WorldWideScience

Sample records for 1-ev gainnas solar

  1. Graded band gap GaInNAs solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Langer, F.; Perl, S.; Kamp, M. [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex, Material Systems, University of Würzburg, Am Hubland, Würzburg D97074 (Germany); Höfling, S. [Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex, Material Systems, University of Würzburg, Am Hubland, Würzburg D97074 (Germany); SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2015-06-08

    Dilute nitride GaInN(Sb)As with a band gap (E{sub g}) of 1.0 eV is a promising material for the integration in next generation multijunction solar cells. We have investigated the effect of a compositionally graded GaInNAs absorber layer on the spectral response of a GaInNAs sub cell. We produced band gap gradings (ΔE{sub g}) of up to 39 meV across a 1 μm thick GaInNAs layer. Thereby, the external quantum efficiency—compared to reference cells—was increased due to the improved extraction of photo-generated carriers from 34.0% to 36.7% for the wavelength range from 900 nm to 1150 nm. However, this device figure improvement is accompanied by a small decrease in the open circuit voltage of about 20 mV and the shift of the absorption edge to shorter wavelengths.

  2. Improved performance in GaInNAs solar cells by hydrogen passivation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, M.; Whiteside, V. R.; Keay, J. C.; Meleco, A.; Sellers, I. R. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, Oklahoma 73019 (United States); Hossain, K.; Golding, T. D. [Amethyst Research Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Leroux, M.; Al Khalfioui, M. [CRHEA-CNRS, Rue Bernard Gregory, Valbonne 06560 (France)

    2015-04-06

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells.

  3. Improved performance in GaInNAs solar cells by hydrogen passivation

    Science.gov (United States)

    Fukuda, M.; Whiteside, V. R.; Keay, J. C.; Meleco, A.; Sellers, I. R.; Hossain, K.; Golding, T. D.; Leroux, M.; Al Khalfioui, M.

    2015-04-01

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells.

  4. Improved performance due to selective passivation of nitrogen clusters in GaInNAs solar cells

    Science.gov (United States)

    Fukuda, Miwa; Whiteside, Vincent R.; Al Khalfioui, Mohamed; Leroux, Mathieu; Hossain, Khalid; Sellers, Ian R.

    2015-03-01

    While GaInNAs has the potential to be a fourth-junction in multi-junction solar cells it has proved to be difficult to incorporate due to the low solubility of nitrogen in these materials. Specifically, mid-gap states attributed to nitrogen clusters have proved prohibitive for practical implementation of these systems. Here, we present the selective passivation of nitrogen impurities using a UV-activated hydrogenation process, which enables the removal of defects while retaining substitution nitrogen. Temperature dependent photoluminescence measurements of the intrinsic region of a GaInNAs p-i-n solar cell show a classic ``s-shape'' associated with localization prior to hydrogenation, while after hydrogenation no sign of the ``s-shape'' is evident. This passivation of nitrogen centers is reflected in improved performance of solar cells structures relative to reference, unpassivated devices presenting a potential route to practical implementation of GaInNAs solar cells. The authors acknowledge support through Oklahoma Center for the Advancement of Science and Technology under the Oklahoma Applied Research Support Grant No. AR12.2-040.

  5. Comparative study of defect levels in GaInNAs, GaNAsSb, and GaInNAsSb for high-efficiency solar cells

    Science.gov (United States)

    Polojärvi, Ville; Aho, Arto; Tukiainen, Antti; Schramm, Andreas; Guina, Mircea

    2016-03-01

    Background doping and defect levels in GaInNAs, GaNAsSb, and GaInNAsSb solar cells with 1 eV band-gap are reported. Localized point defect induced traps were observed showing broadest defect distribution in GaInNAsSb. Incorporation of Sb reduced the unintentional p-type background doping by an order of magnitude, but increased the capture cross sections of deep levels by three orders of magnitude. The thermal activation energy of the dominating hole trap was increased from 350 meV for GaInNAs to 560 meV for GaNAsSb. Annealing of GaNAsSb solar cells improved the open circuit voltage from 280 mV to 415 mV, owing to the reduction in trap density.

  6. 1-eV GaInNAs solar cells for ultrahigh-frequency multijunction devices

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, D.J.; Geisz, J.F.; Kurtz, S.R.; Olson, J.M. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    The authors demonstrate working prototypes of a GaInNAs-based solar cell lattice-matched to GaAs with photoresponse down to 1 eV. This device is intended for use as the third junction of future-generation ultrahigh-efficiency three- and four-junction devices. Under the AM1.5 direct spectrum with all the light higher in energy than the GaAs band gap filtered out, the prototypes have open-circuit voltages ranging from 0.35 to 0.44 V, short-circuit currents of 1.8 mA/cm{sup 2}, and fill factors from 61--66%. The short-circuit currents are of principal concern: the internal quantum efficiencies rise only to about 0.2. The authors discuss the short diffusion lengths which are the reason for this low photocurrent. As a partial workaround for the poor diffusion lengths, they demonstrate a depletion-width-enhanced variation of one of the prototype devices that grades off decreased voltage for increased photocurrent, with a short-circuit current of 6.5 mA/cm{sup 2} and an open-circuit voltage of 0.29 V.

  7. Study of GaInNAs Epilayers Using Optical Methods

    Science.gov (United States)

    Tsai, Yutsung

    Photovoltaic devices that convert sun's energy into electricity have the potential to influence energy needs on a global scale. A major limitation of single junction solar cells is that only photons with energy slightly above the bandgap are absorbed efficiently. One of the methods is to split the energy of the incoming spectrum into multiple bands each of which is absorbed separately for more efficient collection. That is why multijunction solar cells formed from III-V compound semiconductors are the highest efficiency photovoltaic devices today. To achieve this goal, researchers stack a number of junctions made of different materials with the highest gap material at the top and the lowest at the bottom since each material is transparent to photons with energy smaller than its bandgap. Kurtz [1] predicted an improvement in the performance of multijunction solar cells if a fourth material with bandgap in the 1.0eV-1.05eV range is included between the GaAs (bandgap = 1.42 eV) and Ge (bandgap = 0.67 eV) in the solar cell. In order for this fourth material to be easily incorporated into the GaInP/ GaAs/Ge triple junction device, it must also be lattice matched to germanium. Since it is preferred to grow multijunction solar cells monolithically lattice matching is required making the options for the 1 eV material rather limited. The most promising material for the fourth junction is currently GaInNAs. This is the reason why this thesis concentrates on the study of this material. In this thesis, we have conducted PL, optical pumping, magneto-PL, reflectance and transmission spectroscopic studies of undoped and p-type doped GaInNAs epilayers. The objective of these studies is to investigate the following phenomena in our samples: (a) Localized excitons and free excitons at low temperatures in GaInNAs epilayers: The exciton localization at low temperatures in undoped GaInNAs epilayers results in the S-shape of the PL peaks versus temperature plot. On the other hand, the

  8. Room-temperature electron spin amplifier based on Ga(In)NAs alloys.

    Science.gov (United States)

    Puttisong, Yuttapoom; Buyanova, Irina A; Ptak, Aaron J; Tu, Charles W; Geelhaar, Lutz; Riechert, Henning; Chen, Weimin M

    2013-02-06

    The first experimental demonstration of a spin amplifier at room temperature is presented. An efficient, defect-enabled spin amplifier based on a non-magnetic semiconductor, Ga(In)NAs, is proposed and demonstrated, with a large spin gain (up to 2700% at zero field) for conduction electrons and a high cut-off frequency of up to 1 GHz.

  9. Theoretical studies of GaInNAs for optoelectronic device applications

    CERN Document Server

    Alexandropoulos, D

    2003-01-01

    This thesis focuses on the theoretical analysis of GalnNAs alloys for use in optoelectronic devices. We develop reliable theoretical models that describe the properties of GaInNAs alloys and apply these to establish design rules. We develop a k centre dot p model for the band structure of GaInNAs-based Quantum Wells (QW) that accounts for valence band mixing effects, strain effects and the N induced coupling of the conduction band states of GaInNAs alloys. We implement the model to study the effect of N on the conduction and valence bands. The optical properties of GaInNAs structures are studied and design rules that ensure optimal performance are derived for 1.3 mu m emission. It is established that high N content decreases the differential gain and the Momentum Matrix Element (MME) for TE polarisation while it increases the transparency concentration and the MME for TM polarisation. The material gain and linewidth enhancement factor are found to have comparable values to InGaAsP structures. The effect of al...

  10. Optimisation of optical properties of a long-wavelength GaInNAs quantum-well laser diode

    Energy Technology Data Exchange (ETDEWEB)

    Alias, M S; Maskuriy, F; Faiz, F; Mitani, S M [Advanced Physical Technologies Laboratory, Telekom Malaysia Research and Development (TMR and D), Lingkaran Teknokrat Timur, 63000 Cyberjaya, Selangor (Malaysia); AL-Omari, A N [Electronic Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163 (Jordan)

    2013-11-30

    We report optimisation of optical properties of a strained GaInNAs/GaAs quantum-well laser, by taking into account the many-body effect theory and the bowing parameter. The theoretical transition energies and the GaInNAs bowing parameter are fitted into the photoluminescence spectrum of the GaInNAs quantum well, obtained in the experiment. The theoretical results for the photoluminescence spectrum and laser characteristics (light, current and voltage) exhibits a high degree of agreement with the experimental results. (lasers)

  11. High-Quality Growth of GaInNAs for Application to Near-Infrared Laser Diodes

    Directory of Open Access Journals (Sweden)

    Masahiko Kondow

    2012-01-01

    Full Text Available GaInNAs was proposed and created in 1995. It can be grown pseudomorphically on a GaAs substrate and is a light-emitting material with a bandgap energy that corresponds to near infrared. By combining GaInNAs with GaAs, an ideal band lineup for laser-diode application is achieved. This paper presents the reproducible growth of high-quality GaInNAs by molecular beam epitaxy. Examining the effect of nitrogen introduction and its correlation with impurity incorporation, we find that Al is unintentionally incorporated into the epitaxial layer even though the Al cell shutter is closed, followed by the concomitant incorporation of O and C. A gas-phase-scattering model can explain this phenomenon, suggesting that a large amount of N2 gas causes the scattering of residual Al atoms with occasional collisions resulting in the atoms being directed toward the substrate. Hence, the reduction of the sublimated Al beam during the growth period can suppress the incorporation of unintentional impurities, resulting in a highly pure epitaxial layer.

  12. Vertical composition fluctuations in (Ga,In)(N,As) quantum wells grown on vicinal (1 1 1) B GaAs

    OpenAIRE

    Luna García de la Infanta, Esperanza; Trampert, Achim; Miguel-Sanchez, J.; Fernández González, Alvaro de Guzmán; Ploog, K.H.

    2008-01-01

    In this work, we present a detailed transmission electron microscopy analysis of the interfacial structure and composition uniformity of (Ga,In)(N,As) quantum wells grown by molecular beam epitaxy on vicinal GaAs(1 1 1)B substrates. Vertical composition fluctuations inside the (Ga,In)(N,As) quantum well are detected depending on the growth conditions, in particular the V/III flux ratio and the growth rate. This vertical composition fluctuation due to the phase separation tendency is in contra...

  13. Formulation and immunological evaluation of a trivalent vaccine comprising emulsified submicron particles and inactivated virions of H5N1/EV71/JEV.

    Science.gov (United States)

    Lin, Chih-Wei; Chang, Ching-Yun; Chen, Wei-Lin; Lin, Shih-Chang; Liao, Chien-Chun; Chang, Jui-Yuan; Liu, Chia-Chyi; Hu, Alan Yung-Chih; Lu, Tsung-Chun; Chou, Ai-Hsiang; Wu, Suh-Chin; Chong, Pele; Huang, Ming-Hsi

    2013-11-01

    Combination vaccines can reduce the number of injections and simplify the immunization schedule required to prevent different diseases. Here we assessed the immunogenicity in a mouse model of a vaccine composition comprising inactivated influenza viruses (H5N1/H1N1), enterovirus 71 (EV71), and/or Japanese encephalitis virus (JEV) and investigated whether the vaccine formulations can overcome the immunologic interference between the individual vaccine components. We demonstrated that the antigenic competition happens between H5N1/H1N1 or H5N1/EV71 inactivated virions when the vaccine combinations either formulated with Alum suspensions or without adjuvant. In the presence of PELC emulsified particles, EV71-specific immune responses before and after incorporating H5N1 virus into EV71 vaccine were detected of no significant difference; in addition, H5N1- and EV71-specific immune responses were found at the same level when H5N1/EV71/JEV consolidating into combination vaccine. Emulsified vaccine formulation was represented as a potential tool that is found to reduce the number of injections required to prevent multiple infectious strains causing the same disease (H5N1/H1N1) and/or that protect against different diseases (H5N1/EV71). Combination vaccines can also include a third component to protect against H5N1/EV71/JEV at the same time.

  14. Correlation of DLTS and Performance of GaInNAs Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.; Johnston, S.; Friedman, D.; Ptak, A.; Geisz, J.; McMahon, W.; Olson, J.; Kibbler, A.; Crandall, R.; Ahrenkiel, R.; Kramer, C.; Young, M.

    2005-01-01

    A four-junction GaInP/GaAs/GaInAsN/Ge solar cell should be able to reach 40% efficiency if each of the junctions can be made with a quality similar to that demonstrated for GaAs. However, the GaInAsN subcell has shown poor performance. Deep-level transient spectroscopy (DLTS) can elucidate recombination centers in a material and could help identify the problem with the GaInAsN. So far, DLTS studies of GaInAsN have shown many peaks. In this paper we compare the performance of the GaInAsN solar cells with the DLTS spectra to identify which DLTS peak is correlated with the device performance.

  15. Photocurrent and Photoluminescence Investigations of GaInNAs and GaInNAs(Sb Quantum Wells Grown by Molecular Beam Epitaxy

    Directory of Open Access Journals (Sweden)

    S. B. Bouzid

    2005-01-01

    Full Text Available We have investigated photocurrent (PC and photoluminescence (PL in sequentially grown GaInNAs/GaAs and GaInNAs(Sb/GaAsSbN quantum wells. Photocurrent transitions are analyzed by theoretical calculations using envelope function formalism taking into account the strain effect and the strong coupling between nitrogen localized state and the GaInAs band gap. The results are consistent with a type I band alignment and a conduction band offset ratio of about 80 %. Additionally, our results suggest an increase of the electron effective mass by as much as 0.035 m0 resulting from the flattening of the conduction band under nitrogen effect. The temperature evolution of the PL peak energy and the integrated PL intensity of GaInNAsSb QW show evidence of strong localization of carriers. Both, the high delocalization temperature, in the 230 K range and the strong shift between the PC and PL spectra of GaInNAsSb QW, indicate the presence of deeper localized states as compared to that in the GaInNAs QW.

  16. High gain 1.3-μm GaInNAs SOA with fast gain dynamics and enhanced temperature stability

    Science.gov (United States)

    Fitsios, D.; Giannoulis, G.; Iliadis, N.; Korpijärvi, V.-M.; Viheriälä, J.; Laakso, A.; Dris, S.; Spyropoulou, M.; Avramopoulos, H.; Kanellos, G. T.; Pleros, N.; Guina, M.

    2014-03-01

    Semiconductor optical amplifiers (SOAs) are a well-established solution of optical access networks. They could prove an enabling technology for DataCom by offering extended range of active optical functionalities. However, in such costand energy-critical applications, high-integration densities increase the operational temperatures and require powerhungry external cooling. Taking a step further towards improving the cost and energy effectiveness of active optical components, we report on the development of a GaInNAs/GaAs (dilute nitride) SOA operating at 1.3μm that exhibits a gain value of 28 dB and combined with excellent temperature stability owing to the large conduction band offset between GaInNAs quantum well and GaAs barrier. Moreover, the characterization results reveal almost no gain variation around the 1320 nm region for a temperature range from 20° to 50° C. The gain recovery time attained values as short as 100 ps, allowing implementation of various signal processing functionalities at 10 Gb/s. The combined parameters are very attractive for application in photonic integrated circuits requiring uncooled operation and thus minimizing power consumption. Moreover, as a result of the insensitivity to heating issues, a higher number of active elements can be integrated on chip-scale circuitry, allowing for higher integration densities and more complex optical on-chip functions. Such component could prove essential for next generation DataCom networks.

  17. 1.3μm GaInNAs 量子阱RCE光探测器%1.3μm GaInNAs/GaAs QUANTUM WELL RESONANT CAVITY ENHANCED PHOTODETECTOR

    Institute of Scientific and Technical Information of China (English)

    张瑞康; 钟源; 徐应强; 张纬; 黄永清; 任晓敏; 潘钟; 林耀望

    2002-01-01

    采用配有dc-N plasma N源的分子束外延(MBE)技术在GaAs衬底上生长制作了工作波长为1,3μm的GaInNAs量子阱RCE探测器.采用传输矩阵法对器件结构进行优化.吸收区由三个GaInNAs量子阱构成,并用湿法刻蚀和聚酰亚胺对器件进行隔离.在零偏压下,器件最大的量子效率为12%,半峰值全宽(FWHM)为5.8nm,3dB带宽为30MHz,暗电流为2×10-11A.通过对MBE生长条件和器件结构的优化,将进一步提高该器件的性能.%A 1.3μm GaInNAs resonant cavity enhanced (RCE) photodetector (PD) has been grown by molecular beam epitaxy(MBE) monolithically on (100) GaAs substrate using a home-made ion-removed dc-plasma cell as nitrogen source.A transfer matrix method was used to optimize the device structure.The absorption region is composed of three GaInNAs quantum wells separated by GaAs layers.Devices were isolated by etching 130μm-diameter mesas and filling polyamide into grooves.The maximal quantum efficiency of the device is about 12% at 1.293μm.Full width at half maximum (FWHM) is 5.8nm and 3dB bandwidth is 304MHz.Dark current is 2×10-11A at zero bias voltage.Further improvement of the performance of the RCE PD can be obtained by optimizing of the structure design and MBE growth conditions.

  18. EV71-2A突变质粒的构建及体内外功能初探%Construction of pcDNA3 . 1-EV71-2A mutant and preliminary studying related biological functions

    Institute of Scientific and Technical Information of China (English)

    原素梅; 徐超; 张煦; 王源; 谢冰玉; 熊庆; 彭宜红

    2016-01-01

    Objective To construct EV71-2Amut(pcDNA3. 1-EV71-2A mutant plasmid)and studying its functions in vitro and in vivo, so as to provide an experiemental base for the further studying the active site and biological function of 2A pro-teinase. Methods By using of site-directed mutagenesis system based on PCR, EV71-2Amut was constructed on site-directed mutagenesis of 21His,39Asp and 110Cys genes and confirmed by sequencing analysis. Then EV71-2Amut and pRL-CMV(Cyto-megalovirus, CMV) were co-transfected to human rhabdomyosarcoma cell( RD cell) , and the enzyme activity inside cells was determined and compared with effect to pRL expression level between wild type EV71-2Apro and EV71-2Amut . EV71-2A mR-NA was detected by RT-PCR, and its effect on the quadriceps femoris of BALB/c mice was observed on histopathological changes, which reflected its transcription level and activity in vivo. Results The constructed EV71-2Amut sequence was i-dentical with we expected,the RL activity detected at cellular level from EV71-2Amut groups were significantly higher than that of EV71-2Apro groups (P<0. 05). EV71-2A-mRNA were detected by RT-PCR in quadriceps femoris from the mice injected with EV71-2Apro and EV71-2Amut . Compared with the control group injected with wild type 2A,inflammatory cell infiltration and coagulation necrosis were mild in quadriceps femoris injected with EV71-2Amut . Conclusion EV71-2Amut with H21N+D39E+C110A was successfully constructed. and its protease activity was almost abolished in RD cell and BABL/c mice. This work provides a ground work for the further studying the biological functions of EV71-2A protease.%目的:构建pcDNA3.1-EV71-2A的突变质粒(EV71-2Amut),并对其功能进行检测,为进一步研究肠道病毒71型(Enterovirus type 71,EV71)2A蛋白酶的活性位点及其生物学功能奠定实验基础。方法利用聚合酶链式反应(PCR)定点诱变技术,定点突变编码EV71-2A第21His、39Asp 和110Cys 氨基酸的位点,构建EV71

  19. GaInNAs laser gain

    Energy Technology Data Exchange (ETDEWEB)

    CHOW,WENG W.; JONES,ERIC D.; MODINE,NORMAND A.; KURTZ,STEVEN R.; ALLERMAN,ANDREW A.

    2000-05-23

    The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.

  20. Solar Indices - Solar Corona

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  1. Solar Indices - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  2. Solar Indices - Solar Irradiance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  3. Solar Indices - Solar Ultraviolet

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  5. Characterization of solar cells. New techniques with high spatial resolution; Entwicklung neuer Verfahren zur raeumlich hochaufloesenden Charakterisierung von Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Schwalm, Michael

    2011-06-16

    Today's raising demand for energy relies to a degree of 85% on the consumption of fossil fuels. A change to regenerative forms of energy is an important and inevitable step in order to face the challenges of climate change and fading natural resources. Photovoltaic's (PV) plays a special role within the various forms of renewable energy since it converts sunlight, our most important and virtually endless energy source, directly into electricity. However, currently available PV-systems are still very expensive and, in combination with their relatively low performance, can hardly or cannot compete with conventional sources of energy from an economical point of view. One possibility to overcome this problem is the combination of highly efficient multi junction solar cells with cost-efficient concentrator optics that focus the incident sunlight to a small spot. The material system (GaIn)(NAs) is envisioned to play an important role in a future generation of multi junction solar cells for concentrator applications being a further development of existing device concepts. However, especially the carrier diffusion lengths in (GaIn)(NAs)-based solar cell layers are currently to low for the fabrication of highly efficient PV-structures. In this work, two novel techniques for the characterization of solar cells are developed and evaluated by experiments on test structures and numerical simulations. Both are based on the measurement of laser-induced currents. Spatially-resolved photocurrent spectroscopy (SRPS) allows a spatially-resolved determination of locally induced photocurrents at a fixed bias voltage while spatially-resolved IV-characteristics (SRIV) are measurements of local I-V-characteristics at a certain position. It is found that SRPS and SRIV allow for a reliable and meaningful characterization of solar cell prototypes with a high spatial resolution. Especially the local p-n-parameters of the sample become accessible. These are the short circuit current

  6. Solar Features - Solar Flares

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  7. Solar storms; Tormentas solares

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: Pereira Cuesta, S.; Pereira Pagan, B.

    2016-08-01

    Solar storms begin with an explosion, or solar flare, on the surface of the sun. The X-rays and extreme ultraviolet radiation from the flare reach the Earths orbit minutes later-travelling at light speed. The ionization of upper layers of our atmosphere could cause radio blackouts and satellite navigation errors (GPS). Soon after, a wave of energetic particles, electrons and protons accelerated by the explosion crosses the orbit of the Earth, and can cause real and significant damage. (Author)

  8. Commercialization of New Lattice-Matched Multi-Junction Solar Cells Based on Dilute Nitrides: July 8, 2010 - March 7, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Herb, J.

    2012-04-01

    Final Technical Progress Report for PV Incubator subcontract NAT-0-99013-03. The overall objective of this Incubator subcontract was to complete the work necessary to make commercial ready solar cells using the dilute nitride technology. The specific objectives of this program were aimed at completing the development of a triple-junction solar cell that incorporates a GaInNAs {approx}1eV subcell to the point of commercial readiness, and determining the cell reliability and, if necessary, identifying and eliminating process or material related issues that lead to early-life cell failures. There were three major objectives for Phase 1, each of which focuses on a key element of the solar cell that determines its performance in a commercial CPV system. One objective was to optimize the quality and performance of the key individual components making up the solar cell structure and then to optimize the integration of these components into a complete triple-junction cell. A second objective was to design and test anti-reflective coating that maximizes the light coupled into a 3J cell with a {approx}1 eV bottom cell bandgap. The third objective was to develop Highly Accelerated Life Tests (HALT) protocols and tools for identifying and correcting potential reliability problems. The Phase 2 objectives were a continuation of the work begun in Phase 1 but aimed at optimizing cell performance for commercial requirements. Phase 2 had four primary objectives: (1) develop a glass-matched anti-reflective coating (ARC) and optimize the cell/ARC to give good performance at 60C operating temperature, (2) optimize the cell for good operation at 60C and high concentration, and (3) complete the light biased HALT system and use it to determine what, if any, failures are observed, and (4) determine the reliability limits of the optimized cell.

  9. Material Growth and Device Fabrication of GaAs Based 1.3μm GaInNAs Quantum Well Laser Diodes%1.3μm GaAs基GaInNAs量子阱生长与激光器研制

    Institute of Scientific and Technical Information of China (English)

    牛智川; 韩勤; 倪海桥; 杨晓红; 徐应强; 杜云; 张石勇; 彭红玲; 赵欢; 吴东海; 李树英; 贺振宏; 任正伟; 吴荣汉

    2005-01-01

    报道了中国第一只1.30μm单量子阱边发射激光器的材料生长、器件制备及特性测试.通过优化分子束外延生长参数,调节In和N组分含量使GaInNAs量子阱的发光波长覆盖1.3μm范围.脊形波导条形结构单量子阱边发射激光器,实现了室温连续激射,激射波长为1.30μm,阈值电流密度为1kA/cm2,输出功率为30mW.%Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GaInNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.

  10. Solar Energy.

    Science.gov (United States)

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  11. Solar energy

    Science.gov (United States)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  12. Solar Combisystems

    DEFF Research Database (Denmark)

    Thür, Alexander

    2006-01-01

    This note first introduces what is a solar combisystem, the structure how a solar combisystem is build up and what are criteria’s to evaluate a solar combisystem concept. Further on the main components of a solar combisystem, the main characteristics and possible advantages and disadvantages...... compared to each other are described. It is not the goal of this note to explain the technical details how to design all components of a solar combisystem. This is done during other lectures of the solar course and in other basic courses as well. This note tries to explain how a solar combisystem...

  13. Solar Collectors

    Science.gov (United States)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  14. Solar Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar photographic and illustrated datasets contributed by a number of national and private solar observatories located worldwide....

  15. Solar Indices

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  16. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  17. Solar urticaria

    Directory of Open Access Journals (Sweden)

    Srinivas C

    1995-01-01

    Full Text Available A 35-year-old female and a 41-year-old male presented with clinical features suggestive of solar urticaria. The diagnosis of solar urticaria and the effectiveness of a combination of H1 and H2 blocking antihistamines were confirmed by phototesting with a solar simulator

  18. Solar Indices - Solar Radio Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  19. Solar flair.

    Science.gov (United States)

    Manuel, John S

    2003-02-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams.

  20. Solar Energy: Solar System Economics.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  1. Solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Sommer-Larsen, P.; Krebs, F.C. (Risoe DTU, Roskilde (Denmark)); Plaza, D.M. (Plataforma Solar de Almeria-CIEMAT (Spain))

    2010-11-15

    Solar energy is the most abundant energy resource on earth. In a sustainable future with an ever-increasing demand for energy, we will need to use this resource better. Solar energy technologies either convert sunlight directly into heat and electrical energy or use it to power chemical conversions which create 'solar fuels' or synthetic compounds. Solar heating technologies have developed steadily for many years and solar heating and cooling is one of the world's commonest renewable energy technologies. This chapter, however, focuses on technologies for electricity production and touches more briefly on the prospects for solar fuels. The section on Danish perspectives also discusses solar thermal heating in district heating plants. In recent decades, two technologies for converting solar energy into electrical energy have dominated: photovoltaics (PV) and concentrating solar power (CSP). Today's silicon and thin-film PV technologies are advancing steadily, with new materials and technologies constantly being developed, and there are clear roadmaps for lowering production costs. In the discussion below we assess the maturation potential of currently emerging PV technologies within the next 40 years. Concentrating solar power is already a proven technology, and below we evaluate its potential to become a substantial part of the energy mix by 2050. Solar fuels cover a range of technologies. The chapter is to a great extent based on two recent roadmaps from the International Energy Agency (IEA). Many reports, predictions, scenarios and roadmaps for solar energy deployment exist. The IEA predictions for the penetration of solar energy in the future energy system are low relative to many of the other studies. The IEA roadmaps, however, cover most aspects of the future deployment of the technologies and reference older work. (Author)

  2. Solar Photovoltaic

    OpenAIRE

    Wang, Chen; Lu, Yuefeng

    2016-01-01

    In the 21st century, human demand for new energy sources is urgent, because the traditional fossil energy is unable to meet human needs, and the fossil resource will make pollution, in this situation, solar energy gradually into the vision of scientists. As science advances, humans can already extensive use of solar energy to generate electricity. Solar energy is an inexhaustible and clean energy. In the global energy crisis, environmental pollution is the growing problem of today. The us...

  3. Solar Simulator

    Science.gov (United States)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  4. Solar Sprint

    Science.gov (United States)

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  5. Solar prominences

    CERN Document Server

    Engvold, Oddbjørn

    2015-01-01

    This volume presents the latest research results on solar prominences, including new developments on e.g. chirality, fine structure, magnetism, diagnostic tools and relevant solar plasma physics. In 1875 solar prominences, as seen out of the solar limb, were described by P.A. Secchi in his book Le Soleil as "gigantic pink or peach-flower coloured flames". The development of spectroscopy, coronagraphy and polarimetry brought tremendous observational advances in the twentieth century. The authors present and discuss exciting new challenges (resulting from observations made by space and ground-based telescopes in the 1990s and the first decade of the 21st century) concerning the diagnostics of prominences, their formation, their life time and their eruption along with their impact in the heliosphere (including the Earth). The book starts with a general introduction of the prominence “object” with some historical background on observations and instrumentation. In the next chapter, the various forms of promine...

  6. Solar Nexus.

    Science.gov (United States)

    Murphy, Jim

    1980-01-01

    The design team for the Solar Energy Research Institute (SERI) has pushed the state of the energy art to its current limits for the initial phase, with provisions for foreseeable and even speculative future applications. (Author/MLF)

  7. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  8. Solar energy engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sayigh, A.A.M. (ed.)

    1977-01-01

    The scope and advantages of solar energy are dealt with. The nature of the sun, the solar radiation spectrum, the estimation of total, direct, and diffuse radiation, and the heat transfer fundamentals for solar energy application are explained. The fundamentals, fabrication, and uses of various water and air heaters are outlined. Optics and concentrating collectors are dealt with, as well as solar furnaces. The various applications of solar energy are discussed, namely, solar pond, solar distillation, photovoltaic conversion of solar energy, solar refrigeration, solar hydrogen production, space applications, and solar measuring equipment. The cost of solar appliances is discussed. (MHR)

  9. Solar Features - Solar Flares - SIDS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A Sudden Ionospheric Disturbance (SID) is any of several radio propagation anomalies due to ionospheric changes resulting from solar or geophysical events.

  10. Solar Features - Solar Flares - Patrol

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The H-alpha Flare Patrol identifies time periods each day when the sun is being continuously monitored by select ground-based solar observatories.

  11. Solar Neutrinos

    Science.gov (United States)

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  12. Solar Energy

    OpenAIRE

    Sommer-Larsen, Peter; Furbo, Simon

    2014-01-01

    This thesis is about Photovoltaic (PV) cells and its stresses in various directions by calculating the power generated using solar cells under different conditions to improve its efficiency. Our research studies found that using multi-junction cells with larger substrates can increase the efficiency to some extent which in practice is limited to 43 percent. The experiment was conducted using ten solar cells each with an area of 20.9〖cm〗 ^2, where each cell gives 0.5 V and 0.4 A and a 1.25 Ω r...

  13. Solar fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J.R.

    1978-11-17

    The paper is concerned with (1) the thermodynamic and kinetic limits for the photochemical conversion and storage of solar energy as it is received on the earth's surface, and (2) the evaluation of a number of possible photochemical reactions with particular emphasis on the production of solar hydrogen from water. Procedures for generating hydrogen fuel are considered. Topics examined include the general requirements for a fuel-generation reaction, the photochemical reaction, limits on the conversion of light energy to chemical energy, an estimate of chemical storage efficiency, and the water decomposition reaction.

  14. Solar Energy and You.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  15. Sistema Solar

    OpenAIRE

    Federación de Asociaciones de Astronomía Cielo de Comellas

    2004-01-01

    Lección sobre el Sistema Solar. Curso de Astronomía Básica, segunda edición, impartido por los miembros de la Federación de Asociaciones de Astronomía Cielo de Comellas. Casa de la Ciencia, sábados, del 24 de septiembre al 22 de octubre de 2011

  16. Solar system

    CERN Document Server

    Homer, Charlene

    2007-01-01

    Thrill young astronomers with a journey through our Solar System. Find out all about the Inner and Outer Planets, the Moon, Stars, Constellations, Asteroids, Meteors and Comets. Using simplified language and vocabulary, concepts such as planetary orbits, the asteroid belt, the lunar cycle and phases of the moon, and shooting stars are all explored.

  17. Solar Neutrinos

    Directory of Open Access Journals (Sweden)

    V. Antonelli

    2013-01-01

    relevant indications on the fundamental interactions among particles. After reviewing the striking results of the last two decades, which were determinant to solve the long standing solar neutrino puzzle and refine the Standard Solar Model, we focus our attention on the more recent results in this field and on the experiments presently running or planned for the near future. The main focus at the moment is to improve the knowledge of the mass and mixing pattern and especially to study in detail the lowest energy part of the spectrum, which represents most of the solar neutrino spectrum but is still a partially unexplored realm. We discuss this research project and the way in which present and future experiments could contribute to make the theoretical framework more complete and stable, understanding the origin of some “anomalies” that seem to emerge from the data and contributing to answer some present questions, like the exact mechanism of the vacuum to matter transition and the solution of the so-called solar metallicity problem.

  18. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  19. Fisica solare

    CERN Document Server

    Degl’Innocenti, Egidio Landi

    2008-01-01

    Il volume è un'introduzione alla Fisica Solare che si propone lo scopo di illustrare alla persona che intende avvicinarsi a questa disciplina (studenti, dottori di ricerca, ricercatori) i meccanismi fisici che stanno alla base della complessa fenomenologia osservata sulla stella a noi più vicina. Il volume non ha la pretesa di essere esauriente (basta pensare che la fisica solare spazia su un gran numero di discipline, quali la Fisica Nucleare, la Termodinamica, L'Elettrodinamica, la Fisica Atomica e Molecolare, la Spettoscopia in tutte le bande dello spettro elettromagnetico, la Magnetoidrodinamica, la Fisica del Plasma, lo sviluppo di nuova strumentazione, l'Ottica, ecc.). Piuttosto, sono stati scelti un numero di argomenti di rilevanza fondamentale nello studio presente del Sole (soprattutto nei riguardi delle osservazioni da terra con grandi telescopi) e su tali argomenti si è cercato di dare una panoramica generale, inclusiva dell'evoluzione storica, senza scendere in soverchi dettagli. Siccome la Fis...

  20. Solar club

    CERN Multimedia

    Solar club

    2013-01-01

    SOLAR CLUB Le  CERN-Solar-Club souhaite une  très bonne année 2013 à tous les Cernois et Cernoises, et remercie encore une fois  tous ceux et celles qui, fin octobre, par leur vote, nous ont permis de finir dans les 5 premiers du concours "Conforama Solidaire" et ainsi financer nôtre projet "énergie solaire et eau potable pour Kilela Balanda" en République Démocratique du Congo (voir : http://www.confo.ch/solidarite/?lang=fr). Nous vous annoncons également notre Assemblée Générale Annuelle jeudi 21 février à 18 h 00 Salle C, 1er étage, Bât. 61 Vous êtes les bienvenus si vous souhaitez en savoir un peu plus sur les énergies renouvelables.

  1. Energia Solar

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Dias de Borba

    2011-07-01

    Full Text Available Este projeto trata da implantação de células fotovoltaicas na forma de postes independentes na área externa da escola Oswaldo Cruz em Sinop- MT, mais especificamente no estacionamento do local, e também a implantação de placas solares nas guaritas e nos estacionamentos cobertos, tornando-os semi-sustentáveis.

  2. Solar Chameleons

    CERN Document Server

    Brax, Philippe

    2010-01-01

    We analyse the creation of chameleons deep inside the sun and their subsequent conversion to photons near the magnetised surface of the sun. We find that the spectrum of the regenerated photons lies in the soft X-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarisations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft X-ray energy range. Moreover, using the soft X-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling the chameleons emitted by the sun could lead to a regenerated photon flux in the CAST pipes, which could be within the reach...

  3. Nanostructured Solar Cells

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  4. Solar Sails

    Science.gov (United States)

    Young, Roy

    2006-01-01

    The Solar Sail Propulsion investment area has been one of the three highest priorities within the In-Space Propulsion Technology (ISPT) Project. In the fall of 2003, the NASA Headquarters' Science Mission Directorate provided funding and direction to mature the technology as far as possible through ground research and development from TRL 3 to 6 in three years. A group of experts from government, industry, and academia convened in Huntsville, Alabama to define technology gaps between what was needed for science missions to the inner solar system and the current state of the art in ultra1ightweight materials and gossamer structure design. This activity set the roadmap for development. The centerpiece of the development would be the ground demonstration of scalable solar sail systems including masts, sails, deployment mechanisms, and attitude control hardware and software. In addition, new materials would be subjected to anticipated space environments to quantify effects and assure mission life. Also, because solar sails are huge structures, and it is not feasible to validate the technology by ground test at full scale, a multi-discipline effort was established to develop highly reliable analytical models to serve as mission assurance evidence in future flight program decision-making. Two separate contractor teams were chosen to develop the SSP System Ground Demonstrator (SGD). After a three month conceptual mission/system design phase, the teams developed a ten meter diameter pathfinder set of hardware and subjected it to thermal vacuum tests to compare analytically predicted structural behavior with measured characteristics. This process developed manufacturing and handling techniques and refined the basic design. In 2005, both contractor teams delivered 20 meter, four quadrant sail systems to the largest thermal vacuum chamber in the world in Plum Brook, Ohio, and repeated the tests. Also demonstrated was the deployment and articulation of attitude control

  5. Solar neutrinos and the solar composition problem

    CERN Document Server

    Pena-Garay, Carlos

    2008-01-01

    Standard solar models (SSM) are facing nowadays a new puzzle: the solar composition problem. New determinations of solar metal abundances lead SSM calculations to conflict with helioseismological measurements, showing discrepancies that extend from the convection zone to the solar core and can not be easily assigned to deficiencies in the modelling of the solar convection zone. We present updated solar neutrino fluxes and uncertainties for two SSM with high (old) and low (new) solar metallicity determinations. The uncertainties in iron and carbon abundances are the largest contribution to the uncertainties of the solar neutrino fluxes. The uncertainty on the ^14N+p -> ^15O+g rate is the largest of the non-composition uncertainties to the CNO neutrino fluxes. We propose an independent method to help identify which SSM is the correct one. Present neutrino data can not distinguish the solar neutrino predictions of both models but ongoing measurements can help to solve the puzzle.

  6. BLM Solar Energy Zones

    Data.gov (United States)

    Bureau of Land Management, Department of the Interior — Priority development areas for utility-scale solar energy facilities as identified in the Solar PEIS Record of Decision. An additional Solar Energy Zone identified...

  7. Solar greenhouses in Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Polich, M.

    1981-12-01

    After a discussion of solar greenhouse phenomena and the potential for heat collection and food production, design recommendations are provided for attached heat collecting solar sunspaces and for attached food producing solar greenhouses. Also, design of a single solar structure to maximize heat collection and food production is considered. A method of predicting the performance for attached heat collecting solar sunspaces is given in which the solar savings fraction is calculated. (LEW)

  8. Solar Electricity

    Science.gov (United States)

    1988-01-01

    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.

  9. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  10. Mobile Solar Tracker Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. It incorporates meteorological instruments, a solar...

  11. Solar Club

    CERN Multimedia

    Solar Club

    2010-01-01

    Le CERN Solar-Club vous invite à la présentation de sa participation dans : The Cyprus Institute Solar Car Challenge du 18 au 20 juin à Chypre . en réponse à l’invitation dudit institut, dans le cadre de la demande de Chypre pour joindre le CERN . Le Club y participera avec son vénérable Photon rénové , et la Dyane E-Solaire d’un de ses membres, rénové aussi . Après la présentation, le forum est ouvert pour toutes vos questions et propositions diverses, également dans d’autres domaines des énergies renouvelables . C’est aussi l’occasion pour joindre le Club ! Où, et Quand ? Le Mercredi 7 Avril à 19 h 00, au 6ème étage du Bât. Principal, (60-6-015) à la suite de l’AG des membres du Club , à 18h00 dans...

  12. Solar energy an introduction

    CERN Document Server

    Mackay, Michael E

    2015-01-01

    Solar Energy presents an introduction to all aspects of solar energy, from photovoltaic devices to active and passive solar thermal energy conversion, giving both a detailed and broad perspective of the field. It is aimed at the beginner involved in solar energy or a related field, or for someone wanting to gain a broader perspective of solar energy technologies. A chapter considering solar radiation, basic principles applied to solar energy, semiconductor physics, and light absorption brings the reader on equal footing with the technology of either solar generated electrical current or useful heat. Details of how a solar cell works and then production of current from a photovoltaic device is discussed. Characterization of a solar cell is examined, allowing one the ability to interpret the current-voltage relation, followed by discussion of parameter extraction from this relation. This information can be used to understand what limits the performance of a given solar cell with the potential to optimize its pe...

  13. Solar Energy: Solar and the Weather.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on solar and the weather is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  14. Solar Energy: Solar System Design Fundamentals.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  15. Solar models and solar neutrino oscillations

    OpenAIRE

    2004-01-01

    We provide a summary of the current knowledge, theoretical and experimental, of solar neutrino fluxes and of the masses and mixing angles that characterize solar neutrino oscillations. We also summarize the principal reasons for doing new solar neutrino experiments and what we think may be learned from the future measurements.

  16. EDITORIAL Solar harvest Solar harvest

    Science.gov (United States)

    Demming, Anna

    2010-12-01

    The first observations of the photoelectric effect date back to the early 19th century from work by Alexandre Edmond Becquerel, Heinrich Hertz, Wilhelm Hallwachs and J J Thomson. The theory behind the phenomena was clarified in a seminal paper by Einstein in 1905 and became an archetypical feature of the wave-particle description of light. A different manifestation of quantised electron excitation, whereby electrons are not emitted but excited into the valence band of the material, is what we call the photoconductive effect. As well as providing an extension to theories in fundamental physics, the phenomenon has spawned a field with enormous ramifications in the energy industry through the development of solar cells. Among advances in photovoltaic technology has been the development of organic photovoltaic technology. These devices have many benefits over their inorganic counterparts, such as light-weight, flexible material properties, as well as versatile materials' synthesis and low-cost large-scale production—all highly advantageous for manufacturing. The first organic photovoltaic systems were reported over 50 years ago [1], but the potential of the field has escalated in recent years in terms of efficiency, largely through band offsetting. Since then, great progress has been made in studies for optimising the efficiency of organic solar cells, such as the work by researchers in Germany and the Netherlands, where investigations were made into the percentage composition and annealing effects on composites of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) [2]. Hybrid devices that aim to exploit the advantages of both inorganic and organic constituents have also proven promising. One example of this is the work reported by researchers in Tunisia and France on a systematic study for optimising the composition morphology of TiO2 nanoparticles in poly(N-vinylcarbazole) (PVK), which also led to insights

  17. Solar pond

    Science.gov (United States)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1978-01-01

    Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation.

  18. Solar workshops financial incentives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    Ten one-day workshops were held across the United States. Information in this workbook is compiled in conjunction with those workshops. The following discussions are included: solar as a fuel (history); why alternative fuels are being sought today; the need for conservation; advantages of solar energy; the potential of solar energy; why solar energy is not more widely used; a definition of solar; how solar can help meet energy demands; Federal policies and programs; what solar technologies exist today that can be effectively utilized (thermal applications, fuels from biomass, solar electric). Additional information is presented in three attachments: Energy-Conserving Methods; Domestic Policy Review of Solar Energy; and DOE Secretary's Annual Report to Congress-Solar Section. (MCW)

  19. Photovoltaic solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  20. Development of Solar Research

    Science.gov (United States)

    Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.

    Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.

  1. Solar collector array

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  2. Solar Club

    CERN Multimedia

    Solar Club

    2012-01-01

      Le  CERN Solar Club tiendra son Assemblée Générale le Mercredi  4 avril, à 18h00 dans la salle C, bat.61, 1e étage de 18h00  à  19h30. Grande table ronde avec  présentations de projets concernant toute forme d’Energie  Renouvelable par des membres du club,  et… par  VOUS, nos invités. Au programme : - L’E-push : petite remorque électrique, qui pousse vôtre vélo par Robert Becker. - Le Stockage Saisonnier Sous-Lacustre d’Energie Solaire (S3LES) par  William van Sprolant. - Compte-Rendu de plusieurs conférences récentes concernant les E.R. par Jacques Dupin. - VOS  Projets ou Sujets (contactez : paul.gelissen@orange.fr). - Partie «administrative» avec rapport d’activités, rapport fina...

  3. Solar Design Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  4. Predictability of Solar Flares

    Science.gov (United States)

    Mares, Peter; Balasubramaniam, K. S.

    2009-05-01

    Solar flares are significant drivers of space weather. With the availability of high cadence solar chromospheric and photospheric data from the USAF's Optical Solar PAtrol Network (OSPAN; photosphere and chromosphere imaging) Telescope and the Global Oscillations Network Group (GONG; photosphere magnetic imaging), at the National Solar Observatory, we have gained insights into potential uses of the data for solar flare prediction. We apply the Principal Component Analysis (PCA) to parameterize the flaring system and extract consistent observables at solar chromospheric and photospheric layers that indicate a viable recognition of flaring activity. Rather than limiting ourselves to a few known indicators of solar activity, PCA helps us to characterize the entire system using several tens of variables for each observed layer. The components of the Eigen vectors derived from PCA help us recognize and quantify innate characteristics of solar flares and compare them. We will present an analysis of these results to explore the viability of PCA to assist in predicting solar flares.

  5. Solar Adaptive Optics

    Directory of Open Access Journals (Sweden)

    Thomas R. Rimmele

    2011-06-01

    Full Text Available Adaptive optics (AO has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO and Ground-Layer AO (GLAO will be given.

  6. Generation solar case study : solar summer camp

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This document presented a case study of the use of solar power at camp Tanamakoon in Ontario's Algonquin Park. It discussed camp facilities which include solar powered composting toilets and solar heated showers. Composting, recycling, and use of environmentally friendly products were also discussed. The camp also has a grid interactive solar electric system and a solar water heating system. The solar electric system provides backup power to critical loads such as safety lights and an emergency fridge and is also connected to the existing grid electricity system. Any excess energy from the solar system can be used by other kitchen appliances or, any other load anywhere in the camp. The main user of the solar heated water is a large automatic dishwasher which has as a built-in boost heater for those days when the solar heated water is insufficiently hot to sanitize dishes. It was concluded that while camp utility bills have been reduced by this investment in renewable energy technology, the primary objectives of the project were the protection of Tanamakoon's pristine Algonquin environment and the attraction and retention of clients for the camp by enhancing the camping experience. fig.

  7. California solar data manual

    Energy Technology Data Exchange (ETDEWEB)

    Berdahl, P.; Grether, D.; Martin, M.; Wahlig, M.

    1978-01-01

    Factors that determined the data contents of the manual are presented. Estimates of errors in the data are provided, and the impact of these errors on solar design is discussed. The state is divided into 15 solar zones of roughly similar solar radiation conditions, which are illustrated along with page references to the most relevant solar and climate data. A guide to the data tables and graphs is provided, which are displayed under solar, climate, and sky charts. A guide is given to simplified design methods to predict performance and cost of solar heating and cooling systems. (MHR)

  8. Solar Energy Automobile

    OpenAIRE

    He, Jianhua

    2014-01-01

    The thesis was to design a solar energy automobile, which is using solar power as energy re-source. At the moment, Finland was chosen as an example place. It was necessary to calculate the related data, which are the solar angle and the day length when designing the solar energy automobile. Also the seats and dashboard to improve the performance. Actually, in Finland it is possible to use solar energy automobile in summer. But in winter, the day length is so short and the solar constant i...

  9. Solar Thermal Propulsion

    Science.gov (United States)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  10. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  11. Solar prominences

    Science.gov (United States)

    Schmieder, Brigitte; Aulanier, Guillaume; Török, Tibor

    2009-03-01

    Solar filaments (or prominences) are magnetic structures in the corona. They can be represented by twisted flux ropes in a bipolar magnetic environment. In such models, the dipped field lines of the flux rope carry the filament material and parasitic polarities in the filament channel are responsible for the existence of the lateral feet of prominences. Very simple laws do exist for the chirality of filaments, the so-called “filament chirality rules”: commonly dextral/sinistral filaments corresponding to left- (resp. right) hand magnetic twists are in the North/South hemisphere. Combining these rules with 3D weakly twisted flux tube models, the sign of the magnetic helicity in several filaments were identified. These rules were also applied to the 180° disambiguation of the direction of the photospheric transverse magnetic field around filaments using THEMIS vector magnetograph data (López Ariste et al. 2006). Consequently, an unprecedented evidence of horizontal magnetic support in filament feet has been observed, as predicted by former magnetostatic and recent MHD models. The second part of this review concerns the role of emerging flux in the vicinity of filament channels. It has been suggested that magnetic reconnection between the emerging flux and the pre-existing coronal field can trigger filament eruptions and CMEs. For a particular event, observed with Hinode/XRT, we observe signatures of such a reconnection, but no eruption of the filament. We present a 3D numerical simulation of emerging flux in the vicinity of a flux rope which was performed to reproduce this event and we briefly discuss, based on the simulation results, why the filament did not erupt.

  12. PEROVSKITE SOLAR CELLS (REVIEW ARTICLE)

    OpenAIRE

    Benli, Deniz Ahmet

    2015-01-01

    A solar cell is a device that converts sunlight into electricity. There are different types of solar cells but this report mainly focuses on a type of new generation solar cell that has the name organo-metal halide perovskite, shortly perovskite solar cells. In this respect, the efficiency of power conversion is taken into account to replace the dominancy of traditional and second generation solar cell fields by perovskite solar cells. Perovskite solar cell is a type of solar cell including a...

  13. Solar Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  14. Solar renovation demonstration projects

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Joergensen, O. [ed.

    1998-10-01

    In the framework of the IEA SHC Programme, a Task on building renovation was initiated, `Task 20, Solar Energy in Building Renovation`. In a part of the task, Subtask C `Design of Solar Renovation Projects`, different solar renovation demonstration projects were developed. The objective of Subtask C was to demonstrate the application of advanced solar renovation concepts on real buildings. This report documents 16 different solar renovation demonstration projects including the design processes of the projects. The projects include the renovation of houses, schools, laboratories, and factories. Several solar techniques were used: building integrated solar collectors, glazed balconies, ventilated solar walls, transparent insulation, second skin facades, daylight elements and photovoltaic systems. These techniques are used in several simple as well as more complex system designs. (au)

  15. Solar Dynamics Observatory

    Data.gov (United States)

    National Aeronautics and Space Administration — A searchable database of all Solar Dynamics Observatory data including EUV, magnetograms, visible light and X-ray. SDO: The Solar Dynamics Observatory is the first...

  16. Solar Thermal Rocket Propulsion

    Science.gov (United States)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  17. Solar-Collector Radiometer

    Science.gov (United States)

    Kendall, J. M., Jr

    1984-01-01

    Water-cooled Kendall radiometer measures output of solar energy concentrators. Unit measures irradiance up to 30,000 solar constants with 1 percent accuracy and responds to wavelengths from ultraviolet to far infrared.

  18. Future Solar Neutrino Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray research, University of Tokyo, Higashi-Mozumi, Kamioka-cho, Hida-shi, Gifu, Japan, 506-1205 (Japan)]. E-mail: nakahata@suketto.icrr.u-tokyo.ac.jp

    2005-08-15

    The value of future solar neutrino experiments is discussed from particle physics and astrophysics points of view based on current understanding of solar neutrino oscillations. R and D statuses of future experiments are also discussed.

  19. Solar energy engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, J.S.

    1986-01-01

    This book introduces the reader to solar energy engineering, covering topics such as radiation, absorption, its practical applications in space and hot water heating, and solar geometrical and geographical forms.

  20. Solar Wind Five

    Science.gov (United States)

    Neugebauer, M. (Editor)

    1983-01-01

    Topics of discussion were: solar corona, MHD waves and turbulence, acceleration of the solar wind, stellar coronae and winds, long term variations, energetic particles, plasma distribution functions and waves, spatial dependences, and minor ions.

  1. Aeronet Solar Flux

    Data.gov (United States)

    National Aeronautics and Space Administration — SolRad-Net (Solar Radiation Network) is an established network of ground-based sensors providing high-frequency solar flux measurements in quasi-realtime to the...

  2. Solar Indices - Sunspot Numbers

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  3. Solar Indices - Plage Regions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. Solar radiation models - review

    Directory of Open Access Journals (Sweden)

    M. Jamil Ahmad, G.N. Tiwari

    2010-05-01

    Full Text Available In the design and study of solar energy, information on solar radiation and its components at a given location is very essential. Solar radiation data are required by solar engineers, architects, agriculturists and hydrologists for many applications such as solar heating, cooking, drying and interior illumination of buildings. For this purpose, in the past, several empirical correlations have been developed in order to estimate the solar radiation around the world. The main objective of this study is to review the global solar radiation models available in the literature. There are several formulae which relate global radiation to other climatic parameters such as sunshine hours, relative humidity and maximum temperature. The most commonly used parameter for estimating global solar radiation is sunshine duration. Sunshine duration can be easily and reliably measured and data are widely available.

  5. Solar Energy Technician/Installer

    Science.gov (United States)

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  6. Solar mobile power supply

    OpenAIRE

    Hu, Libian

    2014-01-01

    The solar mobile power supply is a comprehensive energy saving and environment protective product. Besides, it consists of solar panels, storage battery and controller as well as other important components. Based on the traditional solar charging circuit, this solar power supply combines the 5V USB interface and 12V adjustable circuit as well as the 220V inverter and power adapter to greatly improve the function of the power system.

  7. Durable solar mirror films

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  8. Beijing Tsinghua Solar Ltd.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Beijing Tsinghua Solar Ltd. is backed by Tsinghua University, one of the most prestigious universities in China. Tsinghua Solar invented "graded Al-N/Al selective coating," which is the key technology of all-glass evacuated solar collector tubes. The company owns the independent intellectual property rights over the key technology of all-glass vacuum solar water heaters. The registered capital of the company is 153.5 mil-

  9. Solar Neutrino Decay

    CERN Document Server

    Acker, A; Acker, Andy; Pakvasa, Sandip

    1994-01-01

    We re-examine the neutrino decay solution to the solar neutrino problem in light of the new data from Gallex II and Kamiokande III. We compare the experimental data with the solar models of Bahcall and Pinsonneault and Turck-Chieze and find that neutrino decay is ruled out as a solution to the solar neutrino problem at better than the 98\\% c.l. even when solar model uncertainties are taken into account.

  10. Pointing a solar telescope

    Science.gov (United States)

    Wallace, Patrick

    2016-07-01

    As far as pointing is concerned, a solar telescope is merely an ordinary astronomical telescope but with enhancements for observing solar and coronal features. The paper discusses the additional coordinate systems that need to be supported, shows how to generate the required solar ephemerides (both orbital and physical), and sets out a suitable application programming interface for the telescope control system to use when making solar observations.

  11. Solar tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  12. Solar energy directories

    Energy Technology Data Exchange (ETDEWEB)

    Frankena, F.

    1984-01-01

    This annotated bibliography lists 275 directories relating to solar energy and renewable energy resources. The references include the newsletters and in-house publications of small firms and groups, plans and designs for solar housing, catalogs, and directories of agencies and organizations involved in solar energy. The references are listed in alphabetical order.

  13. Experimenting with Solar Energy

    Science.gov (United States)

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  14. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  15. Alternatives in solar energy

    Science.gov (United States)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  16. Inexpensive Photovoltaic Solar Radiometer.

    Science.gov (United States)

    Kissner, Fritz

    1981-01-01

    Describes a low-cost instrument using a solar cell as a sensor to measure both instantaneous and integrated value of solar flux. Constructing and calibrating such an instrument constitutes an undergraduate experimental project, affording students an opportunity to examine a variety of aspects associated with solar energy measurements. (Author/SK)

  17. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  18. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  19. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  20. Solar Cycle #24 and the Solar Dynamo

    Science.gov (United States)

    Schatten, Kenneth; Pesnell, W. Dean

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun's polar field plays a major role in forecasting the next cycle s activity based upon the Babcock-Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130 plus or minus 30 (2 sigma), in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (approx. 7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun's open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes

  1. Solar energy modulator

    Science.gov (United States)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  2. A solar power plant

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, Yu.V.; Dabagyan, T.N.; Gagiyan, L.A.; Kharapetyan, G.S.; Vartanyan, A.V.

    1984-01-01

    This invention is designed for solar energy collectors in the form of heat pipes. A solar power plant is proposed that contains a solar concentrator in the form of at least one heat pipe with evaporation and condensation sections, the first of which is constructed to absorb solar emission and the second located in a heat exchanger equipped with inlet and outlet pipes. In order to simplify the design, the solar power plant is equipped with an additional heat exchanger connected through a connector to the inlet and outlet pipes, while the evaporation section holds an additional section in the lower half, within the auxiliary heat exchanger. During operation as a solar energy collector, the evaporation region absorbs the solar energy and converts it to heat, which is then carried by the heat transfer medium to the heating tube.

  3. Photovoltaic solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  4. Photovoltaic solar concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  5. Solar engineering of thermal processes

    CERN Document Server

    Duffie, John A

    2013-01-01

    The updated fourth edition of the ""bible"" of solar energy theory and applications Over several editions, Solar Engineering of Thermal Processes has become a classic solar engineering text and reference. This revised Fourth Edition offers current coverage of solar energy theory, systems design, and applications in different market sectors along with an emphasis on solar system design and analysis using simulations to help readers translate theory into practice. An important resource for students of solar engineering, solar energy, and alternative energy as well

  6. PERFORMANCE EVALUATION OF SOLAR COLLECTORS USING A SOLAR SIMULATOR

    Directory of Open Access Journals (Sweden)

    M. Norhafana

    2015-11-01

    Full Text Available Solar water heating systems is one of the applications of solar energy. One of the components of a solar water heating system is a solar collector that consists of an absorber. The performance of the solar water heating system depends on the absorber in the solar collector. In countries with unsuitable weather conditions, the indoor testing of solar collectors with the use of a solar simulator is preferred. Thus, this study is conducted to use a multilayered absorber in the solar collector of a solar water heating system as well as to evaluate the performance of the solar collector in terms of useful heat of the multilayered absorber using the multidirectional ability of a solar simulator at several values of solar radiation. It is operated at three variables of solar radiation of 400 W/m2, 550 W/m2 and 700 W/m2 and using three different positions of angles at 0º, 45º and 90º. The results show that the multilayer absorber in the solar collector is only able to best adapt at 45° of solar simulator with different values of radiation intensity. At this angle the maximum values of useful heat and temperature difference are achieved. KEYWORDS: solar water heating system; solar collector; multilayered absorber; solar simulator; solar radiation 

  7. National Community Solar Platform

    Energy Technology Data Exchange (ETDEWEB)

    Rupert, Bart [Clean Energy Collective, Louisville, CO (United States)

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  8. Solar Cycle 24 and the Solar Dynamo

    Science.gov (United States)

    Pesnell, W. D.; Schatten, K.

    2007-01-01

    We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 plus or minus 35 (2 sigma), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 plus or minus 35 [2 sigma]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.

  9. Solar Thermal Energy; Energia Solar Termica

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Martinez, M.; Cuesta-Santianes, M. J.; Cabrera Jimenez, J. A.

    2008-07-01

    Approximately, 50 % of worldwide primary energy consumption is done in the form of heat in applications with a temperature lower than 250 degree centigree (low-medium temperature heat). These data clearly demonstrate the great potential of solar thermal energy to substitute conventional fossil fuels, which are becoming more expensive and are responsible for global warming. Low-medium temperature solar thermal energy is mainly used to obtain domestic hot water and provide space heating. Active solar thermal systems are those related to the use of solar thermal collectors. This study is dealing with low temperature solar thermal applications, mainly focusing on active solar thermal systems. This kind of systems has been extensively growing worldwide during the last years. At the end of 2006, the collector capacity in operation worldwide equalled 127.8 GWth. The technology is considered to be already developed and actions should be aimed at favouring a greater market penetration: diffusion, financial support, regulations establishment, etc. China and USA are the leading countries with a technology based on evacuated tube collectors and unglazed collectors, respectively. The rest of the world markets are dominated by the flat glazed collectors technology. (Author) 15 refs.

  10. Solar Renewable Energy. Teaching Unit.

    Science.gov (United States)

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  11. SOLAR EFFECTS ON BUILDING DESIGN.

    Science.gov (United States)

    Building Research Inst., Inc., Washington, DC.

    A REPORT OF A PROGRAM HELD AS PART OF THE BUILDING RESEARCH INSTITUTE 1962 SPRING CONFERENCE ON THE SOLAR EFFECTS ON BUILDING DESIGN. TOPICS DISCUSSED ARE--(1) SOLAR ENERGY DATA APPLICABLE TO BUILDING DESIGN, (2) THERMAL EFFECTS OF SOLAR RADIATION ON MAN, (3) SOLAR EFFECTS ON ARCHITECTURE, (4) SOLAR EFFECTS ON BUILDING COSTS, (5) SELECTION OF…

  12. Climate Fundamentals for Solar Heating.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…

  13. The Solar Cycle

    CERN Document Server

    Hathaway, David H

    2015-01-01

    The Solar Cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  14. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. The Solar Cycle.

    Science.gov (United States)

    Hathaway, David H

    The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  16. Solar Neutrino Data, Solar Model Uncertainties and Neutrino Oscillations

    CERN Document Server

    Krauss, L M; White, M; Krauss, Lawrence M.; Gates, Evalyn; White, Martin

    1993-01-01

    We incorporate all existing solar neutrino flux measurements and take solar model flux uncertainties into account in deriving global fits to parameter space for the MSW and vacuum solutions of the solar neutrino problem.

  17. Solar Neutrino Data, Solar Model Uncertainties and Neutrino Oscillations

    OpenAIRE

    1992-01-01

    We incorporate all existing solar neutrino flux measurements and take solar model flux uncertainties into account in deriving global fits to parameter space for the MSW and vacuum solutions of the solar neutrino problem.

  18. Solar Asset Management Software

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, Aaron [Ra Power Management, Inc., Oakland, CA (United States); Zviagin, George [Ra Power Management, Inc., Oakland, CA (United States)

    2016-09-30

    Ra Power Management (RPM) has developed a cloud based software platform that manages the financial and operational functions of third party financed solar projects throughout their lifecycle. RPM’s software streamlines and automates the sales, financing, and management of a portfolio of solar assets. The software helps solar developers automate the most difficult aspects of asset management, leading to increased transparency, efficiency, and reduction in human error. More importantly, our platform will help developers save money by improving their operating margins.

  19. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  20. Horizontally mounted solar collector

    Science.gov (United States)

    Black, D. H. (Inventor)

    1979-01-01

    Solar energy is collected by using a vertical deflector assembly, a stationary reflector and a horizontally mounted solar collector. The deflector assembly contains a plurality of vanes which change the direction of the solar energy to the vertical, while constantly keeping the same side of the deflector facing the sun. The vertical rays are then reflected off the stationary reflector and are then absorbed by the collector.

  1. THE THERMOELECTRIC SOLAR PANELS

    OpenAIRE

    R. Ahiska; Nykyruy, L. I.; Omer, G.; G. D. Mateik

    2016-01-01

    In this study, load characteristics of thermoelectric and photovoltaic solar panels are investigated and compared with each other with experiments. Thermoelectric solar panels converts the heat generated by sun directly to electricity; while, photovoltaic solar pales converts photonic energy from sun to electricity. In both types, maximum power can be obtained when the load resistance is equal to internal resistance. According to experimental results, power generated from unit surface with th...

  2. Solar Tracking System

    OpenAIRE

    Nguyen, Nam

    2016-01-01

    The goal of this thesis was to develop a laboratory prototype of a solar tracking system, which is able to enhance the performance of the photovoltaic modules in a solar energy system. The operating principle of the device is to keep the photovoltaic modules constantly aligned with the sunbeams, which maximises the exposure of solar panel to the Sun’s radiation. As a result, more output power can be produced by the solar panel. The work of the project included hardware design and implemen...

  3. Passive solar technology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  4. Solar neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, W. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1996-11-01

    The present status of experimental solar neutrino research is reviewed. Updated results from the Homestake, Kamiokande, GALLEX and SAGE detectors all show a deficit when compared to recent standard solar model calculations. Two of these detectors, GALLEX and SAGE, have recently been checked with artificial {sup 51}Cr neutrino sources. It is shown that astrophysical scenarios to solve the solar neutrino problems are not favoured by the data. There is hope that the results of forthcoming solar neutrino experiments can provide the answers to the open questions. (author) 6 figs., 3 tabs., 36 refs.

  5. CERN... Solar Style

    CERN Multimedia

    2001-01-01

    Inventor William van Sprolant presenting the Solar Club's latest invention, the solar fountain. The CERN Solar Club is giving new meaning to the phrase 'fun in the sun' with their most recently developed contraption, the Solar Fountain. The Fountain was presented to the public just outside of Restaurant 1 on Wednesday October, 17th and uses solar energy to run a water pump at its base to propel a golden plastic ball up into the air. As lovely as the fountain is, the funny thing about it is that the height of the water jet and the ball are an artistic method of measuring the amount of solar power being captured by the photovoltaique panel (no batteries included). The day it was presented started out cloudy, but as the afternoon wore on, the weather brightened and the fountain jumped to life. William van Sprolant, the Solar Fountain's inventor, had great fun with the fountain in front of a group of visiting children swiveling the solar panel in multiple directions. 'Everyone who installs solar panels worrie...

  6. Solar Cooker Technological Change

    DEFF Research Database (Denmark)

    Ahmad, Bashir

    1997-01-01

    The challenges which solar cooking technology is facing right now is discussed. Based on a field study in Madras and Gujarat, it is asserted that there is an important incompatibility between the technology and the every day real-life conditions of the "users" of solar cooker. An evaluation report...... on a solar cooker technology in Burkina Faso supports the findings of the study. It is concluded that the users and other important actors have to be incorporated in the technological development process of solar cookers in the future....

  7. Rectenna solar cells

    CERN Document Server

    Moddel, Garret

    2013-01-01

    Rectenna Solar Cells discusses antenna-coupled diode solar cells, an emerging technology that has the potential to provide ultra-high efficiency, low-cost solar energy conversion. This book will provide an overview of solar rectennas, and provide thorough descriptions of the two main components: the diode, and the optical antenna. The editors discuss the science, design, modeling, and manufacturing of the antennas coupled with the diodes. The book will provide concepts to understanding the challenges, fabrication technologies, and materials required to develop rectenna structures. Written by e

  8. Solar energy storage

    CERN Document Server

    Sorensen, Bent

    2015-01-01

    While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides th

  9. Solar Cycle Predictions

    Science.gov (United States)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  10. Long Island Solar Farm

    Energy Technology Data Exchange (ETDEWEB)

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  11. Harnessing solar heat

    CERN Document Server

    Norton, Brian

    2013-01-01

    Systems engineered by man to harness solar heat in a controlled manner now include a diverse range of technologies each serving distinctive needs in particular climate contexts. This text covers the breadth of solar energy technologies for the conversion of solar energy to provide heat, either as the directly-used output or as an intermediary to other uses such as power generation or cooling. It is a wholly updated, extended and revised version of “Solar Energy Thermal Technology” first published in 1992. The text draws on the own author’s research and that of numerous colleagues and

  12. Solar shading how to integrate solar shading in sustainable buildings

    CERN Document Server

    Dolmans, Dick; Dutoo, Gonzague; Hall, Anders; Seppänen, Olli

    2010-01-01

    Solar Shading Guidebook gives a solid background on the physics of solar radiation and its behaviour in window with solar shading systems. Major focus of the Guidebook is on the effect of solar shading in the use of energy for cooling, heating and lighting. The book gives also practical guidance for selection, installation and operation of solar shading as well as future trends in integration of HVAC-systems with solar control.

  13. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  14. Make Your Own Solar Panel.

    Science.gov (United States)

    Suzuki, David

    1992-01-01

    Presents an activity in which students make a simulated solar panel to learn about the principles behind energy production using solar panels. Provides information about how solar panels function to produce energy. (MCO)

  15. Astroparticle physics with solar neutrinos

    OpenAIRE

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consis...

  16. Future: Solar energy. Zukunft: Sonnenenergie

    Energy Technology Data Exchange (ETDEWEB)

    Lange, V.

    1987-01-01

    The first chapter, 'Solar energy - more than just Utopia' deals with the following: Alternatives to nuclear energy problems of energy supply, solar energy use, commencement of the solar age in space, solar technology in the Federal Republic of Germany, solar collectors, wind power, energy from hydrogen. The second chapter 'Solar energy - its contribution to future energy supply' discusses prospects for the future (interviews with scientists and engineers). The third and last chapter gives practical hints (solar energy use: self-construction of solar plants). (HWJ).

  17. Solar ponds: a selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    This bibliography contains citations on: regular solar ponds; shallow solar ponds; and patents. Certain references are specifically recommended. The data bases searched for the bibliography are listed. (LEW)

  18. Solar energy in Czechoslovakia

    OpenAIRE

    Lindberg, Eva

    1990-01-01

    The purpose of my tour to Czechoslovakia was to participate the Third International Conference Applied Optics in Solar Energy, which was held in Prague, Octoher 2-6, 1989, and then visit some scientific institutes and solar collector plants as guest of the Czechoslovakian Academy of Science. This was made possihle hy an exchange researcher grant from the Royal Swedish Academy of Engineering Sciences.

  19. The lower solar atmosphere

    NARCIS (Netherlands)

    Rutten, R.J.

    2001-01-01

    This "rapporteur" report discusses the solar photosphere and low chromosphere in the context of chemical composition studies. The highly dynamical nature of the photosphere does not seem to jeopardize precise determination of solar abundances in classical fashion. It is still an open question how th

  20. Solar array deployment mechanism

    Science.gov (United States)

    Calassa, Mark C.; Kackley, Russell

    1995-05-01

    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.

  1. Leaves: Nature's Solar Collectors

    Science.gov (United States)

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  2. Future Solar Neutrino Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Higashi-Mozumi, Kamioka-cho, Hida-city, 506-1205 (Japan)]. E-mail: suzuki@suketto.icrr.u-tokyo.ac.jp

    2005-06-15

    The purpose of the future solar neutrino experiments is briefly reviewed. The future experimental programs which aim to measure the low energy solar neutrinos are described. We do not cover all the projects. Experiments using noble gases are promising for the pp-neutrino measurements.

  3. Solar Electricity for Homes

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    Every day, the sun showers the Earth with millions of times more energy than its people use. The only problem is that energy is spread out over the entire Earth's surface and must be harvested. Engineers are learning to capture and use some of this energy to make electricity for homes. Solar panels make up the heart of a solar system. They can be…

  4. Solar Energy: Heat Transfer.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

  5. Solar Energy: Home Heating.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on home heating is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  6. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  7. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still remain

  8. Solar '77

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, G

    1978-06-01

    This manual was designed to give everyone a basic understanding of necessary conservation and system features for an efficient, cost effective, and comfortable solar tempered dwelling. Primary emphasis was given to energy efficient design features and construction in new and existing dwellings. A solar glossary is included. (MHR)

  9. Solar Irradiance Variability

    CERN Document Server

    Solanki, Sami K

    2012-01-01

    The Sun has long been considered a constant star, to the extent that its total irradiance was termed the solar constant. It required radiometers in space to detect the small variations in solar irradiance on timescales of the solar rotation and the solar cycle. A part of the difficulty is that there are no other constant natural daytime sources to which the Sun's brightness can be compared. The discovery of solar irradiance variability rekindled a long-running discussion on how strongly the Sun affects our climate. A non-negligible influence is suggested by correlation studies between solar variability and climate indicators. The mechanism for solar irradiance variations that fits the observations best is that magnetic features at the solar surface, i.e. sunspots, faculae and the magnetic network, are responsible for almost all variations (although on short timescales convection and p-mode oscillations also contribute). In spite of significant progress important questions are still open. Thus there is a debat...

  10. Solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2007-01-01

    The focus in the present Ph.D. thesis is on the active use of solar energy for domestic hot water and space heating in so-called solar combi systems. Most efforts have been put into detailed investigations on the design of solar combi systems and on devices used for building up thermal...... the thermal behaviour of different components, and the theoretical investigations are used to study the influence of the thermal behaviour on the yearly thermal performance of solar combi systems. The experimental investigations imply detailed temperature measurements and flow visualization with the Particle...... Image Velocimetry measurement method. The theoretical investigations are based on the transient simulation program TrnSys and Computational Fluid Dynamics. The Ph.D. thesis demonstrates the influence on the thermal performance of solar combi systems of a number of different parameters...

  11. A Little Solar Story

    DEFF Research Database (Denmark)

    Ahmad, Bashir

    1997-01-01

    Experiences from use of solar cookers in India and many other places are different. But the story which is based on a field study in Gujarat state of India shows that during last twenty years there has been a tendency that many families do not continue to use their solar cookers. The study shows...... that the tendency is related with the lack of compatibility of this new technology (solar cooker) with the everyday real-life conditions of the families. In principle the findings are supported by an evaluation report on a solar cooker project in Burkina Faso. The conclusion is that the user should be involved...... in the solar cooker technological development process....

  12. Mexican Virtual Solar Observatory

    Science.gov (United States)

    Santillan, A.; Hernandez-Cervantes, L.; Gonzalez-Ponce, A.; Hill, F.; Blanco-Cano, X.

    2007-12-01

    The Virtual Solar Observatory (VSO) concept contains software tools for searching, manipulating, and analyzing data from archives of solar data at many different observatories around the world (Hill 2000). The VSO not only provides fast and reliable access to the existing solar data, but also represents a powerful and unique machinery to perform numerical simulations for the evolution of a variety of different phenomena associated with solar activity. Two Mexican Universities, Universidad Nacional Autónoma de México and the Universidad de Sonora, are working together to create the Mexican Virtual Solar Observatory (MVSO) that will be part of a wider National effort. In this work we present a general description of the MVSO project, as well as the advances obtained in the development of Graphical User Interfaces (GUI) to Remotely Perform Numerical Simulation of the Evolution of Coronal Mass Ejection in the Interplanetary Medium.

  13. Solar wind travel time

    Science.gov (United States)

    Russell, C. T.

    A useful rule of thumb in solar terrestrial studies is that the solar wind travels 4 Earth radii (RE) per minute. Long-term studies of solar wind velocity [e.g., Luhmann et al., 1993; 1994] show that the median velocity is about 420 km/s, corresponding to 3.96 RE min-1. The quartiles are about 370 km/s and 495 km/s, corresponding to 3.48 Re min-1 and 4.66 Re min-1 respectively. This number helps estimate the delays expected when observing a discontinuity at a solar wind monitor; one example is ISEE-3 when it was at the forward libration point (about 60 min). It is also helpful for estimating how much time passes before the dayside magnetosphere is compressed as denser solar wind flows by (about 2.5 min).

  14. Solar heating and cooling.

    Science.gov (United States)

    Duffie, J A; Beckman, W A

    1976-01-16

    We have adequate theory and engineering capability to design, install, and use equipment for solar space and water heating. Energy can be delivered at costs that are competitive now with such high-cost energy sources as much fuel-generated, electrical resistance heating. The technology of heating is being improved through collector developments, improved materials, and studies of new ways to carry out the heating processes. Solar cooling is still in the experimental stage. Relatively few experiments have yielded information on solar operation of absorption coolers, on use of night sky radiation in locations with clear skies, on the combination of a solar-operated Rankine engine and a compression cooler, and on open cycle, humidification-dehumidification systems. Many more possibilities for exploration exist. Solar cooling may benefit from collector developments that permit energy delivery at higher temperatures and thus solar operation of additional kinds of cycles. Improved solar cooling capability can open up new applications of solar energy, particularly for larger buildings, and can result in markets for retrofitting existing buildings. Solar energy for buildings can, in the next decade, make a significant contribution to the national energy economy and to the pocketbooks of many individual users. very large-aggregate enterprises in manufacture, sale, and installation of solar energy equipment can result, which can involve a spectrum of large and small businesses. In our view, the technology is here or will soon be at hand; thus the basic decisions as to whether the United States uses this resource will be political in nature.

  15. Delft's solar car wins Solar Challenge 2003

    NARCIS (Netherlands)

    Van Kasteren, J.

    2003-01-01

    There were remarkable scenes in Adelaide, Australia,on the afternoon of Wednesday 22 October 2003 when a swathe of orange spilled through the city. Barely visible at the heart of this burst of colour was the Nuna II, a futuristic vehicle which had just won the Solar Challenge 2003, a four-day journe

  16. CHOOSING SOLAR PHOTOVOLTAIC PLANT

    Directory of Open Access Journals (Sweden)

    Vinnikov A. V.

    2015-04-01

    Full Text Available Promising is the direction and, above all, in matters of energy saving and energy efficiency of Autonomous systems of power supply, the use of renewable sources-newable energy as a major source of energy for consumers in remote areas. Here priority is given to solar energy. Since solar radiation can be change place not only in heat and electrical. The article contains three main structural schematics of electricity supply with solar power plants. The features of their work are disclosed, as well as an algorithm for calculating solar energy systems, the sequence of which is to define the required parameters, the daily energy consumption by consumers of electric power, the calculation capacity of the battery, the choice of the inverter and determining the area of solar batteries. The article reveals the conditions that affect the calculation of the PV system. It is shown that the greatest efficiency, including economic and reliability we have at combined (hybrid Autonomous system, which was carried out with both solar power and wind power and gas stations. The important matters of improving the reliability of solar systems are the introduction to the design of a new element of the base, and first and foremost, Autonomous inventors performed on a single-phase transformer with a rotating magnetic field

  17. Solar Energetic Particles

    Science.gov (United States)

    Király, Péter

    Energetic particles recorded in the Earth environment and in interplanetary space have a multitude of origins, i.e. acceleration and propagation histories. At early days practically all sufficiently energetic particles were considered to have come either from solar flares or from interstellar space. Later on, co-rotating interplanetary shocks, the termination shock of the supersonic solar wind, planetary bow shocks and magnetospheres, and also coronal mass ejections (CME) were recognized as energetic particle sources. It was also recognized that less energetic (suprathermal) particles of solar origin and pick-up ions have also a vital role in giving rise to energetic particles in interplanetary disturbances. The meaning of the term "solar energetic particles" (SEP) is now somewhat vague, but essentially it refers to particles produced in disturbances fairly directly related to solar processes. Variation of intensity fluctuations with energy and with the phase of the solar cycle will be discussed. Particular attention will be given to extremes of time variation, i.e. to very quiet periods and to large events. While quiet-time fluxes are expected to shed light on some basic coronal processes, large events dominate the fluctuation characteristics of cumulated fluence, and the change of that fluctuation with energy and with the phase of the solar cycle may also provide important clues. Mainly ISEE-3 and long-term IMP-8 data will be invoked. Energetic and suprathermal particles that may never escape into interplanetary space may play an important part in heating the corona of the sun.

  18. Analysis of Flat-Plate Solar Array and Solar Lantern

    Directory of Open Access Journals (Sweden)

    P. L. N. V. Aashrith

    2014-05-01

    Full Text Available A very detailed theortical analysis of a solar array has been carried out based on established values of solar radiation data to predict the performance of solar lamp . The analysis is based on established theory about flat-plate collectors. Top heat loss coefficient (Ut, Bottom heat loss coefficient (Ub, Overall heat loss coefficient (Ul, Useful energy (Qu, efficiency (hp of the flat-plate solar array and efficiency (hl of the solar lantern has been calculated.

  19. Relativistic implications of solar astrometry

    CERN Document Server

    Sigismondi, Costantino

    2011-01-01

    The modern methods of measurement of the solar diameter and oblateness are reviewed. Either ground-based or balloon-borne and satellite measurements are considered. The importance of solar astrometry for General Relativity is emphasized, particularly attention is given to the solar oblateness problem, as well as the studies of solar astrophysics to the whole world of physics from nucleosynthesis to neutrinos.

  20. Dye sensitized solar cells.

    Science.gov (United States)

    Wei, Di

    2010-03-16

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  1. Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Di Wei

    2010-03-01

    Full Text Available Dye sensitized solar cell (DSSC is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  2. Solar Hidden Photon Search

    CERN Document Server

    Schwarz, Matthias; Redondo, Javier; Ringwald, Andreas; Wiedemann, Guenter

    2011-01-01

    The Solar Hidden Photon Search (SHIPS) is a joint astroparticle project of the Hamburger Sternwarte and DESY. The main target is to detect the solar emission of a new species of particles, so called Hidden Photons (HPs). Due to kinetic mixing, photons and HPs can convert into each other as they propagate. A small number of solar HPs - originating from photon to HP oscillations in the interior of the Sun - can be converted into photons in a long vacuum pipe pointing to the Sun - the SHIPS helioscope.

  3. Solar Hidden Photon Search

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Matthias; Wiedemann, Guenter [Hamburg Univ. (Germany). Sternwarte; Lindner, Axel; Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Redondo, Javier [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany)

    2011-11-15

    The Solar Hidden Photon Search (SHIPS) is a joint astroparticle project of the Hamburger Sternwarte and DESY. The main target is to detect the solar emission of a new species of particles, so called Hidden Photons (HPs). Due to kinetic mixing, photons and HPs can convert into each other as they propagate. A small number of solar HPs - originating from photon to HP oscillations in the interior of the Sun - can be converted into photons in a long vacuum pipe pointing to the Sun - the SHIPS helioscope. (orig.)

  4. Solar flares. [plasma physics

    Science.gov (United States)

    Rust, D. M.

    1979-01-01

    The present paper deals with explosions in a magnetized solar plasma, known as flares, whose effects are seen throughout the electromagnetic spectrum, from gamma-rays through the visible and to the radio band. The diverse phenomena associated with flares are discussed, along with the physical mechanisms that have been advanced to explain them. The impact of solar flare research on the development of plasma physics and magnetohydrodynamics is noted. The rapid development of solar flare research during the past 20 years, owing to the availability of high-resolution images, detailed magnetic field measurements, and improved spectral data, is illustrated.

  5. Infrared Solar Physics

    Directory of Open Access Journals (Sweden)

    Matthew J. Penn

    2014-05-01

    Full Text Available The infrared solar spectrum contains a wealth of physical data about our Sun, and is explored using modern detectors and technology with new ground-based solar telescopes. The scientific motivation behind exploring these wavelengths is presented, along with a brief look at the rich history of observations here. Several avenues of solar physics research exploiting and benefiting from observations at infrared wavelengths from roughly 1000 nm to 12 400 nm are discussed, and the instrument and detector technology driving this research is briefly summarized. Finally, goals for future work at infrared wavelengths are presented in conjunction with ground and space-based observations.

  6. Physics of solar energy

    CERN Document Server

    Chen, C Julian

    2011-01-01

    The definitive guide to the science of solar energy You hold in your hands the first, and only, truly comprehensive guide to the most abundant and most promising source of alternative energy-solar power. In recent years, all major countries in the world have been calling for an energy revolution. The renewable energy industry will drive a vigorous expansion of the global economy and create more ""green"" jobs. The use of fossil fuels to power our way of living is moving toward an inevitable end, with sources of coal, petroleum, and natural gas being fiercely depleted. Solar energy

  7. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  8. Exploring the solar system

    CERN Document Server

    Bond, Peter

    2012-01-01

    The exploration of our solar system is one of humanity's greatest scientific achievements. The last fifty years in particular have seen huge steps forward in our understanding of the planets, the sun, and other objects in the solar system. Whilst planetary science is now a mature discipline - involving geoscientists, astronomers, physicists, and others - many profound mysteries remain, and there is indeed still the tantalizing possibility that we may find evidence of life on another planet in our system.Drawing upon the latest results from the second golden age of Solar System exploration, aut

  9. Magnetohydrodynamic process in solar activity

    Directory of Open Access Journals (Sweden)

    Jingxiu Wang

    2014-01-01

    Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.

  10. Solar Installation Labor Market Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, B.; Jordan, P.; Carrese, J.

    2011-12-01

    The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

  11. The Solar Eclipse

    Science.gov (United States)

    Stern, David

    1970-01-01

    Instructions for observing the Solar Eclipse on Saturday, March 7, 1970, which will be total along a strip about 85 miles wide along the Atlantic Seaboard. Safety precautions and how to construct a pinhole camera to observe eclipse. (BR)

  12. Tanzania - Kigoma Solar Activity

    Data.gov (United States)

    Millennium Challenge Corporation — The performance evaluation of the Kigoma solar activity was designed to answer questions about the implementation of the program and about outcomes that may have...

  13. Welded solar cell interconnection

    Science.gov (United States)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  14. Solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    Srubabati Goswami

    2004-02-01

    This article summarises the status of the solar neutrino oscillation phenomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed areas obtained from global solar analysis and demonstrate the preference of the solar data towards the large-mixing-angle (LMA) MSW solution. A clear confirmation in favour of the LMA solution comes from the KamLAND reactor neutrino data. the KamLAND spectral data in conjunction with the global solar data further narrows down the allowed LMA region and splits it into two allowed zones - a low $ m^{2}$ region (low-LMA) and high $ m^{2}$ region (high-LMA). We demonstrate through a projected analysis that with an exposure of 3 kton-year (kTy) KamLAND can remove this ambiguity.

  15. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  16. Space Solar Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

    1992-08-01

    Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

  17. Solar energy policy review

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-08-17

    A number of memoranda and reports are collected which deal with evaluations of solar energy policy options, including direct and indirect labor impacts and costs of different options and consumer protection. (LEW)

  18. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  19. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  20. Solar thermoelectric generator

    Science.gov (United States)

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  1. The Solar Dynamo Zoo

    Science.gov (United States)

    Egeland, Ricky; Soon, Willie H.; Baliunas, Sallie L.; Hall, Jeffrey C.; Pevtsov, Alexei A.; Henry, Gregory W.

    2016-05-01

    We present composite time series of Ca II H & K line core emission indices of up to 50 years in length for a set of 27 solar-analog stars (spectral types G0-G5; within ~10% of the solar mass) and the Sun. These unique data are available thanks to the long-term dedicated efforts of the Mount Wilson Observatory HK project, the Lowell Observatory Solar-Stellar Spectrograph, and the National Solar Observatory/Air Force Research Laboratory/Sacremento Peak K-line monitoring program. The Ca II H & K emission originates in the lower chromosphere and is strongly correlated with the presence of magnetic plage regions in the Sun. These synoptic observations allow us to trace the patterns long-term magnetic variability and explore dynamo behavior over a wide range of rotation regimes and stellar evolution timescales.

  2. Boosting Solar Efficiency

    Directory of Open Access Journals (Sweden)

    Konika Gera

    2015-05-01

    Full Text Available Solar energy being most common form of renewable energy fails to hold its use in daily life because of its low efficiency and high maintenance costs. However, these short comings can be fought by using the electrostatic mechanism. In this, we charge the dust particles such that they are repelled by the solar panel itself and then removed. This mechanism is relatively cheaper and the power consumption of the same sums to almost zero. Also, efficiency can further be increased by using perovskites that forms an opaque layer over the solar panel. When both of these methods are used as a single hand, the efficiency increases drastically and can be easily employed in mega industries using mega solar panels.

  3. Solar cooperatives; Genosse Sonne

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Dierk

    2010-06-15

    Not a boom but a trend: Increasingly, solar power plants and other renewables-based systems are financed by cooperatives. This organizational structure requires long-term strategies and some idealism. (orig.)

  4. THE THERMOELECTRIC SOLAR PANELS

    Directory of Open Access Journals (Sweden)

    R. Ahiska

    2016-07-01

    Full Text Available In this study, load characteristics of thermoelectric and photovoltaic solar panels are investigated and compared with each other with experiments. Thermoelectric solar panels converts the heat generated by sun directly to electricity; while, photovoltaic solar pales converts photonic energy from sun to electricity. In both types, maximum power can be obtained when the load resistance is equal to internal resistance. According to experimental results, power generated from unit surface with thermoelectric panel is 30 times greater than the power generated by photovoltaic panel. From a panel surface of 1 m2, thermoelectric solar panel has generated 4 kW electric power, while from the same surface, photovoltaic panel has generated 132 W only.

  5. Solar sail mission design

    Energy Technology Data Exchange (ETDEWEB)

    Leipold, M.

    2000-02-01

    The main subject of this work is the design and detailed orbit transfer analysis of space flight missions with solar sails utilizing solar pressure for primary propulsion. Such a sailcraft requires ultra-light weight, gossamer-like deployable structures and materials in order to effectively utilize the transfer of momentum of solar photons. Different design concepts as well as technological elements for solar sails are considered, and an innovative design of a deployable sail structure including new methods for sail folding and unfolding is presented. The main focus of this report is on trajectory analysis, simulation and optimization of planetocentric as well as heliocentric low-thrust orbit transfers with solar sails. In a parametric analysis, geocentric escape spiral trajectories are simulated and corresponding flight times are determined. In interplanetary space, solar sail missions to all planets in our solar system as well as selected minor bodies are included in the analysis. Comparisons to mission concepts utilizing chemical propulsion as well as ion propulsion are included in order to assess whether solar sailing could possibly enhance or even enable this mission. The emphasis in the interplanetary mission analysis is on novel concepts: a unique method to realize a sun-synchronous Mercury orbiter, fast missions to the outer planets and the outer heliosphere applying a ''solar photonic assist'', rendezvous and sample return missions to asteroids and comets, as well as innovative concepts to reach unique vantage points for solar observation (''Solar Polar Orbiter'' and ''Solar Probe''). Finally, a propellant-less sailcraft attitude control concept using an external torque due to solar pressure is analyzed. Examples for sail navigation and control in circular Earth orbit applying a PD-control algorithm are shown, illustrating the maneuverability of a sailcraft. (orig.) [German] Gegenstand dieser

  6. Solar Indices Bulletin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Solar Indices Bulletin is a prompt monthly information product that is distributed within two weeks after the observation month closes. For the month just ended,...

  7. Solar Imagery - GONG (Magnetogram)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  8. Solar Imagery - GONG

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Oscillation Network Group (GONG) is a network of 6 globally-spaced solar observatories that the NOAA Space Weather Prediction Center uses to monitor the...

  9. Solar system sputtering

    Science.gov (United States)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  10. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  11. Tehnical day: solar energy

    OpenAIRE

    Carli, Barbara

    2012-01-01

    This dissertation presents an example of planning and carrying out a technical activity day in the field of solar energy in primary school grades 7 and 9. Firstly, we briefly present technical activity days, the goals and criteria for the planning of technical days, and the topics and devices connected to the technical day in question and were needed in the execution of the experiments. We have selected four simple experiments in the field of solar energy and prepared the needed worksheets fo...

  12. Solar fuels generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan S.; Spurgeon, Joshua M.

    2016-10-25

    The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.

  13. Solar Power Shines

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    While still in its infancy, the solar energy industry is growing in China as the country seeks clean, cheap and renewable sources of power Shi Zhengrong, President and CEO of Suntech Power Holdings Co. Ltd., was not a very familiar face to people outside the solar power industry until December 14 last year. On that day, Suntech, based in Wuxi, Jiangsu Province, became the first Chinese

  14. Alternative Solar Indices

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.

    1980-07-01

    Possible alternative Solar Indices which could either be a perturbation from the currently defined Solar Index or possible indices based on current technologies for other media markets are discussed. An overview is given of the current project, including the logic that was utilized in defining its current structure and then alternative indices and definitions are presented and finally, recommendations are made for adopting alternative indices.

  15. Solar system. Das Sonnensystem

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.

    1981-01-01

    A comprehensive review is given of the most recent findings on the solar system. The physical processes in the sun are presented, their interactions in the interplanetary space, and the planets and moons of the solar system. The sun and the moon are discussed in great detail. The text is supplemented by excellent satellite pictures, including the latest pictures of Jupiter, Saturn, and their moons.

  16. Solar air-conditioning. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 3rd International Conference on solar air-conditioning in Palermo (Italy) at 30th September to 2nd October, 2009 the following lectures were held: (1) Removal of non-technological barriers to solar cooling technology across Southern European islands (Stefano Rugginenti); (2) The added economic and environmental value of solar thermal systems in microgrids with combined heat and power (Chris Marney); (3) Australian solar cooling interest group (Paul Kohlenbach); (4) Designing of a technology roadmap for solar assisted air conditioning in Austria (Hilbert Focke); (5) Solar cooling in the new context of renewable policies at European level (Raffaele Piria); (6) Prototype of a solar driven steam jet ejector chiller (Clemens Pollerberg); (7) New integrated solar air conditioning system (Joan Carlos Bruno); (8) Primary energy optimised operation of solar driven desiccant evaporative cooling systems through innovative control strategies; (9) Green chiller association (Uli Jakob); (10) Climate Well {sup registered} (Olof Hallstrom); (11) Low capacity absorption chillers for solar cooling applications (Gregor Weidner); (12) Solar cooling in residential, small scale commercial and industrial applications with adsorption technology (Walter Mittelbach); (13) French solar heating and cooling development programme based on energy performance (Daniel Mugnier); (14) Mirrox fresnel process heat collectors for industrial applications and solar cooling (Christian Zahler); (15) Modelling and analyzing solar cooling systems in polysun (Seyen Hossein Rezaei); (16) Solar cooling application in Valle Susa Italy (Sufia Jung); (17) Virtual case study on small solar cooling systems within the SolarCombi+Project (Bjoern Nienborg); (18) Design of solar cooling plants under uncertainty (Fernando Dominguez-Munoz); (19) Fast pre-design of systems using solar thermally driven chillers (Hans-Martin Henning); (20) Design of a high fraction solar heating and cooling plant in southern

  17. Anomalously Weak Solar Convection

    Science.gov (United States)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  18. Solar History An Introduction

    CERN Document Server

    Vita-Finzi, Claudio

    2013-01-01

    Beyond the four centuries of sunspot observation and the five decades during which artificial satellites have monitored the Sun – that is to say for 99.99999% of the Sun’s existence – our knowledge of solar history depends largely on analogy with kindred main sequence stars, on the outcome of various kinds of modelling, and on indirect measures of solar activity. They include the analysis of lunar rocks and meteorites for evidence of solar flares and other components of the solar cosmic-ray (SCR) flux, and the measurement of cosmogenic isotopes in wood, stratified ice and marine sediments to evaluate changes in the galactic cosmic-ray (GCR) flux and thus infer changes in the sheltering magnetic fields of the solar wind. In addition, shifts in the global atmospheric circulation which appear to result from cyclic fluctuations in solar irradiance have left their mark in river sediments and in the isotopic composition of cave deposits. In this volume the results these sources have already produced have bee...

  19. Solar Physics at Evergreen

    Science.gov (United States)

    Zita, E. J.; Bogdan, T. J.; Carlsson, M.; Judge, P.; Heller, N.; Johnson, M.; Petty, S.

    2004-05-01

    We have recently established a solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for solar physics research activities that do not require local observations. Collaborators from the High Altitude Observatory (HAO) at the National Center for Atmospheric Research have shared solar data from satellite-borne instruments such as TRACE and SUMER. HAO colleagues also share data from computer simulations of magneto-hydrodynamics (MHD) in the chromosphere, generated by the Institute for Theoretical Astrophysics (ITA) at the University of Oslo. Evergreen students and faculty learned to analyze data from satellites and simulations, in Boulder and Oslo, and established an infrastructure for continuing our analyses in Olympia. We are investigating the role of magnetic waves in heating the solar atmosphere. Comparing data from satellites and simulations shows that acoustic oscillations from the photosphere cannot effectively propagate into the chromosphere, but that magnetic waves can carry energy up toward the hot, thin corona. We find that acoustic waves can change into magnetic waves, especially near the magnetic "canopy," a region where the sound speed is comparable to magnetic wave speeds. Understanding MHD wave transformations and their role in energy transport can help answer outstanding questions about the anomalous heating of the solar atmosphere. Ref: Waves in the magnetized solar atmosphere II: Waves from localized sources in magnetic flux concentrations. Bogdan et al., 2003, ApJ 597

  20. Cost effective solar Inverter

    Directory of Open Access Journals (Sweden)

    Nagarathna M

    2015-06-01

    Full Text Available Solar energy the most efficient, eco-friendly and abundantly available energy source in the nature. It can be converted into electrical energy in cost effective manner. In recent years, the interest in solar energy has risen due to surging oil prices and environmental concern. In many remote or underdeveloped areas, direct access to an electric grid is impossible and a photovoltaic inverter system would make life much simpler and more convenient. With this in mind, it is aimed to design, build, and test a solar panel inverter. This inverter system could be used as backup power during outages, battery charging, or for typical household applications. The main components of this solar system are solar cell, dc to dc boost converters, and inverter. Sine wave push pull inverter topology is used for inverter. In this topology only two MOSFETs are used and isolation requirement between control circuit and power circuit is also less which helps to decrease the cost of solar inverter.

  1. Solar generation; Generation solaire

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, J.

    2012-03-15

    Solar energy might become the main energy resource for mankind in the next 50 years. The author describes the assets of photovoltaic energy and helio-thermodynamics and reviews the conditions required for such a future. The first condition is an integrated approach for the development of solar energy in buildings, it means to develop in parallel the use of low-power appliances, to insulate buildings, to use daylight. Secondly to find an efficient solution to store solar energy. In the building sector this solution could be the use of solar energy (through solar panels) and geothermal heat pump to be able to recover in winter the calories caught in summer and stored in the ground. In a warmer and warmer world, the production of cold from solar calories has the advantage of sparing electricity and to make the demand for calories corresponding with the peak of the resource. A graph shows that the expected cost of photovoltaic electricity in 2020 will be half the 2011 cost and will correspond to the retail price of electricity. (A.C.)

  2. Solar Thermal Storage System

    Directory of Open Access Journals (Sweden)

    Arjun A. Abhyankar

    2012-06-01

    Full Text Available Increasing energy consumption, shrinking resources and rising energy costs will have significant impact on our standard of living for future generations. In this situation, the development of alternative, cost effective sources of energy has to be a priority. This project presents the advanced technology and some of the unique features of a novel solar system that utilizes solar energy for space heating and water heating purpose in residential housing and commercial buildings. The improvements in solar technology offers a significant cost reduction, to a level where the solar system can compete with the energy costs from existing sources. The main goal of the project is to investigate new or advanced solutions for storing heat in systems providing heating. which can be achieved using phase change material(PCM.A phase change material with a melting/solidification temperature of 50ºC to 60ºC is used for solar heat storage. When the PCM undergoes the phase change, it can absorb or release a large amount of energy as latent heat. This heat can be used for further applications like water heating and space heating purposes. Thus solar thermal energy is widely use

  3. Photovoltaic solar energy; Energia solar fotovoltaica

    Energy Technology Data Exchange (ETDEWEB)

    Fraidenraich, Naum; Tiba, Chigueru; Vilela, Olga de Castro; Barbosa, Elielza Moura de Souza [Universidade Federal de Pernambuco(UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear (DEN). Grupo de Pesquisas em Fontes Alternativas de Energia

    2003-07-01

    This chapter gives an overview on energy generation from thermal solar energy, analysing the international markets of the photovoltaic modules, the changes which are being produced in the application character, the environmental phenomena resulting from the modules production, briefly describes the physical phenomena explaining the photovoltaic effect, analyses the process of module price formation and performs the energy costs resultant for the user and subsides politics being practiced in various countries.

  4. Simulations of Solar Jets

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  5. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  6. Solar thermophotovoltaics: reshaping the solar spectrum

    Science.gov (United States)

    Zhou, Zhiguang; Sakr, Enas; Sun, Yubo; Bermel, Peter

    2016-06-01

    Recently, there has been increasing interest in utilizing solar thermophotovoltaics (STPV) to convert sunlight into electricity, given their potential to exceed the Shockley-Queisser limit. Encouragingly, there have also been several recent demonstrations of improved system-level efficiency as high as 6.2%. In this work, we review prior work in the field, with particular emphasis on the role of several key principles in their experimental operation, performance, and reliability. In particular, for the problem of designing selective solar absorbers, we consider the trade-off between solar absorption and thermal losses, particularly radiative and convective mechanisms. For the selective thermal emitters, we consider the tradeoff between emission at critical wavelengths and parasitic losses. Then for the thermophotovoltaic (TPV) diodes, we consider the trade-off between increasing the potential short-circuit current, and maintaining a reasonable opencircuit voltage. This treatment parallels the historic development of the field, but also connects early insights with recent developments in adjacent fields.With these various components connecting in multiple ways, a system-level end-to-end modeling approach is necessary for a comprehensive understanding and appropriate improvement of STPV systems. This approach will ultimately allow researchers to design STPV systems capable of exceeding recently demonstrated efficiency values.

  7. Astroparticle physics with solar neutrinos.

    Science.gov (United States)

    Nakahata, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the "solar neutrino problem". Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. (Communicated by Toshimitsu Yamazaki, M.J.A.).

  8. Discovering the Solar System

    Science.gov (United States)

    Jones, Barrie W.

    1999-04-01

    Discovering the Solar System Barrie W. Jones The Open University, Milton Keynes, UK Discovering the Solar System is a comprehensive, up-to-date account of the Solar System and of the ways in which the various bodies have been investigated and modelled. The approach is thematic, with sequences of chapters on the interiors of planetary bodies, on their surfaces, and on their atmospheres. Within each sequence there is a chapter on general principles and processes followed by one or two chapters on specific bodies. There is also an introductory chapter, a chapter on the origin of the Solar System, and a chapter on asteroids, comets and meteorites. Liberally illustrated with diagrams, black and white photographs and colour plates, Discovering the Solar System also features: * tables of essential data * question and answers within the text * end of section review questions with answers and comments Discovering the Solar System is essential reading for all undergraduate students for whom astronomy or planetary science are components of their degrees, and for those at a more advanced level approaching the subject for the first time. It will also be of great interest to non-specialists with a keen interest in astronomy. A small amount of scientific knowledge is assumed plus familiarity with basic algebra and graphs. There is no calculus. Praise for this book includes: ".certainly qualifies as an authoritative text. The author clearly has an encyclopedic knowledge of the subject." Meteorics and Planetary Science ".liberally doused with relevant graphs, tables, and black and white figures of good quality." EOS, Transactions of the American Geophysical Union ".one of the best books on the Solar System I have seen. The general accuracy and quality of the content is excellent." Journal of the British Astronomical Association

  9. Technical use of solar energy: Conversion from solar to thermal energy, solar cooling and thermal energy storage

    Science.gov (United States)

    Arafa, A.; Fisch, N.; Hahne, E.; Kraus, K.; Seemann, D.; Seifert, B.; Sohns, J.; Schetter, G.; Schweigerer, W.

    1983-12-01

    Experimental and theoretical studies in the field of solar energy utilization are reviewed. Specific topics considered are: flat plate water collectors, solar absorbers, air collectors, solar absorption cooling, solar simulators, aquifiers, latent heat stores, and space heating systems.

  10. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    Science.gov (United States)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  11. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...... or small hot-water consumption and the risk of oversized solar heating systems and oversized tank volumes is reduced by using smart solar tanks. Based on the investigations it is recommended to start development of smart solar tank units with an oil-fired boiler or a natural gas burner as auxiliary energy...

  12. Combined solar collector

    OpenAIRE

    Voznyak, O.; Shapoval, S.; Pona, O.; Vengryn, I.

    2014-01-01

    In this article was analyzing the efficiency of the combined solar collector for heating buildings. This enhances the efficiency of solar system by increasing the area of the absorption of solar energy. There are describes the results of the research on solar radiation input on a combined solar collector. Проаналізовано ефективність використання комбінованого сонячного колектора для теплопостачання будівель. Він забезпечує підвищення ефективності геліосистеми за рахунок збільшення площі погли...

  13. Searchable solar feature catalogues

    Science.gov (United States)

    Zharkova, V. V.; Aboudarham, J.; Zharkov, S.; Ipson, S. S.; Benkhalil, A. K.; Fuller, N.

    The searchable Solar Feature Catalogues (SFCs) are developed from digitized solar images using automated pattern recognition techniques. The techniques were applied for the detection of sunspots, active regions, filaments and line-of-sight magnetic neutral lines in automatically standardized full disk solar images in Ca II K1, Ca II K3 and Ha lines taken at the Paris-Meudon Observatory and white light images and magnetograms from SOHO/MDI. The results of the automated recognition were verified with manual synoptic maps and available statistical data that revealed good detection accuracy. Based on the recognized parameters, a structured database of Solar Feature Catalogues was built on a MySQL server for every feature and published with various pre-designed search pages on the Bradford University web site http://www.cyber.brad.ac.uk/egso/SFC/. The SFCs with nine year coverage (1996-2004) is to be used for deeper investigation of the feature classification and solar activity forecast.

  14. The outer solar system

    Directory of Open Access Journals (Sweden)

    Encrenaz T.

    2009-02-01

    Full Text Available The outer solar system extends beyond a heliocentric distance of 5 AU. It contains the giant planets and their systems (rings and satellites, the Kuiper belt, the comets (except those which approach episodically the inner solar system and, at its outer edge, the Oort cloud. The outer solar system physically corresponds to the region located outside the « snow line » which corresponded to the distance of ice condensation in the protodolar disk, and thus made the frontier between the terrestrial and the giant planets at the time of the planets’ formation. The outer solar system is charaterized by a very large variety of ob jects, even within a given class of ob jects. Each of the giant planet has its own properties, as well as each of the outer satellites and the ring systems ; all are the products of specific conditions which determined their formation and evolution processes. The existence of the Kuiper belt, suspected on theoretical bases since the 1940s, has been confirmed since 1992 with the observation of over 1200 trans-neptunian ob jects. Thanks to the the developments of more and more performing groundbased instrumentation and the use of large telescopes, these ob jects are now studies in a statistical way, both dynamically and physically, and these studies are precious for constraining the early formation models of the solar system.

  15. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  16. Radiochemical solar neutrino experiments

    CERN Document Server

    Gavrin, V N

    2011-01-01

    Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p + p --> d + e^+ + nu_e, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE -- the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6 +/- 3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3 ^{+3.9}_{-3.5} SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux at the earth of (3.41 ^{+0.76}_{-0.77}) x 10^{10}/(cm^2-s), which agrees well with the prediction from a detailed solar model of (3.30 ^{+0.13} _{-0.14}) x 10^{10}/(cm^...

  17. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  18. Solar thermal financing guidebook

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  19. Development of nonmetallic solar collector and solar-powered pump

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  20. Solar neutrino detection

    CERN Document Server

    Miramonti, Lino

    2009-01-01

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  1. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  2. Cookers for solar homes

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, A.M.A.; Akyurt, M.; Taha, M.M.A.

    1986-01-01

    Means of piping solar energy into kitchens were investigated. Two different solar cookers utilising the heat-pipe principle were designed, constructed and tested. A cooker utilising an east-west line focusing collector, designated Mecca-1, was developed for this purpose. The second cooker was a flat-plate heat-pipe cooker, Mecca-2. A single heat pipe in each cooker absorbed the energy at the collector, transported it into the kitchen and delivered it to an insulated oven at the condenser end. Various heating and boiling experiments conducted on the two cookers demonstrated the feasibility of the concept. It was found that the Mecca-2 cooker with triple glazing had a utilisation efficiency of up to 19 per cent and could boil 1 litre of water in 27 min for a solar insolation of 900 W/m/sup 2/.

  3. Metasurface Broadband Solar Absorber

    CERN Document Server

    Azad, A K; Sykora, M; Weisse-Bernstein, N R; Luk, T S; Taylor, A J; Dalvit, D A R; Chen, H -T

    2015-01-01

    We demonstrate a broadband, polarization independent, omnidirectional absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low emissivity at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure. Furthermore, we discuss the potential use of our metasurface absorber design in solar thermophotovoltaics by exploiting refractory plasmonic materials.

  4. Why Not Solar Power?

    Science.gov (United States)

    Pokharel, Reeju; Sheldon, Peter

    2008-03-01

    Most of the world generally depends on energy sources such as fossil fuels and nuclear power to meet our energy consumption needs. As we all know, the excessive use of these resources has large environmental impacts, including displacing habitats, pollution, global warming, and scarcity of resources. Solar power is a clean form of energy that has the potential to fulfill our energy needs while balancing the natural state of our environment. So why do we not power our houses with solar energy? I will give a general overview of the working principles of commercially available solar power, and examine the issues relating to why we should use it and why we currently do not.

  5. The Global Solar Dynamo

    CERN Document Server

    Cameron, R H; Brandenburg, A

    2016-01-01

    A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.

  6. Winnebago Tribe Solar Project

    Energy Technology Data Exchange (ETDEWEB)

    Nieman, Autumn [Winnebago Tribe of Nebraska Solar Project (United States)

    2016-02-26

    The strategy of the Solar Project was to reduce fuel use within two years by a roof mounted photovoltaic system. The police/fire building is completely powered by electricity. The renewable energy system we have selected has a power capacity of 23kW and the ability to export 44.3 MWh. We anticipate 32.55% kWh energy savings, an excess of the required 30% reduction, in the building’s total fuel use based on the most current 12 months of data (2012). The solar electric system is a grid-tie, ballast mounted on a flat roof over the police/fire station. The solar electric system includes 280 Watt modules for a nominal total of 22.80 kW. Approximately 84 modules are ballast mounted to the flat roof facing south.

  7. Solar Indices Forecasting Tool

    Science.gov (United States)

    Henney, Carl John; Shurkin, Kathleen; Arge, Charles; Hill, Frank

    2016-05-01

    Progress to forecast key space weather parameters using SIFT (Solar Indices Forecasting Tool) with the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model is highlighted in this presentation. Using a magnetic flux transport model, ADAPT, we estimate the solar near-side field distribution that is used as input into empirical models for predicting F10.7(solar 10.7 cm, 2.8 GHz, radio flux), the Mg II core-to-wing ratio, and selected bands of solar far ultraviolet (FUV) and extreme ultraviolet (EUV) irradiance. Input to the ADAPT model includes the inferred photospheric magnetic field from the NISP ground-based instruments, GONG & VSM. Besides a status update regarding ADAPT and SIFT models, we will summarize the findings that: 1) the sum of the absolute value of strong magnetic fields, associated with sunspots, is shown to correlate well with the observed daily F10.7 variability (Henney et al. 2012); and 2) the sum of the absolute value of weak magnetic fields, associated with plage regions, is shown to correlate well with EUV and FUV irradiance variability (Henney et al. 2015). This work utilizes data produced collaboratively between Air Force Research Laboratory (AFRL) and the National Solar Observatory (NSO). The ADAPT model development is supported by AFRL. The input data utilized by ADAPT is obtained by NISP (NSO Integrated Synoptic Program). NSO is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF). The 10.7 cm solar radio flux data service, utilized by the ADAPT/SIFT F10.7 forecasting model, is operated by the National Research Council of Canada and National Resources Canada, with the support of the Canadian Space Agency.

  8. Studies efficiency solar air collector

    OpenAIRE

    YORKIN SODIKOVICH ABBASOV; MIRSOLI ODILJANOVICH UZBEKOV

    2016-01-01

    The article presents an analysis of the existing solar air collectors. A description of the design and the results of experimental studies on the effectiveness of the solar air collector with an absorber of from metal shavings.

  9. Mars Solar Balloon Lander Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  10. Future Directions in Solar Physics

    Science.gov (United States)

    Rabin, Douglas

    2010-01-01

    I will discuss scientific opportunities for space-based solar physics instruments in the coming decade and their synergy with major new ground-based telescopes. l will also discuss ( pow small satellites may complement larger solar physics missions.

  11. Nanomaterials for solar energy

    KAUST Repository

    Revaprasadu, Neerish

    2013-01-01

    Nanostructured metal chalcogenides of the elements copper, iron, tin, lead and cadmium have attracted interest in their use as colloidal nanocrystal inks for solar cells. Some of these materials have the advantages of being available in abundance and having low toxicity. Developing methods for the combination of the elements to produce binary, ternary and quaternary compounds has dominated research in the field. This chapter will provide the most recent developments (from year 2012 onwards) for the synthesis and use of colloidal nanocrystal inks for solar cell applications. © The Royal Society of Chemistry 2014.

  12. Drainback solar thermal systems

    DEFF Research Database (Denmark)

    Botpaev, R.; Louvet, Y.; Perers, Bengt

    2016-01-01

    Although solar drainback systems have been used for a long time, they are still generating questions regarding smooth functioning. This paper summarises publications on drainback systems and compiles the current knowledge, experiences, and ideas on the technology. The collective research exhibits...... of this technology has been developed, with a brief description of each hydraulic typology. The operating modes have been split into three stages: filling, operation, and draining, which have been studied separately. A difference in the minimal filling velocities for a siphon development in the solar loop has been...

  13. Physics of solar activity

    Science.gov (United States)

    Sturrock, Peter A.

    1993-01-01

    The aim of the research activity was to increase our understanding of solar activity through data analysis, theoretical analysis, and computer modeling. Because the research subjects were diverse and many researchers were supported by this grant, a select few key areas of research are described in detail. Areas of research include: (1) energy storage and force-free magnetic field; (2) energy release and particle acceleration; (3) radiation by nonthermal electrons; (4) coronal loops; (5) flare classification; (6) longitude distributions of flares; (7) periodicities detected in the solar activity; (8) coronal heating and related problems; and (9) plasma processes.

  14. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  15. Manhattan Solar Cannon

    Science.gov (United States)

    Treffers, Richard R.; Loisos, George; Ubbelohde, Susan; Douglas, Susanna; Pintos, Eduardo; Mulherin, James; Pasley, David

    2015-01-01

    We describe a 2.4 m hexagonal solar collector atop a Manhattan office building used for a solar / arts project. The collector uses an afocal design to concentrate the sunlight into a 0.6 m diameter beam which is directed by mirrors into a 80 m long fiber optic sculpture which descends an interior stairwell. The collector is fully steerable and follows the sun each day robotically. The control system and the optical design of the collector as well as the fiber optic sculpture will be discussed.

  16. Corrosion resistant solar mirror

    Energy Technology Data Exchange (ETDEWEB)

    Medwick, Paul A.; Abbott, Edward E.

    2016-07-19

    A reflective article includes a transparent substrate having a first major surface and a second major surface. A base coat is formed over at least a portion of the second major surface. A primary reflective coating having at least one metallic layer is formed over at least a portion of the base coat. A protective coating is formed over at least a portion of the primary reflective coating. The article further includes a solar cell and an anode, with the solar cell connected to the metallic layer and the anode.

  17. New Vacuum Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With its pure aperture up to 985mm, the New Vacuum Solar Telescope of China (NVST) has become the world's biggest vacuum solar telescope. The main science task of NVST is the high-resolution observation of photosphere and chromosphere including their fine structure of magnetic field on the sun. The NVST was equipped with many new technologies and powerful instruments, such as an adaptive optical system, a polarization analyzer, two vertical spectrographs, a high-resolution image system and a very narrow Ha filter (0.125A).

  18. Optoelectronics of solar cells

    CERN Document Server

    Smestad, Greg P

    2002-01-01

    With concerns about worldwide environmental security, global warming, and climate change due to emissions of carbon dioxide from the burning of fossil fuels, it is desirable to have a wide range of energy technologies in a nation's portfolio. Photovoltaics, or solar cells, are a viable option as a nonpolluting renewable energy source. This text is designed to be an overview of photovoltaic solar cells for those in the fields of optics and optical engineering, as well as those who are interested in energy policy, economics, and the requirements for efficient photo-to-electric energy conversion.

  19. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  20. Solar Neutrinos. II. Experimental

    Science.gov (United States)

    Davis, Raymond Jr.

    1964-01-01

    A method is described for observing solar neutrinos from the reaction Cl{sup 37}(nu,e{sup -})Ar{sup 37} in C{sub 2}Cl{sub 4}. Two 5 00-gal tanks of C{sub 2}Cl{sub 4} were placed in a limestone mine (1800 m.w.e.) and the resulting Ar{sup 37} activity induced by cosmic mesons( mu ) was measured to determine the necessary conditions for solar neutrino observations. (R.E.U.)

  1. Solar-neutrino oscillations

    Science.gov (United States)

    Krauss, L.; Wilczek, F.

    1985-01-01

    The theory of oscillations of solar neutrinos is developed as it applies to the electron-recoil spectrum in neutrino-electron scattering. The spectral information obtained by such measurements (as opposed to counting total event rates) is crucial for allowing observation of neutrino oscillations for masses down to 500 neV. In this regard, the effects of different masses and mixing angles, as well as such subtleties as thermal and pressure broadening, finite solar-core size, and variable indices of refraction are investigated.

  2. Solar industrial process heat

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  3. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  4. Space solar cells - tradeoff analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M.R. [ISRO Satellite Centre, Bangalore (India). Power Systems Group

    2003-05-15

    This paper summarizes the study that had the objective to tradeoff space solar cells and solar array designs to determine the best choice of solar cell and array technology that would be more beneficial in terms of mass, area and cost for different types of space missions. Space solar cells, which are commercially now available in the market and to be available in the near future, were considered for this trade study. Four solar array designs: rigid, flexible, thin film flexible and concentrator solar arrays were considered for assessment. Performance of the solar cells along with solar array designs were studied for two types of space missions:geo synchronous orbit (GEO) and low earth orbit (LEO) spacecraft. The Solar array designs assumed were to provide 15 kW power for 15 years mission life in GEO and 5 kW power for 5 years mission life in LEO altitudes. To perform tradeoff analysis a spread sheet model was developed that calculates the size, mass and estimates the cost of solar arrays based on different solar cell and array technologies for given set of mission requirements. Comparative performance metrics (W/kg, W/m{sup 2}, kg/m{sup 2}, and $/W) were calculated for all solar arrays studied and compared, at the solar array subsystem level and also at the spacecraft system level. The trade analysis results show that high-efficiency multijunction solar cells bring lot of cost advantages for both types of missions. The trade study also shows that thin film solar cells with moderate efficiency with ultra lightweight flexible array design may become competitive with well-established single crystalline solar cell technologies in the future. (author)

  5. Space solar cells. Tradeoff analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M. Raja [Power Systems Group, Solar Panels Division, ISRO Satellite Centre, Bangalore 560017 (India)

    2003-05-15

    This paper summarizes the study that had the objective to tradeoff space solar cells and solar array designs to determine the best choice of solar cell and array technology that would be more beneficial in terms of mass, area and cost for different types of space missions. Space solar cells, which are commercially now available in the market and to be available in the near future, were considered for this trade study. Four solar array designs: rigid, flexible, thin film flexible and concentrator solar arrays were considered for assessment. Performance of the solar cells along with solar array designs were studied for two types of space missions: geo synchronous orbit (GEO) and low earth orbit (LEO) spacecraft. The Solar array designs assumed were to provide 15kW power for 15 years mission life in GEO and 5kW power for 5 years mission life in LEO altitudes. To perform tradeoff analysis a spread sheet model was developed that calculates the size, mass and estimates the cost of solar arrays based on different solar cell and array technologies for given set of mission requirements. Comparative performance metrics (W/kg, W/m{sup 2}, kg/m{sup 2}, and $/W) were calculated for all solar arrays studied and compared, at the solar array subsystem level and also at the spacecraft system level. The trade analysis results show that high-efficiency multijunction solar cells bring lot of cost advantages for both types of missions. The trade study also show that thin film solar cells with moderate efficiency with ultra lightweight flexible array design may become competitive with well-established single crystalline solar cell technologies in the future.

  6. Purdue Solar Energy Utilization Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh [Purdue

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  7. Solar thermal system engineering guidebook

    Science.gov (United States)

    Selcuk, M. K.; Bluhm, S. A.

    1983-05-01

    This report presents a graphical methodology for the preliminary evaluation of solar thermal energy plants by Air Force base civil engineers. The report is organized as a Guidebook with worksheets and nomograms provided for rapid estimation of solar collector area, land area, energy output, and thermal power output of a solar thermal plant. Flat plate, evacuated tube, parabolic trough, and parabolic dish solar thermal technologies are considered.

  8. Solar energy for the hospital?

    Science.gov (United States)

    1981-01-01

    You can't scrap your boiler and expect solar panels to provide steam for process and heating, but solar systems are cost-effective now for domestic hot water generation, according to a leading solar energy engineering/design/build firm.

  9. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Thin film CIGS solar cells and individual layers within these solar cells have been tested in order to assess their long term stability. Alongside with the execution of standard tests, in which elevated temperatures and humidity levels are used, the solar cells have also been exposed to a combinatio

  10. 2010 Solar Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    2011-11-01

    The U.S. Department of Energy (DOE) 2010 Solar Technologies Market Report details the market conditions and trends for photovoltaic (PV) and concentrating solar power (CSP) technologies. Produced by the National Renewable Energy Laboratory (NREL), the report provides a comprehensive overview of the solar electricity market and identifies successes and trends within the market from both global and national perspectives.

  11. Angular solar absorptance of absorbers used in solar thermal collectors.

    Science.gov (United States)

    Tesfamichael, T; Wäckelgård, E

    1999-07-01

    The optical characterization of solar absorbers for thermal solar collectors is usually performed by measurement of the spectral reflectance at near-normal angle of incidence and calculation of the solar absorptance from the measured reflectance. The solar absorptance is, however, a function of the angle of incidence of the light impinging on the absorber. The total reflectance of two types of commercial solar-selective absorbers, nickel-pigmented anodized aluminum, and sputtered nickel nickel oxide coated aluminum are measured at angles of incidence from 5 to 80 in the wavelength range 300-2500 nm by use of an integrating sphere. From these measurements the angular integrated solar absorptance is determined. Experimental data are compared with theoretical calculations, and it is found that optical thin-film interference effects can explain the significant difference in solar absorptance at higher angles for the two types of absorbers.

  12. Solar photonitrosation of cyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Riffelmann, K.J.; Funken, K.H. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany). Hauptabteilung Energietechnik

    1997-12-31

    The photonitrosation of cyclohexane with nitrosyl chloride (PNC-process) is the central reaction step of photochemical production of {epsilon}-caprolactam. As compared to other, i.e. thermal routes for manufacture of {epsilon}-caprolactam the photochemical synthesis path is the shortest one, economizing the effective use of raw materials by having the highest yield and selectivity. In 1991 the world-wide capacity of {epsilon}-caprolactam was 3.1 mio metric tons/a. Although the photochemical route is most effective as to the materials costs, only 160 000 metric tons (i.e. 5%) were produced via the photochemical path. To provide the light doped high pressure mercury lamps were used. Disadvantages of the conventional PNC-process are strongly corrosive properties of nitrosyl chloride, high power costs and limited lifetime of the lamps. The last two disadvantages may be avoided using sunlight as clean source of photons. A simplified cost study showed that the solar process has a chance to be realized industrially as an alternative to the conventional technique. In this paper results of a project are dealt with aiming at the experimental investigation of the solar PNC-process to demonstrate that cyclohexanone oxime can be produced in a quality as required by the chemical industry. A solar reactor made of titanium was constructed and tested in the high flux solar furnace at the DLR research center, Koeln. Chemical efficiency and selectivity of the reaction, as well as quality of cyclohexanone oxime produced are presented. (orig.)

  13. TRMM Solar Array Panels

    Science.gov (United States)

    1998-01-01

    This final report presents conclusions/recommendations concerning the TRMM Solar Array; deliverable list and schedule summary; waivers and deviations; as-shipped performance data, including flight panel verification matrix, panel output detail, shadow test summary, humidity test summary, reverse bias test panel; and finally, quality assurance summary.

  14. Nanoimprinted polymer solar cell.

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Aryal, Mukti; Zakhidov, Anvar; Hu, Walter

    2012-04-24

    Among the various organic photovoltaic devices, the conjugated polymer/fullerene approach has drawn the most research interest. The performance of these types of solar cells is greatly determined by the nanoscale morphology of the two components (donor/acceptor) and the molecular orientation/crystallinity in the photoactive layer. A vertically bicontinuous and interdigitized heterojunction between donor and acceptor has been regarded as one of the ideal structures to enable both efficient charge separation and transport. Synergistic control of polymer orientation in the nanostructured heterojunction is also critical to improve the performance of polymer solar cells. Nanoimprint lithography has emerged as a new approach to simultaneously control both the heterojunction morphology and polymer chains in organic photovoltaics. Currently, in the area of nanoimprinted polymer solar cells, much progress has been achieved in the fabrication of nanostructured morphology, control of molecular orientation/crystallinity, deposition of acceptor materials, patterned electrodes, understanding of structure-property correlations, and device performance. This review article summarizes the recent studies on nanoimprinted polymer solar cells and discusses the outstanding challenges and opportunities for future work.

  15. Solar fuel generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nathan S.; West, William C.

    2017-01-17

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  16. Solar 79 Northwest

    Energy Technology Data Exchange (ETDEWEB)

    King, S [ed.

    1979-01-01

    The highlights of the many public programs are described and summaries of plenary session speeches are included. Names, addresses, and solar interest codes of conference registrants are included. Eleven technical papers or summaries are included. A separate citation was prepared for each one. (MHR)

  17. Photocatalysis: Plasmonic solar desalination

    Science.gov (United States)

    Liu, Tianyu; Li, Yat

    2016-06-01

    The sustainability of many existing desalination technologies is questionable. Plasmon-mediated solar desalination has now been demonstrated for the first time, using an aluminium structure that absorbs photons spanning the 200 nm to 2,500 nm wavelength range, and is both cheap and 'clean'.

  18. The Nano Solar Case

    DEFF Research Database (Denmark)

    Hollensen, Svend

    2011-01-01

    ISO PAINT Nordic A/S produces roof coatings, facade painting as well as specialised products for surface treatments. The company decided that they would develop a nano solar ICT based project having the capacity to change the whole cost structure of a building, for example by a nano roof coating...

  19. Solar energy conversion

    OpenAIRE

    Crabtree, George W.; Lewis, Nathan S.

    2007-01-01

    If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience.

  20. Solar concentrator/absorber

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  1. Simulating solar MHD

    Directory of Open Access Journals (Sweden)

    M. Schüssler

    Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 105 G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.

    Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.

  2. The Solar Dynamo

    Science.gov (United States)

    Hathaway, David H.

    1998-01-01

    The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood despite decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. Two basic processes are involved in dynamo activity. When the fluid stresses dominate the magnetic stresses (high plasma beta = 8(pi)rho/B(sup 2)), shear flows can stretch magnetic field lines in the direction of the shear (the "alpha effect") and helical flows can lift and twist field lines into orthogonal planes (the "alpha effect"). These two processes can be active anywhere in the solar convection zone but with different results depending upon their relative strengths and signs. Little is known about how and where these processes occur. Other processes, such as magnetic diffusion and the effects of the fine scale structure of the solar magnetic field, pose additional problems.

  3. Simple, economical solar collector

    Science.gov (United States)

    Anthony, K.

    1979-01-01

    Hot air solar collector designed for economy and simplicity is assembled from only three parts: (1) molded urethane foam body, (2) flat sheet metal collector panel and (3) transparent cover. Large arrays may be assembled by inserting male fittings of each collector into female fitting of adjacent collector.

  4. Solar Photovoltaic Energy.

    Science.gov (United States)

    Ehrenreich, Henry; Martin, John H.

    1979-01-01

    The goals of solar photovoltaic technology in contributing to America's future energy needs are presented in this study conducted by the American Physical Society. Although the time needed for photovoltaics to become popular is several decades away, according to the author, short-range applications are given. (Author/SA)

  5. Solar Radiation Alert System

    Science.gov (United States)

    2009-03-01

    th an effectve cutoff rgdty of ~0 MV (2)), the FAA’s Cvl Aerospace Medcal Insttute (CAMI) ssues a Solar Radaton Alert (SRA) to the Nat...fluences of other partcles are too small to be of sgnficance n dose calculatons (4, 11). Earth was modeled as a sphere of lqud water of rad

  6. Polymer tandem solar cells

    NARCIS (Netherlands)

    Hadipour, Afshin

    2007-01-01

    The global demand for energy is expanding continually. Therefore, realization of green power sources are needed since combustion of fossil fuels will have serious consequences for the climate on the Earth. With a photovoltaic device, the solar light can be converted into electricity which is the mos

  7. Development of Solar Scintillometer

    Indian Academy of Sciences (India)

    Sudhir Kumar Gupta; Shibu K. Mathew; P. Venkatakrishnan

    2006-06-01

    The index of scintillation measurement is a good parameter to compare different sites for image quality or ‘seeing’.We have developed a scintillometer, which is deployed on the high resolution SPAR telescope in the island site of Udaipur Solar Observatory, for the site characterization to specify the proposed MAST (Multi Application Solar Telescope). The scintillometer consists of a miniature telescope, termed as micro telescope (4mm aperture, 15mm focal length) mounted on a drive which tracks the Sun continuously, associated amplifiers and a data acquisition system. A photodiode is used as the detector. The telescope along with detector was obtained from National Solar Observatory (NSO), and is similar to the one used for Advanced Technology Solar Telescope (ATST) site survey. At USO we developed the amplifier and data acquisition system for the scintillometer. A 24-bit analog to digital converter based system was designed, assembled, tested and used as the data acquisition system (DAS). In this paper, we discuss the instrumentation and present the initial results.

  8. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  9. Properties of solar pores

    NARCIS (Netherlands)

    Sütterlin, Peter

    2001-01-01

    We present the results of an extensive investigation of the properties of solar pores. Spectra of all 4 Stokes parameters of several magnetic sensitive absorption lines as well as Stokes I only spectra of lines with low or vanishing Landéfactor have been observed. An inversion code based on the Leve

  10. Junior Solar Sprint.

    Science.gov (United States)

    O'Shea, Aisling

    1997-01-01

    Reports on a project sponsored by the United States Department of Energy (DOE) that engages students in building solar cars in groups with kits that include a three volt panel. The design and engineering decisions are made by the students using pertinent information. (DDR)

  11. Integrating a solar chimney

    NARCIS (Netherlands)

    Akerboom, R.; Gkerou, V.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. This designer’s manual presents an overview of integration methods of a solar chimney during refurbishment of office buildings and describes step by step the design methods. A lot of research has been made t

  12. NASA Facts, Solar Cells.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  13. Solar-heating system

    Science.gov (United States)

    1979-01-01

    Report describes solar modular domestic-hot-water and space-heating system intended for use in small single family dwelling where roof-mounted collectors are not feasible. Contents include design, performance, and hardware specifications for assembly, installation, operation, and maintenance of system.

  14. Solar Fuel Generator

    Science.gov (United States)

    Lewis, Nathan S. (Inventor); West, William C. (Inventor)

    2017-01-01

    The disclosure provides conductive membranes for water splitting and solar fuel generation. The membranes comprise an embedded semiconductive/photoactive material and an oxygen or hydrogen evolution catalyst. Also provided are chassis and cassettes containing the membranes for use in fuel generation.

  15. Solar Magnetic Fields

    CERN Document Server

    Hood, Alan W

    2011-01-01

    This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulation...

  16. Solar Thermal Power.

    Science.gov (United States)

    McDaniels, David K.

    The different approaches to the generation of power from solar energy may be roughly divided into five categories: distributed collectors; central receivers; biomass; ocean thermal energy conversion; and photovoltaic devices. The first approach (distributed collectors) is the subject of this module. The material presented is designed to…

  17. Probing the Solar System

    Science.gov (United States)

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  18. The New Solar System

    Science.gov (United States)

    Wilkinson, John

    2009-01-01

    Since 2006, the details of bodies making up our solar system have been revised. This was largely as a result of new discoveries of a number of planet-like objects beyond the orbit of Pluto. The International Astronomical Union redefined what constituted a planet and established two new classifications--dwarf planets and plutoids. As a result, the…

  19. How to use solar energy in the home and garden? Instructions and suggestions for easy self-construction of solar-powered systems: garden lighting, fountains, solar accumulators and solar motors; Wie nutze ich Solarenergie in Haus und Garten?. Bauanleitungen und Anregungen zum leichten Selbstbau von Solaranlagen wie z.B. Solar-Gartenbeleuchtung, Solar-Springbrunnen, Solar-Akkumulatoren, Solar-Elektromotoren

    Energy Technology Data Exchange (ETDEWEB)

    Hanus, B.

    1995-08-01

    The book reports on solar energy utilization: - solar energy and photovoltaics, - solar cell modules for self-construction, - self-sufficient solar power supply, - solar-powered pumps and engines, - ventilation and cooling using solar power, - heating using solar power, - garden lighting using solar power. (HW) [Deutsch] Das Buch berichtet ueber die Nutzung von Solarenergie: - Solarenergie und Photovoltaic; - Solarzellenmodule in Selbstbau; - Selbstversorgung mit Solarstrom; - Solar-Pumpen und -Motoren; - Lueften und Kuehlung mit Solarstrom; - Heizen mit Solarstrom; - Gartenbeleuchtung mit Solarstrom. (orig.)

  20. Simulate a ‘Sun’ for Solar Research : A Literature Review of Solar Simulator Technology

    OpenAIRE

    Wang, Wujun; Laumert, Björn

    2014-01-01

    The solar simulator is the key facility for indoor research of solar PV cells, solar heat collectors, space craft and CSP systems. This paper classifies the four types of solar simulators based on their characteristics and their design objects: space solar simulator, standard PV cell testing solar simulator, collector testing solar simulator and high-flux solar simulator. The review of solar simulator developments is mainly based on the developments of light sources and optical concentrators....

  1. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  2. Implementing Solar Technologies at Airports

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Romero, R.

    2014-07-01

    Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

  3. Review of solar radiation utilizability

    Science.gov (United States)

    Klein, S. A.; Beckman, W. A.

    1984-11-01

    A development history is presented for the concept and methodology of solar radiation 'utilizability', which is defined as the fraction of solar radiation that is incident on a surface exceeding a specified threshold or critical level. The concept, which was initially applied to flat plate solar collector thermal performance calculations, has more recently been applied to systems with concentrating collectors as well as to passive and photovoltaic systems. The utilizability function also contains information about operating times through its derivative with respect to critical level. Existing utilizability correlations provide a simple and elegant means of estimating the long term effect of solar radiation on any solar process.

  4. Effect of solar electron temperature on pep solar neutrino flux in the chlorine solar neutrino experiment and the gallium solar neutrino experiment

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The rate of the electron-capture reaction of proton,p+e-+p→2H+ve , is calculated considering the temperature of solar electron in the solar center instead of that of solar ion. When the solar electron temperature is two times higher than the solar ion temperature in the solar center, the capture rate pep solar neutrino predicted by the standard solar model (SSM) is decreased to (0.16±0.01) SNU from (0.22±0.01) SNU in the chlorine solar neutrino experiment, and decreased to 2.19 SNU from 3.0 SNU in the gallium solar neutrino experiment.

  5. Solar Variability and Planetary Climates

    CERN Document Server

    Calisesi, Y; Gray, L; Langen, J; Lockwood, M

    2007-01-01

    Variations in solar activity, as revealed by variations in the number of sunspots, have been observed since ancient times. To what extent changes in the solar output may affect planetary climates, though, remains today more than ever a subject of controversy. In 2000, the SSSI volume on Solar Variability and Climate reviewed the to-date understanding of the physics of solar variability and of the associated climate response. The present volume on Solar Variability and Planetary Climates provides an overview of recent advances in this field, with particular focus at the Earth's middle and lower atmosphere. The book structure mirrors that of the ISSI workshop held in Bern in June 2005, the collection of invited workshop contributions and of complementary introductory papers synthesizing the current understanding in key research areas such as middle atmospheric processes, stratosphere-troposphere dynamical coupling, tropospheric aerosols chemistry, solar storm influences, solar variability physics, and terrestri...

  6. Ion Acceleration in Solar Flares Determined by Solar Neutron Observations

    Science.gov (United States)

    Watanabe, K.; Solar Neutron Observation Group

    2013-05-01

    Large amounts of particles can be accelerated to relativistic energy in association with solar flares and/or accompanying phenomena (e.g., CME-driven shocks), and they sometimes reach very near the Earth and penetrate the Earth's atmosphere. These particles are observed by ground-based detectors (e.g., neutron monitors) as Ground Level Enhancements (GLEs). Some of the GLEs originate from high energy solar neutrons which are produced in association with solar flares. These neutrons are also observed by ground-based neutron monitors and solar neutron telescopes. Recently, some of the solar neutron detectors have also been operating in space. By observing these solar neutrons, we can obtain information about ion acceleration in solar flares. Such neutrons were observed in association with some X-class flares in solar cycle 23, and sometimes they were observed by two different types of detectors. For example, on 2005 September 7, large solar neutron signals were observed by the neutron monitor at Mt. Chacaltaya in Bolivia and Mexico City, and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in Mexico in association with an X17.0 flare. The neutron signal continued for more than 20 minutes with high statistical significance. Intense gamma-ray emission was also registered by INTEGRAL, and by RHESSI during the decay phase. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. (2002), and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the gamma-ray line emission and that ions were continuously accelerated at the emission site. In this paper, we introduce some of the solar neutron observations in solar cycle 23, and discuss the tendencies of the physical parameters of solar neutron GLEs, and the energy spectrum and population of the

  7. Solar Eruptive Events

    Science.gov (United States)

    Holman, Gordon D.

    2012-01-01

    It s long been known that the Sun plays host to the most energetic explosions in the solar system. But key insights into the forms that energy takes have only recently become available. Solar flares have been phenomena of both academic and practical interest since their discovery in 1859. From the academic point of view, they are the nearest events for studying the explosive release of energy in astrophysical magnetized plasmas. From the practical point of view, they disrupt communication channels on Earth, from telegraph communications in 1859 to radio and television signals today. Flares also wreak havoc on the electrical power grid, satellite operations, and GPS signals, and energetic charged particles and radiation are dangerous to passengers on high-altitude polar flights and to astronauts. Flares are not the only explosive phenomena on the Sun. More difficult to observe but equally energetic are the large coronal mass ejections (CMEs), the ejection of up to ten billion tons of magnetized plasma into the solar wind at speeds that can exceed 1000 km/s. CMEs are primarily observed from the side, with coronagraphs that block out the bright disk of the Sun and lower solar atmosphere so that light scattered from the ejected mass can be seen. Major geomagnetic storms are now known to arise from the interaction of CMEs with Earth's magnetosphere. Solar flares are observed without CMEs, and CMEs are observed without flares. The two phenomena often occur together, however, and almost always do in the case of large flares and fast CMEs. The term solar eruptive event refers to the combination of a flare and a CME. Solar eruptive events generate a lot of heat: They can heat plasma to temperatures as high at 50 million Kelvin, producing radiation across the electromagnetic spectrum. But that s not all. A fascinating aspect of solar eruptive events is the acceleration of electrons and ions to suprathermal often relativistic energies. The accelerated particles are primarily

  8. Solar Sources of $^{3}$He-rich Solar Energetic Particle Events in Solar Cycle 24

    OpenAIRE

    Nitta, Nariaki V.; Mason, Glenn M.; Wang, Linghua; Cohen, Christina M. S.; Wiedenbeck, Mark E.

    2015-01-01

    Using high-cadence extreme-ultraviolet (EUV) images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 $^{3}$He-rich solar energetic particle (SEP) events at $\\lesssim$1 MeV nucleon$^{-1}$ that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of $^{3}$He-rich events with type III radio bursts and electron events as observ...

  9. COMPOSITION OF THE SOLAR CORONA, SOLAR WIND, AND SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, J. T. [Physics Department, University of Memphis, Memphis, TN 38152 (United States); Reames, D. V. [IPST, University of Maryland, College Park, MD 20742 (United States); Von Steiger, R. [ISSI, Hallerstrasse 6, 3012 Bern (Switzerland); Basu, S., E-mail: jschmelz@memphis.edu [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2012-08-10

    Along with temperature and density, the elemental abundance is a basic parameter required by astronomers to understand and model any physical system. The abundances of the solar corona are known to differ from those of the solar photosphere via a mechanism related to the first ionization potential of the element, but the normalization of these values with respect to hydrogen is challenging. Here, we show that the values used by solar physicists for over a decade and currently referred to as the 'coronal abundances' do not agree with the data themselves. As a result, recent analysis and interpretation of solar data involving coronal abundances may need to be revised. We use observations from coronal spectroscopy, the solar wind, and solar energetic particles as well as the latest abundances of the solar photosphere to establish a new set of abundances that reflect our current understanding of the coronal plasma.

  10. Solar architecture and solar construction. Proceedings; Solararchitektur und Solares Bauen. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The proceedings of the Second Energy Forum: Solar architecture and solar construction that took place in Brixen, southern Tirol from 3rd until 4th December 2007 is divided into six chapters and contains the following 18 contributions: Chapter 1: Incentive programmes for solar energy: (1) solar architecture and solar construction; (2) the basic facts of the new Italian incentive system; (3) the offer of the Banca Intensa Sanpaolo for financing of photovoltaic plants and lasting buildings. Chapter 2: Comprehensive construction - intelligent building envelopes (4) solar construction and modernisation to a zero energy house; (5) solar construction with architecture glas - aesthetically attractive and energy efficient; (6) photovoltaic plants as integrating component of lasting buildings. Chapter 3: Building integrated photovoltaic systems: (7) Building integrated photovoltaic systems - potentials, space plannning and architecture; (8) Aesthetic phototvoltaic plants and design applications for roof and facade; (9) use of the building envelope for decentral solar current generation in the grid. Chapter 4: Clima Engineering: (10) Clima Engineering - part of integral building planning; (11) from a museum climate to a climate facade. Chapter 5: Solar thermal energy, solar cooling and heating: (12) Europe's way towards solar thermal energy; (13) new developments in the field of solar cooling; (14) solar cooling and heating - present status of installed systems with a high performance and an outlook on new buildings. Chapter 6: Shading, solar protection, daylight use: (15) dimensions of the light for the field of architecture; (16) daylight systems as instruments of energy management in the facade; (17) new insulating glazing in modern architecture; (18) light - space - climate: integral system at the new construction of the hospital Bozen. (orig.)

  11. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  12. Solar energy and environmental ethics

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, C.J.

    1984-01-01

    Current directions in the scientific development and advocacy of solar technology emphasize its technical efficiency, its ability to function in place of conventional energy technologies, and measures of its long-run cost effectiveness. Those directions do not consider human experience or the effect of their preoccupation with technical thinking. Even environmental ethics, as it relates to solar energy, and legal aspects of the use of solar energy are biased toward finding fixed solutions to social problems. The German thinker Martin Heidegger argued that meaningful involvement in any saturation depends on one's ability to think clearly and thoroughly. Heidegger's emphasis on thinking and thoughtfulness fits best with ways of using solar energy that are appropriate to both the nature of solar energy and the lifestyles of the users. Truly appropriate use of solar energy requires what Heidegger called a composure toward solar technology, in which solar technology might change to suit new circumstances but not to the point where the user cannot control it. The horizons of solar technology itself are broadened in the context to include scientifically less-sophisticated equipment, and ways of using solar energy that reflect changes in lifestyle and greater awareness of the sun.

  13. Solar Magnetic Waves and Oscillations

    Science.gov (United States)

    Erdelyi von Fay-Siebenburgen, R.

    2006-11-01

    Recent solar and space satellite missions (e.g. SOHO, Trace) and high- resolution ground-based observations (e.g. Swedish Solar Telescope, Dutch Open Telescope) have opened new avenues for 21st century plasma physics. With unprecedented details a very rich and abundant structure of the solar atmosphere is unveiled. Revolutionary observations clearly confirmed the existence of MHD waves and oscillations in a wide range of solar atmospheric magnetic structures, commonly described in the form of solar flux tubes. The objectives of this review are to give an up-to-date account of the theory of MHD waves and oscillations in solar and astrophysical magnetic wave-guides. Since magnetic structuring acts as excellent wave guides, plasma waves and oscillations are able to propagate from sub-surface solar regions through the solar atmosphere deep into the interplanetary space. Observations and theoretical modeling of waves can provide excellent diagnostic tools about the state of solar plasma. Key examples of the various types of MHD waves and oscillations will be discussed both from observational and theoretical perspectives and the concept of atmospheric (coronal) and magneto-seismology will be introduced. The lecture will also contain a few short exercises in order to highlight the important points of the applications of solar MHD wave theory.

  14. The quest for solar gravity modes: probing the solar interior

    CERN Document Server

    Mathur, S

    2009-01-01

    The solar gravity modes are the best probes to improve our knowledge on the solar interior, as they spend most of their time in the radiative zone, which represents 98% of the solar mass. Many attempts have been led to observe them using different techniques: either individually, then adding some statistical approach or more recently, globally leading to the detection of the signature of asymptotical properties of these modes. Then, several theoretical works have been done to quantify the effect of detecting g-mode on solar modeling and on the rotation profile. We will give here an update on the g-mode detection. Then, we will study an example of a theoretical work showing how their detection would improve our knowledge on the dynamics of the solar core as well as an application on the detection of the global properties to infer some physical inputs in solar models.

  15. Solar neutrinos, helioseismology and the solar internal dynamics

    CERN Document Server

    Turck-Chieze, S

    2010-01-01

    Neutrinos are fundamental particles ubiquitous in the Universe. Their properties remain elusive despite more than 50 years of intense research activity. In this review we remind the reader of the noticeable properties of these particles and of the stakes of the solar neutrino puzzle. The Standard Solar Model triggered persistent efforts in fundamental Physics to predict the solar neutrino fluxes, and its constantly evolving predictions have been regularly compared to the detected neutrino signals. Anticipating that this standard model could not reproduce the internal solar dynamics, a SEismic Solar Model was developed which enriched theoretical neutrino flux predictions with in situ observation of acoustic waves propagating in the Sun. This review reminds the historical steps, from the pioneering Homestake detection, the GALLEX- SAGE captures of the first pp neutrinos and emphasizes the importance of the Superkamiokande and SNO detectors to demonstrate that the solar-emitted electronic neutrinos are partially...

  16. Passive solar construction handbook

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-08-01

    Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

  17. Solar Stirling system development

    Science.gov (United States)

    Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.

    1979-01-01

    A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.

  18. Solar System formation

    CERN Document Server

    Crida, A

    2009-01-01

    In this review, three major changes in our understanding of the early history of the Solar System are presented. 1) Early differentiation: A few recent results support the idea that protoplanet formation and differentiation occurred partly simultaneously than CAI formation. First, some iron meteorites, eucrites, and angrites older than the chondrules or even than the CAI have been found. Second, iron meteorites could be debris of early disrupted differentiated planetesimals, scattered from the terrestrial planet region to the Main Belt. Finally, chondrules contain fragments of planetesimal material. 2) Earth and Moon: An equilibration mechanism explains the identical Oxygen isotopic composition of the Earth and the Moon. In addition, it has been shown that the Earth and the Moon mantles have the same 182^W anomaly, in contrast to what was believed before. Consequently, the Moon forming impact should have occurred after the extinction of the 182Hf radioactivity, about 60 Myr after Solar System formation. This ...

  19. COLOR- SENSITIZED SOLAR ELEMENTS

    Directory of Open Access Journals (Sweden)

    Gish R. A.

    2016-05-01

    Full Text Available Photovoltaic devices are a promising solution to the energy crisis, because they generate electricity directly from sunlight, without producing CO2. While color-sensitized batteries are the most studied element, mainly due to its low cost and high efficiency solar energy conversion into electricity. Until recently, the color-sensitized solar cells performance was less than 1%, however, the use of titanium dioxide as the anode material have greatly raised their efficiency. The advantages of titanium dioxide is primarily in the low cost, but its use provides high light capture efficiency, with external quantum efficiency (efficiency incident photon - charge, usually in the range of 60-90% using nanocrystal forms in comparison with

  20. Advances in solar sailing

    CERN Document Server

    Third International Symposium on Solar Sailing

    2014-01-01

    Hosted by the Advanced Space Concepts Laboratory within the department of Mechanical and Aerospace Engineering of the University of Strathclyde, the third International Symposium on Solar Sailing was held in McCance Building at 16 Richmond Street, Glasgow, between 11 and 13 June 2013. The symposium attracted over 90 delegates from19 different counties, bringing together international experts from across the globe to discuss funded solar sail flight programs alongside on-going technology development and testing programs. The symposium also provided a forum for the discussion of enabling technologies, new application concepts, materials and structural concepts, space environmental effects, dynamics, navigation, control, and much more. This volume contains the unabridged symposium proceedings, in the gathered experts own words. As symposium chair, I thank our partners at Scottish Enterprise and L’Garde, Inc., the symposium’s gold sponsor, for their support in realising this symposium.

  1. A solar energy collector

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyev, L.L.; Avakyan, Yu V.; Dabagyan, T.N.; Grakovich, L.P.; Khustalev, D.K.; Morgun, V.A.; Vartanyan, A.V.

    1984-01-01

    During collector operation, solar emission is absorbed by the evaporator section of the heating tube; the degree of blackness of the forward wall of the section is increased significantly by the use of corrugations in this section. Boiling of the working fluid in the longitudinal slotted channels is accompanied by outbursts of the steam fluid mixture in the direction of the forward wall, resulting in wetting of the longitudinal corrugation on this wall. In this solar collector, there is a continuous flow of the working fluid onto the internal surface of the leading wall of the evaporation section of the heat tube; the working fluid evaporation process is accelerated by the spraying resulting from the popping of vapor bubbles.

  2. Probabilities for Solar Siblings

    Science.gov (United States)

    Valtonen, Mauri; Bajkova, A. T.; Bobylev, V. V.; Mylläri, A.

    2015-02-01

    We have shown previously (Bobylev et al. Astron Lett 37:550-562, 2011) that some of the stars in the solar neighborhood today may have originated in the same star cluster as the Sun, and could thus be called Solar Siblings. In this work we investigate the sensitivity of this result to galactic models and to parameters of these models, and also extend the sample of orbits. There are a number of good candidates for the sibling category, but due to the long period of orbit evolution since the break-up of the birth cluster of the Sun, one can only attach probabilities of membership. We find that up to 10 % (but more likely around 1 %) of the members of the Sun's birth cluster could be still found within 100 pc from the Sun today.

  3. Solar variability and clouds

    CERN Document Server

    Kirkby, Jasper

    2000-01-01

    Satellite observations have revealed a surprising imprint of the 11- year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of Galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how. (37 refs).

  4. Electromagnetically Clean Solar Arrays

    Science.gov (United States)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  5. Terrestrial solar modules

    Science.gov (United States)

    Sampson, W.; Olah, S.

    Processing methods and materials for the fabrication of solar cell modules are reviewed. It is noted that current production favors copper, particularly in mesh form, as the cell interconnect material due to suitability for stress relief configurations to offset the effects of thermal expansion and deficiencies in the bond between copper and Si. Ethylene vinyl/acetate is preferred to polyvinyl butyral as an encapsulant because it is also a dry film and adheres at low temperature without requiring a pressure bond. The thermal cycling parameters have been set at -40 to 90 C, and tempered low iron, high transmission, water white glass is used as the superstrate. A conceptual design for an automated production of the encapsulated cells is outlined, including the ability to make front and back interconnects and achieve accurate soldering due to the precise location of the solar cells in the process.

  6. Probabilities for Solar Siblings

    CERN Document Server

    Valtonen, M; Bobylev, V V; Myllari, A

    2015-01-01

    We have shown previously (Bobylev et al 2011) that some of the stars in the Solar neighborhood today may have originated in the same star cluster as the Sun, and could thus be called Solar Siblings. In this work we investigate the sensitivity of this result to Galactic models and to parameters of these models, and also extend the sample of orbits. There are a number of good candidates for the Sibling category, but due to the long period of orbit evolution since the break-up of the birth cluster of the Sun, one can only attach probabilities of membership. We find that up to 10% (but more likely around 1 %) of the members of the Sun's birth cluster could be still found within 100 pc from the Sun today.

  7. The Solar Telescope GREGOR

    Science.gov (United States)

    Volkmer, R.

    2008-09-01

    During the last years the new 1.5m solar telescope GREGOR was assembled at Izania on Tenerife, Spain. The telescope is designed for high-precision measurements of the magnetic field in the solar photosphere and chromosphere with a resolution of 70km on the Sun. The telescope concept offers also high resolution stellar spectroscopy. The telescope is build by a consortium of the Kiepenheuer-Institut für Sonnenphysik, the Astrophysikalische Institut Potsdam, the Institut für Astrophysik Göttingen, Max-Plank-Institut für Sonnensystemforschung and additional international Partners. The telescope is a complete open structure with active cooled main mirror. High performance post-focus instruments in the visible and near IR wavelength acquire high resolution spectra with 2 dimensional spatial resolution and polarimetric information. The commissioning of the telescope will start in 2008 to allow first science observations at the end of 2009.

  8. The Solar Development Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Singer, C.E.

    1997-12-01

    This paper describes a proposed stand alone company, the Solar Development Corporation (SDC), to be a business development and financing entity for photovoltaic operations with the potential to be commercially sustainable. SDC will have a fully integrated policy advocacy link to the World Bank. SDC will define target countries where the potential exists for significant early market expansion. In those countries it will provide: market and business development services that will accelerate the growth of private firms and deepen the penetration of Solar Home Systems (SHS) and other rural PV applications in the market; and access to pre-commercial and parallel financing for private firms to (1) expand their capability in PV distribution businesses, and (2) strengthen their ability to provide credit to end users. SDC itself will not engage in direct financing of the final consumer. It is intended that as far as possible SDC`s finance will be provided in parallel with financing from Financial Intermediaries.

  9. Quantum Dot Solar Cells

    Science.gov (United States)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  10. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology (Finland). Dept. of Electrical and Communications Engineering

    1998-12-31

    Photovoltaic research began at the Electron Physics Laboratory of the Helsinki University of Tehnology in 1993, when the laboratory joined the national NEMO 2 research program. During the early stages of the photovoltaic research the main objective was to establish necessary measurement and characterisation routines, as well as to develop the fabrication process. The fabrication process development work has been supported by characterisation and theoretical modelling of the solar cells. Theoretical investigations have been concerned with systematic studies of solar cell parameters, such as diffusion lengths, surface recombination velocities and junction depths. The main result of the modelling and characterisation work is a method which is based on a Laplace transform of the so-called spatial collection efficiency function of the cell. The basic objective of the research has been to develop a fabrication process cheap enough to be suitable for commercial production

  11. The solar element

    DEFF Research Database (Denmark)

    Kragh, Helge

    2009-01-01

    Apart from hydrogen, helium is the most abundant chemical element in the universe, and yet it was only discovered on the Earth in 1895. Its early history is unique because it encompasses astronomy as well as chemistry, two sciences which the spectroscope brought into contact during the second half...... of the nineteenth century. In the modest form of a yellow spectral line known as D3, 'helium' was sometimes supposed to exist in the Sun's atmosphere, an idea which is traditionally ascribed to J. Norman Lockyer. Did Lockyer discover helium as a solar element? How was the suggestion received by chemists, physicists...... elements might be different. The complex story of how helium became established as both a solar and terrestrial element involves precise observations as well as airy speculations. It is a story that is unique among the discovery histories of the chemical elements....

  12. Illusions in solar photosphere

    Science.gov (United States)

    Hurlburt, Neal E.; Cheung, M.

    2013-07-01

    An array of methods have been developed over the past few decades aimed at inferring the surface motion in the solar photosphere. These methods are generally based on tracking the apparent motion of features seen in the data which are, for the most part, manifestations of the thermal or magnetic structuring generated by solar magnetoconvection. Patterns formed by nonlinear magnetoconvection are known change dramatically depending on the configuration and strength of the magnetic field. These changes should be taken into account in assessing the performance of any flow-tracking method. Here we assess one method using high-fidelity numerical models of the magnetoconvection in the presence of a large-scale region of emerging flux. We compare the flow structure derived from the opflow3d method against the surface velocities contained within the simulation and investigate systematic errors introduced by local variations in field strength and inclination.

  13. Solar system plasma waves

    Science.gov (United States)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  14. High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm.

    Science.gov (United States)

    Härkönen, Antti; Rautiainen, Jussi; Guina, Mircea; Konttinen, Janne; Tuomisto, Pietari; Orsila, Lasse; Pessa, Markus; Okhotnikov, Oleg G

    2007-03-19

    We report on an optically-pumped intracavity frequency doubled GaInNAs/GaAs -based semiconductor disk laser emitting around 615 nm. The laser operates at fundamental wavelength of 1230 nm and incorporates a BBO crystal for light conversion to the red wavelength. Maximum output power of 172 mW at 615 nm was achieved from a single output. Combined power from two outputs was 320 mW. The wavelength of visible emission could be tuned by 4.5 nm using a thin glass etalon inside the cavity.

  15. Passive solar homes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.

    1981-01-01

    After a brief description of the basic principles of passive solar heating, the use of thermal mass in a passive house is discussed, including the Trombe wall, water wall, roof ponds, and the attached greenhouse. Direct gain through skylights and clerestories is also discussed. The selection of a lot and the orientation of the house on the lot are covered. The example of a passive house outside Santa Fe, New Mexico is cited for its performance. (LEW)

  16. Thin, Lightweight Solar Cell

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Weinberg, Irving

    1991-01-01

    Improved design for thin, lightweight solar photovoltaic cells with front contacts reduces degradation of electrical output under exposure to energetic charged particles (protons and electrons). Increases ability of cells to maintain structural integrity under exposure to ultraviolet radiation by eliminating ultraviolet-degradable adhesives used to retain cover glasses. Interdigitated front contacts and front junctions formed on semiconductor substrate. Mating contacts formed on back surface of cover glass. Cover glass and substrate electrostatically bonded together.

  17. Autonomous solar refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Bougard, J.; Vokaert, D. (Faculte Polytechnique de Mons, Universite Libre de Bruxelles (Belgium))

    1982-11-01

    A compression refrigerator, fed by a flat solar pannel and composed of two thermal machines, working on a Rankine-Hirn cycle, is described. Mechanical energy is transferred by a double effect free-piston which is at the same time engine, pump, compressor and electric generator for auxiliaries. Freon R12 or R114 is used as the working fluid. Performances of a prototype are given. Investment for a classical unit, fed by a photovoltaic pannel would be more than twice.

  18. Cajal on solar eclipse.

    Science.gov (United States)

    Triarhou, Lazaros C; del Cerro, Manuel

    2008-01-01

    An impression that sculpted a lasting memory on the mind of the great neuroanatomist Santiago Ramón y Cajal, an 8-year-old boy at the time, was the total solar eclipse of 18 July 1860. This short article provides a translation of the relevant passage, found in a 1933 Buenos Aires schoolbook, and places the celestial event at the crossroads of neuroscience, astronomy and literature.

  19. Localized solar collectors

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Hadi; Marconnet, Amy Marie; Chen, Gang; Ni, George Wei

    2016-10-04

    A localized heating structure, and method of forming same, for use in solar systems includes a thermally insulating layer having interconnected pores, a density of less than about 3000 kg/m.sup.3, and a hydrophilic surface, and an expanded carbon structure adjacent to the thermally insulating layer. The expanded carbon structure has a porosity of greater than about 80% and a hydrophilic surface.

  20. Solar-Terrestrial Interactions

    Science.gov (United States)

    2008-01-01

    E. Lamanna, Societa Italiana di Fisica , Bologna, Italy, 1997.) Shea, M.A., and D.F. Smart, Overview of the Effects of Solar Terrestrial Phenomena...Conference, Invited, Rapporteurs, & Highlight Papers, edited by N. Iucci and E. Lamanna, Societa Italiana di Fisica , Bologna, Italy, 1997.) 27...Smart, and M.A. Shea, LARC: Particle Asymptotic Directions Using IGRF95, Istituto di Fisica dello Spazio Interplanetario Report No. IFSI-2000-3

  1. Concentrating solar thermal power.

    Science.gov (United States)

    Müller-Steinhagen, Hans

    2013-08-13

    In addition to wind and photovoltaic power, concentrating solar thermal power (CSP) will make a major contribution to electricity provision from renewable energies. Drawing on almost 30 years of operational experience in the multi-megawatt range, CSP is now a proven technology with a reliable cost and performance record. In conjunction with thermal energy storage, electricity can be provided according to demand. To date, solar thermal power plants with a total capacity of 1.3 GW are in operation worldwide, with an additional 2.3 GW under construction and 31.7 GW in advanced planning stage. Depending on the concentration factors, temperatures up to 1000°C can be reached to produce saturated or superheated steam for steam turbine cycles or compressed hot gas for gas turbine cycles. The heat rejected from these thermodynamic cycles can be used for sea water desalination, process heat and centralized provision of chilled water. While electricity generation from CSP plants is still more expensive than from wind turbines or photovoltaic panels, its independence from fluctuations and daily variation of wind speed and solar radiation provides it with a higher value. To become competitive with mid-load electricity from conventional power plants within the next 10-15 years, mass production of components, increased plant size and planning/operating experience will be accompanied by technological innovations. On 30 October 2009, a number of major industrial companies joined forces to establish the so-called DESERTEC Industry Initiative, which aims at providing by 2050 15 per cent of European electricity from renewable energy sources in North Africa, while at the same time securing energy, water, income and employment for this region. Solar thermal power plants are in the heart of this concept.

  2. 2015 Solar Decathalon

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, George [Alfred Univ. and Alfred State College, NY (United States)

    2015-11-20

    A final report is submitted for the results of Team Alfred’s participation in the 2015 Solar Decathlon held in October of that year in Irvine California. More than 30 people traveled the distance from Alfred NY to Irvine to participate in the assembly and contest of the ALF house. The results of what the team learned, the experience we had, and what we would have done differently are included in this report.

  3. EDITORIAL: Nanostructured solar cells Nanostructured solar cells

    Science.gov (United States)

    Greenham, Neil C.; Grätzel, Michael

    2008-10-01

    Conversion into electrical power of even a small fraction of the solar radiation incident on the Earth's surface has the potential to satisfy the world's energy demands without generating CO2 emissions. Current photovoltaic technology is not yet fulfilling this promise, largely due to the high cost of the electricity produced. Although the challenges of storage and distribution should not be underestimated, a major bottleneck lies in the photovoltaic devices themselves. Improving efficiency is part of the solution, but diminishing returns in that area mean that reducing the manufacturing cost is absolutely vital, whilst still retaining good efficiencies and device lifetimes. Solution-processible materials, e.g. organic molecules, conjugated polymers and semiconductor nanoparticles, offer new routes to the low-cost production of solar cells. The challenge here is that absorbing light in an organic material produces a coulombically bound exciton that requires dissociation at a donor-acceptor heterojunction. A thickness of at least 100 nm is required to absorb the incident light, but excitons only diffuse a few nanometres before decaying. The problem is therefore intrinsically at the nano-scale: we need composite devices with a large area of internal donor-acceptor interface, but where each carrier has a pathway to the respective electrode. Dye-sensitized and bulk heterojunction cells have nanostructures which approach this challenge in different ways, and leading research in this area is described in many of the articles in this special issue. This issue is not restricted to organic or dye-sensitized photovoltaics, since nanotechnology can also play an important role in devices based on more conventional inorganic materials. In these materials, the electronic properties can be controlled, tuned and in some cases completely changed by nanoscale confinement. Also, the techniques of nanoscience are the natural ones for investigating the localized states, particularly at

  4. Solar System Voyage

    Science.gov (United States)

    Brunier, Serge

    2002-11-01

    In the last few decades, the exploration of our solar system has revealed fascinating details about the worlds that lie beyond our Earth. This lavishly illustrated book invites the reader on a journey through the solar system. After locating our planetary system in the Universe, Brunier describes the Sun and its planets, the large satellites, asteroids, and comets. Photographs and information taken from the latest space missions allow readers to experience spectacular scenes: the lunar plains scarred by asteroid impacts, the frozen deserts of Mars and Europa, the continuously erupting volcanoes of Io and the giant geysers of Triton, the rings of Saturn and the clouds of Venus and Titan, and the powerful crash of the comet Shoemaker-Levy into Jupiter. Inspired by the extraordinary photographs and incisive text, readers of Solar System Voyage will gain a greater appreciation of the hospitable planet we call home. Serge Brunier is chief editor of the journal Ciel et Espace, a photojournalist, and the author of many nonfiction books aimed at both specialists and the general public. His previous books include Space Odyssey (Cambridge, 2002), Glorious Eclipses with Jean-Pierre Luminet (Cambridge, 2000), and Majestic Universe (Cambridge, 1999).

  5. Solar extreme events

    CERN Document Server

    Hudson, Hugh S

    2015-01-01

    Solar flares and CMEs have a broad range of magnitudes. This review discusses the possibility of "extreme events," defined as those with magnitudes greater than have been seen in the existing historical record. For most quantitative measures, this direct information does not extend more than a century and a half into the recent past. The magnitude distributions (occurrence frequencies) of solar events (flares/CMEs) typically decrease with the parameter measured or inferred (peak flux, mass, energy etc. Flare radiation fluxes tend to follow a power law slightly flatter than $S^{-2}$, where S represents a peak flux; solar particle events (SPEs) follow a still flatter power law up to a limiting magnitude, and then appear to roll over to a steeper distribution, which may take an exponential form or follow a broken power law. This inference comes from the terrestrial $^{14}$C record and from the depth dependence of various radioisotope proxies in the lunar regolith and in meteorites. Recently major new observation...

  6. Helioseismology with Solar Orbiter

    CERN Document Server

    Löptien, Björn; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Rodríguez, Julián Blanco; Cally, Paul S; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H; Solanki, Sami K

    2014-01-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21 deg (up to 34 deg by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3 x 10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. The full range of Earth-Sun-spacecraft angles provi...

  7. Corona and solar wind

    Science.gov (United States)

    Withbroe, G. L.

    1986-04-01

    The Pinhole/Occulter Facility is a powerful tool for studying the physics of the extended corona and origins of the solar wind. Spectroscopic data acquired by the P/OF coronal instruments can greatly expand empirical information about temperatures, densities, flow velocities, magnetic fields, and chemical abundances in the corona out to r or approx. 10 solar radii. Such information is needed to provide tight empirical constraints on critical physical processes involved in the transport and dissipation of energy and momentum, the heating and acceleration of plasma, and the acceleration of energetic particles. Because of its high sensitivity, high spatial and temporal resolutions, and powerful capabilities for plasma diagnostics, P/OF can significantly increase our empirical knowledge about coronal streamers and transients and thereby advance the understanding of the physics of these phenomena. P/OF observations can be used to establish the role in solar wind generation, if any, of small-scale dynamical phenomena, such as spicules, macrospicules and coronal bullets, and the role of the fine-scale structures, such as polar plumes. Finally, simultaneous measurements by the P/OF coronal and hard X-ray instruments can provide critical empirical information concerning nonthermal energy releases and acceleration of energetic particles in the corona.

  8. DUALPURPOSE SOLAR OVEN

    Directory of Open Access Journals (Sweden)

    S. H. Sengar

    2010-10-01

    Full Text Available Dual purpose solar oven (DPSO was designed and constructed. It observed that by using the new design of solar oven, both function of cooking and drying were possible for meeting the requirement of a family. The maximum stagnation temperature of 119°C and water temperature of 93.25°C were obtained in winter in DPSO while using as cooker. The calculated values of figure of merit F in DPSO was 0.119 and the time duration 1 for raising water temperature from 60 C to 90°C in hot box was 120 min. Cooking trials have also been conducted 0.5 kg of rice in 1 kg of water and 0.250 Kg of green gram split washed in one and half hrs in winter while it took about one hour in summer. The maximum temperature of 58 °C was recorded at 14:00 hrs of the day at level of tray no.2 when used as dryer. The time required to dry maize on different trays upto average moisture content 7.13 %( w.w. for winter and 5.43 %( w.w. for summer (w.w.was 420 minute and 360 minute respectively. The total cost of solar oven was worked out to be Rs(.2,715. Its pay back period varied between 1.3 to 1.86 years depending upon fuel it replaced.

  9. Solar battery energizer

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M. E.

    1985-09-03

    A battery energizer for button batteries, such as zinc-silver oxide or zinc-mercuric oxide batteries, that are normally considered unchargeable, provides for energizing of the batteries in a safe and simple manner. A solar cell having a maximum current output (e.g., 20 milliamps) is operatively connected to terminals for releasably receiving a button battery. A light emitting diode, or like indicator, provides an indication of when the battery is fully energized, and additionally assists in preventing overenergization of the battery. The solar cell, terminals, LED, and the like can be mounted on a nonconductive material mounting plate which is mounted by a suction cup and hook to a window, adjacent a light bulb, or the like. A battery charger for conventional dry cell rechargeable batteries (such as nickel-cadmium batteries) utilizes the solar cells, and LED, and a zener diode connected in parallel with terminals. An adaptor may be provided with the terminal for adapting them for use with any conventional size dry cell battery, and a simple dummy battery may be utilized so that less than the full complement of batteries may be charged utilizing the charger.

  10. Solar drying and agribusiness

    Directory of Open Access Journals (Sweden)

    Sebastiana del Monserrate Ruiz Cedeño

    2016-07-01

    Full Text Available Agribusinesses are the livelihoods of rural populations, but when production increase, many products are damaged and lose their commercial value due to lack of conservation treatments at a local level. Agricultural production represents the foundation of economic development of the province of Manabi. A significant level of agricultural products is lost due to lack of conservation technologies. Solar drying is a way of conserving by dehydration of some products such as: vegetables, fruits, aromatic and medicinal plants. This can be achieved by a process of proper conservation that is conducive to reduce losses using technologies easy to build, as are the different types of solar dryers which are already used in different parts of the South American region. This article proposes to introduce solar-drying technology in agricultural areas of the province of Manabi. And thereby achieve the regaining of different products that today are lost, incorporating new and attractive, marketable lines based on agricultural products naturally dehydrated with a high nutritionalvalue, capable of contributing to human health not only in the province but also in the country.

  11. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; Lowther, S. E.; Lillehei, P. T.; Bryant, R. G.

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  12. Developing The Solar Tracking System for Trough Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Nguyen Huy Bich

    2016-01-01

    Full Text Available The efficiency of the trough solar concentrator strongly depends on the position of its absorber surface with the sun.  Controlling the solar radiation concentrated collectors automatically tracking with the sun plays as the key factor to enhance the energy absorption. An automatic controlling device that can rotating the parabolic trough solar concentrator to the sun is calculated, designed, manufactured, and testing successfully. The experimental results show that the device tracks the sun during the day very well. The sensor has adjusted position of collector good when the intensity of solar radiation changes due to weather.

  13. Trial products of solar cars; Solar car no shisaku

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A.; Hatakeyama, S.; Sugiura, S.; Shinoda, S.; Daigo, Y.; Fujihara, Y.; Yano, K.; Kasuga, M. [Yamanashi University, Yamanashi (Japan). Faculty of Engineering

    1997-11-25

    A solar car was trially manufactured installing solar panels on a motor-wheelchair for the old (senior car). It is a car for one person with maximum speed of 6km/h, motor of 360w, two of storage battery of 12Vtimes29AH, and two of solar cell of 20Vtimes3A. The output of solar cell is about 100W, which may not be enough to drive a 360W motor. However, if action time per day is about 2 hours, the required power 700WH, and the sunshine duration 7 hours per day, solar cells of 100W can generate 700WH. This is stored in battery, and when it is short, it is supplemented by nighttime power. Product prices are 200,000-250,000 yen. A solar go-cart was trially manufactured remodeling the gasoline-run go-cart. It is a solar go-cart for one person with maximum speed of 30km/h, a motor of 600W, four of storage battery of 12Vtimes29AH, and four of solar cell of 20Vtimes3A. The output of solar battery at 200W is a third of the motor power, with battery charged three times the travel time. More than 1000 persons trially rode the go-cart. 2 figs.

  14. KamLAND, solar antineutrinos and the solar magnetic field

    CERN Document Server

    Chauhan, B C; Torrente-Lujan, E; Chauhan, Bhag C.; Pulido, Joao

    2003-01-01

    In this work the possibility of detecting solar electron antineutrinos produced by a solar core magnetic field from the KamLAND recent observations is investigated. We find a scaling of the antineutrino probability with respect to the magnetic field profile in the sense that the same probability function can be reproduced by any profile with a suitable peak field value. In this way the solar electron antineutrino spectrum can be unambiguosly predicted. We use this scaling and the negative results indicated by the KamLAND experiment to obtain upper bounds on the solar electron antineutrino flux. We get $\\phi_{\\bar\

  15. The Solar Tracking System by Using Digital Solar Position Sensor

    Directory of Open Access Journals (Sweden)

    Singthong Pattanasethanon

    2010-01-01

    Full Text Available Problem statement: An optimal control on two axes and design for solar tracker which called altitude and azimuth is challenge. Approach: The phototransistor with the shade that blocks the screen was employed as a detector of solar beam radiation. The height of the screen determined the sensitivity operation or period of tracking in this solar tracker. The phototransistor is particularly designed to detect solar bean radiation thoroughly through the two axes with the operating time. The mechanism of this solar tracker is that it has a capacity of solar tracking in every 10 min, approximately, which respond in terms of time at about 37° sec-1 with and operating point at 0.3 sec. Results: Our solar tracker obtained an average deviation at about 2.5deg;h-1. In weak sunlight however, the value varies and fluctuates rapidly depending on sky condition. Conclusion: The accuracy of solar position tracking function satisfied our goal as well. There is only average of 2.5deg; error shown. The experiment also shows that the error rate diminishes as the solar radiance expand. However, we hope to develop this device to be more exact in the position.

  16. solar magnetic fiber and space solar telescope in engineering model

    Science.gov (United States)

    Ai, G.

    The solar magnetic fiber and the magnetic element are the most important factor in the solar activity and solar atmosphere. Because the space resolution of measurement of solar magnetic field is much lower than that of the size of the nature solar magnetic fiber and element from the earth atmospheric turbulence. The estimate of the magnetic element nature from various indirect researches shows great difference with several orders. The research results about magnetic elements have been reviewed in the paper.Because the size of the magnetic element has been estimated for 0.1T-0.2T, the space solar magnetic field telescope with big diameter is the most basic choice. For the exploration of solar magnetic fiber and element, a Space Solar Telescope is under development in the phase C and D, there are five payloads which are: 1) MOT, 1 diameter telescope with 8 channels real time 2-D spectrograph and 8 sets CCD with 2K`2K; 2) EUV, 4 tubes of soft X-ray Telescope with 0.252 space resolution; 3) WBS, the wide Band Spectrometer with 256 channel from soft X-ray to Gamma-ray. 4) HAT, Ha and white light telescope; 5) SIRA, Solar and interplanetary Radio Spectrometer, with 100 KHZ-60 MHZ. The assembly and test will be introduced.

  17. Fundamentals of Solar Heating. Correspondence Course.

    Science.gov (United States)

    Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.

    This course is designed for the use of employees of the air conditioning industry, and offers supervised correspondence instruction about solar technology. The following aspects of applied solar technology are covered: solar heating and cooling, solar radiation, solar collectors, heat storage control devices and specialty items, sizing solar…

  18. Dust Removal from Solar Cells

    Science.gov (United States)

    Ashpis, David E. (Inventor)

    2015-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  19. Solar index generation and delivery

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.

    1980-01-01

    The Solar Index, or, more completely defined as the Service Hot Water Solar Index, was conceptualized during the spring of 1978. The purpose was to enhance public awareness to solar energy usability. Basically, the Solar Index represents the percentage of energy that solar would provide in order to heat an 80 gallon service hot water load for a given location and day. The Index is computed by utilizing SOLCOST, a computer program, which also has applications to space heating, cooling, and heat pump systems and which supplies economic analyses for such solar energy systems. The Index is generated for approximately 68 geographic locations in the country on a daily basis. The definition of the Index, how the project came to be, what it is at the present time and a plan for the future are described. Also presented are the models used for the generation of the Index, a discussion of the primary tool of implementation (the SOLCOST program) and future efforts.

  20. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  1. Solar Eclipses Observed from Antarctica

    OpenAIRE

    2013-01-01

    Aspects of the solar corona are still best observed during totality of solar eclipses, and other high-resolution observations of coronal active regions can be observed with radio telescopes by differentiation of occultation observations, as we did with the Jansky Very Large Array for the annular solar eclipse of 2012 May 20 in the US. Totality crossing Antarctica included the eclipse of 2003 November 23, and will next occur on 2021 December 4; annularity crossing Antarctica included the eclip...

  2. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  3. Progress in Space Solar Telescope

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we will summarize the progress in the development of the Chinese Space Solar Telescope (SST) during the past few years. The main scientific objective of SST is to observe the fundamental structure of solar magnetic field with its 1-m optical telescope. The success of 1-m Swedish Solar Telescope and Hinode underscores the importance of this 1-m space telescope. In addition, some key technical problems have been solved.

  4. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  5. Light shield for solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Plesniak, Adam P.; Martins, Guy L.

    2014-08-26

    A solar receiver unit including a housing defining a recess, a cell assembly received in the recess, the cell assembly including a solar cell, and a light shield received in the recess and including a body and at least two tabs, the body defining a window therein, the tabs extending outward from the body and being engaged with the recess, wherein the window is aligned with the solar cell.

  6. Solar Spots - Activities to Introduce Solar Energy into the K-8 Curricula.

    Science.gov (United States)

    Longe, Karen M.; McClelland, Michael J.

    Following an introduction to solar technology which reviews solar heating and cooling, passive solar systems (direct gain systems, thermal storage walls, sun spaces, roof ponds, and convection loops), active solar systems, solar electricity (photovoltaic and solar thermal conversion systems), wind energy, and biomass, activities to introduce solar…

  7. Passive-solar construction handbook

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Evans, D.; Gardstein, C.

    1981-02-01

    Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

  8. Solar Fuels: Vision and Concepts

    OpenAIRE

    Styring, Stenbjörn

    2012-01-01

    The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and ‘endless’ resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involv...

  9. Space Solar Cell Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures, characterizes, and analyzes photovoltaic materials and devices. The primary focus is the measurement and characterization of solar cell response...

  10. Comprehensive Solar Sail Simulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar sails as a propulsive device have several potential applications: providing access to previously inaccessible orbits, longer mission times, and increased...

  11. Support for solar energy collectors

    Science.gov (United States)

    Cole, Corey; Ardell-Smith, Zachary; Ciasulli, John; Jensen, Soren

    2016-11-01

    A solar energy collection system can include support devices configured to accommodate misalignment of components during assembly. For example, the system can include piles fixed to the earth and an adjustable bearing assembly at the upper end of the pile. The adjustable bearing assembly can include at least one of a vertical adjustment device, a lateral adjustment device and an angular adjustment device. The solar energy collection system can also include a plurality of solar energy collection device pre-wired together and mounted to a support member so as to form modular units. The system can also include enhanced supports for wire trays extending between rows of solar energy collection devices.

  12. Solar astrophysics. 3. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Foukal, Peter V. [CRI, Nahant, MA (United States)

    2013-06-01

    This third, revised edition describes our current understanding of the sun - from its deepest interior, via the layers of the directly observable atmosphere to the solar wind, right up to its farthest extension into interstellar space. It includes a comprehensive account of the history of solar astrophysics, and the evolution of solar instruments. This account now includes the most up- to-date implementation of modern solar instruments in facilities on the ground and in space. The revised book now also provides an overview of recent results on ''space weather'' and on sun-climate relations, both of which are fields of increasing societal importance.

  13. Solar information user priority study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.

    1980-05-01

    This report identifies for each solar technology those members or potential members of the solar community who, either currently or in the future, will require solar information. In addition, it rates each user's relative need for information within the next three years. This information will be used as input for subsequent studies that will identify specific user needs information. These studies, in turn, will be the basis for information product and data base development for the Solar Energy Information Data Bank (SEIDB). In addition, they will be input for the Technical Information Dissemination (TID) Program.

  14. Solar Cycle Predictions (Invited Review)

    Science.gov (United States)

    Pesnell, W. Dean

    2012-11-01

    Solar cycle predictions are needed to plan long-term space missions, just as weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on low-Earth orbit spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as the reduced propellant load is consumed more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5 - 20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations of how those predictions could be made more accurate in the future are discussed.

  15. Solar air systems - built examples

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, S.R. [ed.] [Solararchitektur, ETH-Hoenggerberg, Zurich (Switzerland)

    1999-07-01

    Active solar systems for air heating are a straightforward yet efficient way of using solar energy to heat spaces, ventilation air and even domestic hot water. They offer important advantages over solar water systems, improved comfort and fuller use of solar gains compared with many passive solar systems and are a natural fit with mechanically ventilated buildings. Solar air systems become more economical when they serve multiple functions such as providing a sound barrier, a weatherskin, sunshading, inducing cooling and even electricity supply (hybrid PV/air). Thirty-five different buildings with successfully installed exemplary solar air systems in climates ranging from Canada and Norway to Italy are described and documented. The building types cover single family houses, apartment buildings, schools, sports halls, and industrial commercial buildings with six different configurations of solar air systems used. Each building is described over several pages, with plans, performance details and illustrations provided. An accompanying product catalogue identifies suppliers of the necessary equipment and offers advice on product selection. As well as giving architects and designers invaluable advice based on the experience from these projects, this book also illustrates clearly the wide range of applications and the many benefits of solar air systems. (author)

  16. 2005 Solar Decathlon (Competition Program)

    Energy Technology Data Exchange (ETDEWEB)

    2005-10-01

    The 2005 Solar Decathlon Competition Program is distributed to Solar Decathlon visitors, media, sponsors, and the student competitors. It contains basic facts about the Solar Decathlon: what, where, when, who, and how. It is a guide for visitors to the events and workshops. It describes the 10 contests and the technologies used in the houses. It celebrates the accomplishments of the competitors and provides an opportunity for the major sponsors to describe their roles and relay their commitment to the ideals of the Solar Decathlon.

  17. Dye Sensitized Solar Cell, DSSC

    Directory of Open Access Journals (Sweden)

    Pongsatorn Amornpitoksuk

    2003-07-01

    Full Text Available A dye sensitized solar cell is a new type of solar cell. The operating system of this solar cell type is similar to plant’s photosynthesis process. The sensitizer is available for absorption light and transfer electrons to nanocrystalline metal oxide semiconductor. The ruthenium(II complexes with polypyridyl ligands are usually used as the sensitizers in solar cell. At the present time, the complex of [Ru(2,2',2'’-(COOH3- terpy(NCS3] is the most efficient sensitizer. The total photon to current conversion efficiency was approximately 10% at AM = 1.5.

  18. Solar energy perspectives for public power

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, N. H.

    1979-06-01

    Perspectives on the utilization of solar energy for electricity production and thermal energy utilization by the public are briefly discussed. Wind energy conversion, biomass conversion, solar thermal, OTEC, photovoltaics, and solar heating and cooling are discussed. (WHK)

  19. Boston solar retrofits: studies of solar access and economics

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, M.

    1980-11-01

    Studies of solar access and solar retrofit economics are described for residential applications in the City of Boston. The study of solar access was based upon a random sample of 94 buildings; the sample was stratified to ensure a broad geographic representation from the city's various sections. Using available data on the heights and orientations of the sampled structures and surrounding buildings, each building's hourly access to sunlight was computed separately for the roof and south facing walls. These data were then aggregated by broad structural classifications in order to provide general measures of solar access. The second study was a comparative analysis of the economics of several solar heating and hot water systems. An active hot water system, installed using pre-assembled, commercially purchased equipment, was selected as a reference technology. A variety of measures of economic performance were computed for this system, with and without existing tax credits and under various financing arrangements. Next, a number of alternative approaches for solar space and water heating were identified from interviews with individuals and groups involved in solar retrofit projects in the Boston area. The objective was to identify approaches that many of those interviewed believe to be low-cost means of applying solar energy in residential settings. The approaches selected include thermal window covers, wall collectors, bread box water heaters, and sun spaces. Preliminary estimates of the performance of several representative designs were developed and the economics of these designs evaluated.

  20. Solar Cooling System Using Solar-Driven Hybrid Chiller

    OpenAIRE

    Hirai, Akira

    2012-01-01

    We developed an appropriate Absorption chiller to "Solar cooling system" in 2010. In addition, we added the improvement to the machine. "Solar cooling system" can be easily constructed with the machine. and, we constructed the demonstration plant, and verified the utility

  1. Solar-hydrogen generation and solar concentration (Conference Presentation)

    NARCIS (Netherlands)

    Chinello, Enrico; Modestino, Miquel A.; Schüttauf, Jan-Willem; Lambelet, David; Delfino, Antonio; Domine, Didier; Faes, Antonin; Despeisse, Matthieu; Bailat, Julien; Psaltis, Demetri; Fernandez Rivas, David; Ballif, Christophe; Moser, Christophe; Sulima, Oleg V.; Conibeer, Gavin

    2016-01-01

    We successfully demonstrated and reported the highest solar-to-hydrogen efficiency with crystalline silicon cells and Earth-abundant electrocatalysts under unconcentrated solar radiation. The combination of hetero-junction silicon cells and a 3D printed Platinum/Iridium-Oxide electrolyzer has been p

  2. Solar Thermal Concept Evaluation

    Science.gov (United States)

    Hawk, Clark W.; Bonometti, Joseph A.

    1995-01-01

    Concentrated solar thermal energy can be utilized in a variety of high temperature applications for both terrestrial and space environments. In each application, knowledge of the collector and absorber's heat exchange interaction is required. To understand this coupled mechanism, various concentrator types and geometries, as well as, their relationship to the physical absorber mechanics were investigated. To conduct experimental tests various parts of a 5,000 watt, thermal concentrator, facility were made and evaluated. This was in anticipation at a larger NASA facility proposed for construction. Although much of the work centered on solar thermal propulsion for an upper stage (less than one pound thrust range), the information generated and the facility's capabilities are applicable to material processing, power generation and similar uses. The numerical calculations used to design the laboratory mirror and the procedure for evaluating other solar collectors are presented here. The mirror design is based on a hexagonal faceted system, which uses a spherical approximation to the parabolic surface. The work began with a few two dimensional estimates and continued with a full, three dimensional, numerical algorithm written in FORTRAN code. This was compared to a full geometry, ray trace program, BEAM 4, which optimizes the curvatures, based on purely optical considerations. Founded on numerical results, the characteristics of a faceted concentrator were construed. The numerical methodologies themselves were evaluated and categorized. As a result, the three-dimensional FORTRAN code was the method chosen to construct the mirrors, due to its overall accuracy and superior results to the ray trace program. This information is being used to fabricate and subsequently, laser map the actual mirror surfaces. Evaluation of concentrator mirrors, thermal applications and scaling the results of the 10 foot diameter mirror to a much larger concentrator, were studied. Evaluations

  3. Solar Flares: Magnetohydrodynamic Processes

    Directory of Open Access Journals (Sweden)

    Kazunari Shibata

    2011-12-01

    Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  4. Solar Magnetic Flux Ropes

    Indian Academy of Sciences (India)

    Boris Filippov; Olesya Martsenyuk; Abhishek K. Srivastava; Wahab Uddin

    2015-03-01

    In the early 1990s, it was found that the strongest disturbances of the space–weather were associated with huge ejections of plasma from the solar corona, which took the form of magnetic clouds when moved from the Sun. It is the collisions of the magnetic clouds with the Earth's magnetosphere that lead to strong, sometimes catastrophic changes in space–weather. The onset of a coronal mass ejection (CME) is sudden and no reliable forerunners of CMEs have been found till date. The CME prediction methodologies are less developed compared to the methods developed for the prediction of solar flares. The most probable initial magnetic configuration of a CME is a flux rope consisting of twisted field lines which fill the whole volume of a dark coronal cavity. The flux ropes can be in stable equilibrium in the coronal magnetic field for weeks and even months, but suddenly they lose their stability and erupt with high speed. Their transition to the unstable phase depends on the parameters of the flux rope (i.e., total electric current, twist, mass loading, etc.), as well as on the properties of the ambient coronal magnetic field. One of the major governing factors is the vertical gradient of the coronal magnetic field, which is estimated as decay index (). Cold dense prominence material can be collected in the lower parts of the helical flux tubes. Filaments are, therefore, good tracers of the flux ropes in the corona, which become visible long before the beginning of the eruption. The perspectives of the filament eruptions and following CMEs can be estimated by a comparison of observed filament heights with calculated decay index distributions. The present paper reviews the formation of magnetic flux ropes, their stable and unstable phases, eruption conditions, and also discusses their physical implications in the solar corona.

  5. Concentrated Solar Thermoelectric Power

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [MIT; Ren, Zhifeng [University of Houston

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  6. Solar Thermal Electricity Generating System

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  7. Autonomous solar air conditioner. 100 percent solar powered; Solar autarke Klimatisierung. Mit 100% Sonnenenergie

    Energy Technology Data Exchange (ETDEWEB)

    Hindenburg, C. [Fraunhofer ISE, Freiburg (Germany)

    2004-11-01

    Autonomous solar cooling is an interesting option in all cases where storage of chilled products brings about large inherent thermal (cold) storage potential, e.g. wine production. There are also applications in air conditioning of buildings in which autonomous solar cooling systems are technically feasible and economically interesting. (orig.) [German] Generell sind alle Faelle von Prozesskuehlung, in denen durch die Lagerung von gekuehlten Produkten prozessinhaerent grosse thermische (Kaelte-)Speicher vorhanden sind, fuer die solar autarke Kuehlung interessant, beispielsweise die Weinherstellung. Es gibt aber auch Anwendungsfaelle im Bereich der Gebaeudeklimatisierung, bei denen eine solar autarke Kuehlung technisch machbar und zugleich oekonomisch darstellbar ist. (orig.)

  8. SOLAR SOURCES OF {sup 3}He-RICH SOLAR ENERGETIC PARTICLE EVENTS IN SOLAR CYCLE 24

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Nariaki V. [Lockheed Martin Advanced Technology Center, Dept/A021S, B/252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Mason, Glenn M. [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States); Wang, Linghua [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Cohen, Christina M. S. [California Institute of Technology, Pasadena, CA 91125 (United States); Wiedenbeck, Mark E., E-mail: nitta@lmsal.com, E-mail: glenn.mason@jhuapl.edu, E-mail: wanglhwang@gmail.com, E-mail: cohen@srl.caltech.edu, E-mail: mark.e.wiedenbeck@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-06-20

    Using high-cadence EUV images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 {sup 3}He-rich solar energetic particle events at ≲1 MeV nucleon{sup −1} that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of {sup 3}He-rich events with type III radio bursts and electron events as observed by Wind. The source locations are further verified in EUV images from the Solar and Terrestrial Relations Observatory, which provides information on solar activities in the regions not visible from the Earth. Based on AIA observations, {sup 3}He-rich events are not only associated with coronal jets as emphasized in solar cycle 23 studies, but also with more spatially extended eruptions. The properties of the {sup 3}He-rich events do not appear to be strongly correlated with those of the source regions. As in the previous studies, the magnetic connection between the source region and the observer is not always reproduced adequately by the simple potential field source surface model combined with the Parker spiral. Instead, we find a broad longitudinal distribution of the source regions extending well beyond the west limb, with the longitude deviating significantly from that expected from the observed solar wind speed.

  9. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI)

    Science.gov (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.

  10. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    Science.gov (United States)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  11. Solar Model Parameters and Direct Measurements of Solar Neutrino Fluxes

    CERN Document Server

    Bandyopadhyay, A; Goswami, S; Petcov, S T; Bandyopadhyay, Abhijit; Choubey, Sandhya; Goswami, Srubabati

    2006-01-01

    We explore a novel possibility of determining the solar model parameters, which serve as input in the calculations of the solar neutrino fluxes, by exploiting the data from direct measurements of the fluxes. More specifically, we use the rather precise value of the $^8B$ neutrino flux, $\\phi_B$ obtained from the global analysis of the solar neutrino and KamLAND data, to derive constraints on each of the solar model parameters on which $\\phi_B$ depends. We also use more precise values of $^7Be$ and $pp$ fluxes as can be obtained from future prospective data and discuss whether such measurements can help in reducing the uncertainties of one or more input parameters of the Standard Solar Model.

  12. Availability of solar radiation and standards for solar access

    Energy Technology Data Exchange (ETDEWEB)

    Casabianca, G.A.; Evans, J.M. [Research Centre Habitat and Energy, Facultad de Arquitectura, Diseno y Urbanismo, Universidad de Buenos Aires, Capital Federal (Argentina)

    1997-12-31

    In southern Argentina, a region between latitudes 38 deg C and 55 deg C S, the heating demand in the residential sector is high while the availability of solar radiation is limited. A new proposal for solar access standards has been developed, taking into account the climatic conditions of each location, the effective availability of solar radiation and the direct sunlight requirements. This study analyses the climatic conditions for the Patagonia, relating heating demand and solar radiation availability in different sites, and presents the development of new sunlight standards that respond to these regional conditions. As a result of this study, the new Argentine standard TRAM 11.603 includes new conditions to protect solar access and provide design recommendations. (orig.) 4 refs.

  13. Detection of solar events

    Science.gov (United States)

    Fischbach, Ephraim; Jenkins, Jere

    2013-08-27

    A flux detection apparatus can include a radioactive sample having a decay rate capable of changing in response to interaction with a first particle or a field, and a detector associated with the radioactive sample. The detector is responsive to a second particle or radiation formed by decay of the radioactive sample. The rate of decay of the radioactive sample can be correlated to flux of the first particle or the field. Detection of the first particle or the field can provide an early warning for an impending solar event.

  14. Solar pannels tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, P.; Maire, J.; Chollet, C.; Rohee, S.; Vialettes, J.M.

    1984-11-23

    This patent is concerned with a steering device for solar photo-pannels laid in row in order to minimize the cast shadow of each pannel on the others, while maintaining a required land use (the pannels are disposed according to a centered hexagonal lattice). The device is designed to set a whole row of pannels according to the azimuthal orientation of the sun. It is composed of a set of (at least) two side rod drives situated at each side of the row and coupled to the pannel. The pannels are moved by the action of two (or more) traction ropes.

  15. Bifacial tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczuk, Steven J.; Chiu, Philip T.; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2016-06-14

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  16. The solar system

    CERN Document Server

    Jones, B W

    2013-01-01

    Presents a contemporary picture of the solar system, including a description of the Earth, Mars, Venus, cratered worlds, exotic rocks and ices, and giant planets. It is pitched at an introductory level and assumes no previous knowledge of planetary astronomy. Little mathematics is used in the text and the numerous graphs and diagrams are kept as simple as possible. End of chapter exercises are provided. The book can be used as an end in itself, or as a preparation for more advanced study, for which references are given.

  17. Innovative Solar Optical Materials

    Science.gov (United States)

    Lampert, Carl M.

    1984-02-01

    A variety of optical coatings are discussed in the context of solar energy utilization. Well-known coatings such as transparent conductors (heat mirrors), selective absorbers, and reflective films are surveyed briefly. Emphasis is placed on the materials' limitations and on use of lesser-known optical coatings and materials. Physical and optical properties are detailed for protective antireflection films, cold mirrors, fluorescent concentrator materials, radiative cooling surfaces, and optical switching films including electrochromic, thermochromic, photochromic, and liquid crystal types. For many of these materials, research has only recently been considered, so various design and durability issues need to be addressed.

  18. Photovoltaic Solar Energy Generation

    Science.gov (United States)

    Goetzberger, Adolf; Hoffmann, Volker U.

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications such as grid-connected and stand-alone systems.

  19. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  20. Microanalysis of Solar Cells

    Science.gov (United States)

    Kazmerski, Lawrence L.

    1980-11-01

    Applications of complementary surface analysis techniques (AES, SIMS, XPS) to solar cell device problems are discussed. Several examples of device interface and grain boundary problems are presented. Silicon, gallium arsenide and indium phosphide based devices are reviewed. Results of compositional and chemical analysis are correlated directly with EBIC measurements performed in-situ on identical sample areas. Those are, in turn, correlated with resulting photovoltaic device performance. The importance of microanalysis to the solution of critical device problems in the photovoltaics technology is emphasized.

  1. Solar Power in Space?

    Science.gov (United States)

    2012-01-01

    that support its missions and users. Only the small secrets need to be protected. The large ones are kept secret by public incredulity. — Marshall ... McLuhan With such obvious benefits for the nation and so many potential stake- holders, one would think it easy to move forward, but it is not. SBSP Solar...impossible.” —Lord Kelvin, President of the Royal Society “Airplanes are interesting toys of no military value.” — Marshal Ferdinand Foch, Ecole

  2. Concentrating photovoltaic solar panel

    Science.gov (United States)

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  3. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Science.gov (United States)

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  4. Coordinated weather balloon solar radiation measurements during a solar eclipse

    Science.gov (United States)

    2016-01-01

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes. This article is part of the themed issue ‘Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse’. PMID:27550757

  5. Solar Ready: An Overview of Implementation Practices

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

    2012-01-01

    This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

  6. U.S. Solar Power Market

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-08-15

    The report provides an overview of the domestic market for solar, including a concise look at the steps being taken to grow solar power in the U.S. Topics covered include: an overview of solar power including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving interest in solar power; a description of solar power technologies; a review of the economics of solar power; a discussion of the key markets for solar power; and, profiles of domestic solar cell/module manufacturers.

  7. Concentrated solar thermal power - Now

    Energy Technology Data Exchange (ETDEWEB)

    Aringhoff, R.; Brakmann, G. [Solar Thermal Power Industry Association ESTIA, Avenue de la Fauconnerie 73, 1170 Brussels (Belgium); Geyer, M. [IEA SolarPACES Implementing Agreement, Avenida de la Paz 51, 04720 Aguadulce, Almeria (Spain); Teske, S. [Greenpeace International, Ottho Heldringstraat 5, 1066 AZ Amsterdam (Netherlands)

    2005-09-15

    This report demonstrates that there are no technical, economic or resource barriers to supplying 5% of the world's electricity needs from solar thermal power by 2040. It is written as practical blueprint to improve understanding of the solar thermal contribution to the world energy supply.

  8. Solar Walls for concrete renovation

    DEFF Research Database (Denmark)

    Gramkow, Lotte; Vejen, Niels Kristian; Olsen, Lars

    1996-01-01

    This repport gives a short presentation of three full-scale testing solar walls, the construction including the architectural design, materials and components, transportation and storage of solar enegy, the effect on the construction behind, statics and practical experience.The results...... of the measurments (energy- and temperature conditions, airchange-, termovisions- and moist measurments), operation- and user experience from the three buildings are describet....

  9. Solar Neutrino Oscillation - An Overview

    CERN Document Server

    Roy, D P

    2005-01-01

    After a brief summary of the neutrino oscillation formalism and the solar neutrino sources and experiments I discuss the matter effect on solar neutrino oscillation. Then I discuss how the resulting alternative solutions are experimentally resolved in favour of the LMA solution, with particular exphasis on the SK, SNO and KL data.

  10. A Solar Sailcraft Simulation Application

    Science.gov (United States)

    Celeda, Tomáš

    2013-01-01

    An application was created to encourage students' practical knowledge of gravitational fields, the law of conservation of energy and other phenomena, such as gravitational slingshots. The educational software simulates the flight of a solar sail spacecraft between two planets of the Solar System using the laws of gravity and radiation…

  11. Wind in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might…

  12. Solar energy applications in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Ilenikhena, P.A.; Ezemonye, L.I.N.

    2010-09-15

    Solar radiation being abundantly present in Nigeria was one area of focus in renewable energy sources. Researches were carried out and technologies produced for direct harnessing of the energy in six energy centres across the country. Some state governments in collaboration with non-governmental agencies also sponsored solar energy projects in some villages that are not connected to the national grid.

  13. Eleven cities Solar boat challenge

    NARCIS (Netherlands)

    Verdult, E.

    2012-01-01

    TU Delft students are participating for the fourth time in the world championship solar boat race in Friesland, which begins on 8 July. Expectations are high because the TU Delft students were world champions in 2006 and 2008. In 2010, the solar boat was equipped with hydrofoils for the first time.

  14. An Introduction to Solar Cells

    Science.gov (United States)

    Feldman, Bernard J.

    2010-01-01

    Most likely, solar cells will play a significant role in this country's strategy to address the two interrelated issues of global warming and dependence on imported oil. The purpose of this paper is to present an explanation of how solar cells work at an introductory high school, college, or university physics course level. The treatment presented…

  15. Solar Heating Systems: Instructor's Guide.

    Science.gov (United States)

    Green, Joanne; And Others

    This Instructor's Guide for a Solar Heating System Curriculum is designed to accompany the Student Manual and the Progress Checks and Test Manual for the course (see note), in order to facilitate the instruction of classes on solar heating systems. The Instructor's Guide contains a variety of materials used in teaching the courses, including…

  16. Solar Heating Systems: Student Manual.

    Science.gov (United States)

    Green, Joanne; And Others

    This Student Manual for a Solar Heating System curriculum contains 22 units of instructional materials for students to use in a course or courses on solar heating systems (see note). For each unit (task), objectives, assignment sheets, laboratory assignments, information sheets, checkpoints (tests), and job sheets are provided. Materials are set…

  17. Fin-tube solar collectors

    Science.gov (United States)

    1980-01-01

    Report presents test procedures and results of thermal-performance evaluation of seven commercial fin tube (liquid) solar collector-absorber plates. Tests were conducted indoors at Marshall Space Flight Center Solar simulator. Results are graphically shown along with supporting test data and summary, indicating efficiency as function of collector inlet temperature.

  18. Wind in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might motivate…

  19. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  20. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  1. Solar energy to biofuels.

    Science.gov (United States)

    Agrawal, Rakesh; Singh, Navneet R

    2010-01-01

    In a solar economy, sustainably available biomass holds the potential to be an excellent nonfossil source of high energy density transportation fuel. However, if sustainably available biomass cannot supply the liquid fuel need for the entire transport sector, alternatives must be sought. This article reviews biomass to liquid fuel conversion processes that treat biomass primarily as a carbon source and boost liquid fuel production substantially by using supplementary energy that is recovered from solar energy at much higher efficiencies than the biomass itself. The need to develop technologies for an energy-efficient future sustainable transport sector infrastructure that will use different forms of energy, such as electricity, H(2), and heat, in a synergistic interaction with each other is emphasized. An enabling template for such a future transport infrastructure is presented. An advantage of the use of such a template is that it reduces the land area needed to propel an entire transport sector. Also, some solutions for the transition period that synergistically combine biomass with fossil fuels are briefly discussed.

  2. Disconnecting Solar Magnetic Flux

    CERN Document Server

    DeForest, C E; McComas, D J

    2011-01-01

    Disconnection of open magnetic flux by reconnection is required to balance the injection of open flux by CMEs and other eruptive events. Making use of recent advances in heliospheric background subtraction, we have imaged many abrupt disconnection events. These events produce dense plasma clouds whose distinctie shape can now be traced from the corona across the inner solar system via heliospheric imaging. The morphology of each initial event is characteristic of magnetic reconnection across a current sheet, and the newly-disconnected flux takes the form of a "U"-shaped loop that moves outward, accreting coronal and solar wind material. We analyzed one such event on 2008 December 18 as it formed and accelerated at 20 m/s^2 to 320 km/s, expanding self-similarly until it exited our field of view 1.2 AU from the Sun. From acceleration and photometric mass estimates we derive the coronal magnetic field strength to be 8uT, 6 Rs above the photosphere, and the entrained flux to be 1.6x10^11 Wb (1.6x10^19 Mx). We mod...

  3. Solar Prominences: Observations

    Directory of Open Access Journals (Sweden)

    Susanna Parenti

    2014-03-01

    Full Text Available Solar prominences are one of the most common features of the solar atmosphere. They are found in the corona but they are one hundred times cooler and denser than the coronal material, indicating that they are thermally and pressure isolated from the surrounding environment. Because of these properties they appear at the limb as bright features when observed in the optical or the EUV cool lines. On the disk they appear darker than their background, indicating the presence of a plasma absorption process (in this case they are called filaments. Prominence plasma is embedded in a magnetic environment that lies above magnetic inversion lines, denoted a filament channel. This paper aims at providing the reader with the main elements that characterize these peculiar structures, the prominences and their environment, as deduced from observations. The aim is also to point out and discuss open questions on prominence existence, stability and disappearance. The review starts with a general introduction of these features and the instruments used for their observation. Section 2 presents the large scale properties, including filament morphology, thermodynamical parameters, magnetic fields, and the properties of the surrounding coronal cavity, all in stable conditions. Section 3 is dedicated to small-scale observational properties, from both the morphological and dynamical points of view. Section 4 introduces observational aspects during prominence formation, while Section 5 reviews the sources of instability leading to prominence disappearance or eruption. Conclusions and perspectives are given in Section 6.

  4. Mir Cooperative Solar Array

    Science.gov (United States)

    Skor, Mike; Hoffman, Dave J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA), produced jointly by the United States and Russia, was deployed on the Mir Russian space station on May 25, 1996. The MCSA is a photovoltaic electrical power system that can generate up to 6 kW. The power from the MCSA is needed to extend Mir's lifetime and to support experiments conducted there by visiting U.S. astronauts. The MCSA was brought to Mir via the Space Shuttle Atlantis on the STS-74 mission, launched November 12, 1995. This cooperative venture combined the best technology of both countries: the United States provided high-efficiency, lightweight photovoltaic panel modules, whereas Russia provided the array structure and deployment mechanism. Technology developed in the Space Station Freedom Program, and now being used in the International Space Station, was used to develop MCSA's photovoltaic panel. Performance data obtained from MCSA operation on Mir will help engineers better understand the performance of the photovoltaic panel modules in orbit. This information will be used to more accurately predict the performance of the International Space Station solar arrays. Managed by the NASA Lewis Research Center for NASA's International Space Station Program Office in Houston, Texas, the MCSA Project was completed on time and under budget despite a very aggressive schedule.

  5. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  6. Equations for Solar Tracking

    Directory of Open Access Journals (Sweden)

    Alain Cornet

    2012-03-01

    Full Text Available Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research.

  7. Solar Module Fabrication

    Directory of Open Access Journals (Sweden)

    A. El Amrani

    2007-01-01

    Full Text Available One of the most important steps in the photovoltaic industry is the encapsulation of the solar cells. It consists to connect the cells in order to provide useful power for any application and also protect them from environmental damages which cause corrosion, and mechanical shocks. In this paper, we present the encapsulation process we have developed at Silicon Technology Unit (UDTS for monocrystalline silicon solar cells. We will focus particularly on the thermal treatment, the most critical step in the process, which decides on the quality and the reliability of the module. This thermal treatment is conducted in two steps: the lamination and the polymerization. Several tests of EVA reticulation have been necessary for setting technological parameters such as the level of vacuum, the pressure, the temperature, and the time. The quality of our process has been confirmed by the tests conducted on our modules at the European Laboratory of Joint Research Centre (JRC of ISPRA (Italy. The electrical characterization of the modules has showed that after the encapsulation the current has been improved by a factor of 4% to 6% and the power gain by a factor of 4% to 7%. This is mainly due to the fact of using a treated glass, which reduces the reflection of the light at a level as low as 8%.

  8. Solar powered headwear fan

    Energy Technology Data Exchange (ETDEWEB)

    Hirsh, G.B.; Volk, S.; Cirrito, W.; Brann, D.

    1987-07-21

    A fan assembly is described. A housing is adapted for resting on an exterior surface of headwear. A fan mounted in the housing at one end of the housing is adapted for forcing air through an opening defined in a forward protuberance of the headwear. Solar cell means are mounted on the housing at another end of the housing opposite to and remote from the one end for powering the fan means and adapted for resting on a crown of the headwear. Vent means are defined by the housing for allowing air to be sucked into the housing and forced out of the housing when the power means drive the fan means. Mounting means are defined by the housing, including hinge means for removably mounting the modular fan assembly on an exterior surface of the headwear. A portion of the housing occupies a substantial distance between the fan means and the solar cell means. Display means are defined by the portion of the housing between the power means and the fan means for displaying of decorative graphic material.

  9. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  10. Solar water splitting: efficiency discussion

    CERN Document Server

    Juodkazyte, Jurga; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius

    2016-01-01

    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why an oxygen evolution is not taking place at the thermodynamically expected 1.23 V potential. Solar hydrogen production with electrical-to-hydrogen conversion efficiency of 52% is demonstrated using a simple ~0.7%-efficient n-Si/Ni Schottky solar cell connected to a water electrolysis cell. This case study shows that separation of the processes of solar harvesting and electrolysis avoids photo-electrode corrosion and utilizes optimal electrodes for hydrogen and oxygen evolution reactions and achieves ~10% efficiency in light...

  11. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...... and characterized for comparison. Power conversion eciency of 16.5% was obtained for this batch of RIE-textured Si solar cells. The eciency of the KOH-textured reference cell was 17.8%. Quantum Efficiency measurements and carrier loss analysis show that the lower eciency of the RIE-textured cells is primarily due...

  12. Hydrogen production from solar energy

    Science.gov (United States)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  13. Investigations of solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2005-01-01

    A large variety of solar combi systems are on the marked to day. The best performing systems are highly advanced energy systems with thermal stratification manifolds, an efficient boiler and only one control system, which controls both the boiler and the solar collector loop (Weiss et al., 2003......). However, it is still too early to draw conclusions on the design of solar combi systems. Among others, the following questions needs to be answered: Is an external domestic hot water preparation more desirable than an internal domestic hot water preparation? Is a stratification manifold always more...... desirable than a fixed inlet position? This paper presents experimental investigations of an advanced solar combi system with thermal stratification manifold inlets both in the solar collector loop and in the space heating system and with an external domestic hot water preparation. Theoretical...

  14. Mexican Virtual Solar Observatory project

    Science.gov (United States)

    Santillán, Alfredo J.; Hernández, Liliana; Salas, Guillermo; Sánchez, Antonio; González, Alejandro; Franco, José

    2007-08-01

    The Virtual Solar Observatory (VSO) concept outlines a software environment for searching, obtaining and analyzing data from archives of solar data that are distributed at many different observatories around the world (Hill 2006, in this volume). The VSO, however, not only provides fast and reliable access to the existing data of Solar Active Regions, but also represents a powerful and unique tool to perform numerical simulations of the evolution and present state of solar phenomena. Two centers at UNAM, the Institute of Astronomy (IA) and the Supercomputer Center (DGSCA), along with the Sonora University, are working together to create the Mexican Virtual Solar Observatory (MVSO) that will be part of a wider national effort.

  15. The solar-stellar connection

    Science.gov (United States)

    Giampapa, Mark S.

    2016-07-01

    A review of some principal results achieved in the area of stellar astrophysics with its origins in solar physics - the Solar-Stellar Connection - is presented from the perspective of an observational astronomer. The historical origins of the Solar-Stellar Connection are discussed followed by a review of key results from observations of stellar cycles analogous to the solar cycle in terms of parameters relevant to dynamo theory. A review of facets of angular momentum evolution and irradiance variations, each of which is determined by emergent, dynamo-generated magnetic fields, is given. Recent considerations of the impacts of stellar magnetic activity on the ambient radiative and energetic particle environment of the habitable zone of exoplanet systems are summarized. Some anticipated directions of the Solar-Stellar Connection in the new era of astronomy as defined by the advent of transformative facilities are presented.

  16. High Performance Perovskite Solar Cells.

    Science.gov (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  17. Photon management in solar cells

    CERN Document Server

    Rau, Uwe; Gombert, Andreas

    2015-01-01

    Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, appl...

  18. Contraction of the solar nebula

    Science.gov (United States)

    Rawal, J. J.

    1984-10-01

    The concept of Roche limit is applied to the Laplacian theory of the origin of the solar system to study the contraction of a spherical gas cloud (solar nebula). In the process of contraction of the solar nebula, it is assumed that the phenomenon of supersonic turbulent convection described by Prentice (1978) is operative. It is found that the radius of the contracting solar nebula follows Titius-Bode law Rp = R_sun; ap, where R_sun; is the radius of the present Sun and a = 1.442. The consequences of the relation are also discussed. The aim, here, is an attempt to explain, on the basis of the concept of Roche limit, the distribution of planets in the solar system and try to understand the physics underlying it.

  19. Reinventing the Solar Power Satellite

    Science.gov (United States)

    Landis, Geoffrey A.

    2004-01-01

    The selling price of electrical power varies with time. The economic viability of space solar power is maximum if the power can be sold at peak power rates, instead of baseline rate. Price and demand of electricity was examined from spot-market data from four example markets: New England, New York City, suburban New York, and California. The data was averaged to show the average price and demand for power as a function of time of day and time of year. Demand varies roughly by a factor of two between the early-morning minimum demand, and the afternoon maximum; both the amount of peak power, and the location of the peak, depends significantly on the location and the weather. The demand curves were compared to the availability curves for solar energy and for tracking and non-tracking satellite solar power systems in order to compare the market value of terrestrial and solar electrical power. In part 2, new designs for a space solar power (SSP) system were analyzed to provide electrical power to Earth for economically competitive rates. The approach was to look at innovative power architectures to more practical approaches to space solar power. A significant barrier is the initial investment required before the first power is returned. Three new concepts for solar power satellites were invented and analyzed: a solar power satellite in the Earth-Sun L2 point, a geosynchronous no-moving parts solar power satellite, and a nontracking geosynchronous solar power satellite with integral phased array. The integral-array satellite had several advantages, including an initial investment cost approximately eight times lower than the conventional design.

  20. Solar Variability Magnitudes and Timescales

    Science.gov (United States)

    Kopp, Greg

    2015-08-01

    The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.

  1. Deciphering Solar Magnetic Activity: On Grand Minima in Solar Activity

    Directory of Open Access Journals (Sweden)

    Scott William Mcintosh

    2015-07-01

    Full Text Available The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a grand minimum? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish year solar activity cycle.

  2. Implications of solar wind measurements for solar models and composition

    Science.gov (United States)

    Serenelli, Aldo; Scott, Pat; Villante, Francesco L.; Vincent, Aaron C.; Asplund, Martin; Basu, Sarbani; Grevesse, Nicolas; Peña-Garay, Carlos

    2016-11-01

    We critically examine recent claims of a high solar metallicity by von Steiger & Zurbuchen (2016, vSZ16) based on in situ measurements of the solar wind, rather than the standard spectroscopically inferred abundances (Asplund et al. 2009, hereafter AGSS09). We test the claim by Vagnozzi et al. (2016) that a composition based on the solar wind enables one to construct a standard solar model in agreement with helioseismological observations and thus solve the decades-old solar modelling problem. We show that, although some helioseismological observables are improved compared to models computed with spectroscopic abundances, most are in fact worse. The high abundance of refractory elements leads to an overproduction of neutrinos, with a predicted 8B flux that is nearly twice its observed value, and 7Be and CNO fluxes that are experimentally ruled out at high confidence. A combined likelihood analysis shows that models using the vSZ16 abundances are worse than AGSS09 despite a higher metallicity. We also present astrophysical and spectroscopic arguments showing the vSZ16 composition to be an implausible representation of the solar interior, identifying the first ionization potential effect in the outer solar atmosphere and wind as the likely culprit.

  3. Solar Sources of $^{3}$He-rich Solar Energetic Particle Events in Solar Cycle 24

    CERN Document Server

    Nitta, Nariaki V; Wang, Linghua; Cohen, Christina M S; Wiedenbeck, Mark E

    2015-01-01

    Using high-cadence extreme-ultraviolet (EUV) images obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, we investigate the solar sources of 26 $^{3}$He-rich solar energetic particle (SEP) events at $\\lesssim$1 MeV nucleon$^{-1}$ that were well-observed by the Advanced Composition Explorer during solar cycle 24. Identification of the solar sources is based on the association of $^{3}$He-rich events with type III radio bursts and electron events as observed by Wind. The source locations are further verified in EUV images from the Solar and Terrestrial Relations Observatory, which provides information on solar activities in the regions not visible from the Earth. Based on AIA observations, $^{3}$He-rich events are not only associated with coronal jets as emphasized in solar cycle 23 studies, but also with more spatially extended eruptions. The properties of the $^{3}$He-rich events do not appear to be strongly correlated with those of the source regions. As in the previous...

  4. From Solar Cookers Towards Viable Solar Cooking Technology

    DEFF Research Database (Denmark)

    Ahmad, Bashir

    1997-01-01

    A broader concept of technology encompassing the technical and the societal aspects is introduced. Viability of technology and technological development process from a socio-technical view- point is discussed. Based on the above, the question of securing viability of solar cooking technology...... is taken up. It is discussed that actor- approach can operationally relate the abstract societal factors with those of technical aspects. Some concrete measures regarding application of solar cooker projects are drawn from the discussion: solar cooking projects should a) be based on user and producer...

  5. Martian ionosphere response to solar wind variability during solar minimum

    Science.gov (United States)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Mays, M. Leila; Hall, Benjamin E. S.; Milan, Stephen E.; Cartacci, Marco; Blelly, Pierre-Louis; Andrews, David; Opgenoorth, Hermann; Odstrcil, Dusan

    2016-04-01

    Solar cycle variations in solar radiation create notable density changes in the Martian ionosphere. In addition to this long-term variability, there are numerous short-term and non-recurrent solar events that hit Mars which need to be considered, such as Interplanetary Coronal Mass Ejections (ICMEs), Co-Rotation Interaction Regions (CIRs), solar flares, or solar wind high speed streams. The response of the Martian plasma system to each of these events is often unusual, especially during the long period of extreme low solar activity in 2008 and 2009. This work shows the long-term solar cycle impact on the ionosphere of Mars using data from The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), and The Analyzer of Space Plasma and Energetic Atoms (ASPERA-3), and with empirical and numerical models on Mars Express. Particular attention is given to the different ionospheric responses observed during the last, extended solar minimum. Mars' ionospheric response followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to the inner-origin of the magnetic field of both planets. The ionospheric temperature was cooler, the topside scale height was smaller and almost constant with altitude, the secondary ionospheric layer practically disappeared and the whole atmospheric total electron content (TEC) suffered an extreme reduction of about 30-40%, not predicted before by models. Moreover, there is a larger probability for the induced magnetic field to be present in the ionosphere, than in other phases of the solar cycle. The short-term variability is also addressed with the study of an ICME followed by a fast stream that hit Mars in March 2008, where solar wind data are provided by ACE and STEREO-B and supported by simulations using the WSA-ENLIL Model. The solar wind conditions lead to the formation of a CIR centred on the interface of the fast and the slow solar wind streams. Mars' system reacted to

  6. Solar system to scale

    Science.gov (United States)

    Gerwig López, Susanne

    2016-04-01

    One of the most important successes in astronomical observations has been to determine the limit of the Solar System. It is said that the first man able to measure the distance Earth-Sun with only a very slight mistake, in the second century BC, was the wise Greek man Aristarco de Samos. Thanks to Newtońs law of universal gravitation, it was possible to measure, with a little margin of error, the distances between the Sun and the planets. Twelve-year old students are very interested in everything related to the universe. However, it seems too difficult to imagine and understand the real distances among the different celestial bodies. To learn the differences among the inner and outer planets and how far away the outer ones are, I have considered to make my pupils work on the sizes and the distances in our solar system constructing it to scale. The purpose is to reproduce our solar system to scale on a cardboard. The procedure is very easy and simple. Students of first year of ESO (12 year-old) receive the instructions in a sheet of paper (things they need: a black cardboard, a pair of scissors, colored pencils, a ruler, adhesive tape, glue, the photocopies of the planets and satellites, the measurements they have to use). In another photocopy they get the pictures of the edge of the sun, the planets, dwarf planets and some satellites, which they have to color, cut and stick on the cardboard. This activity is planned for both Spanish and bilingual learning students as a science project. Depending on the group, they will receive these instructions in Spanish or in English. When the time is over, the students bring their works on their cardboard to the class. They obtain a final mark: passing, good or excellent, depending on the accuracy of the measurements, the position of all the celestial bodies, the asteroids belts, personal contributions, etc. If any of the students has not followed the instructions they get the chance to remake it again properly, in order not

  7. Automated solar module assembly line

    Science.gov (United States)

    Bycer, M.

    1980-08-01

    The solar module assembly machine which Kulicke and Soffa delivered under this contract is a cell tabbing and stringing machine, and capable of handling a variety of cells and assembling strings up to 4 feet long which then can be placed into a module array up to 2 feet by 4 feet in a series of parallel arrangement, and in a straight or interdigitated array format. The machine cycle is 5 seconds per solar cell. This machine is primarily adapted to 3 inch diameter round cells with two tabs between cells. Pulsed heat is used as the bond technique for solar cell interconnects. The solar module assembly machine unloads solar cells from a cassette, automatically orients them, applies flux and solders interconnect ribbons onto the cells. It then inverts the tabbed cells, connects them into cell strings, and delivers them into a module array format using a track mounted vacuum lance, from which they are taken to test and cleaning benches prior to final encapsulation into finished solar modules. Throughout the machine the solar cell is handled very carefully, and any contact with the collector side of the cell is avoided or minimized.

  8. Solar Feature Catalogues In Egso

    Science.gov (United States)

    Zharkova, V. V.; Aboudarham, J.; Zharkov, S.; Ipson, S. S.; Benkhalil, A. K.; Fuller, N.

    2005-05-01

    The Solar Feature Catalogues (SFCs) are created from digitized solar images using automated pattern recognition techniques developed in the European Grid of Solar Observation (EGSO) project. The techniques were applied for detection of sunspots, active regions and filaments in the automatically standardized full-disk solar images in Caii K1, Caii K3 and Hα taken at the Meudon Observatory and white-light images and magnetograms from SOHO/MDI. The results of automated recognition are verified with the manual synoptic maps and available statistical data from other observatories that revealed high detection accuracy. A structured database of the Solar Feature Catalogues is built on the MySQL server for every feature from their recognized parameters and cross-referenced to the original observations. The SFCs are published on the Bradford University web site http://www.cyber.brad.ac.uk/egso/SFC/ with the pre-designed web pages for a search by time, size and location. The SFCs with 9 year coverage (1996 2004) provide any possible information that can be extracted from full disk digital solar images. Thus information can be used for deeper investigation of the feature origin and association with other features for their automated classification and solar activity forecast.

  9. Solar Thermal Propulsion Test Facility

    Science.gov (United States)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  10. Solar mechanics thermal response capabilities.

    Energy Technology Data Exchange (ETDEWEB)

    Dobranich, Dean D.

    2009-07-01

    In many applications, the thermal response of structures exposed to solar heat loads is of interest. Solar mechanics governing equations were developed and integrated with the Calore thermal response code via user subroutines to provide this computational simulation capability. Solar heat loads are estimated based on the latitude and day of the year. Vector algebra is used to determine the solar loading on each face of a finite element model based on its orientation relative to the sun as the earth rotates. Atmospheric attenuation is accounted for as the optical path length varies from sunrise to sunset. Both direct and diffuse components of solar flux are calculated. In addition, shadowing of structures by other structures can be accounted for. User subroutines were also developed to provide convective and radiative boundary conditions for the diurnal variations in air temperature and effective sky temperature. These temperature boundary conditions are based on available local weather data and depend on latitude and day of the year, consistent with the solar mechanics formulation. These user subroutines, coupled with the Calore three-dimensional thermal response code, provide a complete package for addressing complex thermal problems involving solar heating. The governing equations are documented in sufficient detail to facilitate implementation into other heat transfer codes. Suggestions for improvements to the approach are offered.

  11. Solar Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A.; McGirt, F.; Miller, G.G.; Thornewell, P.M.; Wilhelmy, J.B.; Wouters, J.M.

    1999-07-15

    With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.

  12. Photovoltaic Solar Energy Generation

    CERN Document Server

    Lotsch, H.K.V; U.Hoffmann, Volker; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    This comprehensive description and discussion of photovoltaics (PV) is presented at a level that makes it accessible to the interested academic. Starting with an historical overview, the text outlines the relevance of photovoltaics today and in the future. Then follows an introduction to the physical background of solar cells and the most important materials and technologies, with particular emphasis placed on future developments and prospects. The book goes beyond technology by also describing the path from the cell to the module to the system, proceeding to important applications, such as grid-connected and stand-alone systems. The composition and development of the markets and the role of PV in future energy systems are also considered. Finally, the discussion turns to the future structure of energy supplies, expected to comprise more distributed generation, and addresses synergies and competition from other carbon-free energy sources.

  13. Forecasting Solar Wind Speeds

    CERN Document Server

    Suzuki, T K

    2006-01-01

    By explicitly taking into account effects of Alfven waves, I derive from a simple energetics argument a fundamental relation which predicts solar wind (SW) speeds in the vicinity of the earth from physical properties on the sun. Kojima et al. recently found from their observations that a ratio of surface magnetic field strength to an expansion factor of open magnetic flux tubes is a good indicator of the SW speed. I show by using the derived relation that this nice correlation is an evidence of the Alfven wave which accelerates SW in expanding flux tubes. The observations further require that fluctuation amplitudes of magnetic field lines at the surface should be almost universal in different coronal holes, which needs to be tested by future observations.

  14. Our Solar System's Cousin?

    Science.gov (United States)

    2007-01-01

    This artist's concept illustrates two planetary systems -- 55 Cancri (top) and our own. Blue lines show the orbits of planets, including the dwarf planet Pluto in our solar system. The 55 Cancri system is currently the closest known analogue to our solar system, yet there are some fundamental differences. The similarities begin with the stars themselves, which are about the same mass and age. Both stars also host big families of planets. Our solar system has eight planets, while 55 Cancri has five, making it the record-holder for having the most known exoplanets. In fact, 55 Cancri could have additional planets, possibly even rocky ones that are too small to be seen with current technologies. All of the planets in the two systems have nearly circular orbits. In addition, both planetary systems have giant planets in their outer regions. The giant located far away from 55 Cancri is four times the mass of our Jupiter, and completes one orbit every 14 years at a distance of five times that between Earth and the sun (about 868 million kilometers or 539 million miles). Our Jupiter completes one orbit around the sun every 11.9 years, also at about five times the Earth-sun distance (778 million kilometers or 483 million miles). Fifty-five Cancri is still the only known star besides ours with a planet in a distant Jupiter-like orbit. Both systems also contain inner planets that are less massive than their outer planets. The differences begin with the planets' masses. The planets orbiting 55 Cancri are all larger than Earth, and represent a 'souped-up' version of our own solar system. In fact, this is the first star that boasts more giant planets than our sun! The arrangement of the planetary systems is also different. The inner four planets of 55 Cancri are all closer to the star than Earth is to the sun. The closest, about the mass of Uranus, whips around the star in just under three days at a distance of approximately 5.6 million kilometers (3.5 million miles). The second

  15. Solar Power for Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Christine; Gerace, Jay; Mehner, Nicole; Mohamed, Sharif; Reiss, Kelly

    1999-12-06

    Condensed list of products and activities: 8 educational posters and 1 informational brochure (all original illustrations and text); a business plan with micro-agreements; corporation created called Tanzanian Power, LLC; business feasibility study developed with the University of Albany; Hampshire College collaborated in project development; research conducted seeking similar projects in underdeveloped countries; Citibank proposal submitted (but rejected); cleaned and sent PV panels to Tanzania; community center built in Tanzania; research and list provided to Robinson for educational TV videos and product catalogs; networked with Chase Manhattan Bank for new solar panels; maintained flow of information among many people (stateside and Tanzania); wrote and sent press releases and other outreach information. Several families purchased panels.

  16. A solar energy controller

    Energy Technology Data Exchange (ETDEWEB)

    Laurentiu, A.

    1981-05-30

    A simplified design of a flat solar energy collector with an absorber made from plastic, and a housing stamped from polyethylene with a thermal insulation layer made from porous plastic is patented. The thermal insulation layer is also stamped out as a hole part in the necessary shape. A transparency made from transparent plastic in the form of a cover is applied to the housing. The cover has edges that attach to the vertical walls of the housing. In order to improve the seal of the internal area of the collector, the edges of the transparency fit into the gap between the vertical walls of the housing and the attachment piece on the walls. The collector is characterized by simplicity in assembly and low cost.

  17. Solar Power Satellites

    CERN Document Server

    Flournoy, Don M

    2012-01-01

    Communication satellites are a $144 billion industry. Is there any space-based industry that could possibly beat that market? 'Solar Power Satellites' shows why and how the space satellite industry will soon begin expanding its market from relaying signals to Earth to generating energy in space and delivering it to the ground as electricity. In all industrialized nations, energy demand is growing exponentially. In the developing world, the need for energy is as basic as food and water. The Sun's energy is available everywhere, and it is non-polluting. As business plans demonstrate its technical feasibility, commercial potential, and environmental acceptability, every country on Earth will look to space for the power it needs.

  18. Solar radioastronomical instruments

    Science.gov (United States)

    Gonze, R.

    Instruments for detecting and recording the radio emissions of the sun are required to cover the entire electromagnetic spectrum, measure intensity and polarization, as well as the region of the emissions, and display high resolution in both space and time. Radioheliographic images of the sun are made from wavelengths outside of the visible, and yield images based on a grid of relative intensities of varying fineness of resolution. Radioelectric isophote contours can be generated using radiotelescopes at specific receptive frequencies, and interferometric techniques permit the employment of multiple paraboloidal receivers to construct a synthetic image of greater resolution than possible with a single antenna. Dynamic radiospectrography is used to examine transitory solar radio emissions where fine structures are produced in frequency bands covering at least an octave. Multichannel radiospectrographic equipment with many receptors tuned to discrete frequencies and regularly adjusted permits coverage of broad frequency bands, with digital control to augment the dynamics of the instruments.

  19. Upconversion in solar cells.

    Science.gov (United States)

    van Sark, Wilfried Gjhm; de Wild, Jessica; Rath, Jatin K; Meijerink, Andries; Schropp, Ruud Ei

    2013-02-15

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells.

  20. Municipal Complex Solar Project

    Energy Technology Data Exchange (ETDEWEB)

    Sher, Jono [Dept. of Energy (DOE), Washington DC (United States); Toth, Andrew [City of Perth Amboy, NJ (United States)

    2015-02-12

    This project is a great benefit to the City of Perth Amboy by saving energy and savings costs. The project serves as a great example to city residents about the importance of renewable energy, energy conservation and other environmental topics. An electronic display in the City Hall shows how much energy was generated on that day, how much energy is saved, and environmental benefits. The project serves to educate people of environmental concerns and may spark the interest of individuals in other environmental topics. Hopefully, other residents will be encouraged to use solar energy. The project is also saving money for the City and its taxpayers. Anywhere we can save money means that residents can pay less in taxes and/or the City can provide improved services.

  1. Solar thermal collectors

    Science.gov (United States)

    Aranovitch, E.

    Thermal processes in solar flat plate collectors are described and evaluated analytically, and numerical models are presented for evaluating the performance of various designs. A flat plate collector consists of a black absorber plate which transfers absorbed heat to a fluid, a cover which limits thermal losses, and insulation to prevent backlosses. Calculated efficiencies for the collectors depend on the radiation absorbed, as well as IR losses due to natural convection, conduction, and radiation out of the collector. Formulations for the global emittance and heat transfer, as well as losses and their dependence on the Nusselt number and Grashof number are defined. Consideration is given to radiation transmission through transparent covers and Fresnel reflections at interfaces in the cover material. Finally, the performance coefficients for double-glazed and selective surface flat plate collectors are examined.

  2. About Solar Refrigeration

    Directory of Open Access Journals (Sweden)

    Laura Coroiu

    2008-05-01

    Full Text Available This paper has the purpose to unfold the results of all researches which proved before that the solar energy constitutes itself as an ideal resource for heating application that necessitate lower temperature,e.g. the heating of a certain space or the preparation ofthe domestic hot water. The refrigeration systems, which are based on the nontoxic refrigerants for the environment, offer a sustained advantage when compared to the other types of the refrigerants. But, whichever might be the case, the use of the energy associated to the operation of the refrigeration system and with the impact that it has upon the environment, as well as the association with its production and distribution, have often a bigger importance than the selection of the refrigerant. In order to minimize the impact which the operation of the refrigeration systems exerts upon the environment, it is recommended that there should be checked all thepossibilities of using a pure source of energy.

  3. ESMN / European Solar Physics Research Area

    NARCIS (Netherlands)

    Rutten, R.J.

    2001-01-01

    I briefly present the European Solar Magnetometry Network as a contemporary example of solar physics collaboration across European borders,and I place it in larger-scale context by discussing the past and future of Europe-wide solar physics organization.Solar physics from space is inherently transna

  4. Photon upconversion for thin film solar cells

    NARCIS (Netherlands)

    de Wild, J.

    2012-01-01

    In this research one of the many possible methods to increase the efficiency of solar cells is described. The method investigated is based on adapting the solar light in such a way that the solar cell can convert more light into electricity. The part of the solar spectrum that is adapted is the part

  5. Cleaner for Solar-Collector Covers

    Science.gov (United States)

    Frickland, P. O.; Cleland, E. L.

    1983-01-01

    Simple self-contained cleaning system proposed for solar collectors or solar-collector protective domes. Perforated transparent plastic cap attached to top of protective dome in heliostat solar-energy collection system distributes cleaning fluid over surface of dome without blocking significant fraction of solar radiation.

  6. Selective optical coatings for solar collectors

    Science.gov (United States)

    Lowery, J. R.

    1980-01-01

    For best performance, energy-absorbing surface of solar collector should be characterized by high ratio of solar absorptance to thermal emitance. Report on optical characteristics of several chemical treatments and electrodeposited coatings for metal solar-absorbing surfaces should interest designers and users of solar-energy systems. Moisture resistance of some coatings is also reported.

  7. Solar Physics in the Space Age.

    Science.gov (United States)

    Dittmer, Phil D.; And Others

    This amply illustrated booklet provides a physical description of the sun as well as present and future tasks for solar physics study. The first chapter, an introduction, describes the history of solar study, solar study in space, and the relevance of solar study. The second chapter describes the five heliographic domains including the interior,…

  8. Solar cell with back side contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  9. Structure and dynamics of the solar chromosphere

    NARCIS (Netherlands)

    Krijger, Johannes Mattheus

    2003-01-01

    The thesis "Structure and dynamics of the solar chromosphere" of J.M. Krijger is a study on the behavior of the solar chromosphere, the thin layer just above the solar surface (photosphere) visible in purple red light during a total solar eclipse. The most important result of this thesis is that the

  10. Automatic solar lamp intensity control system

    Science.gov (United States)

    Leverone, H.; Mandell, N.

    1968-01-01

    System that substitutes solar cells directly in the path of the radiation incident on the test volume and uses a dc bridge-null system was developed. The solar cell is affixed to a heat sink mounted on each of three arms for each solar lamp. Control of the radiation from the solar lamps is automatic.

  11. Development of a solar thermal thruster system

    NARCIS (Netherlands)

    Leenders, H.C.M.; Zandbergen, B.T.C.

    2008-01-01

    At the Delft University of Technology the use of solar radiation to heat a propellant to a high temperature is investigated as an alternative to resistance heating. The latter only allows for a solar power to heat conversion efficiency of about 25%, depending on the solar cells, whereas for solar he

  12. SORCE: Solar Radiation and Climate Experiment

    Science.gov (United States)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  13. Solar Radio Astronomy and Plasma Non-thermal Proccsscs in Solar Atmosphere

    Institute of Scientific and Technical Information of China (English)

    YAN Yihua; TAN Baolin

    2011-01-01

    1. Introduction Solar radio astronomy is an important branch of solar physics, which deals with the radio emission from the solar atmosphere. In solar physics, one of the greatest challenges is to understand the energy storing in the hot atmospheric plasma above sunspots and its sudden releasing in eruptive processes, such as solar flares, eruptive filaments, and coronal mass ejections (CME). Intrinsically,

  14. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  15. Influence of solar flares on behavior of solar neutrino flux

    CERN Document Server

    Boyarkin, O M

    2016-01-01

    Limiting ourselves to two flavor approximation the motion of the neutrino flux in the solar matter and twisting magnetic field is considered. For the neutrino system described by the 4-component wave function $\\Psi^T = (\

  16. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    , as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat......-plate collectors. For solar heating plants, the yearly energy output from these evacuated tubular collectors is about 40%-90% higher than the output from typical flat-plate collectors at an operation temperature of about 50°C.......Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...

  17. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics: A Text for the Science of Planetary Systems covers the field of solar system astrophysics beginning with basic tools of spherical astronomy, coordinate frames, and celestial mechanics. Historical introductions precede the development and discussion in most chapters. After a basic treatment of the two- and restricted three-body system motions in Background Science and the Inner Solar System, perturbations are discussed, followed by the Earth's gravitational potential field and its effect on satellite orbits. This is followed by analysis of the Earth-Moon system and the interior planets. In Planetary Atmospheres and the Outer Solar System, the atmospheres chapters include detailed discussions of circulation, applicable also to the subsequent discussion of the gas giants. The giant planets are discussed together, and the thermal excesses of three of them are highlighted. This is followed by chapters on moons and rings, mainly in the context of dynamical stability, comets and meteors, m...

  18. Solar Physics at Evergreen: Solar Dynamo and Chromospheric MHD

    Science.gov (United States)

    Zita, E. J.; Maxwell, J.; Song, N.; Dikpati, M.

    2006-12-01

    We describe our five year old solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for theoretical and remote solar physics research activities. Why does the Sun's magnetic field flip polarity every 11 years or so? How does this contribute to the magnetic storms Earth experiences when the Sun's field reverses? Why is the temperature in the Sun's upper atmosphere millions of degrees higher than the Sun's surface temperature? How do magnetic waves transport energy in the Sun’s chromosphere and the Earth’s atmosphere? How does solar variability affect climate change? Faculty and undergraduates investigate questions such as these in collaboration with the High Altitude Observatory (HAO) at the National Center for Atmospheric Research (NCAR) in Boulder. We will describe successful student research projects, logistics of remote computing, and our current physics investigations into (1) the solar dynamo and (2) chromospheric magnetohydrodynamics.

  19. Solar analogues and Solar twins in the HARPS archive

    CERN Document Server

    Datson, Juliet; Portinari, Laura

    2014-01-01

    We present 63 Solar analogues and twins for which high S/N archival data are available for the HARPS high resolution spectrograph at the ESO 3.6m telescope. We perform a differential analysis of these stellar spectra relative to the Solar spectrum, similar to previous work using ESO 2.2m/FEROS data, and expand our analysis by introducing a new method to test the temperature and metallicity calibration of Sun-like stars in the Geneva-Copenhagen-Survey (GCS). The HARPS data are significantly better than the FEROS data, with improvements in S/N, spectral resolution, and number of lines we can analyse. We confirm the offsets to the photometric scale found in our FEROS study. We confirm 3 Solar twins found in the FEROS data as Solar twins in the HARPS data, as well as identify 6 new twins.

  20. A solar module fabrication process for HALE solar electric UAVs

    Energy Technology Data Exchange (ETDEWEB)

    Carey, P.G.; Aceves, R.C.; Colella, N.J.; Williams, K.A. [Lawrence Livermore National Lab., CA (United States); Sinton, R.A. [Private Consultant, San Jose, CA (United States); Glenn, G.S. [Spectrolab, Inc., Sylmar, CA (United States)

    1994-12-12

    We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAVs). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150{mu}m-thick monofacial and 110{mu}m-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150{mu}m) and 14.7% (110{mu}m) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25{degrees}C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 m{sup 2} of these modules will be described.

  1. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Background Science and the Inner Solar System provides new insights into the burgeoning field of planetary astronomy. As in the first edition, this volume begins with a rigorous treatment of coordinate frames, basic positional astronomy, and the celestial mechanics of two and restricted three body system problems. Perturbations are treated in the same way, with clear step-by-step derivations. Then the Earth’s gravitational potential field and the Earth-Moon system are discussed, and the exposition turns to radiation properties with a chapter on the Sun. The exposition of the physical properties of the Moon and the terrestrial planets are greatly expanded, with much new information highlighted on the Moon, Mercury, Venus, and Mars. All of the material is presented within a framework of historical importance. This book and its sister volume, Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, are pedagogically well written, providing cl...

  2. Fe-rich solar energetic particle events during solar minimum

    Science.gov (United States)

    Mazur, J. E.; Mason, G. M.; von Rosenvinge, T. T.

    During the first 10 months of WIND observations, we have detected several time periods with energetic particle abundances that are characteristic of impulsive flares: enrichments in the ³He isotope, and in heavy ions compared to the corona. Using the Supra-Thermal through Energetic Particle sensor on WIND, we find that at ∼100 keV/nucleon these events typically arrive in sequences of multiple events when the spacecraft is magnetically connected to an active region at western solar longitudes, preceding the arrival of a high speed solar wind stream. During recurrent high speed solar wind streams with their associated flux enhancements Fe-rich events are seldom seen: almost all of the events occur on days with solar wind speeds ISEE-3.

  3. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  4. Fast Solar Sailing for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Practical spinning solar sail architectures will be needed to meet low areal densities and large areas required for the most challenging science and exploration...

  5. Development of smart solar tanks

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa

    1999-01-01

    The aim of the project is to develop smart solar tanks. A smart solar tank is a tank in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top and the water volume heated...... by the auxiliary energy supply system is fitted to the hot water consumption and consumption pattern. In periods with a large hot-water demand the volume is large, in periods with a small hot-water demand the volume is small. Based on measurements and calculations the advantage of smart SDHW systems is visualised....

  6. Solar Image Analysis and Visualization

    CERN Document Server

    Ireland, J

    2009-01-01

    This volume presents a selection of papers on the state of the art of image enhancement, automated feature detection, machine learning, and visualization tools in support of solar physics that focus on the challenges presented by new ground-based and space-based instrumentation. The articles and topics were inspired by the Third Solar Image Processing Workshop, held at Trinity College Dublin, Ireland but contributions from other experts have been included as well. This book is mainly aimed at researchers and graduate students working on image processing and compter vision in astronomy and solar physics.

  7. Solar and infrared radiation measurements

    CERN Document Server

    Vignola, Frank; Michalsky, Joseph

    2012-01-01

    The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operati

  8. Comets. [and solar system evolution

    Science.gov (United States)

    Neugebauer, M.

    1986-01-01

    The nature, history, and evolution of comets are considered. Cometary ions, formed by photoionization and other processes, are forced into a highly structured ion tail by the interaction with the solar wind. The importance of comets to solar-system studies lies in the possibilities that they are well-preserved samples of either the interstellar cloud which collapsed to form the solar system or the planetesimals from which the outer planets accumulated, and that they provided either the prebiotic complex molecules from which life evolved or some volatiles necessary for the evolution of these molecules.

  9. Progress in polymer solar cell

    Institute of Scientific and Technical Information of China (English)

    LI LiGui; LU GuangHao; YANG XiaoNiu; ZHOU EnLe

    2007-01-01

    This review outlines current progresses in polymer solar cell. Compared to traditional silicon-based photovoltaic (PV) technology, the completely different principle of optoelectric response in the polymer cell results in a novel configuration of the device and more complicated photovoltaic generation process. The conception of bulk-heterojunction (BHJ) is introduced and its advantage in terms of morphology is addressed. The main aspects including the morphology of photoactive layer, which limit the efficiency and stability of polymer solar cell, are discussed in detail. The solutions to boosting up both the efficiency and stability (lifetime) of the polymer solar cell are highlighted at the end of this review.

  10. Aid To Solar Collector Development

    Science.gov (United States)

    1979-01-01

    Solar heating and cooling systems employ coatings to increase efficiency. Designers want a coating which absorbs solar heat to the maximum extent possible with minimal emittance of infrared radiation, which occurs when the collector plate gets hot. The coating is important because too much coating causes energy loss by emittance, too little reduces the collector's ability to absorb heat. NASA's Lewis Research Center, which conducts solar energy research, saw a need for a simple means of testing coating samples for emittance. Such equipment is available to research laboratories, but it is complex and expensive

  11. Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jarosław

    2016-01-01

    The experimental work in this thesis is focused on the fabrication of nanostructures that can be implemented in organic solar cell (OSC) architecture for enhancement of the device performance. Solar devices made from organic material are gaining increased attention, compared to their inorganic......, easily replicable and scalable technique using PAA templates. Control of the anodization parameters allows control over the dimensions of the structures and therefore easy control of the underlying dimples dimensions. The area exposed to the acidic electrolyte is the only factor limiting scalability...... for organic solar cell applications, opening new patterning possibilities....

  12. Nanowire mesh solar fuels generator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Peidong; Chan, Candace; Sun, Jianwei; Liu, Bin

    2016-05-24

    This disclosure provides systems, methods, and apparatus related to a nanowire mesh solar fuels generator. In one aspect, a nanowire mesh solar fuels generator includes (1) a photoanode configured to perform water oxidation and (2) a photocathode configured to perform water reduction. The photocathode is in electrical contact with the photoanode. The photoanode may include a high surface area network of photoanode nanowires. The photocathode may include a high surface area network of photocathode nanowires. In some embodiments, the nanowire mesh solar fuels generator may include an ion conductive polymer infiltrating the photoanode and the photocathode in the region where the photocathode is in electrical contact with the photoanode.

  13. Information and the solar consumer

    Energy Technology Data Exchange (ETDEWEB)

    Shoemaker, F.

    1981-05-01

    A brief review of the use of solar energy in the US is presented and then the attitude of solar consumer are summarized. Results of research show that information or knowledge of an innovation proceeds at a faster rate than the actual adoption of that innovation. It is noted that until the level of solar knowledge increases to about 30% of the potential end users who have seriously considered the technology and plan to invest in it, adoption of the technology will be limited.

  14. Geometry of solar coronal rays

    Science.gov (United States)

    Filippov, B. P.; Martsenyuk, O. V.; Platov, Yu. V.; Den, O. E.

    2016-02-01

    Coronal helmet streamers are the most prominent large-scale elements of the solar corona observed in white light during total solar eclipses. The base of the streamer is an arcade of loops located above a global polarity inversion line. At an altitude of 1-2 solar radii above the limb, the apices of the arches sharpen, forming cusp structures, above which narrow coronal rays are observed. Lyot coronagraphs, especially those on-board spacecrafts flying beyond the Earth's atmosphere, enable us to observe the corona continuously and at large distances. At distances of several solar radii, the streamers take the form of fairly narrow spokes that diverge radially from the Sun. This radial direction displays a continuous expansion of the corona into the surrounding space, and the formation of the solar wind. However, the solar magnetic field and solar rotation complicate the situation. The rotation curves radial streams into spiral ones, similar to water streams flowing from rotating tubes. The influence of the magnetic field is more complex and multifarious. A thorough study of coronal ray geometries shows that rays are frequently not radial and not straight. Coronal streamers frequently display a curvature whose direction in the meridional plane depends on the phase of the solar cycle. It is evident that this curvature is related to the geometry of the global solar magnetic field, which depends on the cycle phase. Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima can be interpreted as the effects of changes in the general topology of the global solar magnetic field. There are sporadic temporal changes in the coronal rays shape caused by remote coronal mass ejections (CMEs) propagating through the corona. This is also a manifestation of the influence of the magnetic field on plasma flows. The motion of a large-scale flux rope associated with a CME away from the Sun creates changes in the structure of surrounding field

  15. Shenandoah parabolic dish solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, G.S.

    1985-01-01

    The objectives of the Shenandoah, Georgia, Solar Total Energy System are to design, construct, test, and operate a solar energy system to obtain experience with large-scale hardware systems for future applications. This report describes the initial design and testing activities conducted to select and develop a collector that would serve the need of such a solar total energy system. The parabolic dish was selected as the collector most likely to maximize energy collection as required by this specific site. The fabrication, testing, and installation of the parabolic dish collector incorporating improvements identified during the development testing phase are described.

  16. 2008 Solar Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-01-29

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts.

  17. Magnetotails in the solar system

    CERN Document Server

    Keiling, Andreas; Delamere, Peter

    2014-01-01

    All magnetized planets in our solar system (Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune) interact strongly with the solar wind and possess well developed magnetotails. It is not only the strongly magnetized planets that have magnetotails. Mars and Venus have no global intrinsic magnetic field, yet they possess induced magnetotails. Comets have magnetotails that are formed by the draping of the interplanetary magnetic field. In the case of planetary  satellites (moons), the magnetotail refers to the wake region behind the satellite in the flow of either the solar wind or the magnetosp

  18. Deep solar minimum and global climate changes

    Directory of Open Access Journals (Sweden)

    Ahmed A. Hady

    2013-05-01

    Full Text Available This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

  19. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2009-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  20. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2013-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina