelm; Bouchez, Julien; Suessenberger, Annette; Guyot, Jean-Loup; Maurice, Laurence; Filizola, Naziano; Gaillardet, Jerome; Christl, Marcus

    2014-05-01

    Recently, the ratio of the meteoric cosmogenic nuclide 10Be to stable 9Be has been established as a weathering and erosion proxy where meteoric 10Be/9Be ratios in reactive phases of secondary weathering products leached from detrital Amazonian river sediment were measured[1]. For this dataset, we derived a new 10Be-based mass balance, which compares the fluxes exported during erosion and weathering, Fout, calculated by the sum of [10Be]reac multiplied by gauging-derived sediment discharge and [10Be]dissmultiplied by water discharge, to the meteoric depositional flux Fin. This assessment allows evaluating the weathering state of the Amazon basin. Further, in order to assess equilibration of reactive phases in the water column, we measured (10Be/9Be)reac ratios leached from suspended sediments for two depth profiles of the Amazon (55m depth) and Madeira (12m depth) Rivers, their corresponding surface dissolved 10Be/9Be ratios, as well as dissolved ratios of smaller Amazon tributaries (Beni, Madre de Dios) to compare with published reactive ratios[1]. In these rivers, modest pH and salinity fluctuations help to constrain a 'simple' system that might however still be affected by seasonally changing isotopic compositions between water and suspended sediment[2] and seasonal fluctuations of TSS and TDS[3]. The 10Be-based mass balance shows that in Andean source areas Fout/Fin ≡1, indicating a balance between ingoing and exported flux, whereas in the Shield headwaters, Fout/Fin=0.3, indicating a combination of decay of 10Be during storage and little export of 10Be associated with particulate and dissolved loads. In central Amazonia, the export of 10Be decreases slightly relative to its atmospheric flux as evidenced by Fout/Fin=0.8 for the Amazon and Madeira Rivers. This value is interpreted as being close to steady state, but its modification could be due to additions of Shield-derived sediment to sediment carried in the main river[4]. Regarding the depth profiles, our

  18. Headwall erosion rates from cosmogenic (10) Be in supraglacial debris, Chhota Shigri Glacier, Indian Himalaya

    Science.gov (United States)

    Scherler, Dirk; Egholm, David

    2016-04-01

    Debris-covered glaciers are widespread within the Himalaya and other steep mountain ranges. They testify to active erosion of ice-free bedrock hillslopes that tower above valley glaciers, sometimes more than 1 km high. It is long known that debris cover significantly reduces surface ablation rates and thereby influences glacial mass balances; but its dynamic evolution along with climatic and topographic changes is poorly studied. Better understanding the coupling of ice-free bedrock hillslopes and glaciers in steep mountains requires means to assess headwall erosion rates. Here, we present headwall erosion rates derived from 10Be concentrations in the ablation-dominated medial moraine of the Chhota Shigri Glacier, Indian Himalaya. We combine our empirical, field-based approach with a numerical model of headwall erosion and glacial debris transport to assess permissible patterns of headwall erosion on the ice-free bedrock hillslopes surrounding the Chhota Shigri Glacier. Our five samples, each separated by approximately 500 m along the glacier, consist of an amalgamation of >1000 surface clasts with grain sizes between ˜1 and ˜30 mm that were taken from the medial moraine. Our results show that 10Be concentrations increase downglacier from ˜3×104 to ˜6×104 atoms g‑1, yielding headwall erosion rates of ˜1.3-0.6 mm yr‑1. The accumulation of 10Be during debris residence on the ice surface can only account for a small fraction (cracking, e.g., spatially uniform versus temperature dependent.

  19. Direct measurement of surface carbon concentrations for lunar soil breccias

    Science.gov (United States)

    Filleux, C.; Spear, R. H.; Tombrello, T. A.; Burnett, D. S.

    1978-01-01

    A nuclear reaction depth profiling technique previously described by Filleux et al. (1977) has been used to measure the depth distribution of C on grain surfaces for Apollo 11, 15, 16 and 17 soil breccias. The surface C concentration of all samples studied lies between 2 and 8 times 10 to the 15th atoms per sq cm, showing no correlation with the volume C, which varies over an order of magnitude. If the observed variation represents the presence of unexposed grains on the surfaces studied, these results indicate a steady state surface C concentration of 5 to 10 times 10 to the 15th atoms per sq cm, accumulated over a time scale short compared with that required for the formation of volume-related C and with the mean lifetime of grains at the lunar surface. About one-third to one-half of the total C in lunar soil seems to be surface-correlated.

  20. Detection of erosion events using 10Be profiles: example of the impact of agriculture on soil erosion in the Chesapeake Bay area (U.S.A.)

    Science.gov (United States)

    Valette-Silver, J. N.; Brown, L.; Pavich, M.; Klein, J.; Middleton, R.

    1986-01-01

    10Be concentration, total carbon and grain-size were measured in cores collected in undisturbed estuarine sediments of three tributaries of the Chesapeake Bay. These cores were previously studied by Davis [1] and Brush [2,3] for pollen content, age and sedimentation rate. In this work, we compare the results obtained for these various analyses. In the cores, we observed two increases in 10Be concentration concomitant with two major changes in the pollen composition of the sediments. These two pollen changes each correspond to well-dated agricultural horizons reflecting different stages in the introduction of European farming techniques [2]. In the Chesapeake Bay area, the agricultural development, associated with forest clearing, appears to have triggered the erosion, transport, and sedimentation into the river mouths of large quantities of 10Be-rich soils. This phenomenon explains the observed rise in the sedimentation rate associated with increases in agricultural land-use. ?? 1986.

  1. Energy yield determination of concentrator solar cells using laboratory measurements

    Science.gov (United States)

    Geisz, John F.; García, Iván; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-01

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  2. Spectrally-resolved measurement of concentrated light distributions for Fresnel lens concentrators.

    Science.gov (United States)

    Besson, P; White, P McVey; Dominguez, C; Voarino, P; Garcia-Linares, P; Lemiti, M; Schriemer, H; Hinzer, K; Baudrit, M

    2016-01-25

    A test method that measures spectrally resolved irradiance distribution for a concentrator photovoltaic (CPV) optical system is presented. In conjunction with electrical I-V curves, it is a means to visualize and characterize the effects of chromatic aberration and nonuniform flux profiles under controllable testing conditions. The indoor characterization test bench, METHOD (Measurement of Electrical, Thermal and Optical Devices), decouples the temperatures of the primary optical element (POE) and the cell allowing their respective effects on optical and electrical performance to be analysed. In varying the temperature of the POE, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle and multi-junction current matching profiles can be quantified. This work presents the calibration procedures to accurately image the spectral irradiance distribution of a CPV system and a study of system behavior over lens temperature. PMID:26832591

  3. Synchronizing the North American Varve Chronology with Greenland ice core records using meteoric 10Be flux

    Science.gov (United States)

    DeJong, B.; Balco, G.; Ridge, J. C.; Rood, D. H.; Bierman, P. R.

    2012-12-01

    with the 11-year solar cycle. Second, we are investigating seasonal variability in 10Be concentrations in individual varves to learn about 10Be transport and deposition in proglacial lakes. Third, we will generate a long record of 10Be concentrations at decadal resolution for comparison with similar ice core records.

  4. Measurement of interstitial cetirizine concentrations in human skin

    DEFF Research Database (Denmark)

    Petersen, Lars Jelstrup; Church, M K; Rihoux, J P;

    1999-01-01

    BACKGROUND: The purpose of the present study was to measure the concentrations of cetirizine in the extracellular water compartment in intact human skin and assess simultaneously inhibition of histamine-induced wheal and flare reactions. METHODS: Skin cetirizine levels were collected...... cetirizine levels increased within 30 min to reach peak values of 315+/-10 and 786+/-45 ng/ml 90-120 min after administration of 10 and 20 mg of cetirizine. This was followed by a slow decline. In the skin, dialysate cetirizine levels (non-protein-bound fraction only) peaked at 1.6+/-0.1 and 2.4+/-0.3 ng....../ml at 120-180 min. In vivo recovery of cetirizine was 14.4+/-4.3%. It was estimated that the non-protein-bound concentration of cetirizine in the skin was 50-70% of corresponding plasma values. Both 10- and 20-mg doses of cetirizine inhibited wheal and flare reactions over 240 min. The time vs concentration...

  5. Measurements of thoron and radon progeny concentrations in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Liu Cuihong; Guo Qiuju [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China)], E-mail: qjguo@pku.edu.cn

    2008-12-15

    It has been reported that thoron levels in China are above the world average and may therefore make a significant contribution to the natural background radiation dose. We therefore conducted a pilot study of concentrations of both thoron and radon progeny during the spring of 2006 in the Beijing area, China. A new type of portable 24 h integrating monitor with a CR-39 detector was used during the survey. Seventy dwellings and eight outdoor sites were measured during the survey. For country houses built of red bricks and slurry, the average equilibrium equivalent concentrations (EEC) of thoron and radon were 1.02 {+-} 0.48 and 16.41 {+-} 9.02 Bq m{sup -3}, respectively, whereas for city dwellings built of cement blocks and floor slabs, the results were 0.48 {+-} 0.47 and 11.50 {+-} 6.99 Bq m{sup -3} for thoron and radon, respectively. For outdoor air, concentrations of thoron and radon progeny were 0.29 {+-} 0.28 and 7.05 {+-} 2.68 Bq m{sup -3}, respectively. Radiation exposures from thoron and radon progeny were also evaluated; the ratio of dose contribution from thoron progeny to that of radon progeny was evaluated to be 28% and 17% in country houses and city dwellings, respectively. (note)

  6. The ICOS Ecosystem protocol for gas concentration measurements

    Science.gov (United States)

    Aubinet, Marc; Papale, Dario

    2014-05-01

    This research was initiated in the frame of the ICOS Ecosystem Thematic Center. The aim of ICOS is to provide long term high precision observations required to understand the present state and to predict future behavior of the global carbon cycle and greenhouse gas emissions. Observations will be made through high precision network of stations measuring greenhouse gas fluxes from ecosystems and oceans and greenhouse gas concentrations in the atmosphere. In a long term monitoring infrastructure like the ICOS Ecosystem network, it is crucial to ensure maximum comparability between sites and, for this reason, it is strongly suggested to highly standardize methods and sensors where the knowledge about systematic and random differences between different approaches is not yet fully known, in particular in the medium-long term time range. Long term measurements of trace gas fluxes exchanged by ecosystem require the use of the eddy covariance technique for which gas analyzers are, similarly to sonic anemometers, key elements. However, neither an international standard nor a list of requisites for sensors does exist yet. This presentation focuses thus on the protocol for high frequency gas concentration using infrared gas analyzers. It results from discussions that were brought among the Working group on Eddy covariance fluxes and Storage measurements established by the ICOS Ecosystem Thematic Center and implied about 70 scientists and field workers. The protocol includes a definition of the variable and of the measurement method (infrared gas analyzer), instructions concerning the system conditioning (gas sampling system description including pump, tube, filter dimensioning), sensor calibration and maintenance and finally required data format.

  7. Spatial patterns of mobile regolith thickness and meteoric 10Be in the Boulder Creek Critical Zone Observatory, Front Range, Colorado

    Science.gov (United States)

    Shea, N.; Ouimet, W. B.; Dethier, D. P.; Bierman, P. R.; Rood, D. H.

    2012-12-01

    The Boulder Creek Critical Zone Observatory (BcCZO) aims to understand the history, architecture and evolution of hillslopes found within the diverse topography and climate regimes of the Colorado Front Range. This information is crucial for testing and developing models of hillslope evolution, giving especial consideration to the production and downslope transport of mobile regolith on the hillslopes. Here, we present the results of a systematic study aiming to document spatial patterns of mobile regolith thickness and meteoric Beryllium-10 (10Be) concentrations in the Gordon Gulch basin of the BcCZO. Gordon Gulch lies within the unglaciated portion of the Colorado Front Range and is thought to be an artifact of long-term steady state evolution. The basin is characterized by mixed bedrock-soil mantled hillslopes, with intermittent bedrock outcrops (tors) on ~10% of slopes. It is currently unclear how the hillslopes of Gordon Gulch have evolved given the variable rock type and strength (i.e., fracture spacing), gradients (steep slopes in lower basin compared to gradual in the upper), and hillslope aspects (north versus south facing hillslopes, with varying tree types and soil moisture for frost cracking and heaving) that exist within the basin. Furthermore, climate data suggest that the current climate regime (relatively warm) is representative of only 20% of the last 65 ka. Mobile regolith thickness measurements provide a snapshot of hillslope evolution in the basin given these controls, and meteoric 10Be can used to constrain residence times and trace mobile regolith transport. We measure mobile regolith thickness as the depth to immobile weathered bedrock and/or saprolite. Preliminary analysis of over 200 soil pits reveals a high degree of variability in mobile regolith thickness. In general, the mobile regolith cover is thinner on the south facing slopes than the north facing and a general thickening of mobile regolith occurs on steeper slopes, especially along

  8. Clustering in non-self-conjugate nuclei 10Be and 18O

    International Nuclear Information System (INIS)

    Clustering phenomena in 10Be and 18O were studied by means of resonance elastic scattering of α-particles on 6He and 14C. Excitation functions for α+6He and α+14C were measured and detailed R-matrix analyses of the excitation functions was performed. We compare the experimental results with the predictions of modern theoretical approaches and discuss properties of cluster rotational bands

  9. Fluorescence lifetime measurements of boronate derivatives to determine glucose concentration

    Energy Technology Data Exchange (ETDEWEB)

    Gable, J H

    2000-06-01

    A novel investigation into the fluorescence lifetimes of molecules, both established and newly designed, was performed. These molecules are the basis of a continuous, minimally invasive, glucose sensor based on fluorescence lifetime measurements. This sensor, if coupled with an automated insulin delivery device, would effectively create an artificial pancreas allowing for the constant monitoring and control of glucose levels in a person with diabetes. The proposed sensor includes a fluorescent molecule that changes its' fluorescence properties upon binding selectively and reversibly to glucose. One possible sensor molecule is N-methyl-N-(9-methylene anthryl)-2-methylenephenylboronic acid (AB). The fluorescence intensity of AB was shown to change in response to changing glucose concentrations. (James, 1994) James proposed that when glucose binds to AB the fluorescence intensity increases due to an enhancement of the N{yields}B dative bond which prevents photoinduced electron transfer (PET). PET from the amine (N) to the fluorophore (anthracene) quenches the fluorescence. The dative bond between the boron and the amine can prevent PET by involving the lone pair of electrons on the amine in interactions with the boron rather than allowing them to be transferred to the fluorophore. Results of this research show the average fluorescence lifetime of AB also changes with glucose concentration. It is proposed that fluorescence is due to two components: (1) AB with an enhanced N{yields}B interaction, and no PET, and (2) AB with a weak N{yields}B interaction, resulting in fluorescence quenching by PET. Lifetime measurements of AB as a function of both the pH of the solvent and glucose concentration in the solution were made to characterize this two component system and investigate the nature of the N{yields}B bond. Measurements of molecules similar to AB were also performed in order to isolate behavior of specific AB constituents. These molecules are 9

  10. Guarded capacitance probes for measuring particle concentration and flow

    Science.gov (United States)

    Louge, Michel Y.

    1995-01-01

    Guarded capacitance probe structures are constructed with guard electrodes surrounding one or more sensor electrodes and ground electrodes or grounded surfaces surrounding the guard electrodes. In a one sensor embodiment, the probe utilizes an apertured sensor electrode and the guard electrode both surrounds the sensor electrode and fills the aperture. This embodiment is particularly useful for measuring particle concentration in a fluid suspension contained within a vessel or pipe. The portion of the guard electrode within the aperture of the sensor electrode prevents electric field lines from emanating from the sensor electrode into the fluid suspension and toward infinity. A two sensor embodiment of the probe is useful for measuring flow velocities of fluid suspensions through cross correlation of the outputs generated by each sensor. The relative dimensions of the guard and sensor electrodes are selected to provide the most accurate measurements by confining the electric lines emanating from the sensor electrode or electrodes and terminating on the surrounding grounded surfaces to a small measurement volume of the fluid suspension near the vessel or pipe wall.

  11. Meteoric 10Be in volcanic materials and its behavior during acid-leaching

    Science.gov (United States)

    Shimaoka, Akiko; Sakamoto, Minoru; Hiyagon, Hajime; Matsuzaki, Hiroyuki; Kaneoka, Ichiro; Imamura, Mineo

    2004-08-01

    We have investigated the chemical and isotopic behavior of beryllium (Be) during acid leaching for removing meteoric 10Be in volcanic samples. Determination of the Be isotopic ratio in the leachate was carried out using accelerator mass spectrometry (AMS) and inductivity coupled plasma mass spectrometer (ICP-MS). Elemental distribution of Be and other incompatible elements including boron (B) were also examined by ion microprobe (SIMS) for a deeper understanding of their chemical behavior in volcanic samples. SIMS analysis show that Be is concentrated in the groundmass together with B. However, the behavior of their elements during acid leaching is quite different. The Be concentration decreases through progressive leaching, while the concentration of B remains constant. Furthermore, the variation in the Be isotopic ratio after acid leaching is different between the two samples, neither of which has altered minerals under microscopic observation. It is demonstrated that meteoric 10Be resides in a rather narrow region of the rock and can be removed by acid leaching with minimum loss of the main host phase of Be.

  12. Hillslope lowering rates and mobile-regolith residence times from in situ and meteoric 10Be analysis: Boulder Creek Critical Zone Observatory, Colorado

    Science.gov (United States)

    Foster, M. A.; Anderson, R. S.; Wyshnytzky, C.; Ouimet, W. B.; Dethier, D. P.

    2014-12-01

    Mobile regolith is produced as weathered saprolite is entrained into the mobile layer. The rate of mobile-regolith production and its residence time on hillslopes shapes the topography and evolution of hillslopes. We calculate the production rate of mobile regolith and the mobile-regolith residence times on active hillslopes in Gordon Gulch, within the Boulder Creek Critical Zone Observatory (CZO), Colorado. We find mobile-regolith production rates (average 3.1 cm/ka) and residence times (average 10-20 ka) derived from both in situand meteoric methods agree. Lowering-rates derived from our study are also comparable to basin-averaged denudation rates for small basins in the Colorado Front Range (Dethier and Lazarus, 2006). In this study, we have measured both in situ and meteoric 10Be in saprolite and mobile regolith separately. We find that, on average, two-thirds of in situ 10Be is produced within saprolite, and that at least one-tenth of the meteoric 10Be inventories are stored in saprolite. In the case of in situ 10Be, this simply reflects the exponential fall-off in production rates through a thin mobile-regolith cover. In the case of meteoric 10Be, our calculations suggest that >40% of the meteoric 10Be deposition occurs within the saprolite. Most studies that utilize 10Be report residence times and soil-production rates based on concentrations in either the mobile regolith or saprolite; therefore, our 10Be data highlight the importance of clearly identifying mobile and immobile portions of the regolith, constraining its 10Be inventory, and use of consistent terminology for the mobile-layer.

  13. Cosmogenic 10Be: A critical view on its widespread dominion in geosciences

    Indian Academy of Sciences (India)

    D Lal

    2000-03-01

    The radionuclide 10Be (half-life 9 1:5 my), produced naturally in the Earth's atmosphere by nuclear interactions of cosmic rays, was sought in ocean sediments in the late fifties, considering its potential usefulness as a radiotracer for dating sediments. 10Be was discovered independently by two groups, one in India and the other in the USA, and used only for dating marine sediments and manganese nodules until the seventies. Subsequently, as a result of a technical advance resulting in the improvement in the sensitivity of measurement of 10Be by about a factor of 106, there was a global rush to measure this nuclide in most materials participating in the physical, chemical and biological processes in the dynamic geosphere. This paper outlines the reasons for this ``isotope rush'', and the lessons learned from these studies. I also present my personal views of the special attractive features of this nuclide on the one hand, and on the other, the pitfalls or the wrong message this nuclide could convey!

  14. Principles of measuring free thyroid hormone concentrations in serum

    International Nuclear Information System (INIS)

    In the first part of this article, an overview of the present status of the 'free hormone concept' has been presented, and the conclusion drawn that - at the present time - the notion that free hormone concentrations in blood govern a hormone's physiological effects may represent an oversimplification. In the second, a brief review of the fundamental principles of some traditional methods of free hormone measurement has been offered, along with those of the newer radioimmunoassays. It is shown that, in particular, the labelled analogue assays do not operate in accordance with the principles claimed by the manufacturers, and cannot in their present form be regarded or described as genuine free hormone assay methods. The assertion underlies the many diagnostic problems and anomalies that have attented their use. (orig.)

  15. Measurement Limits to $^{134}$Cs Concentration in Soil

    CERN Document Server

    Ahn, J K; Lee, H M; Kim, T H; Park, J N; Kang, Y S; Lee, H S; Kim, S J; Park, J Y; Ryu, S Y; Kim, H Ch; Kang, W G; Kim, S K

    2009-01-01

    We investigate the caesium concentrations in soils in mountain areas near Gori nuclear power plant in Korea, focusing on the measurement limits to the $^{134}\\mathrm{Cs}$. In order to lower the minimum detectable amount (MDA) of activity for the $134}\\mathrm{Cs}$, we have used the ammonium molybdophosphase (AMP) precipitation method to get rid of the $^{40}$K existing in natural radioactivity, which reduces the MDA of activity about ten times smaller than those without the AMP precipitation method. The MDA results for the $^{134}\\mathrm{Cs}$ were found to be in the range between 0.015 and 0.044 Bq/kg-dry weight. In order to diminish the background, we also have measured a part of the soil samples in Yangyang, a small town in the east coast of Korea. However, it turns out that in order to detect the $^{134}\\mathrm{Cs}$ in the samples the MDA should be reduced to the level of mBq/kg-dry weight.

  16. Measurement of intracellular oxygen concentration during photodynamic therapy in vitro.

    Science.gov (United States)

    Weston, Mark A; Patterson, Michael S

    2014-01-01

    A technique is introduced that monitors the depletion of intracellular ground state oxygen concentration ([(3)O(2)]) during photodynamic therapy of Mat-LyLu cell monolayers and cell suspensions. The photosensitizer Pd(II) meso-tetra(4-carboxyphenyl)porphine (PdT790) is used to manipulate and indicate intracellular [(3)O(2)] in both of the in vitro models. The Stern-Volmer relationship for PdT790 phosphorescence was characterized in suspensions by flowing nitrogen over the suspension while short pulses of 405 nm light were used to excite the sensitizer. The bleaching of sensitizer and the oxygen consumption rate were also measured during continuous exposure of the cell suspension to the 405 nm laser. Photodynamic therapy (PDT) was conducted in both cell suspensions and in cell monolayers under different treatment conditions while the phosphorescence signal was acquired. The intracellular [(3)O(2)] during PDT was calculated by using the measured Stern-Volmer relationship and correcting for sensitizer photobleaching. In addition, the amount of oxygen that was consumed during the treatments was calculated. It was found that even at large oxygen consumption rates, cells remain well oxygenated during PDT of cell suspensions. For monolayer treatments, it was found that intracellular [(3)O(2)] is rapidly depleted over the course of PDT.

  17. Simulating the mobility of meteoric 10Be in the landscape through a coupled soil-hillslope model (Be2D)

    Science.gov (United States)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Baken, Stijn; Smolders, Erik; Govers, Gerard

    2016-04-01

    Meteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103-105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009; West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.

  18. Marine biogeochemistries of Be and Al: A study based on cosmogenic 10Be, Be and Al in marine calcite, aragonite, and opal

    Indian Academy of Sciences (India)

    Weiquan Dong; Devendra Lal; Barbara Ransom; Wolfgang Berger; Marc W Caffee

    2001-06-01

    The geochemical behaviors of Be and Al in ocean waters have been successfully studied in recent years using natural, cosmogenic, radioactive 10Be and 26Al as tracers. The present day dissolved concentrations and distribution of the stable and radioactive isotopes of Be and Al in ocean waters have revealed their short residence times and appreciable effects of exchange uxes at the coastal and ocean-sediment interfaces. It follows that concentrations of these particle-active elements must have varied in the past with temporal changes in climate, biological productivity and aeolian ux of continental detritus to the oceans. We therefore investigated the feasibility of extending the measurements of Be and Al isotope concentrations in marine systems to the 103-106 BP time scale. We report here the discovery of significant amounts of intrinsic Be and Al in marine foraminiferal calcite and coral aragonite, and of Al in opal (radiolarians) and aragonite (coral), which makes it possible to determine 10Be/Be and 26Al/Al in oceans in the past. We also report measured 10Be/9Be in foraminiferal calcite in Pacific Ocean cores, which reveal that the concentrations and ratios of the stable and cosmogenic isotopes of Be and Al have varied significantly in the past 30 ky. The implications of these results are discussed.

  19. Understanding complex exposure history of Mount Hampton, West Antarctica using cosmogenic 3He, 21Ne and 10Be in olivine

    Science.gov (United States)

    Carracedo, Ana; Rodes, Angel; Stuart, Finlay; Smellie, John

    2016-04-01

    Combining stable and radioactive cosmogenic nuclides is an established tool for revealing the complexities of long-term landscape development. To date most studies have concentrated on 21Ne and 10Be in quartz. We have combined different chemical protocols for extraction of cosmogenic 10Be from olivine, and measured concentrations in olivine from lherzolite xenoliths from the peak of Mount Hampton (~3,200 m), an 11 Ma shield volcano on the West Antarctic rift flank. We combine this data with cosmogenic 3He (and 21Ne) in the olivines in order to unravel the long-term environmental history of the region. The mean 3He/21Ne ratio (1.98 ± 0.22) is consistent with the theoretical value and previous determinations. 10Be/3He ratios (0.012 to 0.018) are significantly lower than the instantaneous production ratio (~0.045). The data are consistent with 1-3 Ma of burial. The altitude of the volcano rules out over-topping of the peak by the West Antarctic Ice Sheet only possible burial could be generated by the growth of an ice cap although this contradicts the absence of evidence for ice cover. The 3He-10Be data can also be generated during episodic erosion of the volcanic ash over the last few million years. The data requires a minimum depth of 1 to 2.5 m for the samples during a minimum age of 5 Ma and maximum long-term erosion rate of ~0.5 m/Ma with at least one erosive episode reflecting short-term erosion rate of ~7 m/Ma that would have brought the samples into the surface during the last ~350 ka. Erosion in this type of landscape could be related to interglacial periods where cryostatic erosion can occur generating an increase in the erosion rate. This study shows that episodic erosion can produce stable-radioactive cosmogenic isotope systematics that are similar to those generated by exposure-burial cycles.

  20. A non-intrusive measurement technique applying CARS for concentration measurement in a gas mixing flow

    CERN Document Server

    Yamamoto, Ken; Moriya, Madoka; Kuriyama, Reiko; Sato, Yohei

    2015-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscope system was built and applied to a non-intrusive gas concentration measurement of a mixing flow in a millimeter-scale channel. Carbon dioxide and nitrogen were chosen as test fluids and CARS signals from the fluids were generated by adjusting the wavelengths of the Pump and the Stokes beams. The generated CARS signals, whose wavelengths are different from those of the Pump and the Stokes beams, were captured by an EM-CCD camera after filtering out the excitation beams. A calibration experiment was performed in order to confirm the applicability of the built-up CARS system by measuring the intensity of the CARS signal from known concentrations of the samples. After confirming that the measured CARS intensity was proportional to the second power of the concentrations as was theoretically predicted, the CARS intensities in the gas mixing flow channel were measured. Ten different measurement points were set and concentrations of both carbon dioxide and nitrog...

  1. 10Be Content in Suevite Breccia from the Bosumtwi Impact Crater

    Science.gov (United States)

    Losiak, Anna; Wild, Eva Maria; Michlmayr, Leonard; Koeberl, Christian

    2013-04-01

    separated from the sample solution. 10Be/9Be ratios were measured at the Vienna Environmental Research Accelerator Facility (VERA) at the University of Vienna. Results: Most samples have 10Be/9Be ratios indistinguishable from the blank value within 2? uncertainty. Samples located just below the boundary between impactites and lake deposits have slightly elevated (1 ? significant) 10Be/9Be ratios. Discussion: The data suggest that none of the analyzed samples present in the suevitic breccia of the Bosumtwi crater come from the surficial layer (0-20 m) of the target. A very small amount of the 10Be present in the layer directly underneath the lake sediments suggests that those two deposits were very efficiently separated from each other. Possibly, this separation was caused by the uppermost impact fallback layer described by Koeberl et al. (2007). Acknowledgment: Supported by University of Vienna doctoral school IK-1045 (Planetology). References: [1] Melosh H.J. 1988. Impact Cratering, Oxford University Press, 256 pp.. [2] Serefiddin F. et al. 2007. Geochimica et Cosmochimica Acta 71: 1574-1582. [3] Son T.H. and Koeberl C. 2007. GFF 29: 161-176. [4] Artemieva N.A. 2000. In: Impacts in Precambrian Shields, Springer, pp. 257-276. [5] Puura V. et al. 2004. Meteoritics & Planetary Science 39: 425-451. [6] Reimold W.U., et al. 1992. Geology 20:1079-1082. [7] Koeberl C. et al. 2007. Meteoritics & Planetary Science 42: 483-511. [8] Koeberl C. et al. 2007. Meteoritics & Planetary Science 42: 709-729.

  2. Drivers of foraminiferal and bulk-sedimentary 10Be/9Be ratios in a marine sediment record offshore of sub-tropical Australia

    Science.gov (United States)

    Davies, M. H.; Abrajevitch, A.; Srncik, M.; Fifield, L. K.; De Deckker, P.; Heslop, D.; Roberts, A. P.

    2013-12-01

    Meteoric 10Be (half-life of ~1.5 My) is produced in the atmosphere via cosmic ray spallation of 16O, following which it is quickly transported to Earth's surface by precipitation. This process concentrates 10Be in the ocean, where it is thought to remain with a residence time of ~500-1000 years prior to export to the marine sedimentary record largely associated with sorption to the surface of settling clay particles. The bulk beryllium isotopic composition of marine clays hence reflects the convoluted factors of 10Be production and varying scavenging efficiency/terrigenous input. However, measurements of meteoric 10Be/9Be incorporated in the calcium carbonate tests of foraminifera (and hence presumably isolated from the dilution effects of sediment-bound terrigenous 9Be) may have the potential to provide useful chronological control for marine sediment records. Here we present 10Be/9Be results from a ~42 m-long sediment core collected off the NW coast of Australia (MD00-2361: 113°28.63‧E, 22°04.92‧S, 1805 m water depth). Measurements of δ18O on Globigerinoides ruber, supported by magnetostratigraphy, indicate that the record extends back >1.2 Ma. This independent chronology, in conjunction with excellent carbonate preservation at this site, allows preliminary evaluation of foraminiferal 10Be as a chronometer. We also evaluate the relationship between sedimentary 10Be/9Be ratios, regional surface ocean conditions as inferred from the δ18O stratigraphy and low-resolution Globigerinoides ruber Mg/Ca ratios, as well as large-scale changes in regional fluvial input as reconstructed from high-resolution XRF scanning profiles.

  3. Relationship between Hyperspectral Measurements and Mangrove Leaf Nitrogen Concentrations

    Directory of Open Access Journals (Sweden)

    Mark P. Wachowiak

    2013-02-01

    Full Text Available The use of spectral response curves for estimating nitrogen (N leaf concentrations generally has been found to be a challenging task for a variety of plant species. In this investigation, leaf N concentration and corresponding laboratory hyperspectral data were examined for two species of mangrove (Avicennia germinans, Rhizophora mangle representing a variety of conditions (healthy, poor condition, dwarf of a degraded mangrove forest located in the Mexican Pacific. This is the first time leaf nitrogen content has been examined using close range hyperspectral remote sensing of a degraded mangrove forest. Simple comparisons between individual wavebands and N concentrations were examined, as well as two models employed to predict N concentrations based on multiple wavebands. For one model, an Artificial Neural Network (ANN was developed based on known N absorption bands. For comparative purposes, a second model, based on the well-known Stepwise Multiple Linear Regression (SMLR approach, was employed using the entire dataset. For both models, the input data included continuum removed reflectance, band depth at the centre of the absorption feature (BNC, and log (1/BNC. Weak to moderate correlations were found between N concentration and single band spectral responses. The results also indicate that ANNs were more predictive for N concentration than was SMLR, and had consistently higher r2 values. The highest r2 value (0.91 was observed in the prediction of black mangrove (A. germinans leaf N concentration using the BNC transformation. It is thus suggested that artificial neural networks could be used in a complementary manner with other techniques to assess mangrove health, thereby improving environmental monitoring in coastal wetlands, which is of prime importance to local communities. In addition, it is recommended that the BNC transformation be used on the input for such N concentration prediction models.

  4. Reactions with a 10Be beam to study the one-neutron halo nucleus 11Be

    Science.gov (United States)

    Jones, K. L.

    2016-07-01

    Halo nuclei are excellent examples of few-body systems consisting of a core and weakly-bound halo nucleons. Where there is only one nucleon in the halo, as in 11Be, the many-body problem can be reduced to a two-body problem. The contribution of the 1s1/2 orbital to the ground state configuration in 11Be, characterized by the spectroscopic factor, S, has been extracted from direct reaction data by many groups over the past five decades with discrepant results. An experiment was performed at the Holifield Radioactive Ion Beam Facility using a 10Be primary beam at four different energies with the goal of resolving the discrepancy through a consistent analysis of elastic, inelastic, and transfer channels. Faddeev-type calculations, released after the publication of the experimental results, show that dynamic core excitation in the transfer process can lead to reduced differential cross sections at higher beam energies. This reduction would lead to the extraction of decreasing values of S with increasing beam energy. A 10Be(d,p) measurement at Ed greater than 25 MeV is necessary to investigate the effects of core excitation in the reaction.

  5. 10Be in late deglacial climate simulated by ECHAM5-HAM – Part 2: Isolating the solar signal from 10Be deposition

    Directory of Open Access Journals (Sweden)

    A. M. Smith

    2013-10-01

    Full Text Available This study investigates the effect of deglacial climate on the deposition of the solar proxy 10Be globally, and at two specific locations, the GRIP site at Summit, Central Greenland, and the Law Dome site in coastal Antarctica. The deglacial climate is represented by three 30 yr time slice simulations of 10 000 BP (years before present = 1950 CE, 11 000 BP and 12 000 BP, compared with a preindustrial control simulation. The model used is the ECHAM5-HAM atmospheric aerosol–climate model, driven with sea surface temperatures and sea ice cover simulated using the CSIRO Mk3L coupled climate system model. The focus is on isolating the 10Be production signal, driven by solar variability, from the weather or climate driven noise in the 10Be deposition flux during different stages of climate. The production signal varies on lower frequencies, dominated by the 11yr solar cycle within the 30 yr time scale of these experiments. The climatic noise is of higher frequencies. We first apply empirical orthogonal functions (EOF analysis to global 10Be deposition on the annual scale and find that the first principal component, consisting of the spatial pattern of mean 10Be deposition and the temporally varying solar signal, explains 64% of the variability. The following principal components are closely related to those of precipitation. Then, we apply ensemble empirical decomposition (EEMD analysis on the time series of 10Be deposition at GRIP and at Law Dome, which is an effective method for adaptively decomposing the time series into different frequency components. The low frequency components and the long term trend represent production and have reduced noise compared to the entire frequency spectrum of the deposition. The high frequency components represent climate driven noise related to the seasonal cycle of e.g. precipitation and are closely connected to high frequencies of precipitation. These results firstly show that the 10Be atmospheric production

  6. Preliminary study of 10Be/7Be in rainwater from Xi'an by Accelerator Mass Spectrometry

    CERN Document Server

    Zhang, Li

    2016-01-01

    The 10Be/7Be ratio is a sensitive tracer for the study of atmospheric transport, particularly with regard to stratosphere-troposphere exchange. Measurements with high accuracy and efficiency are crucial to 7Be and 10Be tracer studies. This article describes sample preparation procedures and analytical benchmarks for 7Be and 10Be measurements at the Xian Accelerator Mass Spectrometry (Xian-AMS) laboratory for the study of rainwater samples. We describe a sample preparation procedure to fabricate beryllium oxide (BeO) AMS targets that includes co-precipitation, anion exchange column separation and purification. We then provide details for the AMS measurement of 7Be and 10Be following the sequence BeO- -> Be2+ -> Be4+ in the Xian- AMS. The 10Be/7Be ratio of rainwater collected in Xian is shown to be about 1.3 at the time of rainfall. The virtue of the method described here is that both 7Be and 10Be are measured in the same sample, and is suitable for routine analysis of large numbers of rainwater samples by AMS.

  7. 40 CFR 761.316 - Interpreting PCB concentration measurements resulting from this sampling scheme.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Interpreting PCB concentration... § 761.79(b)(3) § 761.316 Interpreting PCB concentration measurements resulting from this sampling... concentration measured in that sample. If the sample surface concentration is not equal to or lower than...

  8. Measuring business sector concentration by an infection model

    OpenAIRE

    Düllmann, Klaus

    2006-01-01

    Results from portfolio models for credit risk tell us that loan concentration in certain industry sectors can substantially increase the value-at-risk (VaR). The purpose of this paper is to analyze whether a tractable "infection model" can provide a meaningful estimate of the impact of concentration risk on the VaR. I apply rather parsimonious data requirements, which are comparable to those for Moody's Binomial Expansion Technique (BET) and considerably lower than for a multi-factor model. T...

  9. Long-term background denudation rates of southern and southeastern Brazilian watersheds estimated with cosmogenic 10Be

    Science.gov (United States)

    Sosa Gonzalez, Veronica; Bierman, Paul R.; Fernandes, Nelson F.; Rood, Dylan H.

    2016-09-01

    In comparison to humid temperate regions of the Northern Hemisphere, less is known about the long-term (millennial scale) background rates of erosion in Southern Hemisphere tropical watersheds. In order to better understand the rate at which watersheds in southern and southeastern Brazil erode, and the relationship of that erosion to climate and landscape characteristics, we made new measurements of in situ produced 10Be in river sediments and we compiled all extant measurements from this part of the country. New data from 14 watersheds in the states of Santa Catarina (n = 7) and Rio de Janeiro (n = 7) show that erosion rates vary there from 13 to 90 m/My (mean = 32 m/My; median = 23 m/My) and that the difference between erosion rates of basins we sampled in the two states is not significant. Sampled basin area ranges between 3 and 14,987 km2, mean basin elevation between 235 and 1606 m, and mean basin slope between 11 and 29°. Basins sampled in Rio de Janeiro, including three that drain the Serra do Mar escarpment, have an average basin slope of 19°, whereas the average slope for the Santa Catarina basins is 14°. Mean basin slope (R2 = 0.73) and annual precipitation (R2 = 0.57) are most strongly correlated with erosion in the basins we studied. At three sites where we sampled river sand and cobbles, the 10Be concentration in river sand was greater than in the cobbles, suggesting that these grain sizes are sourced from different parts of the landscape. Compiling all cosmogenic 10Be-derived erosion rates previously published for southern and southeastern Brazil watersheds to date (n = 76) with our 14 sampled basins, we find that regional erosion rates (though low) are higher than those of watersheds also located on other passive margins including Namibia and the southeastern North America. Brazilian basins erode at a pace similar to escarpments in southeastern North America. Erosion rates in southern and southeastern Brazil are directly and positively related to

  10. Measurement of Concentration Distribution of Hydrogen Gas Flow by Measuring the Intensity of Raman Scattering Light

    Science.gov (United States)

    Asahi, Ippei; Ninomiya, Hideki

    An experimental study to visualize and measure the concentration distribution of hydrogen gas flow using the Raman scattering was performed. A Nd:YAG laser of wavelength at 355 nm was used, and the beam pattern was transformed into a rectangle and a sheet beam was formed. The Raman scattered light was observed at a right angle with respect to the laser beam axis using a gated ICCD camera and an interference filter. Shadowgraph images were obtained at the same condition. The Raman scattering light image from atmospheric nitrogen was first acquired and the function of Raman scattering light acquisition and the background light suppression was confirmed. Next, images of the Raman scattering light image and shadowgraph of hydrogen gas discharged from a nozzle into the atmosphere were acquired. The two obtained Raman images were compared and the spatial concentration distribution of the flow of the hydrogen gas at different flow rates was calculated. This method is effective for visualizing the gas flow and measuring the concentration distribution of the Raman active molecules, such as hydrogen gas.

  11. A chronopotentiometric approach for measuring chloride ion concentration

    NARCIS (Netherlands)

    Abbas, Yawar; Olthuis, Wouter; Berg, van den Albert

    2013-01-01

    In this paper, a novel approach is reported for the electrochemical measurement of chloride ions in aqueous solution. This sensor is based on the stimulus/response principle of chronopotentiometry. A current pulse is applied at the Ag/AgCl working electrode and the potential change is measured with

  12. In Situ-produced vs. Meteoric 10Be in Hillslope Soils: One Isotope, Two Tracers, Different Stories

    Science.gov (United States)

    Jungers, M. C.; Bierman, P. R.; Matmon, A.; Cox, R.; Pavich, M.; Finkel, R. C.

    2009-12-01

    , then significant amounts of 10Be are not being accounted for in our inventory calculations. If meteoric 10Be is fully retained by a given landscape, soil residence times inferred from each type of 10Be should agree. However depth profiles and downslope transects from each field area show differing degrees of meteoric 10Be mobility. We compare meteoric 10Be concentrations from each of our field sites to trends in CBD-extractable Al and Fe oxides, bulk soil pH, and mean grain size. Meteoric 10Be mobility correlates positively to trends in mobile Fe and Al oxides and negatively to soil pH. These data suggest that a meaningful comparison between a landscape’s in situ-produced and meteoric 10Be inventories requires a thorough understanding of the geochemistry of the sampled soil mantle.

  13. Confidence intervals for concentration and brightness from fluorescence fluctuation measurements.

    Science.gov (United States)

    Pryse, Kenneth M; Rong, Xi; Whisler, Jordan A; McConnaughey, William B; Jiang, Yan-Fei; Melnykov, Artem V; Elson, Elliot L; Genin, Guy M

    2012-09-01

    The theory of photon count histogram (PCH) analysis describes the distribution of fluorescence fluctuation amplitudes due to populations of fluorophores diffusing through a focused laser beam and provides a rigorous framework through which the brightnesses and concentrations of the fluorophores can be determined. In practice, however, the brightnesses and concentrations of only a few components can be identified. Brightnesses and concentrations are determined by a nonlinear least-squares fit of a theoretical model to the experimental PCH derived from a record of fluorescence intensity fluctuations. The χ(2) hypersurface in the neighborhood of the optimum parameter set can have varying degrees of curvature, due to the intrinsic curvature of the model, the specific parameter values of the system under study, and the relative noise in the data. Because of this varying curvature, parameters estimated from the least-squares analysis have varying degrees of uncertainty associated with them. There are several methods for assigning confidence intervals to the parameters, but these methods have different efficacies for PCH data. Here, we evaluate several approaches to confidence interval estimation for PCH data, including asymptotic standard error, likelihood joint-confidence region, likelihood confidence intervals, skew-corrected and accelerated bootstrap (BCa), and Monte Carlo residual resampling methods. We study these with a model two-dimensional membrane system for simplicity, but the principles are applicable as well to fluorophores diffusing in three-dimensional solution. Using simulated fluorescence fluctuation data, we find the BCa method to be particularly well-suited for estimating confidence intervals in PCH analysis, and several other methods to be less so. Using the BCa method and additional simulated fluctuation data, we find that confidence intervals can be reduced dramatically for a specific non-Gaussian beam profile. PMID:23009839

  14. Simultaneous measurement of reactions in microdroplets filled by concentration gradients.

    Science.gov (United States)

    Damean, Nicolae; Olguin, Luis F; Hollfelder, Florian; Abell, Chris; Huck, Wilhelm T S

    2009-06-21

    This work describes a technology for performing and monitoring simultaneously several reactions confined in strings of microdroplets having identical volumes but different composition, and travelling with the same speed in parallel channels of a microfluidic device. This technology, called parallel microdroplets technology (PmicroD), uses an inverted optical microscope and a charge-coupled device (CCD) camera to collect images and analyze them so as to report on the reactions occurring in these microdroplets. A concentration gradient of one reactant is created in the microfluidic device. In each channel, a different concentration of this reactant is mixed with a fixed amount of a second reactant. Using planar flow-focusing methodology, these mixtures are confined in microdroplets of pL size which travel in oil as continuous medium, avoiding laminar dispersion. By analyzing the images of parallel strings of microdroplets, the time courses of several reactions with different reagent compositions are investigated simultaneously. In order to design the microfluidic device that consists in a complex network of channels having well-defined geometries and restricted positions, the theoretical concept of equivalent channels (i.e. channels having identical hydraulic resistance) is exploited and developed. As a demonstration of the PmicroD technology, an enzyme activity assay was carried out and the steady-state kinetic constants were determined.

  15. Measurement of Liver Iron Concentration by MRI Is Reproducible

    Directory of Open Access Journals (Sweden)

    José María Alústiza

    2015-01-01

    Full Text Available Purpose. The objectives were (i construction of a phantom to reproduce the behavior of iron overload in the liver by MRI and (ii assessment of the variability of a previously validated method to quantify liver iron concentration between different MRI devices using the phantom and patients. Materials and Methods. A phantom reproducing the liver/muscle ratios of two patients with intermediate and high iron overload. Nine patients with different levels of iron overload were studied in 4 multivendor devices and 8 of them were studied twice in the machine where the model was developed. The phantom was analysed in the same equipment and 14 times in the reference machine. Results. FeCl3 solutions containing 0.3, 0.5, 0.6, and 1.2 mg Fe/mL were chosen to generate the phantom. The average of the intramachine variability for patients was 10% and for the intermachines 8%. For the phantom the intramachine coefficient of variation was always below 0.1 and the average of intermachine variability was 10% for moderate and 5% for high iron overload. Conclusion. The phantom reproduces the behavior of patients with moderate or high iron overload. The proposed method of calculating liver iron concentration is reproducible in several different 1.5 T systems.

  16. Ultrasonic method for measurement of D2O concentration

    International Nuclear Information System (INIS)

    A correlation of the velocity of sound with mole percent of heavy water in D2O-H2O mixtures has been measured using a modified commercially available instrument. This is being developed as a practical method for the analysis of heavy water stored in 210 l drums. The drums need not be opened, and measurements can be made under field conditions. The application of this method would permit quick, in-field verification of drum contents in production or user facilities without having to violate drum seals

  17. Feedback on Measured Dust Concentrations Reduces Exposure Levels Among Farmers

    DEFF Research Database (Denmark)

    Basinas, Ioannis; Sigsgaard, Torben; Bønløkke, Jakob Hjort;

    2016-01-01

    objective measurements has been limited. OBJECTIVE: To examine whether dust exposure can be reduced by providing feedback to the farmers concerning measurements of the exposure to dust in their farm. METHODS: The personal dust levels of farmers in 54 pig and 26 dairy cattle farms were evaluated in two...... quantified by means of linear mixed effect analysis with farm and worker id as random effects. Season, type of farming, and work tasks were treated as fixed effects. Changes in exposure over time were explored primarily at a farm level in models combined, as well as separate for pig and cattle farmers...

  18. Quality control of the concentration measurement of specific radioactive isotopes

    International Nuclear Information System (INIS)

    The counting efficiency of a gamma spectroscopy chain with a Ge (H.p) detector was measured. The Monte Carlo simulation and standard reference materials, in order to calculate the specific activity from 4 reference materials, and from intercomparison samples were used. The purpose was to evaluate the analytical results obtained in the Laboratorio de Espectroscopia Gamma. (author)

  19. A test of the cosmogenic 10Be(meteoric)/9Be proxy for simultaneously determining basin-wide erosion rates, denudation rates, and the degree of weathering in the Amazon basin

    Science.gov (United States)

    Wittmann, H.; Blanckenburg, F.; Dannhaus, N.; Bouchez, J.; Gaillardet, J.; Guyot, J. L.; Maurice, L.; Roig, H.; Filizola, N.; Christl, M.

    2015-12-01

    We present an extensive investigation of a new erosion and weathering proxy derived from the 10Be(meteoric)/9Be(stable) ratio in the Amazon River basin. This new proxy combines a radioactive atmospheric flux tracer, meteoric cosmogenic 10Be, with 9Be, a trace metal released by weathering. Results show that meteoric 10Be concentrations ([10Be]) and 10Be/9Be ratios increase by >30% from the Andes to the lowlands. We can calculate floodplain transfer times of 2-30 kyr from this increase. Intriguingly however, the riverine exported flux of meteoric 10Be shows a deficit with respect to the atmospheric depositional 10Be flux. Most likely, the actual area from which the 10Be flux is being delivered into the mainstream is smaller than the basin-wide one. Despite this imbalance, denudation rates calculated from 10Be/9Be ratios from bed load, suspended sediment, and water samples from Amazon Rivers agree within a factor of 2 with published in situ 10Be denudation rates. Erosion rates calculated from meteoric [10Be], measured from depth-integrated suspended sediment samples, agree with denudation rates, suggesting that grain size-induced variations in [10Be] are minimized when using such sampling material instead of bed load. In addition, the agreement between erosion and denudation rates implies minor chemical weathering intensity in most Amazon tributaries. Indeed, the Be-specific weathering intensity, calculated from mobilized 9Be comprising reactive and dissolved fractions that are released during weathering, is constant at approximately 40% of the total denudation from the Andes across the lowlands to the Amazon mouth. Therefore, weathering in the Amazon floodplain is not detected.

  20. Energy yield determination of concentrator solar cells using laboratory measurements

    OpenAIRE

    Geisz, John F.; García Vara, Iván; Mcmahon, William E.; Steiner, Myles A.; Ochoa Gómez, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-01-01

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used redict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficie...

  1. Determination of {sup 10}Be, {sup 26}Al, and {sup 36}Cl in meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Merchel, S.; Herpers [Koeln Univ. (Germany); Neumann, S.; Michel, R. [Hannover Univ. (Germany); Kubik, P.W.; Synal, H.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Long-lived cosmogenic radionuclides were determined in stony ({sup 10}Be, {sup 26}Al) and iron ({sup 10}Be, {sup 26}Al, {sup 36}Cl) meteorites using AMS after radiochemical separation. A selection of these data is briefly discussed with respect to exposure histories of the meteorites and is compared to model calculations. (author) 2 figs., 5 refs.

  2. Denudation rates determined from the accumulation of in situ-produced 10Be in the luquillo experimental forest, Puerto Rico

    Science.gov (United States)

    Brown, Erik Thorson; Stallard, Robert F.; Larsen, Matthew C.; Raisbeck, Grant M.; Yiou, Francoise

    1995-01-01

    We present a simple method for estimation of long-term mean denudation rates using in situ-produced cosmogenic 10Be in fluvial sediments. Procedures are discussed to account for the effects of soil bioturbation, mass wasting and attenuation of cosmic rays by biomass and by local topography. Our analyses of 10Be in quartz from bedrock outcrops, soils, mass-wasting sites and riverine sediment from the Icacos River basin in the Luquillo Experimental Forest, Puerto Rico, are used to characterize denudation for major landform elements in that basin. The 10Be concentration of a discharge-weighted average of size classes of river sediment corresponds to a long-term average denudation of ≈ 43 m Ma −1, consistent with mass balance results. 

  3. A 420 Year Annual 10Be Record from the WAIS Divide Ice Core

    Science.gov (United States)

    Woodruff, T. E.; Welten, K. C.; Caffee, M. W.; Nishiizumi, K.

    2011-12-01

    Annual ice layers archive the cosmogenic radionuclide 10Be, which is in turn an important proxy for solar activity, complementary to the 14C tree ring archive. Although production is primarily determined by the strength of the solar magnetic field 10Be deposition is also determined by local weather phenomena and snow accumulation rates, especially within shorter timescales. Accordingly, multiple ice core records of varying locations and accumulation rates are necessary to build a representative 10Be archive. We are presently engaged in a study to obtain continuous 10Be and 36Cl records in the West Antarctic Ice Sheet (WAIS) Divide ice core, a high snow accumulation site analogous to the GISP2 core from Greenland (Finkel and Nishiizumi1997). Here we present an annual resolution record of 10Be in the WAIS Divide core spanning the last 420 years including the Maunder (1645-1715 AD) and Dalton (1790-1830 AD) solar minima. Preliminary results for the periods of 1580-1740 and 1945-2006 AD show that the10Be flux during the Maunder Minimum was ~60% higher than in the last 60 years (4.8 vs. 3.0 x 105 atoms yr-1 cm-2). Although the low sunspot numbers during the Maunder Minimum suggest little change in solar activity, the 10Be data show that the heliomagnetic field strength continued to vary in a 11-year cycle, as observed in other annual 10Be records (e.g., Beer et al. 1990; Berggren et al. 2009). The 10Be record for the WAIS Divide core will be compared to 10Be records of Greenland ice cores as well as the 14C tree ring record. Acknowledgment. This work was supported by NSF grants ANT-0839042 and 0839137. Beer J. et al. 1990.Nature 347, 164. Finkel R. C. and Nishiizumi K. 1997.J. Geophys. Res. 102, 26,699. Berggren A.- M., et al. 2009. Geophys. Res. Lett. 36, L11801.

  4. Using meteoric 10Be to track soil erosion and transport within a forested watershed, Susquehanna Shale Hills Critical Zone Observatory, PA

    Science.gov (United States)

    West, N.; Kirby, E.; Bierman, P. R.; Rood, D. H.

    2010-12-01

    This study presents new meteoric 10Be data from 30 hillslope and bedrock core samples, data which allow for estimation of soil residence times and inferred rates of soil erosion in the Susquehanna Shale Hills Critical Zone Observatory (CZO). The Shale Hills CZO is located in the temperate climate of central Pennsylvania and comprises a first-order watershed developed on a Fe-rich, organic-poor, Silurian-aged shale. Two major perturbations to the landscape have occurred at the Shale Hills CZO in the geologically recent past, including significant periglacial activity until the retreat of the Laurentide ice sheet (~15 ka) and deforestation during early colonial land-use. Meteoric 10Be depth profiles were measured from bulk soil samples (n=16) collected at three locations along a planar hill-slope on the southern ridge of the catchment, representing the ridge top, mid- and foot-slope; samples were amalgamated over 10 cm depth intervals to the base of the soil (depth to hand auger refusal). Soil and rock chip samples (n=14) were also collected and analyzed along a 24 m deep core drilled into the northern ridge top. Meteoric 10Be was extracted from each sample using a total fusion method and analyzed at Lawrence Livermore National Laboratory. All meteoric 10Be concentration profiles show a declining trend with depth, with >50% of the 10Be held in the upper-most decimeters of the soil. Meteoric 10Be inventories are high at the mid- and foot-slope sites, at 3.71 ± 0.02 x 10^10 at/cm^2 and 3.69 ± 0.02 x 10^10 at/cm^2, respectively. The ridge top site has a lower inventory of 1.90 ± 0.01 x 10^10 at/cm^2, while the meteoric 10Be inventory for soil at the deep core site (also on a ridge top) is 4.09 ± 0.07 x 10^9 at/cm^2. Bedrock samples from the core contain at least an additional 1.07 x 10^10 at/cm^2 10Be. If we assume that soils sampled at the Shale Hills CZO formed in place, and that 10Be delivery has been constant over time (1.8 x 10^6 atoms/cm^2 x y) and balanced by

  5. Global Ammonia Concentrations Seen by the 13-years AIRS Measurements

    Science.gov (United States)

    Warner, Juying; Wei, Zigang; Larrabee Strow, L.; Dickerson, Russell; Nowak, John; Wang, Yuxuan

    2016-04-01

    Ammonia is an integral part of the nitrogen cycle and is projected to be the largest single contributor to each of acidification, eutrophication and secondary particulate matter in Europe by 2020 (Sutton et al., 2008). The impacts of NH3 also include: aerosol production affecting global radiative forcing, increases in emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4), and modification of the transport and deposition patterns of SO2 and NOx. Therefore, monitoring NH3 global distribution of sources is vitally important to human health with respect to both air and water quality and climate change. We have developed new daily and global ammonia (NH3) products from AIRS hyperspectral measurements. These products add value to AIRS's existing products that have made significant contributions to weather forecasts, climate studies, and air quality monitoring. With longer than 13 years of data records, these measurements have been used not only for daily monitoring purposes but also for inter-annual variability and short-term trend studies. We will discuss the global NH3 emission sources from biogenic and anthropogenic activities over many emission regions captured by AIRS. We will focus their variability in the last 13 years.

  6. Concentration measurements of biodiesel in engine oil and in diesel fuel

    International Nuclear Information System (INIS)

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  7. 10Be inventories in Alpine soils and their potential for dating land surfaces

    Science.gov (United States)

    Egli, Markus; Brandová, Dagmar; Böhlert, Ralph; Favilli, Filippo; Kubik, Peter W.

    2010-07-01

    To exploit natural sedimentary archives and geomorphic landforms it is necessary to date them first. Landscape evolution of Alpine areas is often strongly related to the activities of glaciers in the Pleistocene and Holocene. At sites where no organic matter for radiocarbon dating exists and where suitable boulders for surface exposure dating (using in situ produced cosmogenic nuclides) are absent, dating of soils could give information about the timing of landscape evolution. This paper explores the applicability of soil dating using the inventory of meteoric 10Be in Alpine soils. For this purpose, a set of 6 soil profiles in the Swiss and Italian Alps was investigated. The surface at these sites had already been dated (using the radiocarbon technique or the surface exposure determination using in situ produced 10Be). Consequently, a direct comparison of the ages of the soils using meteoric 10Be and other dating techniques was made possible. The estimation of 10Be deposition rates is subject to severe limitations and strongly influences the obtained results. We tested three scenarios using a) the meteoric 10Be deposition rates as a function of the annual precipitation rate, b) a constant 10Be input for the Central Alps, and c) as b) but assuming a pre-exposure of the parent material. The obtained ages that are based on the 10Be inventory in soils and on scenario a) for the 10Be input agreed reasonably well with the age using surface exposure or radiocarbon dating. The ages obtained from soils using scenario b) produced ages that were mostly too old whereas the approach using scenario c) seemed to yield better results than scenario b). Erosion calculations can, in theory, be performed using the 10Be inventory and 10Be deposition rates. An erosion estimation was possible using scenario a) and c), but not using b). The calculated erosion rates using these scenarios seemed to be plausible with values in the range of 0-57 mm/ky. The dating of soils using 10Be has

  8. Investigation of 10Be and its cluster dynamics from nonlocalized clustering concept

    CERN Document Server

    Lyu, Mengjiao; Zhou, Bo; Funaki, Yasuro; Horiuchi, Hisashi; Röpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi

    2015-01-01

    We extend the new concept of nonlocalized clustering to the nucleus 10Be with proton number Z=4 and neutron number N=6 (N=Z+2). The Tohsaki-Horiuchi-Schuck-R\\"opke (THSR) wave function is formulated for the description of different structures of 10Be. Physical properties such as energy spectrum and root-mean-square radii are calculated for the first two 0+ states and corresponding rotational bands. With only one single THSR wave function, the calculated results show good agreement with other models and experimental values. We apply, for the first time, the THSR wave function on the chain orbit ({\\sigma}-orbit) structure in the 0^+_2 state of 10Be. The ring orbit ({\\pi}-orbit) and {\\sigma}-orbit structures are further illustrated by calculating the density distribution of the valence neutrons. We also investigate the dynamics of ff-clusters and the correlations of two valence neutrons in 10Be.

  9. Off-line production of intense {sup 7,10}Be{sup +} beams

    Energy Technology Data Exchange (ETDEWEB)

    Koester, U. E-mail: ulli.koster@cern.ch; Argentini, M.; Catherall, R.; Fedoseyev, V.N.; Gaeggeler, H.W.; Jonsson, O.C.; Weinreich, R

    2003-05-01

    {sup 7}Be and {sup 10}Be were produced by 590 MeV proton bombardment of a graphite target at PSI. Parts of this graphite target were transferred into an ISOLDE target and ion source unit and ionized with the ISOLDE resonance ionization laser ion source. Thus intense radioactive ion beams of 300 nA of {sup 7,10}Be{sup +} were produced off-line.

  10. Off-line production of intense $^{7,10}Be^{+}$ beams

    CERN Document Server

    Köster, U; Catherall, R; Fedosseev, V; Gäggeler, H W; Jonsson, O C; Weinreich, R

    2003-01-01

    $^7$Be and $^{10}$Be were produced by 590~MeV proton bombardment of a graphite target at PSI. Parts of this graphite target were transferred into an ISOLDE target and ion source unit and ionized with the ISOLDE resonance ionization laser ion source (RILIS). Thus intense radioactive ion beams of 300~nA of $^{7,10}$Be$^+$ were produced off-line.

  11. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  12. Dinucleon correlation of $^9$Li, $^{10}$Be, and $^{9,10}$C

    CERN Document Server

    Kobayashi, Fumiharu

    2013-01-01

    We study the dinucleon (dineutron and diproton) correlation of the ground states of $^9$Li, $^{10}$Be, and $^{9,10}$C. We assume an $\\alpha+t$ core for $^9$Li, an $\\alpha+\\alpha$ core for $^{10}$Be and $^{10}$C, and an $\\alpha+^3$He core for $^9$C, and investigate the effect of core structure changes on the degree of dineutron formation and spatial expansion from the core. For $^9$Li, $t$ cluster breaking in the core significantly enhances the dineutron component inside the nuclei. Moreover, its component markedly depends on the strength of the spin-orbit interaction since a dineutron is fragile and dissociates readily due to the spin-orbit interaction. Compared with $^9$Li, the dineutron of $^{10}$Be dissociates largely due to the stronger spin-orbit attraction from the $\\alpha+\\alpha$ core than the $\\alpha+t$ core. We also investigate diproton features in $^{9,10}$C, the mirror nuclei of $^9$Li and $^{10}$Be, respectively, and compare them with the dineutron features of $^9$Li and $^{10}$Be. No qualitative ...

  13. Measurement of uranium, radium and radon concentration in ground water sampled over Hiroshima prefecture, Japan

    International Nuclear Information System (INIS)

    A new method to measure the concentration of uranium and radium in ground water has been developed. One-liter of ground water was evaporated on a Teflon sheet and measured with a low background Ge detector. According to the decay of 238U, radio equilibrium has been achieved between 238U and progeny 234Th after about 150 days. 238U concentration can be determined from the gamma-ray measurement of the dry up sample. Ground water samples were collected from 58 locations in Hiroshima prefecture. Radon concentration was measured directly from the 250 mL water sample. It has been shown that dependence of uranium, radium and radon concentration on the geological map in Hiroshima prefecture. A clear correlation was observed between uranium and radium concentration, but not between uranium and radon concentration. (author)

  14. Atmospheric production signal in 10Be from varved sediments of Lake Meerfelder Maar during the late glacial-early Holocene transition

    Science.gov (United States)

    Czymzik, Markus; Adolphi, Florian; Muscheler, Raimund; Brauer, Achim; Mekhaldi, Florian; Martin-Puertas, Celia; Tjallingii, Rik; Aldahan, Ala; Possnert, Göran

    2016-04-01

    Beryllium 10 concentrations (10Becon) were measured at 20-year resolution in annually laminated (varved) sediments of Lake Meerfelder Maar (western Germany) covering the late glacial-early Holocene transition 11310-13130 varve years before present. Comparing the 10Becon record to environmental proxy records from the same archive indicates that varying sediment accumulation and composition only slightly modify trends, but do not substantially influence multi-decadal to centennial 10Becon excursions. Corrected for potential environmental biases using multiple-regression analysis, the resulting 10Beatmosphere time-series likely represents an alternative mid-latitude 10Be production record, exhibiting broad similarities but also some differences to radionuclide records as 14C in tree rings and 10Be in polar ice cores. The preservation of the globally common atmospheric production signal in 10Be from varved lake sediments indicates the, to date, largely unexplored potential of these archives for the synchronization to other radionuclide records around the globe, complementing existing solar activity reconstructions and Sun-climate studies.

  15. Measuring free metal ion concentrations in multicomponent solutions using Donnan Membrane Technique

    NARCIS (Netherlands)

    Kalis, E.J.J.; Temminghoff, E.J.M.; Weng, L.P.; Riemsdijk, van W.H.

    2007-01-01

    Among speciation techniques that are able to measure free metal ion concentrations, the Donnan membrane technique (DMT) has the advantage that it can measure many different free metal ion concentrations simultaneously in a multicomponent sample. Even though the DMT has been applied to several system

  16. Climatic influence in NRM and 10 Be-derived geomagnetic paleointensity data

    NARCIS (Netherlands)

    2001-01-01

    One can determine geomagnetic paleointensities from natural remanent magnetizations (NRM) and by inverting production rates of cosmogenic isotopes such as 10 Be and 14 C. Recently, two independently derived 200-kyr stacks [Y. Guyodo, J.-P. Valet, Relative variations in geomagnetic intensity from sed

  17. Sup(10)Be variation in surficial sediments of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Aldahan, A.; Possnert, G.; Selvaraj, K.; Mascarenhas-Pereira, M.B.L.; Chen, C.T.A.

    studied here. Taiwan, with accuracy and precision better than 10%. 10 Be was extracted from about 0.5 mg sediment through addition of 250 lg Be carrier and subsequent total dissolu- tion in a mixture of HF and H 2 SO 4 (for details see [6]). After an ion...

  18. A 30000 yr record of erosion rates from cosmogenic 10Be in middle European river terraces

    NARCIS (Netherlands)

    Schaller, M.; Blanckenburg, von F.; Veldkamp, A.; Tebbens, L.A.; Hovius, N.; Kubik, P.W.

    2002-01-01

    Cosmogenic 10Be in river-borne quartz sand records a time-integrated erosion rate representative of an entire drainage basin. When sequestered in a terrace of known age, paleo-erosion rates may be recovered from the nuclide content of the terrace material. Paleo-erosion rates between 30 and 80 mm/ky

  19. Energy-dispersive x-ray-fluorescence analysis for on-line uranium-concentration measurement

    International Nuclear Information System (INIS)

    An on-line monitor capable of near-real-time measurement of uranium concentrations in process streams has been developed and demonstrated. The monitor, which uses energy dispersive x-ray fluorescence analysis techniques, has been evaluated in the laboratory and in a solvent extraction column study using natural uranium. Concentrations in the range 0.5 to 150 g/l have been measured in both flowing aqueous and organic streams. For streams with uranium concentrations in the range 20 to 150 g/l, data collection times of 300 seconds are sufficient to measure the concentration with less than 2% error. Streams which have lower concentrations require longer data collection times to provide the same measurement error. The results are used for nuclear material inventory and process control

  20. Thermal diffusivity and conductivity of supercooled liquid in Zr41Ti14Cu12Ni10Be23 metallic glass

    OpenAIRE

    Yamasaki, Michiaki; Kagao, Shinya; Kawamura, Yoshihito; Yoshimura, Kenji; カワムラ, ヨシヒト; 河村, 能人

    2004-01-01

    The thermal diffusivity of amorphous solid and supercooled liquid in a Zr41Ti14Cu12Ni10Be23 bulk metallic glass (BMG) and its crystalline counterpart alloy was measured. The studies show that the thermal diffusivity and conductivity of the amorphous solid are weakly temperature dependent, with small positive temperature coefficients. The amorphous solid also showed lower thermal diffusivity and conductivity than the crystalline counterpart alloy. The results also show that the thermal diffusi...

  1. Non-adiabatic dynamics in 10Be with the microscopic alpha+alpha+n+n model

    CERN Document Server

    Ito, M

    2006-01-01

    The alpha+6He low-energy reactions and the structural changes of 10Be in the microscopic alpha+alpha+n+n model are studied by the generalized two-center cluster model with the Kohn-Hulthen-Kato variation method. It is found that, in the inelastic scattering to the alpha+6He(2+) channel, characteristic enhancements are expected as the results of the parity-dependent non-adiabatic dynamics. In the positive parity state, the enhancement originates from the no-adiabatic eigenstate generated by the radial excitation of the relative motion between two alpha-cores. On the other hand, the enhancement in the negative parity state is induced by the Landau-Zener level-crossing. These non-adiabatic processes are discussed in connection to the formation of the inversion doublet in the compound system of 10Be.

  2. Effects of collective modes on shell structure of 10Be and 24O core

    International Nuclear Information System (INIS)

    We study the effects of collective modes on shell structure in nuclei near the neutron drip line close to 10Be and 24O. Energy shifts in single-particle energies are evaluated by a particle-vibration coupling model. In the case of the 10Be core, the coupling to 2+ states is found to reduce the shell gap between 2s1/2 and 1p1/2 states. In the case of the 24O core, the couplings to 3- and 2+ states lead to a large energy gap between 2s1/2 and 1d3/2 states, in agreement with a recent experimental evidence of a new magic number at N=16 near the neutron drip line. In particular, the 3- vibrations are found to play a crucial role to push down the energy of the 2s1/2 state

  3. Indoor radon activity concentration measurements in the great historical museums of University of Naples, Italy.

    Science.gov (United States)

    Quarto, Maria; Pugliese, Mariagabriella; Loffredo, Filomena; La Verde, Giuseppe; Roca, Vincenzo

    2016-01-01

    Indoor radon activity concentrations were measured in seven Museums of University of Naples, very old buildings of great historical value. The measurements were performed using a time-integrated technique based on LR-115 solid-state nuclear track detectors. The annual average concentrations were found to range from 40 up to 1935 Bq m(-3) and in 26 % of measurement sites, the values were higher than 500 Bq m(-3) which is the limit value of Italian legislation for workplace. Moreover, we analysed the seasonal variations of radon concentrations observing the highest average in cold weather than in warm.

  4. 10Be exposure dating of Holocene moraines in the Sierra Nevada, California

    Science.gov (United States)

    Hidy, Alan; Zimmerman, Susan; Finkel, Robert; Schaefer, Jeorg; Clark, Douglas

    2016-04-01

    Constraint on the extent and timing of Holocene glaciations is critical to addressing standing hypotheses that ascribe climatic fluctuations to changes in atmospheric and oceanic circulation patterns, or anthropogenic forcing. In the terrestrial record, such constraint typically relies on chronologies obtained from 10Be exposure dating of moraine deposits. However, the short exposure time of Holocene moraines, particularly those formed during the Little Ice Age (LIA), makes obtaining precise chronologies extremely challenging. To date, only a handful of LIA deposits in two locations (New Zealand and the Swiss Alps) have been successfully dated with 10Be. Here, we report new 10Be exposure ages from LIA and Neoglacial moraines from multiple sites in the Sierra Nevada (Lyell, Maclure, and Palisade glaciers). The Sierran LIA record will be compared to those from New Zealand and the Swiss Alps to test whether LIA deglaciation was globally synchronous. This result would support the contention that the LIA was terminated by anthropogenically-driven warming. Chronology from the neoglacial deposits will be used to test whether the timing of the return to glacial conditions in the Sierras correlates to a southward shift in the Intertropical Convergence Zone, which has been hypothesized to increase El Nino-like conditions in the Pacific Ocean. This record should be ideal for testing this hypothesis since precipitation in the Sierras is highly sensitive to El Nino conditions.

  5. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Energy Technology Data Exchange (ETDEWEB)

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, London WC1E 6BT (United Kingdom)

    2007-01-07

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO{sub 2}) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO{sub 2}) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO{sub 2} and HHb, total haemoglobin concentration and SO{sub 2}. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of {+-}3

  6. Dynamic measurement for the solution concentration variation using digital holographic interferometry and discussion for the measuring accuracy

    Science.gov (United States)

    Zhao, Jianlin; Zhang, Yanyan; Jiang, Hongzhen; Di, Jianglei

    2013-06-01

    Based on digital holographic interferometry (DHI), a method for dynamically measuring the solution concentration variation is introduced. Firstly, a series of digital holograms containing the information of the solution concentration variation is recorded by CCD. Then, according to the relationship between the phase change of the reconstructed object wave and the solution concentration, the two-dimensional (2D) solution concentration distributions in different time are figured out. Taking the measurement of the solution concentration in crystallization process as a sample, the experimental results turn out that it is feasible to in situ, full-field and dynamically monitor the solution concentration variation with the proposed method. We also discuss how to assure the measurement accuracy in following aspects: (1) implementation of the phase correction to eliminate the influence of the environment for the measurement process; (2) determination of the phase calibration base in the space-domain phase unwrapping process according to the time-domain phase unwrapping result of the arbitrary point in solution; (3) the experimental approaches and analysis for improving the measurement accuracy.

  7. Measurement of concentration of sugar in solutions with laser speckle decorrelation

    Science.gov (United States)

    Mahajan, Swapnil; Trivedi, Vismay; Chhaniwal, Vani; Prajapati, Mahendra; Zalevsky, Zeev; Javidi, Bahram; Anand, Arun

    2015-05-01

    Measurement of rotation of plane of polarization of linearly polarized light can provide information about the concentration of the optically active system with which it interacts. For substances containing sugar, accurate measurement of rotation of linearly polarized light can provide quantitative information about concentration of sugar in the material. Measurement of sugar concentration is important in areas ranging from blood sugar level measurement in body fluids to measurement of sugar concentrations in juices and other beverages. But in many of these cases, the changes introduced to the state of polarization considering a sample of practical proportion is low and the measurement of low optical rotations becomes necessary. So methods with higher sensitivity, accuracy and resolution need to be developed for the measurement of low optical rotations. Here we describe the development of a compact, low cost, field portable, device for rotation sensing leading to sugar concentration measurements, using speckle de-correlation technique. The developed device measures rotations by determining the changes occurring to a speckle pattern generated by a laser beam passing through the medium under investigation. The device consists of a sample chamber, a diode laser module, a ground glass diffuser and a digital sensor for recording of laser speckle patterns. The device was found to have high resolution and sensitivity.

  8. Radium concentration measurements in coal fly ash and cement samples using LR-115 plastic track detectors

    International Nuclear Information System (INIS)

    The increase interest in measuring radium (226Ra) concentration in coal, fly ash and cement is due to its health hazards and environmental pollution. Samples of coal and fly ash from different thermal power stations in northern India were collected and analysed for radium concentration. Cement samples were collected from National Council for Cement and Building Materials (NCB), Ballabgarh (Haryana). The radium concentration is estimated through track etch technique using LR-115 CN detectors. (author)

  9. Gradient SiNx IBAD coating: preparation and measurement of concentration profile

    International Nuclear Information System (INIS)

    Preparation of gradient SiNx coating by the ion beam assisted deposition method with high ion energy is described. Special shape of the concentration of nitrogen in the coating was chosen and constructed. Concentration profile was constructed in three steps with different ratios of nitrogen and silicon atom fluxes. Ion energy was 90 keV. Concentration profile was measured by RBS (Rutherford Back Scattering) method. (author). 1 ref., 2 figs

  10. Variation in acrylamide concentration in French fries : effects of control measures in food service establishments

    OpenAIRE

    Sanny, M.A.I.

    2012-01-01

    The aim of this thesis was first to identify the major technological and managerial factors and to investigate their contribution to variation in acrylamide concentrations.  The second aim was to investigate the effect of technological and managerial control measures on the concentration and variation of acrylamide in the preparation of French fries in food service establishments (FSE).  The variation ininitial concentration of reducing sugars, variable frying conditions and food ha...

  11. Optimisation of elevated radon concentration measurement by using electro-chemical etching of nuclear track detectors

    International Nuclear Information System (INIS)

    In the paper, two methods for adjusting of passive radon-thoron discriminative dosimeters (UFO detector) for enhanced radon concentration measurement are presented. Achieved upper limit of detection is 5.94 MBq m-3 d

  12. Airborne plutonium-239 and americium-241 concentrations measured from the 125-meter Hanford Meteorological Tower

    International Nuclear Information System (INIS)

    Airborne plutonium-239 and americium-241 concentrations and fluxes were measured at six heights from 1.9 to 122 m on the Hanford meteorological tower. The data show that plutonium-239 was transported on nonrespirable and small particles at all heights. Airborne americium-241 concentrations on small particles were maximum at the 91 m height

  13. Measurements of the oxidation state and concentration of plutonium in interstitial waters of the Irish Sea

    International Nuclear Information System (INIS)

    The question of plutonium movement in interstitial waters resulting from diffusion along concentration gradients or from advective flow is addressed. The results of measurements of both the concentration and the oxidation state of plutonium in interstitial water collected from sediments near the Windscale discharge, in the solid phases of these sediments and in seawater and suspended solids collected at the coring locations are discussed

  14. Concentration Measurements in a Cold Flow Model Annular Combustor Using Laser Induced Fluorescence

    Science.gov (United States)

    Morgan, Douglas C.

    1996-01-01

    A nonintrusive concentration measurement method is developed for determining the concentration distribution in a complex flow field. The measurement method consists of marking a liquid flow with a water soluble fluorescent dye. The dye is excited by a two dimensional sheet of laser light. The fluorescent intensity is shown to be proportional to the relative concentration level. The fluorescent field is recorded on a video cassette recorder through a video camera. The recorded images are analyzed with image processing hardware and software to obtain intensity levels. Mean and root mean square (rms) values are calculated from these intensity levels. The method is tested on a single round turbulent jet because previous concentration measurements have been made on this configuration by other investigators. The previous results were used to comparison to qualify the current method. These comparisons showed that this method provides satisfactory results. 'Me concentration measurement system was used to measure the concentrations in the complex flow field of a model gas turbine annular combustor. The model annular combustor consists of opposing primary jets and an annular jet which discharges perpendicular to the primary jets. The mixing between the different jet flows can be visualized from the calculated mean and rms profiles. Concentration field visualization images obtained from the processing provide further qualitative information about the flow field.

  15. On-chip measurements of Brownian relaxation vs. concentration of 40nm magnetic beads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2012-01-01

    We present on-chip Brownian relaxation measurements on a logarithmic dilution series of 40 nm beads dispersed in water with bead concentrations between 16 mu g/ml and 4000 mu g/ml. The measurements are performed using a planar Hall effect bridge sensor at frequencies up to 1 MHz. No external fields...... are needed as the beads are magnetized by the field generated by the applied sensor bias current. We show that the Brownian relaxation frequency can be extracted from fitting the Cole-Cole model to measurements for bead concentrations of 64 mu g/ml or higher and that the measured dynamic magnetic response...

  16. A 10Be Chronology of Late Pleistocene and Holocene Glaciation in the Rwenzori Mountains, Uganda

    Science.gov (United States)

    Baber, M.; Kelly, M. A.; Russell, J. M.; Loomis, S. E.

    2012-12-01

    Although the retreat of glaciers in East Africa has been monitored over the last century, longer-term records of African glacier fluctuations are scarce. The Rwenzori Mountains, located on the border of Uganda and the Democratic Republic of Congo, host the largest glacial system in Africa and provide an opportunity for extensive investigation of past glaciations. We mapped and applied surface exposure (10Be) dating to glacial moraines deposited since the end of the last ice age in the Rwenzori Mountains to test the feasibility of 10Be dating at this site and to develop a chronology of glacial fluctuations. Our study is the first to use 10Be dating of glacial features in Africa and is possible because the Rwenzori host quartz-rich lithologies. By comparing the timing of Rwenzori glacial advances with other paleoclimate records from East Africa, we also will examine the climatic conditions which influenced tropical glacier fluctuations. Osmaston (1989) mapped moraines in the Rwenzori Mountains, documenting three stages of Pleistocene and Holocene glaciations, the Mahoma, Omurubaho and Lac Gris stages. The Mahoma stage moraines are estimated to be older than 17,980 ± 780 yr BP (D. M. Livingstone, 1962) by basal 14C dating of sediments from Lake Mahoma, situated in large lateral moraine at 2990 m asl. The age of the Omurubaho stage moraine is estimated from a basal 14C age (7,730 ± 150 yr BP) Lower Kitandara Lake (3990 m asl) and dammed by an Omurubaho stage moraine. The Lac Gris moraines are estimated at ~150-700 yr BP (de Heinzelin, 1953; Bergström, 1955) based on rates of lichen growth and plant colonization on moraines about 200 m below current glacial positions on Mt. Stanley. Though considerable uncertainty remains for the ages of these glacier deposits, these three stages most likely represent ages from the LGM to the LIA. We present two new 10Be ages of boulders from two moraines in the Nyamagusani Valley, ~4000 m asl. Sample KOP-2 (4033 m asl) is from the

  17. Cosmogenic 10Be constraints on Little Ice Age glacial advances in the eastern Tian Shan, China

    Science.gov (United States)

    Li, Yanan; Li, Yingkui; Harbor, Jon; Liu, Gengnian; Yi, Chaolu; Caffee, Marc W.

    2016-04-01

    Presumed Little Ice Age (LIA) glacial advances, represented by a set of fresh, sharp-crested, boulder covered and compact moraines a few hundred meters downstream from modern glaciers, have been widely recognized in the Central Asian highlands. However, few studies have constrained the formation ages of these moraines. We report 31 10Be exposure ages from presumed LIA moraines in six glacial valleys in the Urumqi River headwater area and the Haxilegen Pass area of the eastern Tian Shan, China. Our results reveal that the maximum LIA glacial extent occurred mainly around 430 ± 100 yr, a cold and wet period as indicated by proxy data from ice cores, tree rings, and lake sediments in Central Asia. We also dated a later glacial advance to 270 ± 55 yr. However, 10Be exposure ages on several presumed LIA moraines in front of small, thin glaciers are widely scattered and much older than the globally recognized timing of the LIA. Historical topographic maps indicate that most glaciers were more extensive in the early 1960s, and two of our 10Be sample sites were located close to the ice front at that time. Boulders transported by these small and thin glaciers may be reworked from deposits originally formed prior to the LIA glacial advances, producing apparently old and widely scattered exposure ages due to varied nuclide inheritance. Other published ages indicated an earlier LIA advance around 790 ± 300 yr in the easternmost Tian Shan, but in our study area the more extensive advance around 430 ± 100 yr likely reworked or covered deposits from this earlier event.

  18. {sup 10}Be in rhodochrosite nodules from Neogene sediments along the Galapagos Ridge, equatorial Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Aldahan, A., E-mail: ala.aldahan@geo.uu.s [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Morad, S. [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Petroleum Geosciences, Petroleum Institute, Abu Dhabi (United Arab Emirates); Possnert, G. [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Sturesson, U. [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); ElSaiy, A. [Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates)

    2010-04-15

    Microcrystalline, calcian rhodochrosite occurs as nodules around burrows in late Neogene pelagic sediments from the Galapagos Ridge in the Guatemala Basin, eastern equatorial Pacific (DSDP Leg 68; Site 503). {sup 10}Be isotope revealed that the rhodochrosite nodules have formed under growth conditions much faster than those reported for Fe-Mn nodules. The overall REE patterns of the nodules and host pelagic sediments indicate element derivation mainly from marine pore water. However, variations in the shale normalised Eu values suggest influx of hydrothermal fluids into mounds area at Galapagos, which is also evidenced by the similar minor and major element contents in the nodules and host sediments.

  19. Reconstruction of Subdecadal Changes in Sunspot Numbers Based on the NGRIP 10Be Record

    DEFF Research Database (Denmark)

    Inceoglu, Fadil; Knudsen, Mads Faurschou; Karoff, Christoffer;

    2014-01-01

    in solar activity levels before 1610 relies on proxy records of solar activity stored in natural archives, such as 10Be in ice cores and 14C in tree rings. These cosmogenic radionuclides are produced by the interaction between Galactic cosmic rays (GCRs) and atoms in the Earth's atmosphere......, to reconstruct both long-term and subdecadal changes in sunspot numbers (SSNs). We compare three different approaches for reconstructing subdecadal-scale changes in SSNs, including a linear approach and two approaches based on the hysteresis effect, i.e. models with ellipse-linear and ellipse relationships...

  20. Isovector and isoscalar dipole excitations in $^{9}$Be and $^{10}$Be studied with antisymmetrized molecular dynamics

    CERN Document Server

    Kanada-En'yo, Yoshik

    2015-01-01

    Isovector and isoscalar dipole excitations in $^9$Be and $^{10}$Be are investigated in the framework of antisymmetrized molecular dynamics, in which angular-momentum and parity projections are performed. In the present method, 1p-1h excitations on the ground state and large amplitude $\\alpha$-cluster mode are incorporated. The isovector giant dipole resonance (GDR) in $E>20$ MeV shows the two peak structure which is understood by the dipole excitation in the 2$\\alpha$ core part with the prolate deformation. Because of valence neutron modes against the $2\\alpha$ core, low-energy E1 resonances appear in $E20$ MeV.

  1. Influence of model resolution on the atmospheric transport of 10Be

    Directory of Open Access Journals (Sweden)

    A. M. Smith

    2012-07-01

    Full Text Available Understanding the transport path of the solar activity proxy 10Be from source to archive is crucial for the interpretation of its observed variability. The extent of mixing of the strong production signal has been quantified in a previous study (Heikkilä et al., 2009. In this study we perform sensitivity studies to investigate the influence of model resolution on the level of mixing and transport path of 10Be in the atmosphere using the ECHAM5-HAM aerosol-climate model. This study permits us to choose an acceptable resolution, and so minimum CPU time, to produce physically accurate reconstructions. Four model resolutions are applied: T21L19: a coarse horizontal and vertical resolution with model top at ca. 30 km, T42L31: an average horizontal and fine vertical one, T42L39: similar vertical resolution than L19 but including the middle atmosphere up to ca. 80 km and T63L47: a fine resolution horizontally and vertically with middle atmosphere. Comparison with observations suggests that a finer vertical resolution might be beneficial, although the spread between observations was much larger than between the four model runs. A full validation of the resolutions is not possible with the limited number of observations available. In terms of atmospheric mixing the differences became more distinguishable. All resolutions agreed that the main driver of deposition variability is the stratospheric 10Be (total contribution 68% which is transported into the troposphere at latitudes 30–50°. In the troposphere the model resolutions deviated largely in the dispersion of the stratospheric component over latitude. The finest resolution (T63L47 predicted the least dispersion towards low latitudes but the most towards the poles, whereas the coarsest resolution (T21L19 suggested the opposite. The tropospheric components of 10Be differed less between the four model runs. The largest differences were found in the polar tropospheric components, which contribute the

  2. IR detector for hydrocarbons concentration measurement in emissions during petroleum and oil products storage and transportation

    Science.gov (United States)

    Vasilyev, Andrey O.; Shemanin, Valeriy G.; Chartiy, Pavel V.

    2011-10-01

    A double beam IR detector is developed for light hydrocarbons concentration measurement in emissions from storage vessels during oil and oil products storage and transportation. It was concluded on the basis of chromatogram that main crude losses from evaporation are the share of hydrocarbons light ends from methane to decane. Detector operation is based on spectral transparency measurement in the infrared spectra absorption range. Operational wavelength of infrared radiation makes 3.4 μm. measurement principle is based on concentration calculation proceed from molecule absorption cross-section, optical path length between light emitted diode and reference and signal photodiodes as well as from value of measured signal transmitted through gaging volume. The novel of offering device is an actual paraffin hydrocarbons concentration measurement in emissions and continuous and automatic environment quality control.

  3. Measurement and interpretation of gas phase formaldehyde concentrations obtained during the CHABLIS campaign in coastal Antarctica

    Directory of Open Access Journals (Sweden)

    R. A. Salmon

    2008-02-01

    Full Text Available Gas phase formaldehyde concentrations were measured during the 2004-5 CHABLIS campaign at Halley research station, Antarctica. Data coverage span from March 2004 through to January 2005 thus capturing the majority of the year. Factors controlling HCHO concentration include local chemical sources and sinks, and exchange with the snow surface. The measured seasonality is in line with previous observations from Neumayer station, with maximum in summer and minimum during the winter months, but with lower absolute concentrations throughout the year. Steady state calculations show oxidation of methane to be the overwhelming source of formaldehyde during the summer, with destruction dominated by photolysis and reaction with Br atoms.

  4. Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available An optical fiber solution-concentration sensor based on whispering gallery mode (WGM is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and an R2 linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.

  5. A surface tension based method for measuring oil dispersant concentration in seawater.

    Science.gov (United States)

    Cai, Zhengqing; Gong, Yanyan; Liu, Wen; Fu, Jie; O'Reilly, S E; Hao, Xiaodi; Zhao, Dongye

    2016-08-15

    This work developed a new method to determine concentration of Corexit EC9500A, and likely other oil dispersants, in seawater. Based on the principle that oil dispersants decrease surface tension, a linear correlation was established between the dispersant concentration and surface tension. Thus, the dispersant concentration can be determined by measuring surface tension. The method can accurately analyze Corexit EC9500A in the concentration range of 0.5-23.5mg/L. Minor changes in solution salinity (oil dispersants in water/seawater, which has been desired by the oil spill research community and industries.

  6. Application of OSL and 10Be techniques to the establishment of deglaciation chronology in Estonia

    International Nuclear Information System (INIS)

    The deglaciation history of Estonia has been under research for about a century. Despite the great number of publications devoted to this subject and marked improvements in study methods, many problems of topical interest have not been solved yet, especially due to the lack of good direct dating methods. In this paper the suitability of OSL and 10Be dating techniques for establishing accurate deglaciation chronology for Estonia is assessed. Turbidity and water depth, velocity of outwash streams and transport length, possible fast sedimentation at night hours or below the ice, incorporation of older, unbleached particles, and other factors affected the extent of the bleaching of the TL signal in different ways, causing great variability of dates. Surface inclination, height of the surface over ground, snow and vegetation cover, and evolution of water bodies influenced the calculation of reliable exposure ages of objects dated using the 10Be method. It means that age determinations of both glaciofluvial deposits with the OSL method and erratic boulders with the 1Be method are highly problematic, especially for glaciofluvial intertill sediments where the exact genesis of deposits is unknown and for boulders, which have been in the forest, under the waters of proglacial lakes and/or the Baltic Sea, or under snow cover for a long time. (author)

  7. High Frequency Measurements of Methane Concentrations and Carbon Isotopes at a Marsh and Landfill

    Science.gov (United States)

    Mortazavi, B.; Wilson, B.; Chanton, J.; Eller, K.; Dong, F.; Baer, D. S.; Gupta, M.; Dzwonkowski, B.

    2012-12-01

    High frequency measurements of methane concentrations and carbon isotopes can help constrain the source strengths of methane emitted to the atmosphere. We report here methane concentrations and 13C values measured at 0.5 Hz with cavity enhanced laser absorption spectrometers (Los Gatos Research) deployed at a saltmarsh in Alabama and a landfill in Florida. Methane concentrations and 13C at the saltmarsh were monitored over a 2.5 day time period at 2 m, 0.5 m above the ground as well as from the outflow of a flow-through (2 L) chamber placed on the Spartina alterniflora dominated marsh. A typical measurement cycle included regular samples from two tanks of known methane concentrations and isotopic values and from ambient air samples. Over the 2.5-day measurement period methane concentrations and isotopic ratios at 2 m averaged 1.85 ppm and -43.57‰ (±0.34, 1 SE), respectively. The concentration and isotopic values from the chamber outflow varied from 1.92 to 5.81 ppm and -38.5 to -59.3‰, respectively. Methane flux from the marsh ranged from undetectable to 3.6 mgC m-2hr-1, with high fluxes measured during low tide. The 13δCH4 of the emitted CH4 from the marsh, determined from a mass balance equation using the chamber inflow and outflow concentration and isotopic values ranged from -62.1 to -93.9‰ and averaged -77‰ (±1.25, 1SE). At the landfill ambient methane concentrations and 13C ratios measured over multiple days varied from 4.25 to 11.91 ppm and from -58.81 to -45.12‰, respectively. At higher methane concentrations the δ13C of CH4 was more depleted consistent with previously observed relationship at this site made by more traditional techniques. Over a 30-minute measurement period CH4 concentrations at the landfill could vary by as much as 15 ppm. The high frequency continuous optical measurements with field-deployed instruments provide us with an unprecedented temporal resolution of CH4 concentrations and isotopic ratios. These measurements will

  8. Hydrodynamic Nuclei Concentration Technique in Cavitation Research and Comparison to Phase-Doppler Measurements

    Science.gov (United States)

    Ebert, Eric; Kröger, Willfried; Damaschke, Nils

    2015-12-01

    Small particles, especially bubbles in the micro-meter range, influence the cavitation of the propellers. The prediction of cavitation inception and water quality measurements are important in cavitation research. The Hydrodynamic Nuclei Concentration (HDNC) technique can be used for reliable bubble concentration measurements in fluid flows. The HDNC technique bases on the analysis of scattered light from the cavitation nuclei in the water. The HDNC technique can distinguish between bubbles and solid particles. The particle type classification is important, because the number concentration of solid particles is often much higher than the nuclei concentration in cavitation tunnels and in seawater. Verification experiments show, that the HDNC technique reaches similar capabilities in number concentration estimation as Phase Doppler (PD) technique in much shorter acquisition time.

  9. 36Cl and 53Mn in Antarctic meteorites and 10Be-36Cl dating of Antarctic ice

    International Nuclear Information System (INIS)

    Cosmic-ray-produced 53Mn (tsub(1/2)=3.7x106 years) has been measured in twenty Antarctic meteorites by neutron activation analysis. 36Cl (tsub(1/2)=3.0x105 years) has been measured in fourteen of these objects by tandem accelerator mass spectrometry. Cosmic ray exposure ages and terrestrial ages of the meteorites are calculated from these results and from gases. 14C (tsub(1/2)=5740 years) and 26Al(tsub(1/2)=7.2x105 years) data. The terrestrial ages range from 3x104 to 5x105 years. Many of the L3-Allan Hills chrondrites seem to be a single fall based on these results. In addition, 10Be (tsub(1/2)=1.6x106 years) and 36Cl have been measured in six Antarctic ice samples. The first measurements of 10Be/36Cl ratios in the ice core samples demonstrate a new dating method for ice. (orig.)

  10. Comparing model and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign

    Science.gov (United States)

    Farrington, Robert J.; Connolly, Paul J.; Lloyd, Gary; Bower, Keith N.; Flynn, Michael J.; Gallagher, Martin W.; Field, Paul R.; Dearden, Chris; Choularton, Thomas W.

    2016-04-01

    This paper assesses the reasons for high ice number concentrations observed in orographic clouds by comparing in situ measurements from the Ice NUcleation Process Investigation And Quantification field campaign (INUPIAQ) at Jungfraujoch, Switzerland (3570 m a.s.l.) with the Weather Research and Forecasting model (WRF) simulations over real terrain surrounding Jungfraujoch. During the 2014 winter field campaign, between 20 January and 28 February, the model simulations regularly underpredicted the observed ice number concentration by 103 L-1. Previous literature has proposed several processes for the high ice number concentrations in orographic clouds, including an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice crystals into orographic clouds. We find that increasing INP concentrations in the model prevents the simulation of the mixed-phase clouds that were witnessed during the INUPIAQ campaign at Jungfraujoch. Additionally, the inclusion of secondary ice production upwind of Jungfraujoch into the WRF simulations cannot consistently produce enough ice splinters to match the observed concentrations. A flux of surface hoar crystals was included in the WRF model, which simulated ice concentrations comparable to the measured ice number concentrations, without depleting the liquid water content (LWC) simulated in the model. Our simulations therefore suggest that high ice concentrations observed in mixed-phase clouds at Jungfraujoch are caused by a flux of surface hoar crystals into the orographic clouds.

  11. Sequential Measurement of Intermodal Variability in Public Transportation PM2.5 and CO Exposure Concentrations.

    Science.gov (United States)

    Che, W W; Frey, H Christopher; Lau, Alexis K H

    2016-08-16

    A sequential measurement method is demonstrated for quantifying the variability in exposure concentration during public transportation. This method was applied in Hong Kong by measuring PM2.5 and CO concentrations along a route connecting 13 transportation-related microenvironments within 3-4 h. The study design takes into account ventilation, proximity to local sources, area-wide air quality, and meteorological conditions. Portable instruments were compacted into a backpack to facilitate measurement under crowded transportation conditions and to quantify personal exposure by sampling at nose level. The route included stops next to three roadside monitors to enable comparison of fixed site and exposure concentrations. PM2.5 exposure concentrations were correlated with the roadside monitors, despite differences in averaging time, detection method, and sampling location. Although highly correlated in temporal trend, PM2.5 concentrations varied significantly among microenvironments, with mean concentration ratios versus roadside monitor ranging from 0.5 for MTR train to 1.3 for bus terminal. Measured inter-run variability provides insight regarding the sample size needed to discriminate between microenvironments with increased statistical significance. The study results illustrate the utility of sequential measurement of microenvironments and policy-relevant insights for exposure mitigation and management. PMID:27182735

  12. Deciphering the Glacial-Interglacial Landscape History in Greenland Based on Markov Chain Monte Carlo Inversion of Existing 10Be-26Al Data

    DEFF Research Database (Denmark)

    Strunk, Astrid; Knudsen, Mads Faurschou; Larsen, Nicolaj Krog;

    investigate the landscape history in eastern and western Greenland by applying a novel Markov Chain Monte Carlo (MCMC) inversion approach to the existing 10Be-26Al data from these regions. The new MCMC approach allows us to constrain the most likely landscape history based on comparisons between simulated...... the landscape history in previously glaciated terrains may be difficult, however, due to unknown erosion rates and the presence of inherited nuclides. The potential use of cosmogenic nuclides in landscapes with a complex history of exposure and erosion is therefore often quite limited. In this study, we...... and measured cosmogenic nuclide concentrations. It is a fundamental assumption of the model approach that the exposure history at the site/location can be divided into two distinct regimes: i) interglacial periods characterized by zero shielding due to overlying ice and a uniform interglacial erosion rate...

  13. Optical measurement of slurry concentration profile in a concurrent-flow gas-slurry column

    International Nuclear Information System (INIS)

    An optical technique is described which allows the measurement of steady-state slurry concentration profile in a slender concurrent-flow gas-slurry bubble column. The optically measured profile is compared with that predicted by a previously reported semiempirical dispersion model. Qualitative agreement is observed between them, and the reliability of the technique is supported by additional experimental data

  14. Determination of the minimum measurement time for estimating long-term mean radon concentration.

    Science.gov (United States)

    Janik, M; Łoskiewicz, J; Tokonami, S; Kozak, K; Mazur, J; Ishikawa, T

    2012-11-01

    Radon measurements, as do any measurements, include errors in their readings. The relative values of such errors depend principally on the measurement methods used, the radon concentration to be measured and the duration of the measurements. Typical exposure times for radon surveys using passive detectors [nuclear track detectors, activated charcoal, electrostatic (E-perm), etc.)] may extend from a few days to months, whereas, in the case of screening methods utilising active radon monitors (AlphaGUARD, RAD7, EQF, etc.), the measurements may be completed quickly within a few hours to a few days. Thus, the latter may have relatively large error values, which affect the measurement accuracy significantly compared with the former measurements made over long time periods. The method presented in this paper examines the uncertainty of a short-term radon measurement as an estimate of the long-term mean and suggests a minimum measurement time to achieve a given margin of uncertainty of that estimate. PMID:22923240

  15. Determination of the minimum measurement time for estimating long-term mean radon concentration

    International Nuclear Information System (INIS)

    Radon measurements, as do any measurements, include errors in their readings. The relative values of such errors depend principally on the measurement methods used, the radon concentration to be measured and the duration of the measurements. Typical exposure times for radon surveys using passive detectors [nuclear track detectors, activated charcoal, electrostatic (E-perm), etc.)] may extend from a few days to months, whereas, in the case of screening methods utilising active radon monitors (AlphaGUARD, RAD7, EQF, etc.), the measurements may be completed quickly within a few hours to a few days. Thus, the latter may have relatively large error values, which affect the measurement accuracy significantly compared with the former measurements made over long time periods. The method presented in this paper examines the uncertainty of a short term radon measurement as an estimate of the long-term mean and suggests a minimum measurement time to achieve a given margin of uncertainty of that estimate. (authors)

  16. Measurements of ice nuclei concentrations and compositions in the maritime tropics

    Science.gov (United States)

    McMeeking, G. R.; Danielczok, A.; Bingemer, H.; Klein, H.; Hill, T. C.; Franc, G. D.; Martinez, M.; Venero, I.; Mayol-Bracero, O. L.; Ardon-Dryer, K.; Levin, Z.; Anderson, J.; Twohy, C. H.; Toohey, D. W.; DeMott, P. J.

    2011-12-01

    Tropical maritime cumulus clouds represent an important component of the global water cycle, but the relative roles of primary and secondary ice production in these clouds are poorly understood. Heterogeneous ice nuclei (IN) are responsible for ice initiation in towering tropical cumulus clouds, so information regarding their abundance, distribution, source compositions and dependence on cloud temperature is crucial to understanding the ice production processes. Here we present recent measurements of ice nuclei (IN) concentrations measured from ground-based and airborne (NSF/NCAR C-130) platforms during the Ice in Clouds-Tropical experiment, which took place in July 2011 over the Caribbean Sea near St. Croix in the US Virgin Islands. IN measurement techniques included airborne ambient and cloud particle residual measurements using a continuous flow diffusion chamber and off-line analysis of samples collected from the aircraft and two ground sites located on the island of Puerto Rico. Off-line measurements of IN concentrations included analysis by the Frankfurt Ice Nuclei Deposition FreezinG Experiment (FRIDGE) system and drop freezing via two methods of particles collected from filter samples. The measurement period included some periods with a strong Saharan dust influence that resulted in higher IN concentrations compared to clean maritime conditions. First analysis of IN physical, chemical and biological composition, and investigation of relationships between IN concentrations and total aerosol concentrations, composition and size are also presented.

  17. Cosmogenic 10Be Age Constraints on the Holocene Deglaciation of the Scandinavian Ice Sheet

    Science.gov (United States)

    Cuzzone, J. K.; Clark, P. U.; Wohlfarth, B.; Lunkka, J.

    2011-12-01

    An important question in climate science is how ice sheets will respond to a climate warmer than present. Because our understanding of how these changes will occur remains limited, reconstructing the deglaciation of former ice sheets allows for a better understanding of how past ice sheets responded to a climate warmer than present along with understanding their contribution to sea-level rise. We will present new cosmogenic 10Be ages from erratic boulders along three transects spanning southern to northern Sweden and Finland that improve our understanding of the deglaciation of the Scandinavian Ice Sheet (SIS) beginning ~ 11.7ka through its final demise during the early Holocene. By constraining the Holocene deglaciation of the SIS and its associated retreat rates, we will establish the SIS contribution to Holocene sea level rise, improving our understanding of ice-sheet response to warming climates.

  18. Extent of the last ice sheet in northern Scotland tested with cosmogenic 10Be exposure ages

    Science.gov (United States)

    Phillips, W.M.; Hall, A.M.; Ballantyne, C.K.; Binnie, S.; Kubik, P.W.; Freeman, S.

    2008-01-01

    The extent of the last British-Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23-19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice-free. An alternative model implies that these three areas were ice-covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright ?? 2008 John Wiley & Sons, Ltd.

  19. Influence of model resolution on the atmospheric transport of 10Be

    Directory of Open Access Journals (Sweden)

    A. M. Smith

    2012-11-01

    Full Text Available Understanding the transport path of the solar activity proxy 10Be from source to archive is crucial for the interpretation of its observed variability. The extent of mixing of the strong production signal has been quantified in a previous study (Heikkilä et al., 2009. In this study we perform sensitivity studies to investigate the influence of model resolution on the degree of mixing and transport path of 10Be in the atmosphere using the ECHAM5-HAM aerosol-climate model. This study permits us to choose an acceptable resolution, and so minimum CPU time, to produce reconstructions as physically accurate as possible. Five model resolutions are applied: T21L19: a coarse horizontal and vertical resolution with model top at ca. 30 km, T42L31: an average horizontal and fine vertical one, T42L39: similar vertical resolution than L19 but including the middle atmosphere up to ca. 80 km, T63L31: a fine horizontal and vertical resolution and T63L47: a fine resolution horizontally and vertically with middle atmosphere. Comparison with observations suggests that a finer horizontal and vertical resolution might be beneficial, producing a reduced meridional gradient, although the spread between observations was much larger than between the five model runs. In terms of atmospheric mixing the differences became more distinguishable. All resolutions agreed that the main driver of deposition variability, observed in natural archives, is the input of stratospheric 10Be (total contribution 68% which is transported into the troposphere at latitudes 30–50°. In the troposphere the model resolutions deviated largely in the dispersion of the stratospheric component over latitude. The finest resolution (T63L47 predicted the least dispersion towards low latitudes but the most towards the poles, whereas the coarsest resolution (T21L19 suggested the opposite. The tropospheric components of 10Be differed less between the five model runs. The largest differences were found

  20. K-edge x-ray fluorescence analysis for actinide and heavy elements solution concentration measurements

    International Nuclear Information System (INIS)

    Advantages of using Co-57 as an exciter for K XRFA include: a compact design that requires no x-ray tubes; the exciter-detector assembly locates remote from support electronics; on-line, at-line, or off-line configurations for monitor/measurements; systems that can be run by semi-skilled technicians, once programmed; and operated via remote terminals with results sent to control rooms; heavy element concentrations that are measurable thru industrial pipes; independent of minor changes in solution matrix or source half life with concentration results reported in near-real-time; a dynamic range of measurable concentrations that is greater than 104; measurement times that are reasonable even at 1 gram/liter; and for nuclear safeguards, it provides the <0.5% accuracy required by DOE for the accountability of U, Pu, or both, once the system is calibrated

  1. Concentration and composition measurement of sprays with a global rainbow technique

    International Nuclear Information System (INIS)

    Applications of the global rainbow technique to measure the concentration of a sprayed bi-component solution or the composition and the relative proportions of two sprays of different solutions at a local point are investigated. For a dual spray, the global rainbow signal is processed by optimally fitting the initial global rainbow signal with two global rainbow signals. For each composition, the value of the refractive index and size distribution is measured. In the case of spray mixing, the relative proportion of each composition can be retrieved from this information. The algorithms are validated by the processing of simulated global rainbows. Experimental rainbows of water–ethanol solutions with volume concentration from 0% to 100% and two sprays of water and ethanol are measured. The limitations of the global rainbow technique for concentration and composition measurements are discussed. (paper)

  2. Tectonic control on 10Be-derived erosion rates in the Garhwal Himalaya, India

    Science.gov (United States)

    Scherler, Dirk; Bookhagen, Bodo; Strecker, Manfred R.

    2014-02-01

    Erosion in the Himalaya is responsible for one of the greatest mass redistributions on Earth and has fueled models of feedback loops between climate and tectonics. Although the general trends of erosion across the Himalaya are reasonably well known, the relative importance of factors controlling erosion is less well constrained. Here we present 25 10Be-derived catchment-averaged erosion rates from the Yamuna catchment in the Garhwal Himalaya, northern India. Tributary erosion rates range between ~0.1 and 0.5 mm yr-1 in the Lesser Himalaya and ~1 and 2 mm yr-1 in the High Himalaya, despite uniform hillslope angles. The erosion-rate data correlate with catchment-averaged values of 5 km radius relief, channel steepness indices, and specific stream power but to varying degrees of nonlinearity. Similar nonlinear relationships and coefficients of determination suggest that topographic steepness is the major control on the spatial variability of erosion and that twofold to threefold differences in annual runoff are of minor importance in this area. Instead, the spatial distribution of erosion in the study area is consistent with a tectonic model in which the rock uplift pattern is largely controlled by the shortening rate and the geometry of the Main Himalayan Thrust fault (MHT). Our data support a shallow dip of the MHT underneath the Lesser Himalaya, followed by a midcrustal ramp underneath the High Himalaya, as indicated by geophysical data. Finally, analysis of sample results from larger main stem rivers indicates significant variability of 10Be-derived erosion rates, possibly related to nonproportional sediment supply from different tributaries and incomplete mixing in main stem channels.

  3. Vertical Tracer Concentration Profiles Measured During the Joint Urban 2003 Dispersion Study

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Julia E.; Lamb, Brian K.; Allwine, K Jerry; Allwine, Eugene J.

    2007-12-01

    An atmospheric tracer dispersion study known as Joint Urban 2003 was conducted in Oklahoma City, Oklahoma during the summer of 2003. As part of this field program, vertical concentration profiles were measured at approximately 1 km from downtown tracer gas release locations. These profiles indicated that the urban landscape was very effective in mixing the plume vertically. The height of the plume centerline (as determined by the maximum concentration over the depth of the measurements) for any specific 30 min period varied over the 65 m measurement range. Most of the variations in tracer concentration observed in the profile time series were related to changes in wind direction as opposed to changes in turbulence. As a simple analysis tool for emergency response, maximum normalized concentration curves were developed with 5-minute averaged measurements. These curves give the maximum concentration (normalized by the release rate) that would be observed as a function of downwind distance in an urban area. The 5-min data resulted in greater concentrations than predicted with a simple Gaussian plume model. However, the curve compared well with results from a computational fluid dynamics simulation. This dispersion dataset is a valuable asset not only for refining air quality models, but also for developing new tools for emergency response personnel in the event of a toxic release.

  4. Sodium concentration measurement during hemodialysis through ion-exchange resin and conductivity measure approach: in vitro experiments.

    Science.gov (United States)

    Tura, Andrea; Sbrignadello, Stefano; Mambelli, Emanuele; Ravazzani, Paolo; Santoro, Antonio; Pacini, Giovanni

    2013-01-01

    Sodium measurement during hemodialysis treatment is important to preserve the patient from clinical events related to hypo- or hyper-natremia Usually, sodium measurement is performed through laboratory equipment which is typically expensive, and requires manual intervention. We propose a new method, based on conductivity measurement after treatment of dialysate solution through ion-exchange resin. To test this method, we performed in vitro experiments. We prepared 40 ml sodium chloride (NaCl) samples at 280, 140, 70, 35, 17.5, 8.75, 4.375 mEq/l, and some "mixed samples", i.e., with added potassium chloride (KCl) at different concentrations (4.375-17.5 mEq/l), to simulate the confounding factors in a conductivity-based sodium measurement. We measured the conductivity of all samples. Afterwards, each sample was treated for 1 min with 1 g of Dowex G-26 resin, and conductivity was measured again. On average, the difference in the conductivity between mixed samples and corresponding pure NaCl samples (at the same NaCl concentration) was 20.9%. After treatment with the exchange resin, it was 14.7%, i.e., 42% lower. Similar experiments were performed with calcium chloride and magnesium chloride as confounding factors, with similar results. We also performed some experiments on actual dialysate solution during hemodialysis sessions in 15 patients, and found that the correlation between conductivity measures and sodium concentration improved after resin treatment (R=0.839 before treatment, R=0.924 after treatment, Pconductivity measures may improve the measurement of sodium compared to conductivity measures alone, and may become a possible simple approach for continuous and automatic sodium measurement during hemodialysis.

  5. Borrowing strengh in hierarchical Bayes: Posterior concentration of the Dirichlet base measure

    OpenAIRE

    Nguyen, XuanLong

    2013-01-01

    This paper studies posterior concentration behavior of the base probability measure of a Dirichlet measure, given observations associated with the sampled Dirichlet processes, as the number of observations tends to infinity. The base measure itself is endowed with another Dirichlet prior, a construction known as the hierarchical Dirichlet processes (Teh et al. [J. Amer. Statist. Assoc. 101 (2006) 1566–1581]). Convergence rates are established in transportation distances (i.e., Wasserstein met...

  6. Synchronizing the North American Varve Chronology with Greenland ice core records during late MIS 2 using Meteoric 10Be Flux

    Science.gov (United States)

    DeJong, Benjamin D.; Balco, Greg; Ridge, Jack C.; Rood, Dylan H.; Bierman, Paul R.

    2013-04-01

    specifically looking to see if they record the 11-year Schwabe solar cycle, which is clearly expressed in 10Be flux records from Greenland ice cores. The results do not support the existence of a statistically significant 11-year periodicity, but the diagnostic El Nino Southern Oscillation (ENSO; ~4-6 yr) signaling was resolved with >99% confidence. We interpret these results to suggest that our measurements of 10Be flux are representative and that the multi-taper spectral analysis method is the appropriate tool for investigating harmonic signaling. The lack of the 11-year solar variability suggests that complex watershed processes influenced the retention and delivery of 10Be in the glaciated and freshly de-glaciated landscapes of the Connecticut River Valley so as to obscure the short-period 11-year variability. We use these results to guide sampling for a 1700-year record of 10Be flux record at decadal (15-year) resolution for comparison with Greenland ice core records at centennial timescales.

  7. A surface tension based method for measuring oil dispersant concentration in seawater.

    Science.gov (United States)

    Cai, Zhengqing; Gong, Yanyan; Liu, Wen; Fu, Jie; O'Reilly, S E; Hao, Xiaodi; Zhao, Dongye

    2016-08-15

    This work developed a new method to determine concentration of Corexit EC9500A, and likely other oil dispersants, in seawater. Based on the principle that oil dispersants decrease surface tension, a linear correlation was established between the dispersant concentration and surface tension. Thus, the dispersant concentration can be determined by measuring surface tension. The method can accurately analyze Corexit EC9500A in the concentration range of 0.5-23.5mg/L. Minor changes in solution salinity (effects on the measurements. Moreover, effects of extracts from marine sediments were negligible, and thus, the method may be directly applied to seawater-sediment systems. The method accuracy was confirmed by comparing with direct TOC analysis. This simple, fast, economical method offers a convenient analytical tool for quantifying complex oil dispersants in water/seawater, which has been desired by the oil spill research community and industries. PMID:27321800

  8. Variability of {sup 10}Be and {delta}{sup 18}O in snow pits from Greenland and a surface traverse from Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, A.-M. [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Aldahan, A., E-mail: ala.aldahan@geo.uu.se [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Dept. of Geology, United Arab Emirates University, P.O. Box 17551 Al Ain (United Arab Emirates); Possnert, G. [Tandem Laboratory, Uppsala University, P.O. Box 529, 751 20 Uppsala (Sweden); Hansson, M. [Dept. of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm (Sweden); Steen-Larsen, H.C. [Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej, 30,2100 Copenhagen (Denmark); Sturevik Storm, A. [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Moerth, C.-M. [Dept. of Geology and Geochemistry, Stockholm University, 106 91 Stockholm (Sweden); Murad, A. [Dept. of Geology, United Arab Emirates University, P.O. Box 17551 Al Ain (United Arab Emirates)

    2013-01-15

    To examine temporal variability of {sup 10}Be in glacial ice, we sampled snow to a depth of 160 cm at the NEEM (North Greenland Eemian Ice Drilling) drilling site in Greenland. The samples span three years between the summers of 2006 and 2009. At the same time, spatial variability of {sup 10}Be in glacial ice was explored through collection of the upper {approx}5 cm of surface snow in Antarctica during part of the Swedish-Japanese traverse from Svea to Syowa station during the austral summer in 2007-2008. The results of the Greenlandic {sup 10}Be snow suggested variable concentrations that apparently do not clearly reflect the seasonal change as indicated by the {delta}{sup 18}O data. The {sup 10}Be concentration variability most likely reflects also effects of aerosol loading and deposition pathways, possibly in combination with post-depositional processes. The Antarctic traverse data expose a negative correlation between {sup 10}Be and {delta}{sup 18}O, while there are weaker but still significant correlations to altitude and distance to the coast (approximated by the distance to the 70th latitude). These relationships indicate that geographical factors, mainly the proximity to the coast, may strongly affect {sup 10}Be concentrations in snow in Queen Maud Land, Antarctica.

  9. Dilution of 10Be in detrital quartz by earthquake-induced landslides: Implications for determining denudation rates and potential to provide insights into landslide sediment dynamics

    Science.gov (United States)

    West, A. Joshua; Hetzel, Ralf; Li, Gen; Jin, Zhangdong; Zhang, Fei; Hilton, Robert G.; Densmore, Alexander L.

    2014-06-01

    The concentration of 10Be in detrital quartz (10Beqtz) from river sediments is now widely used to quantify catchment-wide denudation rates but may also be sensitive to inputs from bedrock landslides that deliver sediment with low 10Beqtz. Major landslide-triggering events can provide large amounts of low-concentration material to rivers in mountain catchments, but changes in river sediment 10Beqtz due to such events have not yet been measured directly. Here we examine the impact of widespread landslides triggered by the 2008 Wenchuan earthquake on 10Beqtz in sediment samples from the Min Jiang river basin, in Sichuan, China. Landslide deposit material associated with the Wenchuan earthquake has consistently lower 10Beqtz than in river sediment prior to the earthquake. River sediment 10Beqtz decreased significantly following the earthquake downstream of areas of high coseismic landslide occurrence (i.e., with greater than ∼0.3% of the upstream catchment area affected by landslides), because of input of the 10Be-depleted landslide material, but showed no systematic changes where landslide occurrence was low. Changes in river sediment 10Beqtz concentration were largest in small first-order catchments but were still significant in large river basins with areas of 104-105 km. Spatial and temporal variability in river sediment 10Beqtz has important implications for inferring representative denudation rates in tectonically active, landslide-dominated environments, even in large basins. Although the dilution of 10Beqtz in river sediment by landslide inputs may complicate interpretation of denudation rates, it also may provide a possible opportunity to track the transport of landslide sediment. The associated uncertainties are large, but in the Wenchuan case, calculations based on 10Be mixing proportions suggest that river sediment fluxes in the 2-3 years following the earthquake increased by a similar order of magnitude in the 0.25-1 mm and the sediment transfer, with

  10. Effect of whey protein concentrate on texture of fat-free desserts: sensory and instrumental measurements

    OpenAIRE

    Márcia Cristina Teixeira Ribeiro Vidigal; Valéria Paula Rodrigues Minim; Afonso Mota Ramos; Elaine Berger Ceresino; Mayra Darliane Martins Silva Diniz; Geany Peruch Camilloto; Luis Antonio Minim

    2012-01-01

    It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC) on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (%)) and were evaluated using the texture profile analysis (TPA) and rheology....

  11. A portable biosensor system for bacterial concentration measurements in cow's raw milk

    OpenAIRE

    Grossi, Marco; Lanzoni, Massimo; Pompei, Anna; Lazzarini, Roberto; Matteuzzi, Diego; Ricco, Bruno

    2011-01-01

    Bacterial detection is of primary importance in many fields, such as food and environmental monitoring. Measurements of bacterial concentration are traditionally carried out by means of the Standard Plate Count technique, a reliable method for microbial screening that, however, features long response time and is carried out by qualified personnel in microbiology laboratories. The impedance technique for bacterial concentration detection represents a method very competitive with Standard Plate...

  12. Measurement of FRET Efficiency and Ratio of Donor to Acceptor Concentration in Living Cells

    OpenAIRE

    Chen, Huanmian; Puhl, Henry L.; Koushik, Srinagesh V.; Steven S Vogel; Ikeda, Stephen R.

    2006-01-01

    Measurement of fluorescence resonance energy transfer (FRET) efficiency and the relative concentration of donor and acceptor fluorophores in living cells using the three-filter cube approach requires the determination of two constants: 1), the ratio of sensitized acceptor emission to donor fluorescence quenching (G factor) and 2), the ratio of donor/acceptor fluorescence intensity for equimolar concentrations in the absence of FRET (k factor). We have developed a method to determine G and k t...

  13. Development of a 10 Hz measurement system for atmospheric aerosol concentration

    International Nuclear Information System (INIS)

    The goal is to develop an aerosol charger based on a corona discharge for atmospheric concentration measurements (103-105 cm-3) within a response time of 100 ms. Two ion sources, point-to-hole and wire-to-slit have been characterized. The increase of the ion flow in the post-discharge by EHD ion confinement in both the discharge gap and the hole has been shown. At first, using an experimental survey driven in two mixing configurations, concentric and face-to-face, we have confirmed the aerosol diffusion charging law which depends on aerosol diameter and Ni.t product, with Ni, the ions concentration and t, the charging time. Thus, the originality of this charger relies on the very high heterogeneity of unipolar ion densities (Ni0 ≥109 cm-3) required to compensate the charging time of 50 ms. In these conditions, we have shown that aerosol diameter and the charging dynamic (which depends also on the diameter) control the aerosol trajectory. The chargers have, next, been compared in different operating conditions, mainly in terms of the maximal charging and the minimal losses. In the chosen charger (point-to-hole ion source and concentric mixing), the relations charge/mobility and losses according to diameter have been characterized. We have also shown the linearity of the charged particles current with the aerosol concentration which allows the current-concentration data inversion. The preliminary measurement system composed by the charger, the separator and the particle current measurements, satisfies the objectives of the study in terms of the concentration detection limit (103 cm-3) and the response time (100 ms). We have thus shown the feasibility of an atmospheric aerosol concentration measurement system at 10 Hz using a corona discharge charger provided that the separation power is improved. Furthermore, knowing that aerosol losses are negligible and the lower limit of the partial charging, the developed charger is adaptable with other application. (author)

  14. Remote Three-Atom Information Concentration without Bell-State Measurement

    Institute of Scientific and Technical Information of China (English)

    WU Zhen-Zhen; FANG Mao-Fa

    2006-01-01

    @@ We propose a scheme for information concentration of three remote two-level atoms in cavity QED. Our scheme does not involve the Bell-state measurement. During the interaction between atom and cavity, the cavity frequency is largely detuned from the atomic transition frequency, thus the scheme is insensitive to both the cavity decay and the thermal field. The idea can also be used to realize the remote information concentration of trapped ions.

  15. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    Science.gov (United States)

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  16. Concentrations of OH and HO2 radicals during NAMBLEX: measurements and steady state analysis

    Directory of Open Access Journals (Sweden)

    S. C. Smith

    2006-01-01

    Full Text Available OH and HO2 concentrations were measured simultaneously at the Mace Head Atmospheric Research Station in the summer of 2002 during the NAMBLEX (North Atlantic Marine Boundary Layer EXperiment field campaign. OH was measured by laser-induced fluorescence employing the FAGE (Fluorescence Assay by Gas Expansion technique, with a mean daytime detection limit of 2.7×105 molecule cm−3 (5 min acquisition period; signal-to-noise ratio = 1. HO2 was detected as OH following its chemical conversion through addition of NO, with a mean detection limit of 4.4×106 molecule cm−3. The diurnal variation of OH was measured on 24 days, and that of HO2 on 17 days. The local solar noon OH concentrations ranged between (3–8×106 molecule cm−3, with a 24 h mean concentration of 9.1×105 molecule cm−3. The local solar noon HO2 concentrations were (0.9–2.1×108 molecule cm−3 (3.5–8.2 pptv, with a 24 h mean concentration of 4.2×107 molecule cm−3 (1.6 pptv. HO2 radicals in the range (2–3×107 molecule cm−3 were observed at night. During NAMBLEX, a comprehensive suite of supporting measurements enabled a detailed study of the behaviour of HOx radicals under primarily clean marine conditions. Steady state expressions are used to calculate OH and HO2 concentrations and to evaluate the effect of different free-radical sources and sinks. The diurnally averaged calculated to measured OH ratio was 1.04±0.36, but the ratio displays a distinct diurnal variation, being less than 1 during the early morning and late afternoon/evening, and greater than 1 in the middle of the day. For HO2 there was an overprediction, with the agreement between calculated and measured concentrations improved by including reaction with measured IO and BrO radicals and uptake to aerosols. Increasing the concentration of IO radicals included in the calculations to above that measured by a DOAS instrument with an absorption path located mainly over the ocean, reflecting the

  17. Concentrations of OH and HO2 radicals during NAMBLEX: measurements and steady state analysis

    Directory of Open Access Journals (Sweden)

    G. P. Johnson

    2005-11-01

    Full Text Available OH and HO2 concentrations were measured simultaneously at the Mace Head Atmospheric Research Station in the summer of 2002 during the NAMBLEX (North Atlantic Marine Boundary Layer EXperiment field campaign. OH was measured by laser-induced fluorescence employing the FAGE (Fluorescence Assay by Gas Expansion technique, with a mean daytime detection limit of 2.7×105 molecule cm−3 (5 min acquisition period; signal-to-noise ratio = 1. HO2 was detected as OH following its chemical conversion through addition of NO, with a mean detection limit of 4.4×106 molecule cm−3. The diurnal variation of OH was measured on 24 days, and that of HO2 on 17 days. The local solar noon OH concentrations ranged between (3–8×106 molecule cm−3, with a 24 h mean concentration of 9.1×105 molecule cm−3. The local solar noon HO2 concentrations were (0.9–2.1×108 molecule cm−3 (3.5–8.2 pptv, with a 24 h mean concentration of 4.2×107 molecule cm−3. HO2 radicals in the range (2–3×107 molecule cm−3 were observed at night. During NAMBLEX, a comprehensive suite of supporting measurements enabled a detailed study of the behaviour of HOx radicals under primarily clean marine conditions. Case study periods highlight the typical radical levels observed under different conditions. Steady state expressions are used to calculate OH and HO2 concentrations and to evaluate the effect of different free-radical sources and sinks. The diurnally averaged calculated to measured OH ratio was 1.04±0.36, but the ratio displays a distinct diurnal variation, being less than 1 during the early morning and late afternoon/evening, and greater than 1 in the middle of the day. For HO2 there was an overprediction, with the agreement between calculated and measured concentrations improved by including reaction with measured IO and BrO radicals and uptake to aerosols. Increasing the concentration of IO radicals included in the calculations to above that measured by a DOAS

  18. Measurement of natural and 137Cs radioactivity concentrations at Izmit Bay (Marmara Sea), Turkey

    Science.gov (United States)

    Öksüz, I.; Güray, R. T.; Özkan, N.; Yalçin, C.; Ergül, H. A.; Aksan, S.

    2016-03-01

    In order to determine the radioactivity level at Izmit Bay Marmara Sea, marine sediment samples were collected from five different locations. The radioactivity concentrations of naturally occurring 238U, 232Th and 40K isotopes and also that of an artificial isotope 137Cs were measured by using gamma-ray spectroscopy. Preliminary results show that the radioactivity concentrations of 238U and 232Th isotopes are lower than the average worldwide values while the radioactivity concentrations of the 40K are higher than the average worldwide value. A small amount of 137Cs contamination, which might be caused by the Chernobyl accident, was also detected.

  19. Reactions with a 10Be beam to study the one-neutron halo nucleus 11Be

    CERN Document Server

    Jones, K L

    2016-01-01

    Halo nuclei are excellent examples of few-body systems consisting of a core and weakly-bound halo nucleons. Where there is only one nucleon in the halo, as in 11Be, the many-body problem can be reduced to a two-body problem. The contribution of the 1s1/2 orbital to the ground state configuration in 11Be, characterized by the spectroscopic factor, S, has been extracted from direct reaction data by many groups over the past five decades with discrepant results. An experiment was performed at the Holifield Radioactive Ion Beam Facility using a 10Be primary beam at four different energies with the goal of resolving the discrepancy through a consistent analysis of elastic, inelastic, and transfer channels. Faddeev-type calculations, released after the publication of the experimental results, show that dynamic core excitation in the transfer process can lead to reduced differential cross sections at higher beam energies. This reduction would lead to the extraction of decreasing values of S with increasing beam ener...

  20. 26Al/10Be burial dating of Xujiayao-Houjiayao site in Nihewan Basin, northern China.

    Directory of Open Access Journals (Sweden)

    Hua Tu

    Full Text Available The Xujiayao-Houjiayao site in Nihewan Basin is among the most important Paleolithic sites in China for having provided a rich collection of hominin and mammalian fossils and lithic artifacts. Based on biostratigraphical correlation and exploratory results from a variety of dating methods, the site has been widely accepted as early Upper Pleistocene in time. However, more recent paleomagnetic analyses assigned a much older age of ∼500 ka (thousand years. This paper reports the application of 26Al/10Be burial dating as an independent check. Two quartz samples from a lower cultural horizon give a weighted mean age of 0.24 ± 0.05 Ma (million years, 1σ. The site is thus younger than 340 ka at 95% confidence, which is at variance with the previous paleomagnetic results. On the other hand, our result suggests an age of older than 140 ka for the site's lower cultural deposits, which is consistent with recent post-infrared infrared stimulated luminescence (pIR-IRSL dating at 160-220 ka.

  1. Using of Nuclear Track Detector C R-39 To Measure Depleted Uranium Concentration of Mother's Milk

    International Nuclear Information System (INIS)

    Biological samples of mother's milk were collected from Iraqi southern provinces (Basrah,Messan,Al-Muthana,Thikar) and Baghdad province to measure uranium concentration of the samples by using track technique of fission fragments as a result from uranium atom fission with thermal neutrons from neutrons source 241Am-Be with activity 16Ci and neutron flux of 5000n/cm2.s on using nuclear track detector C R-39.It was found that the high percentage of depleted uranium concentration on the samples from Muthana province, which accounted as 4.183ppm therefore the samples was taken from the provinces (Thikar,Basrah,Baghdad), which was accounted the depleted uranium concentration as following (1.243,2.172,2.875)ppm respectively, with appear a small concentration percentage in the Messan province which was accounted (0.230)ppm.Although, this concentration was been on the one baby food menu from mother's milk nutrition.In this research,the concentration of some essential trace elements in human breast milk, Ca, Na, K, Mg, Fe, Cu, Mn, Zn, Cr, Pb, Cd, Hg,was measured in the samples was taken from the above provinces by using atomic absorption technique and the result was indicated appear change in the concentration of the elements of the samples

  2. Particle concentrations and number size distributions in the planetary boundary layer derived from airship based measurements

    Science.gov (United States)

    Tillmann, Ralf; Zhao, Defeng; Ehn, Mikael; Hofzumahaus, Andreas; Holland, Frank; Rohrer, Franz; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    Atmospheric particles play a key role for regional and global climate due to their direct and indirect radiative forcing effects. The concentration and size of the particles are important variables to these effects. Within the continental planetary boundary layer (PBL) the particle number size distribution is influenced by meteorological parameters, local sinks and sources resulting in variable spatial distributions. However, measurements of particle number size distributions over a broad vertical range of the PBL are rare. The airship ZEPPELIN NT is an ideal platform to measure atmospheric aerosols on a regional scale within an altitude range up to 1000 m. For campaigns in the Netherlands, Northern Italy and South Finland in 2012 and 2013 the airship was deployed with a wide range of instruments, including measurements of different trace gases, short lived radicals, solar radiation, aerosols and meteorological parameters. Flights were carried out at different times of the day to investigate the influence of the diurnal evolution of the PBL on atmospheric trace gases and aerosols. During night and early morning hours the concentration and size distribution of atmospheric particles were found to be strongly influenced by the layered structure of the PBL, i.e. the nocturnal boundary layer and the residual layer. Within the residual layer particle concentrations stay relatively constant as this layer is decoupled from ground sources. The particles persist in the accumulation mode as expected for an aged aerosol. In the nocturnal boundary layer particle concentrations and size are more dynamic with higher concentrations than in the residual layer. A few hours after sunrise, the layered structure of the PBL intermixes. During daytime the PBL is well mixed and a negative concentration gradient with increasing height is observed. Several height profiles at different times of the day and at different locations in Europe were measured. The aerosol measurements will be

  3. Investigating DOC export dynamics using high-frequency instream concentration measurements

    Science.gov (United States)

    Oosterwoud, Marieke; Keller, Toralf; Musolff, Andreas; Frei, Sven; Park, Ji-Hyung; Fleckenstein, Jan H.

    2014-05-01

    Being able to monitor DOC concentrations using in-situ high frequency measurements makes it possible to better understand concentration-discharge behavior under different hydrological conditions. We developed a UV-Vis probe setup for modified/adapted use under field conditions. The quasi mobile probe setup allows a more flexible probe deployment. New or existing monitoring sites can easily be equipped for quasi-continuous monitoring or measurements can be performed at changing locations, without the need for additional infrastructure. We were able to gather high frequency data on DOC dynamics for one year in two streams in the Harz mountains in Germany. It proved that obtaining accurate DOC concentrations from the UV-Vis probes required frequent maintenance and probe calibration. The advantage of the setup over standard monitoring protocols becomes evident when comparing net exports over a year. In addition to mass improved balance calculations the high-frequency measurements can reveal intricate hysteretic relationships between discharge and concentrations that can provide valuable insights into the hydrologic dynamics and mechanisms that govern the delivery of DOC to the receiving waters. Measurements with similar probes from two additional catchments in Southern Germany and South Korea will be used to illustrate different discharge-concentration relationships and what can be learned from them about the hydrologic mechanisms that control the dynamics of DOC export.

  4. Measurements of radon concentration in soil gas of urban areas, Bulgaria

    OpenAIRE

    Kunovska, Bistra; Ivanova, Kremena; STOJANOVSKA Zdenka; Vuchkov, Daniel; Zaneva, Nadia

    2013-01-01

    These work present results of preliminary study of radon concentration in soil gas at 64 locations within 13 urban areas of Bulgaria using AlphaGuard equipment. The measuring period was from 2008 to 2012. The temperature and humidity has been measured as well, including the gamma dose rate. The radon concentration in soil gas was found to be log-normally distributed within the range from 3–97kBq m−3, with arithmetic mean of 26 kBq.m−3. The influence of the meteorological and geological fac...

  5. Underwater Optical Fiber Fluorescent System for Measuring Chlorophyll-a Concentration

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using optical fiber fluorescent technology,a new method for measuring alga concentration in water is presented. The system can realize on-line measurement for alga concentration using He-Ne laser as the light source. It can also effectively detect weak signals. The system with a passive sensor head has such advantages as simple structure, high sensitivity and high accuracy. It has been demonstrated that this system can be used to monitor water quality and can also be used to survey some matter.

  6. Isoprene concentrations over Russia: ground-based measurements and chemistry-transport modeling

    Science.gov (United States)

    Berezina, Elena; Konovalov, Igor; Berezin, Evgeny; Skorokhod, Andrey; Elansky, Nikolay; Belikov, Igor

    2016-04-01

    Near-surface isoprene concentration was measured over Russia using the proton mass spectrometry method (PTR-MS) in TROICA (TRanscontinental Observations Into the Chemistry of the Atmosphere) experiments along the Trans-Siberian railway from 21.06.08 to 04.08.08 (TROICA-12) and from 08.10.09 to 23.10.09 (TROICA-13). The highest isoprene concentration is observed in the Far East (up to 3 ppb) due to the emissions from the major isoprene source - deciduous forests. The TROICA measurements were compared to the corresponding simulations performed with the CHIMERE chemistry transport model (CTM) using the MEGAN biogenic emission inventory. Simulated and measured isoprene concentrations are highly correlated (r = 0.8), but the simulated isoprene concentration is about 4-6 times higher than the measured one. The selection of daytime and background (from isoprene/benzene ratios) isoprene concentrations don't significantly increase the experimental values; moreover, even the isoprene concentration corrected for atmospheric photochemical losses (that is, the near-source concentration) is found to be 1.5 times lower than the simulated data. Therefore, the systematic discrepancy between the measurements and simulations could not be unambiguously attributed to the representativity error. The weak exponential dependence of summer isoprene concentration on temperature both for the model (R2 = 0.3) and for the experimental data (R2 = 0.4) is observed. However, a much stronger linear correlation (r ~ 0.9) is found between the isoprene concentration and temperature in Russian regions separated according to the type of vegetation. The differences between the simulated and experimental dependences of isoprene concentration on temperature are not statistically significant. The above results prompt the conclusion that the parameterization of isoprene emissions in the CHIMERE CTM is qualitatively adequate, but the isoprene emission factors applicable for Russian forest are likely

  7. Helium-3 and boron-10 concentration and depth measurements in alloys and semiconductors using NDP

    Science.gov (United States)

    Ünlü, Kenan; Saglam, Mehmet; Wehring, Bernard W.

    1999-02-01

    Neutron Depth Profiling (NDP) is a nondestructive near surface technique that is used to measure concentration versus absolute depth of several isotopes of light mass elements in various substrates. NDP is based on absorption reaction of thermal neutrons with the isotope of interest. Charged particles and recoil atoms are generated in the reaction. The depth profiles are determined by measuring the residual energy of the charged particles or the recoil atoms. The NDP technique has became an increasingly important method to measure depth profiles of 3He and 10B in alloys and semiconductor materials. A permanent NDP facility has been installed on the tangential beam port of the University of Texas (UT) TRIGA Mark-II research reactor. One of the standard applications of the UT-NDP facility involves the determination of boron profiles of borophosphosilicate glass (BPSG) samples. NDP is also being used in combination with electron microscopy measurements to determine radiation damage and microstructural changes in stainless steel samples. This is done to study the long-term effects of high-dose alpha irradiation for weapons grade plutonium encapsulation. Measurements of implanted boron-10 concentration and depth profiles of semiconductor materials in order to calibrate commercial implanters is another application at the UT-NDP facility. The concentration and depth profiles measured with NDP and SIMS are compared with reported data given by various vendors or different implanters in order to verify implant quality of semiconductor wafers. The results of the measurements and other possible applications of NDP are presented.

  8. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    Science.gov (United States)

    Gong, J. C.; Zhu, T.; Hu, M.; Zhang, L. W.; Cheng, H.; Zhang, L.; Tong, J.; Zhang, J.

    2010-08-01

    Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein) in a central Beijing site in the summer and early fall of 2008 (from June to October). Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions). In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5). These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  9. Measurement of low concentration and nano-quantity hydrogen sulfide in sera using unfunctionalized carbon nanotubes

    International Nuclear Information System (INIS)

    Hydrogen sulfide (H2S) is produced in small amounts by certain cells in the mammalian body and has a number of biological functions. H2S gas naturally produced by the body is not simply a toxic gas; it could be a vascular dilator and play a physiological role in regulating cardiovascular functions. In order to know the effects of H2S, it is necessary to accurately know its concentrations in the body. Conventional measurement methods have their limitations concerning the small amount and low concentration of H2S in the body. A new paradigm of using carbon nanotubes in H2S measurement expresses its potential. However, the influence of proteins in the mammalian body must be studied in the measurement of H2S by carbon nanotubes. In this paper, we demonstrate a successful measurement of low concentration (20 µM) and nano-quantity (0.5 µg) H2S in the serum by using carbon nanotubes and further with the fluorescence of confocal laser scanning microscopy and the luminescence of Raman microscopy. Statistical analysis of the experimental data shows that the relationship between concentrations and intensities is linear, which thus makes the carbon nanotube sensor highly promising for the measurement of H2S in sera

  10. Field inter-comparison of three systems for NH3 concentration and flux measurements

    Science.gov (United States)

    Voglmeier, Karl; Ammann, Christof; Neftel, Albrecht; Häni, Christoph; Richter, Undine; Brümmer, Christian

    2016-04-01

    Ambient air ammonia analyzer systems that are not only used for concentration but also for flux measurements have to meet special requirements. They either have to provide a fast response detection (c. 1 sec) for the application of the eddy covariance technique (EC) or they have to resolve relatively small horizontal or vertical concentration gradients. The Posieux intercomparison experiment in fall 2015 was designed to compare three advanced and different approaches to determine concentration and fluxes of NH3 of a grazed pasture during several weeks. The methods involved: [1] a two channel reactive N converter measuring in parallel the sum of oxidized N species with the exception of N2O and the sum of the total reactive N species. The difference of the two channels corresponds to the sum of reduced reactive N species; [2] a QC laser analyzer with a special designed inlet system that minimize wall effects and separates particles from the gas sampling stream; [3] two MiniDOAS instruments for line integrated concentration without any inlet system. The experimental setup and the environmental conditions resulted in a high temporal and spatial dynamic of NH3 concentrations and fluxes. Systems [1] and [2] are designed to perform flux measurements by the Eddy Covariance technique, whereas the DOAS technique has a temporal resolution of 1 min. Fluxes are calculated from the horizontal concentration increase across an emitting surface with back lagrangian stochastic trajectory dispersion model. We present a comparison of the measured concentrations and fluxes and discuss the advantages and limitations of the three chosen systems.

  11. PGNAA system preliminary design and measurement of In-Hospital Neutron Irradiator for boron concentration measurement.

    Science.gov (United States)

    Zhang, Zizhu; Chong, Yizheng; Chen, Xinru; Jin, Congjun; Yang, Lijun; Liu, Tong

    2015-12-01

    A prompt gamma neutron activation analysis (PGNAA) system has been recently developed at the 30-kW research reactor In-Hospital Neutron Irradiator (IHNI) in Beijing. Neutrons from the specially designed thermal neutron beam were used. The thermal flux of this beam is 3.08×10(6) cm(-2) s(-1) at a full reactor power of 30 kW. The PGNAA system consists of an n-type high-purity germanium (HPGe) detector of 40% efficiency, a digital spectrometer, and a shielding part. For both the detector shielding part and the neutron beam shielding part, the inner layer is composed of (6)Li2CO3 powder and the outer layer lead. The boron-10 sensitivity of the PGNAA system is approximately 2.5 cps/ppm. Two calibration curves were produced for the 1-10 ppm and 10-50 ppm samples. The measurement results of the control samples were in accordance with the inductively coupled plasma atomic emission spectroscopy (ICP-AES) results. PMID:26242556

  12. Peak tailing correction in measurement of 222Rn/220Rn activity concentration with α spectrum method

    International Nuclear Information System (INIS)

    α spectrum method is one of the most important methods in measurement of 222Rn/220Rn concentration in environment. However, the peak tailing from high energy particles is an obstacle for accurate measurement. To improve the accuracy of measurement, study on the mechanism and effect of the tailing were carried out, and calibrating experiments on peak tailing correction factors were also realized using ERS-2 monitor. The peak tailing correction factors and calibration factors of 222Rn and 220Rn were measured by experiment and their accuracy were also tested. It is suggested that during calibrating α spectrum monitor of 222Rn/220Rn activity concentration, the peak tailing correction and calibration factors should be recalibrated if necessary. (authors)

  13. Measuring and modeling suspended sediment concentration profiles in the surf zone

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Time-averaged suspended sediment concentration profiles across the surf zone were measured in a large-scale three-dimensional movable bed laboratory facility (LSTF:Large-scale Sediment Transport Facility). Sediment suspension under two different types of breaking waves, spilling and plunging breakers, was investigated. The magnitudes and shapes of the concentration profiles varied substantially at different locations across the surf zone, reflecting the different intensities of breaking-induced turbulence. Sediment sus- pension at the energetic plunging breaker-line was much more active, resulting in nearly homogeneous concentration profiles throughout most of the water column, as compared to the reminder of the surf zone and at the spilling breaker-line. Four suspended sediment concentration models were examined based on the LSTF data, including the mixing turbulence length approach, segment eddy viscosity model, breaking-induced wave-energy dissipation approach, and a combined breaking and turbulence length model developed by this study. Neglecting the breaking-induced turbulence and subsequent sediment mixing, suspended sediment concentration models failed to predict the across-shore variations of the sediment suspension, especially at the plunging breaker-line. Wave-energy dissipation rate provided an accurate method for estimating the intensity of turbulence generated by wave breaking. By incorporating the breaking-induced turbulence, the combined breaking and turbulence length model reproduced the across-shore variation of sediment suspension in the surf zone. The combined model reproduced the measured time-averaged suspended sediment concentration profiles reasonably well across the surf zone.

  14. Comparison of VIDAS and Radioimmunoassay Methods for Measurement of Cortisol Concentration in Bovine Serum

    Directory of Open Access Journals (Sweden)

    Daniela Proverbio

    2013-01-01

    Full Text Available Radioimmunoassay (RIA is the “gold standard” method for evaluation of serum cortisol concentration. The VIDAS cortisol test is an enzyme-linked fluorescent assay designed for the MiniVidas system. The aim of this study was to compare the VIDAS method with RIA for measurement of bovine serum cortisol concentration. Cortisol concentrations were evaluated in 40 cows using both VIDAS and RIA methods, the latter as the reference method. A paired Student’s -test, Pearson’s correlation analysis, Bland-Altman plot, and Deming regression analysis were used to compare the two methods. There was no statistically significant difference between mean serum cortisol concentrations measured by VIDAS or RIA methods (. Both methods were able to detect significant differences in mean low and high cortisol concentrations ( RIA and VIDAS. The correlation coefficient was low, but a Bland-Altman plot and Deming regression analysis show neither constant nor proportional error. The VIDAS method produced slightly higher values than RIA, but the difference was small and in no case did the mean value move the normal range. Results suggest that VIDAS method is suitable for the determination of bovine serum cortisol concentration in studies of large numbers of animals.

  15. Full-field dye concentration measurement within saturated/unsaturated thin slabs of porous media

    Energy Technology Data Exchange (ETDEWEB)

    Norton, D.L. [Arizona Univ., Tucson, AZ (United States). Dept. of Hydrology; Glass, R.J. [Sandia National Labs., Albuquerque, NM (United States)

    1992-12-31

    This paper presents a full-field dye concentration measurement technique that extends our experimental capabilities to the measurement of transient dye concentration fields within steady state flow fields under unsaturated or saturated conditions. Simple light absorption theory provides a basis for translating images into high resolution dye concentration fields. A series of dye pulse experiments that demonstrate the combined use of the full-field saturation and dye concentration techniques was conducted at four different degrees of saturation. Each of these experimental sequences was evaluated with respect to mass balance, the results being within 5% of the known dye mass input. An image windowing technique allowed us to see increased dispersion due to decreasing moisture content, tailing of concentration at the rear of the dye pulse and slight velocity changes of the dispersive front due to changes in moisture content. The exceptional resolution of dye concentration in space and time provided by this laboratory technique allows systematic experimentation for examining basic processes affecting solute transport within saturated/unsaturated porous media. Future challenges for this work will be to use these techniques to analyze more complex systems involving heterogeneities, scaling laws, and detailed investigations of the relationship between transverse and longitudinal dispersion in unsaturated media.

  16. Odour Pollution Measurement from Refuse Derive Fuel Operations Using Odour Concentration Meter (OCM) XP-329

    OpenAIRE

    Zaini Sakawi; Lukman Ismail; Mohd Rozaimi Ariffin; School of Social, Development, Environmental Studies, Universiti Kebangsaan Malaysia

    2013-01-01

    Odour perception is subjective and difficult to be accurately measured between individuals. Hence many studies on odour issues are more commonly pertain to its intensity, concentration, types, standards, measurement methods, law and impacts on physical and human environments. Nevertheless, odour analysis can be conducted empirically or based on human sensorial. Among major sources of odour pollution are animal rearing, oil palm and rubber mills, dumpsites, industries and sewage treatments. Th...

  17. Measurement of competitive balance in professional team sports using the Normalized Concentration Ratio

    OpenAIRE

    Vasileios Manasis; Vassiliki Avgerinou; Ioannis Ntzoufras; J. James Reade

    2011-01-01

    Competitive balance is an important concept in professional team sports; its measurement is, therefore, a critical issue. One of the most widely used indices, which was introduced for the estimation of seasonal competitive balance is the Concentration Ratio, which is a relatively simple index and measures the extent to which a league is dominated by a particular number of teams. However, it is shown that both the total number of league teams and the number of dominant teams under examination ...

  18. Odour Pollution Measurement from Refuse Derive Fuel Operations Using Odour Concentration Meter (OCM XP-329

    Directory of Open Access Journals (Sweden)

    Zaini Sakawi

    2013-04-01

    Full Text Available Odour perception is subjective and difficult to be accurately measured between individuals. Hence many studies on odour issues are more commonly pertain to its intensity, concentration, types, standards, measurement methods, law and impacts on physical and human environments. Nevertheless, odour analysis can be conducted empirically or based on human sensorial. Among major sources of odour pollution are animal rearing, oil palm and rubber mills, dumpsites, industries and sewage treatments. This study attempted to measure odour pollution generated by Refuse Derived Fuel (RDF operation. The analysis was conducted at different times of day (morning, evening and night and weather conditions (normal days and after rains. 10 sampling stations were selected for observations using the Odour Concentration Meter Siri XP-329 III.The results indicated that there existed different level of odour concentrations on normal days and after rains due to the influence of meteorological environment. Distance factors also influenced the odour concentrations, whereby gradually, the stations further from RDF operation recorded higher odour concentrations

  19. Radon as an environmental risk: concentration measurements in family buildings at Cordoba city

    International Nuclear Information System (INIS)

    Measurements of radon concentration at homes are usual activities in the last years at the countries with uranium in their soils. On the other hand, the man's radiological protection about radiation is related to the environmental actions for a healthy life, but not much known for a public. The great quantities of ore with uranium can be an important source of irradiation when they are used as building materials. The soils are important too for the emanations of radon in the interior of buildings and for these reasons, the radon concentration measurements in Cordoba familiar houses were implemented in the summer of 1991. The Alpha Track Technique and the results obtained indicate the need of other measurements and a winter measurement for investigation variations of radon concentration. The typical values measured were low, about 4.13 Bq/m3 if they are compared with other Argentine values measured. This paper discusses the procedure, techniques and criteria used in the work held in Cordoba city, Argentina. (Author)

  20. The CREp program, a fully parameterizable program to compute exposure ages (3He, 10Be)

    Science.gov (United States)

    Martin, L.; Blard, P. H.; Lave, J.; Delunel, R.; Balco, G.

    2015-12-01

    Over the last decades, cosmogenic exposure dating permitted major advances in Earth surface sciences, and particularly in paleoclimatology. Yet, exposure age calculation is a dense procedure. It requires numerous choices of parameterization and the use of an appropriate production rate. Nowadays, Earth surface scientists may either calculate exposure ages on their own or use the available programs. However, these programs do not offer the possibility to include all the most recent advances in Cosmic Ray Exposure (CRE) dating. Notably, they do not propose the most recent production rate datasets and they only offer few possibilities to test the impact of the atmosphere model and the geomagnetic model on the computed ages. We present the CREp program, a Matlab © code that computes CRE ages for 3He and 10Be over the last 2 million years. The CREp program includes the scaling models of Lal-Stone in the "Lal modified" version (Balco et al., 2008; Lal, 1991; Stone, 2000) and the LSD model (Lifton et al., 2014). For any of these models, CREP allows choosing between the ERA-40 atmosphere model (Uppala et al., 2005) and the standard atmosphere (National Oceanic and Atmospheric Administration, 1976). Regarding the geomagnetic database, users can opt for one of the three proposed datasets: Muscheler et al. 2005, GLOPIS-75 (Laj et al. 2004) and the geomagnetic framework proposed in the LSD model (Lifton et al., 2014). They may also import their own geomagnetic database. Importantly, the reference production rate can be chosen among a large variety of possibilities. We made an effort to propose a wide and homogenous calibration database in order to promote the use of local calibration rates: CREp includes all the calibration data published until July 2015 and will be able to access an updated online database including all the newly published production rates. This is crucial for improving the ages accuracy. Users may also choose a global production rate or use their own data

  1. Holocene Deglaciation of the Scandinavian Ice Sheet: Preliminary 10Be Ages

    Science.gov (United States)

    Cuzzone, J. K.; Clark, P. U.; Marcott, S. A.; Lunkka, J.; Wohlfarth, B.; Caffee, M. W.; Carlson, A. E.

    2013-12-01

    The response of ice sheets to a warming climate is not well understood. Because we are limited in our understanding of present dynamics, reconstructing the deglaciation of former ice sheets allows for a better understanding of how past ice sheets responded to a warming climate along with their contribution to sea-level rise. These reconstructions also serve as critical constraints for ice sheet modeling efforts. Here, we present a suite of new 10Be ages from erratic boulders along three transects spanning southern to northern Sweden and Finland, that improve our understanding of the deglaciation of the Scandinavian Ice Sheet (SIS) beginning ~ 11.7ka through its final demise during the early Holocene. Dates from southern Finland, beginning at the Salpausselka Younger Dryas moraine (11.5 × 0.7 ka, n=4), inland southern Finland near Jyvaskyla (11.5 × 0.5ka, n=2), and coastal Finland (~60km from Gulf of Bothnia) near Vimpeli (11.5 × 0.4ka, n=4) indicate a rapid retreat following the Younger Dryas for Southern Finland (~500km within uncertainty of ages). Preliminary dates also exist for Northern Finland, near Inari (10.8 × 0.5ka, n=4) and near Oulu (10.5 × 0.6 ka, n = 4) suggesting a later retreat in the north. Dates from southern Sweden, near Skovde (12.73 × 0.8ka, n=4) to Mora (10.41 × 0.6ka, n=5) suggest a slower retreat (over ~400km). Lastly, dates in Northwestern Sweden suggest a final termination of the SIS around 9.4 × 0.7ka (n = 3). Additional ages are now being processed at PRIME Lab, Purdue University, which will further strengthen our understanding of SIS retreat from all sampled sites. These new data will help to constrain the Holocene deglaciation of the SIS and its associated retreat rates, and establish the SIS contribution to Holocene sea level rise, which will improve our understanding of ice-sheet response to a warming climate.

  2. Global analysis of the stream power law parameters based on worldwide 10Be denudation rates

    Science.gov (United States)

    Harel, M.-A.; Mudd, S. M.; Attal, M.

    2016-09-01

    The stream power law, expressed as E = KAmSn - where E is erosion rate [LT - 1], K is an erodibility coefficient [T - 1L (1 - 2m)], A is drainage area [L 2], S is channel gradient [L/L], and m and n are constants - is the most widely used model for bedrock channel incision. Despite its simplicity and limitations, the model has proved useful for topographic evolution, knickpoint migration, palaeotopography reconstruction, and the determination of rock uplift patterns and rates. However, the unknown parameters K, m, and n are often fixed arbitrarily or are based on assumptions about the physics of the erosion processes that are not always valid, which considerably limits the use and interpretation of the model. In this study, we compile a unique global data set of published basin-averaged erosion rates that use detrital cosmogenic 10Be. These data (N = 1457) enable values for fundamental river properties to be empirically constrained, often for the first time, such as the concavity of the river profile (m/n ratio or concavity index), the link between channel slope and erosion rate (slope exponent n), and substrate erodibility (K). These three parameters are calculated for 59 geographic areas using the integral method of channel profile analysis and allow for a global scale analysis in terms of climatic, tectonic, and environmental settings. In order to compare multiple sites, we also normalize n and K using a reference concavity index m/n = 0.5. A multiple regression analysis demonstrates that intuitive or previously demonstrated local-scale trends, such as the correlation between K and precipitation rates, do not appear at a global scale. Our results suggest that the slope exponent is generally > 1, meaning that the relationship between erosion rate and the channel gradient is nonlinear and thus support the hypothesis that incision is a threshold controlled process. This result questions the validity of many regional interpretations of climate and/or tectonics where

  3. Radium concentration and radon exhalation measurements in the water around thermal power plants of north India

    International Nuclear Information System (INIS)

    Samples of water from different thermal power plants in northern India have been collected and analyzed for radium and radon concentration. For the measurements, α-sensitive LR-115 type II plastic track detectors are used. The radium and radon levels measured in some samples are high and thus unsafe from health point of view. Based upon the available data, the radon exhalation rates have been calculated. The radium concentration varies from 1.11 to 3.11 Bql-1 and the radon concentration varies from 10.64 to 29.78 pCil-1. The radon mass exhalation rates vary from 8.95 to 25.08 mBqkg-1hr-1 and surface exhalation rates vary from 245.21 to 690.24 mBqm-12hr-1 in different water samples. (author)

  4. A calibration method of an ionization chamber for measuring 222Rn concentration

    International Nuclear Information System (INIS)

    When 222Rn concentration is measured with an ionization chamber, the conversion factor of ionization current to 222Rn concentration has been decided in individual case. A flow-type ionization chamber (the effective volume; 18 l) was used for measuring 222Rn concentration in this work. The conversion factor of this ionization chamber was obtained 1.11 (Bq/m3/fA) by the use of RaDEF standard source. From the results of three other literatures and this work, the following formula to calculate the conversion factor (a) was obtained as a function of the effective volume V (m3) of ionization chamber; a = (1.036 x 102-1) / [V·(log V + 6.908)] (Bq/m3/fA). (author)

  5. Measurement of concentration and size distribution of radon decay products in homes using air cleaners

    International Nuclear Information System (INIS)

    By removing particles, air cleaners can also eliminate radon decay products. However, by removing the particles, the open-quotes unattachedclose quotes fraction of the radon progeny is increased leading to a higher dose per unit exposure. Thus, both the concentration and size distributions of the radon decay products are needed to evaluate air cleaners. Three types of room air cleaners, NO-RAD Radon Removal System, Electronic Air Cleaner and PUREFLOW Air Treatment System were tested in a single family home in Arnprior, Ontario (Canada). Semi-continuous measurements of radon gas concentration and radon decay product activity weighted size distribution were performed in the kitchen/dining room under real living conditions. The effects of air cleaners on both the concentration and size distribution of the radon decay products were measured, and their impact on the dose of radiation given to the lung tissue were examined

  6. Application of transcutaneous diffuse reflectance spectroscopy in the measurement of blood glucose concentration

    Institute of Scientific and Technical Information of China (English)

    Wenliang Chen(陈文亮); Rong Liu(刘蓉); Houxin Cui(崔厚欣); Kexin Xu(徐可欣); Lina Lü(吕丽娜)

    2004-01-01

    In this paper, the propagation characteristics of near-infrared (NIR) light in the palm tissue are analyzed,and the principle and feasibility of using transcutaneous diffuse reflectance spectroscopy for non-invasive blood glucose detection are presented. An optical probe suitable for measuring the diffuse reflectance spectrum of human palm and a non-invasive blood glucose detection system using NIR spectroscopy are designed. Based on this system, oral glucose tolerance tests are performed to measure the blood glucose concentrations of two young healthy volunteers. The partial least square calibration model is then constructed by all individual experimental data. The final result shows that correlation coefficients of the two experiments between the predicted blood glucose concentrations and the reference blood glucose concentrations are 0.9870 and 0.9854, respectively. The root mean square errors of prediction of full cross validation are 0.54 and 0.52 mmol/1, respectively.

  7. Passive Sampler for Measurements of Atmospheric Nitric Acid Vapor (HNO3 Concentrations

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2001-01-01

    Full Text Available Nitric acid (HNO3 vapor is an important nitrogenous air pollutant responsible for increasing saturation of forests with nitrogen and direct injury to plants. The USDA Forest Service and University of California researchers have developed a simple and inexpensive passive sampler for monitoring air concentrations of HNO3. Nitric acid is selectively absorbed on 47-mm Nylasorb nylon filters with no interference from particulate NO3-. Concentrations determined with the passive samplers closely corresponded with those measured with the co-located honeycomb annular denuder systems. The PVC protective caps of standardized dimensions protect nylon filters from rain and wind and allow for reliable measurements of ambient HNO3 concentrations. The described samplers have been successfully used in Sequoia National Park, the San Bernardino Mountains, and on Mammoth Mountain in California.

  8. Continuous measurements of outdoor {sup 222}Rn concentrations for three years at one location in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Borak, T.B.; Baynes, S.A. [Colorado State Univ., Ft. Collins, CO (United States). Dept. of Radiological Health Sciences

    1999-04-01

    Measurements were made of {sup 222}Rn concentrations outdoors in Ft. Collins, Colorado, using a continuously sampling scintillation flask between January 1993 and December 1995. These data were analyzed for hourly, daily, and seasonal variations. The average {sup 222}Rn concentration at 1 m above the ground was 18 {+-} 10 Bq m{sup {minus}3} with a geometric mean of 15 Bq m{sup {minus}3} and a geometric standard deviation of 1.7. Hourly averaged data indicated a diurnal pattern with the outdoor {sup 222}Rn concentration reaching a maximum in the early morning between 4:00 a.m. and 6:00 a.m. and a broad minimum between 1:00 p.m. and 4:00 p.m. in the afternoon. An analysis also indicated that the outdoor {sup 222}Rn concentrations were consistently lowest during the spring (March and April) and highest during the late summer (July--September).

  9. Noninvasive Measurement of Fecal Progesterone Concentration in Toy Poodles by Time Resolved Fluoroimmunoassay (TR-FIA

    Directory of Open Access Journals (Sweden)

    Satoshi Sugimura

    2008-01-01

    Full Text Available Progesterone is an important reproductive hormone and measurement of its level by repeated blood samplings is beneficial to monitoring of estrus cycle. However, since toy poodles have a small body size and thin-walled blood vessels, repeated blood samplings cause stress and affect their preparation for mating or artificial insemination (AI. Therefore, a noninvasive method for monitoring progesterone concentration should be developed. Here, we show that time-resolved fluoroimmunoassay (TF-RIA is a useful noninvasive method for determining the progesterone concentration in serum and fecal samples obtained from toy poodles. Present results demonstrate that progesterone concentrations in the fecal correlated with the serum collected in same time and the sequential changes in progesterone concentrations in the feces are paralleled in the serum. Therefore, this technique may be suitable for monitoring the estrus cycle in toy poodles.

  10. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    Science.gov (United States)

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method. PMID:23841393

  11. The status quo of radon concentrations and mitigation measures in underground working places of China

    Institute of Scientific and Technical Information of China (English)

    LI Xiaoyan; ZHENG Baoshan; WANG Yan; WANG Xue

    2005-01-01

    By using solid-state nuclear detectors, the air radon concentrations at 87 underground working places were measured during spring, summer and winter, respectively. The survey covered 23 cities whose annual radon concentrations range from 14.9 to 246.4 Bq·m -3 with an overall arithmetic mean value of 106.7 Bq·m -3. The average annual effective dose received by people working in these underground working places was 1.6 mSv, hence the lifetime fatality risk was 1.2×10 -4. Fujian Province had the highest radon level during the survey. It is better to reduce the radon concentration heavily in summer because of higher radon concentration than in winter.

  12. A new approach to endocochlear potential and potassium ion concentration measures in mini pig models

    Institute of Scientific and Technical Information of China (English)

    Lili Ren a; Ling Zhang b; Weiwei Guo a; Wei Sun c; Shiming Yang a

    2014-01-01

    Mini pig models are large mammals and their ears are more similar with human beings in structure and development than other animals. However, the study on porcine ears is still in the initial stage and there is no description of an ideal operation approach to endocochlear potential and potassium ion concentration measurements. In this article, we describe a pre-auricular surgical approach to access the middle and inner ear for endocochlear potential and potassium ion concentration measures in mini pig models. Ten one-week old normal mini pigs were used in the study. The bulla of the temporal bone was accessed via a pre-auricular approach for endocochlear potential and potassium ion concentration measurements. The condition of the animals during the first posteexperiment 24 h was observed. One animal died during surgery. The pre-auricular approach improved protection and preservation of relevant nervous and vascular elements including the facial nerve and carotid ar-tery. So, the pre-auricular approach can be used for endocochlear potential and potassium ion concentration measurements with improved nerve and artery preservation mini pigs.

  13. Planar measurements of velocity and concentration of turbulent mixing in a T-junction

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Meyer, Knud Erik; Nielsen, N. F.

    Turbulent mixing of two isothermal air streams in a T-junction of square ducts are investigated. Three dimensional velocity fields and turbulent kinetic energy are measured with stereoscopic Particle Image Velocimetry (PIV). The concentration field is obtained with a planar Mie scattering technique...

  14. Using Conductivity Measurements to Determine the Identities and Concentrations of Unknown Acids: An Inquiry Laboratory Experiment

    Science.gov (United States)

    Smith, K. Christopher; Garza, Ariana

    2015-01-01

    This paper describes a student designed experiment using titrations involving conductivity measurements to identify unknown acids as being either HCl or H[subscript 2]SO[subscript 4], and to determine the concentrations of the acids, thereby improving the utility of standard acid-base titrations. Using an inquiry context, students gain experience…

  15. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates

    NARCIS (Netherlands)

    Krajko, J.; Varga, Z.; Yalcintas, E.; Wallenius, M.; Mayer, K.

    2014-01-01

    A novel procedure has been developed for the measurement of 143Nd/144Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of 143Nd/144Nd isotope ratio for provenance assessment in nu

  16. Optimization of an electrolyte conductivity detector for measuring low ion concentrations

    NARCIS (Netherlands)

    Timmer, Björn; Sparreboom, Wouter; Olthuis, Wouter; Bergveld, Piet; Berg, van den Albert

    2002-01-01

    The optimization process of a planar interdigitated conductivity detector for measuring very low electrolyte concentrations for use in a lab-on-chip gas detection system is described. An electrical equivalent of the sensor is given, which includes the double layer capacitance dependency on the elect

  17. Water leak detection in sodium heated steam generators through measurement of hydrogen concentration in sodium

    International Nuclear Information System (INIS)

    This report includes a description of apparatus for measuring hydrogen concentration in the secondary sodium system of the PHENIX reactor. The calibration method and results obtained since the commissioning of the reactor are also described. Mention is made of improvements to be built into SUPER PHENIX

  18. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship.

    Science.gov (United States)

    Parry, Christopher; Blonquist, J Mark; Bugbee, Bruce

    2014-11-01

    In situ optical meters are widely used to estimate leaf chlorophyll concentration, but non-uniform chlorophyll distribution causes optical measurements to vary widely among species for the same chlorophyll concentration. Over 30 studies have sought to quantify the in situ/in vitro (optical/absolute) relationship, but neither chlorophyll extraction nor measurement techniques for in vitro analysis have been consistent among studies. Here we: (1) review standard procedures for measurement of chlorophyll; (2) estimate the error associated with non-standard procedures; and (3) implement the most accurate methods to provide equations for conversion of optical to absolute chlorophyll for 22 species grown in multiple environments. Tests of five Minolta (model SPAD-502) and 25 Opti-Sciences (model CCM-200) meters, manufactured from 1992 to 2013, indicate that differences among replicate models are less than 5%. We thus developed equations for converting between units from these meter types. There was no significant effect of environment on the optical/absolute chlorophyll relationship. We derive the theoretical relationship between optical transmission ratios and absolute chlorophyll concentration and show how non-uniform distribution among species causes a variable, non-linear response. These results link in situ optical measurements with in vitro chlorophyll concentration and provide insight to strategies for radiation capture among diverse species.

  19. Using a Homemade Flame Photometer to Measure Sodium Concentration in a Sports Drink

    Science.gov (United States)

    LaFratta, Christopher N.; Jain, Swapan; Pelse, Ian; Simoska, Olja; Elvy, Karina

    2013-01-01

    The purpose of this experiment was to create a simple and inexpensive flame photometer to measure the concentration of sodium in beverages, such as Gatorade. We created a nebulizer using small tubing and sprayed the sample into the base of a Bunsen burner. Adjacent to the flame was a photodiode with a filter specific for the emission of the sodium…

  20. Sediment suspension in oscillatory flow: measurements of instantaneous concentration at high shear

    DEFF Research Database (Denmark)

    Staub, Carsten; Jonsson, Ivar G; Svendsen, Ib A.

    1996-01-01

    Different syphon type suspended load probes were used together with a specially developed ''carousel'' sampler for measurements of the instantaneous sediment concentration in turbulent oscillatory flow over a sand bed, Shields parameters were well above the ripple/flat bed transition region, resu...

  1. Measurement of chloride-ion concentration with long-period grating technology

    Science.gov (United States)

    Tang, Jaw-Luen; Wang, Jian-Neng

    2007-06-01

    A simple and low-cost long-period fiber grating (LPG) sensor suited for chloride-ion concentration measurement is presented. The LPG sensor is found to be sensitive to the refractive index of the medium around the cladding surface of the sensing grating, thus offering the prospect of development of practical sensors such as an ambient index sensor or a chemical concentration indicator with high stability and reliability. We measured chloride ions in a typical concrete sample immersed in salt water solutions with different weight concentrations ranging from 0% to 25%. Results show that the LPG sensor exhibited a linear decrease in the transmission loss and resonance wavelength shift when the concentration increased. The measurement accuracy for the concentration of salt in water solution is estimated to be 0.6% and the limit of detection for chloride ions is about 0.04%. To further enhance its sensitivity for chloride concentrations, we coated a monolayer of colloidal gold nanoparticles as the active material on the grating surface of the LPG sensor. The operating principle of sensing is based on the sensitivity of localized surface plasmon resonance of self-assembled gold colloids on the grating section of the LPG. With this method, a factor of two increase in the sensitivity of detecting chemical solution concentrations was obtained. The advantages of this type of fiber-optic sensor are that it is compact, relatively simple to construct and easy to use. Moreover, the sensor has the potential capability for on-site, in vivo and remote sensing, and it has potential use as a disposable sensor.

  2. Clinical application of sodium-23 nuclear magnetic resonance for measurement of red cell sodium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, S.; Kanashiro, M.; Hayashi, F. (National Cardiovascular Center, Suita, Osaka (Japan)) (and others)

    1989-01-01

    Red cell sodium (RBC-Na{sup +}) concentrations were measured using {sup 23}Na nuclear magnetic resonance (NMR), without the destruction of erythrocyte membranes. Subjects were categorized into four groups: 20 normotensive subjects (NT group), 20 age-matched essential hypertensive patients (EHT group), 10 patients with primary aldosteronism (PA group), and 18 patients treated with digoxin (DIG group). Although RBC-Na{sup +} concentrations were similar between the NT group (6.14{plus minus}0.80 (Mean{plus minus}SD) mmol/1) and the EHT group (5.92{plus minus}0.99), they were significantly higher in both the PA group (7.55{plus minus}0.88, p<0.001) and the DIG group (8.43{plus minus}3.81, p<0.02). In the PA group, RBC-Na{sup +} concentrations decreased significantly after resection of the adenoma, and there was an inverse relationship between serum potassium and RBC-Na{sup +} concentrations (r=-0.65, p<0.01). In the DIG group, RBC-Na{sup +} concentrations tended to increase in proportion to serum digoxin levels (r=0.53, p<0.05). These results support the view that RBC-Na{sup +} concentrations are determined primarily by Na{sup +}/K{sup +}-pump activity of red cell membranes. This study showed also that Na{sup +} NMR is a useful method determining intracellular Na{sup +} concentrations. (author).

  3. Measurements of indoor radon concentrations in Chaiya and Tha Chana districts, Surat Thani province, Thailand

    Science.gov (United States)

    Titipornpun, K.; Titipornpun, A.; Sola, P.; Bhongsuwan, T.

    2015-05-01

    Chaiya and Tha Chana districts of Surat Thani province are located in the areas with high levels of equivalent uranium at the ground surface, which have been identified as sources of radon. A survey measurement of indoor radon concentrations was carried out in 248 houses, using CR-39 detectors in closed cups. The geometric mean of indoor radon concentrations in Chaiya and Tha Chana districts were 26 ± 2 Bq·m-3 and 30 ± 2 Bq·m-3, respectively. Although the minimum radon concentration was 4 Bq·m-3 in both locations, the maximum radon concentration was found to be 159 Bq·m-3 in Tha Chana district, while it was 88 Bq·m-3 in Chaiya district. The level of radon concentrations above the action level (148 Bq·m-3) recommended by the United States Environmental Protection Agency was only found in two houses, which accounted for 1% of the total buildings surveyed in this present study. The majority of houses, which accounted for 94% of the total buildings surveyed, showed the radon concentration below the action level. As these houses had access to air flow during the daytime through open doors and windows, it is likely that such ventilation was sufficient to keep radon at a low concentration.

  4. Relating MEG measured motor cortical oscillations to resting γ-aminobutyric acid (GABA) concentration.

    Science.gov (United States)

    Gaetz, W; Edgar, J C; Wang, D J; Roberts, T P L

    2011-03-15

    The human motor cortex exhibits characteristic beta (15-30 Hz) and gamma oscillations (60-90 Hz), typically observed in the context of transient finger movement tasks. The functional significance of these oscillations, such as post-movement beta rebound (PMBR) and movement-related gamma synchrony (MRGS) remains unclear. Considerable animal and human non-invasive studies, however, suggest that the networks supporting these motor cortex oscillations depend critically on the inhibitory neurotransmitter γ-Aminobutyric acid (GABA). Despite such speculation, a direct relation between MEG measured motor cortex oscillatory power and frequency with resting GABA concentrations has not been demonstrated. In the present study, motor cortical responses were measured from 9 healthy adults while they performed a cued button-press task using their right index finger. In each participant, PMBR and MRGS measures were obtained from time-frequency plots obtained from primary motor (MI) sources, localized using beamformer differential source localization. For each participant, complimentary magnetic resonance spectroscopy (MRS) GABA measures aligned to the motor hand knob of the left central sulcus were also obtained. GABA concentration was estimated as the ratio of the motor cortex GABA integral to a cortical reference NAA resonance at 2 ppm. A significant linear relation was observed between MI GABA concentration and MRGS frequency (R(2)=0.46, pGABA concentration and MRGS power. Conversely, a significant linear relation was observed between MI GABA concentration and PMBR power (R(2)=0.34, pGABA concentration and PMBR frequency. Finally, a significant negative linear relation between the participant's age and MI gamma frequency was observed, such that older participants had a lower gamma frequency (R(2)=0.40, pGABA in the generation and modulation of endogenous motor cortex rhythmic beta and gamma activity.

  5. 10Be and δ2H in polar ice cores as a probe of the solar variability's influence on climate

    International Nuclear Information System (INIS)

    By using the technique of accelerator mass spectrometry, it is now possible to measure detailed profiles of cosmogenic (cosmic ray produced) 10Be in polar ice cores. Recent work has demonstrated that these profiles contain information on solar activity, via its influence on the intensity of galactic cosmic rays arriving in the Earth's atmosphere. It has been known for some time that, as a result of temperature-dependent fractionation effects, the stable isotope profiles δ2O and δ2H in polar ice cores contain palaeoclimate information. Thus by comparing the 10Be and stable isotope profiles in the same ice core, one can test the influence of solar variability on climate, and this independent of possible uncertainties in the absolute chronology of the records. We present here the results of such a comparison for two Antarctic ice cores; one from the South Pole, covering the past ca. 1000 years, and one from Dome C, covering the past ca. 3000 years. (author)

  6. Time-resolved measurements of aerosol elemental concentrations in indoor working environments

    Science.gov (United States)

    Žitnik, M.; Kastelic, A.; Rupnik, Z.; Pelicon, P.; Vaupetič, P.; Bučar, K.; Novak, S.; Samardžija, Z.; Matsuyama, S.; Catella, G.; Ishii, K.

    2010-12-01

    We have measured the elemental concentrations in aerosols with a 2-h time resolution in two different types of working environment: a chemistry laboratory dealing with the processing of advanced nanoparticulate materials and a medium-sized machine workshop. Non-stop 10-day and 12-day samplings were performed at each location in order to determine the concentration trends during the non-working/working and weekday/weekend periods. Supplementary measurements of PM10 aerosols with a 2-day sample collection time were performed with a standard Gent PM10 sampler to compare the elemental concentrations with the time-averaged concentrations detected by the 2D step-sampler. The concentrations were determined a posteriori by analyzing the x-ray spectra of aerosol samples emitted after 3-MeV proton bombardment. The PM10 samples collected in the chemistry laboratory were additionally inspected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) to determine the chemical compositions of the individual particles. In the workshop, a total PM10 mass sampling was performed simultaneously with a minute resolution to compare the signal with typical outdoor PM10 concentration levels. A factor analysis of the time-resolved dataset points to six and eight factors in the chemistry laboratory and the machine workshop, respectively. These factors describe most of the data variance, and their composition in terms of different elements can be related to specific indoor activities and conditions. We were able to demonstrate that the elemental concentration sampling with hourly resolution is an excellent tool for studying the indoor air pollution. While sampling the total PM10 mass concentration with a minute resolution may lack the potential to identify the emission sources in a "noisy" environment, the time averaging on a day time scale is too coarse to cope with the working dynamics, even if elemental sensitivity is an option.

  7. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    Science.gov (United States)

    Renbaum, L. H.; Smith, G. D.

    2011-07-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane) and supercooled (brassidic acid and 2-octyldodecanoic acid) organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  8. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    Directory of Open Access Journals (Sweden)

    L. H. Renbaum

    2011-07-01

    Full Text Available In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane and supercooled (brassidic acid and 2-octyldodecanoic acid organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  9. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    Directory of Open Access Journals (Sweden)

    L. H. Renbaum

    2011-03-01

    Full Text Available In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid organic aerosols (squalane, brassidic acid and 2-octyldodecanoic acid are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  10. Performance measurement of low concentration ratio solar array for space application

    Science.gov (United States)

    Mills, M. W.

    1984-01-01

    The measured performance of a silicon and a gallium arsenide low concentration ratio solar array (LCRSA) element is presented. The element characteristics measured in natural sunlight are off pointing performance and response to mechanical distortions. Laboratory measurements of individual silicon and gallium-arsenide solar cell assemblies are also made. The characteristics measured in the laboratory involved responses to temperature and intensity variations as well as to the application of reverse bias potentials. The element design details covered include the materials, the solar cells, and the rationale for selecting these specific characteristics. The measured performance characteristics are contrasted with the predicted values for both laboratory testing and high altitude natural sunlight testing. Excellent agreement between analytical predictions and measured performance is observed.

  11. Thermodynamic correction of particle concentrations measured by underwing probes on fast flying aircraft

    Science.gov (United States)

    Weigel, R.; Spichtinger, P.; Mahnke, C.; Klingebiel, M.; Afchine, A.; Petzold, A.; Krämer, M.; Costa, A.; Molleker, S.; Jurkat, T.; Minikin, A.; Borrmann, S.

    2015-12-01

    Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable for different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the particle penetration speed through the instruments' detection area equals the aircraft speed (True Air Speed, TAS). However, particle imaging instruments equipped with pitot-tubes measuring the Probe Air Speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation the corresponding concentration correction factor ξ is applicable to the high frequency measurements of each underwing probe which is equipped with its own air speed sensor (e.g. a pitot-tube). ξ-values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 260 m s-1. From HALO data it is found that ξ does not significantly vary between the different deployed instruments. Thus, for the current HALO underwing probe configuration a parameterisation of

  12. Novel methods of measuring nitric oxide and nitrite concentrations using cobinamide and cobalamin

    OpenAIRE

    Duan, Kailin Catherine

    2012-01-01

    Nitric oxide (NO) is an important signaling molecule produced by isoforms of nitric oxide synthase in mammals. Methods of measuring NO must take into consideration the low concentrations (nanomolar to micromolar) at which it is found in the body. We developed a novel method of direct nitric oxide measurement by measuring the absorbance change of the binding of nitric oxide to cobinamide(II) (Cbi), a vitamin B12 analogue. The absorbance values of NO-Cbi change linearly at 366 nm and 469 nm as ...

  13. Systematic grid-wise radon concentration measurements and first radon map in Cyprus

    CERN Document Server

    Theodoulou, G; Parpottas, Y; 10.1016/j.radmeas.2012.03.019

    2012-01-01

    A systematic study of the indoor airborne radon concentration in the central part of the Nicosia district was conducted, using high-sensitivity active radon portable detectors of the type "RADIM3A". From a total of 108 measurements in 54 grids of 1 km^2 area each, the overall mean value is 20.6 \\pm 13.2 Bq m^-3 (A.M.\\pm S.D.). That is almost twice less than the corresponding average worldwide value. The radon concentration levels in drinking water were also measured in 24 sites of the residential district, using the high-sensitivity radon detector of the type "RADIM3W". The mean value obtained from these measurements is 243.8 \\pm 224.8 mBq L^-1, which is relatively low compared to the corresponding internationally accepted level. The associated annual effective dose rates to each measurement were also calculated and compared to the corresponding worldwide values. From the geographical coordinates of the measuring sites and the corresponding radon concentration values, the digital radon map of the central part...

  14. Inverse estimation of radon flux distribution for East Asia using measured atmospheric radon concentration.

    Science.gov (United States)

    Hirao, S; Hayashi, R; Moriizumi, J; Yamazawa, H; Tohjima, Y; Mukai, H

    2015-11-01

    In this study, the (222)Rn flux density distribution at surface was estimated in East Asia with the Bayesian synthesis inversion using measurement data and a long-range atmospheric (222)Rn transport model. Surface atmospheric (222)Rn concentrations measured at Hateruma Island in January 2008 were used. The estimated (222)Rn flux densities were generally higher than the prior ones. The area-weighted mean (222)Rn flux density for East Asia in January 2008 was estimated to be 44.0 mBq m(-2) s(-1). The use of the estimated (222)Rn flux density improved the discrepancy of the model-calculated concentrations with the measurements at Hateruma Island.

  15. Measurements of ammonia concentrations, fluxes and dry deposition velocities to a spruce forest 1991-1995

    DEFF Research Database (Denmark)

    Andersen, H.V.; Hovmand, M.F.; Hummelshøj, P.;

    1999-01-01

    The dry deposition velocities and fluxes of ammonia have been estimated from measurements of the vertical gradient of ammonia and micrometeorology above a spruce forest in western Jutland, Denmark. Measurements have been made in seven periods, each lasting about one week and covering all seasons...... measuring period characterized by easterly winds with dry conditions and high ammonia concentrations, and the emissions might relate to evaporation from ammonia saturated surfaces or emission from mineralization in the forest soil. In general, relatively high net deposition velocities were observed during...... at conditions with easterly winds, the air have passed central Jutland with large emission areas. Some of the relatively low deposition velocities or emissions were observed during conditions with low ammonia concentration and westerly winds. These observations might relate to a compensation point of the forest...

  16. Hydrogen Concentration and Strain Fields Near Fatigue Cracks in Pipeline Steel Measured Via Neutron Imaging

    Science.gov (United States)

    Connolly, Matthew; Slifka, Andrew; Drexler, Elizabeth; Hydrogen Pipeline Safety Team

    Hydrogen (H2) is desirable for energy storage as it is cleaner burning and can store a larger amount of energy than an equal mass of gasoline. One problem in the development of a hydrogen economy is to find or develop materials that ensure the safe, reliable, and cost-effective flow of energy from the source to the user. It is expected steels will be needed to serve this function. However, the existing network of natural gas pipeline, for example, is constructed of ferrous materials which are susceptible to embrittlement and subsequent increased fatigue crack growth rates after exposure to hydrogen. In order to improve current modeling efforts, experimental determination of hydrogen concentration, hydrogen diffusion rates, and strain fields are required to inform and validate the model. Here we report neutron imaging measurements of the hydrogen concentration near a fatigue crack and the corresponding strain field, measured via neutron transmission Bragg edge spectroscopy. Nist Materials Measurement Laboratory, Applied Chemicals and Materials Division.

  17. A PRELIMINARY STUDY ON SUSPENDED SEDIMENT CONCENTRATION MEASUREMENTS USING AN ADCP MOUNTED ON A MOVING VESSEL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A DR300 Broad Band ADCP mounted on a vessel moving at a speed of 2-3 m/s was used to measure the profile of suspended sediment concentrations (SSCs) at the entrance to Jiaozhou Bay, Shandong Peninsula, where the water is characterized by low SSCs. The echo intensity data produced by the ADCP were regressed against the SSCs derived using the filtration method. The results show that the calibrated relationship can be used to calculate the SSC, with a relative error of 30%. Therefore, it is feasible to measure the SSC (even if the concentration is low) using the ADCP mounted on a moving vessel. Compared with OBS, ABS and other instruments for SSC measurements, the ADCP represents a potentially powerful tool to retrieve SSC data in continental shelf waters.

  18. Equilibration correction of temporal measurements for sudden 222Rn concentration changes

    Science.gov (United States)

    Tan, Y.; Tokonami, S.; Liu, H.; Kearfott, K. J.

    2016-02-01

    222Rn and 220Rn can be used as tracers of groundwater or submarine springs, and 222Rn in water also could indicate indoor radon problems in some regions. The half-life of 222Rn is long enough that its concentration may remain significant during transit over relatively long distances, while that of 220Rn is not. Prior research revealed that it took about 15 min for the radon to achieve gas equilibrium at a water flow rate of 17.5 L min-1, which is approximately equivalent to the time required for the 222Rn-218Po pair to approach radioactive equilibrium and is limiting in terms of measurements of sudden radon concentration change. In this work, an algorithm is applied to improve the continuous tracing of radon concentrations in the field environment. Results of a laboratory experiment analyzed applying the analysis method illustrated its ability to allow immediate identification of sharp concentration increases. In this paper we find that a precipitous drop in radon concentrations lead to improper corrected values as the result of measurement uncertainties prior to the drop, and a method using zero instead negative values for reducing the uncertainties under such condition also is proposed.

  19. Measurement and Comparison of Organic Compound Concentrations in Plasma, Whole Blood, and Dried Blood Spot Samples

    Science.gov (United States)

    Batterman, Stuart A.; Chernyak, Sergey; Su, Feng-Chiao

    2016-01-01

    The preferred sampling medium for measuring human exposures of persistent organic compounds (POPs) is blood, and relevant sample types include whole blood, plasma, and dried blood spots (DBS). Because information regarding the performance and comparability of measurements across these sample types is limited, it is difficult to compare across studies. This study evaluates the performance of POP measurements in plasma, whole blood and DBS, and presents the distribution coefficients needed to convert concentrations among the three sample types. Blood samples were collected from adult volunteers, along with demographic and smoking information, and analyzed by GC/MS for organochlorine pesticides (OCPs), chlorinated hydrocarbons (CHCs), polychlorinated biphenyls (PCBs), and brominated diphenyl ethers (PBDEs). Regression models were used to evaluate the relationships between the sample types and possible effects of personal covariates. Distribution coefficients also were calculated using physically-based models. Across all compounds, concentrations in plasma were consistently the highest; concentrations in whole blood and DBS samples were comparable. Distribution coefficients for plasma to whole blood concentrations ranged from 1.74 to 2.26 for pesticides/CHCs, averaged 1.69 ± 0.06 for the PCBs, and averaged 1.65 ± 0.03 for the PBDEs. Regression models closely fit most chemicals (R2 > 0.80), and whole blood and DBS samples generally showed very good agreement. Distribution coefficients estimated using biologically-based models were near one and did not explain the observed distribution. Among the study population, median concentrations of several pesticides/CHCs and PBDEs exceeded levels reported in the 2007–2008 National Health and Nutrition Examination Survey, while levels of other OCPs and PBDEs were comparable or lower. Race and smoking status appeared to slightly affect plasma/blood concentration ratios for several POPs. The experimentally

  20. Effects of Spectral Error in Efficiency Measurements of GaInAs-Based Concentrator Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Osterwald, C. R.; Wanlass, M. W.; Moriarty, T.; Steiner, M. A.; Emery, K. A.

    2014-03-01

    This technical report documents a particular error in efficiency measurements of triple-absorber concentrator solar cells caused by incorrect spectral irradiance -- specifically, one that occurs when the irradiance from unfiltered, pulsed xenon solar simulators into the GaInAs bottom subcell is too high. For cells designed so that the light-generated photocurrents in the three subcells are nearly equal, this condition can cause a large increase in the measured fill factor, which, in turn, causes a significant artificial increase in the efficiency. The error is readily apparent when the data under concentration are compared to measurements with correctly balanced photocurrents, and manifests itself as discontinuities in plots of fill factor and efficiency versus concentration ratio. In this work, we simulate the magnitudes and effects of this error with a device-level model of two concentrator cell designs, and demonstrate how a new Spectrolab, Inc., Model 460 Tunable-High Intensity Pulsed Solar Simulator (T-HIPSS) can mitigate the error.

  1. Fluorescence (TALIF) measurement of atomic hydrogen concentration in a coplanar surface dielectric barrier discharge

    Science.gov (United States)

    Mrkvičková, M.; Ráheľ, J.; Dvořák, P.; Trunec, D.; Morávek, T.

    2016-10-01

    Spatially and temporally resolved measurements of atomic hydrogen concentration above the dielectric of coplanar barrier discharge are presented for atmospheric pressure in 2.2% H2/Ar. The measurements were carried out in the afterglow phase by means of two-photon absorption laser-induced fluorescence (TALIF). The difficulties of employing the TALIF technique in close proximity to the dielectric surface wall were successfully addressed by taking measurements on a suitable convexly curved dielectric barrier, and by proper mathematical treatment of parasitic signals from laser-surface interactions. It was found that the maximum atomic hydrogen concentration is situated closest to the dielectric wall from which it gradually decays. The maximum absolute concentration was more than 1022 m-3. In the afterglow phase, the concentration of atomic hydrogen above the dielectric surface stays constant for a considerable time (10 μs-1 ms), with longer times for areas situated farther from the dielectric surface. The existence of such a temporal plateau was explained by the presented 1D model: the recombination losses of atomic hydrogen farther from the dielectric surface are compensated by the diffusion of atomic hydrogen from regions close to the dielectric surface. The fact that a temporal plateau exists even closest to the dielectric surface suggests that the dielectric surface acts as a source of atomic hydrogen in the afterglow phase.

  2. Indoor and outdoor Radon concentration measurements in Sivas, Turkey, in comparison with geological setting.

    Science.gov (United States)

    Mihci, Metin; Buyuksarac, Aydin; Aydemir, Attila; Celebi, Nilgun

    2010-11-01

    Indoor and soil gas Radon ((222)Rn) concentration measurements were accomplished in two stages in Sivas, a central eastern city in Turkey. In the first stage, CR-39 passive nuclear track detectors supplied by the Turkish Atomic Energy Authority (TAEA) were placed in the selected houses throughout Sivas centrum in two seasons; summer and winter. Before the setup of detectors, a detailed questionnaire form was distributed to the inhabitants of selected houses to investigate construction parameters and properties of the houses, and living conditions of inhabitants. Detectors were collected back two months later and analysed at TAEA laboratories to obtain indoor (222)Rn gas concentration values. In the second stage, soil gas (222)Rn measurements were performed using an alphameter near the selected houses for the indoor measurements. Although (222)Rn concentrations in Sivas were quite low in relation with the allowable limits, they are higher than the average of Turkey. Indoor and soil gas (222)Rn concentration distribution maps were prepared seperately and these maps were applied onto the surface geological map. In this way, both surveys were correlated with the each other and they were interpreted in comparison with the answers of questionnaire and the geological setting of the Sivas centrum and the vicinity.

  3. Indoor and outdoor Radon concentration measurements in Sivas, Turkey, in comparison with geological setting

    Energy Technology Data Exchange (ETDEWEB)

    Mihci, Metin [Iller Bankasi, Etud Plan ve Yol Dairesi, Opera, 06053 Ankara (Turkey); Buyuksarac, Aydin [Canakkale Onsekiz Mart University, Department of Geophysical Engineering, 17020, Canakkale (Turkey); Aydemir, Attila, E-mail: aydemir@tpao.gov.t [Turkiye Petrolleri A.O. Mustafa, Kemal Mah. 2. Cad. No: 86, 06100 Sogutozu, Ankara (Turkey); Celebi, Nilgun [Cekmece Nuclear Research and Training Centre (CNAEM), Cekmece, Istanbul (Turkey)

    2010-11-15

    Indoor and soil gas Radon ({sup 222}Rn) concentration measurements were accomplished in two stages in Sivas, a central eastern city in Turkey. In the first stage, CR-39 passive nuclear track detectors supplied by the Turkish Atomic Energy Authority (TAEA) were placed in the selected houses throughout Sivas centrum in two seasons; summer and winter. Before the setup of detectors, a detailed questionnaire form was distributed to the inhabitants of selected houses to investigate construction parameters and properties of the houses, and living conditions of inhabitants. Detectors were collected back two months later and analysed at TAEA laboratories to obtain indoor {sup 222}Rn gas concentration values. In the second stage, soil gas {sup 222}Rn measurements were performed using an alphameter near the selected houses for the indoor measurements. Although {sup 222}Rn concentrations in Sivas were quite low in relation with the allowable limits, they are higher than the average of Turkey. Indoor and soil gas {sup 222}Rn concentration distribution maps were prepared seperately and these maps were applied onto the surface geological map. In this way, both surveys were correlated with the each other and they were interpreted in comparison with the answers of questionnaire and the geological setting of the Sivas centrum and the vicinity.

  4. Measures of ozone concentrations using passive sampling in forests of South Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, M.J. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain)]. E-mail: mjose@ceam.es; Calatayud, V. [Fundacion CEAM, Charles R. Darwin 14, Parc Tecnologic, E-46980 Paterna, Valencia (Spain); Sanchez-Pena, G. [Servicio de Proteccion de los Montes contra Agentes Nocivos, Direccion General para la Biodiversidad, Ministerio de Medio Ambiente, Gran Via de San Francisco, 4, E-28005, Madrid (Spain)

    2007-02-15

    Ambient ozone concentrations were measured with passive samplers in the framework of the EU and UN/ECE Level II forest monitoring programme. Data from France, Italy, Luxembourg, Spain and Switzerland are reported for 2000-2002, covering the period from April to September. The number of plots increased from 67 in 2000 to 83 in 2002. The year 2001 experienced the highest ozone concentrations, reflecting more stable summer meteorological conditions. Average 6-month ozone concentrations above 45 ppb were measured this year in 40.3% of the plots, in contrast with the less than 21% measured in the other 2 years. Gradients of increasing ozone levels were observed from North to South and with altitude. Comments are made on the regional trends and on the time frame of the higher ozone episodes. Also, some recommendations enabling a better comparison between plots are provided. - Ozone concentrations in forested areas of SW Europe during the period 2000-2002 showed highest values in 2001, as well as a tendency to increase towards the South and with altitude.

  5. Online Measurement of Oil Concentrations of R134a–Oil Mixtures with a Density Flowmeter.

    OpenAIRE

    Bayini, Ahmed; Favrat, Daniel; Thome, John R.

    1995-01-01

    A very high accuracy, straight vibrating tube type of density flow meter has been used online to measure oil concentraiton of flowing R-134a/oil mixtures. The calibrations covered oil concentrations from 0-6 wt.% oil over the temperature range from -9.4 to 5.9°C. The oil concentrations were correlated statistically as a function of density, temperature and liquid compressibility to an average error of 0.09 wt.% oil with a 95% confidence limit of 0.21 wt.% oil. In addition, a simplified method...

  6. In-situ hydrogen concentration measurements in multilayers using neutron reflectivity

    Science.gov (United States)

    Rehm, Ch.; Klose, F.; Nagengast, D.; Maletta, H.; Weidinger, A.

    1997-02-01

    We show that neutron reflectivity is very useful for in situ hydrogen concentration measurements in thin films, as will be demonstrated for Fe/Nb multilayers. The samples consisting of [ 26 Å Fe /X Å Nb ] ∗n with X = 15 Å-40 Å were charged with hydrogen from the gas phase at different pressures at 473 K. The hydrogen concentration in the Nb layers (no hydrogen is dissolved in Fe) can be determined from the change in the scattering contrast between Nb and Fe and the expansion of the Nb lattice due to the uptake of hydrogen. Both features are clearly visible in the reflectivity diagrams.

  7. Optical sensor technology for simultaneous measurement of particle speed and concentration of micro sized particles

    DEFF Research Database (Denmark)

    Clausen, Casper; Han, Anpan; Kristensen, Martin;

    2013-01-01

    Experimental characterization of a sensor technology that can measure particle speed and concentration simultaneously in liquids and gases is presented here. The basic sensor principle is based on an optical element that shapes a light beam into well-defined fringes. The technology can be described...... as a hybrid between Laser Doppler Velocimetry and Laser Particle Counters. The experimental characterization of a lab-scale setup has been performed with polystyrene particles in the range from 750 nm to 20 μm, with various particle speeds. It is shown that particle concentrations can be determined...... independently from particle speeds and is a key advantage compared to normal Laser Particle Counters....

  8. Predicting and measurement of pH of seawater reverse osmosis concentrates

    KAUST Repository

    Waly, Tarek

    2011-10-01

    The pH of seawater reverse osmosis plants (SWRO) is the most influential parameter in determining the degree of supersaturation of CaCO3 in the concentrate stream. For this, the results of pH measurements of the concentrate of a seawater reverse osmosis pilot plant were compared with pH calculations based on the CO2-HCO3 --CO3 2- system equilibrium equations. Results were compared with two commercial software programs from membrane suppliers and also the software package Phreeqc. Results suggest that the real concentrate pH is lower than that of the feed and that none of the used programs was able to predict correctly real pH values. In addition, the effect of incorporating the acidity constant calculated for NaCl medium or seawater medium showed a great influence on the concentrate pH determination. The HCO3 - and CO3 2- equilibrium equation using acidity constants developed for seawater medium was the only method able to predict correctly the concentrate pH. The outcome of this study indicated that the saturation level of the concentrate was lower than previously anticipated. This was confirmed by shutting down the acid and the antiscalants dosing without any signs of scaling over a period of 12 months. © 2011 Elsevier B.V.

  9. A comparison of concentration measurement techniques for the estimation of the apparent mass diffusion coefficient

    Directory of Open Access Journals (Sweden)

    L.M. Pereira

    2001-09-01

    Full Text Available In this article we compare two different techniques to measure the concentration of saline solutions for the identification of the apparent mass diffusion coefficient in soils saturated with distilled water. They are the radiation measurement technique and the electrical conductivity measurement technique. These techniques are compared in terms of measured quantities, sensitivity coefficients with respect to unknown parameters and the determinant of the information matrix. The apparent mass diffusion coefficient is estimated by utilizing simulated measurements containing random errors. The Levenberg-Marquardt method of minimization of the least-squares norm is used as the parameter estimation procedure. The effects of the volume of saline solution injected into the column devised for the experiments on the accuracy of the estimated parameters are also addressed in this article.

  10. Beryllium Concentrations at European Workplaces: Comparison of 'Total' and Inhalable Particulate Measurements.

    Science.gov (United States)

    Kock, Heiko; Civic, Terence; Koch, Wolfgang

    2015-07-01

    A field study was carried out in order to derive a factor for the conversion of historic worker exposure data on airborne beryllium (Be) obtained by sampling according to the 37-mm closed faced filter cassette (CFC) 'total' particulate method into exposure concentration values to be expected when sampling using the 'Gesamtstaubprobenahmesystem' (GSP) inhalable sampling convention. Workplaces selected to represent the different copper Be work processing operations that typically occur in Germany and the EU were monitored revealing a broad spectrum of prevailing Be size distributions. In total, 39 personal samples were taken using a 37-mm CFC and a GSP worn side by side for simultaneous collection of the 'total' dust and the inhalable particulates, respectively. In addition, 20 static general area measurements were carried out using GSP, CFC, and Respicon samplers in parallel, the latter one providing information on the extra-thoracic fraction of the workplace aerosol. The study showed that there is a linear relationship between the concentrations measured with the CFC and those measured with the GSP sampler. The geometric mean value of the ratios of time-weighted average concentrations determined from GSP and CFC samples of all personal samples was 2.88. The individual values covered a range between 1 and 17 related to differences in size distributions of the Be-containing particulates. This was supported by the area measurements showing that the conversion factor increases with increasing values of the extra-thoracic fraction covering a range between 0 and 79%. PMID:25808693

  11. Absorption-edge transmission technique using Ce- 139 for measurement of stable iodine concentration.

    Science.gov (United States)

    Sorenson, J A

    1979-12-01

    We have investigated a technique for measuring stable iodine concentrations by absorption-edge transmission measurements using a Ce 139 radiation source. The lanthanum daughter emits characteristic x-rays whose energies just bracket the absorption edge of iodine at 33.2 keV. Relative transmission of these x-rays is sensitive to iodine concentration in the sample, but is relatively insensitive to other elements. By applying energy-selective beam filtration, it is possible to determine the relative transmission of these closely spaced x-ray energies with NaI(Tl) detectors. Optimizations of sample thickness, detector thickness, and Ce-139 source activity are discussed. Using sample volumes of about 10 ml, one can determine iodine concentration to an uncertainty (standard deviation) of +/- 5 microgram/ml with a 5-mCi source in a measurement time of 400 sec. Potential clinical applications of the in vitro technique are discussed, along with comparative aspects of the Ce-139 technique and other absorption and fluorescence techniques for measuring stable iodine.

  12. Measurements of indoor gamma radiation and radon concentrations in dwellings of Riyadh city, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, Ferdoas S. [Physics Department, Girls College of Education in Riyadh, P.O. Box 27329, Riyadh 11417 (Saudi Arabia)]. E-mail: ferdoasalsaleh@hotmail.com

    2007-07-15

    Indoor gamma radiation measurement at dwellings of Riyadh city in Saudi Arabia using TLD has been performed. Measurements were carried out from October 2004 to June 2005. The city was divided into five sectors, for four categories of bed rooms, living rooms, bathrooms and kitchens. The indoor gamma annual absorbed dose of Riyadh city is in the range from 303{+-}57 to 700{+-}38 {mu}Gy y{sup -1} with an average value of 455.1{+-}45 {mu}Gy y{sup -1}. The calculated corresponding annual effective dose to the adult population of the locations will vary from 212{+-}40 to 490{+-}27 {mu}Sv y{sup -1} with an average value of 318.57{+-}31 {mu}Sv y{sup -1}.{sup 222}Rn concentration was measured at dwellings of Riyadh city in Saudi Arabia to estimate effective annual dose to the public from {sup 222}Rn and its progeny. The {sup 222}Rn concentrations were measured using CR-39 detector. The range of annual mean {sup 222}Rn concentrations for all sites was 2-69 Bq m{sup -3} with an average of 18.4 Bq m{sup -3}. The effective annual dose was estimated to be 0.46 mSv y{sup -1}.

  13. Measurements of indoor gamma radiation and radon concentrations in dwellings of Riyadh city, Saudi Arabia.

    Science.gov (United States)

    Al-Saleh, Ferdoas S

    2007-07-01

    Indoor gamma radiation measurement at dwellings of Riyadh city in Saudi Arabia using TLD has been performed. Measurements were carried out from October 2004 to June 2005. The city was divided into five sectors, for four categories of bed rooms, living rooms, bathrooms and kitchens. The indoor gamma annual absorbed dose of Riyadh city is in the range from 303+/-57 to 700+/-38microGyy(-1) with an average value of 455.1+/-45microGyy(-1). The calculated corresponding annual effective dose to the adult population of the locations will vary from 212+/-40 to 490+/-27microSvy(-1) with an average value of 318.57+/-31microSvy(-1).(222)Rn concentration was measured at dwellings of Riyadh city in Saudi Arabia to estimate effective annual dose to the public from (222)Rn and its progeny. The (222)Rn concentrations were measured using CR-39 detector. The range of annual mean (222)Rn concentrations for all sites was 2-69Bqm(-3) with an average of 18.4Bqm(-3). The effective annual dose was estimated to be 0.46mSvy(-1).

  14. Radioactivity concentration measurement and analysis in construction floor materials of Korea

    Science.gov (United States)

    Kim, G. H.; Lee, H. K.; Cho, J. H.

    2016-05-01

    In this study, the radioactive concentrations contained in samples of commonly used building floor materials were measured. This result can be used as basic information for public health and the environment. Among building floor materials, samples of induction blocks, cement bricks, artificial granite blocks and compact high-pressure blocks were chosen and used. A detailed gamma nuclide analysis was performed with a multichannel analyzer by putting these samples on a high-purity germanium detector which is a semiconductor detector. In order to measure the concentration of radionuclides, a spectrum file was obtained by analyzing the concentration of gamma radionuclides and setting the measurement time as 1000, 4000, 7000 and 10,000 s. According to the study results, K-40, Bi-214, Pb-214, Ra-226 and U-235 were detected in the induction blocks measured at 10,000 s and K-40, Th-230, Bi-214, Pb-214, Ra-226 and Na-22 were detected in the cement bricks measured at 10,000 s. K-40, Bi-214, Pb-214, Th-234, U-235 and Ra-223 were detected in the artificial granite blocks measured at 10,000 s and K-40, Bi-214, Pb-214, Th-234, Ra-226, Ra-223 and Mn-54 were detected in the compact high-pressure blocks. In conclusion, low-level radioactivity was detected in building floor materials, so it is thought that measures to reduce radioactivity and further studies on this will be needed.

  15. Toward a real-time measurement of atmospheric mercury concentrations using cavity ring-down spectroscopy

    Directory of Open Access Journals (Sweden)

    X. Faïn

    2009-10-01

    Full Text Available A new sensor based on cavity ring-down spectroscopy (CRDS has been developed for the measurement of gaseous elemental mercury (Hg0 mass concentration with sub-ng m−3 detection limit and high temporal resolution. Cavity ring-down spectroscopy is a direct absorption technique that utilizes path lengths of up to multiple kilometers in a compact absorption cell and has a significantly higher sensitivity than conventional absorption spectroscopy. Our prototype uses a frequency-doubled, tuneable dye laser emitting pulses at ~253.65 nm with a pulse repetition frequency of 50 Hz. The dye laser incorporates a unique piezo element attached to its tuning grating allowing it to tune the laser on and off the Hg0 absorption line on a pulse to pulse basis to facilitate differential absorption measurements. Hg0 absorption measurements with this CRDS laboratory prototype are highly linearly related to Hg0 concentrations determined by a Tekran 2537B analyzer over a Hg0 concentration range of four orders of magnitude, from 0.2 ng m−3 to 573 ng m−3 implying excellent linearity of both instruments. The current CRDS instrument has a~sensitivity of 0.10 ng m−3 at 10 s time resolution. This tool opens new prospects for the study of Hg0 because of its high temporal resolution and reduced limited sample volume requirements (<0.5 l of sample air. Future applications may include ambient Hg0 flux measurements with eddy covariance techniques, which require measurements of Hg0 concentrations with sub-ng m−3 sensitivity and sub-second time resolution.

  16. Ambient concentrations of aldehydes in relation to Beijing Olympic air pollution control measures

    Directory of Open Access Journals (Sweden)

    J. C. Gong

    2010-08-01

    Full Text Available Aldehydes are ubiquitous constituents of the atmosphere. Their concentrations are elevated in polluted urban atmospheres. The present study was carried out to characterize three aldehydes of most health concern (formaldehyde, acetaldehyde, and acrolein in a central Beijing site in the summer and early fall of 2008 (from June to October. Measurements were made before, during, and after the Beijing Olympics to examine whether the air pollution control measures implemented to improve Beijing's air quality during the Olympics had any impact on concentrations of the three aldehydes. Average concentrations of formaldehyde, acetaldehyde and acrolein were 29.34 ± 15.12 μg/m3, 27.09 ± 15.74 μg/m3 and 2.32 ± 0.95 μg/m3, respectively, for the entire period of measurements, all being the highest among the levels measured in cities around the world in photochemical smog seasons. Among the three measured aldehydes, only acetaldehyde had a substantially reduced mean concentration during the Olympic air pollution control period compared to the pre-Olympic period. Formaldehyde and acrolein followed the changing pattern of temperature and were each significantly correlated with ozone (a secondary product of photochemical reactions. In contrast, acetaldehyde was significantly correlated with several pollutants emitted mainly from local emission sources (e.g., NO2, CO, and PM2.5. These findings suggest that local direct emissions had a larger impact on acetaldehyde than formaldehyde and acrolein.

  17. Measurement of the tritium concentration in the fractionated distillate from environmental water samples

    International Nuclear Information System (INIS)

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The current study investigates the relative change in vapor pressure isotope effect in the course of the distillation process, distinguishing it from and extending previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.04 ± 0.036, 1.05 ± 0.026, and 1.07 ± 0.038, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples where the first 5 mL are discarded, the tritium concentration could be underestimated by 4–7%. - Highlights: • Tritium measurements in environmental water samples. • Distilled samples. • Vapor pressure isotope effect. • Depending on boiling mode. • Potential underestimate of tritium activity concentration of 4–7%

  18. The measurement of thermal neutron flux depression for determining the concentration of boron in blood

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a form of targeted radiotherapy that relies on the uptake of the capture element boron by the volume to be treated. The treatment procedure requires the measurement of boron in the patient's blood. The investigation of a simple and inexpensive method for determining the concentration of the capture element 10B in blood is described here. This method, neutron flux depression measurement, involves the determination of the flux depression of thermal neutrons as they pass through a boron-containing sample. It is shown via Monte Carlo calculations and experimental verification that, for a maximum count rate of 1x104 counts/s measured by the detector, a 10 ppm 10B sample of volume 20 ml can be measured with a statistical precision of 10% in 32±2 min. For a source activity of less than 1.11x1011 Bq and a maximum count rate of less than 1x104 counts/s, a 10 ppm 10B sample of volume 20 ml can be measured with a statistical precision of 10% in 58±3 min. It has also been shown that this technique can be applied to the measurement of the concentration of any element with a high thermal neutron cross section such as 157Gd. (author)

  19. Monitoring and control of the biogas process based on propionate concentration using online VFA measurement

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Steyer, J.P.; Angelidaki, Irini

    2008-01-01

    of 10 mM by manipulating the feed flow. Other online parameters such as pH, biogas production, total VFA, and other individual VFA were also measured to examine process performance. The experimental results showed that a simple logic control can successfully prevent the reactor from overload......Simple logic control algorithms were tested for automatic control of a lab-scale CSTR manure digester. Using an online VFA monitoring system, propionate concentration in the reactor was used as parameter for control of the biogas process. The propionate concentration was kept below a threshold......, but with fluctuations of the propionate level due to the nature of control approach. The fluctuation of propionate concentration could be reduced, by adding a lower feed flow limit into the control algorithm to prevent undershooting of propionate response. It was found that use of the biogas production as a main...

  20. Potentiometric measurement of glucose concentration with an immobilized glucose oxidase/catalase electrode.

    Science.gov (United States)

    Wingard, L B; Liu, C C; Wolfson, S K; Yao, S J; Drash, A L

    1982-01-01

    A series of enzyme electrodes for measurement of glucose have been constructed. The electrodes contain glucose oxidase immobilized on platinum, either with or without co-immobilization of catalase. When placed in buffered glucose, the enzyme electrodes show a potentiometric response to glucose with respect to a Ag/AgCl reference electrode. This response is reproducible in the physiologic range of glucose concentrations. The immobilization technique, some of the environmental variables such as oxygen concentration and pH, and several compounds that might interfere with the selectivity of the enzyme electrodes for glucose have received preliminary study. This direct potentiometric approach is undergoing further evaluation to determine the basic electrochemical mechanism responsible for the potentiometric signal and whether it can be adapted for continuous in vivo monitoring of the glucose concentration in body fluids. PMID:7172983

  1. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    Science.gov (United States)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in

  2. Exposition by inhalation to the formaldehyde in the air. Source, measures and concentrations; Exposition par inhalation au formaldehyde dans l'air. Source, mesures et concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Del Gratta, F.; Durif, M.; Fagault, Y.; Zdanevitch, I

    2004-12-15

    This document presents the main techniques today available to characterize the formaldehyde concentrations in the air for different contexts: urban and rural areas or around industrial installations but also indoor and occupational area. It provides information to guide laboratories and research departments. A synthesis gives also the main emissions sources of these compounds as reference concentrations measured in different environments. (A.L.B.)

  3. Associations between insulin and glucose concentrations and anthropometric measures of fat mass in Australian adolescents

    Directory of Open Access Journals (Sweden)

    Denney-Wilson Elizabeth

    2010-08-01

    Full Text Available Abstract Background One of the most serious, yet common co-morbidities of obesity is insulin resistance, which if untreated may progress to type 2 diabetes. This paper describes the insulin and glucose concentration distributions, the prevalence of elevated insulin, the associations between insulin and body mass index (BMI, waist circumference, waist-to-height ratio (WHtR and fat mass index in a representative sample of Australian adolescents. Methods Cross-sectional population-based study of adolescent boys and girls (N = 496, mean age 15.3 years attending schools in metropolitan Sydney, Australia. Fasting venous blood collected and analysed for insulin and glucose concentrations. Height, weight, waist circumference measured, BMI and waist-to-height ratio calculated. Pubertal status self-reported. Results Glucose concentrations were normally distributed and were not associated with adiposity. Insulin concentrations were distributed logarithmically, were higher among girls than boys overall and within the same ranges of BMI and waist circumference, but were lower among girls than boys within the same ranges of fat mass adjusted for height. The prevalence of elevated insulin concentration (defined as > 100 pmol/L was 15.9% and 17.1% among boys and girls, respectively. Correlations between insulin concentration and BMI, waist circumference, WHtR and fat mass adjusted for height were 0.53, 0.49, 0.51 and 0.55, among boys, respectively, and 0.35, 0.40, 0.42 and 0.34, among girls, respectively. Conclusions Elevated insulin is highly correlated with adiposity in adolescents. BMI and WHtR are simple measures that can be used to identify young people who should be screened for insulin resistance and other co-morbidities.

  4. DNA copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials.

    Science.gov (United States)

    Corbisier, Philippe; Pinheiro, Leonardo; Mazoua, Stéphane; Kortekaas, Anne-Marie; Chung, Pui Yan Jenny; Gerganova, Tsvetelina; Roebben, Gert; Emons, Hendrik; Emslie, Kerry

    2015-03-01

    The value assignment for properties of six certified reference materials (ERM-AD623a-f), each containing a plasmid DNA solution ranging from 1 million to 10 copies per μL, by using digital PCR (dPCR) with the BioMark™ HD System (Fluidigm) has been verified by applying droplet digital PCR (ddPCR) using the QX100 system (Bio-Rad). One of the critical factors in the measurement of copy number concentrations by digital PCR is the partition volume. Therefore, we determined the average droplet volume by optical microscopy, revealing an average droplet volume that is 8 % smaller than the droplet volume used as the defined parameter in the QuantaSoft software version 1.3.2.0 (Bio-Rad) to calculate the copy number concentration. This observation explains why copy number concentrations estimated with ddPCR and using an average droplet volume predefined in the QuantaSoft software were systematically lower than those measured by dPCR, creating a significant bias between the values obtained by these two techniques. The difference was not significant anymore when the measured droplet volume of 0.834 nL was used to estimate copy number concentrations. A new version of QuantaSoft software (version 1.6.6.0320), which has since been released with Bio-Rad's new QX200 systems and QX100 upgrades, uses a droplet volume of 0.85 nL as a defined parameter to calculate copy number concentration. PMID:25600685

  5. On the measure of sea ice area from sea ice concentration data sets

    Science.gov (United States)

    Boccolari, Mauro; Parmiggiani, Flavio

    2015-10-01

    The measure of sea ice surface variability provides a fundamental information on the climatology of the Arctic region. Sea ice extension is conventionally measured by two parameters, i.e. Sea Ice Extent (SIE) and Sea Ice Area (SIA), both parameters being derived from Sea Ice Concentration (SIC) data sets. In this work a new parameter (CSIA) is introduced, which takes into account only the compact sea-ice, which is defined as the sea-ice having concentration at least equal the 70%. Aim of this study is to compare the performances of the two parameters, SIA and CSIA, in analyzing the trends of three monthly time-series of the whole Arctic region. The SIC data set used in this study was produced by the Institute of Environmental Physics of the University of Bremen and covers the period January 2003 - December 2014, i.e. the period in which the data set is built using the new AMSR passive microwave sensor.

  6. Results of measurements of particulate matter concentrations inside a pig fattening facility

    Directory of Open Access Journals (Sweden)

    Ulens, T.

    2016-01-01

    Full Text Available Description of the subject. This research note discusses the results of measurements of particulate matter concentrations inside a pig fattening facility. Objectives. The objectives of the present study were to investigate the correlations between the different size fractions of indoor particulate matter (PM inside a pig fattening facility and to investigate the evolution of particle size distribution (PSD through a fattening period and between two housing systems and two cleaning protocols. Method. Data from two consecutive fattening periods in a commercial pig barn were used. Results. Very high correlations were found between PM10 and PM2.5 indoor concentrations. Depending on the measuring instrument, high or low correlations were found between PM1 and PM10 or PM2.5 indoor concentrations. No differences in PSD could be found between the two housing systems or the two cleaning protocols. Conclusions. The results from the present study showed high correlations between the indoor concentrations of PM10 and PM2.5. In the present study, no differences in PSD were found.

  7. Particle concentration measurement of virus samples using electrospray differential mobility analysis and quantitative amino acid analysis.

    Science.gov (United States)

    Cole, Kenneth D; Pease, Leonard F; Tsai, De-Hao; Singh, Tania; Lute, Scott; Brorson, Kurt A; Wang, Lili

    2009-07-24

    Virus reference materials are needed to develop and calibrate detection devices and instruments. We used electrospray differential mobility analysis (ES-DMA) and quantitative amino acid analysis (AAA) to determine the particle concentration of three small model viruses (bacteriophages MS2, PP7, and phiX174). The biological activity, purity, and aggregation of the virus samples were measured using plaque assays, denaturing gel electrophoresis, and size-exclusion chromatography. ES-DMA was developed to count the virus particles using gold nanoparticles as internal standards. ES-DMA additionally provides quantitative measurement of the size and extent of aggregation in the virus samples. Quantitative AAA was also used to determine the mass of the viral proteins in the pure virus samples. The samples were hydrolyzed and the masses of the well-recovered amino acids were used to calculate the equivalent concentration of viral particles in the samples. The concentration of the virus samples determined by ES-DMA was in good agreement with the concentration predicted by AAA for these purified samples. The advantages and limitations of ES-DMA and AAA to characterize virus reference materials are discussed.

  8. Measurements of radon concentration levels in thermal waters in the region of Konya, Turkey.

    Science.gov (United States)

    Erdogan, Mehmet; Ozdemir, Fatih; Eren, Nuretdin

    2013-01-01

    (222)Rn (radon) is one of the most important sources of natural radiation to which people are exposed. It is an alpha-emitting noble gas and it can be found in various concentrations in soil, air and in different kinds of water. In this study, we present the results of radon concentration measurements in thermal waters taken from the sources in the region of Konya located in the central part of Turkey. The radon activity concentrations in 10 thermal water samples were measured by using the AlphaGUARD PQ 2000PRO radon gas analyser in spring and summer of the year 2012. We found that radon activity concentrations range from 0.60±0.11 to 70.34±3.55 kBq m(-3) and from 0.67±0.03 to 36.53±4.68 kBq m(-3) in spring and summer, respectively. We also calculated effective doses per treatment in the spas for the spring and summer seasons. It was found that the minimum and maximum effective doses per treatment are in the range of 0.09-10.13 nSv in spring and in the range of 0.1-5.26 nSv in summer. PMID:23937805

  9. Measurements of radon concentrations in waters and soil gas of Zonguldak, Turkey.

    Science.gov (United States)

    Koray, Abdullah; Akkaya, Gizem; Kahraman, Ayşegül; Kaynak, Gökay

    2014-12-01

    The radon concentrations in soil-gas and water samples (in the form of springs, catchment, tap, thermal) used as drinking water or thermal were measured using a professional radon monitor AlphaGUARD PQ 2000PRO. The measured radon concentrations in water samples ranged from 0.32 to 88.22 Bq l(-1). Most of radon levels in potable water samples are below the maximum contaminant level of 11 Bq l(-1) recommended by the US Environmental Protection Agency. The calculated annual effective doses due to radon intake through water consumption varied from 0.07 to 18.53 µSv y(-1). The radon concentrations in soil gas varied from 295.67 to 70 852.92 Bq m(-3). The radon level in soil gas was found to be higher in the area close to the formation boundary thrust and faults. No correlation was observed between radon concentrations in groundwater and soil gas. Also, no significant correlation was observed between soil-gas radon and temperature, pressure and humidity. The emanation of radon from groundwater and soil gas is controlled by the geological formation and by the tectonic structure of the area. PMID:24287600

  10. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    Science.gov (United States)

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring. PMID:27410280

  11. Uncertainties of retrospective radon concentration measurements by multilayer surface trap detector

    Energy Technology Data Exchange (ETDEWEB)

    Bastrikov, V.; Kruzhalov, A. [Ural State Technical Univ., Yekaterinburg (Russian Federation); Zhukovsky, M. [Institute of Industrial Ecology UB RAS, Yekaterinburg (Russian Federation)

    2006-07-01

    The detector for retrospective radon exposure measurements is developed. The detector consists of the multilayer package of solid-state nuclear track detectors LR-115 type. Nitrocellulose films works both as {alpha}-particle detector and as absorber decreasing the energy of {alpha}-particles. The uncertainties of implanted {sup 210}Pb measurements by two- and three-layer detectors are assessed in dependence on surface {sup 210}Po activity and gross background activity of the glass. The generalized compartment behavior model of radon decay products in the room atmosphere was developed and verified. It is shown that the most influencing parameters on the value of conversion coefficient from {sup 210}Po surface activity to average radon concentration are aerosol particles concentration, deposition velocity of unattached {sup 218}Po and air exchange rate. It is demonstrated that with the use of additional information on surface to volume room ratio, air exchange rate and aerosol particles concentration the systematic bias of conversion coefficient between surface activity of {sup 210}Po and average radon concentration can be decreased up to 30 %. (N.C.)

  12. MEASUREMENT OF VITAMIN B12 CONCENTRATION: A REVIEW ON AVAILABLE METHODS

    Directory of Open Access Journals (Sweden)

    Karmi O et al

    2011-01-01

    Full Text Available Vitamin B12 is a water-soluble vitamin. It is one of the eight vitamins of vitamin B complex, needed for blood and cell maturation. It helps maintain healthy nerve cells and red blood cells, and it is needed in DNA replication. Its deficiency may cause megaloblastic anemia (amidst others health issues. For these and many similar reasons, it sometimes becomes necessary to measure its concentration. This article has carefully reviewed the different methods used for measuring vitamin B12 concentration, and the unique principles involved. The principles, basically, depend on the molecular structure of Vitamin B12 and its reactions with other substances. The methods include microbiological assay and spectrophotometric methods – these are old methods: they were the first available methods, but they are still in use for reference purposes. Another method is electroluminescent (ECL which involves highly reactive materials. However, inductive-coupled plasma-mass spectrometry (ICP-MS is a very important method, which is used routinely, even in many research. On the other hand, atomic absorption spectroscopy depends on measuring the amount of energy involved in the reaction; while radioimmunoassay (RIA is a highly sensitive immunoassay technique. In addition, there are different techniques for separating and preparing samples to be used in the various measurement methods. High-performance liquid chromatography (HPLC is used for non-validate analyst, while capillary-electrophoresis (CE that have high resolving power than traditional electrophoresis, which when they are coupled with certain detectors they afford us another principle for measuring this vitamin. Choosing the best method for measuring vitamin B12 concentration depends on many factors – including the type of sample, purpose of the test, necessity of pre-processing, time limitations, cost, sensitivity, specificity.

  13. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation.

    Science.gov (United States)

    Perrier, Frédéric; Aupiais, Jean; Girault, Frédéric; Przylibski, Tadeusz A; Bouquerel, Hélène

    2016-06-01

    Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L(-1) and 10% for 10 mBq L(-1). While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L(-1), a conservative experimental estimate is rather 5 mBq L(-1), corresponding to 0.14 fg g(-1). The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported. PMID:26998570

  14. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation.

    Science.gov (United States)

    Perrier, Frédéric; Aupiais, Jean; Girault, Frédéric; Przylibski, Tadeusz A; Bouquerel, Hélène

    2016-06-01

    Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L(-1) and 10% for 10 mBq L(-1). While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L(-1), a conservative experimental estimate is rather 5 mBq L(-1), corresponding to 0.14 fg g(-1). The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported.

  15. Implement an Advanced Soft Measurement Method of Mine Dust Concentration Based on K-RBF Neural Network

    OpenAIRE

    Hong Yu; Xuezhen Cheng; Maoyong Cao; Xiaohang Gao

    2015-01-01

    In view of the coal dust concentration measurement elements, the measurement pollution environment will reduce the measurement accuracy. The paper proposes a soft measurement method of mine dust concentration based on the K-RBF neural network theory. It takes the electrostatic signal as the measurement signal and extracts the short-term energy, RMS and rectification value of the electrostatic signal as the characteristic quantities of signal. And then a measurement method model has been creat...

  16. Sonde for Downhole Measurement of Water Turbidity and Dye Tracer Concentration

    OpenAIRE

    Schnegg, Pierre-André; Bossy, F.

    2005-01-01

    A new flow-through field fluorometer sonde has been designed for use in downhole tracer tests in 2’’ boreholes. The instrument is capable of determining the partial concentration of two dye tracers present simultaneously in the water. In addition, turbidity can be measured if the water is free of tracers. Although the sonde is aimed at boreholed hydrological investigations, it can also be used in surface waters.

  17. Examination of four different instruments for measuring the blood lactate concentration

    OpenAIRE

    Medbø, Jon Ingulf; Mamen, Asgeir; Olsen, Ole Holt; Evertsen, Frank

    2000-01-01

    ABSTRACT There is incomplete information on the performance of different instruments used to measure the blood lactate concentration. We have therefore examined instruments from Yellow Springs Instruments (YSI 23L and YSI 1500), and three cheaper and simpler instruments: Dr. Lange’s LP8+, Lactate Pro from Arkray, KDK, and Accusport from Boehringer Mannheim. First a number of blood samples were analysed by standard enzymatic photofluorometry (our control method) and in additi...

  18. Noninvasive Measurement of Fecal Progesterone Concentration in Toy Poodles by Time Resolved Fluoroimmunoassay (TR-FIA)

    OpenAIRE

    Satoshi Sugimura; Kaori Narita; Hideaki Yamashiro; Atsushi Sugawara; Katsuhiko Nishimori; Tsutomu Konno; Muneyoshi Yoshida; Eimei Sato

    2008-01-01

    Progesterone is an important reproductive hormone and measurement of its level by repeated blood samplings is beneficial to monitoring of estrus cycle. However, since toy poodles have a small body size and thin-walled blood vessels, repeated blood samplings cause stress and affect their preparation for mating or artificial insemination (AI). Therefore, a noninvasive method for monitoring progesterone concentration should be developed. Here, we show that time-resolved fluoroimmunoassay (TF-RIA...

  19. Measuring low radium activity concentration in water with RAD7 by means of evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Kappke, Jaqueline; Marussig, Camila G.T.; Paschuk, Sergei; Zambianchi Junior, Pedro; Correa, Janine N.; Perna, Allan Felipe Nunes; Martin, Aline, E-mail: jaquelinekappke@gmail.com, E-mail: mila_garciatb@hotmail.com, E-mail: spaschuk@gmail.com, E-mail: zambianchi@utfpr.edu.br, E-mail: janine_nicolosi@hotmail.com, E-mail: allan_perna@hotmail.com, E-mail: nocamartin@hotmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2015-07-01

    Preliminary activity measurements of low radium concentration in mineral water by using RAD7 equipment showed high values of statistical errors. Therefore, the need to develop a new protocol for measuring and proofing the evaporation test for radium measurements in water is in place. This study evaluates the possibility of using RAD7 equipment to measure Ra-226 activity in equilibrium with Rn-222 present in water samples. The technique involves evaporation process so as to increase the Ra-226 concentration in the sample in a controlled manner and thus reduce statistical errors. Two samples were compared, 10 L sample of distilled water and a 7.75 L sample of known concentration (0.1 Bq/L). The evaporation was carried out starting with different initial volumes for both samples: 500 mL, 1000 mL, 2000 mL, 4000 mL and a 250 mL sample not subject to evaporation. All samples reached a final volume of approximately 250 mL. After evaporation, the samples were stored for 30 days until secular equilibrium was achieved between Ra-226 and Rn-222. The values obtained, by using RAD7 detector, for distilled water, as expected, are near zero averaging 0.021 ± 0.016 Bq/L. The average value found in the water of known concentration was 0.099 ± 0.011 Bq/L, also close to the expected 0.1 Bq/L. The conclusion is that the application of an evaporation process is efficient and the proposed methodology is a proven alternative to decrease the statistical errors. (author)

  20. Phylogenetic Mixtures: Concentration of Measure in the Large-Tree Limit

    CERN Document Server

    Mossel, Elchanan

    2011-01-01

    The reconstruction of phylogenies from DNA or protein sequences is a major task of computational evolutionary biology. Common phenomena, notably variations in mutation rates across genomes and incongruences between gene lineage histories, often make it necessary to model molecular data as originating from a mixtureof phylogenies. Such mixed models play an increasingly important role in practice. Using concentration of measure techniques, we show that mixtures of large trees are typically identifiable. We also derive sequence-length requirements for high-probability reconstruction.

  1. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  2. Comparative study of measured and modelled number concentrations of nanoparticles in an urban street canyon

    DEFF Research Database (Denmark)

    Kumar, Prashant; Garmory, Andrew; Ketzel, Matthias;

    2009-01-01

    This study presents a comparison between measured and modelled particle number concentrations (PNCs) in the 10-300 nm size range at different heights in a canyon. The PNCs were modelled using a simple modelling approach (modified Box model, including vertical variation), an Operational Street...... entire height of the canyon, showing a well-mixed region up to first ≈2 m and then decreasing PNCs with increased height. The CFD profiles do correctly reproduce the increase from road level to a height of ≈2 m; however, they do not predict the measured PNC decrease higher in the canyon. The PNC...

  3. Quantitative Measurements of Nitric Oxide Concentration in High-Pressure, Swirl-Stabilized Spray Flames

    Science.gov (United States)

    Cooper, Clayton S.; Laurendeau, Normand M.; Hicks, Yolanda R. (Technical Monitor)

    2000-01-01

    Lean direct-injection (LDI) spray flames offer the possibility of reducing NO(sub x) emissions from gas turbines by rapid mixing of the liquid fuel and air so as to drive the flame structure toward partially-premixed conditions. We consider the technical approaches required to utilize laser-induced fluorescence methods for quantitatively measuring NO concentrations in high-pressure LDI spray flames. In the progression from atmospheric to high-pressure measurements, the LIF method requires a shift from the saturated to the linear regime of fluorescence measurements. As such, we discuss quantitative, spatially resolved laser-saturated fluorescence (LSF), linear laser-induced fluorescence (LIF), and planar laser-induced fluorescence (PLIF) measurements of NO concentration in LDI spray flames. Spatially-resolved LIF measurements of NO concentration (ppm) are reported for preheated, LDI spray flames at pressures of two to five atmospheres. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q(sub 2)(26.5) transition of the gamma(0,0) band. Detection is performed in a two nanometer region centered on the gamma(0,1) band. A complete scheme is developed by which quantitative NO concentrations in high-pressure LDI spray flames can be measured by applying linear LIF. NO is doped into the reactants and convected through the flame with no apparent destruction, thus allowing a NO fluorescence calibration to be taken inside the flame environment. The in-situ calibration scheme is validated by comparisons to a reference flame. Quantitative NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors. Moreover, parametric studies are provided for variations in pressure, air-preheat temperature, and equivalence ratio. Similar parametric studies are performed for lean, premixed-prevaporized flames to permit comparisons to those for LDI flames

  4. Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements.

    Science.gov (United States)

    Abda, F; Azbaid, A; Ensminger, D; Fischer, S; François, P; Schmitt, P; Pallarès, A

    2009-01-01

    In the frame of a technological research and innovation network in water and environment technologies (RITEAU, Réseau de Recherche et d'Innovation Technologique Eau et Environnement), our research group, in collaboration with industrial partners and other research institutions, has been in charge of the development of a suitable flowmeter: an ultrasonic device measuring simultaneously the water flow and the concentration of size classes of suspended particles. Working on the pulsed ultrasound principle, our multi-frequency device (1 to 14 MHz) allows flow velocity and water height measurement and estimation of suspended solids concentration. Velocity measurements rely on the coherent Doppler principle. A self developed frequency estimator, so called Spectral Identification method, was used and compared to the classical Pulse-Pair method. Several measurements campaigns on one wastewater collector of the French city of Strasbourg gave very satisfactory results and showed smaller standard deviation values for the Doppler frequency extracted by the Spectral Identification method. A specific algorithm was also developed for the water height measurements. It relies on the water surface acoustic impedance rupture and its peak localisation and behaviour in the collected backscattering data. This algorithm was positively tested on long time measurements on the same wastewater collector. A large part of the article is devoted to the measurements of the suspended solids concentrations. Our data analysis consists in the adaptation of the well described acoustic behaviour of sand to the behaviour of wastewater particles. Both acoustic attenuation and acoustic backscattering data over multiple frequencies are analyzed for the extrapolation of size classes and respective concentrations. Under dry weather conditions, the massic backscattering coefficient and the overall size distribution showed similar evolution whatever the measurement site was and were suggesting a global

  5. Quantifying measurement uncertainty in full-scale compost piles using organic micro-pollutant concentrations.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe G; Bester, Kai

    2014-05-01

    Reductions in measurement uncertainty for organic micro-pollutant concentrations in full scale compost piles using comprehensive sampling and allowing equilibration time before sampling were quantified. Results showed that both application of a comprehensive sampling procedure (involving sample crushing) and allowing one week of equilibration time before sampling reduces measurement uncertainty by about 50%. Results further showed that for measurements carried out on samples collected using a comprehensive procedure, measurement uncertainty was associated exclusively with the analytic methods applied. Application of statistical analyses confirmed that these results were significant at the 95% confidence level. Overall implications of these results are (1) that it is possible to eliminate uncertainty associated with material inhomogeneity and (2) that in order to reduce uncertainty, sampling procedure is very important early in the composting process but less so later in the process.

  6. Concentration and angular velocity measurement in a cyclone separator dipleg using electrical capacitance tomography

    Institute of Scientific and Technical Information of China (English)

    SUN Meng; LIU Shi; LEI Jing; LI ZhiHong

    2008-01-01

    Cyclone separator is one of the main parts of the circulating fluidized bed (CFB) boiler. The separation efficiency of the cyclone separator is very important to the whole boiler. Electrical capacitance tomo-graphy (ECT) is a unique measuring technique with great potential in multiphase flow measurement. Experimental studies are carried out on the measurement of volumetric concentration and angular ve-locity using ECT. The former is determined through image reconstruction method, and the latter is measured by cross-correlating the capacitance fluctuations caused by the conveyed solids. The dis-tribution of void fraction in radial direction, the fluctuating characteristics, probability density function and the spectrum characteristics are analyzed. The feasibility and reliability of the method are verified by experimental results.

  7. Subaru Weak Lensing Measurements of Four Strong Lensing Clusters: Are Lensing Clusters Over-Concentrated?

    Energy Technology Data Exchange (ETDEWEB)

    Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew

    2009-01-29

    We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.

  8. Measurements of the ion concentrations and conductivity over the Arabian Sea during the ARMEX

    CERN Document Server

    Siingh, Devendraa; Gopalakrishnan, V; Kamra, A K

    2009-01-01

    Measurements of the small-, intermediate-, and large-ion concentrations and the atmospheric electric conductivity of both polarities have been made over the Arabian Sea on four cruises of ORV Sagarkanya during the Arabian Sea Monsoon Experiment (ARMEX)during the monsoon and pre-monsoon seasons of 2002 and 2003. Seasonally averaged values of the total as well as polar conductivity are much higher during the monsoon than pre-monsoon season. Surprisingly, however, the concentration of small ions are less and those of large and intermediate ions are more during the monsoon than pre-monsoon season. The diurnal variations observed during the pre-monsoon season show that the nighttime small ion concentrations are about an order of magnitude higher than their daytime values. On the contrary, the daytime concentrations of the intermediate and large ions are much higher than those of their nighttime values. No such diurnal variations in ion concentrations are observed in monsoon season. Also examined are the variations...

  9. Low temperature measurements of state-of-the-art concentrator solar cells

    Science.gov (United States)

    Rumyantsev, Valery D.; Chekalin, Alexander V.; Malevskiy, Dmitry A.; Shvarts, Maxim Z.; Andreev, Valery M.

    2015-09-01

    Knowing the temperature behavior of the photovoltaic parameters in multi-junction (MJ) solar cells (SCs) can give information suitable for comparing different cell structures and for estimating a potential of their operation in various environmental conditions. As a rule, the cell structures are designed specifically for terrestrial (with high sunlight concentration), or space (sometimes with relatively low concentration) applications, differing in certain, but not principal, details. Structural improvements introduced in one of the cell types may highlight the effective ways for improvements applicable for another cell type. In this work, a set of the state-of-the-art concentrator triple-junction SCs were investigated to analyze the influence of temperature in a very wide range of -170 ≤ T ≤ +85°C, together with the sunlight concentration ratio variation, on the cell performance. In particular, the PV conversion efficiencies as high as 50 - 52% (AM1.5d) have been measured in the temperature range of -120 - -150°C for the sunlight concentration ratios of C = 50 - 300 suns. Such investigations may be regarded as a tool for revealing the presence of the "parasitic" built-in energy barriers at cell structure optimization.

  10. Estimating the relation between groundwater and river water by measuring the concentration of Rn-222

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, Minoru; Morisawa, Shinsuke [Kyoto Univ. (Japan). Faculty of Engineering

    1997-02-01

    This study aimed to estimate the relationship between groundwater in shallow layer and river water by determining the concentrations of {sup 222}Rn and nitric nitrogen along with water temperature. The region around ca. 20 km along river A in a certain basin was chosen as a test area. The Rn concentration of groundwater was determined by Rn extracting with toluene and counting in liquid scintillation counter, whereas for river water, it was determined by activated charcoal passive collector method developed by the authors, by which the amount of Rn adsorbed on activated charcoal was estimated by Ge-solid state detector. In addition, water temperature and nitric nitrogen concentration were measured at various points in the test area. Thus, a distribution map of the three parameters was made on the basis of the data obtained in December, 1989. Since Rn concentration is generally higher in ground water than river water and the water temperature in December is higher in the former, it seems likely that the concentrations of Rn and nitric nitrogen would become higher in the area where ground water soaks into river water. Thus, the directions of ground water flow at the respective sites along river A were estimated from the data regarding the properties of ground water. (M.N.)

  11. Measurement of fluorescent probes concentration ratio in the cerebrospinal fluid for early detection of Alzheimer's disease

    Science.gov (United States)

    Harbater, Osnat; Gannot, Israel

    2014-03-01

    The pathogenic process of Alzheimer's Disease (AD), characterized by amyloid plaques and neurofibrillary tangles in the brain, begins years before the clinical diagnosis. Here, we suggest a novel method which may detect AD up to nine years earlier than current exams, minimally invasive, with minimal risk, pain and side effects. The method is based on previous reports which relate the concentrations of biomarkers in the Cerebrospinal Fluid (CSF) (Aβ and Tau proteins) to the future development of AD in mild cognitive impairment patients. Our method, which uses fluorescence measurements of the relative concentrations of the CSF biomarkers, replaces the lumbar puncture process required for CSF drawing. The process uses a miniature needle coupled trough an optical fiber to a laser source and a detector. The laser radiation excites fluorescent probes which were prior injected and bond to the CSF biomarkers. Using the ratio between the fluorescence intensities emitted from the two biomarkers, which is correlated to their concentration ratio, the patient's risk of developing AD is estimated. A theoretical model was developed and validated using Monte Carlo simulations, demonstrating the relation between fluorescence emission and biomarker concentration. The method was tested using multi-layered tissue phantoms simulating the epidural fat, the CSF in the sub-arachnoid space and the bone. These phantoms were prepared with different scattering and absorption coefficients, thicknesses and fluorescence concentrations in order to simulate variations in human anatomy and in the needle location. The theoretical and in-vitro results are compared and the method's accuracy is discussed.

  12. Measurement of the tungsten ion concentration after forced extinction of a vacuum arc

    International Nuclear Information System (INIS)

    The concentrations of singly ionized and neutral tungsten atoms were measured by laser-induced fluorescence after the forced extinction of vacuum arcs between tungsten-copper butt contacts, 28-mm in diam and 10-mm apart. The 50-Hz current was forced to zero at its maximum of 200 A in 1.3 μs by application of a reverse voltage. Near current zero, the ion concentration of 4 x 1017 m- 3 is of the same order of magnitude as the atomic tungsten concentration, which is 6 x 1017 m- 3. While the concentration of the neutrals remains virtually constant during 20 μs after current zero, the ion concentration decays by three orders of magnitude in the same time. The decay-time constant varies from 1.9 μs close to the post-arc cathode to 3.6 μs near the post-arc anode. It is concluded that the dielectric recovery of vacuum gaps after diffuse arcs is mainly controlled by residual charge carriers

  13. Measurement of trimethylamine concentration and evaluation of pig meat natural quality by a spectrophotometric method

    Directory of Open Access Journals (Sweden)

    Mohammod Abdul HAMID,Xi WANG,Xiangdong DING,Chuduan WANG,Xingbo ZHAO

    2014-09-01

    Full Text Available Pig meat off-flavor is attributed to trimethylamine (TMA concentration, and it is considered as the precursor of the fishy off-flavor problems. In this study, TMA concentrations in pig meat were determined, and the interactions with breed and gender effects were discussed. In addition, the TMA threshold for meat off-flavor and pig meat natural quality was measured in relation to meat storage and movement, and the influential factors including the pig breed and storage time were discussed. The results indicated positive effects on the precursor of the fishy off-flavor and the TMA threshold. Native breeds were found to have lower TMA concentrations than European breeds (P<0.01, and females and castrated males had significantly lower TMA concentration than males (P<0.01, The threshold concentration of TMA when meat was classed as off-flavored was 25 μg·g-1, and this occurred after 35–38 h of storage. The natural qualities, such as appearance, flavor, color and overall acceptable scores declined significantly after 4 days in storage (P<0.01. It is concluded that pig meat off-flavor, breed and gender were essential factors affecting flavor for meat breeding programs, and storage time is important for pig meat natural quality.

  14. Estimation of heavy metal concentration in FBR reprocessing solvent streams by density measurement

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.L.; Savage, D.J.

    1986-04-15

    The application of density measurement to heavy metal monitoring in the solvent phase is described, including practical experience gained during three fast reactor fuel reprocessing campaigns. An experimental algorithm relating heavy metal concentration and sample density was generated from laboratory-measured density data, for uranyl nitrate dissolved in nitric acid loaded tri-butyl phosphate in odorless kerosene. Differences in odorless kerosene batch densities are mathematically interpolated, and the algorithm can be used to estimate heavy metal concentrations from the density to within +1.5 g/l. An Anton Paar calculating digital densimeter with remote cell operation was used for all density measurements, but the algorithm will give similar accuracy with any density measuring device capable of a precision of better than 0.0005 g/cm/sup 3/. For plant control purposes, the algorithm was simplified using a density referencing system, whereby the density of solvent not yet loaded with heavy metal is subtracted from the sample density. This simplified algorithm compares very favorably with empirical algorithms, derived from numerical analysis of density data and chemically measured uranium and plutonium data obtained during fuel reprocessing campaigns, particularly when differences in the acidity of the solvent are considered before and after loading with heavy metal. This simplified algorithm has been successfully used for plant control of heavy metal loaded solvent during four fast reactor fuel reprocessing campaigns.

  15. Toward new instruments for measurement of low concentration hydrogen sulfide in small-quantity aqueous solutions

    International Nuclear Information System (INIS)

    Endogenously generated hydrogen sulfide (H2S) has been found to play some important physiological roles in the nervous and cardiovascular systems, such as a neuromodulator and a vasorelaxant. These roles are in contrast to our common perception that H2S is toxic. However, whether H2S plays a positive or negative role is dependent on the H2S concentration levels in mammals. This further puts a high demand on the accurate measurement of H2S in mammals with a further desire to be real time, continuous and in vivo. Existing methods for H2S measurement require a large number of tissue samples with complex procedures, and these methods are extremely invasive. The development of new in vivo and real-time methods for measuring H2S is, however, a great challenge. In the present study, we proposed and examined five potential H2S measurement methods: (1) atomic force microscopy with coating materials, (2) Raman spectroscopy on the H2S solutions, (3) gas chromatography/mass spectroscopy (with the static headspace technique) on the H2S solutions, (4) mass spectroscopy on unfunctionalized carbon nanotubes treated with the H2S solutions and (5) Raman spectroscopy on unfunctionalized carbon nanotubes treated with the H2S solutions. Our study concluded that method (5) is the most promising one for detecting low concentration H2S in small-quantity aqueous solutions in terms of measurement resolution and non-invasiveness, but the method is not very robust

  16. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds.

    Science.gov (United States)

    Medrano, Jose A; de Nooijer, Niek C A; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO₂ as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  17. Estimation of natural potassium concentration in Romanian males by in vivo gamma-ray spectrometry measurements

    International Nuclear Information System (INIS)

    At the Whole Body Monitoring Laboratory, from IFIN-HH, Bucharest, Romania, there were performed in vivo gamma-ray spectrometry measurements on 108 Romanian males in order to evaluate the mineral natural potassium content in human body, as total value and concentration. The measurements were performed with a shadow shield whole body counter, tilted chair geometry, based on a shielded NaI(Tl) scintillation detector of 12.5 cm (diameter) x 10 cm (height) crystal size. The results revealed a calculated value of the mean total body potassium (TBK) of 135.03 ± 2.94 g and a value of 1.9 ± 0.022 g of potassium/kg of body weight for the mean body potassium concentration, for the measured males. These values are similar with the values declared for the Reference Man, in ICRP23. Correlations between total body potassium, potassium concentration and age, weight and Body Build Index were investigated and peculiar conclusions were resulted. (author)

  18. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements.

    Science.gov (United States)

    Brady, James M; Stokes, M Dale; Bonnardel, Jim; Bertram, Timothy H

    2016-02-01

    High-spatial-resolution, near-surface vertical profiling of atmospheric chemical composition is currently limited by the availability of experimental platforms that can sample in constrained environments. As a result, measurements of near-surface gradients in trace gas and aerosol particle concentrations have been limited to studies conducted from fixed location towers or tethered balloons. Here, we explore the utility of a quadrotor unmanned aircraft system (UAS) as a sampling platform to measure vertical and horizontal concentration gradients of trace gases and aerosol particles at high spatial resolution (1 m) within the mixed layer (0-100 m). A 3D Robotics Iris+ autonomous quadrotor UAS was outfitted with a sensor package consisting of a two-channel aerosol optical particle counter and a CO2 sensor. The UAS demonstrated high precision in both vertical (±0.5 m) and horizontal positions (±1 m), highlighting the potential utility of quadrotor UAS drones for aerosol- and trace-gas measurements within complex terrain, such as the urban environment, forest canopies, and above difficult-to-access areas such as breaking surf. Vertical profiles of aerosol particle number concentrations, acquired from flights conducted along the California coastline, were used to constrain sea-spray aerosol-emission rates from coastal wave breaking. PMID:26730457

  19. An inversion algorithm for determining area-source emissions from downwind concentration measurements.

    Science.gov (United States)

    Lehning, M; Shonnard, D R; Chang, D P; Bell, R L

    1994-10-01

    Measuring emissions from nonuniform area sources, such as waste repository sites, has been a difficult problem. A simple but reliable method is not available. An objective method of inverting downwind concentration measurements, utilizing an assumed form of atmospheric dispersion to reconstruct total emission rate and distribution, is described in this study. The Gaussian dispersion model is compared to a more realistic model based on K-theory and similarity expressions. A sensitivity analysis is presented indicating the atmospheric conditions under which a successful application of the method could be anticipated. Field releases of sulfur hexafluoride (SF6) from a simulated area source in flat terrain were conducted to check the method, ability to reconstruct source distribution, and total emission rate. The sensitivity analysis and the field study confirm that a few ground-level concentration measurements and a simple determination of the atmospheric dispersion characteristics are sufficient, under neutral to stable conditions, to obtain the total emission rate accurately. Reconstruction of the spatial pattern of the source is possible by utilizing concentration information from samplers located on two separate ground-level receptor lines, if a shift in the wind direction occurs and if it can be assumed that the total emission rate is time invariant. A method of cross-checking the accuracy of the reconstruction, using a simultaneous tracer release, is presented. PMID:7812684

  20. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy

    Science.gov (United States)

    Pan, R.; Jeffries, J. B.; Dreier, T.; Schulz, C.

    2016-01-01

    A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea-water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500-8000 cm-1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200-1500 µm), urea mass fraction (5-40 wt%) and temperature (298-318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.

  1. Neutral beam injector oxygen impurity measurements and concentration reduction via gettering processes. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.J.; Hsu, W.L.; Kerr, R.G.; Mills, B.E.; Poulsen, P.; Hibbs, S.

    1984-12-01

    We have measured the reduction of oxygen impurity levels by means of gettering within the arc chambers of the TMX-U neutral-beam injectors using the TMX-U neutral-beam test stand. Our analysis incorporated silicon surface-probe measurements and optical Doppler-shift measurements of the hydrogen alpha spectra of deuterium atoms with energies appropriate for D/sub 2/O parentage. Without gettering, the Auger electron spectroscopy analysis of an exposed silicon sample showed a large oxygen peak below the surface peak with a concentration equivalence of approximately 2% for an accelerated beam. After gettering, with either titanium or chromium getters, optical monochromator data indicated a reduction in the oxygen concentration of at least a factor of 10 whereas Auger spectroscopy data showed at least a factor-of-eight reduction. Other metallic impurities remained below the level of detection even after gettering. Additional effects observed during this study include a change in the accelerated deuterium species concentrations, loss of gettering activity, loss of arc operation, and a change in arc performance due to arc chamber gas absorption during operation.

  2. Detection limits for ferrimagnetic particle concentrations using magnetic resonance imaging based proton transverse relaxation rate measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pardoe, H [School of Physics, University of Western Australia, Crawley, Perth, WA 6009 (Australia); Chua-anusorn, W [School of Physics, University of Western Australia, Crawley, Perth, WA 6009 (Australia); Pierre, T G St [School of Physics, University of Western Australia, Crawley, Perth, WA 6009 (Australia); Dobson, J [Department of Biomedical Engineering and Medical Physics, Centre for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB (United Kingdom)

    2003-03-21

    A clinical magnetic resonance imaging (MRI) system was used to measure proton transverse relaxation rates (R{sub 2}) in agar gels with varying concentrations of ferrimagnetic iron oxide nanoparticles in a field strength of 1.5 T. The nanoparticles were prepared by coprecipitation of ferric and ferrous ions in the presence of either dextran or polyvinyl alcohol. The method of preparation resulted in loosely packed clusters (dextran) or branched chains (polyvinyl alcohol) of particles containing of the order of 600 and 400 particles, respectively. For both methods of particle preparation, concentrations of ferrimagnetic iron in agar gel less than 0.01 mg ml{sup -1} had no measurable effect on the value of R{sub 2} for the gel. The results indicate that MRI-based R{sub 2} measurements using 1.5 T clinical scanners are not quite sensitive enough to detect the very low concentrations of nanoparticulate biogenic magnetite reported in human brain tissue. (note)

  3. A campaign of discrete radon concentration measurements in soil of Niska Banja town, Serbia

    Energy Technology Data Exchange (ETDEWEB)

    Zunic, Z.S. [Institute of Nuclear Sciences ' Vinca' , ECE LAB, P.O. Box 522, 11001 Belgrade, Serbia (Serbia); Kozak, K. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland)], E-mail: Krzysztof.Kozak@ifj.edu.pl; Ciotoli, G. [Department of Earth Sciences, University of Rome ' La Sapienza' , Piazzale A. Moro, 5-00185 Rome (Italy); Ramola, R.C. [Department of Physics, H.N.B. Garhwal University, Badshahi Thaul Campus, Tehri Garhwal 249 199 (India); Kochowska, E. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Ujic, P.; Celikovic, I. [Institute of Nuclear Sciences ' Vinca' , ECE LAB, P.O. Box 522, 11001 Belgrade (Serbia); Mazur, J.; Janik, M. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland); Demajo, A. [Institute of Nuclear Sciences ' Vinca' , ECE LAB, P.O. Box 522, 11001 Belgrade (Serbia); Birovljev, A. [RADONLAB, Forskningsveien 3 B, 0373 Oslo (Norway); Bochicchio, F. [Italian National Institute of Health, Department of Technology and Health, Unit of Radioactivity and Related Health Effects, Viale Regina Elena 299, 00161 Rome (Italy); Yarmoshenko, I.V. [Radiation Laboratory Institute of Industrial Ecology, Ural Branch of Russian Academy of Sciences, 20A S. Kovalevskoy Street, Ekaterinburg 620219 (Russian Federation); Kryeziu, D. [Low-level Counting Laboratory, Faradaygasse 3, Arsenal Objekt 214, A-1030 Vienna (Austria); Olko, P. [Henryk Niewodniczanski Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, PL-31-342 Cracow (Poland)

    2007-11-15

    The first radon soil gas survey in Serbia, using passive detectors (SSNTD, CR-39), was carried out in June 2005 at field sites in Niska Banja town. The aim of the survey was to identify risk zones characterised by high levels of this radioactive gas. Radon measurements were made at the depth of 50 cm, in the ground according to a systematic grid pattern. Furthermore, at all 48 measurement points, the surface gamma dose rates in the air was also measured at the same locations and soil samples were collected for gamma spectrometric analysis for the radionuclides {sup 226}Ra, {sup 228}Th and {sup 40}K. Radon concentrations were found to range from 1270 to 155000Bqm{sup -3} with an average of 33765Bqm{sup -3} and a median value of 12626Bqm{sup -3}. The geometrical mean value and geometrical standard deviation were calculated as 16160Bqm{sup -3} and 3.5Bqm{sup -3}, respectively. Gamma dose rate varies from 92 to 316nGyh{sup -1}, with an average of 132nGyh{sup -1}. The radium content in collected soil samples ranges from 24 to 1810Bqkg{sup -1} with an average of 187Bqkg{sup -1}. High correlations (r{sup 2}>0.8) between soil gas radon concentration, gamma dose rate and {sup 226}Ra content in soil were found for each pair. The distribution of radon concentrations in soil gas shows bimodal shape.

  4. Comparing modelled and measured ice crystal concentrations in orographic clouds during the INUPIAQ campaign

    Science.gov (United States)

    Farrington, Robert; Connolly, Paul J.; Lloyd, Gary; Bower, Keith N.; Flynn, Michael J.; Gallagher, Martin W.; Field, Paul R.; Dearden, Chris; Choularton, Thomas W.; Hoyle, Chris

    2016-04-01

    At temperatures between -35°C and 0°C, the presence of insoluble aerosols acting as ice nuclei (IN) is the only way in which ice can nucleate under atmospheric conditions. Previous field and laboratory campaigns have suggested that mineral dust present in the atmosphere act as IN at temperatures warmer than -35°C (e.g. Sassen et al. 2003); however, the cause of ice nucleation at temperatures greater than -10°C is less certain. In-situ measurements of aerosol properties and cloud micro-physical processes are required to drive the improvement of aerosol-cloud processes in numerical models. As part of the Ice NUcleation Process Investigation and Quantification (INUPIAQ) project, two field campaigns were conducted in the winters of 2013 and 2014 (Lloyd et al. 2014). Both campaigns included measurements of cloud micro-physical properties at the summit of Jungfraujoch in Switzerland (3580m asl), using cloud probes, including the Two-Dimensional Stereo Hydrometeor Spectrometer (2D-S), the Cloud Particle Imager 3V (CPI-3V) and the Cloud Aerosol Spectrometer with Depolarization (CAS-DPOL). The first two of these probes measured significantly higher ice number concentrations than those observed in clouds at similar altitudes from aircraft. In this contribution, we assess the source of the high ice number concentrations observed by comparing in-situ measurements at Jungfraujoch with WRF simulations applied to the region around Jungfraujoch. During the 2014 field campaign the model simulations regularly simulated ice particle concentrations that were 3 orders of magnitude per litre less than the observed ice number concentration, even taking into account the aerosol properties measured upwind. WRF was used to investigate a number of potential sources of the high ice crystal concentrations, including: an increased ice nucleating particle (INP) concentration, secondary ice multiplication and the advection of surface ice or snow crystals into the clouds. It was found that the

  5. Measured and modelled cloud condensation nuclei concentration at the high alpine site Jungfraujoch

    Science.gov (United States)

    Jurányi, Z.; Gysel, M.; Weingartner, E.; Decarlo, P. F.; Kammermann, L.; Baltensperger, U.

    2010-04-01

    Atmospheric aerosol particles are able to act as cloud condensation nuclei (CCN) and are therefore important for the climate and the hydrological cycle, but their properties are not fully understood. Total CCN number concentrations at 10 different supersaturations in the range of SS = 0.12-1.18% were measured in May 2008 at the remote high alpine research station, Jungfraujoch, Switzerland (3580 m asl.). In this paper, we present a closure study between measured and predicted CCN number concentrations. CCN predictions were done using number size distribution (scanning particle mobility sizer, SMPS) and bulk chemical composition data (aerosol mass spectrometer, AMS, and multi-angle absorption photometer, MAAP) in a simplified Köhler theory. The predicted and the measured CCN concentrations agree very well and are highly correlated. A sensitivity study showed that the temporal variability of the chemical composition at the Jungfraujoch can be neglected for a reliable CCN prediction, whereas it is important to know the mean chemical composition. The exact bias introduced by using a too low or too high hygroscopicity parameter for CCN prediction was further quantified and shown to be substantial for the lowest supersaturation. Despite the high average organic mass fraction (45%) during the measurement campaign, there was no indication that the surface tension was substantially reduced at the point of CCN activation. A comparison between hygroscopicity tandem differential mobility analyzer (HTDMA), AMS/MAAP, and CCN derived κ values showed that HTDMA measurements can be used as a chemical composition proxy for CCN predictions if no suitable chemical composition data are available.

  6. Measured and modelled cloud condensation nuclei concentration at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    Z. Jurányi

    2010-04-01

    Full Text Available Atmospheric aerosol particles are able to act as cloud condensation nuclei (CCN and are therefore important for the climate and the hydrological cycle, but their properties are not fully understood. Total CCN number concentrations at 10 different supersaturations in the range of SS = 0.12–1.18% were measured in May 2008 at the remote high alpine research station, Jungfraujoch, Switzerland (3580 m asl.. In this paper, we present a closure study between measured and predicted CCN number concentrations. CCN predictions were done using number size distribution (scanning particle mobility sizer, SMPS and bulk chemical composition data (aerosol mass spectrometer, AMS, and multi-angle absorption photometer, MAAP in a simplified Köhler theory. The predicted and the measured CCN concentrations agree very well and are highly correlated. A sensitivity study showed that the temporal variability of the chemical composition at the Jungfraujoch can be neglected for a reliable CCN prediction, whereas it is important to know the mean chemical composition. The exact bias introduced by using a too low or too high hygroscopicity parameter for CCN prediction was further quantified and shown to be substantial for the lowest supersaturation.

    Despite the high average organic mass fraction (45% during the measurement campaign, there was no indication that the surface tension was substantially reduced at the point of CCN activation. A comparison between hygroscopicity tandem differential mobility analyzer (HTDMA, AMS/MAAP, and CCN derived κ values showed that HTDMA measurements can be used as a chemical composition proxy for CCN predictions if no suitable chemical composition data are available.

  7. Instruments to measure radon-222 activity concentration or exposure to radon-222. Intercomparison 2014

    International Nuclear Information System (INIS)

    According to the Directive 96/29/EURATOM the monitoring of occupational radiation exposures shall base on individual measurements carried out by an approved dosimetric service. Pursuant to the European Directive an approved dosimetric service is a body responsible for the calibration, reading or interpretation of individual monitoring devices.., whose capacity to act in this respect is recognized by the competent authorities. This concept will also be applied to radon services issuing passive radon measurement devices. Passive radon measurement devices1 using solid state nuclear track detectors or electrets are recommended for individual monitoring of exposures to radon. German regulations lay down that radon measuring devices are appropriate for purposes of occupational radiation monitoring if the devices are issued by recognized radon measurement services, and the measurement service submits devices of the same type issued for radon monitoring to regular intercomparisons conducted by the Bundesamt fuer Strahlenschutz (BfS). A radon measuring service is recognized by the competent authority if it proves its organisational and technical competence, e. g. by accreditation. These regulations have been introduced in the area of occupational radiation exposures. Nevertheless, it is recommended that radon measuring services which carry out radon measurements in other areas (e.g. dwellings) should subject themselves to these measures voluntarily. The interlaboratory comparisons comprise the organization, exposure, and evaluation of measurements of radon activity concentration or exposure to radon. The comparisons only concern radon-222; radon-220 is not in the scope. Radon services being interested can get further information from the European Information System on Proficiency Testing Schemes (EPTIS) and from the BfS websites.

  8. Measured soil water concentrations of cadmium and zinc in plant pots and estimated leaching outflows from contaminated soils

    DEFF Research Database (Denmark)

    Holm, P.E.; Christensen, T.H.

    1998-01-01

    Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1-7.8) and concentrations of cadmium (0.2-17 mg Cd kg(-1)) and zinc (36-1300 mg Zn kg(-1)). The soil waters contained total concentrations of 0.5 to 17 mu g...... to 0.1% per year of the total soil content of cadmium and zinc. The measured soil water concentrations of cadmium and zinc did not correlate linearly with the corresponding soil concentrations but correlated fairly well with concentrations measured in Ca(NO(3))(2) extracts of the soils and with soil...... water concentrations estimated from soil concentrations and pH. Such concentration estimates may be useful for estimating amounts of cadmium and zinc being leached from soils....

  9. Development of an equipment for atmospheric krypton sampling, purification, concentration and 85Kr measurement

    International Nuclear Information System (INIS)

    Full text: The aim of this work is to develop an automated equipment for krypton sampling, concentration, and purification, and for 85Kr measurement. A potential interest of such an equipment is the detection of undeclared reprocessing activities as 10-35 TBq of 85Kr are emitted per kg of reprocessed Pu. Based on experience acquired during development of the 'Spalax' Noble Gas Equipment for CTBT implementation, we realize a laboratory prototype. This equipment was conceived according to the following technical specifications: i) fully automated sampling, treatment (concentration and purification), and measurement; ii) trapping at ambient temperature (no cryogenic cooling); iii) a 6-hour duty cycle; iv) 85Kr measurement thanks to a proportional counter; v) obtention of about 0.5 cm3 of krypton. This krypton volume provides a detection capability of about 100 mBq.m-3 of 85Kr over background, assuming given performance of the proportional counter (efficiency, background) and given precision over stable krypton volume determination. The prototype is composed of four distinct stages which perform successively the following steps: i) a first purification and pre-concentration; ii) purification; iii) further concentration; iv) detection of 85Kr. As a first-step krypton purification and pre-concentration, we use a semi-permeative membrane, as for the 'Spalax' equipment. Nevertheless, membranes are less 'efficient' for krypton than for xenon. Therefore, we conducted a specific optimization of the operating conditions for krypton. Finally, this membrane provides an efficient purification (O2, H2O, CO2 are eliminated) and krypton pre-concentration in nitrogen by about a factor of three. A strong pressure of about 7 bars in entrance is necessary. Air equivalent processed volume in 6 hours is about 1 m3. The purification stage provides an ambient temperature adsorption of noble gases on high specific area active charcoal bed thanks to two columns inserted in two tubular ovens

  10. Real-time measurement of aerosol particle concentration at high temperatures; Hiukkaspitoisuuden reaaliaikainen mittaaminen korkeassa laempoetilassa

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, J.; Hautanen, J.; Laitinen, A. [Tampere Univ. of Technology (Finland). Physics

    1997-10-01

    The aim of this project is to develop a new method for continuous aerosol particle concentration measurement at elevated temperatures (up to 800-1000 deg C). The measured property of the aerosol particles is the so called Fuchs surface area. This quantity is relevant for diffusion limited mass transfer to particles. The principle of the method is as follows. First, aerosol particles are charged electrically by diffusion charging process. The charging takes place at high temperature. After the charging, aerosol is diluted and cooled. Finally, aerosol particles are collected and the total charge carried by the aerosol particles is measured. Particle collection and charge measurement take place at low temperature. Benefits of this measurement method are: particles are charged in-situ, charge of the particles is not affected by the temperature and pressure changes after sampling, particle collection and charge measurement are carried out outside the process conditions, and the measured quantity is well defined. The results of this study can be used when the formation of the fly ash particles is studied. Another field of applications is the study and the development of gasification processes. Possibly, the method can also be used for the monitoring the operation of the high temperature particle collection devices. (orig.)

  11. DTAF dye concentrations commonly used to measure microscale deformations in biological tissues alter tissue mechanics.

    Directory of Open Access Journals (Sweden)

    Spencer E Szczesny

    Full Text Available Identification of the deformation mechanisms and specific components underlying the mechanical function of biological tissues requires mechanical testing at multiple levels within the tissue hierarchical structure. Dichlorotriazinylaminofluorescein (DTAF is a fluorescent dye that is used to visualize microscale deformations of the extracellular matrix in soft collagenous tissues. However, the DTAF concentrations commonly employed in previous multiscale experiments (≥2000 µg/ml may alter tissue mechanics. The objective of this study was to determine whether DTAF affects tendon fascicle mechanics and if a concentration threshold exists below which any observed effects are negligible. This information is valuable for guiding the continued use of this fluorescent dye in future experiments and for interpreting the results of previous work. Incremental strain testing demonstrated that high DTAF concentrations (≥100 µg/ml increase the quasi-static modulus and yield strength of rat tail tendon fascicles while reducing their viscoelastic behavior. Subsequent multiscale testing and modeling suggests that these effects are due to a stiffening of the collagen fibrils and strengthening of the interfibrillar matrix. Despite these changes in tissue behavior, the fundamental deformation mechanisms underlying fascicle mechanics appear to remain intact, which suggests that conclusions from previous multiscale investigations of strain transfer are still valid. The effects of lower DTAF concentrations (≤10 µg/ml on tendon mechanics were substantially smaller and potentially negligible; nevertheless, no concentration was found that did not at least slightly alter the tissue behavior. Therefore, future studies should either reduce DTAF concentrations as much as possible or use other dyes/techniques for measuring microscale deformations.

  12. Multiple 10Be records revealing the history of cosmic-ray variations across the Iceland Basin excursion

    Science.gov (United States)

    Horiuchi, Kazuho; Kamata, Kanae; Maejima, Shun; Sasaki, Sho; Sasaki, Nobuyoshi; Yamazaki, Toshitsugu; Fujita, Shuji; Motoyama, Hideaki; Matsuzaki, Hiroyuki

    2016-04-01

    Cosmogenic 10Be is a proxy of cosmic-ray flux, and its natural records provide vital information about the past intensity variability of the geomagnetic field and solar activity. 10Be records also serve as powerful tools for global synchronization among a variety of paleoarchives and for elucidating sedimentary processes on natural remanent magnetization acquisition. However, high-resolution (multi-decadal to multi-centennial) records of 10Be are scarce, especially those older than several tens of thousands of years. Here we present multiple high-resolution 10Be records of the Iceland Basin geomagnetic excursion interval (ca. 170-200 kyr ago) obtained from sediment cores (authigenic 10Be/9Be ratio) and an ice core (atmospheric 10Be flux). Comparing sedimentary 10Be records with relative paleointensity from the same cores, we found differences in the magnetic lock-in depth, even between adjacent cores. The 10Be-proxy records from the sediment and ice cores exhibit common characteristics: an asymmetric large-scale variation, a ∼7-kyr quasi-plateau around the maximum with a characteristic mid-term depression, and multi-millennial fluctuations in cosmic-ray flux during this interval. Minimal-synchronized and stacked 10Be records show that maximum cosmic-ray flux occurred 188.5-190.0 kyr ago and was double the present flux. A wavelet analysis of the stacked curve reveals dominant 4-kyr and secondary 8-kyr periodicities, both of which can be interpreted as intrinsic geomagnetic cycles. The wavelet spectrum of the high-resolution ice-core record shows a periodicity of 1.7 kyr and somewhat intermingled multi-centennial cycles around the maxima of 10Be, which likely represent solar cycles in this period. High-resolution 10Be records from multiple paleoarchives provide both a robust proxy record of cosmic-ray flux and a valuable tool for detailed global synchronization based on cosmic-ray variations.

  13. Correspondence between hair cortisol concentrations and 30-day integrated daily salivary and weekly urinary cortisol measures.

    Science.gov (United States)

    Short, Sarah J; Stalder, Tobias; Marceau, Kristine; Entringer, Sonja; Moog, Nora K; Shirtcliff, Elizabeth A; Wadhwa, Pathik D; Buss, Claudia

    2016-09-01

    Characterization of cortisol production, regulation and function is of considerable interest and relevance given its ubiquitous role in virtually all aspects of physiology, health and disease risk. The quantification of cortisol concentration in hair has been proposed as a promising approach for the retrospective assessment of integrated, long-term cortisol production. However, human research is still needed to directly test and validate current assumptions about which aspects of cortisol production and regulation are reflected in hair cortisol concentrations (HCC). Here, we report findings from a validation study in a sample of 17 healthy adults (mean±SD age: 34±8.6 yrs). To determine the extent to which HCC captures cumulative cortisol production, we examined the correspondence of HCC, obtained from the first 1cm scalp-near hair segment, assumed to retrospectively reflect 1-month integrated cortisol secretion, with 30-day average salivary cortisol area-under-the curve (AUC) based on 3 samples collected per day (on awakening, +30min, at bedtime) and the average of 4 weekly 24-h urinary free cortisol (UFC) assessments. To further address which aspects of cortisol production and regulation are best reflected in the HCC measure, we also examined components of the salivary measures that represent: (1) production in response to the challenge of awakening (using the cortisol awakening response [CAR]), and (2) chronobiological regulation of cortisol production (using diurnal slope). Finally, we evaluated the test-retest stability of each cortisol measure. Results indicate that HCC was most strongly associated with the prior 30-day integrated cortisol production measure (average salivary cortisol AUC) (r=0.61, p=0.01). There were no significant associations between HCC and the 30-day summary measures using CAR or diurnal slope. The relationship between 1-month integrated 24-h UFC and HCC did not reach statistical significance (r=0.30, p=0.28). Lastly, of all cortisol

  14. Measuring the concentration of carboxylic acid groups in torrefied spruce wood.

    Science.gov (United States)

    Khazraie Shoulaifar, Tooran; Demartini, Nikolai; Ivaska, Ari; Fardim, Pedro; Hupa, Mikko

    2012-11-01

    Torrefaction is moderate thermal treatment (∼200-300°C) to improve the energy density, handling and storage properties of biomass fuels. In biomass, carboxylic sites are partially responsible for its hygroscopic. These sites are degraded to varying extents during torrefaction. In this paper, we apply methylene blue sorption and potentiometric titration to measure the concentration of carboxylic acid groups in spruce wood torrefied for 30min at temperatures between 180 and 300°C. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic acid sites. Thus both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction which provides new information to the chemical changes occurring during torrefaction.

  15. Measured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    Z. Jurányi

    2010-08-01

    Full Text Available Atmospheric aerosol particles are able to act as cloud condensation nuclei (CCN and are therefore important for the climate and the hydrological cycle, but their properties are not fully understood. Total CCN number concentrations at 10 different supersaturations in the range of SS=0.12–1.18% were measured in May 2008 at the remote high alpine research station, Jungfraujoch, Switzerland (3580 m a.s.l.. In this paper, we present a closure study between measured and predicted CCN number concentrations. CCN predictions were done using dry number size distribution (scanning particle mobility sizer, SMPS and bulk chemical composition data (aerosol mass spectrometer, AMS, and multi-angle absorption photometer, MAAP in a simplified Köhler theory. The predicted and the measured CCN number concentrations agree very well and are highly correlated. A sensitivity study showed that the temporal variability of the chemical composition at the Jungfraujoch can be neglected for a reliable CCN prediction, whereas it is important to know the mean chemical composition. The exact bias introduced by using a too low or too high hygroscopicity parameter for CCN prediction was further quantified and shown to be substantial for the lowest supersaturation.

    Despite the high average organic mass fraction (~45% in the fine mode, there was no indication that the surface tension was substantially reduced at the point of CCN activation. A comparison between hygroscopicity tandem differential mobility analyzer (HTDMA, AMS/MAAP, and CCN derived κ values showed that HTDMA measurements can be used to determine particle hygroscopicity required for CCN predictions if no suitable chemical composition data are available.

  16. Measured and modelled cloud condensation nuclei number concentration at the high alpine site Jungfraujoch

    Science.gov (United States)

    Jurányi, Z.; Gysel, M.; Weingartner, E.; Decarlo, P. F.; Kammermann, L.; Baltensperger, U.

    2010-08-01

    Atmospheric aerosol particles are able to act as cloud condensation nuclei (CCN) and are therefore important for the climate and the hydrological cycle, but their properties are not fully understood. Total CCN number concentrations at 10 different supersaturations in the range of SS=0.12-1.18% were measured in May 2008 at the remote high alpine research station, Jungfraujoch, Switzerland (3580 m a.s.l.). In this paper, we present a closure study between measured and predicted CCN number concentrations. CCN predictions were done using dry number size distribution (scanning particle mobility sizer, SMPS) and bulk chemical composition data (aerosol mass spectrometer, AMS, and multi-angle absorption photometer, MAAP) in a simplified Köhler theory. The predicted and the measured CCN number concentrations agree very well and are highly correlated. A sensitivity study showed that the temporal variability of the chemical composition at the Jungfraujoch can be neglected for a reliable CCN prediction, whereas it is important to know the mean chemical composition. The exact bias introduced by using a too low or too high hygroscopicity parameter for CCN prediction was further quantified and shown to be substantial for the lowest supersaturation. Despite the high average organic mass fraction (~45%) in the fine mode, there was no indication that the surface tension was substantially reduced at the point of CCN activation. A comparison between hygroscopicity tandem differential mobility analyzer (HTDMA), AMS/MAAP, and CCN derived κ values showed that HTDMA measurements can be used to determine particle hygroscopicity required for CCN predictions if no suitable chemical composition data are available.

  17. 大气生成宇宙成因核素10Be在中国黄土中的应用研究进展%Review on the application of the atmospheric produced10Be in Chinese loess

    Institute of Scientific and Technical Information of China (English)

    孔祥辉; 周卫健; 武振坤; 杜雅娟; 赵国庆; 谢兴俊

    2016-01-01

    .Materials and Methods The publications of loess10Be studies are reviewed here. Among them, the papers published between 1980’s and 2006 are used to discuss the sources, formation, chemical behavior and its climatic implications in Chinese loess, the others published after 2006 are used to show that the loess10Be are good proxy for paleogeomagnetic variations tracing and paleorainfall reconstruction.Results The10Be in Chinese loess is mainly from atmosphere where it is produced via cosmic-ray spallation. The chemical leaching experiments with acid solutions showed that the10Be in loess and paleosols is strongly bound to soil particles and the mobility due to dissolution is very little. The measurements of10Be concentrations in loess as a function of grain size indicated that the10Be is preferred to be adsorbed on small size mineral grains due to larger surface areas. The variation of loess10Be record is similar to the magnetic susceptibility which is well correlated with marineδ18O, so it can be used to reconstruct the climatic variations. In addition, the10Be was also exploited to establish the chronology of loess-paleosol sequences based on the correlation between10Be andδ18O. Because the production rate of10Be in atmosphere is regulated by the Earth’s magnetic ifeld intensity, i.e., when the geomagnetic ifeld intensity is strong, the lfux of galactic cosmic rays penetrating into the Earth’s atmosphere is signiifcantly attenuated by scattering off the magnetic ifeld, resulting in decreased10Be production rate, and vice versa,10Be is a useful tool for the geomagnetic variations tracing studies. However, the efforts of using10Be to extract the geomagnetic ifeld signal from Chinese loess was much more dififcult than that in marine sediments. In Chinese loess, there are two sources of loess10Be: some10Be comes from remobilized dust that fell to Earth at some time in the past, whereas a second component derives from atmospheric fallout of new10Be recently generated by

  18. Measurements of 222Rn activity concentration in domestic water sources in Penang, northern peninsular Malaysia.

    Science.gov (United States)

    Muhammad, B G; Jaafar, M S; Azhar, A R; Akpa, T C

    2012-04-01

    Measurements of (222)Rn activity concentration were carried out in 39 samples collected from the domestic and drinking water sources used in the island and mainland of Penang, northern peninsular, Malaysia. The measured activity concentrations ranged from 7.49 to 26.25 Bq l(-1), 0.49 to 9.72 Bq l(-1) and 0.58 to 2.54 Bq l(-1) in the raw, treated and bottled water samples collected, respectively. This indicated relatively high radon concentrations compared with that from other parts of the world, which still falls below the WHO recommended treatment level of 100 Bq l(-1). From this data, the age-dependent associated committed effective doses due to the ingestion of (222)Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from (222)Rn resulting from 1 y's consumption of these water were estimated to range from 0.003 to 0.048, 0.001 to 0.018 and 0.002 to 0.023 mSv y(-1), for age groups 0-1, 2-16 and >16 y, respectively.

  19. Concentration and excretion of contrast agents during oral cholecystography as measured by computed tomography in dogs

    International Nuclear Information System (INIS)

    Nine healthy mongrel dogs were given 2 consecutive doses of 1 of 3 cholecystographic contrast agents (iopanoic acid, sodium ipodate, and sodium tyropanoate), followed by daily computed tomograms (CT) and abdominal radiographs in a randomized crossover study in order to determine: (a) the maximum time for excretion of the contrast material from the gallbladder, (b) the maximum time for elimination of contrast material from the blood, and (c) the correlation between the density of the gallbladder on CT and the actual concentration of iodine in the gallbladder bile. In all 9 animals gallbladder opacification disappeared on CT within 4 days after administration of the contrast material. Plain abdominal radiographs did not show gallbladder opacification after 2 1/2 days. Daily blood iodine measurements showed that all of the contrast material was cleared from the blood within 7 days after administration. In 7 dogs CT imaging of the gallbladder was followed by percutaneous aspiration of bile from the gallbladder using CT guidance. There was a direct linear correlation between the actual concentration of iodine in the bile and the density of the gallbladder on CT (r = 0.925). This suggests that CT measurements can be used to determine the concentration of contrast agents in the gallbladder during oral cholecystography. (orig.)

  20. Concentration and excretion of contrast agents during oral cholecystography as measured by computed tomography in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, T.B.; Fon, G.T.; Capp, M.P.; Berk, R.N.

    1981-10-15

    Nine healthy mongrel dogs were given 2 consecutive doses of 1 of 3 cholecystographic contrast agents (iopanoic acid, sodium ipodate, and sodium tyropanoate), followed by daily computed tomograms (CT) and abdominal radiographs in a randomized crossover study in order to determine: (a) the maximum time for excretion of the contrast material from the gallbladder, (b) the maximum time for elimination of contrast material from the blood, and (c) the correlation between the density of the gallbladder on CT and the actual concentration of iodine in the gallbladder bile. In all 9 animals gallbladder opacification disappeared on CT within 4 days after administration of the contrast material. Plain abdominal radiographs did not show gallbladder opacification after 2 1/2 days. Daily blood iodine measurements showed that all of the contrast material was cleared from the blood within 7 days after administration. In 7 dogs CT imaging of the gallbladder was followed by percutaneous aspiration of bile from the gallbladder using CT guidance. There was a direct linear correlation between the actual concentration of iodine in the bile and the density of the gallbladder on CT (r = 0.925). This suggests that CT measurements can be used to determine the concentration of contrast agents in the gallbladder during oral cholecystography.

  1. Measured physicochemical characteristics and biosolids-borne concentrations of the antimicrobial Triclocarban (TCC).

    Science.gov (United States)

    Snyder, Elizabeth Hodges; O'Connor, George A; McAvoy, Drew C

    2010-06-01

    Triclocarban (TCC) is an active ingredient in antibacterial bar soaps, a common constituent of domestic wastewater, and the subject of recent criticism by consumer advocate groups and academic researchers alike. Activated sludge treatment readily removes TCC from the liquid waste stream and concentrates the antimicrobial in the solid fraction, which is often processed to produce biosolids intended for land application. Greater than half of the biosolids generated in the US are land-applied, resulting in a systematic release of biosolids-borne TCC into the terrestrial and, potentially, the aquatic environment. Multiple data gaps in the TCC literature (including basic physicochemical properties and biosolids concentrations) prevent an accurate, quantitative risk assessment of biosolids-borne TCC. We utilized the USEPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) harmonized test guidelines to measure TCC solubility and log K(ow) values as 0.045 mg L(-1) and 3.5, respectively. The measured physicochemical 2 properties differed from computer model predictions. The mean concentration of TCC in 23 biosolids representative of multiple sludge processing methods was 19+/-11 mg kg(-1). PMID:20385403

  2. Measured physicochemical characteristics and biosolids-borne concentrations of the antimicrobial Triclocarban (TCC).

    Science.gov (United States)

    Snyder, Elizabeth Hodges; O'Connor, George A; McAvoy, Drew C

    2010-06-01

    Triclocarban (TCC) is an active ingredient in antibacterial bar soaps, a common constituent of domestic wastewater, and the subject of recent criticism by consumer advocate groups and academic researchers alike. Activated sludge treatment readily removes TCC from the liquid waste stream and concentrates the antimicrobial in the solid fraction, which is often processed to produce biosolids intended for land application. Greater than half of the biosolids generated in the US are land-applied, resulting in a systematic release of biosolids-borne TCC into the terrestrial and, potentially, the aquatic environment. Multiple data gaps in the TCC literature (including basic physicochemical properties and biosolids concentrations) prevent an accurate, quantitative risk assessment of biosolids-borne TCC. We utilized the USEPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) harmonized test guidelines to measure TCC solubility and log K(ow) values as 0.045 mg L(-1) and 3.5, respectively. The measured physicochemical 2 properties differed from computer model predictions. The mean concentration of TCC in 23 biosolids representative of multiple sludge processing methods was 19+/-11 mg kg(-1).

  3. Performance of a low-cost methane sensor for ambient concentration measurements in preliminary studies

    Science.gov (United States)

    Eugster, W.; Kling, G. W.

    2012-08-01

    Methane is the second most important greenhouse gas after CO2 and contributes to global warming. Its sources are not uniformly distributed across terrestrial and aquatic ecosystems, and most of the methane flux is expected to stem from hotspots which often occupy a very small fraction of the total landscape area. Continuous time-series measurements of CH4 concentrations can help identify and locate these methane hotspots. Newer, low-cost trace gas sensors such as the Figaro TGS 2600 can detect CH4 even at ambient concentrations. Hence, in this paper we tested this sensor under real-world conditions over Toolik Lake, Alaska, to determine its suitability for preliminary studies before placing more expensive and service-intensive equipment at a given locality. A reasonably good agreement with parallel measurements made using a Los Gatos Research FMA 100 methane analyzer was found after removal of the strong sensitivities for temperature and relative humidity. Correcting for this sensitivity increased the absolute accuracy required for in-depth studies, and the reproducibility between two TGS 2600 sensors run in parallel is very good. We conclude that the relative CH4 concentrations derived from such sensors are sufficient for preliminary investigations in the search of potential methane hotspots.

  4. Measurements of 222Rn activity concentration in domestic water sources in Penang, northern peninsular Malaysia.

    Science.gov (United States)

    Muhammad, B G; Jaafar, M S; Azhar, A R; Akpa, T C

    2012-04-01

    Measurements of (222)Rn activity concentration were carried out in 39 samples collected from the domestic and drinking water sources used in the island and mainland of Penang, northern peninsular, Malaysia. The measured activity concentrations ranged from 7.49 to 26.25 Bq l(-1), 0.49 to 9.72 Bq l(-1) and 0.58 to 2.54 Bq l(-1) in the raw, treated and bottled water samples collected, respectively. This indicated relatively high radon concentrations compared with that from other parts of the world, which still falls below the WHO recommended treatment level of 100 Bq l(-1). From this data, the age-dependent associated committed effective doses due to the ingestion of (222)Rn as a consequence of direct consumption of drinking water were calculated. The committed effective doses from (222)Rn resulting from 1 y's consumption of these water were estimated to range from 0.003 to 0.048, 0.001 to 0.018 and 0.002 to 0.023 mSv y(-1), for age groups 0-1, 2-16 and >16 y, respectively. PMID:21642647

  5. Outdoor measurements of a photovoltaic system using diffractive spectrum-splitting and concentration

    Science.gov (United States)

    Mohammad, N.; Schulz, M.; Wang, P.; Menon, R.

    2016-09-01

    In a single-bandgap absorber, photons having energy less than the bandgap are not absorbed, while those having energy larger than the bandgap lose the excess energy via thermalization. We present outdoor measurements of a photovoltaic system that overcomes these losses via spectrum splitting and concentration using a planar diffractive optic. The system was comprised of the diffractive optic coupled with GaInP and CIGS solar cells. The optic provides a geometric concentration of 3X for each solar cell. It is easily fabricated by single-step grayscale lithography and it is ultra-thin with a maximum thickness of only 2.5 μ m. Electrical measurements under direct sunlight demonstrated an increase of ˜25 % in total output power compared to the reference case without spectrum splitting and concentration. Since different bandgaps are in the same plane, the proposed photovoltaic system successfully circumvents the lattice-matching and current-matching issues in conventional tandem multi-junction solar cells. This system is also tolerant to solar spectrum variation and fill-factor degradation of constitutive solar cells.

  6. Neutral beam injector oxygen impurity measurements and concentration reduction via gettering processes

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.J.; Hsu, W.L.; Kerr, R.G.; Mills, B.E.; Poulsen, P.; Hibbs, S.

    1984-10-01

    The reduction of oxygen impurity levels by means of gettering within the arc chambers of the TMX-U neutral beam injectors has been measured. The TMX-U Neutral Beam Test Stand was used for this experiment. Analysis incorporated silicon surface probes and optical Doppler-shift measurements of the Lyman alpha spectra of deuterium atoms with energies appropriate for D/sub 2/O parentage. Without gettering, the Auger electron spectroscopy analysis of an exposed silicon sample showed a large oxygen peak below the surface peak with a concentration equivalent of approximately 2% for an accelerated beam. After gettering, with either titanium or chromium getters, the oxygen concentration was reduced by at least a factor of 10 according to optical monochromator data, and at least a factor of 8 from Auger spectroscopy data. Simultaneously, other metallic impurities were not increased substantially as a result of gettering. Additional effects observed during this study include a change in the accelerated deuterium species concentrations, loss of gettering activity and arc operation, and a change in arc performance from arc chamber gas absorption during operation.

  7. Evaluation of correlating factors between {sup 238}U concentration measured in fine and course atmospheric particles

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Claudia Marques; Jacomino, Vanusa Maria Feliciano; Barreto, Alberto Avelar; Dias, Vagner Silva, E-mail: cmp@cdtn.b, E-mail: vmfj@cdtn.b, E-mail: aab@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Dias, Fabiana Ferrari, E-mail: fdias@cnen.gov.b [Brazilian Nuclear Energy Commission (CNEN-/MG), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas (LAPOC)

    2009-07-01

    Air quality is ever more important in function of the enormous proportion of human actions that have affected the environment over the last two centuries. Particulate material is one among many pollutants that can cause great risk to human health and the environment. It can be classified as: Total Suspended Particles (TSP), defined simply as particles with less than 50 mum aerodynamic diameter (one group of these particles can be inhaled and may cause health problems, while others may unfavorably affect the population's quality of life, interfering in environmental conditions and impairing normal community activities); and Inhalable Particles (PM{sub 10}), defined as those particles with less than 10 mum aerodynamic diameter. These particles penetrate the respiratory system and can reach pulmonary alveoli due to their small size, causing serious health damage. The Nuclear Technology Development Center (CDTN) has monitored air quality around its installations since 2000. CDTN's Environmental Monitoring Program (EMP) includes monitoring radioactivity levels contained in atmospheric TSP. In order to optimize its program, CDTN is carrying out a study to estimate the correlation between concentrations of particulate material measured in TSP and those measured in PM{sub 10}, PI{sub 2.5} and PI{sub 1}, as well as determination of activity concentration for each controlled radionuclide in all parts. The objective of this study is to present preliminary results and report {sup 238}U activity concentration results. (author)

  8. Spatial concentration of population in Serbia 1981-2011 measured with the Hoover index

    Directory of Open Access Journals (Sweden)

    Šantić Danica

    2014-01-01

    Full Text Available Population distribution reflects the integrity of natural, social, economic and historical factors of the geospace, relevant both for fundamental and applied research. Complex spatial structure of the contemporary distribution of population in the world, and Serbia as well, during history was determined by human migrations of complex scope and determinants. The aim of this paper was to describe and analyze the geographical redistribution of the population by using the Hoover index as a measure of the redistribution. This measure was introduced by Edgar Hoover in 1936 and it has been widely used in geography. By computing this index, we can allocate the region of population concentration and deconcentration in Serbia. General conceptual framework of concentration and dispersion of population at different geographical levels is presented here. These differences in the achieved level of concentration in Serbia are correlated with the historical development of population, transition from an agrarian into industrial society, and process of urbanization and migration in the last sixty years.

  9. Measurement of the strontium and calcium concentrations in the Mumbai Harbour Bay

    International Nuclear Information System (INIS)

    Strontium and calcium concentration (mg/l) measurements were done in the surface sea water samples collected from six different locations of Mumbai Harbour Bay (MHB). Samples were analysed by Atomic Absorption spectrophotometer. Standard addition method was used to get the concentration of one sample. Secondary standards were prepared based on this. All the samples were analysed using the secondary standards. The results showed the variation of Strontium and Calcium as 5.9-9.3 mg/l and 331-480 mg/I respectively, as against the universally accepted values of Strontium (ie. 8 mg/l) and Calcium (ie. 400 mg/I). It was found that though the concentration of Strontium and Calcium varied, the ratio Ca/Sr remained nearly the same (49.8 to 54.8), hence it may not affect the radiochemical procedure of nitrate separation used for separation of 90Sr from Ca in MHB. Final recovery calculation of Strontium should take into account the variations in concentration of Strontium. (author)

  10. The role and importance of ozone for atmospheric chemistry and methods for measuring its concentration

    Directory of Open Access Journals (Sweden)

    Marković Dragan M.

    2003-01-01

    Full Text Available Depending on where ozone resides, it can protect or harm life on Earth. The thin layer of ozone that surrounds Earth acts as a shield protecting the planet from irradiation by UV light. When it is close to the planet's surface, ozone is a powerful photochemical oxidant that damage, icons frescos, museum exhibits, rubber, plastic and all plant and animal life. Besides the basic properties of some methods for determining the ozone concentration in working and living conditions, this paper presents a detailed description of the electrochemical method. The basic properties of the electrochemical method are used in the construction of mobile equipment for determining the sum of oxidants in the atmosphere. The equipment was used for testing the determination of the ozone concentration in working rooms, where the concentration was at a high level and caused by UV radiation or electrostatic discharge. According to the obtained results, it can be concluded that this equipment for determining the ozone concentration in the atmosphere is very powerful and reproducible in measurements.

  11. Measurement of low radon gas concentrations with good time resolution; Zeitaufgeloeste Messung niedriger Radongaskonzentrationen

    Energy Technology Data Exchange (ETDEWEB)

    Ruckerbauer, F.; Aehlig, K.; Winkler, R. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany). Inst. fuer Strahlenschutz

    1998-04-23

    It is discussed which requirements have to be fulfilled by continuously operating instruments for the determination of low radon gas concentrations (ca. 2-200 Bq/m{sup 3}) with good time resolution. Several commercially available instruments are examined with respect to this application. For the determination of radon these instruments utilise different detectors: Pulse ionisation chambers, semiconductor detectors and scintillations cells. Comparing the radon concentrations obtained by parallel measurements with the different instruments in typical offices and laboratories, remarkable differences are observed in some cases. However, taking into account the detector background and, after recalibration of some instruments, also low radon concentrations can be determined reproducibly and with adequate accuracy. Due to specific construction features of the instruments, some limits are set with respect to time resolution and minimum detectable activity concentration. (orig.) [Deutsch] Es werden Anforderungen an kontinuierlich messende Geraete zur zeitaufgeloesten Bestimmung niedriger Radongaskonzentrationen (ca. 2 bis 200 Bq/m{sup 3}) diskutiert und es wird untersucht, wie diese Anforderungen von verschiedenen kommerziellen Geraeten erfuellt werden. In den hier eingesetzten Geraeten werden verschiedene Detektortypen zur Messung des Radons verwendet: Impulsionisationskammern, Halbleiterdetektoren und Scientillationszaehler (Lucaszellen). Vergleichsmessungen in normal genutzten Buero- und Laborraeumen zeigen zum Teil deutliche Abweichungen zwischen den Radongaskonzentrationen, die mit den verschiedenen Messgeraeten ermittelt wurden. Nach Beruecksichtigung des Eigennulleffekts der Geraete und nach einer Rekalibrierung von einigen Geraeten, koennen jedoch auch niedrige Radongaskonzentrationen reproduzierbar und mit ausreichender Genauigkeit bestimmt werden. In Bezug auf erreichbare Zeitaufloesung und minimal nachweisbare Aktivitaetskonzentration sind den verschiedenen

  12. A method for concentrating organic dyes: colorimetric measurements of nitric oxides and sialic acids.

    Science.gov (United States)

    Lalezari, Parviz; Lekhraj, Rukmani; Casper, Diana

    2011-09-01

    A new method for extraction and concentration of organic dyes that uses a reagent composed of a nonionic detergent mixed with an alcohol is described. We have observed that water-soluble organic dyes are also soluble in nonionic detergents and can be extracted by adding salt, which separates the dye-detergent component from the aqueous phase. We have also found that mixing nonionic detergents with alcohols markedly reduces their viscosity and produces stable, free-flowing, and effective reagents for color extraction. On the basis of these observations, we used a mixture of Triton X-100 and 1-butanol and observed that water-soluble natural and synthetic chromophores, as well as dyes generated in biochemical reactions, can be extracted, concentrated, and analyzed spectrophotometrically. Trypan blue and phenol red are used as examples of synthetic dyes, and red wine is used as an example of phenolic plant pigments. Applications for quantification of nitric oxides and sialic acids are described in more detail and show that as little as 0.15 nmol of nitric oxide and 0.20 nmol of sialic acid can be detected. A major advantage of this method is its ability to concentrate chromophores from dye-containing solutions that otherwise cannot be measured because of their low concentrations. PMID:21605540

  13. Satellite passive microwave measurements of sea ice concentration: an optimal algorithm and challenges

    Directory of Open Access Journals (Sweden)

    N. Ivanova

    2015-02-01

    Full Text Available Sea ice concentration has been measured globally with satellite microwave radiometers for over 30 years. However there is still a need for better understanding of corresponding challenges and consequently identifying an optimal method for sea ice concentration retrieval suitable for climate monitoring. The method should minimize inter-sensor calibration discrepancies and sensitivity to error sources with climatic trends (e.g. atmospheric water vapour and water surface roughening by wind. This article presents the results of an extensive algorithm inter-comparison and validation experiment. Thirty sea ice algorithms entered the experiment where their skills were evaluated over low and high sea ice concentrations, thin ice and areas covered by melt ponds. In addition, atmospheric correction of input brightness temperatures and dynamic tie-points approach were suggested. A selection of thirteen algorithms is shown in the article to demonstrate the results. Based on the findings, an optimal approach was suggested to retrieve sea ice concentration globally for climate monitoring purposes.

  14. Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY

    International Nuclear Information System (INIS)

    Sources contributing to the submicron particles (100-470 nm) measured between January 2002 and December 2007 at two different New York State Department of Environmental Conservation (NYS DEC) sites in Rochester, NY were identified and apportioned using a bilinear receptor model, positive matrix factorization (PMF). Measurements of aerosol size distributions and number concentrations for particles in the size range of 10-500 nm have been made since December 2001 to date in Rochester. The measurements are being made using a scanning mobility particle sizer (SMPS) consisting of a DMA and a CPC (TSI models 3071 and 3010, respectively). From December 2001 to March 2004, particle measurements were made at the NYS DEC site in downtown Rochester, but it was moved to the eastside of Rochester in May 2004. Each measurement period was divided into three seasons i.e., winter (December, January, and February), summer (June, July, and August), and the transitional periods (March, April, May, September, October, and November) so as to avoid experimental uncertainty resulting from too large season-to-season variability in ambient temperature and solar photon intensity that would lead to unstable/non-stationary size distributions. Therefore, the seasons were analyzed independently for possible sources. Ten sources were identified at both sites and these include traffic, nucleation, residential/commercial heating, industrial emissions, secondary nitrate, ozone- rich secondary aerosol, secondary sulfate, regionally transported aerosol, and a mixed source of nucleation and traffic. These results show that the measured total outdoor particle number concentrations in Rochester generally vary with similar temporal patterns, suggesting that the central monitoring site data can be used to estimate outdoor exposure in other parts of the city.

  15. Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere

    OpenAIRE

    Vömel, H.; K. Diaz

    2010-01-01

    Laboratory measurements of the Electrochemical Concentration Cell (ECC) ozone sonde cell current using ozone free air as well as defined amounts of ozone reveal that background current measurements during sonde preparation are neither constant as a function of time, nor constant as a function of ozone concentration. Using a background current, measured at a defined timed after exposure to high ozone may often overestimate the real background, leading to artificially low ozone concentrations i...

  16. Beryllium-Boron Systematics of Refractory Inclusions in CR2 and CV3 Chondrites: Evidence for 10Be Heterogeneity

    Science.gov (United States)

    Dunham, E.; Wadhwa, M.; Simon, S.; Grossman, L.

    2016-08-01

    Be-B systematics of Allende (CV3), Axtell (CV3), and NWA 5028 (CR2) CAIs suggests that 10Be was distributed heterogeneously in the early solar system which implies that 10Be was produced in the solar nebula by irradiation of nebular gas or dust.

  17. A simple model for reconstructing geomasnetic field intensity with 10Be production rate and its application in Loess studies

    Institute of Scientific and Technical Information of China (English)

    XIAN Feng; AN ZhiSheng; WU ZhenKun; J.Warren BECK; YU HuaGui; KANG ZhiHai; CHENG Peng

    2008-01-01

    A simple model for reconstructing the paleomagnetic field intensity with 10Be production rate was used for the first time in Loess 10Be studies of Luochuan profile. Using the LGM (Last Glacial Maxmium) method, the climatic effects and geomagnetic modulation effects on loess 10Be was separated and in turn the 80 ka geomagnetic excursion sequence reconstructed, of which the globally remarkable geomagnetic excursion events such as the Laschamp (42 ka), Mono Lake (32 ka) during the Last Glacial period were revealed and the paleo-geomagnetic intensity curve from Loess 10Be over the past 80 ka was quantitatively reconstructed. The reconstructed paleo-intensity fits well with the paleo-intensity curves (SINT200 and NAPIS75), which indicates the significance of global criterion of the 10Be paleo-intensity curve and the future direction of loess 10Be tracing studies. Results show the irregular vari-ability of the East Asian monsoon precipitation in Loess Plateau is the main cause that has resulted in the ambiguity of the geomagnetic modulation of the 10Be record in the loess, and the intrinsic source component of the loess 10Be and inherited fraction of magnetic susceptibility (SUS) are characterized by the "quasi-homogeneous distribution" manner.

  18. A simple model for reconstructing geomagnetic field intensity with (10)~Be production rate and its application in Loess studies

    Institute of Scientific and Technical Information of China (English)

    J.; Warren; BECK

    2008-01-01

    A simple model for reconstructing the paleomagnetic field intensity with (10)~Be production rate was used for the first time in Loess (10)~Be studies of Luochuan profile. Using the LGM (Last Glacial Maxmium) method, the climatic effects and geomagnetic modulation effects on loess (10)~Be was separated and in turn the 80 ka geomagnetic excursion sequence reconstructed, of which the globally remarkable geomagnetic excursion events such as the Laschamp (42 ka), Mono Lake (32 ka) during the Last Glacial period were revealed and the paleo-geomagnetic intensity curve from Loess (10)~Be over the past 80 ka was quantitatively reconstructed. The reconstructed paleo-intensity fits well with the paleo-intensity curves (SINT200 and NAPIS75), which indicates the significance of global criterion of the (10)~Be paleo- intensity curve and the future direction of loess (10)~Be tracing studies. Results show the irregular vari-ability of the East Asian monsoon precipitation in Loess Plateau is the main cause that has resulted in the ambiguity of the geomagnetic modulation of the (10)~Be record in the loess, and the intrinsic source component of the loess (10)~Be and inherited fraction of magnetic susceptibility (SUS) are characterized by the "quasi-homogeneous distribution" manner.

  19. National and Regional Surveys of Radon Concentration in Dwellings. Review of Methodology and Measurement Techniques

    International Nuclear Information System (INIS)

    Reliable, comparable and 'fit for purpose' results are essential requirements for any decision based on analytical measurements. For the analyst, the availability of tested and validated sampling and analytical procedures is an extremely important tool for carrying out such measurements. For maximum utility, such procedures should be comprehensive, clearly formulated and readily available to both the analyst and the customer for reference. In the specific case of radon surveys, it is very important to design a survey in such a way as to obtain results that can reasonably be considered representative of a population. Since 2004, the Environment Programme of the IAEA has included activities aimed at the development of a set of procedures for the measurement of radionuclides in terrestrial environmental samples. The development of radon measurement procedures for national and regional surveys started with the collection and review of more than 160 relevant scientific papers. On the basis of this review, this publication summarizes the methodology and the measurement techniques suitable for a population representative national or regional survey on radon concentration in the indoor air of dwellings. The main elements of the survey design are described and discussed, such as the sampling scheme, the protocols, the questionnaire and the data analysis, with particular attention to the potential biases that can affect the representativeness of the results. Moreover, the main measurement techniques suitable for national surveys on indoor radon are reviewed, with particular attention to the elements that can affect the precision and accuracy of the results

  20. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The plasma assisted method for continuous measurement of alkali concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. During the reporting period the alkali measuring device has been tested under pressurized conditions at VTT Energy, DMT, Foster-Wheeler Energia and ABB Carbon. Measurements in Delft will be performed during 1996 after installation of the hot gas filter. The original plan for measurements in Delft has been postponed due to schedule delays in Delft. The results are expected to give information about the influence of different process conditions on the generation of alkali vapours, the comparison of different methods for alkali measurement and the specific performance of our system. This will be the first test of the plasma assisted measurement method in a gasification process. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  1. Toward real-time measurement of atmospheric mercury concentrations using cavity ring-down spectroscopy

    Directory of Open Access Journals (Sweden)

    X. Faïn

    2010-03-01

    Full Text Available Cavity ring-down spectroscopy (CRDS is a direct absorption technique that utilizes path lengths up to multiple kilometers in a compact absorption cell and has a significantly higher sensitivity than conventional absorption spectroscopy. This tool opens new prospects for study of gaseous elemental mercury (Hg0 because of its high temporal resolution and reduced sample volume requirements (<0.5 l of sample air. We developed a new sensor based on CRDS for measurement of (Hg0 mass concentration. Sensor characteristics include sub-ng m−3 detection limit and high temporal resolution using a frequency-doubled, tuneable dye laser emitting pulses at ~253.65 nm with a pulse repetition frequency of 50 Hz. The dye laser incorporates a unique piezo element attached to its tuning grating allowing it to tune the laser on and off the Hg0 absorption line on a pulse-to-pulse basis to facilitate differential absorption measurements. Hg0 absorption measurements with this CRDS laboratory prototype are highly linearly related to Hg0 concentrations determined by a Tekran 2537B analyzer over an Hg0 concentration range from 0.2 ng m−3 to 573 ng m−3, implying excellent linearity of both instruments. The current CRDS instrument has a sensitivity of 0.10 ng Hg0 m−3 at 10-s time resolution. Ambient-air tests showed that background Hg0 levels can be detected at low temporal resolution (i.e., 1 s, but also highlight a need for high-frequency (i.e., pulse-to-pulse differential on/off-line tuning of the laser wavelength to account for instabilities of the CRDS system and variable background absorption interferences. Future applications may include ambient Hg0 flux measurements with eddy covariance techniques, which require measurements of Hg0 concentrations with sub-ng m−3 sensitivity and sub-second time

  2. Applications of Kalman filtering to real-time trace gas concentration measurements

    Science.gov (United States)

    Leleux, D. P.; Claps, R.; Chen, W.; Tittel, F. K.; Harman, T. L.

    2002-01-01

    A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 micrometers. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA-Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor.

  3. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  4. Volatile organic compound concentrations and emission rates measured over one year in a new manufactured house

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.; Nabinger, Steven J.; Persily, Andrew K.

    2004-09-01

    A study to measure indoor concentrations and emission rates of volatile organic compounds (VOCs), including formaldehyde, was conducted in a new, unoccupied manufactured house installed at the National Institute of Standards and Technology (NIST) campus. The house was instrumented to continuously monitor indoor temperature and relative humidity, heating and air conditioning system operation, and outdoor weather. It also was equipped with an automated tracer gas injection and detection system to estimate air change rates every 2 h. Another automated system measured indoor concentrations of total VOCs with a flame ionization detector every 30 min. Active samples for the analysis of VOCs and aldehydes were collected indoors and outdoors on 12 occasions from August 2002 through September 2003. Individual VOCs were quantified by thermal desorption to a gas chromatograph with a mass spectrometer detector (GC/MS). Formaldehyde and acetaldehyde were quantified by high performance liquid chromatography (HPLC). Weather conditions changed substantially across the twelve active sampling periods. Outdoor temperatures ranged from 7 C to 36 C. House air change rates ranged from 0.26 h{sup -1} to 0.60 h{sup -1}. Indoor temperature was relatively constant at 20 C to 24 C for all but one sampling event. Indoor relative humidity (RH) ranged from 21% to 70%. The predominant and persistent indoor VOCs included aldehydes (e.g., formaldehyde, acetaldehyde, pentanal, hexanal and nonanal) and terpene hydrocarbons (e.g., a-pinene, 3-carene and d-limonene), which are characteristic of wood product emissions. Other compounds of interest included phenol, naphthalene, and other aromatic hydrocarbons. VOC concentrations were generally typical of results reported for other new houses. Measurements of total VOCs were used to evaluate short-term changes in indoor VOC concentrations. Most of the VOCs probably derived from indoor sources. However, the wall cavity was an apparent source of

  5. Implement an Advanced Soft Measurement Method of Mine Dust Concentration Based on K-RBF Neural Network

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2015-04-01

    Full Text Available In view of the coal dust concentration measurement elements, the measurement pollution environment will reduce the measurement accuracy. The paper proposes a soft measurement method of mine dust concentration based on the K-RBF neural network theory. It takes the electrostatic signal as the measurement signal and extracts the short-term energy, RMS and rectification value of the electrostatic signal as the characteristic quantities of signal. And then a measurement method model has been created due to the dust concentration network study. The method shows the high speediness, little measurement error and high precision characteristic after it compared with the simulation modeling and performance evaluation of BP soft measurement method as well as the traditional optical measurement method. The method can be used to coal mine to realize real-time rapid detection of dust concentration.

  6. Long-term slip rate of the southern San Andreas Fault, from 10Be-26Al surface exposure dating of an offset alluvial fan

    Energy Technology Data Exchange (ETDEWEB)

    der Woerd, J v; Klinger, Y; Sieh, K; Tapponnier, P; Ryerson, F; M?riaux, A

    2006-01-13

    We determine the long-term slip rate of the southern San Andreas Fault in the southeastern Indio Hills using {sup 10}Be and {sup 26}Al isotopes to date an offset alluvial fan surface. Field mapping complemented with topographic data, air photos and satellite images allow to precisely determine piercing points across the fault zone that are used to measure an offset of 565 {+-} 80 m. A total of twenty-six quartz-rich cobbles from three different fan surfaces were collected and dated. The tight cluster of nuclide concentrations from 19 samples out of 20 from the offset fan surface implies a simple exposure history, negligible prior exposure and erosion, and yield an age of 35.5 {+-} 2.5 ka. The long-term slip rate of the San Andreas Fault south of Biskra Palms is thus 15.9 {+-} 3.4 mm/yr. This rate is about 10 mm/yr slower than geological (0-14 ka) and short-term geodetic estimates for this part of the San Andreas Fault implying changes in slip rate or in faulting behavior. This result puts new constraints on the slip rate of the San Jacinto and on the Eastern California Shear Zone for the last 35 ka. Our study shows that more sites along the major faults of southern California need to be targeted to better constrain the slip-rates over different time scales.

  7. Indoor radon concentration measurement in the dwellings of district Poonch (Azad Kashmir), Pakistan.

    Science.gov (United States)

    Rafique, Muhammad; Rahman, Said; Rahman, S U; Jabeen, Shahida; Shahzad, M Ikram; Rathore, Mumtaz H; Matiullah

    2010-02-01

    The present study deals with measurement of indoor radon concentrations in dwellings of the district Poonch of the state of Azad Jammu and Kashmir, Pakistan. In this context, CR-39-based box-type radon detectors were installed in drawing rooms and bedrooms of 80 selected houses and were exposed to indoor radon for 3 months. After exposure, the CR-39 detectors were etched for 9 h in 6 mol NaOH at 70 degrees C and the observed track densities were related to radon concentrations. Measured indoor radon concentrations in the studied area ranged from 27 +/- 6 to 169 +/- 4, 29 +/- 6 to 196 +/- 4 and 31 +/- 5 to 142 +/- 2 Bq m(-3) in the drawing rooms and 74 +/- 5 to 172 +/- 3, 32 +/- 6 to 191 +/- 4 and 27 +/- 5 to 155 +/- 2 Bq m(-3) in bedrooms of the Abbaspur, Hajira and Rawalakot regions of the district Poonch, respectively; whereas weighted average radon concentration ranged from 93 +/- 6 to 159 +/- 4, 33 +/- 5 to 118 +/- 3 and 31 +/- 6 to 155 +/- 5 Bq m(-3) in the dwellings of Abbaspur, Hajira and Rawalakot, respectively. Estimated doses due to the indoor radon ranged from 2.35 +/- 0.15 to 4.00 +/- 0.10, 0.83 +/- 0.08 to 2.98 +/- 0.08 and 0.78 +/- 0.15 to 3.91 +/- 0.13 mSv y(-1) for Abbaspur, Rawalakot and Hajira, respectively. Comparing the current indoor radon results with those of the Health Protection Agency UK and US EPA (i.e. 200 and 148 Bq m(-3)) limits, majority of the houses surveyed in the present study are within the safe limits.

  8. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space: Progress

    Science.gov (United States)

    Abshire, J. B.; Krainak, M.; Riris, H. J.; Sun, X.; Riris, H.; Andrews, A. E.; Collatz, J.

    2004-01-01

    We describe progress toward developing a laser-based technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate measurements of the tropospheric CO2 mixing ratio from space are challenging due to the many potential error sources. These include possible interference from other trace gas species, the effects of temperature, clouds, aerosols & turbulence in the path, changes in surface reflectivity, and variability in dry air density caused by changes in atmospheric pressure, water vapor and topographic height. Some potential instrumental errors include frequency drifts in the transmitter, small transmission and sensitivity drifts in the instrument. High signal-to-noise ratios and measurement stability are needed for mixing ratio estimates at the few ppm level. We have been developing a laser sounder approach as a candidate for a future space mission. It utilizes multiple different laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter in the same measurement path. It directs the narrow co-aligned laser beams from the instrument's fiber lasers toward nadir, and measures the energy of the strong laser echoes reflected from the Earth's land and water surfaces. During the measurement its narrow linewidth lasers are rapidly tuned on- and off- selected CO2 line near 1572 nm and an O2 absorption line near 770 nm. The receiver measures the energies of the laser echoes from the surface and any clouds and aerosols in the path with photon counting detectors. Ratioing the on- to off-line echo pulse energies for each gas permits the column extinction and column densities of CO2 and O2 to be estimated simultaneously via the

  9. Measurements of radon concentration in soil gas by CR-39 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, D.; Janik, M.; Loskiewicz, J.; Olko, P.; Swakon, J

    1999-06-01

    A miniature diffusion chamber with a 25x4x0.5 mm CR-39 track etch detector (Pershore Moulding Ltd.), mounted on the 1.1 m long pole has been developed for radon gas measurements at 1 meter depth in the soil. For chemically etched CR-39 (7h, 70 deg. C NaOH) and automatic track analysis the lowest detection limit of the chamber was found to be 0.5 MBq h m{sup -3} and the useful exposure range from 2 to 20 MBq h m{sup -3}. The typical exposure time in the soil is between 2 to 14 days. The chamber was tested against the active AlphaGUARD PQ-2000 (Genitron Instruments GmbH) probe. The test yielded consistent results for soils with typical values of permeability and which are not saturated with water. The pilot measurements of radon gas in soil conducted with the miniature diffusion chambers around 48 buildings in Krakow and Silesia regions yielded an average radon concentration of 13 kBq m{sup -3}. The chambers are to be applied to measure radon concentration in soil before constructing new houses in order to avoid high radon risk areas.

  10. Laser Induced Fluorescence For Measurement Of Lignin Concentrations In Pulping Liquors

    Science.gov (United States)

    Horvath, J. J.; Semerjian, H. G.; Biasca, K. L.; Attala, R.

    1988-11-01

    Laser excited fluorescence of pulping liquors was investigated for use in the pulp and paper industry for process measurement and control applications. Liquors from both mill and laboratory cooks were studied. A Nd-YAG pumped dye laser was used to generate the excitation wavelength of 280 nm; measurements were also performed using a commercially available fluorometer. Measurements on mill pulping liquors gave strong signals and showed changes in the fluorescence intensity during the cook. Absorption spectra of diluted mill liquor samples showed large changes during the cook. Samples from well controlled and characterized laboratory cooks showed fluorescence to be linear with concentration over two decades with an upper limit of approximately 1000 ppm dissolved lignin. At the end of these cooks a possible chemical change was indicated by an increase in the observed fluorescence intensity. Results indicate that lignin concentrations in pulping liquors can be accurately determined with fluorescence in the linear optical region over a greater dynamic range than absorption spectroscopy. Laser induced fluorescence may also provide an indication of chemical changes occurring in the lignin structure during a cook.

  11. The Molecular Bronchoscope: A Tool for Measurement of Spatially Dependent CO2 Concentrations in the Lungs.

    Science.gov (United States)

    Ciaffoni, Luca; Couper, John H; Richmond, Graham; Hancock, Gus; Ritchie, Grant A D

    2016-09-01

    Respiratory physicians use bronchoscopy for visual assessment of the lungs' topography and collecting tissue samples for external analysis. We propose a novel bronchoscope tool that would enable spatially dependent measurements of the functioning of the lungs by determining local concentrations of carbon dioxide, which will be produced by healthy parts of the lung at rates that are higher than from portions where gas exchange is impaired. The gas analyzer is based on a compact laser absorption spectrometer making use of fiber optics for delivery and return of low intensity diode laser radiation to and from the measurement chamber at the distal end of a flexible conduit. The appropriate optical wavelength was chosen such that light is selectively absorbed only by gaseous CO2. The optical absorption takes place over a short path (8.8 mm) within a rigid, 12 mm long, perforated probe tip. Wavelength modulation spectroscopy was adopted as the analytical technique to reduce the noise on the optical signal and yield measurements of relative CO2 concentration every 180 ms with a precision as low as 600 part-per-million by volume. The primary objective of such a device is to see if additional spatial information about the lungs functionality can be gathered, which will complement visual observation. PMID:27487178

  12. Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations

    Directory of Open Access Journals (Sweden)

    Jaco H. Visser

    2012-03-01

    Full Text Available The accumulating-type (or integrating-type NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s, the integrating sensor is well suited to reliably detect low levels of NOx. Experimental results are presented demonstrating the sensor’s integrating properties for the total amount detection and its sensitivity to both NO and to NO2. We also show the correlation between the derivative of the sensor signal and the known gas concentration. The long-term detection of NOx in the sub-ppm range (e.g., for air quality measurements is discussed. Additionally, a self-adaption of the measurement range taking advantage of the temperature dependency of the sensitivity is addressed.

  13. Measurement of radon, radon daughters and thoron concentrations by multi-detector devices. No. E/12

    International Nuclear Information System (INIS)

    There is a growing interest in collection of data concerning human exposures to naturally occurring alpha-emitting radionuclides (e.g. in mines, dwellings, building materials, industrial wastes, coal fuel cycle, water supply, soil, plants, etc.). Most of such studies are incomplete for the following reasons: in radon measurements the contribution of thoron is generally neglected, the determination of equilibrium factor is complicated or not possible at all, short- and long-term concentration fluctuations cause difficulties in obtaining representative mean values, the plate-out effect is generally not taken into account. A variety of simple methods were studied that could be used to overcome some of these difficulties by using cups equipped with two or more alpha-sensitive nuclear track detectors. A theoretical foundation of the quantitative measurements with such devices is presented. Experimental data are reported on radon, radon daughters and thoron concentrations measured by multi-detector devices in cave soil gas and in air of Hungarian dwellings. (author)

  14. Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved and simulations

    Directory of Open Access Journals (Sweden)

    A. Nemuc

    2013-06-01

    Full Text Available Multiwavelength depolarization Raman lidar measurements from Magurele, Romania are used in this study along with simulated mass-extinction efficiencies to calculate the mass concentrations profiles of different atmospheric components, due to their different depolarization contribution to the 532 nm backscatter coefficient. Linear particle depolarization ratio (δpart was computed using the relative amplification factor and the system-dependent molecular depolarization. The low depolarizing component was considered as urban/smoke, with a mean δpart of 3%, while for the high depolarizing component (mineral dust a mean δpart of 35% was assumed. For this study 11 months of lidar measurements were analyzed. Two study cases are presented in details: one for a typical Saharan dust aerosol intrusion, 10 June 2012 and one for 12 July 2012 when a lofted layer consisting of biomass burning smoke extended from 3 to 4.5 km height. Optical Properties of Aerosols and Clouds software package (OPAC classification and conversion factors were used to calculate mass concentrations. We found that calibrated depolarization measurements are critical to distinguish between smoke-reach aerosol during the winter and dust-reach aerosol during the summer, as well as between elevated aerosol layers having different origins. Good agreement was found between lidar retrievals and DREAM- Dust REgional Atmospheric Model forecasts in cases of Saharan dust. Our method was also compared against LIRIC (The Lidar/Radiometer Inversion Code and very small differences were observed.

  15. Effects of field storage method on E. coli concentrations measured in storm water runoff.

    Science.gov (United States)

    Harmel, Daren; Wagner, Kevin; Martin, Emily; Smith, Doug; Wanjugi, Pauline; Gentry, Terry; Gregory, Lucas; Hendon, Tina

    2016-03-01

    Storm water runoff is increasingly assessed for fecal indicator organisms (e.g., Escherichia coli, E. coli) and its impact on contact recreation. Concurrently, use of autosamplers along with logistic, economic, technical, and personnel barriers is challenging conventional protocols for sample holding times and storage conditions in the field. A common holding time limit for E. coli is 8 h with a 10 °C storage temperature, but several research studies support longer hold time thresholds. The use of autosamplers to collect E. coli water samples has received little field research attention; thus, this study was implemented to compare refrigerated and unrefrigerated autosamplers and evaluate potential E. coli concentration differences due to field storage temperature (storms with holding times ≤24 h) and due to field storage time and temperature (storms >24 h). Data from 85 runoff events on four diverse watersheds showed that field storage times and temperatures had minor effects on mean and median E. coli concentrations. Graphs and error values did, however, indicate a weak tendency for higher concentrations in the refrigerated samplers, but it is unknown to what extent differing die-off and/or regrowth rates, heterogeneity in concentrations within samples, and laboratory analysis uncertainty contributed to the results. The minimal differences in measured E. coli concentrations cast doubt on the need for utilizing the rigid conventional protocols for field holding time and storage temperature. This is not to say that proper quality assurance and quality control is not important but to emphasize the need to consider the balance between data quality and practical constraints related to logistics, funding, travel time, and autosampler use in storm water studies. PMID:26884357

  16. Size segregated aerosol mass concentration measurements over the Arabian Sea during ICARB

    Indian Academy of Sciences (India)

    Vijayakumar S Nair; K Krishna Moorthy; S Suresh Babu; K Narasimhulu; L Siva Sankara Reddy; R Ramakrishna Reddy; K Rama Gopal; V Sreekanth; B L Madhavan; K Niranjan

    2008-07-01

    Mass concentration and mass size distribution of total (composite) aerosols near the surface are essential inputs needed in developing aerosol models for radiative forcing estimation as well as to infer the environment and air quality. Using extensive measurements onboard the oceanographic research vessel, Sagar Kanya, during its cruise SK223B in the second phase of the ocean segment of the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB), the spatial distribution of the mass concentration and mass size distribution of near-surface aerosols are examined for the first time over the entire Arabian Sea, going as far as 58°E and 22°N, within a span of 26 days. In general, the mass concentrations () were found to be low with the mean value for the entire Arabian Sea being 16.7 ± 7 g m−3; almost 1/2 of the values reported in some of the earlier campaigns. Coarse mode aerosols contributed, on an average, 58% to the total mass, even though at a few pockets accumulation mode contribution dominated. Spatially, significant variations were observed over central and northern Arabian Sea as well as close to the west coast of India. In central Arabian Sea, even though the was quite low, contribution of accumulation aerosols to the total mass concentration was greater than 50%. Effective radius, a parameter important in determining scattering properties of aerosol size distribution, varied between 0.07 and 0.4 m with a mean value of 0.2 m. Number size distributions, deduced from the mass size distributions, were approximated to inverse power-law form and the size indices () were estimated. It was found to vary in the range 3.9 to 4.2 with a mean value of 4.0 for the entire oceanic region. Extinction coefficients, estimated using the number-size distributions, were well-correlated with the accumulation mode mass concentration with a correlation coefficient of 0.82.

  17. Rapid Measurement of Radon Daughters Concentrations in Allouga Uranium Exploration Gallery, Sinai, Egypt

    International Nuclear Information System (INIS)

    Radon gas and radon daughters concentrations were measured by active techniques using two instruments: EDA( RDA-200) and Tri-Met-372. The measurements were carried out during the month of June in a tunnel network at Allouga area, west central Sinai. In the ventilated sector (16 stations), the average tunnel air temperature was 24.4 ± 2.2 degree c and average relative humidity 38%. The radon gas concentrations using calibrated Lucas cell ranged 3.3-22.8 pCi/1 with an average of 11.9 pCi/1. The radon daughters concentration using Tri-Met-372: Kusnetz method range 0.01 -0.36 Wl and average 0.1 WL and Modified Tsivoglou method range 0.01-0.38 WL and average 0.1 WL. The results of the EDA(RDA-200) are :Rolle method range 0.01-0.29 WL and average 0.13 WL, Kusnetz method range 0.01-0.31 WL and average 0.12 WL, and Tsivoglou method range 0.02-0.41 Wl and average 0.15 WL. These reported averages estimated by the different techniques are consistent within the statistical errors. In the non-ventilated sector (12 stations), the average tunnel air temperature was 22.2±0.4 degree and average relative humidity 70%. The radon gas concentrations range 313-1348 pCi/1 and average 786 pCi/1. The radon daughters concentrations using Tri-Met-372 :Kusnetz method range 1.4 -13.88 WL and average 7.21 WL. The results of the EDA (RDA-200) are : Rolle method range 1.04- 12.9 Wl and average 6.910 WL. Kusnetz method range 0.98 - 12.24 WL and average 6.92 WL, and Tsivoglou method range 0.92-12.09 WL and average 6.84 WL. The reported averages by the different methods are consistent within the statistical errors. It is clear that the non-ventilated sector presents occupational working hazard in these tunnels, and strict radiation protection measures should be undertaken such as industrial ventilation

  18. Constraints on regolith formation and erosion rates at the Susquehanna Shale Hills Critical Zone Observatory, PA, determined using meteoric 10Be

    Science.gov (United States)

    West, N.; Kirby, E.; Bierman, P. R.; Rood, D. H.

    2011-12-01

    New meteoric 10Be data from 73 samples of bulk regolith collected along north- and south-facing hillslopes at the Susquehanna Shale Hills Critical Zone Observatory (SSHO) provide first-order constraints on the timescales of regolith formation. The SSHO is located in the presently temperate climate zone of central Pennsylvania; however, sustained periglacial climate during the time of maximal extent of the Laurentide ice sheet (~19-21 ka) and deforestation during mid-19th Century charcoal production may have exerted significant influence on regolith production. Here, we quantify soil residence times and corresponding rates of regolith production and erosion on the north- and south-facing slopes at SSHO, using meteoric 10Be in samples of regolith collected at 25 locations along each hillslope from ridge top to toe slope. Hillslopes within the SSHO are relatively planar, but exhibit a pronounced asymmetry; north-facing slopes are steeper (~20°) than south-facing slopes (~15°). Meteoric 10Be concentrations decrease systematically with depth at all 6 profile sites. Meteoric 10Be inventories are similar at the north and south ridgetop sites (1.89 ± 0.55 at/cm2 and 1.63 ± 0.41 at/cm2, respectively) and generally increase with position downslope. Assuming that the delivery of meteoric 10Be to regolith is balanced by its removal via erosion, the total meteoric 10Be inventories at the north and south ridgetops are consistent with soil 10Be residence times of 10.5 ± 3 ky and 9.1 ± 2 ky, and with steady lowering rates of ~ 16 m/My and ~ 19 m/My, respectively. Increases in meteoric 10Be inventories downslope are consistent with relatively slow creep, with transport velocities of 0.45 cm/y and 0.38 cm/y for the north and south hillslopes, respectively. Comparison of our results with previously-published estimates of regolith production rates inferred from U-series disequilibrium reveals that estimates of steady-state erosion calculated using meteoric 10Be are considerably

  19. Placing Absolute Timing on Basin Incision Adjacent to the Colorado Front Range: Results from Meteoric and in Situ 10BE Dating

    Science.gov (United States)

    Duehnforth, M.; Anderson, R. S.; Ward, D.

    2010-12-01

    A sequence of six levels of gravel-capped surfaces, mapped as Pliocene to Holocene in age, are cut into Cretaceous shale in the northwestern part of the Denver Basin immediately adjacent to the Colorado Front Range (CFR). The existing relative age constraints and terrace correlations suggest that the incision of the Denver Basin occurred at a steady and uniform rate of 0.1 mm yr-1 since the Pliocene. As absolute ages in this landscape are rare, they have the potential to test the reliability of the existing chronology, and to illuminate the detailed history of incision. We explore the timing of basin incision and the variability of geomorphic process rates through time by dating the three highest surfaces at the northwestern edge of the Denver Basin using both in situ and meteoric 10Be concentrations. As the tectonic conditions have not changed since the Pliocene, much of the variability of generation and abandonment of alluvial surfaces likely reflects the influence of glacial-interglacial climate variations. We selected Gunbarrel Hill (mapped as pre-Rocky Flats (Pliocene)), Table Mountain (mapped as Rocky Flats (early Pleistocene)), and the Pioneer surface (mapped as Verdos (Pleistocene, ~640 ka)) as sample locations. We took two amalgamated clast samples on the Gunbarrel Hill surface, and dated depth profiles using meteoric and in situ 10Be on the Table Mountain and Pioneer surfaces. In addition, we measured the in situ 10Be concentrations of 6 boulder samples from the Table Mountain surface. We find that all three surfaces are significantly younger than expected and that in situ and meteoric age measurements largely agree with each other. The samples from the pre-Rocky Flats site (Gunbarrel Hill) show ages of 250 and 310 ka, ignoring post-depositional surface erosion. The ages of the Table Mountain and Pioneer sites fall within the 120 to 150 ka window. These absolute ages overlap with the timing of the penultimate glaciation during marine isotope stage (MIS) 6

  20. Suspended matter concentrations in coastal waters: Methodological improvements to quantify individual measurement uncertainty

    Science.gov (United States)

    Röttgers, Rüdiger; Heymann, Kerstin; Krasemann, Hajo

    2014-12-01

    Measurements of total suspended matter (TSM) concentration and the discrimination of the particulate inorganic (PIM) and organic matter fraction by the loss on ignition methods are susceptible to significant and contradictory bias errors by: (a) retention of sea salt in the filter (despite washing with deionized water), and (b) filter material loss during washing and combustion procedures. Several methodological procedures are described to avoid or correct errors associated with these biases but no analysis of the final uncertainty for the overall mass concentration determination has yet been performed. Typically, the exact values of these errors are unknown and can only be estimated. Measurements were performed in coastal and estuarine waters of the German Bight that allowed the individual error for each sample to be determined with respect to a systematic mass offset. This was achieved by using different volumes of the sample and analyzing the mass over volume relationship by linear regression. The results showed that the variation in the mass offset is much larger than expected (mean mass offset: 0.85 ± 0.84 mg, range: -2.4 - 7.5 mg) and that it often leads to rather large relative errors even when TSM concentrations were high. Similarly large variations were found for the mass offset for PIM measurements. Correction with a mean offset determined with procedural control filters reduced the maximum error to estuarine waters. It should be possible to use the approach in oceanic or fresh water environments as well. The possibility of individual quality control will allow mass-specific optical properties to be determined with better resolved uncertainties and, hence, lower statistical variability, greatly improving our capability to model inherent optical properties of natural particles and its natural variability, e.g. dependence on particle size and the complex refractive index.

  1. Long-term aerosol measurements in Gran Canaria, Canary Islands: Particle concentration, sources and elemental composition

    Science.gov (United States)

    Gelado-Caballero, MaríA. D.; López-GarcíA, Patricia; Prieto, Sandra; Patey, Matthew D.; Collado, Cayetano; HéRnáNdez-Brito, José J.

    2012-02-01

    There are very few sets of long-term measurements of aerosol concentrations over the North Atlantic Ocean, yet such data is invaluable in quantifying atmospheric dust inputs to this ocean region. We present an 8-year record of total suspended particles (TSP) collected at three stations on Gran Canaria Island, Spain (Taliarte at sea level, Tafira 269 m above sea level (a.s.l.) and Pico de la Gorra 1930 m a.s.l.). Using wet and dry deposition measurements, the mean dust flux was calculated at 42.3 mg m-2 d-1. Air mass back trajectories (HYSPLIT, NOAA) suggested that the Sahara desert is the major source of African dust (dominant during 32-50% of days), while the Sahel desert was the major source only 2-10% of the time (maximum in summer). Elemental composition ratios of African samples indicate that, despite the homogeneity of the dust in collected samples, some signatures of the bedrocks can still be detected. Differences were found for the Sahel, Central Sahara and North of Sahara regions in Ti/Al, Mg/Al and Ca/Al ratios, respectively. Elements often associated with pollution (Pb, Cd, Ni, Zn) appeared to share a common origin, while Cu may have a predominantly local source, as suggested by a decrease in the enrichment factor (EF) of Cu during dust events. The inter-annual variability of dust concentrations is investigated in this work. During winter, African dust concentration measurements at the Pico de la Gorra station were found to correlate with the North Atlantic Oscillation (NAO) index.

  2. Multivariate concentration of measure type results using exchangeable pairs and size biasing

    CERN Document Server

    Ghosh, Subhankar

    2010-01-01

    Let $(\\mathbf{W,W'})$ be an exchangeable pair of vectors in $\\mathbb{R}^k$. Suppose this pair satisfies \\beas E(\\mathbf{W}'|\\mathbf{W})=(I_k-\\Lambda)\\mathbf{W}+\\mathbf{R(W)}. \\enas If $||\\mathbf{W-W'}||_2\\le K$ and $\\mathbf{R(W)}=0$, then concentration of measure results of following form is proved for all $\\mathbf{w}\\succeq 0$ when the moment generating function of $\\mathbf{W}$ is finite. \\beas P(\\mathbf{W}\\succeq\\mathbf{w}),P(\\mathbf{W}\\preceq -\\mathbf{w})\\le \\exp(-\\frac{||\\mathbf{w}||_2^2}{2K^2\

  3. DNA copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials

    OpenAIRE

    CORBISIER Philippe; Pinheiro, Leonardo; Mazoua, Stephane; KORTEKAAS Anna Maria; CHUNG PUI YAN JENNY; GERGANOVA TSVETELINA IVANOVA; Roebben, Gert; Emons, Hendrik; Emslie, K

    2015-01-01

    The value assignment for properties of six certified reference materials (ERM-AD623a–f), each containing a plasmid DNA solution ranging from 1 million to 10 copies per μL, by using digital PCR (dPCR) with the BioMark™ HD System (Fluidigm) has been verified by applying droplet digital PCR (ddPCR) using the QX100 system (Bio-Rad). One of the critical factors in the measurement of copy number concentrations by digital PCR is the partition volume. Therefore, we determined the average droplet volu...

  4. Dual Mode NOx Sensor: Measuring Both the Accumulated Amount and Instantaneous Level at Low Concentrations

    OpenAIRE

    Visser, Jaco H.; Ralf Moos; David J. Kubinski; Isabella Marr; Gregor Beulertz; Andrea Groß

    2012-01-01

    The accumulating-type (or integrating-type) NOx sensor principle offers two operation modes to measure low levels of NOx: The direct signal gives the total amount dosed over a time interval and its derivative the instantaneous concentration. With a linear sensor response, no baseline drift, and both response times and recovery times in the range of the gas exchange time of the test bench (5 to 7 s), the integrating sensor is well suited to reliably detect low levels of NOx. Experimental resul...

  5. Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra

    Science.gov (United States)

    Goun, Alexei; Bondar, Denys I.; Er, Ali O.; Quine, Zachary; Rabitz, Herschel A.

    2016-05-01

    By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters.

  6. Optoelectronic system to measure the concentration and turbidity of suspended solids in the water

    International Nuclear Information System (INIS)

    The selection of the site where a nuclear power plant is to be built requires intensive study of the environmental conditions. This work presents the results reached on the development of a measurement system of suspended solids based on turbidity characteristics of the water. The system consists of an optical transducer composed of an emitter and a detector of infrared light, both solid state type, whose electrical signal is electronically treated. The equipment was calibrated and certified against turbidity and concentration standards in laboratory use. The obtained results indicate the reliability of the experimental method. The utilization of the equipment at the shore reinforces its flexibility and commodity of use. (author)

  7. Predicted serum folate concentrations based on in vitro studies and kinetic modeling are consistent with measured folate concentrations in humans

    NARCIS (Netherlands)

    Verwei, M.; Freidig, A.P.; Havenaar, R.; Groten, J.P.

    2006-01-01

    The nutritional quality of new functional or fortified food products depends on the bioavailability of the nutrient(s) in the human body. Bioavailability is often determined in human intervention studies by measurements of plasma or serum profiles over a certain time period. These studies are time a

  8. A Microfluidic Long-Period Fiber Grating Sensor Platform for Chloride Ion Concentration Measurement

    Directory of Open Access Journals (Sweden)

    Jian-Neng Wang

    2011-09-01

    Full Text Available Optical fiber sensors based on waveguide technology are promising and attractive in chemical, biotechnological, agronomy, and civil engineering applications. A microfluidic system equipped with a long-period fiber grating (LPFG capable of measuring chloride ion concentrations of several sample materials is presented. The LPFG-based microfluidic platform was shown to be effective in sensing very small quantities of samples and its transmitted light signal could easily be used as a measurand. The investigated sample materials included reverse osmosis (RO water, tap water, dilute aqueous sample of sea sand soaked in RO water, aqueous sample of sea sand soaked in RO water, dilute seawater, and seawater. By employing additionally a chloride ion-selective electrode sensor for the calibration of chloride-ion concentration, a useful correlation (R2 = 0.975 was found between the separately-measured chloride concentration and the light intensity transmitted through the LPFG at a wavelength of 1,550 nm. Experimental results show that the sensitivity of the LPFG sensor by light intensity interrogation was determined to be 5.0 × 10−6 mW/mg/L for chloride ion concentrations below 2,400 mg/L. The results obtained from the analysis of data variations in time-series measurements for all sample materials show that standard deviations of output power were relatively small and found in the range of 7.413 × 10−5–2.769 × 10−3 mW. In addition, a fairly small coefficients of variations were also obtained, which were in the range of 0.03%–1.29% and decreased with the decrease of chloride ion concentrations of sample materials. Moreover, the analysis of stability performance of the LPFG sensor indicated that the random walk coefficient decreased with the increase of the chloride ion concentration, illustrating that measurement stability using the microfluidic platform was capable of measuring transmitted optical power with accuracy in the range of −0

  9. Temperature and concentration dependent spin noise measurements in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, Michael; Mueller, Georg; Huebner, Jens; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany)

    2009-07-01

    Spin noise spectroscopy is an elegant method to access electron properties of direct gap semiconductors in thermal equilibrium while avoiding carrier heating and excitation of electron hole pairs. This technique is used to examine the electron spin lifetime and noise power in GaAs in dependence of electron doping concentration, sample temperature, and the probe laser wavelength. The measured power of the spin noise signal is used to extract information about the electron statistics and the position of the electrons in the conduction band. The measured data can be well explained using a model based on the change of the index of refraction due to the ever present thermal fluctuations of the electron spin.

  10. A survey of laser and selected optical systems for remote measurement of pollutant gas concentrations

    Science.gov (United States)

    Grant, W. B.; Menzies, R. T.

    1983-01-01

    Applications of the Differential Absorption Lidar (DIAL) technique to the remote sensing of pollutant gases are surveyed. In the DIAl technique, the differential absorption of two laser beams reflected back to a receiver from a target determines the concentration of the gas being studied. The types of instruments available are considered in detail: dye lidar (to measure nitrogen dioxide, sulfur dioxide, and ozone); carbon dioxide laser (for ozone, ethylene, ammonia, and hydrazine), helium-neon laser (for methane); hydrogen fluoride laser (for HF); and tunable diode laser (for nitric oxide and carbon monoxide). DIAL instruments are compared with other optical remote sensors such as Fourier-transform infrared spectrometers, correlation spectrometers (COSPEC and GASPEC), and grating spectrometers; and criteria for the selection of an appropriate gas measuring system are suggested. Laser and other optical remote sensors are found to be cost effective in many cases, despite the fact that they are more costly than point-monitoring systems.

  11. Reduction of variance in measurements of average metabolite concentration in anatomically-defined brain regions

    Science.gov (United States)

    Larsen, Ryan J.; Newman, Michael; Nikolaidis, Aki

    2016-11-01

    Multiple methods have been proposed for using Magnetic Resonance Spectroscopy Imaging (MRSI) to measure representative metabolite concentrations of anatomically-defined brain regions. Generally these methods require spectral analysis, quantitation of the signal, and reconciliation with anatomical brain regions. However, to simplify processing pipelines, it is practical to only include those corrections that significantly improve data quality. Of particular importance for cross-sectional studies is knowledge about how much each correction lowers the inter-subject variance of the measurement, thereby increasing statistical power. Here we use a data set of 72 subjects to calculate the reduction in inter-subject variance produced by several corrections that are commonly used to process MRSI data. Our results demonstrate that significant reductions of variance can be achieved by performing water scaling, accounting for tissue type, and integrating MRSI data over anatomical regions rather than simply assigning MRSI voxels with anatomical region labels.

  12. Estimation of suspended sediment concentration from turbidity measurements for agrarian watersheds of Navarre (Spain)

    Science.gov (United States)

    Madrona, Cecilia; Campo-Bescós, Miguel A.; Giménez, Rafael

    2016-04-01

    Studies of soil erosion at watershed scales have addressed this phenomenon from a holistic perspective, linking and prioritizing the dominant influence of the different factors involved in this complex process. Thus, the pattern of sediment transport in a watershed is an excellent indicator of the type and intensity of the dominant erosion processes as well as of the relationships between precipitation, infiltration and runoff. An optimal characterization of the dynamics of sediment requires reliable measurements and recording of the suspended sediment concentration (SSC) at the watershed outlet at a small time scale (minutes) since SSC normally fluctuates rapidly during storm events. But the latter is economically feasible only through indirect measurements; for example, by using turbidimeter. In fact, turbidity is a common subrogate of suspended sediment concentration; but for this purpose it is necessary first to define a suitable (empirical) turbidity-SSC model. But this is not an easy task since the wide range of possible suspended particles of different nature and composition (e.g., silt, clay, organic matter and microorganisms) often lead to a weak association between SSC and turbidity. In Navarre (Spain), soil erosion is an important problem affecting agricultural land. For this reason, the local Government owns and maintains a network of four experimental watersheds to assess the impact on the environment of typical agrarian activities. So that, the amount of sediment and solutes evacuated at the exit of each watershed has been recorded, along with other relevant hydrological and meteorological data. Furthermore, turbidity has been measured every ten minutes. But turbidity-SSC model - determined from average daily data of SSC- currently in use is unsatisfactory, especially for spring and summer events. The aim of this study is to find an appropriate turbidity-SSC relationship for (each of) the agrarian experimental watersheds of Navarre. Regression

  13. A system for vertical profile measurements of sensible heat and chemical concentrations near the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Hyppoenen, M.; Walden, J.A.

    1996-12-31

    The design, construction and measurements of a computer controlled system applicable to flux measurements of a scalar quantity by the gradient technique are described. Accuracy requirements for the measured variables which are used for flux calculations are considered, together with some practical aspects concerning data storage and control. The construction includes the hardware and the data acquisition, sample intake, and temperature measurement systems. The measurements comprise laboratory tests of the temperature probes and the hardware as well as field tests over wheat and grass land for temperature and wind speed and ozone (O{sub 3}), carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) concentration profiles. The hardware takes care of most of the operation and only the necessary part is done by the software. The data acquisition system is flexible, accepting the input of either digital and/or analog signals. It also controls the whole system, storing all the data in a single data file. The sample intake unit is designed to take continuous samples in to the monitors as well as grab samples into the canisters. Samples can be selected from one to four levels with no dead volumes in the sampling tubes. The temperature measurement system is constructed using a pair of temperature probes, Pt-100, which are connected to the same signal processing card, in order to remove the offset of the electronic components as well as the bias associated with single probes. This ensures the accuracy of the probes down to 0.005 deg C. According to the field measurements, the relative error limits for the sensible heat fluxes varied from 7 to 20 % in an unstable atmospheric situation. For the ozone flux, the error limits varied from 20 to 100 %, indicating a much poorer accuracy of the monitor compared to the temperature probes. (orig.) 16 refs.

  14. Metrological assessment of TDR performance for measurement of potassium concentration in soil solution

    Directory of Open Access Journals (Sweden)

    Isaac de M. Ponciano

    2016-04-01

    Full Text Available ABSTRACT Despite the growing use of the time domain reflectometry (TDR technique to monitoring ions in the soil solution, there are few studies that provide insight into measurement error. To overcome this lack of information, a methodology, based on the central limit theorem error, was used to quantify the uncertainty associated with using the technique to estimate potassium ion concentration in two soil types. Mathematical models based on electrical conductivity and soil moisture derived from TDR readings were used to estimate potassium concentration, and the results were compared to potassium concentration determined by flame spectrophotometry. It was possible to correct for random and systematic errors associated with TDR readings, significantly increasing the accuracy of the potassium estimation methodology. However, a single TDR reading can lead to an error of up to ± 18.84 mg L-1 K+ in soil solution (0 to 3 dS m-1, with a 95.42% degree of confidence, for a loamy sand soil; and an error of up to ± 12.50 mg L-1 of K+ (0 to 2.5 dS m-1 in soil solution, with a 95.06% degree of confidence, for a sandy clay soil.

  15. Effect of whey protein concentrate on texture of fat-free desserts: sensory and instrumental measurements

    Directory of Open Access Journals (Sweden)

    Márcia Cristina Teixeira Ribeiro Vidigal

    2012-06-01

    Full Text Available It is important to understand how changes in the product formulation can modify its characteristics. Thus, the objective of this study was to investigate the effect of whey protein concentrate (WPC on the texture of fat-free dairy desserts. The correlation between instrumental and sensory measurements was also investigated. Four formulations were prepared with different WPC concentrations (0, 1.5, 3.0, and 4.5 wt. (% and were evaluated using the texture profile analysis (TPA and rheology. Thickness was evaluated by nine trained panelists. Formulations containing WPC showed higher firmness, elasticity, chewiness, and gumminess and clearly differed from the control as indicated by principal component analysis (PCA. Flow behavior was characterized as time-dependent and pseudoplastic. Formulation with 4.5% WPC at 10 °C showed the highest thixotropic behavior. Experimental data were fitted to Herschel-Bulkley model. The addition of WPC contributed to the texture of the fat-free dairy dessert. The yield stress, apparent viscosity, and perceived thickness in the dairy desserts increased with WPC concentration. The presence of WPC promotes the formation of a stronger gel structure as a result of protein-protein interactions. The correlation between instrumental parameters and thickness provided practical results for food industries.

  16. The analytical measurement of fluorescein, quinine and trace metal concentrations in solution using single bubble sonoluminescence

    Science.gov (United States)

    Wallace, P.; McCallum, K.; Barnard, C. L. R.; Clement, C.; Marshall, J.; Carroll, J.

    2007-03-01

    A single bubble was generated and levitated in a high-intensity sound field within a spherical flask excited in its fundamental mode. Under optimum experimental conditions the bubble was observed to emit light in the form of short flashes. This phenomenon is known as single bubble sonoluminescence (SBSL). Using this process, the emitted light from the bubble was monitored when solutions containing fluorescein, quinine and sodium, potassium and copper salts were placed in the cell. The results obtained indicated that reproducible signals related directly to the concentration of the species present in solution could be achieved using single bubble sonoluminescence. The results for the molecular species were compared with those obtained by fluorescence spectroscopy and, in the case of quinine, parallel determinations of concentration in a test solution were performed with consistent results. SBSL signals were also observed to exhibit a linear correlation with the concentration of several trace metal salts introduced to the solution in the measurement cell. However, it was not possible to demonstrate that the SBSL signals were derived from stimulated atomic emission or fluorescence, and it was concluded that the effect may result from an indirect effect involving the bubble excitation mechanism.

  17. ANALYSIS OF THE CHAOTIC DYNAMICS OF A HIGH-FLUX CFB RISER USING SOLIDS CONCENTRATION MEASUREMENTS

    Institute of Scientific and Technical Information of China (English)

    S. V. Manyele; J.-X. Zhu; R. E. Khayat; J.H.P(a)rssinen

    2006-01-01

    A high-flux circulating fluidized bed (CFB) riser (0.076-m I.D. and 10-m high) was operated in a wide range of operating conditions to study its chaotic dynamics, using FCC catalyst particles (dp = 67μm, ρp = 1500 kg·m-3). Local solids concentration fluctuations measured using a reflective-type fiber optic probe were processed to determine chaotic invariants (Kolmogorov entropy and correlation dimension). Radial and axial profiles of the chaotic invariants at different operating conditions show that the core region exhibits higher values of the chaotic invariants than the wall region. Both invariants vary strongly with local mean solids concentration. The transition section of the riser exhibits more complex dynamics while the bottom and top sections exhibit a more uniform macroscopic and less-complex microscopic flow structure. Increasing gas velocity leads to more complex and less predictable solids concentration fluctuations, while increasing solids flux generally lowers complexity and increases predictability. Very high solids flux, however, was observed to increase the entropy.

  18. Indoor radon (Rn-222) concentration measurements in Cyprus using high-sensitivity portable detectors

    CERN Document Server

    Anastasiou, T; Christofides, S; Christodoulides, G

    2003-01-01

    Using high--sensitivity radon (Rn-222) portable detectors, the airborne Rn-222 concentration in the interior of various Cypriot buildings and dwellings was measured. For each preselected building and dwelling, a calibrated detector was put into a closed room, and the Rn-222 concentration was registered in sampling intervals of 2 to 4 hours for a total counting time of typically 48 hours. Rn-222 activity concentrations were found to be in the range of 6.2 to 102.8 Bq/m**3, with an overall arithmetic mean value of (19.3 +- 1.6) Bq/m**3. This value is by a factor of two below the world average (population-weighted) value of 39 Bq/m**3. The total annual effective dose equivalent to the Cypriot population was calculated to be between 0.16 and 2.6 mSv with an overall arithmetic mean value of (0.49 +- 0.04) mSv.

  19. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS represents only a fraction of the total H2SO4, contained in the monomer and the clusters that is available for particle growth. Although it was found that the addition of dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  20. Measurement of radon concentration in water by means of {alpha}, {gamma} spectrometry. Radon concentration in ground and spring water in Hiroshima Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Shizuma, Kiyoshi [Hiroshima Univ. (Japan)

    1997-02-01

    Radon ({sup 222}Rn, T{sub 1/2}=3.8235{+-}0.0003d) is {alpha}-ray releasing nuclide, so that it can not be detected by {gamma}-ray measurement. But, the daughter nuclides {sup 214}Pb (T{sub 1/2}=26.8 min) and {sup 214}Bi (T{sub 1/2}=19.9 min) release {gamma}-ray, accordingly they are measured by Ge detector. Their radioactive equilibrium is kept in the closed vessel, because their half-lives are shorter than that of radon. We developed a measurement method of radon concentration by means of {gamma}-spectrometry. We applied this method to catch radon in the atmosphere by active carbon. The same principle can be applied to radon in water. Radon concentrations in the ground water were measured in 22 points in the Higashi-Hiroshima city and 82 points in the Hiroshima prefecture. The efficiencies of {gamma}-ray were determined. The radon concentration showed between 11 and 459 Bq/l and the average was 123 Bq/l. The high concentration of radon was distributed in the spring of granitic layer and higher concentration of radon were observed in the ground water of fault. (S.Y.)

  1. Laser Sounder for Global Measurement of CO2 Concentrations in the Troposphere from Space: Update

    Science.gov (United States)

    Abshire, J. B.; Riris, H.; Kawa, S. R.; Sun, X.; Krainak, M. A.; Mao, J.; Jian, P.; Collatz, G. J.; Stephen, M.

    2006-12-01

    We report progress in developing a laser technique for the remote measurement of the tropospheric CO2 concentrations from orbit. Our initial goal is to demonstrate a lidar technique and instrument technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to develop a practical space instrument and mission approach for active CO2 measurements at the 1 ppmv level. This would allow continuous measurements of CO2 mixing ratio, both day and night, over land and ocean surfaces, under realistic atmospheric scattering conditions. Measuring the CO2 mixing ratio in the troposphere from space is quite challenging. High signal-to-noise ratios and measurement stabilities are needed for accurate mixing ratio estimates. Our laser sounder approach has some fundamental advantages over passive sensors which use sunlight. It always uses a common nadir/zenith measurement path and the narrow laser divergence angles produce small laser footprints. The laser source allows it to measure in sunlight and darkness over different surfaces giving full global coverage. It can measure continuously over the ocean, to cloud tops and through broken clouds. The lasers are pulsed and potential measurement errors from aerosol scattering can be greatly reduced by using time gating in the receiver. Our approach uses a dual channel laser altimeter/spectrometer, which continuously measures at nadir from a near polar circular orbit. It uses several tunable fiber lasers for simultaneous measurement of the absorption from CO2 and O2, and aerosol backscatter in the same path. It directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces During the measurement its lasers are tuned on- and off- a selected CO2 line near 1572 nm and a selected O2 line near 768 nm in the Oxygen A band at kHz rates. The receiver uses a 1-m diameter

  2. Estimating Concentrations of Road-Salt Constituents in Highway-Runoff from Measurements of Specific Conductance

    Science.gov (United States)

    Granato, Gregory E.; Smith, Kirk P.

    1999-01-01

    Discrete or composite samples of highway runoff may not adequately represent in-storm water-quality fluctuations because continuous records of water stage, specific conductance, pH, and temperature of the runoff indicate that these properties fluctuate substantially during a storm. Continuous records of water-quality properties can be used to maximize the information obtained about the stormwater runoff system being studied and can provide the context needed to interpret analyses of water samples. Concentrations of the road-salt constituents calcium, sodium, and chloride in highway runoff were estimated from theoretical and empirical relations between specific conductance and the concentrations of these ions. These relations were examined using the analysis of 233 highwayrunoff samples collected from August 1988 through March 1995 at four highway-drainage monitoring stations along State Route 25 in southeastern Massachusetts. Theoretically, the specific conductance of a water sample is the sum of the individual conductances attributed to each ionic species in solution-the product of the concentrations of each ion in milliequivalents per liter (meq/L) multiplied by the equivalent ionic conductance at infinite dilution-thereby establishing the principle of superposition. Superposition provides an estimate of actual specific conductance that is within measurement error throughout the conductance range of many natural waters, with errors of less than ?5 percent below 1,000 microsiemens per centimeter (?S/cm) and ?10 percent between 1,000 and 4,000 ?S/cm if all major ionic constituents are accounted for. A semi-empirical method (adjusted superposition) was used to adjust for concentration effects-superposition-method prediction errors at high and low concentrations-and to relate measured specific conductance to that calculated using superposition. The adjusted superposition method, which was developed to interpret the State Route 25 highway-runoff records, accounts for

  3. Accurate Measurement of the in vivo Ammonium Concentration in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hugo F. Cueto-Rojas

    2016-04-01

    Full Text Available Ammonium (NH4+ is the most common N-source for yeast fermentations, and N-limitation is frequently applied to reduce growth and increase product yields. While there is significant molecular knowledge on NH4+ transport and assimilation, there have been few attempts to measure the in vivo concentration of this metabolite. In this article, we present a sensitive and accurate analytical method to quantify the in vivo intracellular ammonium concentration in Saccharomyces cerevisiae based on standard rapid sampling and metabolomics techniques. The method validation experiments required the development of a proper sample processing protocol to minimize ammonium production/consumption during biomass extraction by assessing the impact of amino acid degradation—an element that is often overlooked. The resulting cold chloroform metabolite extraction method, together with quantification using ultra high performance liquid chromatography-isotope dilution mass spectrometry (UHPLC-IDMS, was not only more sensitive than most of the existing methods but also more accurate than methods that use electrodes, enzymatic reactions, or boiling water or boiling ethanol biomass extraction because it minimized ammonium consumption/production during sampling processing and interference from other metabolites in the quantification of intracellular ammonium. Finally, our validation experiments showed that other metabolites such as pyruvate or 2-oxoglutarate (αKG need to be extracted with cold chloroform to avoid measurements being biased by the degradation of other metabolites (e.g., amino acids.

  4. Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame

    Science.gov (United States)

    Shuang, Chen; Tie, Su; Yao-Bang, Zheng; Li, Chen; Ting-Xu, Liu; Ren-Bing, Li; Fu-Rong, Yang

    2016-06-01

    The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF (laser-induced fluorescence) in flame. The detailed physical models of spectral absorption lineshape broadening, collisional transition and quenching at elevated pressure are built. The fine energy level structure of the OH molecule is illustrated to understand the process with laser-induced fluorescence emission and others in the case without radiation, which include collisional quenching, rotational energy transfer (RET), and vibrational energy transfer (VET). Based on these, some numerical results are achieved by simulations in order to evaluate the fluorescence yield at elevated pressure. These results are useful for understanding the real physical processes in OH-LIF technique and finding a way to calibrate the signal for quantitative measurement of OH concentration in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338) and the Fund from the Science and Technology on Scramjet Key Laboratory, China (Grant No. STSKFKT2013004).

  5. Numerical analysis of quantitative measurement of hydroxyl radical concentration using laser-induced fluorescence in flame

    Science.gov (United States)

    Shuang, Chen; Tie, Su; Yao-Bang, Zheng; Li, Chen; Ting-Xu, Liu; Ren-Bing, Li; Fu-Rong, Yang

    2016-06-01

    The aim of the present work is to quantitatively measure the hydroxyl radical concentration by using LIF (laser-induced fluorescence) in flame. The detailed physical models of spectral absorption lineshape broadening, collisional transition and quenching at elevated pressure are built. The fine energy level structure of the OH molecule is illustrated to understand the process with laser-induced fluorescence emission and others in the case without radiation, which include collisional quenching, rotational energy transfer (RET), and vibrational energy transfer (VET). Based on these, some numerical results are achieved by simulations in order to evaluate the fluorescence yield at elevated pressure. These results are useful for understanding the real physical processes in OH-LIF technique and finding a way to calibrate the signal for quantitative measurement of OH concentration in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338) and the Fund from the Science and Technology on Scramjet Key Laboratory, China (Grant No. STSKFKT2013004).

  6. Measurement of serum immunoglobulin concentration in killer whales and sea otters by radial immunodiffusion.

    Science.gov (United States)

    Taylor, Bernadette C; Brotheridge, Rory M; Jessup, David A; Stott, Jeffrey L

    2002-10-28

    Killer whales and sea otters maintained in captivity are the subjects of routine health monitoring programs, and interest in immunologic studies in sea otters has been rising recently in response to potential impacts from infectious disease and environmental pollution on the threatened southern sea otter population. Development of species-specific reagents for immunologic studies in these two marine mammals is currently in its infancy. In this study, killer whale and sea otter immunoglobulin-specific polyclonal antibodies were generated, and used to develop tests for serum Ig concentration in the killer whale (Orcinus orca) and the southern (Enhydra lutris nereis) and northern sea otter (Enhydra lutris lutris). Killer whale serum IgG was purified using caprylic acid/ammonium sulfate precipitation. Sea otter plasma IgG was purified using protein-A-agarose. Polyclonal anti-Ig antisera were produced in rabbits, and specificity confirmed by immunoelectrophoresis. Radial immunodiffusion was used to measure Ig concentration in serum or plasma samples derived from 21 captive killer whales, 18 wild and 4 captive southern sea otters and 15 wild and 4 captive northern sea otters grouped by age. Mean killer whale serum Ig concentration (+/-95% confidence interval) ranged from 15.04 +/- 3.97 g/l for animals aged 0-5 years to 26.65 +/- 9.8 g/l for animals aged >10 years. Mean sea otter serum Ig concentration (+/-95% confidence interval) ranged from 28.39 +/- 11.00 g/l for southern sub-adults to 32.76 +/- 11.58 g/l for southern adults. No significant difference in serum Ig concentration was found between southern and northern sea otters. Serum Ig concentrations in two northern sea otter pups were low compared to those of adult sea otters. The two serum Ig quantitation assays produced were highly specific and reproducible and will be useful additions to the limited number of tests available for immune function in these marine mammal species. PMID:12383650

  7. Measurements of radon concentration in drinking water samples from Kastamonu (Turkey).

    Science.gov (United States)

    Yalcin, Sezai; Gurler, Orhan; Akar, Urkiye Tarim; Incirci, Fulya; Kaynak, Gokay; Gundogdu, Ozcan

    2011-12-01

    Concentration of (222)Rn was determined in selected natural spring and tap water samples collected during spring and summer seasons from Kastamonu, Turkey. The aim of this work was to produce a map of the radon concentrations in water sources of the province and to determine any potential radiological risk for the local population. Radon measurements were performed by an AlphaGUARD radon gas analyser. The average radon concentrations were found to vary from 0.39±0.02 to 12.73±0.39 Bq l(-1) for natural springs and from 0.36±0.04 to 9.29±0.45 Bq l(-1) for tap water in spring, from 0.50±0.09 to 19.21±1.00 Bq l(-1) for natural springs and from 0.31±0.03 to 13.14±0.38 Bq l(-1) for tap water in summer. Furthermore, the results are compared with international recommendations and concentrations reported for other countries. Doses resulting from the consumption of these waters were calculated. The effective dose equivalents due to the intake of the (222)Rn present in these waters are expected to range from 0.93 to 32.54 μSv y(-1) in summer and from 0.80 to 49.09 μSv y(-1) in spring. PMID:22004332

  8. Photorefractive keratectomy: measuring the matrix metalloproteinase activity and chondroitin sulfate concentration in tear fluid

    Directory of Open Access Journals (Sweden)

    Tetsuya Mutoh

    2010-09-01

    Full Text Available Tetsuya Mutoh, Masaya Nishio, Yukihiro Matsumoto, Kiyomi Arai, Makoto ChikudaDepartment of Ophthalmology, Dokkyo Medical University Koshigaya Hospital, Saitama, JapanAbstract: We herein report the case of a 20-year-old man who underwent a photorefractive keratectomy (PRK. We measured matrix metalloproteinase-9 (MMP-9 activity and chondroitin 4 sulfate and chondroitin 6 sulfate concentrations in tear fluid. Tear fluid was collected preoperatively via microcapillary tube, and was collected postoperatively on the first and fourth days, and after one week, one month, three months, and six months. Samples were formulated by dilution with 200 µL of saline. MMP-9 activity was analyzed by an enzyme immunocapture activity assay, and the concentrations of chondroitin sulfate were analyzed by enzyme-linked immunosorbent assay. No complications were observed after surgery, except for a minimal subepithelial haze. Although MMP-9 activity changed on the fourth postoperative day, the activity changed only minimally at this time. Chondroitin 4 sulfate concentrations in tear fluid increased dramatically from one week to one month, decreased transiently at three months, and increased by six months. The chondroitin 6 sulfate concentration did not normalize within one week, and decreased from one week to three months compared with the preoperative score, and was close to the preoperative score at six months. We conclude that corneal wound healing was still incomplete six months after PRK, and chondroitin 4 sulfate appears to be critical in this process.Keywords: matrix metalloproteinase, chondroitin sulfate, human tear fluid, photorefractive keratectomy, corneal wound healing

  9. A new plastic scintillation resin for single-step separation, concentration and measurement of technetium-99.

    Science.gov (United States)

    Barrera, J; Tarancón, A; Bagán, H; García, J F

    2016-09-14

    Technetium is a synthetic element with no stable isotopes, produced as waste in nuclear power plants and in cyclotrons used for nuclear medicine. The element has high mobility, in the form of TcO4(-); its determination is therefore important for environmental protection. Technetium is found in low concentrations and therefore common methods for its analysis include long treatments in several steps and require large amounts of reagents for its purification and preconcentration. Plastic scintillation resins (PSresin) are novel materials used to separate, preconcentrate and measure radionuclides in a single step. The objective of this study is to prepare and characterise a PSresin for the preconcentration and measurement of (99)Tc. The study first evaluates the reproducibility of the production of PSresins between batches and over time; showing good reproducibility and storage stability. Next, we studied the effect of some common non-radioactive interferences, showing small influences on measurement, and radioactive interferences ((36)Cl and (238)U/(234)U). (36)Cl can be removed by a simple treatment with 0.5 M HCl and (238)U/(234)U can be removed from the column by cleaning with a mixture of 0.1 M HNO3 and 0.1 M HF. In the latter case, a slight change in the morphology of the PSresin caused an increase in detection efficiency. Finally, the PSresin was applied to the measurement of real spiked samples (sea water and urine) with deviations lower than 10% in all cases. PMID:27566363

  10. Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Dani Martínez

    2016-01-01

    Full Text Available This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.

  11. Estimation of potassium concentration in coconut water by beta radioactivity measurement

    International Nuclear Information System (INIS)

    Potassium is widely distributed in soil, in all vegetable, fruits and animal tissues. Approximately half the radioactivity found in humans comes from 40K. Potassium is an essential element in our diet since it is required for proper nerve and muscle function, as well as for maintaining the fluid balance of cells and heart rhythm. Potassium can enter the body mainly consuming fruits, vegetables and food. Tender coconut water is consumed widely as natural refreshing drink which is rich in potassium. The simple way to determine 40K activity is by gamma ray spectrometry. However, the low abundance of this gamma photon makes the technique less sensitive compared to gross beta measurement. Many analytical methods are reported for potassium estimation which is time consuming and destructive in nature. A unique way to estimate 40K by beta activity is by Cerenkov Counting technique using Liquid Scintillation Analyzer. Also much lower detection limit is achieved, allowing for greater precision. In this work, we have compared two methods to arrive at the potassium concentration in tender and matured coconut water by measuring 40K. One is non-scintillator method based on measurement of the Cerenkov radiation generated from the high-energy β of 40K. The second method is based on beta activity measurement using low background Gas flow counter

  12. [Clinical research on improvement of glucose metabolic marker level by coffee drinking-validity of saliva caffeine concentration measurement].

    Science.gov (United States)

    Okada, Tomoko; Kobayashi, Daisuke; Kono, Suminori; Shimazoe, Takao

    2010-05-01

    We measured both serum and saliva caffeine concentration using HPLC and assessed the correlation between them in volunteers with mild obesity. Significant correlation was shown between saliva and serum caffeine concentration. It may be necessary to measure caffeine metabolite concentration because its metabolites may also have an improving effect of glucose metabolism. In summary, we found that saliva caffeine concentration measurement was useful to assess caffeine intake level. Moreover, it will be helpful to know whether caffeine has an improving effect of glucose metabolism. PMID:20460869

  13. {sup 10}Be/{sup 230}Th ratios as proxy for particle flux in the equatorial Pacific ocean

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.F.; Fleisher, M.Q. [LDEO of Columbia Univ. (United States); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Particulate {sup 10}Be/{sup 230}Th ratios collected by sediment traps in the central equatorial Pacific Ocean exhibit a positive correlation with particle flux, but little or no correlation with particle composition. (author) 1 fig., 4 refs.

  14. Measurement of low breath-alcohol concentrations: laboratory studies and field experience.

    Science.gov (United States)

    Dubowski, K M; Essary, N A

    1999-10-01

    Recent federal rules and traffic law changes impose breath-alcohol thresholds of 0.02 and 0.04 g/210 L upon some classes of motor vehicle operators, such as juveniles and commercial vehicle operators. In federally regulated alcohol testing in the workplace, removal of covered workers from safety-sensitive duties, and other adverse actions, also occur at breath-alcohol concentrations (BrACs) of 0.02 and 0.04 g/210 L. We therefore studied performance of vapor-alcohol and breath-alcohol measurement at low alcohol concentrations in the laboratory and in the field, with current-generation evidential analyzers. We report here chiefly our field experience with evidential breath-alcohol testing of drinking drivers on paired breath samples using 62 Intoxilyzer 5000-D analyzers, for BrACs of 0-0.059 g/210 L. The data from 62 law enforcement breath-alcohol testing sites were collected and pooled, with BrACs recorded to three decimal places, and otherwise carried out under the standard Oklahoma evidential breath-alcohol testing protocol. For 2105 pooled simulator control tests at 0.06-0.13 g/210 L the mean +/- SD of the differences between target and result were -0.001 +/- 0.0035 g/210 L and 0.003 +/- 0.0023 g/210 L for signed and absolute differences, respectively (spans -0.016-0.010, 0.000-0.016). For 2078 paired duplicate breath-alcohol measurements with the Intoxilyzer 5000-D, the mean +/- SD difference (BrAC1-BrAC2) were 0.002 +/- 0.0026 (span 0-0.020 g/210 L). Variability of breath-alcohol measurements was related inversely to the alcohol concentration. Ninety-nine percent prediction limits for paired BrAC measurements correspond to a 0.020 g/210 L maximum absolute difference, meeting the NSC/CAOD recommendation that paired breath-alcohol analysis results within 0.02 g/210 L shall be deemed to be in acceptable agreement. We conclude that the field system for breath-alcohol analysis studied by us can and does perform reliably and accurately at low BrACs. PMID:10517542

  15. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    Science.gov (United States)

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of

  16. In vivo MRS and MRSI: Performance analysis, measurement considerations and evaluation of metabolite concentration images

    Science.gov (United States)

    Vikhoff-Baaz, Barbro

    2000-10-01

    The doctoral thesis concerns development, evaluation and performance of quality assessment methods for volume- selection methods in 31P and 1H MR spectroscopy (MRS). It also contains different aspects of the measurement procedure for 1H MR spectroscopic imaging (MRSI) with application on the human brain, image reconstruction of the MRSI images and evaluation methods for lateralization of temporal lobe epilepsy (TLE). Two complementary two-compartment phantoms and evaluation methods for quality assessment of 31P MRS in small-bore MR systems were presented. The first phantom consisted of an inner cube inside a sphere phantom where measurements with and without volume selection where compared for various VOI sizes. The multi-centre showed that the evaluated parameters provide useful information of the performance of volume-selective MRS at the MR system. The second phantom consisted of two compartments divided by a very thin wall and was found useful for measurements of the appearance and position of the VOI profile in specific gradient directions. The second part concerned 1H MRS and MRSI of whole-body MR systems. Different factors that may degrade or complicate the measurement procedure like for MRSI were evaluated, e.g. the volume selection performance, contamination, susceptibility and motion. Two interpolation methods for reconstruction of MRSI images were compared. Measurements and computer simulations showed that Fourier interpolation correctly visualizes the information inherent in the data set, while the results were dependent on the position of the object relative the original matrix using Cubic spline interpolation. Application of spatial filtering may improve the image representation of the data. Finally, 1H MRSI was performed on healthy volunteers and patients with temporal lobe epilepsy (TLE). Metabolite concentration images were used for lateralization of TLE, where the signal intensity in the two hemispheres were compared. Visual analysis of the

  17. Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks.

    Science.gov (United States)

    Bayram, Adem; Kankal, Murat; Onsoy, Hizir

    2012-07-01

    Suspended sediment concentration (SSC) is generally determined from the direct measurement of sediment concentration of river or from sediment transport equations. Direct measurement is very costly and cannot be conducted for all river gauge stations. Therefore, correct estimation of suspended sediment amount carried by a river is very important in terms of water pollution, channel navigability, reservoir filling, fish habitat, river aesthetics and scientific interests. This study investigates the feasibility of using turbidity as a surrogate for SSC as in situ turbidity meters are being increasingly used to generate continuous records of SSC in rivers. For this reason, regression analysis (RA) and artificial neural networks (ANNs) were employed to estimate SSC based on in situ turbidity measurements. The SSC was firstly experimentally determined for the surface water samples collected from the six monitoring stations along the main branch of the stream Harsit, Eastern Black Sea Basin, Turkey. There were 144 data for each variable obtained on a fortnightly basis during March 2009 and February 2010. In the ANN method, the used data for training, testing and validation sets are 108, 24 and 12 of total 144 data, respectively. As the results of analyses, the smallest mean absolute error (MAE) and root mean square error (RMSE) values for validation set were obtained from the ANN method with 11.40 and 17.87, respectively. However these were 19.12 and 25.09 for RA. It was concluded that turbidity could be a surrogate for SSC in the streams, and the ANNs method used for the estimation of SSC provided acceptable results.

  18. Surrogate measures for providing high frequency estimates of total phosphorus concentrations in urban watersheds.

    Science.gov (United States)

    Viviano, Gaetano; Salerno, Franco; Manfredi, Emanuela Chiara; Polesello, Stefano; Valsecchi, Sara; Tartari, Gianni

    2014-11-01

    Until robust in situ sensors for total phosphorus (TP) are developed, continuous water quality measurements have the potential to be used as surrogates for generating high frequency estimates. Their use has widespread implications for water quality monitoring programmes considering that TP, in particular, is generally recognised as the limiting factor in the process of eutrophication. Surrogate measures for TP concentration, such as turbidity, have proved useful within natural and agricultural contexts, but their predictive capability for urban watersheds is considered more difficult, due to the different sources of TP, though a strict relationship with turbidity/suspended matter has been clearly described even for these environments. In this context, we investigated this still unresolved problem for high frequency estimation of TP concentration in urban environments by monitoring a medium-sized (71 km(2)) urban watershed (Lambro River watershed, north Italy) in which we detected 60 active combined sewer overflows, and an its natural sub-basin for comparison. We found two different relationships between turbidity and TP concentration in the investigated urban watershed that differently describe the prevalence of TP from point sources (domestic wastewaters) or diffuse origin (surface runoff). In this regard, we first characterise the prevailing sources of TP by using a marker for detecting domestic wastewater contamination (caffeine), then we describe the mutual relationships amongst the continuously monitored variables (in our case the occurrence of the First Flush and the clockwise turbidity/discharge hysteresis). Afterwards we discriminate, by observing variables that are continuously monitored (in our case, the discharge and the turbidity), amongst the continuous surrogate records according to their sources. In conclusion, we are able to apply the relevant turbidity/TP regression equations to each turbidity record and, thus, estimate the respective TP

  19. Pulsed Lidar for Measurement of C02 Concentrations for the ASCENDS Mission - Update

    Science.gov (United States)

    Abshire, James; Riris, Haris; Allan, Graham; Sun, Xiaoli; Mao, Jianping; Weaver, Clark; Yu, Anthony; Chen, Jeffrey; Rodriquez, Michael; Kawa, S. Randy

    2011-01-01

    We have been developing a laser-based sounding technique for the remote measurement of the tropospheric CO2 concentrations from orbit for NASA is ASCENDS mission. The mission's goals are to provide measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution. These are needed to better understand CO2 fluxes and the processes that regulate CO2 storage by the land and oceans. For the lIP, we are developing and demonstrating the lidar techniques and key lidar technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to demonstrate the key capabilities needed for a space lidar and mission approach for the ASCENDS mission. We use a pulsed lidar technique, which is much less sensitive to errors from cloud and atmospheric scattering and to noise from solar background. It allows continuous measurements of CO2 mixing ratio in the lower troposphere during day and night. Our approach uses the 1570nm CO2 band and a two-wavelength laser absorption spectrometer, which continuously measures at nadir from a circular polar orbit. It directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses a pair of tunable laser transmitters, which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570 nm band and from a line pair in the Oxygen A-band near 765 nm. These regions have temperature insensitive absorption lines are free from interference from other gases. The lasers pulse at 10KHz, use tunable diode seed lasers followed by laser amplifiers, and have MHz spectral widths. During the measurement the lasers are stepped across the selected lines at a kHz rate. The receiver uses a 1-m class telescope and photon sensitive detectors and measures the background light and energies of the laser echoes from the

  20. Prototype of a primary calibration system for measurement of radon activity concentration.

    Science.gov (United States)

    Mostafa, M Y A; Vasyanovich, M; Zhukovsky, M

    2016-01-01

    To calibrate measurement devices for monitoring the activity concentration of (222)Rn in air, a prototype of a calibration facility is tested using a solid (226)Ra source and a high-purity germanium (HPGe) detector. An emanation box was mounted on the detector for online gamma measurements. Inside this box, a 32.8 kBq ±3% (226)Ra standard source was placed. An AlphaGUARD control radon monitor was connected to the emanation box with a pumping air system in an open flow mode as a reference monitor. The emanation coefficient of the source was controlled online by comparing the gamma activity of (214)Bi (Eγ=609.3 keV), progeny of (226)Ra, to that of the calibration source. A standard (137)Cs source, installed within the emanation box, was used as a reference for gamma spectroscopy using the HPGe detector, with a total systematic error of 4% and a random error less than 2%. The ratio between gamma measurements and AlphaGUARD was 0.94±0.4; which is within the 9% uncertainties of AlphaGUARD calibration. PMID:26490512

  1. Measuring Leaf Chlorophyll Concentration from Its Color: A Way in Monitoring Environment Change to Plantations

    CERN Document Server

    Shibghatallah, Muhammad Abdul Hakim; Suhandono, Sony; Viridi, Sparisoma; Kesuma, Teja

    2013-01-01

    Leaf colors of a plant can be used to identify stress level due to its adaptation to environmental change. For most leaves green-related colors are sourced from chlorophyll a and b. Chlorophyll concentration is normally measured using a spectrophotometer in laboratory. In some remote observation places, it is impossible to collect the leaves, preserve them, and bring them to laboratory to measure their chlorophyll content. Based on this need, measurement of chlorophyll content is observed through its color. Using CIE chromaticity diagram leaf color information in RGB is transformed into wavelength (in nm). Paddy seed with variety name IR-64 is used in observation during its vegetation stage t (age of 0-10 days). Light exposure time {\\tau} is chosen as environmental change, which normally should be about 12 hours/day, is varied (0-12 hours/day). Each day sample from different exposure time is taken, its color is recorded using HP Deskjet 1050 scanner with 1200 dpi, and its chlorophyll content is obtained from ...

  2. Turbulent velocity and concentration measurements in a macro-scale multi-inlet vortex nanoprecipitation reactor

    Science.gov (United States)

    Liu, Zhenping; Fox, Rodney; Hill, James; Olsen, Michael

    2013-11-01

    Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles. Microscale multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide rapid mixing and flexibility of inlet flow conditions. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in industry. In the presented research, the turbulent velocity field inside a scaled-up, macroscale MIVR is measured by particle image velocimetry (PIV). Within the reactor, velocity is measured using both two-dimensional and stereoscopic PIV at two Reynolds numbers (3500 and 8750) based on the flow at each inlet. Data have been collected at numerous locations in the inlet channels, the reaction chamber, and the reactor outlet. Mean velocity and Reynolds stresses have been obtained based on 5000 instantaneous velocity realizations at each measurement location. The turbulent mixing process has also been investigated with passive scalar planar laser-induced fluorescence and simultaneous PIV/PLIF. Velocity and concentration results are compared to results from previous experiments in a microscale MIVR. Scaled profiles of turbulent quantities are similar to those previously found in the microscale MIVR.

  3. Measurement of Hepatitis B Surface Antigen Concentrations Using a Piezoelectric Microcantilever as a Mass Sensor

    Directory of Open Access Journals (Sweden)

    Sangkyu Lee

    2012-01-01

    Full Text Available Hepatitis B surface antigen (HBsAg concentrations were measured using a piezoelectric microcantilever sensor (PEMS developed by the authors. The developed PEMS is label-free and detects the sensing signal electrically. It was designed to measure the mass of biomolecules attached to it using an accurate mass-microbalancing technique; its probe area is confined to the end of the cantilever, and its equivalent spring constant is relatively high to minimize the effect of changes in the surface stress when the biomolecules are attached to it. The “dip- and-dry” technique was used to enable the probe area of the sensor to react with reagents in controlled environmental conditions. HBsAg was detected by an immunoreaction whereas the reaction time, antibody density, and its area on the probe were kept at a constant level. The mass of the detected HBsAg was measured in the range of 0.1–100 ng/mL.

  4. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    OpenAIRE

    H. Volten; Bergwerff, J.B.; M. Haaima; Lolkema, D. E.; A. J. C. Berkhout; G. R. van der Hoff; C. J. M. Potma; R. J. Wichink Kruit; W. A. J. van Pul; D. P. J. Swart

    2011-01-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM: the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference-free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet problems or interference problems by ammonium aerosols dissociating on tubes or filters. They measure concentrations up to at least 200 μg m−3, have a ...

  5. Application of the Gini index to measure the concentration on several agricultural international markets

    Directory of Open Access Journals (Sweden)

    Burny, P.

    1988-01-01

    Full Text Available This paper studies the level of concentration of several agricultural products exports whose roles are important in developing countries. The Gini index was determined as it measures the level of competition within the different markets. After a description of the index, eight products were studied : bovine meat, poultry meat, eggs in the shell, rice, sugar, tea, rubber and palm oil. For each of them, the Gini index was calculated according to the data of the Food and Agriculture Organisation in 1965, 1970, 1975, 1980 and 1985. A comparison was made between the years 1965 and 1985 in order to show the evolution of the relative importance of the different exporting countries. In conclusion, the successes, failures or changing goals of the agricultural policy of these countries could be evaluated.

  6. Methane emission from naturally ventilated livestock buildings can be determined from gas concentration measurements

    DEFF Research Database (Denmark)

    Bjerg, B; Zhang, Guoqiang; Madsen, J;

    2012-01-01

    Determination of emission of contaminant gases as ammonia, methane, or laughing gas from natural ventilated livestock buildings with large opening is a challenge due to the large variations in gas concentration and air velocity in the openings. The close relation between calculated animal heat...... ventilated, 150 milking cow building. The results showed that the methane emission can be determined with much higher precision than ammonia or laughing gas emissions, and, for methane, relatively precise estimations can be based on measure periods as short as 3 h. This result makes it feasible...... to investigate the influence of feed composition on methane emission in a relative large number of operating cattle buildings and consequently it can support a development towards reduced greenhouse gas emission from cattle production....

  7. Concentration measurement of lysosome enzymes in blood by fluorimetric analysis method

    Science.gov (United States)

    Strinadko, Marina M.; Strinadko, Elena M.

    2002-02-01

    The diagnostics of heritable disease series and sugar diabetes, myocardial infarction, collagenosis and kidney diseases widely uses the measurement of lysosomic enzymes in blood. In the present research work the definition procedure of concentration (beta) -glucuronidase with the help of fluorimetric analysis is offered, which allows using microamounts of biological fluids and samples with low enzyme activity which is especially important in paediatric practice. Due to the sharp sensibility of fluorimetric analysis and high speed of luminescent reactions the procedure gives an opportunity to obtain the result in the minimum terms as well as the use of small amounts of reaction mixture. The incubation in large dilution leads thereby to the elimination of influence of endogenic inhibitors and activators.

  8. Oil Concentration Measurement In Saturated Liquid Refrigerant Flowing Inside A Refrigeration Machine

    Directory of Open Access Journals (Sweden)

    Evelyne Morvan

    2001-03-01

    Full Text Available

    An ultrasonic device was calibrated to measure in situ and in real time the polyol ester oil (POE concentration of the refrigerant liquid R 410A. The first part of this paper is devoted to the properties of the mixture, to the effects of the presence of oil on the speed of sound in the liquid phase and to the calibration and validation procedures carried out with a saturated liquid refrigerant. In order to have a number of calibration points that is not too large, it is necessary to maintain the mixture as close as possible to saturation conditions, which constrains the choice of the location of the sensor on the installation investigated. In the second part, the first results obtained on this installation are presented. It appears that the speed of sound in the POE / R 410A mixture is a strong function of the temperature and oil concentration, as was expected, but it also significantly depends on the pressure. Consequently, if the use of a sensor in a sub-cooled area is considered, additional calibration and validation procedures are necessary.

    • This paper was presented at the ECOS'00 Conference in Enschede, July 5-7, 2000 

  9. Measurement of potential alpha energy concentration in some schools in Shillong city

    International Nuclear Information System (INIS)

    Radon and its progeny account for more than 50% of total natural radiation exposure to humans and are considered to an important cause of lung cancer (UNSCEAR, 2008). Indoor radon levels are much higher than outdoor levels hence the importance of assessing radon levels in indoor environments, particularly schools which serve as a significant source of radon exposure both for children and the staffs. Children have smaller lung volumes and higher breathing rates therefore an augmented radon concentration results to a higher radiation dose in children. In our study, potential alpha energy concentration (PAEC) of 20 schools in Shillong region has been measured using the SSNTD method with LR-115 type 2 detectors. The detectors in bare mode were placed in class rooms at different floors of each school during winter and summer season. The detectors in bare mode were placed in class rooms at diff rent floors of each school during winter and summer season. The PAEC (mWL) at each of the selected schools are calculated and it ranges from 2.56 - 58.2 mWL (Arithmetic mean) and 2.34 - 58.18 mWL (Geometric mean). And the annual effective dose equivalent (AEDE) ranges from 0.74 - 17.85 mSv.y-1. This preliminary study shows that the AEDE values of the schools under study are below the prescribed action limit by AERB i.e. 30 mSv.y-1. (author)

  10. Final report of evaluation of dose and measurement of radon concentration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A mean annual exposure to radon daughters in indoor air was estimated on the basis of measurement of radon concentration in indoor air in Japan from fiscal 1992 to 1996. Doses were estimated by UNSCEAR method. The representative values in this report show the mean values in whole Japan. Each dose in the local area was different reflecting the different concentration of radon daughters. However, the same parameters were used in each area. When mean annual dose of radon daughters was estimated, we used 15.5 Bq m{sup -3} mean annual exposure to radon daughters in indoor air, 5 Bq m{sup -3} that in outdoor air, 0.4 the equilibrium factor indoor, 0.6 the equilibrium factor outdoor and 0.9 of P. The model of UNSCEAR based on these above values gave 0.46 mSv y{sup -1} mean annual dose of radon daughters which were consisted of from 0.38 mSv y{sup -1} in Kanto district to 0.52 mSv y{sup -1} Kyushu, Okinawa district. (S.Y.)

  11. Engineering genetically encoded nanosensors for real-time in vivo measurements of citrate concentrations.

    Directory of Open Access Journals (Sweden)

    Jennifer C Ewald

    Full Text Available Citrate is an intermediate in catabolic as well as biosynthetic pathways and is an important regulatory molecule in the control of glycolysis and lipid metabolism. Mass spectrometric and NMR based metabolomics allow measuring citrate concentrations, but only with limited spatial and temporal resolution. Methods are so far lacking to monitor citrate levels in real-time in-vivo. Here, we present a series of genetically encoded citrate sensors based on Förster resonance energy transfer (FRET. We screened databases for citrate-binding proteins and tested three candidates in vitro. The citrate binding domain of the Klebsiella pneumoniae histidine sensor kinase CitA, inserted between the FRET pair Venus/CFP, yielded a sensor highly specific for citrate. We optimized the peptide linkers to achieve maximal FRET change upon citrate binding. By modifying residues in the citrate binding pocket, we were able to construct seven sensors with different affinities spanning a concentration range of three orders of magnitude without losing specificity. In a first in vivo application we show that E. coli maintains the capacity to take up glucose or acetate within seconds even after long-term starvation.

  12. MEASURING THE BANK MARKET CONCENTRATION IN ROMANIA IN THE PERIOD 2004-2013

    Directory of Open Access Journals (Sweden)

    COPIL CRINA ANGELA

    2015-04-01

    Full Text Available In this paper I proposed to analyse the phenomenon of bank concentration on the bank market from Romania in the period 2004-2013, the measurement indicators, the causes that lead to its appearance, and the effects that it has on the bank system. The main motivation for the choosing of this theme is the fact that the Romanian bank system knew a strong evolution of the phenomenon of bank concentration and consolidation along this period, evolution that began with a process of reform and transition to the market economy in which an important role is that of the bank privatization. Afterwards, following our adherence to the European union, the competition in the Romanian bank system increased singnificantly, which determined modifications of structure in the bank system. It appeared foreign bank institutions that determined the increase of the quality of the products and services offered, due to the accentuation of the bank competition on the bank market from Romania. The Romanian bank system knew an accentuated diversification and dynamics determined by the development of the macro economic background from our country, the bank system being oriented to offer competitive products and services according to the European requests. The financial crisis from 2008 placed its imprint on the bank system from Romania affecting in different forms all the participants of the Romanian bank market.

  13. Thermal diffusivity measurement of spherical gold nanofluids of different sizes/concentrations

    Science.gov (United States)

    López-Muñoz, Gerardo A.; Pescador-Rojas, José A.; Ortega-Lopez, Jaime; Salazar, Jaime Santoyo; Balderas-López, J. Abraham

    2012-07-01

    In recent times, nanofluids have been studied by their thermal properties due to their variety of applications that range from photothermal therapy and radiofrequency hyperthermia (which have proven their potential use as coadjutants in these medical treatments for cancer diseases) to next-generation thermo-fluids. In this work, photoacoustic spectroscopy for a specific study of thermal diffusivity, as a function of particle size and concentration, on colloidal water-based gold nanofluids is reported. Gold nanoparticles were synthetized in the presence of hydroquinone through a seed-mediated growth with homogenous sizes and shapes in a range of 16 to 125 nm. The optical response, size and morphology of these nanoparticles were characterized using ultraviolet-visible spectroscopy and transmission electron microscopy, respectively. Thermal characterizations show a decrease in the thermal diffusivity ratio as the nanoparticle size is increased and an enhancement in thermal diffusivity ratio as nanoparticle concentration is added into the nanofluids. Compared with other techniques in the literature such as thermal lens and hot wire method, this photoacoustic technique shows an advantage in terms of precision, and with a small amount of sample required (500 μl), this technique might be suitable for the thermal diffusivity measurement of nanofluids. It is also a promising alternative to classical techniques.

  14. Measurement of the Cupric Ion Concentration in the Simulation of the Focusing effect

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Je-Young; Hong, Seung-Hyun; Chung, Bum-Jin [Kyung Hee University, Seoul (Korea, Republic of)

    2015-10-15

    The Rayleigh number and aspect ratio (H/R) ranged from 8.49x10{sup 7} to 5.43x10{sup 9} and 0.135 to 0.541 respectively. In order to simulate the different temperature conditions of top and side wall, an electrical resistance was attached to the top wall so that it is mimics hotter wall condition. The heat transfer experiments were replaced by mass transfer experiments based on the heat and mass transfer analogy concept. A sulfuric acid-copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system was adopted as the mass transfer system. The experimental study was performed to investigate the focusing effect according to the different temperature conditions and the height in metallic layer. This work devised a method to simulate the different cooling conditions of the top and side walls and adopted an electrical resistance to the top plate. The electrical resistance was varied for the height of side wall. The experimental results agreed well with the Rayleigh-Benard convection correlations of Dropkin and Somerscales and Globe and Dropkin. The heat transfer was enhanced by increasing the electrical resistance and decreasing the height of side wall. The focusing effect at the side wall was improved by the hotter top wall condition. In order to overcome the limitations of mass transfer, this work tried to measure the cupric ion concentration. The methods of concentration measurement are RGB, Brightness, ICP and PIV. The key of RGB, Brightness and PIV method is the clear images of the thermal boundary layer.

  15. Precise timing resolution measurements of GSO scintillators with different Ce concentrations combined with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Satoshi, E-mail: okumura.satoshi@c.mbox.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yamamoto, Seiichi [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yeol Yeom, Jung [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of); Shimura, Naoaki; Ishibashi, Hiroyuki [Hitachi Chemical, Ibaraki (Japan)

    2015-10-11

    Ce doped Gd{sub 2}SiO{sub 5} (GSO) is a scintillator which has relatively fast decay time, high density, high light output, and is used for commercial PET systems. However as time-of-flight (TOF) PET systems become more popular in clinical diagnostic, GSO seems less attractive, because its performance is thought to be insufficient for use in TOF-PET application. Although the timing resolution of the GSO combined with photomultiplier tube (PMT) is known to be inappropriate for TOF-PET system, the performance of GSO coupled to silicon photomultipliers (Si-PM) has not been reported to date. In addition, GSO possesses a variety of decay times depending on its Ce concentration. We measured basic performance of GSOs with different Ce concentrations and then coupled them to Si-PMs to measure the precise timing resolution using a high bandwidth digital oscilloscope. The decay time of GSO with 0.4 mol% Ce were longer (63±4 ns) compared with those with 1.0 mol% (40±2 ns) and 1.5 mol% (33±1 ns). With a Si-PM, the photo-peak channels were almost the same for GSOs with 0.4 mol% Ce and those with 1.5 mol% Ce, but the GSO with 1.0 mol% Ce was ~25% higher. Energy resolutions of these three GSOs were ~13% full-width at half-maximum (FWHM) for 662 keV gamma photons without correcting for saturation effects. When coupled to Si-PMs, the timing resolution for GSO with 1.5 mol% Ce (decay time 33 ns) was 549 ps FWHM, almost good enough to use for TOF-PET system. The combination of GSO with 1.5 mol% Ce with Si-PM will be an interesting combination to realize low cost TOF-PET systems.

  16. Evaluation of TENORMs field measurement with actual activity concentration in contaminated soil matrices.

    Science.gov (United States)

    Saint-Fort, Roger; Alboiu, Mirtyll; Hettiaratchi, Patrick

    2007-09-01

    The occurrence of technologically enhanced naturally occurring radioactive materials (TENORMs) concentrated through anthropogenic processes in contaminated soils at oil and gas facilities represent one of the most challenging issues facing the Canadian and US oil and gas industry today. Natural occurring radioactivity materials (NORMs) field survey techniques are widely used as a rapid and cost-effective method for ascertaining NORMs risks associated with contaminated soils and waste matrices as well other components comprising the environment. Because of potentially significant liability issues with Norms if not properly managed, the development of quantitative relationships between TENORMs field measurement techniques and laboratory analysis present a practical approach in facilitating the interim safe decision process since laboratory results can take days. The primary objective of this study was to evaluate the relationships between direct measurements of field radioactivity and various laboratory batch techniques using data collection technologies for NORM and actual laboratory radioactivity concentrations. The significance of selected soil characteristics that may improve or confound these relationships in the formulation of empirical models was also achieved as an objective. The soil samples used in this study were collected from 4 different locations in western Canada and represented a wide range in terms of their selected chemical and physical properties. Multiple regression analyses for both field and batch data showed a high level of correlation between radionuclides Ra-226 and Ra-228 as a function of data collection technologies and relevant soil parameters. All R2 values for the empirical models were greater than 0.80 and significant at P<0.05. The creation of these empirical models could be valuable in improving predictability of radium contamination in soils and therefore, reduce analytical costs as well as environmental liabilities.

  17. Measurements of indoor radon concentration levels in dwellings in Bethlehem, Palestine.

    Science.gov (United States)

    Leghrouz, Amin A; Abu-Samreh, Mohammad M; Shehadeh, Ayah K

    2013-02-01

    Indoor radon level measurements were carried out in 42 dwellings in Bethlehem, Palestine, using CR-39 solid state nuclear track detectors. The measurements were performed during winter and spring seasons of the year 2010, for a period ranging from 97-118 d using a total of 100 detectors. The detectors were installed in living rooms, bedrooms, kitchens, and storage areas of 39 houses, as well as in three schools, selected randomly in the surveyed area. The results of indoor radon levels and the annual effective dose in houses were found to vary from 26 - 611 Bq m(-3) and 0.65 - 14.1 m Sv y(-1), with average values of 117.0 Bq m(-3) and 2.95 m Sv y(-1), respectively. The mean values of radon concentration levels in bedrooms, kitchens, living rooms, basements, and storage areas are, respectively, 106.5, 113.1, 101.5, and 164.2 Bq m(-3). The corresponding mean values of annual effective dose for the bedrooms, kitchens, living rooms, basements, and storage areas are 2.66, 2.83, 2.54, 14.1 m Sv y(-1), respectively. In schools, the radon levels are found to vary from 31 - 400 Bq m(-3) with an average value of 125.1 Bq m(-3). The average annual effective dose in schools is found to be 3.12 mSv y(-1). This value is higher than the assigned international value. In general, the results show that radon concentration levels in 83% of the investigated dwellings are lower than the indoor radon action level of 150 Bq m(-3) for the United States.

  18. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    Science.gov (United States)

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  19. Erosion rates and landscape evolution of the lowlands of the Upper Paraguay river basin (Brazil) from cosmogenic 10Be

    Science.gov (United States)

    Pupim, Fabiano do Nascimento; Bierman, Paul R.; Assine, Mario Luis; Rood, Dylan H.; Silva, Aguinaldo; Merino, Eder Renato

    2015-04-01

    The importance of Earth's low sloping areas in regard to global erosion and sediment fluxes has been widely and vigorously debated. It is a crucial area of research to elucidate geologically meaningful rates of land-surface change and thus the speed of element cycling on Earth. However, there are large portions of Earth where erosion rates have not been well or extensively measured, for example, the tropical lowlands. The Cuiabana lowlands are an extensive low-altitude and low-relief dissected metamorphic terrain situated in the Upper Paraguay river basin, central-west Brazil. Besides exposures of highly variable dissected metamorphic rocks, flat residual lateritic caps related to a Late Cenozoic planation surface dominate interfluves of the Cuiabana lowlands. The timescale over which the lowlands evolved and the planation surface developed, and the rate at which they have been modified by erosion, are poorly known. Here, we present measurements of in situ produced cosmogenic 10Be in outcropping metamorphic bedrock and clastic-lateritic caps to quantify rates of erosion of the surface and associated landforms in order to better understand the Quaternary landscape evolution of these lowlands. Overall, slow erosion rates (mean 10 m/Ma) suggest a stable tectonic environment in these lowlands. Erosion rates vary widely between different lithologies (range 0.57 to 28.3 m/Ma) consistent with differential erosion driving regional landform evolution. The lowest erosion rates are associated with the low-relief area (irregular plains), where clastic-laterite (mean 0.67 m/Ma) and quartzite (mean 2.6 m/Ma) crop out, whereas the highest erosion rates are associated with dissection of residual hills, dominated by metasandstone (mean 11.6 m/Ma) and phyllite (mean 27.6 m/Ma). These data imply that the Cuiabana lowland is comprised of two dominant landform sets with