WorldWideScience

Sample records for 1-deoxy-d-xylulose 5-phosphate reductoisomerase

  1. 1-deoxy-D-xylulose-5-phosphate reductoisomerases, and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney B. (Pullman, WA); Lange, Bernd M. (Pullman, WA)

    2002-07-16

    The present invention relates to isolated DNA sequences which code for the expression of plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein, such as the sequence presented in SEQ ID NO:1 which encodes a 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein from peppermint (Mentha x piperita). Additionally, the present invention relates to isolated plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein. In other aspects, the present invention is directed to replicable recombinant cloning vehicles comprising a nucleic acid sequence which codes for a plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase, to modified host cells transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence of the invention.

  2. 1-deoxy-d-xylulose-5-phosphate reductoisomerases and method of use

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney B. (Pullman, WA); Lange, Bernd M. (Pullman, WA)

    2001-01-01

    The present invention relates to isolated DNA sequences which code for the expression of plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein, such as the sequence presented in SEQ ID NO:1 which encodes a 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein from peppermint (Mentha x piperita). Additionally, the present invention relates to isolated plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase protein. In other aspects, the present invention is directed to replicable recombinant cloning vehicles comprising a nucleic acid sequence which codes for a plant 1-deoxy-D-xylulose-5-phosphate reductoisomerase, to modified host cells transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence of the invention.

  3. Inhibition of green tea and the catechins against 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway.

    Science.gov (United States)

    Hui, Xian; Liu, Hui; Tian, Fang-Lin; Li, Fei-Fei; Li, Heng; Gao, Wen-Yun

    2016-09-01

    1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) is the first committed enzyme in the MEP terpenoid biosynthetic pathway and also a validated antimicrobial target. Green tea which is rich in polyphenolic components such as the catechins, possesses a plenty of pharmacological activities, in particular an antibacterial effect. To uncover the antibacterial mechanism of green tea and to seek new DXR inhibitors from natural sources, the DXR inhibitory activity of green tea and its main antimicrobial catechins were investigated in this study. The results show that the raw extract of green tea and its ethyl acetate fraction are able to suppress DXR activity explicitly. Further determination of the DXR inhibitory capacity of eight catechin compounds demonstrates that the most active compound is gallocatechin gallate that is able to inhibit around 50% activity of DXR at 25μM. Based on these data, the primary structure-activity relationship of the catechins against DXR is discussed. This study would be very helpful to elucidate the antimicrobial mechanism of green tea and the catechins and also would be very useful to direct the rational utilization of them as food additives.

  4. Crystal structure of 1-deoxy-d-xylulose 5-phosphate reductoisomerase from the hyperthermophile Thermotoga maritima for insights into the coordination of conformational changes and an inhibitor binding.

    Science.gov (United States)

    Takenoya, Mihoko; Ohtaki, Akashi; Noguchi, Keiichi; Endo, Kiwamu; Sasaki, Yasuyuki; Ohsawa, Kanju; Yajima, Shunsuke; Yohda, Masafumi

    2010-06-01

    Isopentenyl diphosphate is a precursor of various isoprenoids and is produced by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids of plants, protozoa and many eubacteria. A key enzyme in the MEP pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), has been shown to be the target of fosmidomycin, which works as an antimalarial, antibacterial and herbicidal compound. In this paper, we report studies of kinetics and the crystal structures of the thermostable DXR from the hyperthermophile Thermotoga maritima. Unlike the mesophilic DXRs, Thermotoga DXR (tDXR) showed activity only with Mg(2+) at its growth temperature. We solved the crystal structures of tDXR with and without fosmidomycin. The structure without fosmidomycin but unexpectedly bound with 2-methyl-2,4-pentanediol (MPD), revealing a new extra space available for potential drug design. This structure adopted the closed form by rigid domain rotation but without the flexible loop over the active site, which was considered as a novel conformation. Further, the conserved Asp residue responsible for cation binding seemed to play an important role in adjusting the position of fosmidomycin. Taken together, our kinetic and the crystal structures illustrate the binding mode of fosmidomycin that leads to its slow, tight binding according to the conformational changes of DXR.

  5. Cloning, Characterization, and Immunolocalization of a Mycorrhiza-Inducible 1-Deoxy-D-Xylulose 5-Phosphate Reductoisomerase in Arbuscule-Containing Cells of Maize1

    Science.gov (United States)

    Hans, Joachim; Hause, Bettina; Strack, Dieter; Walter, Michael H.

    2004-01-01

    Colonization of plant roots by symbiotic arbuscular mycorrhizal fungi frequently leads to the accumulation of several apocarotenoids. The corresponding carotenoid precursors originate from the plastidial 2-C-methyl-d-erythritol 4-phosphate pathway. We have cloned and characterized 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), catalyzing the first committed step of the pathway, from maize (Zea mays). Functional identification was accomplished by heterologous expression of sequences coding for the mature protein in Escherichia coli. DXR is up-regulated in maize roots during mycorrhization as shown at transcript and protein levels, but is also abundant in leaves and young seedlings. Inspection of sequenced genomes and expressed sequence tag (EST) databases argue for a single-copy DXR gene. Immunolocalization studies in mycorrhizal roots using affinity-purified antibodies revealed a DXR localization in plastids around the main symbiotic structures, the arbuscules. DXR protein accumulation is tightly correlated with arbuscule development. The highest level of DXR protein is reached around maturity and initial senescence of these structures. We further demonstrate the formation of a DXR-containing plastidial network around arbuscules, which is highly interconnected in the mature, functional state of the arbuscules. Our findings imply a functional role of a still unknown nature for the apocarotenoids or their respective carotenoid precursors in the arbuscular life cycle. PMID:14764905

  6. Molecular cloning, characterization and expression analysis of the gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Aquilaria sinensis (Lour.) Gilg

    Indian Academy of Sciences (India)

    Juan Liu; Yanhong Xu; Liang Liang; Jianhe Wei

    2015-06-01

    The major constituents of agarwood oils are sesquiterpenes that are obtained from isoprenoid precursors through the plastidial methylerythritol phosphate (MEP) pathway and the cytosolic mevalonate pathway. In this study, a novel full-length cDNA of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), which was the second key enzyme in the plastid MEP pathway of sesquiterpenes biosynthesis was isolated from the stem of Aquilaria sinensis (Lour.) Gilg by the methods of reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) technique for the first time, and named as AsDXR. The full-length cDNA of AsDXR was 1768 bp, containing a 1437 bp open reading frame (ORF) encoding a polypeptide of 478 amino acids with a molecular weight of 51.859 kD and the theoretical isoelectric point of 6.29. Comparative and bioinformatic analysis of the deduced AsDXR protein showed extensive homology with DXRs from other plant species, especially Theobroma cacao and Gossypium barbadense, and contained a conserved transit peptide for plastids, and extended pro-rich region and a highly conserved NADPH-binding motif owned by all plant DXRs. Southern blot analysis indicated that AsDXR belonged to a small gene family. Tissue expression pattern analysis revealed that AsDXR expressed strongly in root and stem, but weakly in leaf. Additionally, AsDXR expression was found to be activated by exogenous elicitor of MeJA (methyl jasmonate). The contents of three sesquiterpenes ($\\alpha$-guaiene, $\\alpha$-humulene and $\\delta$-guaiene) were significantly induced by MeJA. This study enables us to further elucidate the role of AsDXR in the biosynthesis of agarwood sesquiterpenes in A. sinensis at the molecular level.

  7. HOMOLOGY MODELLING AND BINDING SITE IDENTIFICATION OF 1DEOXY D-XYLULOSE 5 PHOSPHATE REDUCTOISOMERASE OF PLASMODIUM FALCIPARUM: NEW DRUG TARGET FOR PLSMODIUM FALCIPARUM

    Directory of Open Access Journals (Sweden)

    JYOTSNA CHOUBEY

    2010-08-01

    Full Text Available Malaria is major global health problem. Malaria parasite had developed resistance to the drug being used till date. It implies the development of new effective drug with different mode of action. Apicoplast in malaria and related parasite offer various new target for drug therapy[1]. Apicoplast contains various metabolic pathways that differ from those of host thereby presenting ideal strategies for drug therapy. Plasmodium falciparum 1deoxy- Dxylulose 5- phosphate reductoisomerase (pfDXR is a potential target for antimalarial chemotherapy. The three dimentional model (3D of this enzyme was determined by means of homology modeling through multiplealignment followed by intensive optimization and validation. The comparative modeling of pfDXPR was performed by using comparative modeling program MODELLER, Swiss Model, 3Djigsaw, and Geno3D.The modelling of the three dimensional structure of pfDXPR shows that models generated by Modeller were more acceptable in comparison to that by 3Djigsaw, Geno3D and Swiss Model. The obtained models were verified with the structure validation programs like, PROCHECK & Swiss pdb viewer was used for energy refinement of the model. SelfOptimized Prediction Method with Alignment (SOPMA is employed for calculating the secondary structural features of pfDXR protein sequences considered for this study. The secondary structure indicates whether a given amino acid lies in a helix, strand or coil. The results revealed that alpha helix dominated among secondary structure elements followed by random coils, extended strand and beta turns for all sequences. Active site determination through CASTp suggests that this protein can acts as potential drug target.

  8. Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase.

    Science.gov (United States)

    Shi, Min; Luo, Xiuqin; Ju, Guanhua; Yu, Xiaohong; Hao, Xiaolong; Huang, Qiang; Xiao, Jianbo; Cui, Lijie; Kai, Guoyin

    2014-09-01

    Tanshinone is widely used for treatment of cardio-cerebrovascular diseases with increasing demand. Herein, key enzyme genes SmHMGR (3-hydroxy-3-methylglutaryl CoA reductase) and SmDXR (1-deoxy-D-xylulose 5-phosphate reductoisomerase) involved in the tanshinone biosynthetic pathway were introduced into Salvia miltiorrhiza (Sm) hairy roots to enhance tanshinone production. Over-expression of SmHMGR or SmDXR in hairy root lines can significantly enhance the yield of tanshinone. Transgenic hairy root lines co-expressing HMGR and DXR (HD lines) produced evidently higher levels of total tanshinone (TT) compared with the control and single gene transformed lines. The highest tanshinone production was observed in HD42 with the concentration of 3.25 mg g(-1) DW. Furthermore, the transgenic hairy roots showed higher antioxidant activity than control. In addition, transgenic hairy root harboring HMGR and DXR (HD42) exhibited higher tanshinone content after elicitation by yeast extract and/or Ag(+) than before. Tanshinone can be significantly enhanced to 5.858, 6.716, and 4.426 mg g(-1) DW by YE, Ag(+), and YE-Ag(+) treatment compared with non-induced HD42, respectively. The content of cryptotanshinone and dihydrotanshinone was effectively elevated upon elicitor treatments, whereas there was no obvious promotion effect for the other two compounds tanshinone I and tanshinone IIA. Our results provide a useful strategy to improve tanshinone content as well as other natural active products by combination of genetic engineering with elicitors.

  9. Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kirby, James; Dietzel, Kevin L.; Wichmann, Gale;

    2016-01-01

    Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP...

  10. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants.

    Science.gov (United States)

    Estévez, J M; Cantero, A; Reindl, A; Reichler, S; León, P

    2001-06-22

    The initial step of the plastidic 2C-methyl-D-erythritol 4-phosphate (MEP) pathway that produces isopentenyl diphosphate is catalyzed by 1-deoxy-d-xylulose-5-phosphate synthase. To investigate whether or not 1-deoxy-d-xylulose-5-phosphate synthase catalyzes a limiting step in the MEP pathway in plants, we produced transgenic Arabidopsis plants that over- or underexpress this enzyme. Compared with non-transgenic wild-type plants, the transgenic plants accumulate different levels of various isoprenoids such as chlorophylls, tocopherols, carotenoids, abscisic acid, and gibberellins. Phenotypically, the transgenic plants had slight alterations in growth and germination rates. Because the levels of several plastidic isoprenoids correlate with changes in 1-deoxy-D-xylulose-5-phosphate synthase levels, we conclude that this enzyme catalyzes one of the rate-limiting steps of the MEP biosynthetic pathway. Furthermore, since the product of the MEP pathway is isopentenyl diphosphate, our results suggest that in plastids the pool of isopentenyl diphosphate is limiting to isprenoid production.

  11. 烟草5-磷酸脱氧木酮糖还原异构酶基因(dxr)的克隆和表达分析%Cloning and Expression Analysis of 1-deoxy-D-xylulose-5-phosphate Reductoisomerases Gene (dxr) in Nicotina tabacum

    Institute of Scientific and Technical Information of China (English)

    朱晓宇; 王景; 赵二卫; 姚姗姗; 崔红

    2011-01-01

    以烟草(Nicotiana tabacum)栽培品种K326为材料,采用RT-PCR技术,克隆了萜类代谢关键酶烟草5-磷酸脱氧木酮糖还原异构酶(dxr)的cDNA片段.该基因编码区长1422 bp,编码473个氨基酸残基.利用Clustal W(1.82)和Bioedit软件,对烟草与番茄(Lycopersicon esculentum)、长春花(Catharanthus roseus)、金鱼草(A ntirrhinum majus)、薄荷(Mentha piperita)、玉米(Zea mays)、拟南芥(A rabidopsis thaliana)、念珠藻(Nostoc sp.)等物种dar基因的同源性进行分析,其氨基酸同源性分别达到93.6%、87.9%、86.3%、84.6%、84.2%、82.9%和53.5%.原核表达结果证明,该基因编码蛋白的分子量约为50 kD,与氨基酸序列估算相符合.组织表达特异性分析表明,dxr基因在烟草组织中的表达强弱为花>叶>茎>腺毛>种子>根,在花和叶片中的表达量占优势.该结果对烟草萜类代谢的分子调控和品质改良具有重要的参考价值.%Isoprenoid biosynthesis via mvalonate-independent pathway is very important to tobacco resistance and leaf quality. 1-deoxy-D-Xylulose-5-phosphate Reductoisomerases (dxr) is a key enzyme in biosynthesis of isopentenyl diphosphate, which is the precusor for monoterpenoid, diterpenoid and tetratepenoid compounds. To regulate the terpenoid metabolism pathway for tobacco improvement, some important genes such as dxr should be studied firstly. In this paper, dxr gene was cloned successfully from tobacco (Nicotiana tabacum) cultivar K326 leaf by RT-PCR. The cDNA code region was 1 422 bp long and encoding 437 amino acids. Sequence analysis by Clustal W declared that this fragment was highly homologous to dxr gene of other species. It shared 93.6% amino acid homologous to Lycopersicon esculentum, 87.9% to Catharanthus roseus, 86.3% to Antirrhinum majus,84.6% to Mentha piperita, 84.2% to Zea mays, 82.9% to Arabidopsis thaliana, and 53.5% to Nostoc sp.PCC7120. The expression vector pET21b-dxr was constructed and expressed in

  12. The role of 1-deoxy-d-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation.

    Science.gov (United States)

    Peng, Gang; Wang, Chunyan; Song, Song; Fu, Xiumin; Azam, Muhammad; Grierson, Don; Xu, Changjie

    2013-10-01

    Three 1-deoxy-D-xylulose-5-phosphate synthases (DXS) and three phytoene synthases (PSY) were identified in citrus, from Affymetrix GeneChip Citrus Genome Array, GenBank and public orange genome databases. Tissue-specific expression analysis of these genes was carried out on fruit peel and flesh, flower and leaf of Satsuma mandarin (Citrus unshiu Marc.) in order to determine their roles in carotenoid accumulation in different tissues. Expression of CitDXS1 and CitPSY1 was highest in all test tissues, while that of CitDXS2 and CitPSY2 was lower, and that of CitDXS3 and CitPSY3 undetectable. The transcript profiles of CitDXS1 and CitPSY1 paralleled carotenoid accumulation in flesh of Satsuma mandarin and orange (Citrus sinensis Osbeck) during fruit development, and CitPSY1 expression was also associated with carotenoid accumulation in peel, while the CitDXS1 transcript level was only weakly correlated with carotenoid accumulation in peel. Similar results were obtained following correlation analysis between expression of CitDXS1 and CitPSY1 and carotenoid accumulation in peel and flesh of 16 citrus cultivars. These findings identify CitPSY1 and CitDXS1 as the main gene members controlling carotenoid biosynthesis in citrus fruit. Furthermore, chromoplasts were extracted from flesh tissue of these citrus, and chromoplasts of different shape (spindle or globular), different size, and color depth were observed in different cultivars, indicating chromoplast abundance, number per gram tissue, size and color depth were closely correlated with carotenoid content in most cultivars. The relationship between carotenoid biosynthesis and chromoplast development was discussed.

  13. Cloning and expression regulation of 1-deoxy-D-xylulose-5-phosphate reductoisomerase cDNA from Alpinia officinarum%高良姜1-脱氧-D-木酮糖5-磷酸还原异构酶cDNA克隆与表达调控

    Institute of Scientific and Technical Information of China (English)

    张春荣; 杨全; 陈虎彪; 庞玉新; 唐晓敏; 程轩轩; 吴文雅; 陈诗敏

    2012-01-01

    The rhizome of Alpinia officinarum is a widely used Chinese herbal medicine. The essential oil in A. officinarum rhizome is mainly composed of 1 , 8-cineole and other monoterpenes, as the major bioactive ingredients. In plants, monoterpenes are synthesized through the methylerythritol phosphate ( MEP) pathway in the plastids, and 1-deoxy-D-xylulose 5-phosphate reductoisomerase ( DXR) is an enzyme catalyzing a committed step of the MEP pathway. In the present study, the full-length cDNA encoding DXR was cloned from the rhizome of A. officinarum, using homology-based RT-PCR and rapid amplification of cDNA ends (RACE) techniques. The new cDNA was designated as AoDXR and submitted to GenBank to be assigned with an accession number HQ874658. The full-length cDNA of AoDXR was 1 670 bp containing a 1 419 bp open reading frame encoding a polypeptide of 472 amino acids with a calculated molecular mass of 51. 48 kDa and an isoelectric point of 6. 15. Bioinformatic analyses revealed that AoDXR showed extensive homology with DXRs from other plant species and contained a conserved plastids transit peptide, a Pro-rich region and two highly conserved NADPH-binding motifs in its N-terminal region characterized by all plant DXRs. The phylogenetic analysis revealed that AoDXR belonged to angiosperm DXRs. The structural modeling of AoDXR showed that AoDXR had the typical V-shaped structure of DXR proteins. The tissue expression pattern analysis indicated that AoDXR expressed strongly in leaves, weak in rhizomes of A. officinarum. Exogenous methyl jasmonate ( MeJA) could enhance the expression of AoDXR and the production of 1, 8-cineole in A. officinarum rhizomes. The cloning and characterization of AoDXR will be helpful to reveal the molecular regulation mechanism of monoterpene biosynthesis in A. officinarum and provides a candidate gene for metabolic engineering in improving the medicinal quality of A. officinarum rhizome.%目的:克隆高良姜1-脱氧-D-木酮糖5-磷酸还原

  14. Molecular cloning, functional characterization and expression of potato (Solanum tuberosum) 1-deoxy-d-xylulose 5-phosphate synthase 1 (StDXS1) in response to Phytophthora infestans.

    Science.gov (United States)

    Henriquez, Maria Antonia; Soliman, Atta; Li, Genyi; Hannoufa, Abdelali; Ayele, Belay T; Daayf, Fouad

    2016-02-01

    1-Deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes the initial step of the plastidial 2C-methyl-D-erythritol-4-phosphate (DOXP-MEP) pathway involved in isoprenoid biosynthesis. In this study, we cloned the complete cDNA of potato DXS gene that was designated StDXS1. StDXS1 cDNA encodes for 719 amino acid residues, with MW of 77.8 kDa, and is present in one copy in the potato genome. Phylogenetic analysis and protein sequence alignments assigned StDXS1 to a group with DXS homologues from closely related species and exhibited homodomain identity with known DXS proteins from other plant species. Late blight symptoms occurred in parallel with a reduction in StDXS1 transcript levels, which may be associated with the levels of isoprenoids that contribute to plant protection against pathogens. Subcellular localization indicated that StDXS1 targets the chloroplasts where isoprenoids are synthesized. Arabidopsis expressing StDXS1 showed a higher accumulation of carotenoids and chlorophyll as compared to wild type controls. Lower levels of ABA and GA were detected in the transgenic DXS lines as compared to control plants, which reflected on higher germination rates of the transgenic DXS lines. No changes were detected in JA or SA contents. Selected downstream genes in the DOXP-MEP pathway, especially GGPPS genes, were up-regulated in the transgenic lines.

  15. Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival

    Science.gov (United States)

    García-Alcázar, Manuel; Giménez, Estela; Pineda, Benito; Capel, Carmen; García-Sogo, Begoña; Sánchez, Sibilla; Yuste-Lisbona, Fernando J.; Angosto, Trinidad; Capel, Juan; Moreno, Vicente; Lozano, Rafael

    2017-01-01

    Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the rate-limiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants. PMID:28350010

  16. Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Cairó, Albert; Talavera, David; Saura, Andreu; Imperial, Santiago; Rodríguez-Concepción, Manuel; Campos, Narciso; Boronat, Albert

    2013-07-15

    The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.

  17. Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-d-xylulose 5-phosphate synthase and carbon allocation analysis.

    Science.gov (United States)

    Kudoh, Kai; Kawano, Yusuke; Hotta, Shingo; Sekine, Midori; Watanabe, Takafumi; Ihara, Masaki

    2014-07-01

    Cyanobacteria have recently been receiving considerable attention owing to their potential as photosynthetic producers of biofuels and biomaterials. Here, we focused on the production of isoprenoids by cyanobacteria, and aimed to provide insight into metabolic engineering design. To this end, we examined the over-expression of a key enzyme in 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) in the cyanobacterium Synechocystis sp. PCC6803. In the DXS-over-expression strain (Dxs_ox), the mRNA and protein levels of DXS were 4-times and 1.5-times the levels in the wild-type (WT) strain, respectively. The carotenoid content of the Dxs_ox strain (8.4 mg/g dry cell weight [DCW]) was also up to 1.5-times higher than that in the WT strain (5.6 mg/g DCW), whereas the glycogen content dramatically decreased to an undetectable level. These observations suggested that the carotenoid content in the Dxs_ox strain was increased by consuming glycogen, which is a C-storage compound in cyanobacteria. We also quantified the total sugar (145 and 104 mg/g DCW), total fatty acids (31 and 24 mg/g DCW) and total protein (200 and 240 mg/g DCW) content in the WT and Dxs_ox strains, respectively, which were much higher than the carotenoid content. In particular, approximately 54% of the proteins were phycobiliproteins. This study demonstrated the major destinations of carbon flux in cyanobacteria, and provided important insights into metabolic engineering. Target yield can be improved through optimization of gene expression, the DXS protein stabilization, cell propagation depression and restriction of storage compound synthesis.

  18. Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes.

    Science.gov (United States)

    Kim, Yeon-Bok; Kim, Sang-Min; Kang, Min-Kyoung; Kuzuyama, Tomohisa; Lee, Jong Kyu; Park, Seung-Chan; Shin, Sang-Chul; Kim, Soo-Un

    2009-05-01

    Pinus densiflora Siebold et Zucc. is the major green canopy species in the mountainous area of Korea. To assess the response of resin acid biosynthetic genes to mechanical and chemical stimuli, we cloned cDNAs of genes encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway (1-deoxy-d-xylulose 5-phosphate synthase (PdDXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (PdDXR) and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (PdHDR)) by the rapid amplification of cDNA ends (RACE) technique. In addition, we cloned the gene encoding abietadiene synthase (PdABS) as a marker for the site of pine resin biosynthesis. PdHDR and PdDXS occurred as two gene families. In the phylogenetic trees, PdDXSs, PdDXR and PdHDRs each formed a separate clade from their respective angiosperm homologs. PdDXS2, PdHDR2 and PdDXR were most actively transcribed in stem wood, whereas PdABS was specifically transcribed. The abundance of PdDXS2 transcripts in wood in the resting state was generally 50-fold higher than the abundance of PdDXS1 transcripts, and PdHDR2 transcripts were more abundant by an order of magnitude in wood than in other tissues, with the ratio of PdHDR2 to PdHDR1 transcripts in wood being about 1. Application of 1 mM methyl jasmonate (MeJA) selectively enhanced the transcript levels of PdDXS2 and PdHDR2 in wood. The ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 reached 900 and 20, respectively, on the second day after MeJA treatment, whereas the transcript level of PdABS increased twofold by 3 days after MeJA treatment. Wounding of the stem differentially enhanced the transcript ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 to 300 and 70, respectively. The increase in the transcript levels of the MEP pathway genes in response to wounding was accompanied by two orders of magnitude increase in PdABS transcripts. These observations indicated that resin acid biosynthesis activity, represented by PdABS transcription, was correlated

  19. Differential incorporation of 1-deoxy-D-xylulose into (3S)-linalool and geraniol in grape berry exocarp and mesocarp.

    Science.gov (United States)

    Luan, Fang; Wüst, Matthias

    2002-07-01

    In vivo feeding experiments with [5,5-(2)H(2)]mevalonic acid lactone (MVL) and [5,5-(2)H(2)]-1-deoxy-D-xylulose (DOX) indicate that the novel mevalonate-independent 1-deoxy- D-xylulose 5-phosphate/2C-methyl- D-erythritol 4-phosphate (DOXP/MEP) pathway is the dominant metabolic route for monoterpene biosynthesis in grape berry exocarp and mesocarp and in grape leaves. The highly uneven distribution of the monoterpene alcohols (3S)-linalool and geraniol between leaves, berry exocarp and berry mesocarp can be attributed to a compartmentation of monoterpene metabolism. In grape berries incorporation of [5,5-(2)H(2)]-DOX into geraniol is mainly restricted to the exocarp, whereas (3S)-linalool biosynthesis can be detected in exocarp as well as in mesocarp tissue. The results demonstrate that grape berries exhibit an autonomic monoterpene biosynthesis via the novel DOXP/MEP route throughout the ripening process.

  20. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase

    OpenAIRE

    Mahmoud, Soheil S.; Croteau, Rodney B.

    2001-01-01

    Peppermint (Mentha × piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants ...

  1. A Cytosolic Arabidopsis d-Xylulose Kinase Catalyzes the Phosphorylation of 1-Deoxy-d-Xylulose into a Precursor of the Plastidial Isoprenoid Pathway1

    Science.gov (United States)

    Hemmerlin, Andréa; Tritsch, Denis; Hartmann, Michael; Pacaud, Karine; Hoeffler, Jean-François; van Dorsselaer, Alain; Rohmer, Michel; Bach, Thomas J.

    2006-01-01

    Plants are able to integrate exogenous 1-deoxy-d-xylulose (DX) into the 2C-methyl-d-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-d-xylulose 5-phosphate and translocated into plastids, or vice versa. An enzyme capable of phosphorylating DX was partially purified from a cell-free Arabidopsis (Arabidopsis thaliana) protein extract. It was identified by mass spectrometry as a cytosolic protein bearing d-xylulose kinase (XK) signatures, already suggesting that DX is phosphorylated within the cytosol prior to translocation into the plastids. The corresponding cDNA was isolated and enzymatic properties of a recombinant protein were determined. In Arabidopsis, xylulose kinases are encoded by a small gene family, in which only two genes are putatively annotated. The additional gene is coding for a protein targeted to plastids, as was proved by colocalization experiments using green fluorescent protein fusion constructs. Functional complementation assays in an Escherichia coli strain deleted in xk revealed that the cytosolic enzyme could exclusively phosphorylate xylulose in vivo, not the enzyme that is targeted to plastids. xk activities could not be detected in chloroplast protein extracts or in proteins isolated from its ancestral relative Synechocystis sp. PCC 6803. The gene encoding the plastidic protein annotated as “xylulose kinase” might in fact yield an enzyme having different phosphorylation specificities. The biochemical characterization and complementation experiments with DX of specific Arabidopsis knockout mutants seedlings treated with oxo-clomazone, an inhibitor of 1-deoxy-d-xylulose 5-phosphate synthase, further confirmed that the cytosolic protein is responsible for the phosphorylation of DX in planta. PMID:16920870

  2. A cytosolic Arabidopsis D-xylulose kinase catalyzes the phosphorylation of 1-deoxy-D-xylulose into a precursor of the plastidial isoprenoid pathway.

    Science.gov (United States)

    Hemmerlin, Andréa; Tritsch, Denis; Hartmann, Michael; Pacaud, Karine; Hoeffler, Jean-François; van Dorsselaer, Alain; Rohmer, Michel; Bach, Thomas J

    2006-10-01

    Plants are able to integrate exogenous 1-deoxy-D-xylulose (DX) into the 2C-methyl-D-erythritol 4-phosphate pathway, implicated in the biosynthesis of plastidial isoprenoids. Thus, the carbohydrate needs to be phosphorylated into 1-deoxy-D-xylulose 5-phosphate and translocated into plastids, or vice versa. An enzyme capable of phosphorylating DX was partially purified from a cell-free Arabidopsis (Arabidopsis thaliana) protein extract. It was identified by mass spectrometry as a cytosolic protein bearing D-xylulose kinase (XK) signatures, already suggesting that DX is phosphorylated within the cytosol prior to translocation into the plastids. The corresponding cDNA was isolated and enzymatic properties of a recombinant protein were determined. In Arabidopsis, xylulose kinases are encoded by a small gene family, in which only two genes are putatively annotated. The additional gene is coding for a protein targeted to plastids, as was proved by colocalization experiments using green fluorescent protein fusion constructs. Functional complementation assays in an Escherichia coli strain deleted in xk revealed that the cytosolic enzyme could exclusively phosphorylate xylulose in vivo, not the enzyme that is targeted to plastids. xk activities could not be detected in chloroplast protein extracts or in proteins isolated from its ancestral relative Synechocystis sp. PCC 6803. The gene encoding the plastidic protein annotated as "xylulose kinase" might in fact yield an enzyme having different phosphorylation specificities. The biochemical characterization and complementation experiments with DX of specific Arabidopsis knockout mutants seedlings treated with oxo-clomazone, an inhibitor of 1-deoxy-D-xylulose 5-phosphate synthase, further confirmed that the cytosolic protein is responsible for the phosphorylation of DX in planta.

  3. The malarial drug target Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR): development of a 3-D model for identification of novel, structural and functional features and for inhibitor screening.

    Science.gov (United States)

    Goble, Jessica L; Adendorff, Matthew R; de Beer, Tjaart A P; Stephens, Linda L; Blatch, Gregory L

    2010-01-01

    A three-dimensional model of the malarial drug target protein PfDXR was generated, and validated using structure-checking programs and protein docking studies. Structural and functional features unique to PfDXR were identified using the model and comparative sequence analyses with apicomplexan and non-apicomplexan DXR proteins. Furthermore, we have used the model to develop an efficient approach to screen for potential tool compounds for use in the rational design of novel DXR inhibitors.

  4. Deoxyxylulose 5-phosphate reductoisomerase is not a rate-determining enzyme for essential oil production in spike lavender.

    Science.gov (United States)

    Mendoza-Poudereux, Isabel; Muñoz-Bertomeu, Jesús; Arrillaga, Isabel; Segura, Juan

    2014-11-01

    Spike lavender (Lavandula latifolia) is an economically important aromatic plant producing essential oils, whose components (mostly monoterpenes) are mainly synthesized through the plastidial methylerythritol 4-phosphate (MEP) pathway. 1-Deoxy-D-xylulose-5-phosphate (DXP) synthase (DXS), that catalyzes the first step of the MEP pathway, plays a crucial role in monoterpene precursors biosynthesis in spike lavender. To date, however, it is not known whether the DXP reductoisomerase (DXR), that catalyzes the conversion of DXP into MEP, is also a rate-limiting enzyme for the biosynthesis of monoterpenes in spike lavender. To investigate it, we generated transgenic spike lavender plants constitutively expressing the Arabidopsis thaliana DXR gene. Although two out of the seven transgenic T0 plants analyzed accumulated more essential oils than the controls, this is hardly imputable to the DXR transgene effect since a clear correlation between transcript accumulation and monoterpene production could not be established. Furthermore, these increased essential oil phenotypes were not maintained in their respective T1 progenies. Similar results were obtained when total chlorophyll and carotenoid content in both T0 transgenic plants and their progenies were analyzed. Our results then demonstrate that DXR enzyme does not play a crucial role in the synthesis of plastidial monoterpene precursors, suggesting that the control flux of the MEP pathway in spike lavender is primarily exerted by the DXS enzyme.

  5. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase.

    Science.gov (United States)

    Mahmoud, S S; Croteau, R B

    2001-07-17

    Peppermint (Mentha x piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants of normal appearance and growth habit expressed the reductoisomerase transgene strongly and constitutively, as determined by RNA blot analysis and direct enzyme assay, and these plants accumulated substantially more essential oil (about 50% yield increase) without change in monoterpene composition compared with wild-type. Chlorophyll-deficient plants did not afford detectable reductoisomerase mRNA or enzyme activity and yielded less essential oil than did wild-type plants, indicating cosuppression of the reductoisomerase gene. Plants transformed with the antisense version of the menthofuran synthase cDNA were normal in appearance but produced less than half of this undesirable monoterpene oil component than did wild-type mint grown under unstressed or stressed conditions. These experiments demonstrate that essential oil quantity and quality can be regulated by metabolic engineering. Thus, alteration of the committed step of the mevalonate-independent pathway for supply of terpenoid precursors improves flux through the pathway that leads to increased monoterpene production, and antisense manipulation of a selected downstream monoterpene biosynthetic step leads to improved oil composition.

  6. Host cells and methods for producing 1-deoxyxylulose 5-phosphate (DXP) and/or a DXP derived compound

    Science.gov (United States)

    Kirby, James; Fortman, Jeffrey L.; Nishimoto, Minobu; Keasling, Jay D.

    2016-07-05

    The present invention provides for a genetically modified host cell capable of producing 1-deoxyxylulose 5-phosphate or 1-deoxy-D-xylulose 5-phosphate (DXP) (12), and optionally one or more DXP derived compounds, comprising: (a) a mutant RibB, or functional variant thereof, capable of catalyzing xylulose 5-phosphate and/or ribulose 5-phosphate to DXP, or (b) a YajO, or functional variant thereof, and a XylB, or functional variant thereof.

  7. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Cairó, Albert; Botella-Pavía, Patricia; Besumbes, Oscar; Campos, Narciso; Boronat, Albert; Rodríguez-Concepción, Manuel

    2006-11-01

    The methylerythritol 4-phosphate (MEP) pathway synthesizes the precursors for an astonishing diversity of plastid isoprenoids, including the major photosynthetic pigments chlorophylls and carotenoids. Since the identification of the first two enzymes of the pathway, deoxyxylulose 5-phoshate (DXP) synthase (DXS) and DXP reductoisomerase (DXR), they both were proposed as potential control points. Increased DXS activity has been shown to up-regulate the production of plastid isoprenoids in all systems tested, but the relative contribution of DXR to the supply of isoprenoid precursors is less clear. In this work, we have generated transgenic Arabidopsis thaliana plants with altered DXS and DXR enzyme levels, as estimated from their resistance to clomazone and fosmidomycin, respectively. The down-regulation of DXR resulted in variegation, reduced pigmentation and defects in chloroplast development, whereas DXR-overexpressing lines showed an increased accumulation of MEP- derived plastid isoprenoids such as chlorophylls, carotenoids, and taxadiene in transgenic plants engineered to produce this non-native isoprenoid. Changes in DXR levels in transgenic plants did not result in changes in DXS gene expression or enzyme accumulation, confirming that the observed effects on plastid isoprenoid levels in DXR-overexpressing lines were not an indirect consequence of altering DXS levels. The results indicate that the biosynthesis of MEP (the first committed intermediate of the pathway) limits the production of downstream isoprenoids in Arabidopsis chloroplasts, supporting a role for DXR in the control of the metabolic flux through the MEP pathway.

  8. Identification and Characterization of a 1-Deoxy-D-xylulose 5-phosphate Synthase Gene From Pinus kesiya var.langbianensis%思茅松1-脱氧-D-木酮糖-5-磷酸合酶(DXS)基因的克隆及功能分析

    Institute of Scientific and Technical Information of China (English)

    王毅; 周旭; 毕玮; 杨宇明; 李江; 王娟

    2015-01-01

    1-脱氧-D-木酮糖-5-磷酸合酶(DXS)是甲基-D-赤藓醇-4-磷酸(MEP)途径中的第一个酶,也是限速酶.本文根据思茅松(Pinus kesiya var.langbianensis (A.Chev.)Gaussen)树皮转录组数据分析结果,获得思茅松DXS基因片段,然后根据获得的基因片段设计特异引物,运用RT-PCR和RACE技术从思茅松树皮中克隆得到完整的DXS基因(PkDXS1).PkDXS1基因的cDNA全长序列2 888 bp,含有1个2 223 bp的开放阅读框(ORF),编码740个氨基酸,该基因推断的蛋白与赤松(Pinus densiflora Siebold&Zucc)DXS蛋白的相似性为99%,与欧洲云杉(Piceaabies (L.)H.Karst.)DXS的相似性为97%;经氨基酸序列比对,推断思茅松DXS具有高等植物DXS酶特有的叶绿体转运肽,二磷酸硫胺结合位点和转酮醇酶结构域.半定量RT-PCR检测表明树皮的创伤促进DXS基因的表达.

  9. Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma

    Directory of Open Access Journals (Sweden)

    Lourdes Gómez-Gómez

    2017-01-01

    Full Text Available Crocins, the glucosides of crocetin, are present at high concentrations in saffron stigmas and accumulate in the vacuole. However, the biogenesis of the saffron chromoplast, the changes during the development of the stigma and the transport of crocins to the vacuole, are processes that remain poorly understood. We studied the process of chromoplast differentiation in saffron throughout stigma development by means of transmission electron microscopy. Our results provided an overview of a massive transport of crocins to the vacuole in the later developmental stages, when electron dense drops of a much greater size than plastoglobules (here defined “crocinoplast” were observed in the chromoplast, connected to the vacuole with a subsequent transfer of these large globules inside the vacuole. A proteome analysis of chromoplasts from saffron stigma allowed the identification of several well-known plastid proteins and new candidates involved in crocetin metabolism. Furthermore, expressions throughout five developmental stages of candidate genes responsible for carotenoid and apocarotenoid biogenesis, crocins transport to the vacuole and starch metabolism were analyzed. Correlation matrices and networks were exploited to identify a series of transcripts highly associated to crocetin (such as 1-Deoxy-d-xylulose 5-phosphate synthase (DXS, 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, carotenoid isomerase (CRTISO, Crocetin glucosyltransferase 2 (UGT2, etc. and crocin (e.g., ζ-carotene desaturase (ZDS and plastid-lipid-associated proteins (PLAP2 accumulation; in addition, candidate aldehyde dehydrogenase (ADH genes were highlighted.

  10. Unraveling Massive Crocins Transport and Accumulation through Proteome and Microscopy Tools during the Development of Saffron Stigma

    Science.gov (United States)

    Gómez-Gómez, Lourdes; Parra-Vega, Verónica; Rivas-Sendra, Alba; Seguí-Simarro, Jose M.; Molina, Rosa Victoria; Pallotti, Claudia; Rubio-Moraga, Ángela; Diretto, Gianfranco; Prieto, Alicia; Ahrazem, Oussama

    2017-01-01

    Crocins, the glucosides of crocetin, are present at high concentrations in saffron stigmas and accumulate in the vacuole. However, the biogenesis of the saffron chromoplast, the changes during the development of the stigma and the transport of crocins to the vacuole, are processes that remain poorly understood. We studied the process of chromoplast differentiation in saffron throughout stigma development by means of transmission electron microscopy. Our results provided an overview of a massive transport of crocins to the vacuole in the later developmental stages, when electron dense drops of a much greater size than plastoglobules (here defined “crocinoplast”) were observed in the chromoplast, connected to the vacuole with a subsequent transfer of these large globules inside the vacuole. A proteome analysis of chromoplasts from saffron stigma allowed the identification of several well-known plastid proteins and new candidates involved in crocetin metabolism. Furthermore, expressions throughout five developmental stages of candidate genes responsible for carotenoid and apocarotenoid biogenesis, crocins transport to the vacuole and starch metabolism were analyzed. Correlation matrices and networks were exploited to identify a series of transcripts highly associated to crocetin (such as 1-Deoxy-d-xylulose 5-phosphate synthase (DXS), 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), carotenoid isomerase (CRTISO), Crocetin glucosyltransferase 2 (UGT2), etc.) and crocin (e.g., ζ-carotene desaturase (ZDS) and plastid-lipid-associated proteins (PLAP2)) accumulation; in addition, candidate aldehyde dehydrogenase (ADH) genes were highlighted. PMID:28045431

  11. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells.

    Science.gov (United States)

    Hemmerlin, Andréa; Hoeffler, Jean-François; Meyer, Odile; Tritsch, Denis; Kagan, Isabelle A; Grosdemange-Billiard, Catherine; Rohmer, Michel; Bach, Thomas J

    2003-07-18

    In plants, two pathways are utilized for the synthesis of isopentenyl diphosphate, the universal precursor for isoprenoid biosynthesis. The key enzyme of the cytoplasmic mevalonic acid (MVA) pathway is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). Treatment of Tobacco Bright Yellow-2 (TBY-2) cells by the HMGR-specific inhibitor mevinolin led to growth reduction and induction of apparent HMGR activity, in parallel to an increase in protein representing two HMGR isozymes. Maximum induction was observed at 24 h. 1-Deoxy-d-xylulose (DX), the dephosphorylated first precursor of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, complemented growth inhibition by mevinolin in the low millimolar concentration range. Furthermore, DX partially re-established feedback repression of mevinolin-induced HMGR activity. Incorporation studies with [1,1,1,4-2H4]DX showed that sterols, normally derived from MVA, in the presence of mevinolin are synthesized via the MEP pathway. Fosmidomycin, an inhibitor of 1-deoxy-d-xylulose-5-phosphate reductoisomerase, the second enzyme of the MEP pathway, was utilized to study the reverse complementation. Growth inhibition by fosmidomycin of TBY-2 cells could be partially overcome by MVA. Chemical complementation was further substantiated by incorporation of [2-13C]MVA into plastoquinone, representative of plastidial isoprenoids. Best rates of incorporation of exogenous stably labeled precursors were observed in the presence of both inhibitors, thereby avoiding internal isotope dilution.

  12. Cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasiliensis.

    Science.gov (United States)

    Sando, Tomoki; Takeno, Shinya; Watanabe, Norie; Okumoto, Hiroshi; Kuzuyama, Tomohisa; Yamashita, Atsushi; Hattori, Masahira; Ogasawara, Naotake; Fukusaki, Eiichiro; Kobayashi, Akio

    2008-11-01

    Natural rubber is synthesized as rubber particles in the latex, the fluid cytoplasm of laticifers, of Hevea brasiliensis. Although it has been found that natural rubber is biosynthesized through the mevalonate pathway, the involvement of an alternative 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is uncertain. We obtained all series of the MEP pathway candidate genes by analyzing expressed sequence tag (EST) information and degenerate PCR in H. brasiliensis. Complementation experiments with Escherichia coli mutants were performed to confirm the functions of the MEP pathway gene products of H. brasiliensis together with those of Arabidopsis thaliana, and it was found that 1-deoxy-D-xylulose-5-phosphate reductoisomerase, 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, and 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase of H. brasiliensis were functionally active in the E. coli mutants. Gene expression analysis revealed that the expression level of the HbDXS2 gene in latex was relatively high as compared to those of other MEP pathway genes. However, a feeding experiment with [1-(13)C] 1-deoxy-D-xylulose triacetate, an intermediate derivative of the MEP pathway, indicated that the MEP pathway is not involved in rubber biosynthesis, but is involved in carotenoids biosynthesis in H. brasiliensis.

  13. Crystal Structure Analyses of the Fosmidomycin-Target Enzyme from Plasmodium Falciparum

    Science.gov (United States)

    Umeda, Tomonobu; Kusakabe, Yoshio; Tanaka, Nobutada

    The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people each year. Fosmidomycin has proved to be efficient in the treatment of P. falciparum malaria through the inhibition of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an enzyme of the non-mevalonate pathway of isoprenoid biosynthesis, which is absent in humans. Crystal structure analyses of P. falciparum DXR (PfDXR) revealed that (i) an intrinsic flexibility of the PfDXR molecule accounts for the induced-fit movement to accommodate the bound inhibitor in the active site, and (ii) a cis arrangement of the oxygen atoms of the hydroxamate group of the bound inhibitor is essential for tight binding of the inhibitor to the active site metal. We believe that our study will serve as a useful guide to develop more potent PfDXR inhibitors.

  14. Properties and inhibition of the first two enzymes of the non-mevalonate pathway of isoprenoid biosynthesis.

    Science.gov (United States)

    Mueller, C; Schwender, J; Zeidler, J; Lichtenthaler, H K

    2000-12-01

    Enzymes of the 1-deoxy-D-xylulose 5-phosphate/2-C-methylerythritol 4-phosphate (DOXP/MEP) pathway are targets for new herbicides and antibacterial drugs. Until now, no inhibitors for the DOXP synthase have been known of. We show that one of the breakdown products of the herbicide clomazone affects the DOXP synthase. One inhibitor of the non-mevalonate pathway, fosmidomycin, blocks the DOXP reductoisomerase (DXR) of plants and bacteria. The I(50) values of plants are, however, higher than those found for the DXR of Escherichia coli. The DXR of plants, isolated from barley seedlings, shows a pH optimum of 8.1, which is typical for enzymes active in the chloroplast stroma.

  15. Synthesis and biological evaluation with plant cells of new fosmidomycin analogues containing a benzoxazolone or oxazolopyridinone ring.

    Science.gov (United States)

    Courtois, Martine; Mincheva, Zoia; Andreu, Françoise; Rideau, Marc; Viaud-Massuard, Marie-Claude

    2004-12-01

    Fosmidomycin, 3-(N-formyl-N-hydroxyamido) propylphosphonic acid sodium salt, is an efficient inhibitor of 1-deoxy-D-xylulose-5-phosphate (DOXP) reductoisomerase, the second enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway notably present in Plasmodium species. We have synthesized a new series of analogues of fosmidomycin, containing a benzoxazolone, benzoxazolethione or oxazolopyridinone ring. As the MEP pathway is involved in the biosynthesis of all isoprenoids, accumulation of ajmalicine in Catharanthus roseus cells was chosen as a marker of monoterpenoid indole alkaloid (MIA) production. None of the twelve studied phosphonic esters 3 and phosphonic acids 4 affected periwinkle cell growth, but some of them (3c, 3e, 3g and 3h) showed a significant inhibition of ajmalicine accumulation: 45-85% at 125 microM. Surprisingly, this effect disappeared by conversion of 3c and 3g into the corresponding acids 4c and 4g, respectively.

  16. Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice.

    Science.gov (United States)

    Okada, Atsushi; Shimizu, Takafumi; Okada, Kazunori; Kuzuyama, Tomohisa; Koga, Jinichiro; Shibuya, Naoto; Nojiri, Hideaki; Yamane, Hisakazu

    2007-09-01

    Diterpenoid phytoalexins such as momilactones and phytocassanes are produced via geranylgeranyl diphosphate in suspension-cultured rice cells after treatment with a chitin elicitor. We have previously shown that the production of diterpene hydrocarbons leading to phytoalexins and the expression of related biosynthetic genes are activated in suspension-cultured rice cells upon elicitor treatment. To better understand the elicitor-induced activation of phytoalexin biosynthesis, we conducted microarray analysis using suspension-cultured rice cells collected at various times after treatment with chitin elicitor. Hierarchical cluster analysis revealed two types of early-induced expression (EIE-1, EIE-2) nodes and a late-induced expression (LIE) node that includes genes involved in phytoalexins biosynthesis. The LIE node contains genes that may be responsible for the methylerythritol phosphate (MEP) pathway, a plastidic biosynthetic pathway for isopentenyl diphosphate, an early precursor of phytoalexins. The elicitor-induced expression of these putative MEP pathway genes was confirmed by quantitative reverse-transcription PCR. 1-Deoxy-D: -xylulose 5-phosphate synthase (DXS), 1-deoxy-D: -xylulose 5-phosphate reductoisomerase (DXR), and 4-(cytidine 5'-diphospho)-2-C-methyl-D: -erythritol synthase (CMS), which catalyze the first three committed steps in the MEP pathway, were further shown to have enzymatic activities that complement the growth of E. coli mutants disrupted in the corresponding genes. Application of ketoclomazone and fosmidomycin, inhibitors of DXS and DXR, respectively, repressed the accumulation of diterpene-type phytoalexins in suspension cells treated with chitin elicitor. These results suggest that activation of the MEP pathway is required to supply sufficient terpenoid precursors for the production of phytoalexins in infected rice plants.

  17. Different Roles of the Mevalonate and Methylerythritol Phosphate Pathways in Cell Growth and Tanshinone Production of Salvia miltiorrhiza Hairy Roots

    Science.gov (United States)

    Yang, Dongfeng; Du, Xuhong; Liang, Xiao; Han, Ruilian; Liang, Zongsuo; Liu, Yan; Liu, Fenghua; Zhao, Jianjun

    2012-01-01

    Salvia miltiorrhiza has been widely used in the treatment of coronary heart disease. Tanshinones, a group of diterpenoids are the main active ingredients in S. miltiorrhiza. Two biosynthetic pathways were involved in tanshinone biosynthesis in plants: the mevalonate (MVA) pathway in the cytosol and the methylerythritol phosphate (MEP) pathway in the plastids. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is the rate-limiting enzyme of the MVA pathway. The 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) are the key enzymes of the MEP pathway. In this study, to reveal roles of the MVA and the MEP pathways in cell growth and tanshinone production of S. miltiorrhiza hairy roots, specific inhibitors of the two pathways were used to perturb metabolic flux. The results showed that the MVA pathway inhibitor (mevinolin, MEV) was more powerful to inhibit the hairy root growth than the MEP pathway inhibitor (fosmidomycin, FOS). Both MEV and FOS could significantly inhibit tanshinone production, and FOS was more powerful than MEV. An inhibitor (D, L-glyceraldehyde, DLG) of IPP translocation strengthened the inhibitory effects of MEV and FOS on cell growth and tanshinone production. Application of MEV resulted in a significant increase of expression and activity of HMGR at 6 h, and a sharp decrease at 24 h. FOS treatment resulted in a significant increase of DXR and DXS expression and DXS activity at 6 h, and a sharp decrease at 24 h. Our results suggested that the MVA pathway played a major role in cell growth, while the MEP pathway was the main source of tanshinone biosynthesis. Both cell growth and tanshinone production could partially depend on the crosstalk between the two pathways. The inhibitor-mediated changes of tanshinone production were reflected in transcript and protein levels of genes of the MVA and MEP pathways. PMID:23209548

  18. Different roles of the mevalonate and methylerythritol phosphate pathways in cell growth and tanshinone production of Salvia miltiorrhiza hairy roots.

    Directory of Open Access Journals (Sweden)

    Dongfeng Yang

    Full Text Available Salvia miltiorrhiza has been widely used in the treatment of coronary heart disease. Tanshinones, a group of diterpenoids are the main active ingredients in S. miltiorrhiza. Two biosynthetic pathways were involved in tanshinone biosynthesis in plants: the mevalonate (MVA pathway in the cytosol and the methylerythritol phosphate (MEP pathway in the plastids. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR is the rate-limiting enzyme of the MVA pathway. The 1-deoxy-D-xylulose 5-phosphate synthase (DXS and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR are the key enzymes of the MEP pathway. In this study, to reveal roles of the MVA and the MEP pathways in cell growth and tanshinone production of S. miltiorrhiza hairy roots, specific inhibitors of the two pathways were used to perturb metabolic flux. The results showed that the MVA pathway inhibitor (mevinolin, MEV was more powerful to inhibit the hairy root growth than the MEP pathway inhibitor (fosmidomycin, FOS. Both MEV and FOS could significantly inhibit tanshinone production, and FOS was more powerful than MEV. An inhibitor (D, L-glyceraldehyde, DLG of IPP translocation strengthened the inhibitory effects of MEV and FOS on cell growth and tanshinone production. Application of MEV resulted in a significant increase of expression and activity of HMGR at 6 h, and a sharp decrease at 24 h. FOS treatment resulted in a significant increase of DXR and DXS expression and DXS activity at 6 h, and a sharp decrease at 24 h. Our results suggested that the MVA pathway played a major role in cell growth, while the MEP pathway was the main source of tanshinone biosynthesis. Both cell growth and tanshinone production could partially depend on the crosstalk between the two pathways. The inhibitor-mediated changes of tanshinone production were reflected in transcript and protein levels of genes of the MVA and MEP pathways.

  19. De novo fragment-based design of inhibitors of DXS guided by spin-diffusion-based NMR spectroscopy

    NARCIS (Netherlands)

    Masini, T.; Pilger, J.; Kroezen, B. S.; Illarionov, B.; Lottmann, P.; Fischer, M.; Griesinger, C.; Hirsch, A. K. H.

    2014-01-01

    We applied for the first time an innovative ligand-based NMR methodology (STI) to a medicinal-chemistry project aimed at the development of inhibitors for the enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). DXS is the first enzyme of the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway, presen

  20. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L

    Directory of Open Access Journals (Sweden)

    Lundgren Anneli

    2011-03-01

    Full Text Available Abstract Background Recently, Artemisia annua L. (annual or sweet wormwood has received increasing attention due to the fact that the plant produces the sesquiterpenoid endoperoxide artemisinin, which today is widely used for treatment of malaria. The plant produces relatively small amounts of artemisinin and a worldwide shortage of the drug has led to intense research in order to increase the yield of artemisinin. In order to improve our understanding of terpene metabolism in the plant and to evaluate the competition for precursors, which may influence the yield of artemisinin, we have used qPCR to estimate the expression of 14 genes of terpene metabolism in different tissues. Results The four genes of the artemisinin biosynthetic pathway (amorpha-4,11-diene synthase, amorphadiene-12-hydroxylase, artemisinic aldehyde ∆11(13 reductase and aldehyde dehydrogenase 1 showed remarkably higher expression (between ~40- to ~500-fold in flower buds and young leaves compared to other tissues (old leaves, stems, roots, hairy root cultures. Further, dihydroartemisinic aldehyde reductase showed a very high expression only in hairy root cultures. Germacrene A and caryophyllene synthase were mostly expressed in young leaves and flower buds while epi-cedrol synthase was highly expressed in old leaves. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase exhibited lower expression in old leaves compared to other tissues. Farnesyldiphosphate synthase, squalene synthase, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase showed only modest variation in expression in the different tissues, while expression of 1-deoxy-D-xylulose-5-phosphate synthase was 7-8-fold higher in flower buds and young leaves compared to old leaves. Conclusions Four genes of artemisinin biosynthesis were highly expressed in flower buds and young leaves (tissues showing a high density of glandular trichomes. The expression of dihydroartemisinic aldehyde reductase has been suggested to have a

  1. Transition-state-guided drug design for treatment of parasitic neglected tropical diseases.

    Science.gov (United States)

    Murkin, A S; Moynihan, M M

    2014-01-01

    Many of the deadliest neglected tropical diseases are caused by protozoan and helminthic parasites. These organisms have evolved several enzymes to exploit their host's metabolic resources and evade immune responses. Because these essential proteins are absent in humans, they are targets for antiparasitic drug development. Despite decades of investigation, no therapy has been successful in the eradication of these diseases, so new approaches are desired. Chemically stable analogues of the transition states of enzymatic reactions are often potent inhibitors, and several examples of clinically effective compounds are known for other diseases. The design of transition-state analogues is aided by structural models of the transition state, which are obtained by complementing experimental measurement of kinetic isotope effects with theoretical calculations. Such transition-state-guided inhibitor design has been demonstrated for human, bovine, malarial, and trypanosomal enzymes of the purine salvage pathway, including purine nucleoside phosphorylase, nucleoside hydrolases, and adenosine deaminase. Cysteine proteases, trans-sialidase, 1-deoxy-d-xylulose-5-phosphate reductoisomerase, and trypanothione synthetase are presented as additional candidates for application of transition-state analysis with the goal of identifying new leads for the treatment of parasitic neglected tropical diseases.

  2. Proteomics analysis of UV-irradiated Lonicera japonica Thunb. with bioactive metabolites enhancement.

    Science.gov (United States)

    Zhang, Lin; Li, Ximin; Zheng, Wen; Fu, Zhirong; Li, Wenting; Ma, Luyu; Li, Ke; Sun, Lianli; Tian, Jingkui

    2013-12-01

    A previous study showed that the contents of caffeoylquinic acids and iridoids, the major bioactive components in the postharvest Lonicera japonica Thunb., were induced by enhanced ultraviolet (UV)-A or UV-B irradiation. To clarify the UV-responsive key enzymes in the bioactive metabolites biosynthetic pathway and the related plant defense mechanism in L. japonica, 2DE in combination with MALDI-TOF/TOF MS was employed. Seventy-five out of 196 differential proteins were positively identified. Based on the functions, these proteins were grouped into nine categories, covering a wide range of molecular processes including the secondary metabolites (caffeoylquinic acids and iridoids) biosynthetic-related proteins, photosynthesis, carbohydrate and energy metabolism, stress, DNA, transport-related proteins, lipid metabolism, amino acid metabolism, cell wall. Of note is the increasing expression of 1-deoxy-d-xylulose 5-phosphate reductoisomerase and 5-enol-pyruvylshikimate-phosphate synthase, which was crucial to supply more precursor for the secondary metabolites including caffeoylquinic acids and iridoids. Thus, this study provides both the clues at the protein level for the increase of the two bioactive components upon UV irradiation and the profile of UV-responsive proteins in L. japonica.

  3. Molecular cloning and characterisation of two calmodulin isoforms of the Madagascar periwinkle Catharanthus roseus.

    Science.gov (United States)

    Poutrain, P; Guirimand, G; Mahroug, S; Burlat, V; Melin, C; Ginis, O; Oudin, A; Giglioli-Guivarc'h, N; Pichon, O; Courdavault, V

    2011-01-01

    Involvement of Ca(2+) signalling in regulation of the biosynthesis of monoterpene indole alkaloids (MIA) in Catharanthus roseus has been extensively studied in recent years, albeit no protein of this signalling pathway has been isolated. Using a PCR strategy, two C. roseus cDNAs encoding distinct calmodulin (CAM) isoforms were cloned and named CAM1 and CAM2. The deduced 149 amino acid sequences possess four Ca(2+) binding domains and exhibit a close identity with Arabidopsis CAM isoforms (>91%). The ability of CAM1 and CAM2 to bind Ca(2+) was demonstrated following expression of the corresponding recombinant proteins. Furthermore, transient expression of CAM1-GFP and CAM2-GFP in C. roseus cells showed a typical nucleo-cytoplasm localisation of both CAMs, in agreement with the wide distribution of CAM target proteins. Using RNA blot analysis, we showed that CAM1 and CAM2 genes had a broad pattern of expression in C. roseus organs and are constitutively expressed during a C. roseus cell culture cycle, with a slight inhibitory effect of auxin for CAM1. Using RNA in situ hybridisation, we also detected CAM1 and CAM2 mRNA in the vascular bundle region of young seedling cotyledons. Finally, using specific inhibitors, we also showed that CAMs are required for MIA biosynthesis in C. roseus cells by acting on regulation of expression of genes encoding enzymes that catalyse early steps of MIA biosynthesis, such as 1-deoxy-d-xylulose 5-phosphate reductoisomerase and geraniol 10-hydroxylase.

  4. Improving peppermint essential oil yield and composition by metabolic engineering.

    Science.gov (United States)

    Lange, Bernd Markus; Mahmoud, Soheil Seyed; Wildung, Mark R; Turner, Glenn W; Davis, Edward M; Lange, Iris; Baker, Raymond C; Boydston, Rick A; Croteau, Rodney B

    2011-10-11

    Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by transforming plants expressing an antisense version of (+)-menthofuran synthase, which is critical for adjusting the levels of specific undesirable oil constituents, with a construct for the overexpression of the MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase (up to 61% oil yield increase over wild-type controls with low levels of the undesirable side-product (+)-menthofuran and its intermediate (+)-pulegone). Elite transgenic lines were advanced to multiyear field trials, which demonstrated consistent oil yield increases of up to 78% over wild-type controls and desirable effects on oil composition under commercial growth conditions. The transgenic expression of a gene encoding (+)-limonene synthase was used to accumulate elevated levels of (+)-limonene, which allows oil derived from transgenic plants to be recognized during the processing of commercial formulations containing peppermint oil. Our study illustrates the utility of metabolic engineering for the sustainable agricultural production of high quality essential oils at a competitive cost.

  5. Metabolic engineering by plastid transformation as a strategy to modulate isoprenoid yield in plants.

    Science.gov (United States)

    Hasunuma, Tomohisa; Kondo, Akihiko; Miyake, Chikahiro

    2010-01-01

    Plants synthesize a large number of isoprenoid compounds that have diverse structures and functions. All isoprenoids are synthesized through consecutive condensation of five-carbon precursors, isopentenyl diphosphate (IPP) and its allyl isomer dimethylallyl diphosphate (DMAPP). With recent success in the cloning of genes that encode the enzymes of isoprenoid biosynthesis, genetic engineering strategies for the improvement of plant isoprenoid metabolism have emerged. Plastid transformation technology offers attractive features in plant genetic engineering. It has many advantages over nuclear genome transformation: high-level foreign protein expression, no need for a transit peptide, absence of gene silencing, and convenient transgene stacking in operons. We demonstrated that this technology is a remarkable tool for the production of isoprenoids in plants through metabolic engineering. The expression of bacterial genes encoding CrtW (beta-carotene ketolase) and CrtZ (beta-carotene hydroxylase) or cyanobacterial genes encoding DXR (1-deoxy-D-xylulose-5-phosphate reductoisomerase) in the plastid genome leads to alteration in isoprenoid content of tobacco leaves.

  6. Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway.

    Science.gov (United States)

    Perez-Gil, Jordi; Uros, Eva Maria; Sauret-Güeto, Susanna; Lois, L Maria; Kirby, James; Nishimoto, Minobu; Baidoo, Edward E K; Keasling, Jay D; Boronat, Albert; Rodriguez-Concepcion, Manuel

    2012-01-01

    A functional 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP) by the activity of the enzymes DXP synthase (DXS) and DXP reductoisomerase (DXR). Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.

  7. Mutations in Escherichia coli aceE and ribB genes allow survival of strains defective in the first step of the isoprenoid biosynthesis pathway.

    Directory of Open Access Journals (Sweden)

    Jordi Perez-Gil

    Full Text Available A functional 2-C-methyl-D-erythritol 4-phosphate (MEP pathway is required for isoprenoid biosynthesis and hence survival in Escherichia coli and most other bacteria. In the first two steps of the pathway, MEP is produced from the central metabolic intermediates pyruvate and glyceraldehyde 3-phosphate via 1-deoxy-D-xylulose 5-phosphate (DXP by the activity of the enzymes DXP synthase (DXS and DXP reductoisomerase (DXR. Because the MEP pathway is absent from humans, it was proposed as a promising new target to develop new antibiotics. However, the lethal phenotype caused by the deletion of DXS or DXR was found to be suppressed with a relatively high efficiency by unidentified mutations. Here we report that several mutations in the unrelated genes aceE and ribB rescue growth of DXS-defective mutants because the encoded enzymes allowed the production of sufficient DXP in vivo. Together, this work unveils the diversity of mechanisms that can evolve in bacteria to circumvent a blockage of the first step of the MEP pathway.

  8. Predicted essential proteins ofPlasmodium falciparum for potential drug targets

    Institute of Scientific and Technical Information of China (English)

    Qing-Feng He; Li Deng; Qin-Ying Xu; Zheng Shao

    2012-01-01

    ABSTRACT Objective:To identify novel drug targets for treatment ofPlasmodium falciparum.Methods:LocalBLASTP were used to find the proteins non-homologous to human essential proteins as novel drug targets. Functional domains of novel drug targets were identified by InterPro and Pfam,3D structures of potential drug targets were predicated by theSWISS-MODELworkspace. Ligands and ligand-binding sites of the proteins were searched byEf-seek.Results:Three essential proteins were identified that might be considered as potential drug targets.AAN37254.1 belonged to1-deoxy-D-xylulose5-phosphate reductoisomerase,CAD50499.1 belonged to chorismate synthase,CAD51220.1 belonged toFAD binging3 family, but the function of CAD51220.1 was unknown. The3D structures, ligands and ligand-binding sites ofAAN37254.1 andCAD50499.1 were successfully predicated.Conclusions:Two of these potential drug targets are key enzymes in2-C-methyl-d-erythritol4-phosphate pathway and shikimate pathway, which are absent in humans, so these two essential proteins are good potential drug targets. The function and3D structures ofCAD50499.1 is still unknown, it still need further study.

  9. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  10. Ketol-acid reductoisomerase enzymes and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Govindarajan, Sridhar; Li, Yougen; Liao, Der-Ing; O' Keefe, Daniel P.; Minshull, Jeremy Stephen; Rothman, Steven Cary; Tobias, Alexander Vincent

    2015-10-27

    Provided herein are polypeptides having ketol-aid reductoisomerase activity as well as microbial host cells comprising such polypeptides. Polypeptides provided herein may be used in biosynthetic pathways, including, but not limited to, isobutanol biosynthetic pathways.

  11. Biosynthesis of salvinorin A proceeds via the deoxyxylulose phosphate pathway.

    Science.gov (United States)

    Kutrzeba, Lukasz; Dayan, Franck E; Howell, J'Lynn; Feng, Ju; Giner, José-Luis; Zjawiony, Jordan K

    2007-07-01

    Salvinorin A, a neoclerodane diterpenoid, isolated from the Mexican hallucinogenic plant Salvia divinorum, is a potent kappa-opioid receptor agonist. Its biosynthetic route was studied by NMR and HR-ESI-MS analysis of the products of the incorporation of [1-(13)C]-glucose, [Me-(13)C]-methionine, and [1-(13)C;3,4-(2)H2]-1-deoxy-D-xylulose into its structure. While the use of cuttings and direct-stem injection were unsuccessful, incorporation of (13)C into salvinorin A was achieved using in vitro sterile culture of microshoots. NMR spectroscopic analysis of salvinorin A (2.7 mg) isolated from 200 microshoots grown in the presence of [1-(13)C]-glucose established that this pharmacologically important diterpene is biosynthesized via the 1-deoxy-D-xylulose-5-phosphate pathway, instead of the classic mevalonic acid pathway. This was confirmed further in plants grown in the presence of [1-(13)C;3,4-(2)H2]-1-deoxy-D-xylulose. In addition, analysis of salvinorin A produced by plants grown in the presence of [Me-(13)C]-methionine indicates that methylation of the C-4 carboxyl group is catalyzed by a type III S-adenosyl-L-methionine-dependent O-methyltransferase.

  12. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP pathway enzyme expression in Catharanthus roseus.

    Directory of Open Access Journals (Sweden)

    Mei Han

    Full Text Available In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS, a new (type I DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR, respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms, DXR, and hydroxymethylbutenyl diphosphate synthase (HDS were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation.

  13. Enzyme inhibitor studies reveal complex control of methyl-D-erythritol 4-phosphate (MEP) pathway enzyme expression in Catharanthus roseus.

    Science.gov (United States)

    Han, Mei; Heppel, Simon C; Su, Tao; Bogs, Jochen; Zu, Yuangang; An, Zhigang; Rausch, Thomas

    2013-01-01

    In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA) formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a new (type I) DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS) and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR)), respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms), DXR, and hydroxymethylbutenyl diphosphate synthase (HDS) were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation.

  14. Genetics Home Reference: pyridoxal 5'-phosphate-dependent epilepsy

    Science.gov (United States)

    ... 5'-phosphate-dependent epilepsy pyridoxal 5'-phosphate-dependent epilepsy Enable Javascript to view the expand/collapse boxes. ... All Close All Description Pyridoxal 5'-phosphate-dependent epilepsy is a condition that involves seizures beginning soon ...

  15. Resistance of Francisella novicida to Fosmidomycin Associated with Mutations in the Glycerol-3-Phosphate Transporter

    Directory of Open Access Journals (Sweden)

    Ryan S Mackie

    2012-08-01

    Full Text Available The methylerythritol phosphate (MEP pathway is essential in most prokaryotes and some lower eukaryotes but absent from human cells, and is a validated target for antimicrobial drug development. The formation of MEP is catalyzed by 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR. MEP pathway genes have been identified in many Category A and B biothreat agents, including Francisella tularensis, which causes the zoonosis tularemia. Fosmidomycin inhibits purified Francisella DXR. This compound also inhibits the growth of F. tularensis NIH B38, F. novicida and F. tularensis subsp. holarctica LVS bacteria. Related compounds such as FR900098 and lipophilic prodrugs of FR900098 have been developed to improve the bioavailability of these DXR inhibitors. In disc-inhibition assays with these compounds, we observed breakthrough colonies of F. novicida in the presence of fosmidomycin, suggesting spontaneous development of fosmidomycin resistance (FosR. FosR bacteria had decreased sensitivity to both fosmidomycin and FR900098. The two most likely targets for the development of mutants would be the DXR enzyme or the glycerol-3-phosphate transporter (GlpT that allows entry of fosmidomycin into the bacteria. Sensitivity of FosR F. novicida bacteria to compound 1 was not abated suggesting that spontaneous resistance is not due to mutation of DXR. We thus predicted that the glpT transporter may be mutated leading to this resistant phenotype. Supporting this, transposon insertion mutants at the glpT locus were also found to be resistant to fosmidomycin. DNA sequencing of four different spontaneous FosR colonies demonstrated a variety of deletions in the glpT coding region. The overall frequency of FosR mutations in F. novicida was determined to be 6.3 x 10-8. Thus we conclude that one mechanism of resistance of F. novicida to fosmidomycin is caused by mutations in GlpT. This is the first description of mutations in Francisella leading to fosmidomycin

  16. Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen.

    Science.gov (United States)

    Rasulov, Bahtijor; Talts, Eero; Kännaste, Astrid; Niinemets, Ülo

    2015-06-01

    Recently, a feedback inhibition of the chloroplastic 1-deoxy-D-xylulose 5-phosphate (DXP)/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of isoprenoid synthesis by end products dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) was postulated, but the extent to which DMADP and IDP can build up is not known. We used bisphosphonate inhibitors, alendronate and zoledronate, that inhibit the consumption of DMADP and IDP by prenyltransferases to gain insight into the extent of end product accumulation and possible feedback inhibition in isoprene-emitting hybrid aspen (Populus tremula × Populus tremuloides). A kinetic method based on dark release of isoprene emission at the expense of substrate pools accumulated in light was used to estimate the in vivo pool sizes of DMADP and upstream metabolites. Feeding with fosmidomycin, an inhibitor of DXP reductoisomerase, alone or in combination with bisphosphonates was used to inhibit carbon input into DXP/MEP pathway or both input and output. We observed a major increase in pathway intermediates, 3- to 4-fold, upstream of DMADP in bisphosphonate-inhibited leaves, but the DMADP pool was enhanced much less, 1.3- to 1.5-fold. In combined fosmidomycin/bisphosphonate treatment, pathway intermediates accumulated, reflecting cytosolic flux of intermediates that can be important under strong metabolic pull in physiological conditions. The data suggested that metabolites accumulated upstream of DMADP consist of phosphorylated intermediates and IDP. Slow conversion of the huge pools of intermediates to DMADP was limited by reductive energy supply. These data indicate that the DXP/MEP pathway is extremely elastic, and the presence of a significant pool of phosphorylated intermediates provides an important valve for fine tuning the pathway flux.

  17. [Roles of reactive oxygen species in Streptomyces pactum Act12-induced tanshinone production in Salvia miltiorrhiza hairy roots].

    Science.gov (United States)

    Yan, Yan; Zhao, Xin; Zhang, Shun-Cang; Liu, Yan; Liang, Zong-Suo

    2014-06-01

    Our previous research indicated that the Streptomyces pactum Act12 (Act12) had a certain promotional effect on tanshinone accumulation and up-regulated the expression of genes 3-hydroxy-3-methyglutaryl-CoA reductase (HMGR) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) in Salvia miltiorrhiza hairy roots. This study focuses on the roles of reactive oxygen species in S. pactum Act12-induced tanshinone production in S. miltiorrhiza hairy roots. The 4% Act12, 4% Act12 + CAT and 4% Act12 + SOD were added to S. miltiorrhiza hairy root and subcultured for 21 days, the dry weight, contents of reactive oxygen species, contents of tanshinones and expression of HMGR and DXR were determined at different harvest-time. The generation of reactive oxygen species (ROS) in S. miltiorrhiza hairy roots was triggered by 4% Act12 treatment. The relative expressions of genes HMGR and DXR in 4% Act12 treatment were 32.4 and 4.8-fold higher than those in the control. And the total tanshinone in the hairy roots was 10.2 times higher than that of the control. The CAT and SOD could significantly inhibit the ROS accumulation and relative expressions of genes HMGR and DXR in 4% Act12 treatment, which induced the total tanshinone content was decreased by 74.6% comparing with the 4% Act12 treatment. ROS mediated Act12-induced tanshinone production. The Act12 may be via the ROS signal channel to activate the tanshinone biosynthesis pathways. Thereby the tanshinon content in hairy roots was increased.

  18. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Riboflavin-5-phosphate. 582.5697 Section 582.5697 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of...

  19. Pyridoxal-5'-phosphate-dependent catalytic antibodies.

    Science.gov (United States)

    Gramatikova, Svetlana; Mouratou, Barbara; Stetefeld, Jörg; Mehta, Perdeep K; Christen, Philipp

    2002-11-01

    Strategies for expanding the catalytic scope of antibodies include the incorporation of inorganic or organic cofactors into their binding sites. An obvious choice is pyridoxal-5'-phosphate (PLP), which is probably the most versatile organic cofactor of enzymes. Monoclonal antibodies against the hapten N(alpha)-(5'-phosphopyridoxyl)-L-lysine, a stable analog of the covalent coenzyme-substrate adducts were screened by a competition ELISA for binding of the PLP-amino acid Schiff base adduct. The Schiff base with its C4'-N alpha double bond is, in contrast to the hapten, a planar compound and is an obligatory intermediate in all PLP-dependent reactions of amino acids. This highly discriminating screening step eliminated all but 5 of 24 hapten-binding antibodies. The five remaining antibodies were tested for catalysis of the PLP-dependent alpha,beta-elimination reaction of beta-chloroalanine. Antibody 15A9 complied with this selection criterion and catalyzed in addition the cofactor-dependent transamination reaction of hydrophobic D-amino acids and oxo acids (k(cat)'=0.42 min(-1) with D-alanine at 25 degrees C). Homology modeling together with alanine scanning yielded a 3D model of Fab 15A9. The striking analogy between antibody 15A9 and PLP-dependent enzymes includes the following features: (1) The binding sites accommodate the planar coenzyme-amino acid adduct. (2) The bond at C alpha to be broken lies together with the C alpha-N bond in a plane orthogonal to the plane of coenzyme and imine bond. (3) The alpha-carboxylate group of the substrate is bound by an arginine residue. (4) The coenzyme-substrate adduct assumes a cisoid conformation. (5) PLP markedly contributes to catalytic efficiency, being a 10(4) times more efficient amino group acceptor than pyruvate. The protein moiety, however, ensures reaction as well as substrate specificity, and further accelerates the reaction (in 15A9 k(cat (Ab x PLP))'/k(cat (PLP))'=5 x 10(3)). The analogies of antibody 15A9 with

  20. Bioinformatics approaches for structural and functional analysis of proteins in secondary metabolism in Withania somnifera.

    Science.gov (United States)

    Sanchita; Singh, Swati; Sharma, Ashok

    2014-11-01

    Withania somnifera (Ashwagandha) is an affluent storehouse of large number of pharmacologically active secondary metabolites known as withanolides. These secondary metabolites are produced by withanolide biosynthetic pathway. Very less information is available on structural and functional aspects of enzymes involved in withanolides biosynthetic pathways of Withiana somnifera. We therefore performed a bioinformatics analysis to look at functional and structural properties of these important enzymes. The pathway enzymes taken for this study were 3-Hydroxy-3-methylglutaryl coenzyme A reductase, 1-Deoxy-D-xylulose-5-phosphate synthase, 1-Deoxy-D-xylulose-5-phosphate reductase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, and cycloartenol synthase. The prediction of secondary structure was performed for basic structural information. Three-dimensional structures for these enzymes were predicted. The physico-chemical properties such as pI, AI, GRAVY and instability index were also studied. The current information will provide a platform to know the structural attributes responsible for the function of these protein until experimental structures become available.

  1. The Plastidial 2-C-Methyl-d-Erythritol 4-Phosphate Pathway Provides the Isoprenyl Moiety for Protein Geranylgeranylation in Tobacco BY-2 Cells[C][W

    Science.gov (United States)

    Gerber, Esther; Hemmerlin, Andréa; Hartmann, Michael; Heintz, Dimitri; Hartmann, Marie-Andrée; Mutterer, Jérôme; Rodríguez-Concepción, Manuel; Boronat, Albert; Van Dorsselaer, Alain; Rohmer, Michel; Crowell, Dring N.; Bach, Thomas J.

    2009-01-01

    Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGol). Furthermore, 1-deoxy-d-xylulose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-d-xylulose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-d-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation. PMID:19136647

  2. Lipophilic prodrugs of FR900098 are antimicrobial against Francisella novicida in vivo and in vitro and show GlpT independent efficacy.

    Directory of Open Access Journals (Sweden)

    Elizabeth S McKenney

    Full Text Available Bacteria, plants, and algae produce isoprenoids through the methylerythritol phosphate (MEP pathway, an attractive pathway for antimicrobial drug development as it is present in prokaryotes and some lower eukaryotes but absent from human cells. The first committed step of the MEP pathway is catalyzed by 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR/MEP synthase. MEP pathway genes have been identified in many biothreat agents, including Francisella, Brucella, Bacillus, Burkholderia, and Yersinia. The importance of the MEP pathway to Francisella is demonstrated by the fact that MEP pathway mutations are lethal. We have previously established that fosmidomycin inhibits purified MEP synthase (DXR from F. tularensis LVS. FR900098, the acetyl derivative of fosmidomycin, was found to inhibit the activity of purified DXR from F. tularensis LVS (IC(50=230 nM. Fosmidomycin and FR900098 are effective against purified DXR from Mycobacterium tuberculosis as well, but have no effect on whole cells because the compounds are too polar to penetrate the thick cell wall. Fosmidomycin requires the GlpT transporter to enter cells, and this is absent in some pathogens, including M. tuberculosis. In this study, we have identified the GlpT homologs in F. novicida and tested transposon insertion mutants of glpT. We showed that FR900098 also requires GlpT for full activity against F. novicida. Thus, we synthesized several FR900098 prodrugs that have lipophilic groups to facilitate their passage through the bacterial cell wall and bypass the requirement for the GlpT transporter. One compound, that we termed "compound 1," was found to have GlpT-independent antimicrobial activity. We tested the ability of this best performing prodrug to inhibit F. novicida intracellular infection of eukaryotic cell lines and the caterpillar Galleria mellonella as an in vivo infection model. As a lipophilic GlpT-independent DXR inhibitor, compound 1 has the potential to be a broad

  3. Ribose 5-Phosphate Isomerase Investigations for the Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Jewett, Kathy; Sandwick, Roger K.

    2011-01-01

    The enzyme ribose 5-phosphate isomerase (RpiA) has many features that make it attractive as a focal point of a semester-long, advanced biochemistry laboratory for undergraduate students. The protein can easily and inexpensively be isolated from spinach using traditional purification techniques. Characterization of RpiA enzyme activity can be…

  4. Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes.

    Science.gov (United States)

    Mandal, Shantanu; Upadhyay, Shivangi; Singh, Ved Pal; Kapoor, Rupam

    2015-04-01

    Stevia rebaudiana (Bertoni) produces steviol glycosides (SGs)--stevioside (stev) and rebaudioside-A (reb-A) that are valued as low calorie sweeteners. Inoculation with arbuscular mycorrhizal fungi (AMF) augments SGs production, though the effect of this interaction on SGs biosynthesis has not been studied at molecular level. In this study transcription profiles of eleven key genes grouped under three stages of the SGs biosynthesis pathway were compared. The transcript analysis showed upregulation of genes encoding 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway enzymes viz.,1-deoxy-D-xylulose 5-phospate synthase (DXS), 1-deoxy-D-xylulose 5-phospate reductoisomerase (DXR) and 2-C-methyl-D-erytrithol 2,4-cyclodiphosphate synthase (MDS) in mycorrhizal (M) plants. Zn and Mn are imperative for the expression of MDS and their enhanced uptake in M plants could be responsible for the increased transcription of MDS. Furthermore, in the second stage of SGs biosynthesis pathway, mycorrhization enhanced the transcription of copalyl diphosphate synthase (CPPS) and kaurenoic acid hydroxylase (KAH). Their expression is decisive for SGs biosynthesis as CPPS regulates flow of metabolites towards synthesis of kaurenoid precursors and KAH directs these towards steviol synthesis instead of gibberellins. In the third stage glucosylation of steviol to reb-A by four specific uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs) occurs. While higher transcription of all the three characterized UGTs in M plants explains augmented production of SGs; higher transcript levels of UGT76G1, specifically improved reb-A to stev ratio implying increased sweetness. The work signifies that AM symbiosis upregulates the transcription of all eleven SGs biosynthesis genes as a result of improved nutrition and enhanced sugar concentration due to increased photosynthesis in M plants.

  5. Morton's foot and pyridoxal 5'-phosphate deficiency: genetically linked traits.

    Science.gov (United States)

    Nichols, Trent W; Gaiteri, Christopher

    2014-12-01

    Vitamin B6 is an essential vitamin needed for many chemical reactions in the human body. It exists as several vitamins forms but pyridoxal 5'-phosphate (PLP) is the phosphorylated form needed for transamination, deamination, and decarboxylation. PLP is important in the production of neurotransmitters, acts as a Schiff base and is essential in the metabolism of homocysteine, a toxic amino acid involved in cardiovascular disease, stroke, thrombotic and Alzheimer's disease. This report announces the connection between a deficit of PLP with a genetically linked physical foot form known as the Morton's foot. Morton's foot has been associated with fibromyalgia/myofascial pain syndrome. Another gene mutation methylenetetrahydrofolate reductase (MTHFr) is now being recognized much commonly than previous with chronic fatigue, chronic Lyme diseases and as "the missing link" in other chronic diseases. PLP deficiency also plays a role in impaired glucose tolerance and may play a much bigger role in the obesity, diabetes, fatty liver and metabolic syndrome. Without the Schiff-base of PLP acting as an electron sink, storing electrons and dispensing them in the mitochondria, free radical damage occurs! The recognition that a phenotypical expression (Morton's foot) of a gene resulting in deficiency of an important cofactor enzyme pyridoxal 5'-phosphate will hopefully alert physicians and nutritionist to these phenomena. Supplementation with PLP, L5-MTHF, B12 and trimethylglycine should be used in those patients with hyperhomocysteinemia and/or MTHFR gene mutation.

  6. Molecular design, synthesis and biological activities of amidines as new ketol-acid reductoisomerase inhibitors

    Institute of Scientific and Technical Information of China (English)

    Bao Lei Wang; Yong Hong Li; Jian Guo Wang; Yi Ma; Zheng Ming Li

    2008-01-01

    Diamidine (A) was identified in our in vitro bio-assay as a possible inhibitor of ketol-acid reductoisomerase (KARI) from the ACD database search based on the known three-dimensional crystal structure of KARI. An investigation on interaction of A on KARI active sites, led to the design and synthesis of 15 novel monoamidines. Some of those showed better biological activity than A on rice KARI (in vitro) and in greenhouse herbicidal tests (in vivo). The structure-biological activity relationship was investigated, which provides valuable information to further study of potential KARI inhibitors.

  7. Inactive mutants of human pyridoxine 5'-phosphate oxidase: a possible role for a noncatalytic pyridoxal 5'-phosphate tight binding site.

    Science.gov (United States)

    Ghatge, Mohini S; Karve, Sayali S; David, Tanya M S; Ahmed, Mostafa H; Musayev, Faik N; Cunningham, Kendra; Schirch, Verne; Safo, Martin K

    2016-05-01

    Pyridoxal 5'-phosphate (PLP) is a cofactor for many vitamin B6-requiring enzymes that are important for the synthesis of neurotransmitters. Pyridoxine 5'-phosphate oxidase (PNPO) is one of two enzymes that produce PLP. Some 16 known mutations in human PNPO (hPNPO), including R95C and R229W, lead to deficiency of PLP in the cell and have been shown to cause neonatal epileptic encephalopathy (NEE). This disorder has no effective treatment, and is often fatal unless treated with PLP. In this study, we show that R95C hPNPO exhibits a 15-fold reduction in affinity for the FMN cofactor, a 71-fold decrease in affinity for the substrate PNP, a 4.9-fold decrease in specific activity, and a 343-fold reduction in catalytic activity, compared to the wild-type enzyme. We have reported similar findings for R229W hPNPO. This report also shows that wild-type, R95C and R229W hPNPO bind PLP tightly at a noncatalytic site and transfer it to activate an apo-B6 enzyme into the catalytically active holo-form. We also show for the first time that hPNPO forms specific interactions with several B6 enzymes with dissociation constants ranging from 0.3 to 12.3 μm. Our results suggest a possible in vivo role for the tight binding of PLP in hPNPO, whether wild-type or variant, by protecting the very reactive PLP, and transferring this PLP directly to activate apo-B6 enzymes.

  8. A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia.

    Science.gov (United States)

    Lane, Alexander; Boecklemann, Astrid; Woronuk, Grant N; Sarker, Lukman; Mahmoud, Soheil S

    2010-03-01

    We are developing Lavandula angustifolia (lavender) as a model system for investigating molecular regulation of essential oil (a mixture of mono- and sesquiterpenes) production in plants. As an initial step toward building the necessary 'genomics toolbox' for this species, we constructed two cDNA libraries from lavender leaves and flowers, and obtained sequence information for 14,213 high-quality expressed sequence tags (ESTs). Based on homology to sequences present in GenBank, our EST collection contains orthologs for genes involved in the 1-deoxy-D: -xylulose-5-phosphate (DXP) and the mevalonic acid (MVA) pathways of terpenoid biosynthesis, and for known terpene synthases and prenyl transferases. To gain insight into the regulation of terpene metabolism in lavender flowers, we evaluated the transcriptional activity of the genes encoding for 1-deoxy-D: -xylulose-5-phosphate synthase (DXS) and HMG-CoA reductase (HMGR), which represent regulatory steps of the DXP and MVA pathways, respectively, in glandular trichomes (oil glands) by real-time PCR. While HMGR transcripts were barely detectable, DXS was heavily expressed in this tissue, indicating that essential oil constituents are predominantly produced through the DXP pathway in lavender glandular trichomes. As anticipated, the linalool synthase (LinS)-the gene responsible for the production of linalool, a major constituent of lavender essential oil-was also strongly expressed in glands. Surprisingly, the most abundant transcript in floral glandular trichomes corresponded to a sesquiterpene synthase (cadinene synthase, CadS), although sesquiterpenes are minor constituents of lavender essential oils. This result, coupled to the weak activity of the MVA pathway (the main route for sesquiterpene production) in trichomes, indicates that precursor supply may represent a bottleneck in the biosynthesis of sesquiterpenes in lavender flowers.

  9. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol.

    Science.gov (United States)

    May, Bianca; Lange, B Markus; Wüst, Matthias

    2013-11-01

    The participation of the mevalonic acid (MVA) and 1-deoxy-d-xylulose 5-phosphate/2-C-methyl-d-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-(2)H2]-1-deoxy-d-xylulose and [5,5-(2)H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries.

  10. Conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate: new insights from structural and biochemical studies on human RPE.

    Science.gov (United States)

    Liang, Wenguang; Ouyang, Songying; Shaw, Neil; Joachimiak, Andrzej; Zhang, Rongguang; Liu, Zhi-Jie

    2011-02-01

    The pentose phosphate pathway (PPP) confers protection against oxidative stress by supplying NADPH necessary for the regeneration of glutathione, which detoxifies H(2)O(2) into H(2)O and O(2). RPE functions in the PPP, catalyzing the reversible conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate and is an important enzyme for cellular response against oxidative stress. Here, using structural, biochemical, and functional studies, we show that human D-ribulose 5-phosphate 3-epimerase (hRPE) uses Fe(2+) for catalysis. Structures of the binary complexes of hRPE with D-ribulose 5-phosphate and D-xylulose 5-phosphate provide the first detailed molecular insights into the binding mode of physiological ligands and reveal an octahedrally coordinated Fe(2+) ion buried deep inside the active site. Human RPE folds into a typical (β/α)(8) triosephosphate isomerase (TIM) barrel with a loop regulating access to the active site. Two aspartic acids are well positioned to carry out the proton transfers in an acid-base type of reaction mechanism. Interestingly, mutating Ser-10 to alanine almost abolished the enzymatic activity, while L12A and M72A mutations resulted in an almost 50% decrease in the activity. The binary complexes of hRPE reported here will aid in the design of small molecules for modulating the activity of the enzyme and altering flux through the PPP.

  11. Conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate : new insights from structural and biochemical studies on human RPE.

    Energy Technology Data Exchange (ETDEWEB)

    Liang, W.; Ouyang, S.; Shaw, N.; Joachimiak, A.; Zhang, R.; Liu, Z.; Biosciences Division; Chinese Academy of Sciences

    2011-02-01

    The pentose phosphate pathway (PPP) confers protection against oxidative stress by supplying NADPH necessary for the regeneration of glutathione, which detoxifies H{sub 2}O{sub 2} into H{sub 2}O and O{sub 2}. RPE functions in the PPP, catalyzing the reversible conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate and is an important enzyme for cellular response against oxidative stress. Here, using structural, biochemical, and functional studies, we show that human D-ribulose 5-phosphate 3-epimerase (hRPE) uses Fe{sup 2+} for catalysis. Structures of the binary complexes of hRPE with D-ribulose 5-phosphate and D-xylulose 5-phosphate provide the first detailed molecular insights into the binding mode of physiological ligands and reveal an octahedrally coordinated Fe{sup 2+} ion buried deep inside the active site. Human RPE folds into a typical ({beta}/{alpha}){sub 8} triosephosphate isomerase (TIM) barrel with a loop regulating access to the active site. Two aspartic acids are well positioned to carry out the proton transfers in an acid-base type of reaction mechanism. Interestingly, mutating Ser-10 to alanine almost abolished the enzymatic activity, while L12A and M72A mutations resulted in an almost 50% decrease in the activity. The binary complexes of hRPE reported here will aid in the design of small molecules for modulating the activity of the enzyme and altering flux through the PPP.

  12. Ribose 5-phosphate isomerase B knockdown compromises Trypanosoma brucei bloodstream form infectivity.

    Science.gov (United States)

    Loureiro, Inês; Faria, Joana; Clayton, Christine; Macedo-Ribeiro, Sandra; Santarém, Nuno; Roy, Nilanjan; Cordeiro-da-Siva, Anabela; Tavares, Joana

    2015-01-01

    Ribose 5-phosphate isomerase is an enzyme involved in the non-oxidative branch of the pentose phosphate pathway, and catalyzes the inter-conversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Trypanosomatids, including the agent of African sleeping sickness namely Trypanosoma brucei, have a type B ribose-5-phosphate isomerase. This enzyme is absent from humans, which have a structurally unrelated ribose 5-phosphate isomerase type A, and therefore has been proposed as an attractive drug target waiting further characterization. In this study, Trypanosoma brucei ribose 5-phosphate isomerase B showed in vitro isomerase activity. RNAi against this enzyme reduced parasites' in vitro growth, and more importantly, bloodstream forms infectivity. Mice infected with induced RNAi clones exhibited lower parasitaemia and a prolonged survival compared to control mice. Phenotypic reversion was achieved by complementing induced RNAi clones with an ectopic copy of Trypanosoma cruzi gene. Our results present the first functional characterization of Trypanosoma brucei ribose 5-phosphate isomerase B, and show the relevance of an enzyme belonging to the non-oxidative branch of the pentose phosphate pathway in the context of Trypanosoma brucei infection.

  13. Complexes of vitamin B6XX: equilibrium and mechanistic studies of the reaction of pyridoxal-5'-phosphate with pyridoxamine-5'-phosphate in the presence of copper(II).

    Science.gov (United States)

    Marafie, H M; el-Ezaby, M S; Fareed, S

    1989-09-01

    The interaction of Cu(II) with pyridoxamine-5'-phosphate (PMP) and pyridoxal-5'-phosphate (PLP) was studied potentiometrically. The titration data were assessed by MINIQUAD program. Several protonated and nonprotonated complexes have been found to exist in solution. The reaction of PLP with Cu(II)-PMP has been studied kinetically, using the stopped-flow technique. Two rate steps have been observed. The first step has been attributed to the formation of a Schiff's base metal complex. The second step may be due to the formation of a ternary complex formation. A mechanism was suggested.

  14. Rv2607 from Mycobacterium tuberculosis is a pyridoxine 5'-phosphate oxidase with unusual substrate specificity.

    Directory of Open Access Journals (Sweden)

    Ellene H Mashalidis

    Full Text Available Despite intensive effort, the majority of the annotated Mycobacterium tuberculosis genome consists of genes encoding proteins of unknown or poorly understood function. For example, there are seven conserved hypothetical proteins annotated as homologs of pyridoxine 5'-phosphate oxidase (PNPOx, an enzyme that oxidizes pyridoxine 5'-phosphate (PNP or pyridoxamine 5'-phosphate (PMP to form pyridoxal 5'-phosphate (PLP. We have characterized the function of Rv2607 from Mycobacterium tuberculosis H37Rv and shown that it encodes a PNPOx that oxidizes PNP to PLP. The k(cat and K(M for this reaction were 0.01 s(-1 and 360 µM, respectively. Unlike many PNPOx enzymes, Rv2607 does not recognize PMP as a substrate.

  15. Molecular basis of reduced pyridoxine 5'-phosphate oxidase catalytic activity in neonatal epileptic encephalopathy disorder.

    Science.gov (United States)

    Musayev, Faik N; Di Salvo, Martino L; Saavedra, Mario A; Contestabile, Roberto; Ghatge, Mohini S; Haynes, Alexina; Schirch, Verne; Safo, Martin K

    2009-11-06

    Mutations in pyridoxine 5'-phosphate oxidase are known to cause neonatal epileptic encephalopathy. This disorder has no cure or effective treatment and is often fatal. Pyridoxine 5'-phosphate oxidase catalyzes the oxidation of pyridoxine 5'-phosphate to pyridoxal 5'-phosphate, the active cofactor form of vitamin B(6) required by more than 140 different catalytic activities, including enzymes involved in amino acid metabolism and biosynthesis of neurotransmitters. Our aim is to elucidate the mechanism by which a homozygous missense mutation (R229W) in the oxidase, linked to neonatal epileptic encephalopathy, leads to reduced oxidase activity. The R229W variant is approximately 850-fold less efficient than the wild-type enzyme due to an approximately 192-fold decrease in pyridoxine 5'-phosphate affinity and an approximately 4.5-fold decrease in catalytic activity. There is also an approximately 50-fold reduction in the affinity of the R229W variant for the FMN cofactor. A 2.5 A crystal structure of the R229W variant shows that the substitution of Arg-229 at the FMN binding site has led to a loss of hydrogen-bond and/or salt-bridge interactions between FMN and Arg-229 and Ser-175. Additionally, the mutation has led to an alteration of the configuration of a beta-strand-loop-beta-strand structure at the active site, resulting in loss of two critical hydrogen-bond interactions involving residues His-227 and Arg-225, which are important for substrate binding and orientation for catalysis. These results provide a molecular basis for the phenotype associated with the R229W mutation, as well as providing a foundation for understanding the pathophysiological consequences of pyridoxine 5'-phosphate oxidase mutations.

  16. Direct and indirect effects of RNA interference against pyridoxal kinase and pyridoxine 5'-phosphate oxidase genes in Bombyx mori.

    Science.gov (United States)

    Huang, ShuoHao; Yao, LiLi; Zhang, JianYun; Huang, LongQuan

    2016-08-01

    Vitamin B6 comprises six interconvertible pyridine compounds (vitamers), among which pyridoxal 5'-phosphate is a coenzyme involved in a high diversity of biochemical reactions. Humans and animals obtain B6 vitamers from diet, and synthesize pyridoxal 5'-phosphate by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. Currently, little is known on how pyridoxal 5'-phosphate biosynthesis is regulated, and pyridoxal 5'-phosphate is supplied to meet their requirement in terms of cofactor. Bombyx mori is a large silk-secreting insect, in which protein metabolism is most active, and the vitamin B6 demand is high. In this study, we successfully down-regulated the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase by body cavity injection of synthesized double-stranded small interfering RNA to 5th instar larvae of Bombyx mori, and analyzed the gene transcription levels of pyridoxal 5'-phosphate dependent enzymes, phosphoserine aminotransferase and glutamic-oxaloacetic transaminase. Results show that the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase has a greater impact on the gene transcription of enzymes using pyridoxal 5'-phosphate as a cofactor in Bombyx mori. Our study suggests that pyridoxal 5'-phosphate biosynthesis and dynamic balance may be regulated by genetic networks.

  17. 茶树挥发性萜类物质及其糖苷化合物生物合成的研究进展%Progress in the Research of Biosynthesis of Volatile Terpenoids and Their Glycosides in Tea Plant

    Institute of Scientific and Technical Information of China (English)

    贺志荣; 项威; 徐燕; 高丽萍; 夏涛; 魏书

    2012-01-01

    挥发性单萜(C10)与倍半萜(C15),常具有宜人的花果香气.茶鲜叶中此类物质的种类及其糖苷化合物的含量和水解对成品茶的香气香型有重要影响.就可能影响茶树挥发性萜类物质及其糖苷化合物合成途径中的限速反应和相关的酶进行综述,认为1-脱氧-D-木酮糖-5-磷酸还原异构酶(DXR)和羟甲基戊二酰辅酶A还原酶(HMGR)是影响萜类代谢前体异戊烯基焦磷酸(IPP)及二甲烯丙基焦磷酸(DMAPP)的限速酶.单萜和倍半萜合成酶是挥发性萜类化合物生物合成途径中的关键酶.此外,糖基转移酶可能与茶鲜叶中糖苷态萜类香气化合物的合成和积累有关.糖苷水解酶则催化茶鲜叶中糖苷态香气物质的水解,导致香气物质的释放.调节相关基因的表达,将有可能控制萜类代谢流向挥发性萜类合成分支.本文还讨论了影响茶叶香气品质的其他因素,如茶树品种、栽培环境,以及加工方法等.%Tea aromatic quality is largely dependent on the spectrum and abundance of volatile terpenoids and their glycosides produced and accumulated in tea leaves. Very often, the compounds of monoterpenes (C10) and sesquinterpene (C15) possess pleasant floral scent, contributing significantly to tea aromatic quality. However, studying on the biosynthesis pathway of these volatile terpenoids and their glycosides in tea plant is just at beginning. In this review, speed-limiting biosynthetic steps and related enzymes in plant volatile terpenoid biosynthesis pathways are summarized. The genes encoding 1-deoxy-D-xylulose-5 -phosphate reductoisomerase (DXR) and 3-hydroxyl-3-methylglutaryl-CoA reductase (HMGR) as well as terpenoid synthases are proposed as key enzymes for volatile terpenoid biosynthesis. Uridine diphosphate-glycosyltransferase may affect biosynthesis and accumulation of glycosides of volatile terpenoids in tea plant while glycosidase play a key role in the glycoside hydrolysis and release of

  18. LuxS-independent formation of AI-2 from ribulose-5-phosphate

    Directory of Open Access Journals (Sweden)

    Hardie Kim R

    2008-06-01

    Full Text Available Abstract Background In many bacteria, the signal molecule AI-2 is generated from its precursor S-ribosyl-L-homocysteine in a reaction catalysed by the enzyme LuxS. However, generation of AI-2-like activity has also been reported for organisms lacking the luxS gene and the existence of alternative pathways for AI-2 formation in Escherichia coli has recently been predicted by stochastic modelling. Here, we investigate the possibility that spontaneous conversion of ribulose-5-phosphate could be responsible for AI-2 generation in the absence of luxS. Results Buffered solutions of ribulose-5-phosphate, but not ribose-5-phosphate, were found to contain high levels of AI-2 activity following incubation at concentrations similar to those reported in vivo. To test whether this process contributes to AI-2 formation by bacterial cells in vivo, an improved Vibrio harveyi bioassay was used. In agreement with previous studies, culture supernatants of E. coli and Staphylococcus aureus luxS mutants were found not to contain detectable levels of AI-2 activity. However, low activities were detected in an E. coli pgi-eda-edd-luxS mutant, a strain which degrades glucose entirely via the oxidative pentose phosphate pathway, with ribulose-5-phosphate as an obligatory intermediate. Conclusion Our results suggest that LuxS-independent formation of AI-2, via spontaneous conversion of ribulose-5-phosphate, may indeed occur in vivo. It does not contribute to AI-2 formation in wildtype E. coli and S. aureus under the conditions tested, but may be responsible for the AI-2-like activities reported for other organisms lacking the luxS gene.

  19. Effect of exogenous hormones on transcription levels of pyridoxal 5'-phosphate biosynthetic enzymes in the silkworm (Bombyx mori).

    Science.gov (United States)

    Huang, ShuoHao; Yang, HuanHuan; Yao, LiLi; Zhang, JianYun; Huang, LongQuan

    2016-01-01

    Vitamin B6 includes 6 pyridine derivatives, among which pyridoxal 5'-phosphate is a coenzyme for over 140 enzymes. Animals acquire their vitamin B6 from food. Through a salvage pathway, pyridoxal 5'-phosphate is synthesized from pyridoxal, pyridoxine or pyridoxamine, in a series of reactions catalyzed by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. The regulation of pyridoxal 5'-phospahte biosynthesis and pyridoxal 5'-phospahte homeostasis are at the center of study for vitamin B6 nutrition. How pyridoxal 5'-phosphate biosynthesis is regulated by hormones has not been reported so far. Our previous studies have shown that pyridoxal 5'-phosphate level in silkworm larva displays cyclic developmental changes. In the current study, effects of exogenous juvenile hormone and molting hormone on the transcription level of genes coding for the enzymes involved in the biosynthesis of pyridoxal 5'-phospahte were examined. Results show that pyridoxal kinase and pyridoxine 5'-phosphate oxidase are regulated at the transcription level by development and are responsive to hormones. Molting hormone stimulates the expression of genes coding for pyridoxal kinase and pyridoxine 5'-phosphate oxidase, and juvenile hormone appears to work against molting hormone. Whether pyridoxal 5'-phosphate biosynthesis is regulated by hormones in general is an important issue for further studies.

  20. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  1. Pyridoxal 5'-phosphate (PLP) deficiency might contribute to the onset of type I diabetes.

    Science.gov (United States)

    Rubí, B

    2012-01-01

    The incidence of type I diabetes is rising worldwide, particularly in young children. Type I diabetes is considered a multifactorial disease with genetic predisposition and environmental factors participating. Currently, despite years of research, there is no consensus regarding the factors that initiate the autoimmune response. Type I diabetes is preceded by autoimmunity to islet antigens, among them the protein glutamic acid decarboxylase, GAD-65. Pyridoxal 5'-phosphate (PLP) is formed from vitamin B6 by the action of pyridoxal kinase. Interaction of GAD65 with PLP is necessary for GAD65-mediated synthesis of the neurotransmitter γ-aminobutyric acid (GABA). PLP is also a required cofactor for dopamine synthesis by L-aromatic decarboxylase (L-AADC). Both GAD65 and L-AADC are expressed in pancreatic islets. Here it is proposed that lack of the vitamin B6 derivative pyridoxal 5'-phosphate might contribute to the appearance of pancreatic islet autoimmunity and type I diabetes onset.

  2. Structural characterization of a ribose-5-phosphate isomerase B from the pathogenic fungus Coccidioides immitis

    Directory of Open Access Journals (Sweden)

    Leibly David J

    2011-10-01

    Full Text Available Abstract Background Ribose-5-phosphate isomerase is an enzyme that catalyzes the interconversion of ribose-5-phosphate and ribulose-5-phosphate. This family of enzymes naturally occurs in two distinct classes, RpiA and RpiB, which play an important role in the pentose phosphate pathway and nucleotide and co-factor biogenesis. Results Although RpiB occurs predominantly in bacteria, here we report crystal structures of a putative RpiB from the pathogenic fungus Coccidioides immitis. A 1.9 Å resolution apo structure was solved by combined molecular replacement and single wavelength anomalous dispersion (SAD phasing using a crystal soaked briefly in a solution containing a high concentration of iodide ions. RpiB from C. immitis contains modest sequence and high structural homology to other known RpiB structures. A 1.8 Å resolution phosphate-bound structure demonstrates phosphate recognition and charge stabilization by a single positively charged residue whereas other members of this family use up to five positively charged residues to contact the phosphate of ribose-5-phosphate. A 1.7 Å resolution structure was obtained in which the catalytic base of C. immitis RpiB, Cys76, appears to form a weakly covalent bond with the central carbon of malonic acid with a bond distance of 2.2 Å. This interaction may mimic that formed by the suicide inhibitor iodoacetic acid with RpiB. Conclusion The C. immitis RpiB contains the same fold and similar features as other members of this class of enzymes such as a highly reactive active site cysteine residue, but utilizes a divergent phosphate recognition strategy and may recognize a different substrate altogether.

  3. It takes two to tango: defining an essential second active site in pyridoxal 5'-phosphate synthase.

    Directory of Open Access Journals (Sweden)

    Cyril Moccand

    Full Text Available The prevalent de novo biosynthetic pathway of vitamin B6 involves only two enzymes (Pdx1 and Pdx2 that form an ornate multisubunit complex functioning as a glutamine amidotransferase. The synthase subunit, Pdx1, utilizes ribose 5-phosphate and glyceraldehyde 3-phosphate, as well as ammonia derived from the glutaminase activity of Pdx2 to directly form the cofactor vitamer, pyridoxal 5'-phosphate. Given the fact that a single enzyme performs the majority of the chemistry behind this reaction, a complicated mechanism is anticipated. Recently, the individual steps along the reaction co-ordinate are beginning to be unraveled. In particular, the binding of the pentose substrate and the first steps of the reaction have been elucidated but it is not known if the latter part of the chemistry, involving the triose sugar, takes place in the same or a disparate site. Here, we demonstrate through the use of enzyme assays, enzyme kinetics, and mutagenesis studies that indeed a second site is involved in binding the triose sugar and moreover, is the location of the final vitamin product, pyridoxal 5'-phosphate. Furthermore, we show that product release is triggered by the presence of a PLP-dependent enzyme. Finally, we provide evidence that a single arginine residue of the C terminus of Pdx1 is responsible for coordinating co-operativity in this elaborate protein machinery.

  4. Acetate selective fluorescent turn-on sensors derived using vitamin B6 cofactor pyridoxal-5-phosphate

    Science.gov (United States)

    Sharma, Darshna; Kuba, Aman; Thomas, Rini; Ashok Kumar, S. K.; Kuwar, Anil; Choi, Heung-Jin; Sahoo, Suban K.

    2016-03-01

    Two new Schiff base receptors have been synthesized by condensation of pyridoxal-5-phosphate with 2-aminophenol (L1) or aniline (L2). In DMSO, the receptors showed both chromogenic and 'turn-on' fluorescence responses selectively in the presence of AcO- and F-. However, in mixed DMSO-H2O medium, the receptors showed AcO- selective 'turn-on' fluorescence without any interference from other tested anions including F-. The detection limit for AcO- was found to be 7.37 μM and 22.9 μM using the receptors L1 and L2, respectively.

  5. Synthesis of acylamino acid esters of nucleoside 5'-phosphates and their investigation with PMR and CD spectra.

    Science.gov (United States)

    Azhayev, A V; Popovkina, S V; Tarussova, N B; Kirpichnikov, M P; Florentiev, V L; Krayevsky, A A; Kukhanova, M K; Gottikh, B P

    1977-01-01

    The acylamino acid esters of nucleoside 5'-phosphates are synthesized via condensation of N-(N'-acylaminoacyl) imidazoles with nucleoside 5'-phosphates. The PMR and CD spectra of the esters obtained are studied. The 3'-isomers of the substances under study are observed to have a shift in the conformational N in equilibrium S equilibrium of the carbohydrate moiety in favour of the S-form as compared to the initial nucleosides and their 2'-acyl esters. PMID:909771

  6. Electroencephalographic and seizure manifestations of pyridoxal 5'-phosphate-dependent epilepsy.

    Science.gov (United States)

    Veerapandiyan, Aravindhan; Winchester, Sara A; Gallentine, William B; Smith, Edward C; Kansagra, Sujay; Hyland, Keith; Mikati, Mohamad A

    2011-03-01

    We describe the electroencephalographic and clinical seizure manifestations of pyridoxal 5'-phosphate-dependent epilepsy (PLP-DE) in two patients [diagnosis confirmed by low cerebrospinal fluid (CSF) PLP, complete resolution of previously intractable seizures with PLP supplementation, negative pyridoxine-dependent epilepsy CSF biomarkers, and/or positive disease causing pyridox(am)ine 5'-phosphate oxidase gene mutation] along with a comprehensive review of the literature. One patient presented with neonatal tonic status epilepticus with subsequent generalized tonic-clonic seizures, and the second, with refractory complex partial seizures starting at 2 years of age. The pretreatment EEG revealed, interictally, burst suppression, multifocal independent sharp waves, and electrical status epilepticus in sleep. Ictally and interictally, it revealed runs of unilateral spike/slow waves. Previously reported features include burst suppression, myoclonus, tonic seizures, clonic seizures, and spasms. In the appropriate clinical scenario, the aforementioned features should raise the possibility of PLP-DE and appropriate treatment should be initiated. The first late-onset case (at 2 years) of PLP-DE is reported.

  7. Identification of GutQ from Escherichia coli as a D-arabinose 5-phosphate isomerase.

    Science.gov (United States)

    Meredith, Timothy C; Woodard, Ronald W

    2005-10-01

    The glucitol operon (gutAEBDMRQ) of Escherichia coli encodes a phosphoenolpyruvate:sugar phosphotransferase system that metabolizes the hexitol D-glucitol (sorbitol). The functions for all but the last gene, gutQ, have been previously assigned. The high sequence similarity between GutQ and KdsD, a D-arabinose 5-phosphate isomerase (API) from the 3-deoxy-D-manno-octulosonate (KDO)-lipopolysaccharide (LPS) biosynthetic pathway, suggested a putative activity, but its role within the context of the gut operon remained unclear. Accordingly, the enzyme was cloned, overexpressed, and characterized. Recombinant GutQ was shown to indeed be a second copy of API from the E. coli K-12 genome with biochemical properties similar to those of KdsD, catalyzing the reversible aldol-ketol isomerization between D-ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P). Genomic disruptions of each API gene were constructed in E. coli K-12. TCM11[(deltakdsD)] was capable of sustaining essential LPS synthesis at wild-type levels, indicating that GutQ functions as an API inside the cell. The gut operon remained inducible in TCM7[(deltagutQ)], suggesting that GutQ is not directly involved in d-glucitol catabolism. The conditional mutant TCM15[(deltagutQdeltakdsD)] was dependent on exogenous A5P both for LPS synthesis/growth and for upregulation of the gut operon. The phenotype was suppressed by complementation in trans with a plasmid encoding a functional copy of GutQ or by increasing the amount of A5P in the medium. As there is no obvious obligatory role for GutQ in the metabolism of d-glucitol and there is no readily apparent link between D-glucitol metabolism and LPS biosynthesis, it is suggested that A5P is not only a building block for KDO biosynthesis but also may be a regulatory molecule involved in expression of the gut operon.

  8. A nutritional conditional lethal mutant due to pyridoxine 5'-phosphate oxidase deficiency in Drosophila melanogaster.

    Science.gov (United States)

    Chi, Wanhao; Zhang, Li; Du, Wei; Zhuang, Xiaoxi

    2014-04-16

    The concept of auxotrophic complementation has been proposed as an approach to identify genes in essential metabolic pathways in Drosophila melanogaster. However, it has achieved limited success to date, possibly due to the low probability of finding mutations fit with the chemically defined profile. Instead of using the chemically defined culture media lacking specific nutrients, we used bare minimum culture medium, i.e., 4% sucrose, for adult Drosophila. We identified a nutritional conditional lethal mutant and localized a c.95C > A mutation in the Drosophila pyridoxine 5'-phosphate oxidase gene [dPNPO or sugarlethal (sgll)] using meiotic recombination mapping, deficiency mapping, and whole genome sequencing. PNPO converts dietary vitamin B6 such as pyridoxine to its active form pyridoxal 5'-phosphate (PLP). The missense mutation (sgll(95)) results in the substitution of alanine to aspartate (p.Ala32Asp). The sgll(95) flies survive well on complete medium but all die within 6 d on 4% sucrose only diet, which can be rescued by pyridoxine or PLP supplement, suggesting that the mutation does not cause the complete loss of PNPO activity. The sgll knockdown further confirms its function as the Drosophila PNPO. Because better tools for positional cloning and cheaper whole genome sequencing have made the identification of point mutations much easier than before, alleviating the necessity to pinpoint specific metabolic pathways before gene identification, we propose that nutritional conditional screens based on bare minimum growth media like ours represent promising approaches for discovering important genes and mutations in metabolic pathways, thereby accelerating the establishment of in vivo models that recapitulate human metabolic diseases.

  9. Pyridoxal 5'-phosphate is a slow tight binding inhibitor of E. coli pyridoxal kinase.

    Directory of Open Access Journals (Sweden)

    Mohini S Ghatge

    Full Text Available Pyridoxal 5'-phosphate (PLP is a cofactor for dozens of B(6 requiring enzymes. PLP reacts with apo-B(6 enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B(6 enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4'-aldehyde moiety forms covalent adducts with other compounds and non-B(6 proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B(6 enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.

  10. Potential role of pyridoxal-5'-phosphate phosphatase/chronopin in epilepsy.

    Science.gov (United States)

    Kim, Ji-Eun; Kim, Dae-Won; Kwak, Sung-Eun; Kwon, Oh-Shin; Choi, Soo-Young; Kang, Tae-Cheon

    2008-05-01

    Changes in actin dynamics and pyridoxal-5'-phosphate (PLP) metabolisms are closely related to the pathophysiological profiles of the epileptic hippocampus. Recently, it has been reported that PLP phosphatase/chronophin (PLPP/CIN) directly dephosphorylates actin-depolymerizing factor (ADF)/cofilin as well as PLP. In the present study, therefore, we have investigated whether PLPP/CIN is linked to the dynamics of actin filament assembly and the excitability in the rat hippocampus. In control animals, pyridoxine chloride (PNP) treatment increased PLPP/CIN immunoreactivity only in astrocytes, which did not affect electrophysiological properties. Following status epilepticus, the PLPP/CIN protein level increased in granule cells and reactive astrocytes. These changes in PLPP/CIN protein level showed an inverse correlation with phospho-ADF (pADF)/cofilin levels and F-actin content. These changes were also accompanied by alterations in the excitability ratio and paired-pulse inhibition. Transduction of PLPP/CIN by Tat-PLPP/CIN showed similar effects on pADF/cofilin levels, F-actin content and excitability ratio in normal animals. These findings suggest that PLPP/CIN-mediated actin dynamics may play an important role in the changes of morphological properties and excitability of the epileptic hippocampus.

  11. Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production.

    Science.gov (United States)

    Zhou, Kang; Zou, Ruiyang; Stephanopoulos, Gregory; Too, Heng-Phon

    2012-01-01

    Isoprenoids are natural products that are all derived from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). These precursors are synthesized either by the mevalonate (MVA) pathway or the 1-Deoxy-D-Xylulose 5-Phosphate (DXP) pathway. Metabolic engineering of microbes has enabled overproduction of various isoprenoid products from the DXP pathway including lycopene, artemisinic acid, taxadiene and levopimaradiene. To date, there is no method to accurately measure all the DXP metabolic intermediates simultaneously so as to enable the identification of potential flux limiting steps. In this study, a solid phase extraction coupled with ultra performance liquid chromatography mass spectrometry (SPE UPLC-MS) method was developed. This method was used to measure the DXP intermediates in genetically engineered E. coli. Unexpectedly, methylerythritol cyclodiphosphate (MEC) was found to efflux when certain enzymes of the pathway were over-expressed, demonstrating the existence of a novel competing pathway branch in the DXP metabolism. Guided by these findings, ispG was overexpressed and was found to effectively reduce the efflux of MEC inside the cells, resulting in a significant increase in downstream isoprenoid production. This study demonstrated the necessity to quantify metabolites enabling the identification of a hitherto unrecognized pathway and provided useful insights into rational design in metabolic engineering.

  12. Metabolite profiling identified methylerythritol cyclodiphosphate efflux as a limiting step in microbial isoprenoid production.

    Directory of Open Access Journals (Sweden)

    Kang Zhou

    Full Text Available Isoprenoids are natural products that are all derived from isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP. These precursors are synthesized either by the mevalonate (MVA pathway or the 1-Deoxy-D-Xylulose 5-Phosphate (DXP pathway. Metabolic engineering of microbes has enabled overproduction of various isoprenoid products from the DXP pathway including lycopene, artemisinic acid, taxadiene and levopimaradiene. To date, there is no method to accurately measure all the DXP metabolic intermediates simultaneously so as to enable the identification of potential flux limiting steps. In this study, a solid phase extraction coupled with ultra performance liquid chromatography mass spectrometry (SPE UPLC-MS method was developed. This method was used to measure the DXP intermediates in genetically engineered E. coli. Unexpectedly, methylerythritol cyclodiphosphate (MEC was found to efflux when certain enzymes of the pathway were over-expressed, demonstrating the existence of a novel competing pathway branch in the DXP metabolism. Guided by these findings, ispG was overexpressed and was found to effectively reduce the efflux of MEC inside the cells, resulting in a significant increase in downstream isoprenoid production. This study demonstrated the necessity to quantify metabolites enabling the identification of a hitherto unrecognized pathway and provided useful insights into rational design in metabolic engineering.

  13. Zibibbo nero characterization, a red-wine grape revertant of muscat of Alexandria.

    Science.gov (United States)

    De Lorenzis, Gabriella; Squadrito, Margherita; Brancadoro, Lucio; Scienza, Attilio

    2015-03-01

    Muscat of Alexandria is known in Italy as Zibibbo. Zibibbo nero, red-wine grapes, is a sport mutation of Zibibbo variety. A biochemical and molecular characterization of berry colour (VvMybA1 and VvMybA2 genes, Vitis vinifera MYeloBlastosis) and aroma Muscat (VvDXS gene, 1-deoxy-D-xylulose 5-phosphate synthase) traits in both Zibibbo cultivars was performed, as well as ampelographic and genetic identification analyses. Molecular investigations were performed also for two putative Zibibbo parents (Moscato Bianco and Triboto), in order to prove the white-to-red shift of the red-skinned mutant. Ampelographic and genetic analysis demonstrated the high similarity between Zibibbo and Zibibbo nero, as well as a comparable aroma profile, characterized mainly by high content of linalool, geranic acid and geraniol (about 70 %). The Zibibbo nero anthocyanin profile was characterized by a high proportion in cyanidin-3-O-glucoside (about 69.23 %). The molecular characterization of VvMybA1 and VvMybA2 locus detected non-functional alleles for white-skinned samples, while also the functional alleles were observed for red-skinned samples. About the VvDXS locus, the aromatic varieties showed the typical pattern of Muscat variety, while Triboto (Zibibbo parent) showed the non-Muscat-like flavour pattern. The colour locus structure of Zibibbo and its putative parents suggested that Zibibbo nero is a berry colour revertant of Zibibbo.

  14. Hydrogen isotopic differences between C3 and C4 land plant lipids: consequences of compartmentation in C4 photosynthetic chemistry and C3 photorespiration.

    Science.gov (United States)

    Zhou, Youping; Grice, Kliti; Stuart-Williams, Hilary; Hocart, Charles H; Gessler, Arthur; Farquhar, Graham D

    2016-12-01

    The (2) H/(1) H ratio of carbon-bound H in biolipids holds potential for probing plant lipid biosynthesis and metabolism. The biochemical mechanism underlying the isotopic differences between lipids from C3 and C4 plants is still poorly understood. GC-pyrolysis-IRMS (gas chromatography-pyrolysis-isotope ratio mass spectrometry) measurement of the (2) H/(1) H ratio of leaf lipids from controlled and field grown plants indicates that the biochemical isotopic fractionation (ε(2) Hlipid_biochem ) differed between C3 and C4 plants in a pathway-dependent manner: ε(2) HC4  > ε(2) HC3 for the acetogenic pathway, ε(2) HC4  photorespiration in C4 M and BS cells both result in C4 M chloroplastic pyruvate - the precursor for acetogenic pathway - being more depleted in (2) H relative to pyruvate in C3 cells. In addition, compartmentation in C4 plants also results in (i) the transferable H of NADPH being enriched in (2) H in C4 M chloroplasts compared with that in C3 chloroplasts for the 1-deoxy-D-xylulose 5-phosphate pathway pathway and (ii) pyruvate relatively (2) H-enriched being used for the mevalonic acid pathway in the cytosol of BS cells in comparison with that in C3 cells.

  15. Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis.

    Science.gov (United States)

    Pokhilko, Alexandra; Bou-Torrent, Jordi; Pulido, Pablo; Rodríguez-Concepción, Manuel; Ebenhöh, Oliver

    2015-05-01

    Isoprenoid molecules are essential elements of plant metabolism. Many important plant isoprenoids, such as chlorophylls, carotenoids, tocopherols, prenylated quinones and hormones are synthesised in chloroplasts via the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway. Here we develop a mathematical model of diurnal regulation of the MEP pathway in Arabidopsis thaliana. We used both experimental and theoretical approaches to integrate mechanisms potentially involved in the diurnal control of the pathway. Our data show that flux through the MEP pathway is accelerated in light due to the photosynthesis-dependent supply of metabolic substrates of the pathway and the transcriptional regulation of key biosynthetic genes by the circadian clock. We also demonstrate that feedback regulation of both the activity and the abundance of the first enzyme of the MEP pathway (1-deoxy-D-xylulose 5-phosphate synthase, DXS) by pathway products stabilizes the flux against changes in substrate supply and adjusts the flux according to product demand under normal growth conditions. These data illustrate the central relevance of photosynthesis, the circadian clock and feedback control of DXS for the diurnal regulation of the MEP pathway.

  16. Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway.

    Science.gov (United States)

    Guevara-García, Arturo; San Román, Carolina; Arroyo, Analilia; Cortés, María Elena; de la Luz Gutiérrez-Nava, María; León, Patricia

    2005-02-01

    The biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, the two building blocks for isoprenoid biosynthesis, occurs by two independent pathways in plants. The mevalonic pathway operates in the cytoplasm, and the methyl-d-erythritol 4-phosphate (MEP) pathway operates in plastids. Plastidic isoprenoids play essential roles in plant growth and development. Plants must regulate the biosynthesis of isoprenoids to fulfill metabolic requirements in specific tissues and developmental conditions. The regulatory events that modulate the plant MEP pathway are not well understood. In this article, we demonstrate that the CHLOROPLAST BIOGENESIS6 (CLB6) gene, previously shown to be required for chloroplast development, encodes 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase, the last-acting enzyme of the MEP pathway. Comparative analysis of the expression levels of all MEP pathway gene transcripts and proteins in the clb6-1 mutant background revealed that posttranscriptional control modulates the levels of different proteins in this central pathway. Posttranscriptional regulation was also found during seedling development and during fosmidomycin inhibition of the pathway. Our results show that the first enzyme of the pathway, 1-deoxy-d-xylulose 5-phosphate synthase, is feedback regulated in response to the interruption of the flow of metabolites through the MEP pathway.

  17. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures.

    Science.gov (United States)

    Kai, Guoyin; Xu, Hui; Zhou, Congcong; Liao, Pan; Xiao, Jianbo; Luo, Xiuqin; You, Lijia; Zhang, Lin

    2011-05-01

    Tanshinone is a group of active diterpenes widely used in treatment of cardiovascular diseases. Here, we report the introduction of genes encoding 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and geranylgeranyl diphosphate synthase (GGPPS) involved in tanshinone biosynthesis into Salvia miltiorrhiza hairy roots by Agrobacterium-mediated gene transfer technology. Overexpression of SmGGPPS and/or SmHMGR as well as SmDXS in transgenic hairy root lines can significantly enhance the production of tanshinone to levels higher than that of the control (Ppushing effect than SmHMGR in tanshinone production, while SmGGPPS plays a more important role in stimulating tanshinone accumulation than the upstream enzyme SmHMGR or SmDXS in S. miltiorrhiza. Co-expression of SmHMGR and SmGGPPS resulted in highest production of tanshinone (about 2.727 mg/g dw) in line HG9, which was about 4.74-fold higher than that of the control (0.475 mg/g dw). All the tested transgenic hairy root lines showed higher antioxidant activity than the control. To our knowledge, this is the first report on enhancement of tanshinone content and antioxidant activity achieved through metabolic engineering of hairy roots by push-pull strategy in S. miltiorrhiza.

  18. Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli.

    Science.gov (United States)

    Jung, Juyoung; Lim, Jae Hyung; Kim, Se Yeon; Im, Dae-Kyun; Seok, Joo Yeon; Lee, Seung-Jae V; Oh, Min-Kyu; Jung, Gyoo Yeol

    2016-11-01

    Biosynthesis of isoprenoids via the 1-deoxy-D-xylulose-5-phosphate (DXP) pathway requires equimolar glyceraldehyde 3-phosphate and pyruvate to divert carbon flux toward the products of interest. Here, we demonstrate that precursor balancing is one of the critical steps for the production of isoprenoids in Escherichia coli. First, the implementation of the synthetic lycopene production pathway as a model system and the amplification of the native DXP pathway were accomplished using synthetic constitutive promoters and redesigned 5'-untranslated regions (5'-UTRs). Next, fine-controlled precursor balancing was investigated by tuning phosphoenolpyruvate synthase (PpsA) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results showed that tuning-down of gapA improved the specific lycopene content by 45% compared to the overexpression of ppsA. The specific lycopene content in the strains with down-regulated gapA increased by 97% compared to that in the parental strain. Our results indicate that gapA is the best target for precursor balancing to increase biosynthesis of isoprenoids.

  19. Enhanced Diterpene Tanshinone Accumulation and Bioactivity of Transgenic Salvia miltiorrhiza Hairy Roots by Pathway Engineering.

    Science.gov (United States)

    Shi, Min; Luo, Xiuqin; Ju, Guanhua; Li, Leilei; Huang, Shengxiong; Zhang, Tong; Wang, Huizhong; Kai, Guoyin

    2016-03-30

    Tanshinones are health-promoting diterpenoids found in Salvia miltiorrhiza and have wide applications. Here, SmGGPPS (geranylgeranyl diphosphate synthase) and SmDXSII (1-deoxy-D-xylulose-5-phosphate synthase) were introduced into hairy roots of S. miltiorrhiza. Overexpression of SmGGPPS and SmDXSII in hairy roots produces higher levels of tanshinone than control and single-gene transformed lines; tanshinone production in the double-gene transformed line GDII10 reached 12.93 mg/g dry weight, which is the highest tanshinone content that has been achieved through genetic engineering. Furthermore, transgenic hairy root lines showed higher antioxidant and antitumor activities than control lines. In addition, contents of chlorophylls, carotenoids, indoleacetic acid, and gibberellins were significantly elevated in transgenic Arabidopsis thaliana plants. These results demonstrate a promising method to improve the production of diterpenoids including tanshinone as well as other natural plastid-derived isoprenoids in plants by genetic manipulation of the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway.

  20. Effects of Gibberellic Acid on Primary Terpenoids and △9-Tetrahydrocannabinol in Cannabis sativa at Flowering Stage

    Institute of Scientific and Technical Information of China (English)

    Hakimeh Mansouri; Zahra Asrar; Mitra Mehrabani

    2009-01-01

    Plants synthesize an astonishing diversity of isoprenoids, some of which play essential roles in photosynthesis, respiration,and the regulation of growth and development. Two independent pathways for the biosynthesis of isoprenoid precursors coexist within the plant cell: the cytosolic mevalonic acid (MVA) pathway and the plastidial methylerythritol phosphate (MEP)pathway. However, little is known about the effects of plant hormones on the regulation of these pathways. In the present study we investigated the effect of gibberellic acid (GA3) on changes in the amounts of many produced terpenoids and the activity of the key enzymes, 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), in these pathways. Our results showed GA3 caused a decrease in DXS activity in both sexes that it wasaccompanied by a decrease in chlorophylls, carotenoids and △9-tetrahydrocannabinol (THC) contents and an increase in α-tocopherol content. The treated plants with GA3 showed an increase in HMGR activity. This increase in HMGR activity was followed by accumulation of stigmasterol and β-sitosterol in male and female plants and campestrol in male plants.The pattern of the changes in the amounts of sterols was exactly similar to the changes in the HMGR activity. These data suggest that GA3 can probably influence the MEP and MVA pathways oppositely, with stimulatory and inhibitory effects on the produced primary terpenoids in MVA and DXS pathways, respectively.

  1. Pyridox(am)ine-5-Phosphate Oxidase Deficiency Treatable Cause of Neonatal Epileptic Encephalopathy With Burst Suppression: Case Report and Review of the Literature.

    Science.gov (United States)

    Guerin, Andrea; Aziz, Aly S; Mutch, Carly; Lewis, Jillian; Go, Cristina Y; Mercimek-Mahmutoglu, Saadet

    2015-08-01

    Pyridox(am)ine-5-phosphate oxidase deficiency is an autosomal recessive disorder of pyridoxine metabolism. Intractable neonatal epileptic encephalopathy is the classical presentation. Pyridoxal-5-phosphate or pyridoxine supplementation improves symptoms. We report a patient with myoclonic and tonic seizures at the age of 1 hour. Pyridoxal-5-phosphate was started on the first day of life and seizures stopped at the age of 3 days, but encephalopathy persisted for 4 weeks. She had normal neurodevelopmental outcome at the age of 12 months on pyridoxal-5-phosphate monotherapy. She had novel homozygous pathogenic frameshift mutation (c.448_451del;p.Pro150Argfs*27) in the PNPO gene. Long-lasting encephalopathy despite well-controlled clinical seizures does neither confirm nor exclude pyridox(am)ine-5-phosphate oxidase deficiency. Normal neurodevelopmental outcome of our patient emphasizes the importance of pyridoxal-5-phosphate treatment. Pyridox(am)ine-5-phosphate oxidase deficiency should be included in the differential diagnosis of Ohtahara syndrome and neonatal myoclonic encephalopathy as a treatable underlying cause. In addition, we reviewed the literature for pyridox(am)ine-5-phosphate oxidase deficiency and summarized herein all confirmed cases.

  2. Prevention of the immune agglutination of methyl acetimidate-reacted sickle erythrocytes by prior reaction with pyridoxal 5'-phosphate.

    Science.gov (United States)

    Chao, T L; Berenfeld, M R

    1981-06-10

    The appearance of an immune response in some sickle cell anemia patients to reinfused autologous erythrocytes which had been treated with methyl acetimidate (Gabuzda, T. G., Chao, T. L., Berenfeld, M. R., and Gelbart, T. (1980) Blood 56, 1041--1047) was a serious impediment to the clinical application of this reagent as an extracorporeal antisickling agent. The immune reaction was doubtlessly due to acetamidination of membrane protein amino groups. Protection of these amino groups with a reversible reagent prior to treatment of the cells with methyl acetimidate should prevent the antigenic reaction. This result was realized by preequilibration of erythrocytes with pyridoxal 5'-phosphate prior to addition of methyl acetimidate. Subsequent washing of the cells to remove excess reagents and to hydrolyze the pyridoxal 5'-phosphate/membrane protein Schiff base adduct regenerates native protein amino groups of the erythrocyte membrane.

  3. Experimental Evidence for a Revision in the Annotation of Putative Pyridoxamine 5'-Phosphate Oxidases P(N/MP from Fungi.

    Directory of Open Access Journals (Sweden)

    Tatiana Domitrovic

    Full Text Available Pyridoxinamine 5'-phosphate oxidases (P(N/MP oxidases that bind flavin mononucleotide (FMN and oxidize pyridoxine 5'-phosphate or pyridoxamine 5'-phosphate to form pyridoxal 5'-phosphate (PLP are an important class of enzymes that play a central role in cell metabolism. Failure to generate an adequate supply of PLP is very detrimental to most organisms and is often clinically manifested as a neurological disorder in mammals. In this study, we analyzed the function of YLR456W and YPR172W, two homologous genes of unknown function from S. cerevisiae that have been annotated as putative P(N/MP oxidases based on sequence homology. Different experimental approaches indicated that neither protein catalyzes PLP formation nor binds FMN. On the other hand, our analysis confirmed the enzymatic activity of Pdx3, the S. cerevisiae protein previously implicated in PLP biosynthesis by genetic and structural characterization. After a careful sequence analysis comparing the putative and confirmed P(N/MP oxidases, we found that the protein domain (PF01243 that led to the YLR456W and YPR172W annotation is a poor indicator of P(N/MP oxidase activity. We suggest that a combination of two Pfam domains (PF01243 and PF10590 present in Pdx3 and other confirmed P(N/MP oxidases would be a stronger predictor of this molecular function. This work exemplifies the importance of experimental validation to rectify genome annotation and proposes a revision in the annotation of at least 400 sequences from a wide variety of fungal species that are homologous to YLR456W and are currently misrepresented as putative P(N/MP oxidases.

  4. Phosphoinositide 5-Phosphate and Phosphoinositide 4-Phosphate Trigger Distinct Specific Responses of Arabidopsis Genes: Genome-Wide Expression Analyses

    OpenAIRE

    2006-01-01

    Phosphoinositide phosphates, PtdInsP, are important components of the cell lipid pool that can function as messengers in diverse cellular processes. Lack of information on downstream targets, however, has impeded our understanding of the potential of lipid-signaling to influence gene activity. Our goals here were to identify genes that altered expression in the presence of two isomeric monophosphate lipid messengers (Phosphoinositide 5-Phosphate, PtdIns(5)P, and Phosphoinositide 4-Phosphate, ...

  5. A unique arabinose 5-phosphate isomerase found within a genomic island associated with the uropathogenicity of Escherichia coli CFT073.

    Science.gov (United States)

    Mosberg, Joshua A; Yep, Alejandra; Meredith, Timothy C; Smith, Sara; Wang, Pan-Fen; Holler, Tod P; Mobley, Harry L T; Woodard, Ronald W

    2011-06-01

    Previous studies showed that deletion of genes c3405 to c3410 from PAI-metV, a genomic island from Escherichia coli CFT073, results in a strain that fails to compete with wild-type CFT073 after a transurethral cochallenge in mice and is deficient in the ability to independently colonize the mouse kidney. Our analysis of c3405 to c3410 suggests that these genes constitute an operon with a role in the internalization and utilization of an unknown carbohydrate. This operon is not found in E. coli K-12 but is present in a small number of pathogenic E. coli and Shigella boydii strains. One of the genes, c3406, encodes a protein with significant homology to the sugar isomerase domain of arabinose 5-phosphate isomerases but lacking the tandem cystathionine beta-synthase domains found in the other arabinose 5-phosphate isomerases of E. coli. We prepared recombinant c3406 protein, found it to possess arabinose 5-phosphate isomerase activity, and characterized this activity in detail. We also constructed a c3406 deletion mutant of E. coli CFT073 and demonstrated that this deletion mutant was still able to compete with wild-type CFT073 in a transurethral cochallenge in mice and could colonize the mouse kidney. These results demonstrate that the presence of c3406 is not essential for a pathogenic phenotype.

  6. Characterization of three putative xylulose 5-phosphate/fructose 6-phosphate phosphoketolases in the cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Moriyama, Takashi; Tajima, Naoyuki; Sekine, Kohsuke; Sato, Naoki

    2015-01-01

    Xylulose 5-phosphate/fructose 6-phosphate phosphoketolase (Xfp) is a key enzyme in the central carbohydrate metabolism in heterofermentative bacteria, in which enzymatic property of Xfps is well characterized. This is not the case in other microbes. The cyanobacterium Anabaena sp. PCC 7120 possesses three putative genes encoding Xfp, all1483, all2567, and alr1850. We purified three putative Xfps as recombinant proteins. The results of gel filtration indicated that these proteins form homomultimer complex. All1483 and All2567 showed phosphoketolase activity, whereas Alr1850 did not show the activity. Kinetic analyses demonstrated that substrates, fructose 6-phosphate and inorganic phosphate, are cooperatively bound to enzymes positively and negatively, respectively.

  7. Molecular cloning and enzymological characterization of pyridoxal 5'-phosphate independent aspartate racemase from hyperthermophilic archaeon Thermococcus litoralis DSM 5473.

    Science.gov (United States)

    Washio, Tsubasa; Kato, Shiro; Oikawa, Tadao

    2016-09-01

    We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5'-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on L-cysteic acid and L-cysteine sulfinic acid in addition to D- and L-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. D-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells.

  8. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: a phylogenetic analysis of archaeal genomes

    Directory of Open Access Journals (Sweden)

    Tim Soderberg

    2005-01-01

    Full Text Available A phylogenetic analysis of the genes encoding enzymes in the pentose phosphate pathway (PPP, the ribulose monophosphate (RuMP pathway, and the chorismate pathway of aromatic amino acid biosynthesis, employing data from 13 complete archaeal genomes, provides a potential explanation for the enigmatic phylogenetic patterns of the PPP genes in archaea. Genomic and biochemical evidence suggests that three archaeal species (Methanocaldococcus jannaschii, Thermoplasma acidophilum and Thermoplasma volcanium produce ribose-5-phosphate via the nonoxidative PPP (NOPPP, whereas nine species apparently lack an NOPPP but may employ a reverse RuMP pathway for pentose synthesis. One species (Halobacterium sp. NRC-1 lacks both the NOPPP and the RuMP pathway but may possess a modified oxidative PPP (OPPP, the details of which are not yet known. The presence of transketolase in several archaeal species that are missing the other two NOPPP genes can be explained by the existence of differing requirements for erythrose-4-phosphate (E4P among archaea: six species use transketolase to make E4P as a precursor to aromatic amino acids, six species apparently have an alternate biosynthetic pathway and may not require the ability to make E4P, and one species (Pyrococcus horikoshii probably does not synthesize aromatic amino acids at all.

  9. Large-Scale Domain Motions and Pyridoxal-5'-Phosphate Assisted Radical Catalysis in Coenzyme B12-Dependent Aminomutases

    Directory of Open Access Journals (Sweden)

    Amarendra Nath Maity

    2014-02-01

    Full Text Available Lysine 5,6-aminomutase (5,6-LAM and ornithine 4,5-aminomutase (4,5-OAM are two of the rare enzymes that use assistance of two vitamins as cofactors. These enzymes employ radical generating capability of coenzyme B12 (5'-deoxyadenosylcobalamin, dAdoCbl and ability of pyridoxal-5'-phosphate (PLP, vitamin B6 to stabilize high-energy intermediates for performing challenging 1,2-amino rearrangements between adjacent carbons. A large-scale domain movement is required for interconversion between the catalytically inactive open form and the catalytically active closed form. In spite of all the similarities, these enzymes differ in substrate specificities. 4,5-OAM is highly specific for D-ornithine as a substrate while 5,6-LAM can accept D-lysine and L-β-lysine. This review focuses on recent computational, spectroscopic and structural studies of these enzymes and their implications on the related enzymes. Additionally, we also discuss the potential biosynthetic application of 5,6-LAM.

  10. The effect of pyridoxal-5-phosphate on serum alanine aminotransferase activity in dogs suffering from canine babesiosis

    Directory of Open Access Journals (Sweden)

    E.C. Myburgh

    2009-09-01

    Full Text Available Accurate measurements of serum aminotransferase (ALT activity in dogs relies on the endogenous pro-enzyme pyridoxal 5-phosphate (P5P. The purpose of this study was to determine whether the exclusion of P5P from the analytical method causes an underestimation of serum ALT activity in dogs suffering from babesiosis and in those manifesting evidence of hepatocellular damage, and to determine if anorexia causes sufficient P5P depletion to affect in vitro serum ALT activity. One-hundred-and-twenty healthy control dogs and 105 Babesia-infected dogs were included in the study. Two methods for ALT measurement were used: Method 1 included P5P, and Method 2 excluded P5P from the reaction mixture. Higher serum ALT activity was measured with Method 1 in the Babesia-infected dogs (P < 0.001, as well as in 14 dogs with suspected hepatocellular damage (P = 0.03. Duration of anorexia had no effect, irrespective of the method used. Although inclusion of P5P to the reaction mixture consistently resulted in higher measured serum ALT activity, the differences were too small to have led to incorrect diagnoses in the Babesia-infected dogs suspected of liver disease.

  11. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  12. Efficient second strand cleavage during Holliday junction resolution by RuvC requires both increased junction flexibility and an exposed 5' phosphate.

    Directory of Open Access Journals (Sweden)

    Fekret Osman

    Full Text Available BACKGROUND: Holliday junction (HJ resolution is a critical step during homologous recombination. In Escherichia coli this job is performed by a member of the RNase H/Integrase superfamily called RuvC, whereas in Schizosaccharomyces pombe it has been attributed to the XPF family member Mus81-Eme1. HJ resolution is achieved through the sequential cleavage of two strands of like polarity at or close to the junction crossover point. RuvC functions as a dimer, whereas Mus81-Eme1 is thought to function as a dimer of heterodimers. However, in both cases the multimer contains two catalytic sites, which act independently and sequentially during the resolution reaction. To ensure that both strands are cleaved before the nuclease dissociates from the junction, the rate of second strand cleavage is greatly enhanced compared to that of the first. The enhancement of second strand cleavage has been attributed to the increased flexibility of the nicked HJ, which would facilitate rapid engagement of the second active site and scissile bond. Here we have investigated whether other properties of the nicked HJ are important for enhancing second strand cleavage. PRINCIPAL FINDINGS: A comparison of the efficiency of cleavage of nicked HJs with and without a 5' phosphate at the nick site shows that a 5' phosphate is required for most of the enhancement of second strand cleavage by RuvC. In contrast Mus81-Eme1 cleaves nicked HJs with and without a 5' phosphate with equal efficiency, albeit there are differences in cleavage site selection. CONCLUSIONS: Our data show that efficient HJ resolution by RuvC depends on the 5' phosphate revealed by incision of the first strand. This is a hitherto unappreciated factor in promoting accelerated second strand cleavage. However, a 5' phosphate is not a universal requirement since efficient cleavage by Mus81-Eme1 appears to depend solely on the increased junction flexibility that is developed by the first incision.

  13. Drug-induced expansion and differentiation of V gamma 9V delta 2 T cells in vivo: the role of exogenous IL-2.

    Science.gov (United States)

    Casetti, Rita; Perretta, Gemma; Taglioni, Alessandra; Mattei, Maurizio; Colizzi, Vittorio; Dieli, Francesco; D'Offizi, Gianpiero; Malkovsky, Miroslav; Poccia, Fabrizio

    2005-08-01

    Human Vgamma9Vdelta2 T cells recognize nonpeptidic Ags generated by the 1-deoxy-d-xylulose 5-phosphate (many eubacteria, algae, plants, and Apicomplexa) and mevalonate (eukaryotes, archaebacteria, and certain eubacteria) pathways of isoprenoid synthesis. The potent Vgamma9Vdelta2 T cell reactivity 1) against certain cancer cells or 2) induced by infectious agents indicates that therapeutic augmentations of Vgamma9Vdelta2 T cell activities may be clinically beneficial. The functional characteristics of Vgamma9Vdelta2 T cells from Macaca fascicularis (cynomolgus monkey) are very similar to those from Homo sapiens. We have found that the i.v. administration of nitrogen-containing bisphosphonate or pyrophosphomonoester drugs into cynomolgus monkeys combined with s.c. low-dose (6 x 10(5) U/animal) IL-2 induces a large pool of CD27+ and CD27- effector/memory T cells in the peripheral blood of treated animals. The administration of these drugs in the absence of IL-2 is substantially less effective, indicating the importance of additional exogenous costimuli. Shortly after the costimulatory IL-2 treatment, only gammadelta (but not alphabeta) T cells expressed the CD69 activation marker, indicating that Vgamma9Vdelta2 T lymphocytes are more responsive to low-dose IL-2 than alphabeta T cells. Up to 100-fold increases in the numbers of peripheral blood Vgamma9Vdelta2 T cells were observed in animals receiving the gammadelta stimulatory drug plus IL-2. Moreover, the expanded Vgamma9Vdelta2 T cells were potent Th1 effectors capable of releasing large amounts of IFN-gamma. These results may be relevant for designing novel (or modifying current) immunotherapeutic trials with nitrogen-containing bisphosphonate or pyrophosphomonoester drugs.

  14. UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha x piperita L.).

    Science.gov (United States)

    Dolzhenko, Yuliya; Bertea, Cinzia M; Occhipinti, Andrea; Bossi, Simone; Maffei, Massimo E

    2010-08-02

    Modulation of secondary metabolites by UV-B involves changes in gene expression, enzyme activity and accumulation of defence metabolites. After exposing peppermint (Mentha x piperita L.) plants grown in field (FP) and in a growth chamber (GCP) to UV-B irradiation, we analysed by qRT-PCR the expression of genes involved in terpenoid biosynthesis and encoding: 1-deoxy-D-xylulose-5-phosphate synthase (Dxs), 2-C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (Mds), isopentenyl diphosphate isomerase (Ippi), geranyl diphosphate synthase (Gpps), (-)-limonene synthase (Ls), (-)-limonene-3-hydroxylase (L3oh), (+)-pulegone reductase (Pr), (-)-menthone reductase (Mr), (+)-menthofuran synthase (Mfs), farnesyl diphosphate synthase (Fpps) and a putative sesquiterpene synthase (S-TPS). GCP always showed a higher terpenoid content with respect to FP. We found that in both FP and GCP, most of these genes were regulated by the UV-B treatment. The amount of most of the essential oil components, which were analysed by gas chromatography-mass spectrometry (GC-MS), was not correlated to gene expression. The total phenol composition was found to be always increased after UV-B irradiation; however, FP always showed a higher phenol content with respect to GCP. Liquid chromatography-mass spectrometry (LC-ESI-MS/MS) analyses revealed the presence of UV-B absorbing flavonoids such as eriocitrin, hesperidin, and kaempferol 7-O-rutinoside whose content significantly increased in UV-B irradiated FP, when compared to GCP. The results of this work show that UV-B irradiation differentially modulates the expression of genes involved in peppermint essential oil biogenesis and the content of UV-B absorbing flavonoids. Plants grown in field were better adapted to increasing UV-B irradiation than plants cultivated in growth chambers. The interplay between terpenoid and phenylpropanoid metabolism is also discussed.

  15. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Zou Ruiyang

    2011-04-01

    Full Text Available Abstract Background Accurate interpretation of quantitative PCR (qPCR data requires normalization using constitutively expressed reference genes. Ribosomal RNA is often used as a reference gene for transcriptional studies in E. coli. However, the choice of reliable reference genes has not been systematically validated. The objective of this study is to identify a set of reliable reference genes for transcription analysis in recombinant protein over-expression studies in E. coli. Results In this study, the meta-analysis of 240 sets of single-channel Affymetrix microarray data representing over-expressions of 63 distinct recombinant proteins in various E. coli strains identified twenty candidate reference genes that were stably expressed across all conditions. The expression of these twenty genes and two commonly used reference genes, rrsA encoding ribosomal RNA 16S and ihfB, was quantified by qPCR in E. coli cells over-expressing four genes of the 1-Deoxy-D-Xylulose 5-Phosphate pathway. From these results, two independent statistical algorithms identified three novel reference genes cysG, hcaT, and idnT but not rrsA and ihfB as highly invariant in two E. coli strains, across different growth temperatures and induction conditions. Transcriptomic data normalized by the geometric average of these three genes demonstrated that genes of the lycopene synthetic pathway maintained steady expression upon enzyme overexpression. In contrast, the use of rrsA or ihfB as reference genes led to the mis-interpretation that lycopene pathway genes were regulated during enzyme over-expression. Conclusion This study identified cysG/hcaT/idnT to be reliable novel reference genes for transcription analysis in recombinant protein producing E. coli.

  16. High-level diterpene production by transient expression in Nicotiana benthamiana

    Science.gov (United States)

    2013-01-01

    Background Characterization of plant terpene synthases is typically done by production of recombinant enzymes in Escherichia coli. This is often difficult due to solubility and codon usage issues. Furthermore, plant terpene synthases which are targeted to the plastids, such as diterpene synthases, have to be shortened in a more or less empirical approach to improve expression. We report here an optimized Agrobacterium-mediated transient expression assay in Nicotiana benthamiana for plant diterpene synthase expression and product analysis. Results Agrobacterium-mediated transient expression of plant diterpene synthases in N. benthamiana led to the accumulation of diterpenes within 3 days of infiltration and with a maximum at 5 days. Over 50% of the products were exported onto the leaf surface, thus considerably facilitating the analysis by reducing the complexity of the extracts. The robustness of the method was tested by expressing three different plant enzymes, cembratrien-ol synthase from Nicotiana sylvestris, casbene synthase from Ricinus communis and levopimaradiene synthase from Gingko biloba. Furthermore, co-expression of a 1-deoxy-D-xylulose-5-phosphate synthase from tomato and a geranylgeranyl diphosphate synthase from tobacco led to a 3.5-fold increase in the amount of cembratrien-ol produced, with maximum yields reaching 2500 ng/cm2. Conclusion With this optimized method for diterpene synthase expression and product analysis, a single infiltrated leaf of N. benthamiana would be sufficient to produce quantities required for the structure elucidation of unknown diterpenes. The method will also be of general use for gene function discovery, pathway reconstitution and metabolic engineering of diterpenoid biosynthesis in plants. PMID:24330621

  17. A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Boursiquot Jean-Michel

    2010-11-01

    Full Text Available Abstract Background The sweet, floral flavor typical of Muscat varieties (Muscats, due to high levels of monoterpenoids (geraniol, linalool and nerol, is highly distinct and has been greatly appreciated both in table grapes and in wine since ancient times. Muscat flavor determination in grape (Vitis vinifera L. has up to now been studied by evaluating monoterpenoid levels through QTL analysis. These studies have revealed co-localization of 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS with the major QTL positioned on chromosome 5. Results We resequenced VvDXS in an ad hoc association population of 148 grape varieties, which included muscat-flavored, aromatic and neutral accessions as well as muscat-like aromatic mutants and non-aromatic offsprings of Muscats. Gene nucleotide diversity and intragenic linkage disequilibrium (LD were evaluated. Structured association analysis revealed three SNPs in moderate LD to be significantly associated with muscat-flavored varieties. We identified a putative causal SNP responsible for a predicted non-neutral substitution and we discuss its possible implications for flavor metabolism. Network analysis revealed a major star-shaped cluster of reconstructed haplotypes unique to muscat-flavored varieties. Moreover, muscat-like aromatic mutants displayed unique non-synonymous mutations near the mutated site of Muscat genotypes. Conclusions This study is a crucial step forward in understanding the genetic regulation of muscat flavor in grapevine and it also sheds light on the domestication history of Muscats. VvDXS appears to be a possible human-selected locus in grapevine domestication and post-domestication. The putative causal SNP identified in Muscat varieties as well as the unique mutations identifying the muscat-like aromatic mutants under study may be immediately applied in marker-assisted breeding programs aimed at enhancing fragrance and aroma complexity respectively in table grape and wine cultivars.

  18. Synthesis of C5 Phosphate Salt%阿朴酯关键中间体 C5磷盐的合成

    Institute of Scientific and Technical Information of China (English)

    刘笑; 吕国锋; 黄国东

    2016-01-01

    β-阿朴-8’-胡萝卜素的应用越来越广,诸多的合成方法各有优缺点,采用C25+C5的合成路线,其关键中体间C5磷盐的合成是一个瓶颈,本文以2-乙烯基丙腈为原料经乙醇为溶剂氰基醇解酯化,溴代后与亚磷酸三乙酯成盐得到C5磷盐纯度达98.70%,总收率达49.80%,具有工艺路线短、原料易得、反应条件温和、收率高的优点。%β-Apo-8 ’-Carotenoic Acid Ethyl Ester has been more widely used today .There are many methods for synthesis of it and each has its advantages and disadvantages.One way is employing C25+C5 to prepare.However, as the key intermediate , the synthesis of C5 phosphate salt is still a bottle-neck issue.C5 phosphate salt was prepared as follows: cyano alcoholysis esterification first took place with 2-ethyl-3-butenenitril as the reactant and ethyl alcohol as the solvent, after bromination, it went to react with triethyl phosphate to produce C5 phosphate salt.It turned out that the purity of the product reached as high as 98.70% and total yield exceeded 49.80%. This approach was characterized by short process.The raw material had the advantages of easy to get , mild reaction conditions and high yield.

  19. [Properties of 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5'- phosphate reductase, a enzyme of the second stage of flavinogenesis in Pichia guilliermondii yeasts].

    Science.gov (United States)

    Logvinenko, E M; Shavlovskiĭ, G M; Zakal'skiĭ, A E; Kontorovskaia, N Iu

    1989-01-01

    2,5-Diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been isolated from cells of Pichia guilliermondii and subjected to 20-fold purification by treating extracts with streptomycin sulphate, frationating proteins (NH4)2SO4 at 45-75% of saturation and chromatography on blue sepharose CL-6B. The use of gel filtration through Sephadex G-150 and chromatography on DEAE-cellulose proved to be less effective for the enzyme purification. It has been established that it is 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5-phosphate but not its dephosphorylated form that is the substrate of the given reductase; Km is equal to 7.10(-5) M. The reaction proceeds in the presence of NADPH or NADH. The enzyme affinity to NADPH (Km = 4.7.10(-5) M) is approximately one order higher than that to NADPH (Km = 5.5.10(-4) M). The enzyme manifests the optimum of action at pH 7.2 and the temperature of 37 degrees C; the molecular weight is 140 kD. EDTA as well as flavins in the concentration of 1.10(-3) M exert no effect on the reductase activity. The enzyme is labile at 4 degrees C and is inactivated in the frozen state at -15 degrees C. The 2.5-diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been also revealed in Torulopsis candida, Debaryomyces klöckeri, Schwanniomyces occidentalis, Eremothecium ashbyii (flavinogenic species) and Candida utilis. Aspergillus nidulans, Neurospora crassa (nonflavinogenic species). The synthesis of this enzyme contrary to other enzymes of the riboflavin biosynthesis is not regulated in flavinogenic yeast by iron ions.

  20. Perinatal hypophosphatasia presenting as neonatal epileptic encephalopathy with abnormal neurotransmitter metabolism secondary to reduced co-factor pyridoxal-5'-phosphate availability.

    Science.gov (United States)

    Balasubramaniam, Shanti; Bowling, Frank; Carpenter, Kevin; Earl, John; Chaitow, Jeffrey; Pitt, James; Mornet, Etienne; Sillence, David; Ellaway, Carolyn

    2010-12-01

    We describe two neonates presenting with perinatal hypophosphatasia and severe epileptic encephalopathy resulting in death. Both had increased levels of urinary vanillactate, indicating functional deficiency of aromatic amino acid decarboxylase, a pyridoxal-5-phosphate (PLP)-dependent enzyme required for dopamine and serotonin biosynthesis. Clinical findings and results of subsequent metabolic investigations were consistent with secondary pyridoxine-deficient encephalopathy. These patients highlight the importance of tissue non-specific alkaline phosphatase in the neuronal PLP-dependent metabolism of neurotransmitters. In addition, the disturbance of PLP metabolism appears to underlie the predominant neurological presentation in our patients. We recommend the measurement of serum alkaline phosphatase (ALP) during the assessment of perinatal seizures.

  1. Enhanced pyridoxal 5'-phosphate synthetic enzyme immunoreactivities do not contribute to GABAergic inhibition in the rat hippocampus following pilocarpine-induced status epilepticus.

    Science.gov (United States)

    Kwak, S-E; Kim, J-E; Kim, D-W; Kwon, O-S; Choi, S-Y; Kang, T-C

    2009-03-31

    To comprehend the role of pyridoxal 5'-phosphate (PLP) in epilepsy or seizure, we investigated whether the expressions of two PLP synthetic enzymes (pyridoxal kinase, PLK; pyridoxine-5'-phosphate oxidase, PNPO) are altered in the hippocampus and whether changes in paired-pulse responses in the hippocampus are associated with altered PLP synthetic enzyme expressions following status epilepticus (SE). PLK and PNPO immunoreactivities were significantly increased in the rat hippocampus accompanied by reductions in paired-pulse inhibition at 1 day and 1 week after SE. Four weeks after SE, PLK and PNPO immunoreactivities in dentate granule cells were similar to those in control animals, while their immunoreactivities were markedly reduced in Cornu Ammonis 1 (CA1) pyramidal cells due to neuronal loss. Linear regression analysis identified a direct proportional relationship between PLK/PNPO immunoreactivity and normalized population spike amplitude ratio in the dentate gyrus and the CA1 region as excluded the data obtained from 4 weeks after SE. These findings indicate that the upregulation of PLK and PNPO immunoreactivities in principal neurons may not be involved in gamma-aminobutyric acid (GABA)ergic inhibition, but rather in enhanced excitability during epileptogenic periods.

  2. Preincubation of serum aspartate aminotransferase with pyridoxal 5'-phosphate in the SMAC: comparison with revised DuPont aca method and recommended IFCC method.

    Science.gov (United States)

    Garber, C C; Feldbruegge, D H; Hoessel, M

    1981-04-01

    The method for continuous-flow assay of aspartate aminotransferase with the Technicon SMAC was modified to include preincubation of the serum enzyme with pyridoxal 5'-phosphate, to be consistent with the recommendations of IFCC and the Standards Committee of AACC. Preliminary estimates of the imprecision of the modified method on SMAC gave day-to-day standard deviations of 5.3 U/L at mean of 48 U/L (n = 66) and 6.2 U/L at 155 U/L (n = 61). Added bilirubin, sodium pyruvate, ascorbic acid, and endogenous lipids did not interfere. Comparison of results for 50 samples by this method with those by the manual IFCC method gave y = 1.1113x - 0.3 U/L, Sy/x = 4.4 U/L, and r = 0.997. Similar data are presented for the revised AST method for the DuPont aca discrete analyzer. Clinical data show that AST activities increase by as much as 200% when the serum is preincubated with pyridoxal 5'-phosphate.

  3. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: a comparative analysis for Leishmaniasis treatment.

    Science.gov (United States)

    Capriles, Priscila V S Z; Baptista, Luiz Phillippe R; Guedes, Isabella A; Guimarães, Ana Carolina R; Custódio, Fabio L; Alves-Ferreira, Marcelo; Dardenne, Laurent E

    2015-02-01

    Leishmaniases are caused by protozoa of the genus Leishmania and are considered the second-highest cause of death worldwide by parasitic infection. The drugs available for treatment in humans are becoming ineffective mainly due to parasite resistance; therefore, it is extremely important to develop a new chemotherapy against these parasites. A crucial aspect of drug design development is the identification and characterization of novel molecular targets. In this work, through an in silico comparative analysis between the genomes of Leishmania major and Homo sapiens, the enzyme ribose 5-phosphate isomerase (R5PI) was indicated as a promising molecular target. R5PI is an important enzyme that acts in the pentose phosphate pathway and catalyzes the interconversion of d-ribose-5-phosphate (R5P) and d-ribulose-5-phosphate (5RP). R5PI activity is found in two analogous groups of enzymes called RpiA (found in H. sapiens) and RpiB (found in L. major). Here, we present the first report of the three-dimensional (3D) structures and active sites of RpiB from L. major (LmRpiB) and RpiA from H. sapiens (HsRpiA). Three-dimensional models were constructed by applying a hybrid methodology that combines comparative and ab initio modeling techniques, and the active site was characterized based on docking studies of the substrates R5P (furanose and ring-opened forms) and 5RP. Our comparative analyses show that these proteins are structural analogs and that distinct residues participate in the interconversion of R5P and 5RP. We propose two distinct reaction mechanisms for the reversible isomerization of R5P to 5RP, which is catalyzed by LmRpiB and HsRpiA. We expect that the present results will be important in guiding future molecular modeling studies to develop new drugs that are specially designed to inhibit the parasitic form of the enzyme without significant effects on the human analog.

  4. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Akana,J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common ({beta}/{alpha}){sub 8}-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn{sup 2+} which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn{sup 2+} and inactive apoenzyme cannot be prepared, the affinity for Zn{sup 2+} is decreased by alanine substitutions for the two histidine residues that coordinate the Zn{sup 2+} ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn{sup 2+}. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn{sup 2+} that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn{sup 2+} and participate as acid/base catalysts

  5. Phosphatidylinositol 5-phosphate 4-kinase type II beta is required for vitamin D receptor-dependent E-cadherin expression in SW480 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kouchi, Zen, E-mail: zkouchi@toyaku.ac.jp [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan); Fujiwara, Yuki [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan); Yamaguchi, Hideki [Division of Metastasis and Invasion Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-city, Saitama 332-0012 (Japan); Nakamura, Yoshikazu; Fukami, Kiyoko [Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-city, Tokyo 192-0392 (Japan)

    2011-05-20

    Highlights: {yields} We analyzed Phosphatidylinositol 5-phosphate kinase II{beta} (PIPKII{beta}) function in cancer. {yields} PIPKII{beta} is required for vitamin D receptor-mediated E-cadherin upregulation in SW480. {yields} PIPKII{beta} suppresses cellular motility through E-cadherin induction in SW480 cells. {yields} Nuclear PIP{sub 2} but not plasma membrane-localized PIP{sub 2} mediates E-cadherin upregulation. -- Abstract: Numerous epidemiological data indicate that vitamin D receptor (VDR) signaling induced by its ligand or active metabolite 1{alpha},25-dihydroxyvitamin D{sub 3} (1{alpha},25(OH){sub 2}D{sub 3}) has anti-cancer activity in several colon cancers. 1{alpha},25(OH){sub 2}D{sub 3} induces the epithelial differentiation of SW480 colon cancer cells expressing VDR (SW480-ADH) by upregulating E-cadherin expression; however, its precise mechanism remains unknown. We found that phosphatidylinositol-5-phosphate 4-kinase type II beta (PIPKII{beta}) but not PIPKII{alpha} is required for VDR-mediated E-cadherin induction in SW480-ADH cells. The syntenin-2 postsynaptic density protein/disc large/zona occludens (PDZ) domain and pleckstrin homology domain of phospholipase C-delta1 (PLC{delta}1 PHD) possess high affinity for phosphatidylinositol-4,5-bisphosphate (PI(4,5)P{sub 2}) mainly localized to the nucleus and plasma membrane, respectively. The expression of syntenin-2 PDZ but not PLC{delta}1 PHD inhibited 1{alpha},25(OH){sub 2}D{sub 3}-induced E-cadherin upregulation, suggesting that nuclear PI(4,5)P{sub 2} production mediates E-cadherin expression through PIPKII{beta} in a VDR-dependent manner. PIPKII{beta} is also involved in the suppression of the cell motility induced by 1{alpha},25(OH){sub 2}D{sub 3}. These results indicate that PIPKII{beta}-mediated PI(4,5)P{sub 2} signaling is important for E-cadherin upregulation and inhibition of cellular motility induced by VDR activation.

  6. Formation of Schiff bases of O-phosphorylethanolamine and O-phospho-D,L-serine with pyridoxal 5'-phosphate. experimental and theoretical studies.

    Science.gov (United States)

    Vilanova, Bartolomé; Gallardo, Jessica M; Caldés, Catalina; Adrover, Miquel; Ortega-Castro, Joaquín; Muñoz, Francisco; Donoso, Josefa

    2012-03-01

    Pyridoxal 5'-phosphate (PLP) is a B(6) vitamer acting as an enzyme cofactor in various reactions of aminoacid metabolism and inhibiting glycation of biomolecules. Nonenzymatic glycation of aminophospholipids alters the stability of lipid bilayers and cell function as a result. Similarly to protein glycation, aminophospholipid glycation initially involves the formation of a Schiff base. In this work, we studied the formation of Schiff bases between PLP and two compounds mimicking the polar head of natural aminophospholipids, namely: O-phosphorylethanolamine and O-phospho-D,L-serine. Based on the results, the pH-dependence of the microscopic constants of the two PLP-aminophosphate systems studied is identical with that for PLP-aminoacid systems. However, the rate and equilibrium formation constants for the Schiff bases of the aminophosphates are low relative to those for the aminoacids. A theoretical study by density functional theory of the formation mechanism for the Schiff bases of PLP with the two aminophospholipid analogues confirmed that the activation energy of formation of the Schiff bases is greater with aminophosphates; on the other hand, that of hydrolysis is essentially similar with aminoacids and aminophosphates.

  7. [Reconstruction of muscle glycogen phosphorylase b from an apoenzyme and pyridoxal-5'-phosphate and its analogs. Interaction of apophosphorylase and the reconstructed enzyme with specific ligands].

    Science.gov (United States)

    Chebotareva, N A; Sugrobova, N P; Bulanova, L N; Poznanskaia, A A; Kurganov, B I; Gunar, V I

    1995-12-01

    Sedimentation methods were used to study the effects of modification of the pyridoxal-5'-phosphate (PLP) molecule at the 5th position on the affinity of reconstituted muscle glycogen phosphorylase b for the substrate (glycogen) and the allosteric inhibitor (FMN) as well as on the enzyme capacity to association induced by AMP. Reconstituted phosphorylase b was obtained with PLP analogs containing at the 5th position -CH2-CH2-COOH (analog I), trans-CH=CH-COOH (analog II) or -C identical to COOH (analog III) residues. Reconstitution of phosphorylase b is accompanied by the recovery of the enzyme quaternary structure. Phosphorylase b reconstituted with PLP or analogs I, II and III is not distinguished practically from the native enzyme in its affinity for glycogen. Substitution of the native coenzyme in the phosphorylase molecule with any tested PLP analog leads to lower enzyme affinity for FMN. Microscopic dissociation constants of the FMN-enzyme complexes increase in the following order: enzyme.I < enzyme.II < enzyme.III. Phosphorylase b reconstituted with analogs I, II and III differs substantially from the native enzyme in its capacity to association in the presence of 1 mM AMP: the reconstituted enzyme is represented practically by only the tetrameric form.

  8. Method for Assaying the Lipid Kinase Phosphatidylinositol-5-phosphate 4-kinase α in Quantitative High-Throughput Screening (qHTS) Bioluminescent Format

    Science.gov (United States)

    Davis, Mindy I.; Sasaki, Atsuo T.; Simeonov, Anton

    2015-01-01

    Summary ipid kinases are important regulators of a variety of cellular processes and their dysregulation causes diseases such as cancer and metabolic diseases. Distinct lipid kinases regulate the seven different phosphorylated forms of phosphatidylinositol (PtdIns). Some lipid kinases utilize long-chain lipid substrates that have limited solubility in aqueous solutions, which can lead to difficulties in developing a robust and miniaturizable biochemical assay. The ability to prepare the lipid substrate and develop assays to identify modulators of lipid kinases is important and is the focus of this methods chapter. Herein, we describe a method to prepare a DMSO-based lipid mixture that enables the 1536-well screening of the lipid kinase phosphatidylinositol-5-phosphate 4-kinase α (PI5P4Kα) utilizing the D-myo-di16-PtIns(5)P substrate in quantitative high-throughput screening (qHTS) format using the ADP-Glo™ technology to couple the production of ADP to a bioluminescent readout. PMID:26552670

  9. An insight into the sequential, structural and phylogenetic properties of banana 1-aminocyclopropane-1-carboxylate synthase 1 and study of its interaction with pyridoxal-5'-phosphate and aminoethoxyvinylglycine.

    Science.gov (United States)

    Choudhury, Swarup Roy; Singh, Sanjay Kumar; Roy, Sujit; Sengupta, Dibyendu N

    2010-06-01

    In banana, ethylene production for ripening is accompanied by a dramatic increase in 1-aminocyclopropane-1-carboxylate (ACC) content, transcript level of Musa acuminata ACC synthase 1 (MA-ACS1) and the enzymatic activity of ACC synthase 1 at the onset of the climacteric period. MA-ACS1 catalyses the conversion of S-adenosyl-L-methionine (SAM) to ACC, the key regulatory step in ethylene biosynthesis. Multiple sequence alignments of 1-aminocyclopropane-1-carboxylate synthase (ACS) amino acid sequences based on database searches have indicated that MA-ACS1 is a highly conserved protein across the plant kingdom. This report describes an in silico analysis to provide the first important insightful information about the sequential, structural and phylogenetic characteristics of MA-ACS1. The three-dimensional structure of MA-ACS1, constructed based on homology modelling, in combination with the available data enabled a comparative mechanistic analysis of MA-ACS1 to explain the catalytic roles of the conserved and non-conserved active site residues. We have further demonstrated that, as in apple and tomato, banana- ACS1 (MA-ACS1) forms a homodimer and a complex with cofactor pyridoxal-5'-phosphate (PLP) and inhibitor aminoethoxyvinylglycine (AVG). We have also predicted that the residues from the PLP-binding pocket, essential for ligand binding, are mostly conserved across the MA-ACS1 structure and the competitive inhibitor AVG binds at a location adjacent to PLP.

  10. Influence of pyridoxal 5'-phosphate alone and in combination with vigabatrin on brain GABA measured by 1H-NMR-spectroscopy.

    Science.gov (United States)

    Mueller, S G; Weber, O M; Boesiger, P; Wieser, H G

    2001-07-01

    Both iso-forms of the gamma-aminobutyric acid (GABA) synthesising enzyme and also the GABA degrading enzyme need pyridoxal 5'-phosphate (PP) as co-enzyme. The aim of the study was to investigate the influence of PP alone and in combination with various doses of vigabatrin (VGB) on brain GABA levels. In eight healthy subjects 300 mg/d PP and various doses of VGB (range, 1000 mg/d to 4000 mg/d) were given alone or in combination. The GABA+/creatine (Cr) signals in both occipital lobes were measured before treatment, during monotherapy with PP or VGB, and during combination of both using 1H-NMR-spectroscopy (1H-NMRS). PP alone did not change the GABA+/Cr signals. VGB alone increased the GABA+/Cr signals in both hemispheres. The combination PP and low-medium dosed VGB (1000-2000 mg/d) did not increase the GABA+/Cr signals. The effects of the combination of PP and high dosed (3000-4000 mg/d) VGB on the GABA+/Cr signals varied depending on the sequence of the drugs and dose of VGB. PP alone has no effect on the GABA+/Cr signals in healthy volunteers. The combination of PP and low-high dosed VGB had inconsistent effects on the GABA+/Cr signals compared to a VGB monotherapy because PP activates also the GABA-degrading enzyme GABA-transaminase.

  11. Properties of immobilized flavodoxin from Peptostreptococcus elsdenii. An affinity ligand for the purification of riboflavin 5'-phosphate (FMN) and its analogues.

    Science.gov (United States)

    Mayhew, S G; Strating, M J

    1975-11-15

    The small flavoprotein, flavodoxin, isolated from Peptostreptococcus elsdenii, has been covalently coupled to CNBr-activated Sepharose 4B. The immobilized protein replaces ferredoxin as an electron carrier in hydrogen production from dithionite or pyruvate in the presence of ferredoxin-free extracts of P. elsdenii; compared with soluble flavodoxin, its activities in these systems are 13% and 3.5% respectively. Acid treatment reversibly dissociates FMN from the immobilized protein. The dissociation constant of the complex with FMN, determined by fluorimetric titration, is 1.5 (+/- 0.4) nM, and is therefore very little different from that of soluble flavodoxin. Like soluble apoflavodoxin, the immobilized apoprotein is highly specific for flavins with an N-10 side-chain of 5 carbon atoms and a C-5' phosphate group. Approximately half of the flavin impurity in commercial preparations of FMN (12-15% of the total flavin), and similar impurity in synthetic analogues of FMN, is not separated by conventional purification procedures, but it is readily and conveniently removed by affinity chromatography with apoflavodoxin as the immobilized ligand. The immobilized protein is stable for long periods; its capacity for FMN decreases by only 20% after 15 cycles of flavin dissociation and reassociation during several months.

  12. Reaction mechanism of Zn2+-dependent d-serine dehydratase: role of a conserved tyrosine residue interacting with pyridine ring nitrogen of pyridoxal 5'-phosphate.

    Science.gov (United States)

    Ito, Tomokazu; Matsuoka, Mai; Koga, Kazushi; Hemmi, Hisashi; Yoshimura, Tohru

    2014-09-01

    d-Serine dehydratase from Saccharomyces cerevisiae (Dsd1p) is a pyridoxal 5'-phosphate (PLP)- and Zn(2+)-dependent enzyme that catalyzes the dehydration of d-serine to yield pyruvate and ammonia. Dsd1p uses the Tyr residue (Y203) to interact with the pyridine nitrogen of PLP, which is a unique feature of PLP enzymes. To investigate the role of Y203 in catalysis, a series of Y203 mutants was constructed and studied. Mutant enzymes possessing a non-polar or a basic residue instead of Y203 (Y203F, A, S and R) exhibited substantial levels of catalytic activity, and among these, the Y203F mutant had the least impact on catalytic activity. The Y203D exhibited a 10(5)-fold decrease in enzyme activity, and unlike wild-type enzyme, the mutant enzyme favoured the Cα reprotonation before hydroxyl group protonation. Our data show that the Y203 does not participate in the protonation of the pyridine nitrogen (N1) of PLP, and Dsd1p uses the cofactor in an N1-unprotonated state. The unprotonated N1 promotes elimination of the leaving group and evades Cα reprotonation before hydroxyl group protonation.

  13. Quantum mechanics/molecular mechanics studies on the mechanism of action of cofactor pyridoxal 5'-phosphate in ornithine 4,5-aminomutase.

    Science.gov (United States)

    Pang, Jiayun; Scrutton, Nigel S; Sutcliffe, Michael J

    2014-09-01

    A computational study was performed on the experimentally elusive cyclisation step in the cofactor pyridoxal 5'-phosphate (PLP)-dependent D-ornithine 4,5-aminomutase (OAM)-catalysed reaction. Calculations using both model systems and a combined quantum mechanics/molecular mechanics approach suggest that regulation of the cyclic radical intermediate is achieved through the synergy of the intrinsic catalytic power of cofactor PLP and the active site of the enzyme. The captodative effect of PLP is balanced by an enzyme active site that controls the deprotonation of both the pyridine nitrogen atom (N1) and the Schiff-base nitrogen atom (N2). Furthermore, electrostatic interactions between the terminal carboxylate and amino groups of the substrate and Arg297 and Glu81 impose substantial "strain" energy on the orientation of the cyclic intermediate to control its trajectory. In addition the "strain" energy, which appears to be sensitive to both the number of carbon atoms in the substrate/analogue and the position of the radical intermediates, may play a key role in controlling the transition of the enzyme from the closed to the open state. Our results provide new insights into several aspects of the radical mechanism in aminomutase catalysis and broaden our understanding of cofactor PLP-dependent reactions.

  14. Structure of L-Xylulose-5-Phosphate 3-Epimerase (UlaE) from the Anaerobic L-Ascorbate Utilization Pathway of Escherichia coli: Identification of a Novel Phosphate Binding Motif within a TIM Barrel Fold

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Rong; Pineda, Marco; Ajamian, Eunice; Cui, Qizhi; Matte, Allan; Cygler, Miroslaw (McGill); (NRC-Canada)

    2009-01-15

    Three catabolic enzymes, UlaD, UlaE, and UlaF, are involved in a pathway leading to fermentation of L-ascorbate under anaerobic conditions. UlaD catalyzes a {beta}-keto acid decarboxylation reaction to produce L-xylulose-5-phosphate, which undergoes successive epimerization reactions with UlaE (L-xylulose-5-phosphate 3-epimerase) and UlaF (L-ribulose-5-phosphate 4-epimerase), yielding D-xylulose-5-phosphate, an intermediate in the pentose phosphate pathway. We describe here crystallographic studies of UlaE from Escherichia coli O157:H7 that complete the structural characterization of this pathway. UlaE has a triosephosphate isomerase (TIM) barrel fold and forms dimers. The active site is located at the C-terminal ends of the parallel {beta}-strands. The enzyme binds Zn{sup 2+}, which is coordinated by Glu155, Asp185, His211, and Glu251. We identified a phosphate-binding site formed by residues from the {beta}1/{alpha}1 loop and {alpha}3' helix in the N-terminal region. This site differs from the well-characterized phosphate-binding motif found in several TIM barrel superfamilies that is located at strands {beta}7 and {beta}8. The intrinsic flexibility of the active site region is reflected by two different conformations of loops forming part of the substrate-binding site. Based on computational docking of the L-xylulose 5-phosphate substrate to UlaE and structural similarities of the active site of this enzyme to the active sites of other epimerases, a metal-dependent epimerization mechanism for UlaE is proposed, and Glu155 and Glu251 are implicated as catalytic residues. Mutation and activity measurements for structurally equivalent residues in related epimerases supported this mechanistic proposal.

  15. Comparative studies on the properties of tryptophanase and tyrosine phenol-lyase immobilized directly on Sepharose or by use of Sepharose-bound pyridoxal 5'-phosphate.

    Science.gov (United States)

    Fukui, S; Ikeda, S; Fujimura, M; Yamada, H; Kumagai, H

    1975-02-01

    Tryptophanase from Escherichia coli B/qt 7-A and tyrosine phenol-lyase (beta-tyrosinase) from Escherichia intermedia were immobilized on Sepharose 4B by several direct coupling reactions or through pyridoxal 5'-phosphate previously bound to Sepharose. The most active preparation of immobilized tryptophanase was obtained by coupling tetrameric apoenzyme to pyridoxal-P bound on Sepharose at the 6-position through a diazo linkage. This immobilization procedure involves the formation to Schiff base linkage between 4-formyl group of Sepharose-bound pyridoxal-P and the epsilon-amino group of the lysine residue at the active center of one subunit of tetrameric apo-tryptophanase, followed by the fixation of the Schiff base linkage by reduction with NaBH4. In the case of beta-tyrosinase having two catalytic centers, however, this method was not so suitable as the case of tryptophanase. Direct coupling of the apoenzyme to CNBr-activated Sepharose or to a bromoacetyl derivative of Sepharose gave better results. In each case, the affinity for substrate or coenzyme was scarcely influenced by the immobilization. When used repeatedly in a batch system or continuously in a flow system in the absence of added pyridoxal-P, immobilized holo-tryptophanase of holo-beta-tyrosinase gradually lost its original activity; however, supplement of pyridoxal-P to the reaction system restored its initial activity. From the kinetic analyses of these phenomena, the rate constants of coenzyme dissociation from immobilized tryptophanase and beta-tyrosinase were calculated. Upon immobilization, the pH optima of both enzymes shifted 0.5 to 1.0 pH unit to the alkaline side. Both immobilized enzymes showed higher thermal stability and resistance to a denaturing agent such as guinidine-HCl than their free counterpart. Furthermore, the reactivity of sulfhydryl group of beta-tyrosinase, in connection with its coenzyme-binding property, was conveniently studied by use of the immobilized enzyme.

  16. Systems-Wide Prediction of Enzyme Promiscuity Reveals a New Underground Alternative Route for Pyridoxal 5'-Phosphate Production in E. coli.

    Directory of Open Access Journals (Sweden)

    Matthew A Oberhardt

    2016-01-01

    Full Text Available Recent insights suggest that non-specific and/or promiscuous enzymes are common and active across life. Understanding the role of such enzymes is an important open question in biology. Here we develop a genome-wide method, PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous activities of metabolic genes. Enzyme promiscuity is typically studied experimentally using multicopy suppression, in which over-expression of a promiscuous 'replacer' gene rescues lethality caused by inactivation of a 'target' gene. We use PROPER to predict multicopy suppression in Escherichia coli, achieving highly significant overlap with published cases (hypergeometric p = 4.4e-13. We then validate three novel predicted target-replacer gene pairs in new multicopy suppression experiments. We next go beyond PROPER and develop a network-based approach, GEM-PROPER, that integrates PROPER with genome-scale metabolic modeling to predict promiscuous replacements via alternative metabolic pathways. GEM-PROPER predicts a new indirect replacer (thiG for an essential enzyme (pdxB in production of pyridoxal 5'-phosphate (the active form of Vitamin B6, which we validate experimentally via multicopy suppression. We perform a structural analysis of thiG to determine its potential promiscuous active site, which we validate experimentally by inactivating the pertaining residues and showing a loss of replacer activity. Thus, this study is a successful example where a computational investigation leads to a network-based identification of an indirect promiscuous replacement of a key metabolic enzyme, which would have been extremely difficult to identify directly.

  17. Bimetallic magnetic nanoparticle as a new platform for fabrication of pyridoxine and pyridoxal-5'-phosphate imprinted polymer modified high throughput electrochemical sensor.

    Science.gov (United States)

    Patra, Santanu; Roy, Ekta; Das, Ranajit; Karfa, Paramita; Kumar, Sunil; Madhuri, Rashmi; Sharma, Prashant K

    2015-11-15

    The present work describes the fabrication of a selective and sensitive molecularly imprinted polymer (MIP)-based electrochemical sensor using a combination of surface imprinting and nanotechnology. The fabricated sensor was used for the detection of two major components of vitamin B6 i.e. pyridoxine (Py) and pyridoxal-5'-phosphate (PLP) using the same MIP format. Herein, acrylic acid modified zero valent iron nanoparticles were combined with the copper nanoparticle, resulting in vinyl groups modified bimetallic Fe/Cu magnetic nanoparticles (BMNPs). These BMNPs have high surface to volume ratios, higher electro-catalytic activity, and are therefore, a suitable platform to synthesize specific MIP cavities for Py and PLP. Herein, two different MIP formats (for Py and PLP) were synthesized on the surface of vinyl silane modified pencil graphite electrodes by activator regenerated by an electron transfer-atom transfer radical polymerization (ARGET-ATRP) method. The sensor shows a good analytical performance for the detection of Py and PLP by a square wave stripping voltammetric technique (SWSV). The limit of detection (LOD) was calculated to be 0.040 µg L(-1) and 0.043 µg L(-1) for Py and PLP, respectively, at signal to noise ratio of 3. The sensors are highly selective for the templates and can detect them from multivitamin tablets, corn flakes, energy drinks, cerebrospinal fluid (CSF) and blood samples (serum, plasma and whole blood) without any interfering effect, suggesting the clinical applicability of the fabricated sensor. The sensor can also be used as better alternative to the commercially available ELISA kits which are rather complex, less sensitive and difficult to handle.

  18. Engineering of Recombinant Poplar Deoxy-D-Xylulose-5-Phosphate Synthase (PtDXS) by Site-Directed Mutagenesis Improves Its Activity

    Science.gov (United States)

    Banerjee, Aparajita; Preiser, Alyssa L.

    2016-01-01

    Deoxyxylulose 5-phosphate synthase (DXS), a thiamine diphosphate (ThDP) dependent enzyme, plays a regulatory role in the methylerythritol 4-phosphate (MEP) pathway. Isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), the end products of this pathway, inhibit DXS by competing with ThDP. Feedback inhibition of DXS by IDP and DMADP constitutes a significant metabolic regulation of this pathway. The aim of this work was to experimentally test the effect of key residues of recombinant poplar DXS (PtDXS) in binding both ThDP and IDP. This work also described the engineering of PtDXS to improve the enzymatic activity by reducing its inhibition by IDP and DMADP. We have designed and tested modifications of PtDXS in an attempt to reduce inhibition by IDP. This could possibly be valuable by removing a feedback that limits the usefulness of the MEP pathway in biotechnological applications. Both ThDP and IDP use similar interactions for binding at the active site of the enzyme, however, ThDP being a larger molecule has more anchoring sites at the active site of the enzyme as compared to the inhibitors. A predicted enzyme structure was examined to find ligand-enzyme interactions, which are relatively more important for inhibitor-enzyme binding than ThDP-enzyme binding, followed by their modifications so that the binding of the inhibitors can be selectively affected compared to ThDP. Two alanine residues important for binding ThDP and the inhibitors were mutated to glycine. In two of the cases, both the IDP inhibition and the overall activity were increased. In another case, both the IDP inhibition and the overall activity were reduced. This provides proof of concept that it is possible to reduce the feedback from IDP on DXS activity. PMID:27548482

  19. Molecular evolution of B6 enzymes: Binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme

    Directory of Open Access Journals (Sweden)

    Marra Ersilia

    2008-06-01

    Full Text Available Abstract Background The pyridoxal-5'-phosphate (PLP-dependent or vitamin B6-dependent enzymes that catalyze manifold reactions in the metabolism of amino acids belong to no fewer than four evolutionarily independent protein families. The multiple evolutionary origin and the essential mechanistic role of PLP in these enzymes argue for the cofactor having arrived on the evolutionary scene before the emergence of the respective apoenzymes and having played a dominant role in the molecular evolution of the B6 enzyme families. Here we report on an attempt to re-enact the emergence of a PLP-dependent protoenzyme. The starting protein was pancreatic ribonuclease A (RNase, in which active-site Lys41 or Lys7 readily form a covalent adduct with PLP. Results We screened the PLP adduct of wild-type RNase and two variant RNases (K7R and K41R for catalytic effects toward L- and D-amino acids. RNase(K41R-PLP, in which the cofactor is bound through an imine linkage to Lys7, qualifies for a model proto-B6 enzyme by the following criteria: (1 covalent linkage of PLP (internal aldimine; (2 catalytic activity toward amino acids that depends on formation of an imine linkage with the substrate (external aldimine; (3 adjoining binding sites for the cofactor and amino acid moiety that facilitate the transimination reaction of the internal to the external aldimine and stabilize the resulting noncovalent complex of the coenzyme-substrate adduct with the protein; (4 reaction specificity, the only detectable reactions being racemization of diverse amino acids and β-decarboxylation of L-aspartate; (5 acceleration factors for racemization and β-decarboxylation of >103 over and above that of PLP alone; (6 ribonuclease activity that is 103-fold lower than that of wild-type RNase, attenuation of a pre-existing biological activity being indispensable for the further evolution as a PLP-dependent protoenzyme. Conclusion A single amino acid substitution (Lys41Arg and covalent

  20. Proteomic analysis of Pectobacterium carotovorum subsp, carotovorum in the interaction with the host plant Zantedeschia elliotiana ‘ Black magic' in vitro%与黄花马蹄莲互作过程中胡萝卜软腐果胶杆菌的差异表达蛋白分析

    Institute of Scientific and Technical Information of China (English)

    杨钟灵; 钱国良; 蒋欢; 胡白石; 刘凤权; 范加勤

    2011-01-01

    A proteomic approach was applied in this study on the changes of proteins expressed by the pathogen bacteria Pectobacterium carotovorum subsp. Carotovorum( P. c. c)in the course of interation with the host plant tissue( Zantedeschia ellwtiana ' Black magic' )in vitro by using two-dimensional electrophoresis(2-DE) ,mass technology and ImageMaster 2D platinum 5. 0(GE) software. The results showed that, 18. 13% of the total protein spots(70/386) in the gels indicated expression high differentially. Totally 5 proteins were identified by mass spectrometry analysis; it was found that in addition to beta-lactamase ( upregulating exprssed proteins) which was antibiotic protein; other four proteins all belonged to metabolic enzymes, among them, molecular chaperone DnaK and 1-deoxy-D-xylulose-5 -phosphate synthase ( DXS) were proteins specifically expressed; ATP synthase subunit alpha and cysteine synthase were upregulating exprssed proteins.%通过病原菌胡萝卜软腐果胶杆菌胡萝卜亚种与黄花马蹄莲组织的离体互作,运用双向电泳技术、质谱技术及ImageMaster 2D platinum 5.0(GE)软件对互作过程中蛋白质差异表达进行分析.结果表明:70个蛋白点在互作中存在表达差异,占蛋白点总数的18.13%.通过质谱分析发现:2个特异表达蛋白分子伴侣DnaK和1-脱氧木酮糖-5-磷酸合酶(DXS)均为代谢类蛋白;3个显著上调表达蛋白中ATP合酶α亚基和半胱氨酸合酶为代谢类蛋白,而β-内酰胺酶为抗生素类蛋白.

  1. 变异链球菌核糖-5-磷酸异构酶A的表达、纯化与鉴定%Expression, purification and characterization of ribose 5-phosphate isomerase A from Streptococcus mutans

    Institute of Scientific and Technical Information of China (English)

    武文琦; 丛旭珍; 殷爱红; 胡家; 翟方丽; 李慎涛

    2012-01-01

    目的 在大肠杆菌中高效表达变异链球菌核糖-5-磷酸异构酶A( ribose 5-phosphate isomerase A,rpiA ),并对表达产物进行纯化和鉴定.方法 根据GenBank中变异链球菌UA159株基因组rpiA的DNA编码序列,设计PCR引物,扩增变异链球菌核糖-5-磷酸异构酶A的DNA编码序列,将其克隆至pGEX-6p-1载体中,构建重组质粒,将测序正确的重组质粒转化入大肠杆菌BL21 (DE3)中,用异丙基-β-D-硫代吡喃半乳糖苷(isopropyl β-D-1-thiogalactopyranoside,IPTG)诱导表达;对培养温度、IPTG用量、诱导时间等条件进行了优化;用亲和层析、离子交换层析纯化目标蛋白;用SDS-PAGE和质谱对目标蛋白进行鉴定.结果 变异链球菌核糖-5-磷酸异构酶A在大肠杆菌中高效、可溶性表达,经质谱鉴定及SDS-PAGE分析,表达产物为变异链球菌核糖-5-磷酸异构酶A蛋白.经过纯化,得到纯度高达95%的变异链球菌核糖-5-磷酸异构酶A.结论 成功地在大肠杆菌中高效表达了变异链球菌核糖-5-磷酸异构酶A蛋白,并建立了纯化工艺,得到高纯度的重组蛋白,为进一步研究变异链球菌属核糖-5-磷酸异构酶蛋白的生物学活性及功能奠定了基础.%Objective To express, purify and characterize the ribose 5-phosphate isomerase A(rpiA) from Streptococcus muians. Methods A DNA fragment encoding S. mutans ribose 5-phosphate isomerase A was amplified by PCR using the genomic DNA of Streptococcus mutans UA159 as a template. The PCR product was cloned into vector pGEX-6p-l. The construct carrying the coding DNA sequence of rpiA fused with GST was transformed into E. coli BL21 (DE3) , and the fusion protein was expressed by induction with IPTG. The recombinant protein was purified by affinity chromatography and ion exchange chromatography. The purified target protein was identified by SDS-PAGE and MALDI-TOF MS. Results S. mutans ribose 5-phosphate isomerase A was successfully expressed in E. coli in

  2. Homology of pyridoxal-5'-phosphate-dependent aminotransferases with the cobC (cobalamin synthesis), nifS (nitrogen fixation), pabC (p-aminobenzoate synthesis) and malY (abolishing endogenous induction of the maltose system) gene products.

    Science.gov (United States)

    Mehta, P K; Christen, P

    1993-01-15

    Bacterial deletion mutants have indicated that the gene products of cobC, nifS, pabC and malY participate in important metabolic pathways, i.e. cobalamin synthesis, nitrogen fixation, synthesis of p-aminobenzoate and the regulation of the maltose system, respectively. However, the proteins themselves and their specific functions have not yet been identified. In the course of our studies on the evolutionary relationships among aminotransferases, we have found that the above gene products are homologous to aminotransferases. Profile analysis [Gribskov, M., Lüthy, R. & Eisenberg, D. (1990) Methods Enzymol. 183, 146-159] based on the amino acid sequences of certain subgroups of aminotransferases as probes attributed significant Z scores in the range 5-20 SD to the deduced amino acid sequences of the above gene products as included in the protein data base. Reciprocal profile analyses confirmed the homologies. All known aminotransferases are pyridoxal-5'-phosphate-dependent enzymes and catalyze the reversible transfer of amino groups from amino acids to oxo acids. The sequence homologies suggest that the above gene products are aminotransferases or other closely related pyridoxal-5'-phosphate-dependent enzymes probably catalyzing transformations of amino acids involving cleavage of a bond at C alpha.

  3. Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose 5-phosphate binding

    DEFF Research Database (Denmark)

    Willemoës, Martin; Nilsson, Dan; Hove-Jensen, Bjarne

    1996-01-01

    an increase in KM for ribose 5-phosphate in the presence of at least one of the divalent metal ions Mg2+, Mn2+, Co2+, or Cd2+, with the most dramatic changes revealed by the D220E and D220F enzymes in the presence of Co2+ and the D221A enzyme in the presence of Mn2+ or Co2+. The D220F and D221A enzymes both...... showed large decreases in Vapp in the presence of the various divalent metal ions, except for the D221A enzyme in the presence of Co2+. Vapp of the D220E enzyme was similar to that of the wild-type enzyme in the presence of Mg2+, Mn2+, or Cd2+, whereas the Vapp was increased in the presence of Co2+. Vapp...... enzymes were dependent on the metal ion present, suggesting a function of the investigated aspartic acid residues both in the binding of ribose 5-phosphate, possibly via a divalent metal ion, and in the interaction with a divalent metal ion during catalysis...

  4. Purification and characterization of pyridoxal-5'-phosphate hydrolase from tobacco%烟草磷酸吡哆醛水解酶的分离纯化与表征

    Institute of Scientific and Technical Information of China (English)

    马娅萍; 黄龙全; 张剑韵

    2012-01-01

    Pyridoxal-5'-phosphate hydrolase was purified from tobacco by ammonium sulfate,DEAE-Sepharose Fast Flow ion exchange chromatography,Sephadex G-100 gel filtration,SP Sephadex C-25 ion exchange chromatography. Further investigations of pyridoxal-5'-phosphate hydrolase, reported herein, lead to the conclusion that this enzyme was purified approximately 119. 6-fold, the recovery of 28. 49% activity, Sephadex G-100 gel filtration and SDS-PAGE showed that the molecular weight of the enzyme was 49. 6 kDa,and the molecular weight of subunit was approximately 25 kDa; The enzyme had an optimal temperature and pH at 50℃ and 5. 5, respectively. It was enhanced by Mg2+ ,Ca2+ and Mn2+ , yet inhibited by chelating agent EDTA , which inhibited effect was relieved after added Mg2+; under optimal conditions, the Km values for pyridoxal-5'-phosphate (PLP) and pyridoxamine-5 -phos-phate (PMP) were 0. 23 mmol/L,0. 56 mmol/L,respectively.%采用硫酸铵沉淀、DEAE-Sepharose Fast Flow阴离子交换、Sephadex G-100凝胶过滤和SP Sephadex C-25阳离子交换柱层析等步骤,对烟草磷酸吡哆醛水解酶进行了分离纯化.结果表明:该酶被纯化了119.6倍,得率为28.49%,经凝胶过滤和SDS-PAGE测得该酶的全分子量为49.6 kDa,亚基分子量约为25 kDa;该酶最适温度为50℃,最适反应pH为5.5;Mg2+、Ca2+、Mn2+等对该酶有激活作用,金属离子螯合剂EDTA对酶有抑制作用,加入Mg2+后抑制作用得到解除;在最适反应条件下,测得反应底物磷酸吡哆醛(PLP)和磷酸吡哆胺(PMP)的Km值分别为0.23 mmol/L和0.56 mmol/L.

  5. Effection of Pyridoxal- 5 '- phosphate on Determination of Alanine Aminotransferase activities%5'-磷酸吡哆醛对血清丙氨酸氨基转移酶活性测定的影响

    Institute of Scientific and Technical Information of China (English)

    朱柏林

    2012-01-01

    目的 研究丙氨酸氨基转移酶(Alanine Aminotraasferase,ALT) 检测试剂中 5'- 磷酸吡哆醛(Pyrldoxal - 5'-phosphate,PLP )的添加对血清ALT活性测定的影响.方法 以山东潍坊康华生物技术有限公司生产的丙氨酸氨基转移酶试剂(按照IFCC推荐方法配制,不含PLP)和在该品牌试剂中加入5'-磷酸吡哆醛溶液,分别用这两种试剂测定相同的新鲜临床标本280例,并对检测结果进行统计学比较.结果 使用含PLP的IFCC配方试剂较不含 PLP试剂的检测结果明显增高.结论 康华公司生产的丙氨酸氨基转移酶试剂添加PLP比较不添加PLP ALT活性增加近5%-40%,且两种试剂的ALT检测结果不能通过简单系数实现转换.

  6. Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose-5-phosphate binding

    DEFF Research Database (Denmark)

    Willemoës, Martin; Nilsson, Dan; Hove-Jensen, Bjarne

    1996-01-01

    The three conserved aspartic acid residues of the 5-phospho-d-ribosyl a-1-diphosphate binding site (213-GRDCVLVDDMIDTGGT-228) of Escherichia coli phosphoribosyl diphosphate synthetase were studied by analysis of the mutant enzymes D220E, D220F, D221A, D224A, and D224S. The mutant enzymes showed...... an increase in KM for ribose 5-phosphate in the presence of at least one of the divalent metal ions Mg2+, Mn2+, Co2+, or Cd2+, with the most dramatic changes revealed by the D220E and D220F enzymes in the presence of Co2+ and the D221A enzyme in the presence of Mn2+ or Co2+. The D220F and D221A enzymes both...... showed large decreases in Vapp in the presence of the various divalent metal ions, except for the D221A enzyme in the presence of Co2+. Vapp of the D220E enzyme was similar to that of the wild-type enzyme in the presence of Mg2+, Mn2+, or Cd2+, whereas the Vapp was increased in the presence of Co2+. Vapp...

  7. Effects of mutagenesis of aspartic acid residues in the putative phosphoribosyl diphosphate binding site of Escherichia coli phosphoribosyl diphosphate synthetase on metal ion specificity and ribose 5-phosphate binding

    DEFF Research Database (Denmark)

    Willemoës, Martin; Nilsson, Dan; Hove-Jensen, Bjarne

    1996-01-01

    The three conserved aspartic acid residues of the 5-phospho-D-ribosyl α-1-diphosphate binding site (213-GRDCVLVDDMIDTGGT-228) of Escherichia coli phosphoribosyl diphosphate synthetase were studied by analysis of the mutant enzymes D220E, D220F, D221A, D224A, and D224S. The mutant enzymes showed...... an increase in KM for ribose 5-phosphate in the presence of at least one of the divalent metal ions Mg2+, Mn2+, Co2+, or Cd2+, with the most dramatic changes revealed by the D220E and D220F enzymes in the presence of Co2+ and the D221A enzyme in the presence of Mn2+ or Co2+. The D220F and D221A enzymes both...... showed large decreases in Vapp in the presence of the various divalent metal ions, except for the D221A enzyme in the presence of Co2+. Vapp of the D220E enzyme was similar to that of the wild-type enzyme in the presence of Mg2+, Mn2+, or Cd2+, whereas the Vapp was increased in the presence of Co2+. Vapp...

  8. Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system

    NARCIS (Netherlands)

    Posthuma, C.C.; Bader, R.; Engelmann, R.; Postma, P.W.; Hengstenberg, W.; Pouwels, P.H.

    2002-01-01

    Purification of xylulose 5-phosphate phosphoketolase (XpkA), the central enzyme of the phosphoketolase pathway (PKP) in lactic acid bacteria, and cloning and sequence analysis of the encoding gene, xpkA, from Lactobacillus pentosus MD363 are described, xpkA encodes a 788-amino-acid protein with a ca

  9. 番茄dxs基因的克隆及在大肠杆菌中的颜色互补%Cloning of Deoxyoxylulose-5-phosphate Synthase Gene from Tomato and Its Color Complementation in E. coli

    Institute of Scientific and Technical Information of China (English)

    潘夕春; 陈敏; 刘颜; 廖志华

    2007-01-01

    用RT-PCR(反转录-聚合酶链式反应)的方法从番茄中克隆到5-磷酸脱氧木酮糖合成酶(Deoxyoxylulose-5-phosphate synthase, DXS)基因编码区(记为ledxs),并构建了ledxs原核表达载体pTrcLeDXS.将携带番茄红素生物合成途径上香叶基香叶基焦磷酸合成酶(geranylgeranyl pyrophosphate synthase,crtE),八氢番茄红素合成酶 (phytoene synthase,crtB),八氢番茄红素脱饱和酶(phytoene desaturase,crtI)3个关键酶基因的原核表达载体pAC-LYC转入大肠杆菌XL1-Blue.将pTrcLeDXS转入该重组工程菌,获得番茄红素工程菌.将该菌用于构建颜色互补平板,并进行发酵培养以检测番茄红素表达量.颜色互补平板上的菌斑呈现鲜艳的红色.经过21 h的培养番茄红素的产量达到605.25 μg·L-1.结果显示:ledxs能明显推动类胡萝卜素途径向番茄红素合成的方向流动.

  10. Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase.

    Science.gov (United States)

    Peebles, Christie A M; Hong, Seung-Beom; Gibson, Susan I; Shanks, Jacqueline V; San, Ka-Yiu

    2006-02-20

    Among the pharmacologically important terpenoid indole alkaloids produced by Catharanthus roseus are the anti-cancer drugs vinblastine and vincristine. These two drugs are produced in small yields within the plant, which makes them expensive to produce commercially. Metabolic engineering has focused on increasing flux through this pathway by various means such as elicitation, precursor feeding, and introduction of genes encoding specific metabolic enzymes into the plant. Recently in our lab, a feedback-resistant anthranilate synthase alpha subunit was over-expressed in C. roseus hairy roots under the control of a glucocorticoid inducible promoter system. Upon induction we observed a large increase in the indole precursors, tryptophan, and tryptamine. The current work explores the effects of over-expressing the anthranilate synthase alpha or alpha and beta subunits in combination with feeding with the terpenoid precursors 1-deoxy-D-xylulose, loganin, and secologanin. In feeding 1-deoxy-D-xylulose to the hairy root line expressing the anthranilate synthase alpha subunit, we observed an increase of 125% in hörhammericine levels in the induced samples, while loganin feeding increased catharanthine by 45% in the induced samples. Loganin feeding to the hairy root line expressing anthranilate synthase alpha and beta subunits increases catharanthine by 26%, ajmalicine by 84%, lochnericine by 119%, and tabersonine by 225% in the induced samples. These results suggest that the terpenoid precursors to the terpenoid indole alkaloids are important factors in terpenoid indole alkaloid production.

  11. Site-directed mutation of pyridoxine 5'-phosphate oxidase from Bombyx mori and activity assay of the mutants in vitro%家蚕磷酸吡哆醇氧化酶的体外定点突变及其活性鉴定

    Institute of Scientific and Technical Information of China (English)

    童宁; 张剑韵; 黄龙全

    2011-01-01

    [目的]研究家蚕Bombyx mori磷酸吡哆醇氧化酶(pyridoxine 5’-phosphate oxidase,PNPO)个别保守氨基酸残基对PNPO酶活性的影响.[方法]用重叠延伸法把氨基酸残基Lys111 (AAA)突变为Glu (GAA),Ser160(AGC)定点突变为Ala(GCC);构建重组表达载体,在大肠杆菌Escherichia coli Rosetta中诱导表达,经亲和纯化后进行酶活鉴定.[结果]重组蛋白的分子量约为45.0 kDa.体外酶活分析发现,家蚕氨基酸残基Lys111突变体K11lE活性降低了约78.0%,Ser160突变体S160A的活性降低了67.4%.[结论]结果提示氨基酸残基Lys111和Ser160对维持家蚕PNPO的酶活性有重要作用.本研究明确了家蚕磷酸吡哆醇氧化酶个别保守氨基酸残基的酶学功能.%[Aim] To study the effects of single conserved amino acid residue of pyridoxine 5'-phosphate oxidase (PNPO) from Bombyx mori on its activity. [Methods] Lys111 (AAA) and Ser160 (AGC) , two of the most conserved residues, were mutated to Glu ( GAA) and Ala ( GCC ) by using over-lap extension, respectively. The obtained expression plasmids were over-expressed in Escherichia coli Rosetta by IPTG induction, and then the expressed products were purified with affinity chromatography and the activity of the purified PNPO were determined. [ Results ] The molecular mass of the target recombinant protein was ~45.0 kDa. Compared with the wild type PNPO, the activities of the mutants K111E and S160A were reduced by 78.0% and 67.4% , respectively. [ Conclusion] The results suggest that the residues Lys and Ser are important to maintain the activity of PNPO. This study confirms the significance of single conserved amino acid residues on the catalytic function of PNPO of B. Mori.

  12. Intracellular adenosine 3',5'-phosphate formation is essential for down-regulation of surface adenosine 3',5'-phosphate receptors in Dictyostelium

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1994-01-01

    Dictyostelium discoideum cells contain cell surface cyclic AMP (cAMP) receptors that bind cAMP as a first messenger and intracellular cAMP receptors that bind cAMP as a second messenger. Prolonged incubation of Dictyostelium cells with cAMP induces a sequential process of phosphorylation, sequestrat

  13. Comparability study of ALT detection by three biochemistry analyzer systems and the influence to ALT activity with the existence of coenzyme pyridoxal-5-phosphate.%辅酶磷酸吡哆醛的存在对三种生化检测系统测定丙氨酸氨基转移酶活性的影响及其可比性研究

    Institute of Scientific and Technical Information of China (English)

    张建忠; 沈春燕

    2011-01-01

    To study the difference and comparability of alanine aminotransferase (ALT) results detected by three biochemistry analyzer systems. Methods The ALT activities of 164 cases of patients and 152 cases of healthy adults were detected by DADE Dimension RXL system, Johnson Vitros-350 system that containing pyridoxal-5-phosphate in their reagents and HITACHI7170 system that not containing pyridoxal-5-phosphate in its reagents,respectively. According to the document EP9-A described by the NCCLS, two group parallel contrast tests had being established: In the first group, ALT detected by HITACHI7170 system was selected as the standard method and DADE Dimension RXL system as the empirical method. In the other group, ALT detected by DADE Dimension RXL system was selected as the standard method and Johnson Vitros-350 system as the empirical method. Results The assay resuits of ALT activity detected by DADE Dimension RXL and Johnson Vitros-350 systems were higher(20.2%~56.5%)than that detected by HITACHI7170 system and there was no significant difference between DADE Dimension RXL system and Johnson Vitros-350 system. The parallel contrast tests also showed that there was an obvious systematic error between HITACHI7170 system and DADE Dimension RXL system, but there was a good correlation between DADE Dimension RXL system and Vitros-350 system. Conclusion Because of the difference of methodology the results of ALT activity detected by DADE Dimension RXL and Johnson Vitros-350 biochemistry analyzer systems couldn't obtain consistency with those by HITACHI7170 system, but there was a higher consistency between DADE Dimension RXL system and Vitros-350 system.%目的 探讨不同生化检测系统间测定丙氨酸氨基转移酶(ALT)活性结果的差异及其可比性.方法 使用ALT试剂中含有磷酸吡哆醛的DADE Dimension RXL检测系统、强生Vitros-350检测系统以及ALT试剂中未含有磷酸吡哆醛HITACHI7170检测系统同时测试164例患者和152例

  14. The Role of the Phosphatidylinositol-5-Phosphate 4-Kinases in p53-Null Breast Cancers

    Science.gov (United States)

    2015-10-01

    mouse   model,   which   develop   triple   negative  basal  breast  cancers  rapidly  (~3  months),  and  the  MMTV...Cre  HER2/neu   transgenic   mouse   model   that   develop   mammary   carcinomas   with   100%   penetrance   by   six

  15. Enhanced levels of S-linalool by metabolic engineering of the terpenoid pathway in spike lavender leaves.

    Science.gov (United States)

    Mendoza-Poudereux, Isabel; Muñoz-Bertomeu, Jesús; Navarro, Alicia; Arrillaga, Isabel; Segura, Juan

    2014-05-01

    Transgenic Lavandula latifolia plants overexpressing the linalool synthase (LIS) gene from Clarkia breweri, encoding the LIS enzyme that catalyzes the synthesis of linalool were generated. Most of these plants increased significantly their linalool content as compared to controls, especially in the youngest leaves, where a linalool increase up to a 1000% was observed. The phenotype of increased linalool content observed in young leaves was maintained in those T1 progenies that inherit the LIS transgene, although this phenotype was less evident in the flower essential oil. Cross-pollination of transgenic spike lavender plants allowed the generation of double transgenic plants containing the DXS (1-deoxy-d-xylulose-5-P synthase), coding for the first enzyme of the methyl-d-erythritol-4-phosphate pathway, and LIS genes. Both essential oil yield and linalool content in double DXS-LIS transgenic plants were lower than that of their parentals, which could be due to co-suppression effects linked to the structures of the constructs used.

  16. Methylerythritol and mevalonate pathway contributions to biosynthesis of mono-, sesqui-, and diterpenes in glandular trichomes and leaves of Stevia rebaudiana Bertoni.

    Science.gov (United States)

    Wölwer-Rieck, Ursula; May, Bianca; Lankes, Christa; Wüst, Matthias

    2014-03-19

    The biosynthesis of the diterpenoid steviol glycosides rebaudioside A and stevioside in nonrooted cuttings of Stevia rebaudiana was investigated by feeding experiments using the labeled key precursors [5,5-(2)H2]-mevalonic acid lactone (d2-MVL) and [5,5-(2)H2]-1-deoxy-d-xylulose (d2-DOX). Labeled glycosides were extracted from the leaves and stems and were directly analyzed by LC-(-ESI)-MS/MS and by GC-MS after hydrolysis and derivatization of the resulting isosteviol to the corresponding TMS-ester. Additionally, the incorporation of the proffered d2-MVL and d2-DOX into volatile monoterpenes, sesquiterpenes, and diterpenes in glandular trichomes on leaves and stems was investigated by headspace-solid phase microextraction-GC-MS (HS-SPME-GC-MS). Incorporation of the labeled precursors indicated that diterpenes in leaves and monoterpenes and diterpenes in glandular trichomes are predominately biosynthesized via the methylerythritol phosphate (MEP) pathway, whereas both the MEP and mevalonate (MVA) pathways contribute to the biosynthesis of sesquiterpenes at equal rates in glandular trichomes. These findings give evidence for a transport of MEP pathway derived farnesyl diphosphate precursors from plastids to the cytosol. Contrarily, the transport of MVA pathway derived geranyl diphosphate and geranylgeranyl diphosphate precursors from the cytosol to the plastid is limited.

  17. A homogeneous, high-throughput assay for phosphatidylinositol 5-phosphate 4-kinase with a novel, rapid substrate preparation.

    Directory of Open Access Journals (Sweden)

    Mindy I Davis

    Full Text Available Phosphoinositide kinases regulate diverse cellular functions and are important targets for therapeutic development for diseases, such as diabetes and cancer. Preparation of the lipid substrate is crucial for the development of a robust and miniaturizable lipid kinase assay. Enzymatic assays for phosphoinositide kinases often use lipid substrates prepared from lyophilized lipid preparations by sonication, which result in variability in the liposome size from preparation to preparation. Herein, we report a homogeneous 1536-well luciferase-coupled bioluminescence assay for PI5P4Kα. The substrate preparation is novel and allows the rapid production of a DMSO-containing substrate solution without the need for lengthy liposome preparation protocols, thus enabling the scale-up of this traditionally difficult type of assay. The Z'-factor value was greater than 0.7 for the PI5P4Kα assay, indicating its suitability for high-throughput screening applications. Tyrphostin AG-82 had been identified as an inhibitor of PI5P4Kα by assessing the degree of phospho transfer of γ-(32P-ATP to PI5P; its inhibitory activity against PI5P4Kα was confirmed in the present miniaturized assay. From a pilot screen of a library of bioactive compounds, another tyrphostin, I-OMe tyrphostin AG-538 (I-OMe-AG-538, was identified as an ATP-competitive inhibitor of PI5P4Kα with an IC(50 of 1 µM, affirming the suitability of the assay for inhibitor discovery campaigns. This homogeneous assay may apply to other lipid kinases and should help in the identification of leads for this class of enzymes by enabling high-throughput screening efforts.

  18. Interaction of muscle glycogen phosphorylase b reconstituted from apoenzyme and analogs of pyridoxal-5'-phosphate with specific ligands.

    Science.gov (United States)

    Chebotareva, N A; Sugrobova, N P; Bulanova, L N; Poznanskaya, A A; Kurganov, B I; Gunar, V I

    1996-04-01

    Phosphorylase b from rabbit skeletal muscles was reconstituted with analogs of PLP containing residues -CH(2)-CH(2)-COOH, trans-CH=CH-COOH or -C=-COOH at position 5. Replacing native coenzyme in the phosphorylase molecule with any PLP analog tested leads to the decrease in the enzyme affinity for the allosteric inhibitor, FMN. Phosphorylase b reconstituted with analogs of PLP shows the greater ability for association in tetramers in the presence of 1 mM AMP than native enzyme.

  19. Septin 9 induces lipid droplets growth by a phosphatidylinositol-5-phosphate and microtubule-dependent mechanism hijacked by HCV

    Science.gov (United States)

    Akil, Abdellah; Peng, Juan; Omrane, Mohyeddine; Gondeau, Claire; Desterke, Christophe; Marin, Mickaël; Tronchère, Hélène; Taveneau, Cyntia; Sar, Sokhavuth; Briolotti, Philippe; Benjelloun, Soumaya; Benjouad, Abdelaziz; Maurel, Patrick; Thiers, Valérie; Bressanelli, Stéphane; Samuel, Didier; Bréchot, Christian; Gassama-Diagne, Ama

    2016-01-01

    The accumulation of lipid droplets (LD) is frequently observed in hepatitis C virus (HCV) infection and represents an important risk factor for the development of liver steatosis and cirrhosis. The mechanisms of LD biogenesis and growth remain open questions. Here, transcriptome analysis reveals a significant upregulation of septin 9 in HCV-induced cirrhosis compared with the normal liver. HCV infection increases septin 9 expression and induces its assembly into filaments. Septin 9 regulates LD growth and perinuclear accumulation in a manner dependent on dynamic microtubules. The effects of septin 9 on LDs are also dependent on binding to PtdIns5P, which, in turn, controls the formation of septin 9 filaments and its interaction with microtubules. This previously undescribed cooperation between PtdIns5P and septin 9 regulates oleate-induced accumulation of LDs. Overall, our data offer a novel route for LD growth through the involvement of a septin 9/PtdIns5P signalling pathway. PMID:27417143

  20. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development

    Directory of Open Access Journals (Sweden)

    Alagna Fiammetta

    2012-09-01

    Full Text Available Abstract Background Olive (Olea europaea L. fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF, suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the

  1. An insight into the sequential, structural and phylogenetic properties of banana 1-aminocyclopropane-1-carboxylate synthase 1 and study of its interaction with pyridoxal-5'-phosphate and aminoethoxyvinylglycine

    Indian Academy of Sciences (India)

    Swarup Roy Choudhury; Sanjay Kumar Singh; Sujit Roy; Dibyendu N Sengupta

    2010-06-01

    In banana, ethylene production for ripening is accompanied by a dramatic increase in 1-aminocyclopropane-1-carboxylate (ACC) content, transcript level of Musa acuminata ACC synthase 1 (MA-ACS1) and the enzymatic activity of ACC synthase 1 at the onset of the climacteric period. MA-ACS1 catalyses the conversion of -adenosyl-L-methionine (SAM) to ACC, the key regulatory step in ethylene biosynthesis. Multiple sequence alignments of 1-aminocyclopropane-1-carboxylate synthase (ACS) amino acid sequences based on database searches have indicated that MA-ACS1 is a highly conserved protein across the plant kingdom. This report describes an in silico analysis to provide the first important insightful information about the sequential, structural and phylogenetic characteristics of MA-ACS1. The three-dimensional structure of MA-ACS1, constructed based on homology modelling, in combination with the available data enabled a comparative mechanistic analysis of MA-ACS1 to explain the catalytic roles of the conserved and non-conserved active site residues. We have further demonstrated that, as in apple and tomato, banana-ACS1 (MA-ACS1) forms a homodimer and a complex with cofactor pyridoxal-5′-phosphate (PLP) and inhibitor aminoethoxyvinylglycine (AVG). We have also predicted that the residues from the PLP-binding pocket, essential for ligand binding, are mostly conserved across the MA-ACS1 structure and the competitive inhibitor AVG binds at a location adjacent to PLP.

  2. Differential Contribution of the First Two Enzymes of the MEP Pathway to the Supply of Metabolic Precursors for Carotenoid and Chlorophyll Biosynthesis in Carrot (Daucus carota)

    Science.gov (United States)

    Simpson, Kevin; Quiroz, Luis F.; Rodriguez-Concepción, Manuel; Stange, Claudia R.

    2016-01-01

    Carotenoids and chlorophylls are photosynthetic pigments synthesized in plastids from metabolic precursors provided by the methylerythritol 4-phosphate (MEP) pathway. The first two steps in the MEP pathway are catalyzed by the deoxyxylulose 5-phosphate synthase (DXS) and reductoisomerase (DXR) enzymes. While DXS has been recently shown to be the main flux-controlling step of the MEP pathway, both DXS and DXR enzymes have been proven to be able to promote an increase in MEP-derived products when overproduced in diverse plant systems. Carrot (Daucus carota) produces photosynthetic pigments (carotenoids and chlorophylls) in leaves and in light-exposed roots, whereas only carotenoids (mainly α- and β-carotene) accumulate in the storage root in darkness. To evaluate whether DXS and DXR activities influence the production of carotenoids and chlorophylls in carrot leaves and roots, the corresponding Arabidopsis thaliana genes were constitutively expressed in transgenic carrot plants. Our results suggest that DXS is limiting for the production of both carotenoids and chlorophylls in roots and leaves, whereas the regulatory role of DXR appeared to be minor. Interestingly, increased levels of DXS (but not of DXR) resulted in higher transcript abundance of endogenous carrot genes encoding phytoene synthase, the main rate-determining enzyme of the carotenoid pathway. These results support a central role for DXS on modulating the production of MEP-derived precursors to synthesize carotenoids and chlorophylls in carrot, confirming the pivotal relevance of this enzyme to engineer healthier, carotenoid-enriched products. PMID:27630663

  3. Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum.

    Science.gov (United States)

    Guo, Huiming; Pei, Xixiang; Wan, Fanghao; Cheng, Hongmei

    2011-10-01

    In this study, conserved sequence regions of HMGR, DXR, and CHS (encoding 3-hydroxy-3-methylglutaryl-CoA reductase, 1-deoxyxylulose-5-phosphate reductoisomerase and chalcone synthase, respectively) were amplified by reverse transcriptase (RT)-PCR from Eupatorium adenophorum. Quantitative real-time PCR showed that the expression of CHS was related to the level of HHO, an allelochemical isolated from E. adenophorum. Semi-quantitative RT-PCR showed that there was no significant difference in expression of genes among three different tissues, except for CHS. Southern blotting indicated that at least three CHS genes are present in the E. adenophorum genome. A full-length cDNA from CHS genes (named EaCHS1, GenBank ID: FJ913888) was cloned. The 1,455 bp cDNA contained an open reading frame (1,206 bp) encoding a protein of 401 amino acids. Preliminary bioinformatics analysis of EaCHS1 revealed that EaCHS1 was a member of CHS family, the subcellular localization predicted that EaCHS1 was a cytoplasmic protein. To the best of our knowledge, this is the first report of conserved sequences of these genes and of a full-length EaCHS1 gene in E. adenophorum. The results indicated that CHS gene is related to allelopathy of E. adenophorum.

  4. 顶复门原虫类异戊二烯生物合成途径及其关键酶的研究进展%Advance in Isoprenoids Biosynthesis Pathway and DOXP Reductoisomerase in Apicomplexa

    Institute of Scientific and Technical Information of China (English)

    廖申权; 吴彩艳; 戚南山; 吕敏娜; 覃宗华; 孙铭飞

    2012-01-01

    顶复门原虫包括疟原虫(Plasmodium spp.)、刚地弓形虫(Toxoplasma gondii)、艾美耳球虫(Eimeria spp.)、锥虫(Trypanosoma spp.)、泰勒虫(Theileria spp.)及巴贝斯虫(Babesia spp.)等一大类引起严重人畜疾病的寄生性原虫.顶复门原虫利用2C-甲基-D-赤藓糖醇-4-磷酸(MEP)途径合成类异戊二烯前体物质,这些化合物对于维持顶复门原虫的生存具有十分重要的作用.1-脱氧-D-木酮糖-5-磷酸(DOXP)还原异构酶是MEP途径的关键酶,对其作用机理及抑制剂的筛选研究已取得重要进展.论文对顶复门原虫类异戊二烯的MEP途径,DOXP还原异构酶的作用机理及靶标研究进展进行综述.

  5. AcEST: BP920759 [AcEST

    Lifescience Database Archive (English)

    Full Text Available nit a OS=Rubrobacter xylan... 33 0.46 sp|Q11I83|ILVC_MESSB Ketol-acid reductoisomerase OS=Mesorhizobiu... 30...YPVTSNISFTATLALFTFVLTQYEGVRRNGL 148 >sp|Q11I83|ILVC_MESSB Ketol-acid reductoisomerase OS=Mesorhizobium sp. (

  6. 高效液相色谱分析法测定磷酸-5'-吡哆醛质量分数%Determination of Pyridoxal-5'-phosphate by High Performance Liquid Chromatography

    Institute of Scientific and Technical Information of China (English)

    胡鸣; 凌芳; 郑琦; 陈浩云; 干海平

    2016-01-01

    建立了磷酸-5'-吡哆醛的高效液相色谱定量检测方法.实验采用C18反相色谱柱(5μm,250 mm×4.6mm);流动相为乙腈-水,二者体积比为(10~30):(70~90);流速为1.0 mL/min;柱温为30℃;检测波长为388 nm;进样量为10.0 μL(将测定主成分质量分数的进样样品用水溶解并稀释成0.2 g/L).实验结果表明,磷酸-5'-吡哆醛的线性方程为y=7575.6x+4801.8,r=0.99995,检出限为0.2 g/L.

  7. 磷酸吡哆醛补救途径两个关键酶的研究进展%Research advance in two key enzymes involved in the pyridoxal 5'-phosphate salvage pathway

    Institute of Scientific and Technical Information of China (English)

    黄龙全; 张剑韵

    2015-01-01

    维生素B6(VB6)包括6个可相互转换的吡啶衍生物.其中,磷酸吡哆醛(PLP)作为140多种细胞酶的辅酶,在生物体内发挥重要作用.动物从食物中获得VB6,通过由吡哆醛激酶和磷酸吡哆醇氧化酶构成的补救途径合成PLP.PLP依赖酶的正常功能乃至人体最佳健康状态,依赖于细胞中PLP的平衡供给.然而,就PLP的动态平衡和调节机制以及PLP合成后的转移机制而言,目前还知之甚少,是一个富有挑战性的研究领域.为此,综述PLP补救途径两个关键酶的研究进展.

  8. Alanyl-lipid synthesis with microwave-induced organic reaction and its interaction with pyridoxal -5-phosphate on lipid surface%丙氨酰类脂的微波合成及其功能

    Institute of Scientific and Technical Information of China (English)

    石太德; 刘宝全; 王剑锋; 范圣第

    2009-01-01

    利用微波合成仪制备双十六烷基胺,通过DCC交联反应,得到叔丁氧甲酰丙氨酰双十六烷基胺,再通过酸水解制备出丙氨酰类脂.利用丙氨酰类脂的季铵盐衍生物(丙氨酰肽脂质)构建人工二分子膜,研究了磷酸吡哆醛(PLP)与丙氨酰类脂的相互作用.紫外-可见光谱检测发现,在330 nm 及415 nm 处有亚胺的特征吸收峰,表明PLP可以识别人工二分子膜上的丙氨酰类脂,丙氨酰类脂可以用作人工细胞信号转导的受体.

  9. 5'-磷酸吡哆醛影响血清丙氨酸氨基转移酶测定的研究%Effection of Pyridoxal -5'-phosphate on Determination of Alanine Aminotransferase activities

    Institute of Scientific and Technical Information of China (English)

    张宗彬; 鲍杰; 陈龙泉; 李传胜; 马洪波

    2007-01-01

    目的 研究丙氨酸氨基转移酶(Alanine Aminotraasferase,ALT)检测试剂中5'-磷酸吡哆醛(Pyrldoxal-5'-phos-phate,PLP)的添加对血清ALT活力测定的影响.方法 按IFCC推荐方法,自配ALT检测试剂(含PLP)和相应不添加PLP的检测试剂,分别用这两种试剂测定相同的新鲜临床标本,并对检测结果进行统计学比较.结果 使用含PLP的IFCC配方试剂较不含PLP试剂的检测结果明显增高.结论 健康人群和不同疾病人群由于个体差异,体内PLP含量不一,各组数据表明不含PLP配方试剂较IFCC配方检测结果明显偏低,因此两种配方的检测结果不能通过简单系数实现转换.

  10. Expression of Bombyx mori Pyridoxine-5'-phosphate Oxidase in E. coli and Assay of Enzymological Characters%家蚕磷酸吡哆醇氧化酶在E.coli中的表达及酶学特征研究

    Institute of Scientific and Technical Information of China (English)

    王振; 张剑韵; 黄龙全

    2010-01-01

    磷酸吡哆醇氧化酶(pyridoxine-5′-phosphate oxidase, PNPO)是维生素B6(VB6)代谢的关键酶.采用重组质粒pET32a(+)-PNPO原核表达家蚕(Bombyx mori)PNPO,经Ni2+亲和层析纯化后对其基本酶学性质进行分析.结果表明,纯化后的家蚕重组PNPO经SDS-PAGE鉴定为单一条带,比活力为529.81 nmol/(min·mg)蛋白,纯化倍数为7.1倍;该酶的最适反应温度为40 ℃,在50 ℃以下稳定;在pH 8.0~9.0之间酶活力最高,pH 6.0~10.0之间活力保持稳定.该结果有助于进一步开展家蚕PNPO的催化作用和表达调控机制的研究.

  11. Cloning and Analysis of cDNA Encoding Key Enzyme DXR in Diterpenoids Biosynthesis Pathway from Rabdosiae Rubescentis Herba%冬凌草1-脱氧木酮糖-5-磷酸还原异构酶(DXR)基因克隆与分析

    Institute of Scientific and Technical Information of China (English)

    苏秀红; 尹磊; 陈随清

    2016-01-01

    目的:为研究冬凌草二萜类合成的相关基因,在冬凌草转录组信息数据的基础之上,以冬凌草无菌苗为研究材料,克隆冬凌草二萜类合成的关键酶1-脱氧木酮糖-5-磷酸还原异构酶(l-deoxy-D-lxyluloses-phosphatereduetoisomerase,DXR)基因.方法:采用逆转录PCR技术克隆冬凌草DXR基因,实时荧光定量PCR法分析其组织表达模式.结果:DXR cDNA基因全长1 500 bp,DXR基因开放阅读框为1 422 bp,编码473个氨基酸组成的蛋白质序列,理论相对分子质量为51.39 kDa,等电点为6.09,是一种亲水性蛋白.DXR在茎中表达量相对较高,在愈伤组织中表达量最低.结论:研究结果为深入研究冬凌草DXR酶的活性和功能及为冬凌草二萜类化合物的生物合成机制、优良基因挖掘奠定基础.%Objective:To study the genes related to the synthesis of diterpenoid.Based on the data of transcriptome sequencing,cDNAs encoding 1-deoxy-D-xylulose-5-phosphatereduetoisomerase (DXR) were obtained from the leaves of aseptic seedlings of Rabdosiae Rubescentis Herba.Method:DXR was obtained by reverse transcription PCR.Real-time quantitative PCR was used to detect the relative expression patterns of DXR in different tissues of Rabdosiae Rubescentis Herba.Result:Sequence analysis showed that the full-length cDNA of DXR was 1 500 bp and contains gene open reading frame (ORF) of 1 422 bp encoding 473 amino acids.The theoretical molecular weight was 51.39 kDa and the isoelectric point was predicted as 6.09,suggesting it was a type of hydrophilic protein.The expression pattern of the gene in different tissues was analyzed by Real-time fluorescence quantitative PCR.The results showed the expression of DXR was relatively high in the stem and the lowest in callus.Conclusion:The results will provide a basis for studying the activity and function of DXR from Rabdosiae Rubescentis Herba,and lay a foundation for biosynthesis and gene mining of terpenoids.

  12. Clinical characteristics and genetic analysis of 2 children with pyridox (am)ine-5'-phosphate oxidase deficiency%磷酸吡哆醇(胺)氧化酶缺乏症2例的临床特征及基因突变分析

    Institute of Scientific and Technical Information of China (English)

    薛姣; 杨志仙; 张月华; 姜玉武

    2016-01-01

    目的 分析2例磷酸吡哆醇(胺)氧化酶(PNPO)缺乏症患儿的临床特征及PNPO基因突变特征.方法 患儿为2016年2月于北京大学第一医院儿科确诊的同卵双生兄弟,对其临床表现、诊治过程、血液生化、代谢筛查、脑电图、头颅磁共振成像(MRI)、癫痫相关基因(包括PNPO基因)检测结果等进行分析.结果 2例患儿为35+5周早产,有出生窒息史.均于出生24h内出现癫痫发作,多种抗癫痫药效不佳.EEG显示不典型高度失律或多灶性癫痫样放电;MRI均显示非特异性异常.病程中曾应用维生素B6单药或添加多种抗癫痫药物治疗,维生素B6单药治疗过程中最长1个月未出现发作.5岁左右时,在发作仍持续存在过程中逐渐停用所有抗癫痫药物,近1年仅口服维生素B6治疗,至6岁4个月时仍均有发作.血代谢筛查示精氨酸、天门冬氨酸、蛋氨酸水平降低;尿代谢筛查示香草酸水平明显升高,2例分别为正常值的49.78倍、36.60倍.患儿基因分析证实均携带PNPO基因复合杂合变异:c.445_448del(p.P150RfsX27)和c.481C> T(p.R161C),均为国际上尚未报道的位点.确诊后,换用磷酸吡哆醛(PLP)治疗,短暂随访中,发作先略增多,后逐渐减少至完全控制.智力运动发育情况均为重度落后.结论 2例患儿均以新生儿期难治性癫痫起病,维生素B6对癫痫发作有一定疗效.血、尿代谢筛查提示了PNPO缺乏症的可能,最终经基因检测首次在国内确诊了此症,应用PLP单药治疗后发作控制.

  13. Changes in the transcriptional levels of pyridoxal kinase and pyridoxine-5'-phosphate oxidase post exogenous hormone treatment in the silkworm,Bombyx mori%外源激素处理后家蚕吡哆醛激酶和磷酸吡哆醇氧化酶转录水平的变化

    Institute of Scientific and Technical Information of China (English)

    杨欢欢; 姚丽丽; 张剑韵; 黄龙全

    2015-01-01

    [目的] 研究家蚕Bombyx mori经蜕皮激素(20-hydroxyecdysone,20-E)和保幼激素类似物(juvenile hormone analogue,JHA)处理后引起吡哆醛激酶(pyridoxal kinase,PLK)和磷酸吡哆醇氧化酶(pyridoxine-5'-phosphateoxidase,PNPO)的转录水平变化,为进一步研究激素对蚕体营养代谢等工作奠定基础.[方法]以20-E和JHA分别喂食不同发育时期(5龄第1,3和5天)的家蚕幼虫,以喂食蒸馏水的家蚕为对照,采用实时荧光定量PCR(real-time quantitative PCR)方法在处理后24和48 h对各组幼虫后部丝腺中PLP合成酶PLK和PNPO的转录水平进行分析.[结果]5龄第1天幼虫经20-E处理24和48 h后,PLK和PNPO的转录水平出现上调且与对照的差异达到极显著(P<0.01);5龄第3天幼虫经20-E处理,PLK的转录水平在48 h出现下调且与对照的差异达到显著(P<0.05),PNPO的转录水平在24和48 h均出现上调且与对照的差异达到极显著(P<0.01);5龄第5天幼虫经20-E处理后PLK和PNPO的转录水平无变化.5龄第1天幼虫经JHA处理后PLK和PNPO的转录水平未受到影响;5龄第3天幼虫经JHA处理后,PLK的转录水平在48 h出现显著下调且与对照的差异达到显著(P<0.05),PNPO的转录水平在24和48 h后均出现显著下调且与对照的差异达到极显著(P<0.05);5龄第5天幼虫经JHA处理24和48 h后,PLK和PNPO的转录水平出现下调且与对照的差异达到极显著(P<0.01).[结论]20-E和JHA显著影响家蚕5龄幼虫PLK和PNPO的转录水平,20-E提高5龄前期家蚕PLK和PNPO的转录水平,JHA降低5龄后期它们的转录水平,为深入研究激素对VB6的调控奠定基础.

  14. 家蚕酸吡哆醇氧化酶cDNA克隆、鉴定及基因结构分析%Cloning,Identification and Genomic Organization of the cDNA Encoding Pyridoxine 5'-phosphate Oxidase in Bombyx mori

    Institute of Scientific and Technical Information of China (English)

    张剑韵; 石瑞君; 黄硕豪; 黄龙全

    2008-01-01

    [目的]了解家蚕维生素B6关键代谢酶磷酸吡哆醇氧化酶(PNP0)的基因结构.[方法]利用生物信息学原理和PeR方法,克隆出编码家蚕(Bombyx mori)PNPO的cDNA(GenBank登录号:DQ452398);采用T7启动子/T7 RNA聚合酶原核表达系统对cDNA进行体外表达,并通过酶活检测进行表达产物的功能鉴定;依据家蚕基因组数据库信息和得到的cDNA,对家蚕PNPO基因结构进行分析.[结果]克隆到的cDNA含有771 bp的完整可读框,编码一条分子量为29.86 kD、含257个氨基酸残基的蛋白质.序列比对显示此蛋白质与人类PNPO具有51.44%的同源性,包含PNPO家族共有的保守序列,但在人和大肠杆菌PNPO中具有重要作用的几个氨基酸残基在此蛋白质中被替换.在以磷酸吡哆醇(PNP)为底物时,表达产物Pro-PNPO的酶活力约为17 nmol·min-1·mg-1.家蚕PNPO基因包含5个外显子和4个内含子,跨越3.5 kb DNA序列,所有外显子/内含子交接点都遵从gt/ag剪接规则,基因的5'端启动子调控区发现有TATA-box和CAAT-box保守基序.[结论]获得家蚕PNPO基因,可利用该基因在分子水平上研究家蚕的VB6代谢特征,弄清PNPO家族的特征及其在生物进化过程中的演变规律.

  15. Host cells and methods for production of isobutanol

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori Ann; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2016-08-23

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  16. AcEST: DK948626 [AcEST

    Lifescience Database Archive (English)

    Full Text Available DTIQAD 129 >sp|Q72M00|ILVC_LEPIC Ketol-acid reductoisomerase OS=Leptospira interrogans serogroup Icterohaemorrhagiae serovar copenhag...eni GN=ilvC PE=3 SV=1 Length = 374 Score = 59.3 bits (14

  17. Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates Mg x ATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-D-ribosyl (alpha-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, alpha,beta-methylene ATP ...

  18. NCBI nr-aa BLAST: CBRC-LAFR-01-1256 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-1256 ref|ZP_01754413.1| cobalamin 5'-phosphate synthase [Roseobacter s...p. SK209-2-6] gb|EBA16605.1| cobalamin 5'-phosphate synthase [Roseobacter sp. SK209-2-6] ZP_01754413.1 2.2 36% ...

  19. NCBI nr-aa BLAST: CBRC-LAFR-01-1256 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-1256 ref|ZP_01056432.1| cobalamin 5'-phosphate synthase [Roseobacter s...p. MED193] gb|EAQ45647.1| cobalamin 5'-phosphate synthase [Roseobacter sp. MED193] ZP_01056432.1 1.00 32% ...

  20. NCBI nr-aa BLAST: CBRC-RMAC-09-0015 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RMAC-09-0015 ref|ZP_01522583.1| cobalamin-5-phosphate synthase CobS [Comamonas... testosteroni KF-1] gb|EAV12997.1| cobalamin-5-phosphate synthase CobS [Comamonas testosteroni KF-1] ZP_01522583.1 0.46 40% ...

  1. Methods for library-scale computational protein design.

    Science.gov (United States)

    Johnson, Lucas B; Huber, Thaddaus R; Snow, Christopher D

    2014-01-01

    Faced with a protein engineering challenge, a contemporary researcher can choose from myriad design strategies. Library-scale computational protein design (LCPD) is a hybrid method suitable for the engineering of improved protein variants with diverse sequences. This chapter discusses the background and merits of several practical LCPD techniques. First, LCPD methods suitable for delocalized protein design are presented in the context of example design calculations for cellobiohydrolase II. Second, localized design methods are discussed in the context of an example design calculation intended to shift the substrate specificity of a ketol-acid reductoisomerase Rossmann domain from NADPH to NADH.

  2. Synthesis, Structure and Biological Activities of Some Novel N-(4,6-Disubstituted-pyrimidin-2-yl)-N'-(trifluoromethylphenyl)-guanidine Derivatives

    Institute of Scientific and Technical Information of China (English)

    HE Feng-Qi; LIU Xing-Hai; WANG Bao-Lei; LI Yong-Hong; LI Zheng-Ming

    2008-01-01

    A novel series of guanidine derivatives were designed, synthesized and confirmed by FTIR, MS, 1H NMR and elemental analysis. The single crystal structure of 11b was determined by X-ray diffraction. Herbicidal activities of these guanidine derivatives were evaluated through barnyardgrass and rape cup tests, among which compounds lla, lib, and lie against Brassica campestris reached 71.2%, 86.7%, and 86.9% at 100 μg·mL-1 respectively. The preliminary ketol-acid reductoisomerase test showed that the synthesized compounds had weak activities.

  3. Nucleic and amino acid sequences relating to a novel transketolase, and methods for the expression thereof

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Lange, Bernd Markus (Pullman, WA); McCaskill, David G. (Pullman, WA)

    2001-01-01

    cDNAs encoding 1-deoxyxylulose-5-phosphate synthase from peppermint (Mentha piperita) have been isolated and sequenced, and the corresponding amino acid sequences have been determined. Accordingly, isolated DNA sequences (SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7) are provided which code for the expression of 1-deoxyxylulose-5-phosphate synthase from plants. In another aspect the present invention provides for isolated, recombinant DXPS proteins, such as the proteins having the sequences set forth in SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:8. In other aspects, replicable recombinant cloning vehicles are provided which code for plant 1-deoxyxylulose-5-phosphate synthases, or for a base sequence sufficiently complementary to at least a portion of 1-deoxyxylulose-5-phosphate synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding a plant 1-deoxyxylulose-5-phosphate synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant 1-deoxyxylulose-5-phosphate synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant 1-deoxyxylulose-5-phosphate synthase may be used to obtain expression or enhanced expression of 1-deoxyxylulose-5-phosphate synthase in plants in order to enhance the production of 1-deoxyxylulose-5-phosphate, or its derivatives such as isopentenyl diphosphate (BP), or may be otherwise employed for the regulation or expression of 1-deoxyxylulose-5-phosphate synthase, or the production of its products.

  4. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne; Larsen, Sine

    2000-01-01

    saturation with ribose 5-phosphate leads to the binding of Mg2+ and substrates via a slow pathway where Pi binds to the enzyme last. The random mechanism for Pi binding was further supported by studies with competitive inhibitors of Mg2+, MgATP, and ribose 5-phosphate that all appeared noncompetitive when...... varying Pi at either saturating or unsaturating ribose 5-phosphate concentrations. Furthermore, none of the inhibitors induced inhibition at increasing Pi concentrations. Results from ADP inhibition of Pi activation suggest that these effectors compete for binding to a common regulatory site....

  5. Allosteric regulation and communication between subunits in uracil phosphoribosyltransferase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Arent, Susan; Harris, Pernille; Jensen, Kaj Frank

    2005-01-01

    Uracil phosphoribosyltransferase (UPRTase) catalyzes the conversion of 5-phosphate-alpha-1-diphosphate (PRPP) and uracil to uridine 5'-monophosphate (UMP) and diphosphate. The UPRTase from Sulfolobus solfataricus has a unique regulation by nucleoside triphosphates compared to UPRTases from other...

  6. Protein: MPA5 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA5 Pyrimidine biosynthesis Tb927.5.3810 Orotidine-5-phosphate decarboxylase/orota...te phosphoribosyltransferase, putative 999953 Trypanosoma brucei brucei (strain 927/4 GUTat10.1) 3657490 Q57U85 ...

  7. Protein: MPA5 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPA5 Pyrimidine biosynthesis Tc00.1047053507059.60 Orotidine-5-phosphate decarboxyl...ase/orotate phosphoribosyltransferase, putative 353153 Trypanosoma cruzi (strain CL Brener) 3542677 Q4DBC5 ...

  8. Pyridoxal phosphate-dependent neonatal epileptic encephalopathy.

    Science.gov (United States)

    Bagci, S; Zschocke, J; Hoffmann, G F; Bast, T; Klepper, J; Müller, A; Heep, A; Bartmann, P; Franz, A R

    2008-03-01

    Pyridox(am)ine-5'-phosphate oxidase converts pyridoxine phosphate and pyridoxamine phosphate to pyridoxal phosphate, a cofactor in many metabolic reactions, including neurotransmitter synthesis. A family with a mutation in the pyridox(am)ine-5'-phosphate oxidase gene presenting with neonatal seizures unresponsive to pyridoxine and anticonvulsant treatment but responsive to pyridoxal phosphate is described. Pyridoxal phosphate should be considered in neonatal epileptic encephalopathy unresponsive to pyridoxine.

  9. Typical and atypical phenotypes of PNPO deficiency with elevated CSF and plasma pyridoxamine on treatment.

    Science.gov (United States)

    Ware, Tyson L; Earl, John; Salomons, Gajja S; Struys, Eduard A; Peters, Heidi L; Howell, Katherine B; Pitt, James J; Freeman, Jeremy L

    2014-05-01

    Pyridox(am)ine phosphate oxidase (PNPO) deficiency causes severe early infantile epileptic encephalopathy and has been characterized as responding to pyridoxal-5'-phosphate but not to pyridoxine. Two males with PNPO deficiency and novel PNPO mutations are reported and their clinical, metabolic, and video-electroencephalographic (EEG) findings described. The first child showed electro-clinical responses to pyridoxine and deterioration when pyridoxine was withheld. At last review, he has well-controlled epilepsy with pyridoxal-5'-phosphate monotherapy and an autism spectrum disorder. The second child had a perinatal middle cerebral artery infarct and a myoclonic encephalopathy. He failed to respond to pyridoxine but responded well to pyridoxal-5'-phosphate. At the age of 21 months he has global developmental delay and hemiparesis but is seizure-free with pyridoxal-5'-phosphate monotherapy. Plasma and cerebrospinal fluid pyridoxamine levels were increased in both children during treatment with pyridoxine or pyridoxal-5'-phosphate. These observations indicate that differential responses to pyridoxine and pyridoxal-5'-phosphate treatment cannot be relied upon to diagnose PNPO deficiency.

  10. Simultaneous Determination of Underivatized Vitamin B1 and B6 in Whole Blood by Reversed Phase Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Johan Puts

    Full Text Available Vitamin B1 (thiamine-diphosphate and B6 (pyridoxal-5'phosphate are micronutrients. Analysis of these micronutrients is important to diagnose potential deficiency which often occurs in elderly people due to malnutrition, in severe alcoholism and in gastrointestinal compromise due to bypass surgery or disease. Existing High Performance Liquid Chromatography (HPLC based methods include the need for derivatization and long analysis time. We developed an Ultra High Performance Liquid Chromatography Tandem Mass spectrometry (UHPLC-MS/MS assay with internal standards for simultaneous measurement of underivatized thiamine-diphosphate and pyridoxal-5'phosphate without use of ion pairing reagent.Whole blood, deproteinized with perchloric acid, containing deuterium labelled internal standards thiamine-diphosphate(thiazole-methyl-D3 and pyridoxal-5'phosphate(methyl-D3, was analyzed by UHPLC-MS/MS. The method was validated for imprecision, linearity, recovery and limit of quantification. Alternate (quantitative method comparisons of the new versus currently used routine HPLC methods were established with Deming regression.Thiamine-diphosphate and pyridoxal-5'phosphate were measured within 2.5 minutes instrumental run time. Limits of detection were 2.8 nmol/L and 7.8 nmol/L for thiamine-diphosphate and pyridoxal-5'phosphate respectively. Limit of quantification was 9.4 nmol/L for thiamine-diphosphate and 25.9 nmol/L for pyridoxal-5'phosphate. The total imprecision ranged from 3.5-7.7% for thiamine-diphosphate (44-157 nmol/L and 6.0-10.4% for pyridoxal-5'phosphate (30-130 nmol/L. Extraction recoveries were 101-102% ± 2.5% (thiamine-diphosphate and 98-100% ± 5% (pyridoxal-5'phosphate. Deming regression yielded slopes of 0.926 and 0.990 in patient samples (n = 282 and national proficiency testing samples (n = 12 respectively, intercepts of +3.5 and +3 for thiamine-diphosphate (n = 282 and n = 12 and slopes of 1.04 and 0.84, intercepts of -2.9 and +20 for

  11. Production of 2-butanol from crude glycerol by a genetically-engineered Klebsiella pneumoniae strain.

    Science.gov (United States)

    Oh, Baek-Rock; Heo, Sun-Yeon; Lee, Sung-Mok; Hong, Won-Kyung; Park, Jang Min; Jung, You Ree; Kim, Dae-Hyuk; Sohn, Jung-Hoon; Seo, Jeong-Woo; Kim, Chul Ho

    2014-01-01

    Klebsiella pneumoniae was engineered to produce 2-butanol from crude glycerol as a sole carbon source by expressing acetolactate synthase (ilvIH), keto-acid reducto-isomerase (ilvC) and dihydroxy-acid dehydratase (ilvD) from K. pneumoniae, and α-ketoisovalerate decarboxylase (kivd) and alcohol dehydrogenase (adhA) from Lactococcus lactis. Engineered K. pneumonia, ∆ldhA/pBR-iBO (ilvIH–ilvC–ilvD–kivd–adhA), produced 2-butanol (160 mg l−1) from crude glycerol. To increase the yield of 2-butanol, we eliminated the 2,3-butanediol pathway from the recombinant strain by inactivating α-acetolactate decarboxylase (adc). This further engineering step improved the yield of 2-butanol from 160 to 320 mg l−1. This represents the first successful attempt to produce 2-butanol from crude glycerol.

  12. Design,Synthesis and Biological Activity of Ethyl 2-(N-Substituted-arylsulfonamido)-2-oxoacetate

    Institute of Scientific and Technical Information of China (English)

    WANG Bao-lei; WU Jing; HE Feng-qi; LI Yon-ghong; LI Zheng-ming

    2008-01-01

    Thirteen new ethyl 2-(N-substituted-arylsulfonamido)-2-oxoacetates(3a-3m),based on the structure of Ketol-acid reductoisomerase(KARI) inhibitor IpOHA,were designed and synthesized,Their structures were established on the basis of 1H NMR,IR,MS,and elemental analyses,The bioassay result reveals that the structural changes from hydroxyl group on the N atom of IpOHA to arylsulfonyl groups does not enhance the inhibitory activity of the compounds to KARI in vitro,Compounds 3c,3h,3k,and 3m are more effective than IpOHA against the monocotyledonous barnygrass at 100 μg/mL in herbicidal tests.

  13. Main: 1H1Z [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available le: D-Ribulose-5-Phosphate 3-Epimerase; Chain: A, B; Engineered: Yes Isomerase 5.1.3.1 (D-Ribulose-5-Phospha...tivity; IEA.|GO; GO:0005975; P:carbohydrate metabolism; IEA.|InterPro; IPR011060; RibP_bind_barrel.|InterPro

  14. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes

    NARCIS (Netherlands)

    Battaglia, Evy; Zhou, M.; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. H

  15. Structural Determinants of the beta-Selectivity of a Bacterial Aminotransferase

    NARCIS (Netherlands)

    Wybenga, Gjalt G.; Crismaru, Ciprian G.; Janssen, Dick B.; Dijkstra, Bauke W.

    2012-01-01

    Chiral beta-amino acids occur as constituents of various natural and synthetic compounds with potentially useful bioactivities. The pyridoxal 5'-phosphate (PLP)-dependent S-selective transaminase from Mesorhizobium sp. strain LUK (MesAT) is a fold type I aminotransferase that can be used for the pre

  16. Mutation of His465 Alters the pH-dependent Spectroscopic Properties of Escherichia coli Glutamate Decarboxylase and Broadens the Range of Its Activity toward More Alkaline pH

    NARCIS (Netherlands)

    Pennacchietti, E.; Lammens, T.M.; Capitani, G.; Franssen, M.C.R.; John, R.A.; Bossa, F.; Biase, De D.

    2009-01-01

    Glutamate decarboxylase (GadB) from Escherichia coli is a hexameric, pyridoxal 5'-phosphate-dependent enzyme catalyzing CO2 release from the a-carboxyl group of l-glutamate to yield ¿-aminobutyrate. GadB exhibits an acidic pH optimum and undergoes a spectroscopically detectable and strongly cooperat

  17. A New Pyridoxal Derivative for Transamination of N-Terminus of Proteins%A New Pyridoxal Derivative for Transamination of N-Terminus of Proteins

    Institute of Scientific and Technical Information of China (English)

    张美娟; 张学梅; 李娟; 郭庆祥

    2011-01-01

    A new pyridoxal-5-phosphate (PLP) derivative FHMDP was developed for the transamination of different pep- tides with three most hindered amino acid residues (Leu, Ile, Val) as their N-terminus. Compared to the previously reported reactions of PLP derivatives, the N-terminus transamination could be accomplished efficiently with the new compound.

  18. The non-mevalonate isoprenoid biosynthesis of plants as a test system for drugs against malaria and pathogenic bacteria.

    Science.gov (United States)

    Zeidler, J; Schwender, J; Mueller, C; Lichtenthaler, H K

    2000-12-01

    Two plant test systems are presented in the search for new inhibitors of the non-mevalonate isoprenoid pathway. A derivative of clomazone appears to be an inhibitor of the deoxyxylulose 5-phosphate/methylerythritol 4-phosphate (DOXP/MEP) pathway of isoprenoid formation.

  19. Contents of all forms of vitamin B6, pyridoxine-β-glucoside and 4-pyridoxic acid in mature milk of Japanese women according to 4-pyridoxolactone-conversion high performance liquid chromatography.

    Science.gov (United States)

    Yagi, Toshiharu; Iwamoto, Saya; Mizuseki, Rie; Furuya, Michi; Nakayama, Kazuko

    2013-01-01

    The contents of six vitamin B6 forms, pyridoxine-β-glucoside, and 4-pyridoxic acid in mature milk of 20 Japanese lactating women consuming ordinary Japanese foods were determined by a 4-pyridoxolactone-conversion HPLC method. These compounds were determined with the average recovery rate of 83.9% or more. The average total content of vitamin B6 forms was 1.01 ± 0.32 (µmol/L). Pyridoxal and pyridoxal 5'-phosphate were found in all of the samples, and their average contents were 0.71 ± 0.28 (µmol/L) and 0.16 ± 0.07 (µmol/L), respectively. Pyridoxamine, pyridoxine, pyridoxamine 5'-phosphate, pyridoxine 5'-phosphate, and pyridoxine-β-glucoside were found in 15, 14, 13, 9, and 7 samples, respectively. The presence of pyridoxine 5'-phosphate was for the first time found in human milk. A method for the determination of 4-pyridoxic acid, which is the excretion form of vitamin B6, was modified to quantitate it by isocratic HPLC. 4-Pyridoxic acid was found in all samples, and its average content was 0.094 ± 0.040 (µmol/L), which was only 12% of its content in cow (Holstein) milk. The total content of vitamin B6 forms, and predominant presence of pyridoxal among other vitamin B6 forms in the Japanese women's milk samples shared similar characteristics with American women's milk samples.

  20. PNPO deficiency: an under diagnosed inborn error of pyridoxine metabolism.

    NARCIS (Netherlands)

    Khayat, M.; Korman, S.H.; Frankel, P.; Weintraub, Z.; Hershckowitz, S.; Sheffer, V.F.; Elisha, M. Ben; Wevers, R.A.; Falik-Zaccai, T.C.

    2008-01-01

    The rare autosomal recessive disorder pyridoxine 5'-phosphate oxidase (PNPO) deficiency is a recently described cause of neonatal and infantile seizures. Clinical evaluation, and biochemical and genetic testing, were performed on a neonate with intractable seizures who did not respond to anticonvuls

  1. SwissProt search result: AK106518 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106518 002-107-C02 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 6e-20 ...

  2. SwissProt search result: AK069342 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069342 J023013K12 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 4e-14 ...

  3. SwissProt search result: AK103774 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103774 J033143M23 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 1e-19 ...

  4. SwissProt search result: AK059748 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK059748 006-203-A07 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 5e-19 ...

  5. SwissProt search result: AK064221 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064221 002-104-G01 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 3e-16 ...

  6. SwissProt search result: AK102879 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK102879 J033112G11 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 1e-18 ...

  7. SwissProt search result: AK066049 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK066049 J013049O12 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 8e-19 ...

  8. SwissProt search result: AK108373 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108373 002-142-D10 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 4e-20 ...

  9. SwissProt search result: AK119895 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119895 002-180-C05 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 5e-15 ...

  10. SwissProt search result: AK067006 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK067006 J013093O09 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 3e-17 ...

  11. SwissProt search result: AK101194 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101194 J033030J11 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 3e-16 ...

  12. SwissProt search result: AK107554 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107554 002-130-B02 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 2e-18 ...

  13. SwissProt search result: AK109784 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109784 002-147-C09 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 3e-17 ...

  14. SwissProt search result: AK061902 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061902 001-041-H06 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 3e-14 ...

  15. SwissProt search result: AK061521 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061521 006-310-B05 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 6e-19 ...

  16. SwissProt search result: AK103526 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK103526 J033131L11 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 4e-23 ...

  17. SwissProt search result: AK120269 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120269 J013047J23 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 2e-12 ...

  18. SwissProt search result: AK106698 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK106698 002-114-D11 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 9e-20 ...

  19. SwissProt search result: AK064089 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064089 002-100-D02 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 8e-25 ...

  20. SwissProt search result: AK105961 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105961 001-205-E02 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 3e-23 ...

  1. SwissProt search result: AK109450 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109450 001-114-F08 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 1e-24 ...

  2. SwissProt search result: AK064342 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK064342 002-107-H07 (Q8ZCX5) Phosphate import ATP-binding protein pstB 1 (EC 3.6.3.27) (Phosphate...-transporting ATPase 1) (ABC phosphate transporter 1) (Phosphate-specific transport component 1) PSTB1_YERPE 3e-18 ...

  3. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Harlow, Kenneth W.; Switzer, Robert L.

    1989-01-01

    : DLHAXQIQGFFDI/VPI/VD. There was little alteration in the Km for ribose 5-phosphate. The Km for ATP of the mutant enzyme was increased 27-fold when Mg2+ was the activating cation but only 5-fold when Mn2+ was used. Maximal velocities of the wild type and mutant enzymes were the same. The mutant enzyme has a 6...

  4. Sequence Classification: 892238 [

    Lifescience Database Archive (English)

    Full Text Available nthase, an enzyme that catalyzes the second step in the biosynthesis of GMP from inosine 5'-phosphate (IMP); transcription is not sub...ject to regulation by guanine but is negatively regulated by nutrient starvation; Gua1p || http://www.ncbi.nlm.nih.gov/protein/6323873 ...

  5. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the

  6. A proteomic analysis of salt stress response in seedlings of two African rice cultivars.

    Science.gov (United States)

    Damaris, Rebecca Njeri; Li, Ming; Liu, Yanli; Chen, Xi; Murage, Hunja; Yang, Pingfang

    2016-11-01

    Salt stress is one of the key abiotic stresses threatening future agricultural production and natural ecosystems. This study investigates the salt stress response of two rice seedlings, which were screened from 28 Kenya rice cultivars. A proteomic analysis was carried out and Mapman bin codes employed in protein function categorization. Proteins in the redox, stress, and signaling categories were identified, and whose expression differed between the salt tolerant and the salt sensitive samples employed in the present study. 104 and 102 root proteins were observed as significantly altered during salt stress in the tolerant and sensitive samples, respectively and 13 proteins were commonly expressed. Among the 13 proteins, ketol-acid reductoisomerase protein was upregulated in both 1 and 3days of salt treatment in the tolerant sample, while it was down-regulated in both 1 and 3days of salt treatment in the sensitive sample. Actin-7, tubulin alpha, V-type proton ATPase, SOD (Cu-Zn), SOD (Mn), and pyruvate decarboxylase were among the observed salt-induced proteins. In general, this study improves our understanding about salt stress response mechanisms in rice.

  7. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.

    Science.gov (United States)

    Lee, Won-Heong; Seo, Seung-Oh; Bae, Yi-Hyun; Nan, Hong; Jin, Yong-Su; Seo, Jin-Ho

    2012-11-01

    Engineering of Saccharomyces cerevisiae to produce advanced biofuels such as isobutanol has received much attention because this yeast has a natural capacity to produce higher alcohols. In this study, construction of isobutanol production systems was attempted by overexpression of effective 2-keto acid decarboxylase (KDC) and combinatorial overexpression of valine biosynthetic enzymes in S. cerevisiae D452-2. Among the six putative KDC enzymes from various microorganisms, 2-ketoisovalerate decarboxylase (Kivd) from L. lactis subsp. lactis KACC 13877 was identified as the most suitable KDC for isobutanol production in the yeast. Isobutanol production by the engineered S. cerevisiae was assessed in micro-aerobic batch fermentations using glucose as a sole carbon source. 93 mg/L isobutanol was produced in the Kivd overexpressing strain, which corresponds to a fourfold improvement as compared with the control strain. Isobutanol production was further enhanced to 151 mg/L by additional overexpression of acetolactate synthase (Ilv2p), acetohydroxyacid reductoisomerase (Ilv5p), and dihydroxyacid dehydratase (Ilv3p) in the cytosol.

  8. The design, synthesis of amide KARI inhibitors and their biological activities

    Institute of Scientific and Technical Information of China (English)

    Baolei WANG; Yi MA; Yonghong LI; Suhua WANG; Zhengming LI

    2009-01-01

    Ketol-acid reductoisomerase(KARI) is a promising target for the design of herbicides yet there are only few reports on the molecular design of KARI inhibitors. In this paper, based on the reported 0.165 nm high resolution crystal structure of the spinach KARI complex, 279 molecules with low binding energy toward KARI were obtained from an MDL/ACD 3D database search using the program DOCK 4.0. According to the structural information of 279 molecules provided, some amide compounds have been designed and synthesized. The bioassay results show that most of these amides had inhibitory activity to rice KARI at a test concentration of 200 μg/mL. Among which eight amides, compounds 1 and 6 show 57.4% and 48.1% inhibitory activity to KARI. The herbicidal activities of these amides were further investigated on di-cotyledonous rape (Brassica campestris) and mono-cotyledonous bar-nyardgrass (Echinochloa crusgalli). Compounds 1 and 6 were more favorable than others and showed 52.0% and 72.6% inhibitory activity on rape root at 100 μg/mL concentration, respectively. These amides could be further optimized for finding more potent candidates.

  9. The Crystal Structure of the Escherichia coli Autoinducer-2 Processing Protein LsrF

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Z.; Xavier, K; Miller, S

    2009-01-01

    Many bacteria produce and respond to the quorum sensing signal autoinducer-2 (AI-2). Escherichia coli and Salmonella typhimurium are among the species with the lsr operon, an operon containing AI-2 transport and processing genes that are up regulated in response to AI-2. One of the Lsr proteins, LsrF, has been implicated in processing the phosphorylated form of AI-2. Here, we present the structure of LsrF, unliganded and in complex with two phospho-AI-2 analogues, ribose-5-phosphate and ribulose-5-phosphate. The crystal structure shows that LsrF is a decamer of (??)8-barrels that exhibit a previously unseen N-terminal domain swap and have high structural homology with aldolases that process phosphorylated sugars. Ligand binding sites and key catalytic residues are structurally conserved, strongly implicating LsrF as a class I aldolase.

  10. Inhibition effects of some metal ions on the rat liver 6-phosphogluconate dehydrogenase

    Science.gov (United States)

    Adem, Şevki; Kayhan, Naciye

    2016-04-01

    6-phosphogluconate dehydrogenase is an enzyme in the pentose phosphate path. The main functions of the pathway are the manufacture of the reduced coenzyme NADPH and the formation of ribose 5-phosphate for nucleic acid synthesis and nucleotide. Both NADPH and ribose 5-phosphate involve a critical biochemical process. Metals have been recognized as important toxic agents for living for a long time. It has been considered that they lead to in the emergence of many diseases. To evaluate whether metals is effect towards rat liver 6PGD, we apply various concentrations of metals and enzyme inhibition was analyzed using enzyme activity assays. The IC50 values of Pb+2, Cr+3, Co+2, Ni+2, Cd+2, and Va+2, metals on rat liver 6PGD were calculated as 138,138, 169, 214, 280, and 350 µM, respectively.

  11. Synthesis and characterization of chitosan phosphopyridoxal Schiff base derivative in ionic liquid%离子液体中壳聚糖磷酸吡哆醛席夫碱衍生物的合成与表征

    Institute of Scientific and Technical Information of China (English)

    李克让; 徐民; 张帅; 刘蒲

    2013-01-01

    5-Phosphate pyridoxal (PPL) is the active coenzyme form of vitamin B6, acting as a coenzyme in a multitude of biochemical processes, therefore chitosan derivatives containing pyridoxal phosphate skeleton will provide an important material for the application of chitosan in the emerging biological function material. Chitosan phosphopyridoxal Schiff base derivative was synthesized by the condensation reaction of chitosan and 5-phosphate pyridoxal in an ionic liquid, 1-butyl-3-methylimidazolium chloride (BmimCl). The product was characterized by Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), XRD and TGA. The results showed that phosphopyridoxal group was successfully introduced onto the chitosan chain. It was found that degree of substitution of modified chitosan could reach 16.3%.

  12. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase

    DEFF Research Database (Denmark)

    Andersen, Rune W.; Lo Leggio, Leila; Hove-Jensen, Bjarne

    2015-01-01

    PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate......The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg2+-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP....... A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii...

  13. Phosphoribosylpyrophosphate synthetase of Escherichia coli, Identification of a mutant enzyme

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per

    1982-01-01

    , stimulated the mutant enzyme. The activity of PRib-PP synthetase in crude extract was higher in the mutant than in the parent. When starved for purines an accumulation of PRib-PP was observed in the parent strain, while the pool decreased in the mutant. During pyrimidine starvation derepression of PRib....... Kinetic analysis of the mutant PRib-PP synthetase revealed an apparent Km for ATP and ribose 5-phosphate of 1.0 mM and 240 μM respectively, compared to 60 μM and 45 μM respectively for the wild-type enzyme. ADP, which inhibits the wild-type enzyme at a concentration of 0.5 mM ribose 5-phosphate...

  14. 4'-CyanoPLP presents better prospect for the experimental detection of elusive cyclic intermediate radical in the reaction of lysine 5,6-aminomutase.

    Science.gov (United States)

    Maity, Amarendra Nath; Ke, Shyue-Chu

    2015-02-01

    The results of our calculations suggest that the reaction of 4'-cyanoPLP with lysine 5,6-aminomutase offers better prospect for the experimental detection of elusive cyclic azacyclopropylcarbinyl radical (I), which is proposed to be a key intermediate in the reaction of pyridoxal-5'-phosphate dependent radical aminomutases. We have calculated the corresponding hyperfine coupling constants (HFCCs) for (14)N and (13)C of cyano group using several basis sets to help the characterization of 4'-cyanoI.

  15. Structure of Escherichia coli tryptophanase purified from an alkaline-stressed bacterial culture.

    Science.gov (United States)

    Rety, Stephane; Deschamps, Patrick; Leulliot, Nicolas

    2015-11-01

    Tryptophanase is a bacterial enzyme involved in the degradation of tryptophan to indole, pyruvate and ammonia, which are compounds that are essential for bacterial survival. Tryptophanase is often overexpressed in stressed cultures. Large amounts of endogenous tryptophanase were purified from Escherichia coli BL21 strain overexpressing another recombinant protein. Tryptophanase was crystallized in space group P6522 in the apo form without pyridoxal 5'-phosphate bound in the active site.

  16. Responses of Cholinergic and Noncholinergic Renshaw Cell Receptors After Acute and Chronic Exposure to Anticholinesterases.

    Science.gov (United States)

    1983-07-01

    investigation of ventral horn interneurons . The tissue samples were fixed by immersion in 5% phosphate buffered (0.1M, pH 7.4) glutaraldehyde. After 24...burst discharge consistent with its excitatory post synaptic potential ( EPSP ) and the burst, when transmitted, initiates inhibitory recurrent post...synaptic potentials (RIPSP) in membranes of motoneurones and other interneurones (Eccles (1964), Hultborn et al. (1971)). The source for activation of the

  17. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose

    OpenAIRE

    Kulika Chomvong; Stefan Bauer; Daniel I Benjamin; Xin Li; Daniel K Nomura; Cate, Jamie H. D.

    2016-01-01

    The efficient use of hemicellulose in the plant cell wall is critical for the economic conversion of plant biomass to renewable fuels and chemicals. Previously, the yeast Saccharomyces cerevisiae has been engineered to convert the hemicellulose-derived pentose sugars xylose and arabinose to d-xylulose-5-phosphate for conversion via the pentose phosphate pathway (PPP). However, efficient pentose utilization requires PPP optimization and may interfere with its roles in NADPH and pentose product...

  18. Action of nucleotide phosphotransferase of Escherichia coli on nicotinamide riboside and nicotinamide mononucleotide.

    Science.gov (United States)

    Brunngraber, E F; Chargaff, E

    1977-10-01

    The action of the nucleotide phosphotransferase of Escherichia coli on nicotinamide riboside and on its 5'-phosphate results in the addition of one phosphate moiety to each of the substrates. Although the proof is not conclusive, it is likely that the phosphate group is transferred to the 3'-hydroxyl of the ribose. This is in contrast to the behavior of the enzyme toward NAD in which only the adenylic acid portion is phosphorylated enzymically.

  19. Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP.

    Science.gov (United States)

    Andersen, Rune W; Leggio, Leila Lo; Hove-Jensen, Bjarne; Kadziola, Anders

    2015-03-01

    The enzyme 5-phosphoribosyl-1-α-diphosphate (PRPP) synthase (EC 2.7.6.1) catalyses the Mg(2+)-dependent transfer of a diphosphoryl group from ATP to the C1 hydroxyl group of ribose 5-phosphate resulting in the production of PRPP and AMP. A nucleotide sequence specifying Sulfolobus solfataricus PRPP synthase was synthesised in vitro with optimised codon usage for expression in Escherichia coli. Following expression of the gene in E. coli PRPP synthase was purified by heat treatment and ammonium sulphate precipitation and the structure of S. solfataricus PRPP synthase was determined at 2.8 Å resolution. A bent dimer oligomerisation was revealed, which seems to be an abundant feature among PRPP synthases for defining the adenine specificity of the substrate ATP. Molecular replacement was used to determine the S. solfataricus PRPP synthase structure with a monomer subunit of Methanocaldococcus jannaschii PRPP synthase as a search model. The two amino acid sequences share 35 % identity. The resulting asymmetric unit consists of three separated dimers. The protein was co-crystallised in the presence of AMP and ribose 5-phosphate, but in the electron density map of the active site only AMP and a sulphate ion were observed. Sulphate ion, reminiscent of the ammonium sulphate precipitation step of the purification, seems to bind tightly and, therefore, presumably occupies and blocks the ribose 5-phosphate binding site. The activity of S. solfataricus PRPP synthase is independent of phosphate ion.

  20. Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm).

    Science.gov (United States)

    Islam, Mohammad Mainul; Nautiyal, Manisha; Wynn, R Max; Mobley, James A; Chuang, David T; Hutson, Susan M

    2010-01-01

    The catabolic pathway for branched-chain amino acids includes deamination followed by oxidative decarboxylation of the deaminated product branched-chain alpha-keto acids, catalyzed by the mitochondrial branched-chain aminotransferase (BCATm) and branched-chain alpha-keto acid dehydrogenase enzyme complex (BCKDC). We found that BCATm binds to the E1 decarboxylase of BCKDC, forming a metabolon that allows channeling of branched-chain alpha-keto acids from BCATm to E1. The protein complex also contains glutamate dehydrogenase (GDH1), 4-nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1, pyruvate carboxylase, and BCKDC kinase. GDH1 binds to the pyridoxamine 5'-phosphate (PMP) form of BCATm (PMP-BCATm) but not to the pyridoxal 5'-phosphate-BCATm and other metabolon proteins. Leucine activates GDH1, and oxidative deamination of glutamate is increased further by addition of PMP-BCATm. Isoleucine and valine are not allosteric activators of GDH1, but in the presence of 5'-phosphate-BCATm, they convert BCATm to PMP-BCATm, stimulating GDH1 activity. Sensitivity to ADP activation of GDH1 was unaffected by PMP-BCATm; however, addition of a 3 or higher molar ratio of PMP-BCATm to GDH1 protected GDH1 from GTP inhibition by 50%. Kinetic results suggest that GDH1 facilitates regeneration of the form of BCATm that binds to E1 decarboxylase of the BCKDC, promotes metabolon formation, branched-chain amino acid oxidation, and cycling of nitrogen through glutamate.

  1. Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine.

    Science.gov (United States)

    Commichau, Fabian M; Alzinger, Ariane; Sande, Rafael; Bretzel, Werner; Meyer, Frederik M; Chevreux, Bastien; Wyss, Markus; Hohmann, Hans-Peter; Prágai, Zoltán

    2014-09-01

    Vitamin B6 is a designation for the vitamers pyridoxine, pyridoxal, pyridoxamine, and their respective 5'-phosphates. Pyridoxal 5'-phosphate, the biologically most-important vitamer, serves as a cofactor for many enzymes, mainly active in amino acid metabolism. While microorganisms and plants are capable of synthesizing vitamin B6, other organisms have to ingest it. The vitamer pyridoxine, which is used as a dietary supplement for animals and humans is commercially produced by chemical processes. The development of potentially more cost-effective and more sustainable fermentation processes for pyridoxine production is of interest for the biotech industry. We describe the generation and characterization of a Bacillus subtilis pyridoxine production strain overexpressing five genes of a non-native deoxyxylulose 5'-phosphate-dependent vitamin B6 pathway. The genes, derived from Escherichia coli and Sinorhizobium meliloti, were assembled to two expression cassettes and introduced into the B. subtilis chromosome. in vivo complementation assays revealed that the enzymes of this pathway were functionally expressed and active. The resulting strain produced 14mg/l pyridoxine in a small-scale production assay. By optimizing the growth conditions and co-feeding of 4-hydroxy-threonine and deoxyxylulose the productivity was increased to 54mg/l. Although relative protein quantification revealed bottlenecks in the heterologous pathway that remain to be eliminated, the final strain provides a promising basis to further enhance the production of pyridoxine using B. subtilis.

  2. Pyridoxal phosphate as a probe of the cytoplasmic domains of transmembrane proteins: Application to the nicotinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Ramirez, B.; Martinez-Carrion, M. (Univ. of Missouri, Kansas City (USA))

    1989-06-13

    A novel procedure has been developed to specifically label the cytoplasmic domains of transmembrane proteins with the aldehyde pyridoxal 5-phosphate (PLP). Torpedo californica acetylcholine receptor (AcChR) vesicles were loaded with ({sup 3}H)pyridoxine 5-phosphate (({sup 3}H)PNP) and pyridoxine-5-phosphate oxidase, followed by intravesicular enzymatic oxidation of ({sup 3}H)PNP at 37{degree}C in the presence of externally added cytochrome c as a scavenger of possible leaking PLP product. The four receptor subunits were labeled whether the reaction was carried out on the internal surface or separately designed to mark the external one. On the other hand, the relative pyridoxylation of the subunits differed in both cases, reflecting differences in accessible lysyl residues in each side of the membrane. Even though there are no large differences in the total lysine content among the subunits and there are two copies of the {alpha}-subunit, internal surface labeling by PLP was greatest for the highest molecular weight ({delta}) subunit, reinforcing the concept that the four receptor subunits are transmembranous and may protrude into the cytoplasmic face in a fashion that is proportional to their subunit molecular weight. Yet, the labeling data do not fit well to any of the models proposed for AcChR subunit folding. The method described can be used for selective labeling of the cytoplasmic domains of transmembrane proteins in sealed membrane vesicles.

  3. Generic HPLC platform for automated enzyme reaction monitoring: Advancing the assay toolbox for transaminases and other PLP-dependent enzymes.

    Science.gov (United States)

    Börner, Tim; Grey, Carl; Adlercreutz, Patrick

    2016-08-01

    Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real-time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler-assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'-phosphate-dependent enzymes is presented using SEC for direct monitoring of enzyme-bound and free reaction intermediates. Time-resolved changes of the different cofactor states, e.g. pyridoxal 5'-phosphate, pyridoxamine 5'-phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate-independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP-dependent enzymes.

  4. Biology, management and biochemical/genetic characterization of weed biotypes resistant to acetolactate synthase inhibitor herbicides Biologia, manejo e caracterização bioquímica e genética de biótipos resistentes aos herbicidas inibidores da acetolactato sintase

    Directory of Open Access Journals (Sweden)

    Patrícia Andrea Monquero

    2003-01-01

    Full Text Available Bidens pilosa and Amaranthus quitensis are major weeds infesting soybean [Glycine max L (Merrill] fields in Brazil and Argentina. The repetitive use of acetolactate synthase (ALS EC 4.1.3.18 inhibiting herbicides in São Gabriel do Oeste, MS, Brazil and in the provinces of Córdoba and Tucumã, Argentina, has selected for resistant (R biotypes of these weeds. Research work was developed to study the management, growth, biochemistry, and genetics of these R weed biotypes. In a field experiment it was found that chlorimuron-ethyl and imazethapyr at recommended rates (both ALS inhibitor herbicides, did not control R B. pilosa, but the alternative lactofen, fomesafen and bentazon were effective, either sprayed alone or mixed with the ALS inhibitor herbicides. Greenhouse studies confirmed the cross-resistance of both R biotypes to the imidazolinone and sulfonylurea herbicides, and these alternative herbicides, when sprayed alone or mixed with the ALS inhibitor, efficiently controlled both R and S populations. A growth analysis of the R and S biotypes of these weeds, under non-competitive conditions, indicated that there is no adaptive cost to the R biotypes (pleiotropic effect. A quick bioassay using ALS and ketoacid reductoisomerase (KARI inhibitors showed that the resistance of the R biotypes to herbicides is related to a lack of sensitivity of the ALS enzyme to the herbicides. On the other hand, the sequencing of the gene that codifies the ALS resistance in R A. quitensis did not present any mutation in the A Domain region, suggesting that other positions of the gene that confer insensitivity of the ALS to sulfonylurea and imidazolinone herbicides could have mutated.Bidens pilosa e Amaranthus quitensis são as principais plantas daninhas infestantes na cultura de soja [Glycine max L (Merrill] no Brasil e Argentina, respectivamente. O uso repetitivo de herbicidas inibidores da acetolactato sintase (ALS EC 4.1.3.18 em São Gabriel do Oeste (MS

  5. NAD(PH-hydrate dehydratase- a metabolic repair enzyme and its role in Bacillus subtilis stress adaptation.

    Directory of Open Access Journals (Sweden)

    Miroslava Petrovova

    Full Text Available BACKGROUND: One of the strategies for survival stress conditions in bacteria is a regulatory adaptive system called general stress response (GSR, which is dependent on the SigB transcription factor in Bacillus sp. The GSR is one of the largest regulon in Bacillus sp., including about 100 genes; however, most of the genes that show changes in expression during various stresses have not yet been characterized or assigned a biochemical function for the encoded proteins. Previously, we characterized the Bacillus subtilis168 osmosensitive mutant, defective in the yxkO gene (encoding a putative ribokinase, which was recently assigned in vitro as an ADP/ATP-dependent NAD(PH-hydrate dehydratase and was demonstrated to belong to the SigB operon. METHODS AND RESULTS: We show the impact of YxkO on the activity of SigB-dependent Pctc promoter and adaptation to osmotic and ethanol stress and potassium limitation respectively. Using a 2DE approach, we compare the proteomes of WT and mutant strains grown under conditions of osmotic and ethanol stress. Both stresses led to changes in the protein level of enzymes that are involved in motility (flagellin, citrate cycle (isocitrate dehydrogenase, malate dehydrogenase, glycolysis (phosphoglycerate kinase, and decomposition of Amadori products (fructosamine-6-phosphate deglycase. Glutamine synthetase revealed a different pattern after osmotic stress. The patterns of enzymes for branched amino acid metabolism and cell wall synthesis (L-alanine dehydrogenase, aspartate-semialdehyde dehydrogenase, ketol-acid reductoisomerase were altered after ethanol stress. CONCLUSION: We performed the first characterization of a Bacillus subtilis168 knock-out mutant in the yxkO gene that encodes a metabolite repair enzyme. We show that such enzymes could play a significant role in the survival of stressed cells.

  6. The novel heteromeric bivalent ligand SB9 potently antagonizes P2Y(1) receptor-mediated responses.

    Science.gov (United States)

    Lambrecht, G; Ganso, M; Bäumert, H G; Spatz-Kümbel, G; Hildebrandt, C; Braun, K; Mutschler, E

    2000-07-01

    Effects of 6-[(4,6,8-trisulfo-1-naphthyl)iminocarbonyl-1, 3-(4-methylphenylene)iminocarbonyl-1, 3-phenylene-azo]-pyridoxal-5'-phosphate (SB9), a heterodimeric bivalent ligand consisting of pyridoxal-5'-phosphate and the suramin monomer, were studied on contractions of the rat vas deferens elicited by alpha beta-methylene ATP (alpha beta meATP; mediated by P2X(1)-like receptors), contractions of the guinea-pig ileal longitudinal smooth muscle elicited by adenosine 5'-O-(2-thiodiphosphate) (ADP beta S mediated by P2Y(1)-like receptors), and the degradation of ATP by ecto-nucleotidases in folliculated Xenopus laevis oocytes. SB9 (0.1-10 microM) antagonized contractile responses produced by alpha beta meATP or ADP beta S in a concentration-dependent manner. Schild analysis yielded linear regression lines of unit slope, indicating competitive antagonism. From the rightward shifts of the agonist concentration-response curves pA(2) values of 6.05+/-0.13 (vas deferens) and 6.98+/-0.07 (ileum) were derived. In both preparations, SB9 behaved as a slow onset, slow offset antagonist. Incubation of three oocytes in the presence of ATP produced an increase in inorganic phosphate (P(i)) over a 30-min period, which amounted to 35.1+/-1.9 microM P(i) from 100 microM ATP. SB9 (10-1000 microM) reduced this degradation (pIC(50)=4.33+/-0.10). The results illustrate that SB9 is a high-affinity P2Y(1) receptor antagonist with a remarkable selectivity for P2Y(1) vs. P2X(1) receptors (about 10-fold) and ecto-nucleotidases (447-fold). These properties make it unique among the pyridoxal-5'-phosphate and suramin derivatives reported to date.

  7. Effect of Ultraviolet A-induced Crosslinking on Dentin Collagen Matrix

    Science.gov (United States)

    Seseogullari-Dirihan, Roda; Tjäderhane, Leo; Pashley, David H; Tezvergil-Mutluay, Arzu

    2016-01-01

    Objectives The aim of this study was to evaluate the effect of using UVA-induced crosslinking with or without riboflavin as photosensitizers on degradation of dentin matrix by dentin proteases. Methods Demineralized dentin specimens (0.4×3×6mm, n=10/group) were subjected to: (RP1), 0.1% riboflavin-5 phosphate/UVA for 1 min; (RP5), 0.1% riboflavin-5 phosphate/UVA for 5 min; (R1), 0.1% riboflavin/UVA for 1 min; (R5), 0.1% riboflavin-UVA for 5 min; (UV1), UVA for 1 min; (UV5), UVA for 5 min. Specimens were incubated in 1 mL zinc and calcium containing media for 1 day and 1 week. An untreated group served as control (CM). After incubation, the loss of dry mass of samples was measured and aliquots of media were analyzed for the release of C-terminal fragment telopeptide (ICTP vs CTX) of collagen to evaluate for cathepsin K (CA-K) and total matrix metalloproteinase (MMP)-mediated degradation. Data were analyzed using repeated measures ANOVA at α=0.05. Results Although UVA radiation alone reduced dentin degradation, UVA-activated riboflavin or riboflavin-5 phosphate inhibited MMP and CA-K activities more than UVA alone. The effects of crosslinking were more pronounced in 7-day samples; only with CA-K were the effects of crosslinking with or without photosensitizer significantly different from controls in 1-day samples. Significance The use of bioactive forms (RP) or longer treatment time did not result with better effect. The use of UVA crosslinking reduces dentin matrix degradation, especially with photosensitizers. PMID:26314255

  8. De novo purine biosynthesis by two pathways in Burkitt lymphoma cells and in human spleen.

    Science.gov (United States)

    Reem, G H

    1972-05-01

    This study was designed to answer the question whether human lymphocytes and spleen cells were capable of de novo purine biosynthesis. Experiments were carried out in cell-free extracts prepared from human spleen, and from a cell line established from Burkitt lymphoma. Burkitt lymphoma cells and human spleen cells could synthesize the first and second intermediates of the purine biosynthetic pathway. Cell-free extracts of all cell lines studied contained the enzyme systems which catalyze the synthesis of phosphoribosyl-1-amine, the first intermediate unique to the purine biosynthetic pathway and of phosphoribosyl glycinamide, the second intermediate of this pathway. Phosphoribosyl-1-amine could be synthesized in cell-free extracts from alpha-5-phosphoribosyl-1-pyrophosphate (PRPP) and glutamine, from PRPP and ammonia, and by an alternative pathway, directly from ribose-5-phosphate and ammonia. These findings suggest that extrahepatic tissues may be an important source for the de novo synthesis of purine ribonucleotide in man. They also indicate that ammonia may play an important role in purine biosynthesis. The alternative pathway for the synthesis of phosphoribosyl-1-amine from ribose-5-phosphate and ammonia was found to be subject to inhibition by the end products of the purine synthetic pathway, particularly by adenylic acid and to a lesser degree by guanylic acid. The alternative pathway for phosphoribosyl-1-amine synthesis from ribose-5-phosphate and ammonia may contribute significantly towards the regulation of the rate of de novo purine biosynthesis in the normal state, in metabolic disorders in which purines are excessively produced and in myeloproliferative diseases.

  9. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway.

    Science.gov (United States)

    Stincone, Anna; Prigione, Alessandro; Cramer, Thorsten; Wamelink, Mirjam M C; Campbell, Kate; Cheung, Eric; Olin-Sandoval, Viridiana; Grüning, Nana-Maria; Krüger, Antje; Tauqeer Alam, Mohammad; Keller, Markus A; Breitenbach, Michael; Brindle, Kevin M; Rabinowitz, Joshua D; Ralser, Markus

    2015-08-01

    The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner-Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the 'Warburg effect' of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and parasite

  10. Crystal structure of PhnH: an essential component of carbon-phosphorus lyase in Escherichia coli

    DEFF Research Database (Denmark)

    Adams, Melanie A.; Luo, Yan; Hove-Jensen, Bjarne;

    2008-01-01

    . Here we report the X-ray crystal structure of the PhnH component at 1.77 Å resolution. The protein exhibits a novel fold, although local similarities with the pyridoxal 5'-phosphate-dependent transferase family of proteins are apparent. PhnH forms a dimer in solution and in the crystal structure......, the interface of which is implicated in creating a potential ligand binding pocket. Our studies further suggest that PhnH may be capable of binding negatively charged cyclic compounds through interaction with strictly conserved residues. Finally, we show that PhnH is essential for C-P bond cleavage in the CP...

  11. Chemical phosphorylation of deoxyribonucleosides and thermolytic DNA oligonucleotides.

    Science.gov (United States)

    Ausín, Cristina; Grajkowski, Andrzej; Cieślak, Jacek; Beaucage, Serge L

    2006-10-01

    The phosphorylating reagent bis[S-(4,4'-dimethoxytrityl)-2-mercaptoethyl]-N,N-diisopropylphosphoramidite is prepared in three steps from commercial methyl thioglycolate and diisopropylphosphoramidous dichloride. The phosphorylating reagent has been used successfully in the solid-phase synthesis of deoxyribonucleoside 5'-/3'-phosphate or -thiophosphate monoesters and oligonucleotide 5'-phosphate/-thiophosphate monoesters. Bis[S-(4,4'-dimethoxytrityl)-2-mercaptoethyl]-N,N-diisopropylphosphoramidite has also been employed in the construction of a thermolytic dinucleotide prodrug model to evaluate the ability of the reagent to produce thermosentive oligonucleotide prodrugs under mild temperature conditions ( approximately 25 degrees C) for potential therapeutic applications.

  12. Prediction of potential antimalarial targets of artemisinin based on protein information from whole genome of Plasmodium falciparum

    Institute of Scientific and Technical Information of China (English)

    HAN LiPing; HUANG Qiang; NAN Peng; ZHONG Yang

    2009-01-01

    On the basis of the genomic data and protein pathway information about Plasmodium falciparum clone 3D7 from the NCBI taxonomy database and the KEGG database,eight key protein enzymes in the signal pathways were selected to perform molecular docking with artemisinin.The binding modes obtained from the molecular docking suggested that purine nucleoside phosphorylase (pfPNP),peptide deformylase (pfPDF),and ribose 5-phosphate isomerase (pfRpiA) may be involved in the antimalarial mode of action of artemisinin.Artemisinin exhibited its antimalarial activity probably by interfering with the metabolic pathways of purine,pyrimidine,methionine,glyoxylate and dicarboxylate,or pentose phosphate.

  13. Via das pentoses fosfato na saúde e na doença: da disfunção metabólica aos biomarcadores

    OpenAIRE

    Ramos, Rúben José Jesus Faustino

    2013-01-01

    Tese de mestrado, Análises Clínicas, Universidade de Lisboa, Faculdade de Farmácia, 2013 The Pentose Phosphate Pathway (PPP) fulfils two unique functions: (i) the formation of ribose-5-phosphate (R5P) for the synthesis of nucleotides, RNA and DNA, supporting cell growth and proliferation; and (ii) the formation of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH carries chemical energy in the form of reducing power, being essential to the cellular oxidative de...

  14. Structural and kinetic studies of the allosteric transition in Sulfolobus solfataricus uracil phosphoribosyltransferase: Permanent activation by engineering of the C-terminus

    DEFF Research Database (Denmark)

    Christoffersen, Stig; Kadziola, Anders; Johansson, Eva

    2009-01-01

    Uracil phosphoribosyltransferase catalyzes the conversion of 5-phosphoribosyl- a-1-diphosphate (PRPP) and uracil to uridine monophosphate (UMP) and diphosphate (PPi). The tetrameric enzyme from Sulfolobus solfataricus has a unique type of allosteric regulation by cytidine triphosphate (CTP......) and guanosine triphosphate (GTP). Here we report two structures of the activated state in complex with GTP. One structure (refined at 2.8-Å resolution) contains PRPP in all active sites, while the other structure (refined at 2.9-Å resolution) has PRPP in two sites and the hydrolysis products, ribose-5-phosphate...

  15. An aqueous friendly chemosensor derived from vitamin B6 cofactor for colorimetric sensing of Cu2 + and fluorescent turn-off sensing of Fe3 +

    Science.gov (United States)

    Sharma, Darshna; Kuba, Aman; Thomas, Rini; Kumar, Rajender; Choi, Heung-Jin; Sahoo, Suban K.

    2016-01-01

    Chemosensor L derived from vitamin B6 cofactor pyridoxal-5-phosphate was investigated for the selective detection of Cu2 + and Fe3 + in aqueous medium. Sensor L formed a 1:1 complex with Cu2 + and displays a perceptible color change from colorless to yellow brown with the appearance of a new charge transfer band at ~ 450 nm. In contrast, the fluorescence of L was quenched selectively in the presence of Fe3 + without any interference from other metal ions including Cu2 +.

  16. Main: 1H1Y [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1H1Y イネ Rice Oryza sativa L. D-Ribulose-5-Phosphate 3-Epimerase Oryza Sativa Molecu...V. 326 127 2003 3-Epimerase, Oxidative Pentose Phosphate Pathway, Isomerase SWS:Q9SE42,Q9SE42|EMBL; AF189365; AAF01048.1; -.|PDB; 1H...1Y; X-ray; A/B=1-228.|PDB; 1H1Z; X-ray; A/B=1-228.|Gramene; Q9SE42; -.|GO; GO:001685...ELIQSIKAKGMRPGVSLRPGTPVEEVFPLVEAENPVELVLVMTVEPGFGGQKFMPEMMEKVRALRKKYPSLDIEVDGGLGPSTIDVAASAGANCIVAGSSIFGAAEPGEVISALRKSVEGSQNKS rice_1H1Y.jpg ...

  17. Efficient application of monolithic silica column to determination of illicit heroin street sample by HPLC.

    Science.gov (United States)

    Macchia, Marco; Bertini, Simone; Mori, Claudio; Orlando, Caterina; Papi, Chiara; Placanica, Giorgio

    2004-03-01

    In this paper, an HPLC method is proposed for a routine, rapid and simple analysis of heroin samples confiscated from the illicit market, based on a new type of packing for HPLC columns (monolithic silica). Acetonitrile and pH 3.5 phosphate buffer solution were used under both isocratic and gradient conditions. Under our analytical conditions, all the components of a typical mixture of an illicit heroin sample proved to be fully separated into well-resolved peaks in 7 min. Analytical linearity and accuracy of the method were also studied for all analytes using tetracaine hydrochloride as the internal standard.

  18. PNPO deficiency: an under diagnosed inborn error of pyridoxine metabolism.

    Science.gov (United States)

    Khayat, Morad; Korman, Stanley H; Frankel, Pnina; Weintraub, Zalman; Hershckowitz, Sylvia; Sheffer, Vered Fleisher; Ben Elisha, Mordechai; Wevers, Ronald A; Falik-Zaccai, Tzipora C

    2008-08-01

    The rare autosomal recessive disorder pyridoxine 5'-phosphate oxidase (PNPO) deficiency is a recently described cause of neonatal and infantile seizures. Clinical evaluation, and biochemical and genetic testing, were performed on a neonate with intractable seizures who did not respond to anticonvulsant drugs and pyridoxine. Sequencing of the PNPO gene revealed a novel homozygous c.284G>A transition in exon 3, resulting in arginine to histidine substitution and reduced activity of the PNPO mutant to 18% relative to the wild type. This finding enabled molecular prenatal diagnosis in a subsequent pregnancy, accurate genetic counseling in the large inbred family, and population screening.

  19. EFFECT OF FOOD-MICROORGANISMS ON GAMMA-AMINOBUTYRIC ACID PRODUCTION BY FERMENTATION

    Directory of Open Access Journals (Sweden)

    Jozef Hudec

    2012-02-01

    Full Text Available Lactic acid bacteria (LAB are nice targets in order to study γ-aminobutyric acid (GABA production that has been reported to be effective in order to reduce blood pressure in experimental animals and human beings. In this study, we aimed to γ-aminobutyric acid (GABA production in aerobical and anaerobical conditions, using different sources of microorganisms. The highest selectivity of GABA from precursor L-monosodium glutamate (82.22% has been reported using of microorganisms from banana, and with addition of pyridoxal-5-phosphate (P-5-P. For augmentation of selectivity the application of the further stimulating factors of GABA biosynthesis is needed.

  20. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    Science.gov (United States)

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time.

  1. Studies of the Production of Fungal Polyketides in Aspergillus nidulans by Using Systems Biology Tools

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Andersen, Mikael Rørdam; Grotkjær, Thomas

    2009-01-01

    -methylsalicylic acid (6-MSA) synthase gene and one expressing the 6-MSA synthase gene and overexpressing the native xylulose-5-phosphate phosphoketolase gene (xpkA) for increasing the pool of polyketide precursor levels. The physiology of the recombinant strains and that of a reference wild-type strain were...... that overexpression of xpkA does not directly improve 6-MSA production on glucose, but it is possible, if the metabolic flux through the lower part of glycolysis is reduced, to obtain quite high yields for conversion of sugar to 6-MSA. Systems biology tools were employed for in-depth analysis of the metabolic...

  2. Comparative Studies on Biochemical Properties of Protein Synthesis of an Archae-Bacteria Thermoplasma-Sp

    Science.gov (United States)

    Ohba, Masayuki; Oshima, Tairo

    1982-12-01

    An acido-thermophillic archaebacteria,Thermoplasma strain KO-2, produced poly(A) containing RNA. The isolated poly(A)RNA showed the messenger activity in a cell-free extract of rabbit reticulocyte, indicating that the RNA is mRNA of the archaebacteria. 7-Methylgluanosine 5'-phosphate did not inhibit the reaction, suggesting that the cap structure is not present in the messenger. These results may suggest that poly(A) containing messenger arised at very early stage of evolution prior to the divergence between archaebacteria and eukaryotes.

  3. Advances in the Plant Isoprenoid Biosynthesis Pathway and Its Metabolic Engineering

    Institute of Scientific and Technical Information of China (English)

    Yan LIU; Hong WANG; He-Chun YE; Guo-Feng LI

    2005-01-01

    Although the cytosolic isoprenoid biosynthetic pathway, mavolonate pathway, in plants has been known for many years, a new plastidial 1-deoxyxylulose-5-phosphate (DXP) pathway was identified in the past few years and its related intermediates, enzymes, and genes have been characterized quite recently.With a deep insight into the biosynthetic pathway of isoprenoids, investigations into the metabolic engineering of isoprenoid biosynthesis have started to prosper. In the present article, recent advances in the discoveries and regulatory roles of new genes and enzymes in the plastidial isoprenoid biosynthesis path way are reviewed and examples of the metabolic engineering of cytosolic and plastidial isoprenoids biosnthesis are discussed.

  4. Autocatalytic cyclization of an excised intervening sequence RNA is a cleavage-ligation reaction.

    Science.gov (United States)

    Zaug, A J; Grabowski, P J; Cech, T R

    The intervening sequence (IVS) of the Tetrahymena ribosomal RNA precursor is excised as a linear RNA molecule which subsequently cyclizes itself in a protein-independent reaction. Cyclization involves cleavage of the linear IVS RNA 15 nucleotides from its 5' end and formation of a phosphodiester bond between the new 5' phosphate and the original 3'-hydroxyl terminus of the IVS. This recombination mechanism is analogous to that by which splicing of the precursor RNA is achieved. The circular molecules appear to have no direct function in RNA splicing, and we propose the cyclization serves to prevent unwanted RNA from driving the splicing reactions backwards.

  5. MicroCommentary: A New Role for Coenzyme F420 in Aflatoxin Reduction by Soil Mycobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E [ORNL

    2010-01-01

    Hepatotoxic aflatoxins have found a worthy adversary in two new families of bacterial oxidoreductases. These enzymes use the reduced coenzyme F420 to initiate the degradation of furanocoumarin compounds, including the major mycotoxin products of Aspergillus flavus. Along with pyridoxalamine 5 -phosphate oxidases and aryl nitroreductases, these proteins form a large and versatile superfamily of flavin and deazaflavin-dependent oxidoreductases. F420-dependent members of this family appear to share a common mechanism of hydride transfer from the reduced deazaflavin to the electron-deficient ring systems of their substrates.

  6. Development of a comprehensive analytical method for phosphate metabolites in plants by ion chromatography coupled with tandem mass spectrometry.

    Science.gov (United States)

    Sekiguchi, Yoko; Mitsuhashi, Naoto; Kokaji, Tetsuo; Miyakoda, Hidekazu; Mimura, Tetsuro

    2005-08-26

    This paper describes the development of a practical method for the analysis of phosphorus compounds with a focus on sugar phosphates from the model higher plant Arabidopsis thaliana by ion chromatography coupled to electrospray ionization tandem mass spectrometry (IC-ESI-MS-MS). After the analytical separation, the potassium hydroxide eluent was converted to water with an anion suppressor allowing the effluent from the IC to be connected to the mass spectrometer directly. In the optimized method, 17 phosphorous compounds (adenosine diphosphate (ADP), fructose 1,6-bisphosphate, fructose 2,6-bisphosphate, fructose 6-phosphate, galactose 1-phosphate, glucose 1-phosphate, glucose 1,6-bisphosphate, glucose 6-phosphate, mannose 6-phosphate, phosphoenol pyrvate, 3-phosphoglyceric acid, ribulose 1,5-bisphosphate, ribulose 5-phosphate, ribose 5-phosphate, sucrose 6-phosophate and uridine 5'-diphosphate-glucose (UDPG)) were determined. The linearity of response for these phosphorous compounds over the concentration range of 0 and 10 microM was better than 0.9993 in all cases. The minimum detection limit was between 0.01 and 2.50 microM for a 25 microL injection, and recovery rates for standard addition to the sample were within the range from 93% to 110%.

  7. Binding of Divalent Magnesium by Escherichia coli Phosphoribosyl Diphosphate Synthetase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne

    1997-01-01

    The mechanism of binding of the substrates MgATP and ribose 5-phosphate as well as Mg2+ to the enzyme 5-phospho-d-ribosyl a-1-diphosphate synthetase from Escherichia coli has been analyzed. By use of the competive inhibitors of ATP and ribose 5-phosphate binding, a,ß-methylene ATP and (+)-1-a,2-a,3...... of substrates and products indicated a role of Mg2+ in preparing the active site of phosphoribosyl diphosphate synthetase for binding of the highly phosphorylated ligands MgATP and phosphoribosyl diphosphate, as evaluated by analysis of the effects of the inhibitors adenosine and ribose 1,5-bisphosphate....... Calcium ions, which inhibit the enzyme even in the presence of high concentrations of Mg2+, appeared to compete with free Mg2+ for binding to its activator site on the enzyme. Analysis of the inhibition of Mg2+ binding by MgADP indicated that MgADP binding to the allosteric site may occur in competition...

  8. Structural Insight into the Mechanism of Substrate Specificity of Aedes Kynurenine Aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Han,Q.; Gao, Y.; Robinson, H.; Li, J.

    2008-01-01

    Aedes aegypti kynurenine aminotransferase (AeKAT) is a multifunctional aminotransferase. It catalyzes the transamination of a number of amino acids and uses many biologically relevant a-keto acids as amino group acceptors. AeKAT also is a cysteine S-conjugate {beta}-lyase. The most important function of AeKAT is the biosynthesis of kynurenic acid, a natural antagonist of NMDA and {alpha}7-nicotinic acetylcholine receptors. Here, we report the crystal structures of AeKAT in complex with its best amino acid substrates, glutamine and cysteine. Glutamine is found in both subunits of the biological dimer, and cysteine is found in one of the two subunits. Both substrates form external aldemines with pyridoxal 5-phosphate in the structures. This is the first instance in which one pyridoxal 5-phosphate enzyme has been crystallized with cysteine or glutamine forming external aldimine complexes, cysteinyl aldimine and glutaminyl aldimine. All the units with substrate are in the closed conformation form, and the unit without substrate is in the open form, which suggests that the binding of substrate induces the conformation change of AeKAT. By comparing the active site residues of the AeKAT-cysteine structure with those of the human KAT I-phenylalanine structure, we determined that Tyr286 in AeKAT is changed to Phe278 in human KAT I, which may explain why AeKAT transaminates hydrophilic amino acids more efficiently than human KAT I does.

  9. The Parkinson's disease death rate: carbidopa and vitamin B6

    Directory of Open Access Journals (Sweden)

    Hinz M

    2014-10-01

    Full Text Available Marty Hinz,1 Alvin Stein,2 Ted Cole31Clinical Research, NeuroResearch Clinics, Inc., Cape Coral, FL, USA; 2Stein Orthopedic Associates, Plantation, FL, USA; 3Cole Center for Healing, Cincinnati, OH, USAAbstract: The only indication for carbidopa and benserazide is the management of L-3,4-dihydroxyphenylalanine (L-dopa-induced nausea. Both drugs irreversibly bind to and permanently deactivate pyridoxal 5'-phosphate (PLP, the active form of vitamin B6, and PLP-dependent enzymes. PLP is required for the function of over 300 enzymes and proteins. Virtually every major system in the body is impacted directly or indirectly by PLP. The administration of carbidopa and benserazide potentially induces a nutritional catastrophe. During the first 15 years of prescribing L-dopa, a decreasing Parkinson's disease death rate was observed. Then, in 1976, 1 year after US Food and Drug Administration approved the original L-dopa/carbidopa combination drug, the Parkinson's disease death rate started increasing. This trend has continued to the present, for 38 years and counting. The previous literature documents this increasing death rate, but no hypothesis has been offered concerning this trend. Carbidopa is postulated to contribute to the increasing Parkinson's disease death rate and to the classification of Parkinson's as a progressive neurodegenerative disease. It may contribute to L-dopa tachyphylaxis.Keywords: L-dopa, levodopa, vitamin B6, pyridoxal 5'-phosphate

  10. General Properties, Occurrence, and Preparation of Carbohydrates

    Science.gov (United States)

    Robyt, John F.

    D-Glucose and its derivatives and analogues, N-acetyl-D-glucosamine, N-acetyl-D-muramic acid, D-glucopyranosyl uronic acid, and D-glucitol represent 99.9% of the carbohydrates on the earth. D-Glucose is found in the free state in human blood and in the combined state in disaccharides, sucrose, lactose, and α,α-trehalose, in cyclic dextrins, and in polysaccharides, starch, glycogen, cellulose, dextrans; N-acetyl-D-glucosamine and an analogue N-acetyl-D-muramic acid are found in bacterial cell wall polysaccharide, murein, along with teichoic acids made up of poly-glycerol or -ribitol phosphodiesters. Other carbohydrates, D-mannose, D-mannuronic acid, D-galactose, N-acetyl-D-galactosamine, D-galacturonic acid, D-iduronic acid, L-guluronic acid, L-rhamnose, L-fucose, D-xylose, and N-acetyl-D-neuraminic acid are found in glycoproteins, hemicelluloses, glycosaminoglycans, and polysaccharides of plant exudates, bacterial capsules, alginates, and heparin. D-Ribofuranose-5-phosphate is found in many coenzymes and is the backbone of RNAs (ribonucleic acid), and 2-deoxy-D-ribofuranose-5-phosphate is the backbone of DNA (deoxyribonucleic acid). D-Fructofuranose is found in sucrose, inulin, and levan. The general properties and occurrence of these carbohydrates and general methods of isolation and preparation of carbohydrates are presented.

  11. Crystal structure of a NifS-like protein from Thermotoga maritima: implications for iron sulphur cluster assembly.

    Science.gov (United States)

    Kaiser, J T; Clausen, T; Bourenkow, G P; Bartunik, H D; Steinbacher, S; Huber, R

    2000-03-24

    NifS-like proteins are ubiquitous, homodimeric, proteins which belong to the alpha-family of pyridoxal-5'-phoshate dependent enzymes. They are proposed to donate elementary sulphur, generated from cysteine, via a cysteinepersulphide intermediate during iron sulphur cluster biosynthesis, an important albeit not well understood process. Here, we report on the crystal structure of a NifS-like protein from the hyperthermophilic bacterium Thermotoga maritima (tmNifS) at 2.0 A resolution. The tmNifS is structured into two domains, the larger bearing the pyridoxal-5'-phosphate-binding active site, the smaller hosting the active site cysteine in the middle of a highly flexible loop, 12 amino acid residues in length. Once charged with sulphur the loop could possibly deliver S(0) directly to regions far remote from the protein. Based on the three-dimensional structures of the native as well as the substrate complexed form and on spectrophotometric results, a mechanism of sulphur activation is proposed. The His99, which stacks on top of the pyridoxal-5'-phosphate co-factor, is assigned a crucial role during the catalytic cycle by acting as an acid-base catalyst and is believed to have a pK(a) value depending on the co-factor redox state.

  12. Time-resolved metabolomics analysis of β-cells implicates the pentose phosphate pathway in the control of insulin release.

    Science.gov (United States)

    Spégel, Peter; Sharoyko, Vladimir V; Goehring, Isabel; Danielsson, Anders P H; Malmgren, Siri; Nagorny, Cecilia L F; Andersson, Lotta E; Koeck, Thomas; Sharp, Geoffrey W G; Straub, Susanne G; Wollheim, Claes B; Mulder, Hindrik

    2013-03-15

    Insulin secretion is coupled with changes in β-cell metabolism. To define this process, 195 putative metabolites, mitochondrial respiration, NADP+, NADPH and insulin secretion were measured within 15 min of stimulation of clonal INS-1 832/13 β-cells with glucose. Rapid responses in the major metabolic pathways of glucose occurred, involving several previously suggested metabolic coupling factors. The complexity of metabolite changes observed disagreed with the concept of one single metabolite controlling insulin secretion. The complex alterations in metabolite levels suggest that a coupling signal should reflect large parts of the β-cell metabolic response. This was fulfilled by the NADPH/NADP+ ratio, which was elevated (8-fold; P2.5-fold; Ppentose phosphate pathway by trans-dehydroepiandrosterone (DHEA) suppressed ribose 5-phosphate levels and production of reduced glutathione, as well as insulin secretion in INS-1 832/13 β-cells and rat islets without affecting ATP production. Metabolite profiling of rat islets confirmed the glucose-induced rise in ribose 5-phosphate, which was prevented by DHEA. These findings implicate the pentose phosphate pathway, and support a role for NADPH and glutathione, in β-cell stimulus-secretion coupling.

  13. Positive correlation between PSI response and oxidative pentose phosphate pathway activity during salt stress in an intertidal macroalga.

    Science.gov (United States)

    Huan, Li; Xie, Xiujun; Zheng, Zhenbing; Sun, Feifei; Wu, Songcui; Li, Moyang; Gao, Shan; Gu, Wenhui; Wang, Guangce

    2014-08-01

    Studies have demonstrated that photosynthetic limitations and starch degradation are responses to stress; however, the relationship between the two is seldom described in detail. In this article, the effects of salt stress on photosynthesis, the levels of NADPH and total RNA, the starch content and the activities of glucose-6-phosphate dehydrogenase (G6PDH) and ribulose-5-phosphate kinase (RPK) were evaluated. In thalli that underwent salt treatments, the cyclic electron flow through PSI showed greater stress tolerance than the flow through PSII. Even though the linear electron flow was suppressed by DCMU, the cyclic electron flow still operated. The electron transport rate I (ETRI) increased as the salinity increased when the thalli recovered in seawater containing DCMU. These results suggested that PSI receives electrons from a source other than PSII. Furthermore, the starch content and RPK activity decreased, while the content of NADPH and total RNA, and the activity of G6PDH increased under salt stress. Soluble sugar from starch degradation may enter the oxidative pentose phosphate pathway (OPPP) to produce NADPH and ribose 5-phosphate. Data analysis suggests that NADPH provides electrons for PSI in Ulva prolifera during salt stress, the OPPP participates in the stress response and total RNA is synthesized in excess to assist recovery.

  14. Crystal structures of phosphoketolase: thiamine diphosphate-dependent dehydration mechanism.

    Science.gov (United States)

    Suzuki, Ryuichiro; Katayama, Takane; Kim, Byung-Jun; Wakagi, Takayoshi; Shoun, Hirofumi; Ashida, Hisashi; Yamamoto, Kenji; Fushinobu, Shinya

    2010-10-29

    Thiamine diphosphate (ThDP)-dependent enzymes are ubiquitously present in all organisms and catalyze essential reactions in various metabolic pathways. ThDP-dependent phosphoketolase plays key roles in the central metabolism of heterofermentative bacteria and in the pentose catabolism of various microbes. In particular, bifidobacteria, representatives of beneficial commensal bacteria, have an effective glycolytic pathway called bifid shunt in which 2.5 mol of ATP are produced per glucose. Phosphoketolase catalyzes two steps in the bifid shunt because of its dual-substrate specificity; they are phosphorolytic cleavage of fructose 6-phosphate or xylulose 5-phosphate to produce aldose phosphate, acetyl phosphate, and H(2)O. The phosphoketolase reaction is different from other well studied ThDP-dependent enzymes because it involves a dehydration step. Although phosphoketolase was discovered more than 50 years ago, its three-dimensional structure remains unclear. In this study we report the crystal structures of xylulose 5-phosphate/fructose 6-phosphate phosphoketolase from Bifidobacterium breve. The structures of the two intermediates before and after dehydration (α,β-dihydroxyethyl ThDP and 2-acetyl-ThDP) and complex with inorganic phosphate give an insight into the mechanism of each step of the enzymatic reaction.

  15. PLP and PMP radicals: a new paradigm in coenzyme B6 chemistry.

    Science.gov (United States)

    Agnihotri, G; Liu, H W

    2001-08-01

    Enzymes frequently rely on a broad repertoire of cofactors to perform chemically challenging transformations. The B6 coenzymes, composed of pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP), are used by many transaminases, racemases, decarboxylases, and enzymes catalyzing alpha,beta and beta,gamma-eliminations. Despite the variety of reactions catalyzed by B6-dependent enzymes, the mechanism of almost all such enzymes is based on their ability to stabilize high-energy anionic intermediates in their reaction pathways by the pyridinium moiety of PLP/PMP. However, there are two notable exceptions to this model, which are discussed in this article. The first enzyme, lysine 2,3-aminomutase, is a PLP-dependent enzyme that catalyzes the interconversion of L-lysine to L-beta-lysine using a one-electron-based mechanism utilizing a [4Fe-4S] cluster and S-adenosylmethionine. The second enzyme, CDP-6-deoxy-L-threo-D-glycero-4-hexulose-3-dehydrase, is a PMP-dependent enzyme involved in the formation of 3,6-dideoxysugars in bacteria. This enzyme also contains an iron-sulfur cluster and uses a one-electron based mechanism to catalyze removal of a C-3 hydroxy group from a 4-hexulose. In both cases, the participation of free radicals in the reaction pathway has been established, placing these two B6-dependent enzymes in an exclusive class by themselves.

  16. Data mining of the transcriptome of Plasmodium falciparum: the pentose phosphate pathway and ancillary processes

    Directory of Open Access Journals (Sweden)

    Ginsburg Hagai

    2005-03-01

    Full Text Available Abstract The general paradigm that emerges from the analysis of the transcriptome of the malaria parasite Plasmodium falciparum is that the expression clusters of genes that code for enzymes engaged in the same cellular function is coordinated. Here the consistency of this perception is examined by analysing specific pathways that metabolically-linked. The pentose phosphate pathway (PPP is a fundamental element of cell biochemistry since it is the major pathway for the recycling of NADP+ to NADPH and for the production of ribose-5-phosphate that is needed for the synthesis of nucleotides. The function of PPP depends on the synthesis of NADP+ and thiamine pyrophosphate, a co-enzyme of the PPP enzyme transketolase. In this essay, the transcription of gene coding for enzymes involved in the PPP, thiamine and NAD(P+ syntheses are analysed. The genes coding for two essential enzymes in these pathways, transaldolase and NAD+ kinase could not be found in the genome of P. falciparum. It is found that the transcription of the genes of each pathway is not always coordinated and there is usually a gene whose transcription sets the latest time for the full deployment of the pathway's activity. The activity of PPP seems to involve only the oxidative arm of PPP that is geared for maximal NADP+ reduction and ribose-5-phosphate production during the early stages of parasite development. The synthesis of thiamine diphosphate is predicted to occur much later than the expression of transketolase. Later in the parasite cycle, the non-oxidative arm of PPP that can use fructose-6-phosphate and glyceraldehyde-3-phosphate supplied by glycolysis, becomes fully deployed allowing to maximize the production of ribose-5-phosphate. These discrepancies require direct biochemical investigations to test the activities of the various enzymes in the developing parasite. Notably, several transcripts of PPP enzyme-coding genes display biphasic pattern of transcription unlike most

  17. Quantum mechanical study of the β- and δ-lyase reactions during the base excision repair process: application to FPG.

    Science.gov (United States)

    Sowlati-Hashjin, Shahin; Wetmore, Stacey D

    2015-10-14

    Bacterial FPG (or MutM) is a bifunctional DNA glycosylase that is primarily responsible for excising 8-oxoguanine (OG) from the genome by cleaving the glycosidic bond and the DNA backbone at the 3'- and 5'-phosphates of the damaged nucleoside. In the present work, quantum mechanical methods (SMD-M06-2X/6-311+G(2df,2p)//IEF-PCM-B3LYP/6-31G(d)) and a ring-opened Schiff base model that includes both the 3'- and 5'-phosphate groups are used to investigate the β- and δ-elimination reactions facilitated by FPG. Both the β- and δ-elimination reactions are shown to proceed through an E1cB mechanism that involves proton abstraction prior to the phosphate-ribose bond cleavage. Since transition states for the phosphate elimination reactions could not be characterized in the absence of leaving group protonation, our work confirms that the phosphate elimination reactions require protonation by a residue in the FPG active site, and can likely be further activated by additional active-site interactions. Furthermore, our model suggests that 5'-PO4 activation may proceed through a nearly isoenergetic direct (intramolecular) proton transfer involving the O4' proton of the deoxyribose of the damaged nucleoside. Regardless, our model predicts that both 3'- and 5'-phosphate protonation and elimination steps occur in a concerted reaction. Most importantly, our calculated barriers for the phosphate cleavage reactions reveal inherent differences between the β- and δ-elimination steps. Indeed, our calculations provide a plausible explanation for why the δ-elimination rather than the β-elimination is the rate-determining step in the BER facilitated by FPG, and why some bifunctional glycosylases (including the human counterpart, hOgg1) lack δ-lyase activity. Together, the new mechanistic features revealed by our work can be used in future large-scale modeling of the DNA-protein system to unveil the roles of key active sites residues in these relatively unexplored BER steps.

  18. Untangling the role of one-carbon metabolism in colorectal cancer risk: a comprehensive Bayesian network analysis

    Science.gov (United States)

    Myte, Robin; Gylling, Björn; Häggström, Jenny; Schneede, Jörn; Magne Ueland, Per; Hallmans, Göran; Johansson, Ingegerd; Palmqvist, Richard; Van Guelpen, Bethany

    2017-01-01

    The role of one-carbon metabolism (1CM), particularly folate, in colorectal cancer (CRC) development has been extensively studied, but with inconclusive results. Given the complexity of 1CM, the conventional approach, investigating components individually, may be insufficient. We used a machine learning-based Bayesian network approach to study, simultaneously, 14 circulating one-carbon metabolites, 17 related single nucleotide polymorphisms (SNPs), and several environmental factors in relation to CRC risk in 613 cases and 1190 controls from the prospective Northern Sweden Health and Disease Study. The estimated networks corresponded largely to known biochemical relationships. Plasma concentrations of folate (direct), vitamin B6 (pyridoxal 5-phosphate) (inverse), and vitamin B2 (riboflavin) (inverse) had the strongest independent associations with CRC risk. Our study demonstrates the importance of incorporating B-vitamins in future studies of 1CM and CRC development, and the usefulness of Bayesian network learning for investigating complex biological systems in relation to disease. PMID:28233834

  19. The structure of alanine racemase from Acinetobacter baumannii.

    Science.gov (United States)

    Davis, Emily; Scaletti-Hutchinson, Emma; Opel-Reading, Helen; Nakatani, Yoshio; Krause, Kurt L

    2014-09-01

    Acinetobacter baumannii is an opportunistic Gram-negative bacterium which is a common cause of hospital-acquired infections. Numerous antibiotic-resistant strains exist, emphasizing the need for the development of new antimicrobials. Alanine racemase (Alr) is a pyridoxal 5'-phosphate dependent enzyme that is responsible for racemization between enantiomers of alanine. As D-alanine is an essential component of the bacterial cell wall, its inhibition is lethal to prokaryotes, making it an excellent antibiotic drug target. The crystal structure of A. baumannii alanine racemase (AlrAba) from the highly antibiotic-resistant NCTC13302 strain has been solved to 1.9 Å resolution. Comparison of AlrAba with alanine racemases from closely related bacteria demonstrates a conserved overall fold. The substrate entryway and active site of the enzymes were shown to be highly conserved. The structure of AlrAba will provide the template required for future structure-based drug-design studies.

  20. Syntheses of L-tyrosine-related amino acids by tyrosine phenol-lyase of Citrobacter intermedius.

    Science.gov (United States)

    Nagasawa, T; Utagawa, T; Goto, J; Kim, C J; Tani, Y; Kumagai, H; Yamada, H

    1981-06-01

    Degradation of tyrosine to phenol, pyruvate and ammonia by tyrosine phenol-lyase from Citrobacter intermedius (formerly named Escherichia intermedia) is readily reversible at high concentrations of pyruvate and ammonia. Spectrophotometric studies indicate that ammonia is the first substrate which interacts with bound pyridoxal 5'-phosphate. Kinetic results show that pyruvate is the second substrate bound, hence phenol must be the third. When an appropriate phenol derivative is substituted for phenol, the corresponding tyrosine analogue can be synthesized. 3-Fluoro-, 2-fluoro-, 3-chloro-, 2-chloro-, 3-bromo-, 2-bromo-, 2-iodo-, 3-methyl-, 2-methyl- and 2-methoxy-L-tyrosines have been synthesized by this reaction. By using various phenol derivatives or tyrosine analogues as substrates, the substrate specificity of tyrosine phenol-lyase is investigated and the situation of its active site is discussed.

  1. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Andersen, Kasper R; Kilstrup, Mogens;

    2017-01-01

    is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP......Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds...... synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number...

  2. The folding characteristics of tryptophanase from Escherichia coli.

    Science.gov (United States)

    Mizobata, T; Kawata, Y

    1995-02-01

    The unfolding and refolding characteristics of Escherichia coli tryptophanase (tryptophan indole-lyase) [EC 4.1.99.1] in guanidine hydrochloride were studied. Tryptophanase unfolded by first dissociating its coenzyme, pyridoxal 5'-phosphate, from the active site. This dissociation caused a significant destabilization of structure, and global unfolding of the protein followed. During this global unfolding step, an intermediate was formed which had a strong tendency to aggregate irreversibly, as detected by light scattering experiments. Tryptophanase was unable to refold quantitatively after unfolding in 4 M guanidine hydrochloride. The low refolding yield was due to non-specific aggregation which occurs during refolding. Various conditions which limited this aggregation were probed, and it was found that by initiating the refolding reaction at low temperature, the aggregation of tryptophanase folding intermediates during the reaction could be avoided to a certain extent, and the refolding yield improved.

  3. Degradation studies on Escherichia coli capsular polysaccharides by bacteriophages.

    Science.gov (United States)

    Nimmich, W

    1997-08-01

    The serologically and structurally related Eschrichia coli capsular polysaccharides (K antigens) K13, K20, and K23 were found to be depolymerized by the bacteriophages phi K13 and phi K20 to almost similar oligomer profiles as shown by polyacrylamide gel electrophoresis. The phage-polysaccharide interactions were followed by an increase of reducing 2-keto-3-deoxyoctulosonic acid due to a phage-associated glycanase that catalyzed the hydrolytic cleavage of common beta-ketopyranosidic 2-keto-3-deoxyoctulosonic acid linkages. The related E. coli K antigens K18, K22, and K100 as well as the Haemophilus influenzae type b capsular polysaccharide were degraded by bacteriophage phi K100 with different efficacy. It is suggested that phi K100 enzymatically cleaves ribitol-5-phosphate bonds as the only structural feature present in all the polysaccharides investigated.

  4. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water.

    Science.gov (United States)

    Cafferty, Brian J; Fialho, David M; Khanam, Jaheda; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-25

    The RNA World hypothesis presupposes that abiotic reactions originally produced nucleotides, the monomers of RNA and universal constituents of metabolism. However, compatible prebiotic reactions for the synthesis of complementary (that is, base pairing) nucleotides and mechanisms for their mutual selection within a complex chemical environment have not been reported. Here we show that two plausible prebiotic heterocycles, melamine and barbituric acid, form glycosidic linkages with ribose and ribose-5-phosphate in water to produce nucleosides and nucleotides in good yields. Even without purification, these nucleotides base pair in aqueous solution to create linear supramolecular assemblies containing thousands of ordered nucleotides. Nucleotide anomerization and supramolecular assemblies favour the biologically relevant β-anomer form of these ribonucleotides, revealing abiotic mechanisms by which nucleotide structure and configuration could have been originally favoured. These findings indicate that nucleotide formation and selection may have been robust processes on the prebiotic Earth, if other nucleobases preceded those of extant life.

  5. Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Hägglöf, Cecilia; Weber, Nora

    2016-01-01

    yeast for transamination-reduction coupled asymmetric one-pot conversion was investigated. RESULTS: A series of active whole-cell biocatalysts were constructed by over-expressing the (S)-selective ω-transaminase (VAMT) from Capsicum chinense together with the NADH-dependent (S)-selective alcohol...... dehydrogenase (SADH) originating from Rhodococcus erythropolis in strains with or without deletion of glycerol-3-phosphate dehydrogenases 1 and 2 (GPD1 and GPD2). The yeast strains were evaluated as catalysts for simultaneous: (a) kinetic resolution of the racemic mixture to (R)-1-phenylethylamine, and (b......) reduction of the produced acetophenone to (S)-1-phenylethanol. For the gpd1Δgpd2Δ strain, cell metabolism was effectively used for the supply of both amine acceptors and the co-factor pyridoxal-5'-phosphate (PLP) for the ω-transaminase, as well as for regenerating NADH for the reduction. In contrast...

  6. A universal, photocleavable DNA base: nitropiperonyl 2'-deoxyriboside.

    Science.gov (United States)

    Pirrung, M C; Zhao, X; Harris, S V

    2001-03-23

    A universal, photochemically cleavable DNA base analogue would add desirable versatility to a number of methods in molecular biology. A novel C-nucleoside, nitropiperonyl deoxyriboside (NPdR, P), has been investigated for this purpose. NPdR can be converted to its 5'-DMTr-3'-CE-phosphoramidite and was incorporated into pentacosanucleotides by conventional synthesis techniques. The destabilizing effect on hybrid formation with a complementary strand when this P base opposes A, T, and G was found to be 3-5 kcal/mol, but 9 kcal/mol when it opposes C. Brief irradiation (lambda > 360 nm, 20 min) of DNA containing the P base and piperidine treatment causes strand cleavage giving the 3'- and 5'-phosphates. Two significant recent interests, universal/non-hydrogen-bonding base analogues and photochemical backbone cleavage, have thus been combined in a single molecule that serves as a light-based DNA scissors.

  7. Role of a conserved arginine residue during catalysis in serine palmitoyltransferase.

    Science.gov (United States)

    Lowther, Jonathan; Charmier, Guillaume; Raman, Marine C; Ikushiro, Hiroko; Hayashi, Hideyuki; Campopiano, Dominic J

    2011-06-23

    All sphingolipid-producing organisms require the pyridoxal 5'-phosphate (PLP)-dependent serine palmitoyltransferase (SPT) to catalyse the first reaction on the de novo sphingolipid biosynthetic pathway. SPT is a member of the alpha oxoamine synthase (AOS) family that catalyses a Claisen-like condensation of palmitoyl-CoA and L-serine to form 3-ketodihydrosphingosine (KDS). Protein sequence alignment across various species reveals an arginine residue, not involved in PLP binding, to be strictly conserved in all prokaryotic SPTs, the lcb2 subunits of eukaryotic SPTs and all members of the AOS family. Here we use UV-vis spectroscopy and site-directed mutagenesis, in combination with a substrate analogue, to show that the equivalent residue (R370) in the SPT from Sphingomonas wittichii is required to form the key PLP:L-serine quinonoid intermediate that condenses with palmitoyl-CoA and thus plays an essential role enzyme catalysis.

  8. Blood vitamin levels in dogs with chronic kidney disease.

    Science.gov (United States)

    Galler, A; Tran, J L; Krammer-Lukas, S; Höller, U; Thalhammer, J G; Zentek, J; Willmann, M

    2012-05-01

    Chronic kidney disease (CKD) may affect excretion and metabolism of vitamins but data for dogs are limited. In this study, blood vitamin levels were investigated in 19 dogs with chronic renal failure. High performance liquid chromatography was used to quantify retinol, retinyl esters, tocopherol, thiamine, riboflavin, pyridoxal-5'-phosphate, ascorbic acid and 25-hydroxycholecalciferol concentrations, whereas cobalamin, folate, biotin and pantothenic acid were measured by microbiological methods. Levels of retinol, retinyl palmitate, ascorbic acid, and vitamins B1, B2 and B6 were increased compared to healthy dogs. Dogs with CKD showed decreased concentrations of 25-hydroxycholecalciferol and folate. Alpha-tocopherol, biotin, pantothenate and cobalamin levels were not significantly different between controls and dogs with CKD. Whether lower vitamin D and folate concentrations in dogs with CKD justify supplementation has to be evaluated in future studies.

  9. Uptake and expulsion of sup 14 C-xylitol by xylitol-cultured Streptococcus mutans ATCC 25175 in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Soederling, E.; Pihlanto-Leppaelae, A. (Department of Biochemistry, Institute of Dentistry, University of Turku, Turku (Finland))

    1989-01-01

    The effect of successive cultivations in the presence of 6% xylitol on the uptake and expulsion of {sup 14}C-xylitol was studied using the cells of Streptococcus mutans 25175. Three sequential cultivations did not alter the growth inhibition percentage (approximately 50%) observed in the presence of 6% xylitol. The {sup 14}C-xylitol uptake experiments performed with growing and resting cells showed that both the uptake and the expulsion of xylitol were enhanced by xylitolculturing. Both xylitol-cultured and resting control cells contained only one major labeled compound which was identified as {sup 14}C-xylitol 5-phosphate. The label subsequently was expelled from the cells as {sup 14}C-xylitol. These results indicate that S. mutans possesses an intracellular xylitol cycle and this cycle is regulated by adding xylitol to the growth medium. (author).

  10. Rapid determination of thiamine, riboflavin, pyridoxine, and niacinamide in infant formulas by liquid chromatography.

    Science.gov (United States)

    Woollard, David C; Indyk, Harvey E

    2002-01-01

    A simplified, simultaneous determination of vitamins B1, B2, B3, and B6 in supplemented infant formulas was developed from a single deproteinized sample extract, with analysis by reversed-phase, ion-pair chromatography with an acidified methanol-water mobile phase. The dioctylsulfosuccinate counter-ion facilitates unique retention of the pyridine-based vitamins (niacinamide and pyridoxine) and allows for concurrent measurement of both the pyridoxal and riboflavin 5'-phosphate endogenous components of milk. Other naturally occurring undetected vitamin congeners have minimal analytical significance. UV detection is used for niacinamide, and programmed fluorescence detection is used for riboflavin and the B6 vitamins. Thiamine is routinely determined sequentially under modified elution conditions.

  11. Analysis of the E. coli NifS CsdB protein at 2.0 A reveals the structural basis for perselenide and persulfide intermediate formation.

    Science.gov (United States)

    Lima, Christopher D

    2002-02-01

    The Escherichia coli NifS CsdB protein is a member of the homodimeric pyridoxal 5'-phosphate (PLP)-dependent family of enzymes. These enzymes are capable of decomposing cysteine or selenocysteine into L-alanine and sulfur or selenium, respectively. E. coli NifS CsdB has a high specificity for L-selenocysteine in comparison to l-cysteine, suggesting a role for this enzyme is selenium metabolism. The 2.0 A crystal structure of E. coli NifS CsdB reveals a high-resolution view of the active site of this enzyme in apo-, persulfide, perselenide, and selenocysteine-bound intermediates, suggesting a mechanism for the stabilization of the enzyme persulfide and perselenide intermediates during catalysis, a necessary intermediate in the formation of sulfur and selenium containing metabolites.

  12. Structural dynamics of a methionine γ-lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate.

    Science.gov (United States)

    Cao, Hongnan; Tan, Kemin; Wang, Fengbin; Bigelow, Lance; Yennamalli, Ragothaman M; Jedrzejczak, Robert; Babnigg, Gyorgy; Bingman, Craig A; Joachimiak, Andrzej; Kharel, Madan K; Singh, Shanteri; Thorson, Jon S; Phillips, George N

    2016-05-01

    CalE6 from Micromonospora echinospora is a (pyridoxal 5' phosphate) PLP-dependent methionine γ-lyase involved in the biosynthesis of calicheamicins. We report the crystal structure of a CalE6 2-(N-morpholino)ethanesulfonic acid complex showing ligand-induced rotation of Tyr100, which stacks with PLP, resembling the corresponding tyrosine rotation of true catalytic intermediates of CalE6 homologs. Elastic network modeling and crystallographic ensemble refinement reveal mobility of the N-terminal loop, which involves both tetrameric assembly and PLP binding. Modeling and comparative structural analysis of PLP-dependent enzymes involved in Cys/Met metabolism shine light on the functional implications of the intrinsic dynamic properties of CalE6 in catalysis and holoenzyme maturation.

  13. Crystallization and preliminary X-ray analysis of a phosphopentomutase from Bacillus cereus

    Energy Technology Data Exchange (ETDEWEB)

    Panosian, Timothy D.; Nannemann, David P.; Bachmann, Brian O.; Iverson, T.M. (Vanderbilt)

    2013-09-18

    Phosphopentomutases (PPMs) interconvert D-ribose 5-phosphate and {alpha}-D-ribose 1-phosphate to link glucose and nucleotide metabolism. PPM from Bacillus cereus was overexpressed in Escherichia coli, purified to homogeneity and crystallized. Bacterial PPMs are predicted to contain a di-metal reaction center, but the catalytically relevant metal has not previously been identified. Sparse-matrix crystallization screening was performed in the presence or absence of 50 mM MnCl{sub 2}. This strategy resulted in the formation of two crystal forms from two chemically distinct conditions. The crystals that formed with 50 mM MnCl{sub 2} were more easily manipulated and diffracted to higher resolution. These results suggest that even if the catalytically relevant metal is not known, the crystallization of putative metalloproteins may still benefit from supplementation of the crystallization screens with potential catalytic metals.

  14. Characterization of Self-assembled Monolayers on Gold Electrode Using Electrochemical Quartz Crystal Microbalance

    Institute of Scientific and Technical Information of China (English)

    Yonggui Dong

    2006-01-01

    The electrochemical quartz crystal microbatance (EQCM) is used to investigate the characteristics of the thiolated self-assembled monolayer(SAM) on gold surface. A 5MHz QCM element serves as both the mass-sensitive sensor and the working electrode of the electrochemical system. The 6-mecapto-1-hexanol and and the 16-mer oligonucleotide with a mercaptohexyl group at the 5'-phosphate end are utilized to form the SAM on the gold electrode. The frequency response of the QCM during cyclic voltammetry (CV) scanning and chronoamperometry are recorded together with the electrochemical current. The experimental results indicates that the frequency response is more sensitive to the surface coverage. Therefore, the response of the EQCM reveals more details of the SAM on gold electrode. It is especially useful for analysing the immobilization quality, such as probe orientation and coverage, of the SAM.

  15. The oxidative pentose phosphate pathway in the haloarchaeon Haloferax volcanii involves a novel type of glucose-6-phosphate dehydrogenase--The archaeal Zwischenferment.

    Science.gov (United States)

    Pickl, Andreas; Schönheit, Peter

    2015-04-28

    The oxidative pentose phosphate pathway (OPPP), catalyzing the oxidation of glucose-6-phosphate to ribulose-5-phosphate is ubiquitous in eukarya and bacteria but has not yet been reported in archaea. In haloarchaea a putative 6-phosphogluconate dehydrogenase (6PGDH) is annotated, whereas a gene coding for glucose-6-phosphate dehydrogenase (Glc6PDH) could not be identified. Here we report the purification and characterization of a novel type of Glc6PDH in Haloferax volcanii that is not related to bacterial and eukaryal Glc6PDHs and the encoding gene is designated as azf (archaeal zwischenferment). Further, recombinant H. volcanii 6PGDH was characterized. Deletion mutant analyses indicate that both, Glc6PDH and 6PGDH, are functionally involved in pentose phosphate formation in vivo. This is the first report on the operation of the OPPP in the domain of archaea.

  16. Structural Basis of the Substrate Specificity and Enzyme Catalysis of a Papaver somniferum Tyrosine Decarboxylase

    Science.gov (United States)

    Guan, Huai; Song, Shuaibao; Robinson, Howard; Liang, Jing; Ding, Haizhen; Li, Jianyong; Han, Qian

    2017-01-01

    Tyrosine decarboxylase (TyDC), a type II pyridoxal 5′-phosphate decarboxylase, catalyzes the decarboxylation of tyrosine. Due to a generally high sequence identity to other aromatic amino acid decarboxylases (AAADs), primary sequence information is not enough to understand substrate specificities with structural information. In this study, we selected a typical TyDC from Papaver somniferum as a model to study the structural basis of AAAD substrate specificities. Analysis of the native P. somniferum TyDC crystal structure and subsequent molecular docking and dynamics simulation provide some structural bases that explain substrate specificity for tyrosine. The result confirmed the previous proposed mechanism for the enzyme selectivity of indolic and phenolic substrates. Additionally, this study yields the first crystal structure for a plant type II pyridoxal-5'-phosphate decarboxylase. PMID:28232911

  17. Morning sickness and vitamin B6 status of pregnant women.

    Science.gov (United States)

    Schuster, K; Bailey, L B; Dimperio, D; Mahan, C S

    1985-01-01

    The relationship between the vitamin B6 status of 180 pregnant women and the incidence and degree of morning sickness experienced during the first trimester was investigated. There were no significant differences in plasma pyridoxal 5'-phosphate (PLP), erythrocyte aspartate aminotransferase (AspAT) activity, and stimulation of erythrocyte AspAT activity by exogenous PLP between subjects who experienced morning sickness and those who did not. No relationship was found between these indicators of vitamin B6 status and the degree of morning sickness experienced by this group during early pregnancy. There were no differences in the number of women who experienced morning sickness or in the number with different degrees of sickness when plasma levels of PLP, erythrocyte AspAT activity or stimulation by PLP were divided into upper and lower 50th percentile groups and compared. Therefore these data show no relationship between vitamin B6 status and the incidence or degree of morning sickness.

  18. Endogenous ethanol--its metabolic, behavioral and biomedical significance.

    Science.gov (United States)

    Ostrovsky YuM

    1986-01-01

    Ethanol is constantly formed endogenously from acetaldehyde, and level of the former can be measured in both human beings and animals. Acetaldehyde can be generated in situ from the metabolism of pyruvate, threonine, deoxyribose-5-phosphate, phosphoethanolamine, alanine and presumably from other substrates. The levels of blood and tissue endogenous ethanol change as a function of various physiologic and experimental conditions such as starvation, aging, stress, cooling, adrenalectomy, etc. and are regulated by many exogenous compounds such as antimetabolites, derivatives of amino acids, lithium salts, disulfiram, cyanamide, etc. Under free choice alcohol selection situations, the levels of endogenous ethanol in rat blood and alcohol preference by the animals are negatively correlated. Similar negative correlations have been found between the levels of blood endogenous ethanol and the frequency of delirium in alcoholic patients undergoing alcohol withdrawal. Endogenous ethanol and acetaldehyde can therefore be regarded as compounds which fulfil substrate, regulatory and modulator functions.

  19. Molecular Cloning, Expression and Characterization of Ribokinase of Leishmania major

    Institute of Scientific and Technical Information of China (English)

    Patrick. O.J. OGBUNUDE; Nadia LAMOUR; Michael P. BARRETT

    2007-01-01

    Ribokinase (EC 2.1.7.15) from Leishmania major was cloned, sequenced and overexpressed in Escherichia coli. The gene expressed an active enzyme that had comparable activity to the same enzyme studied in E. coli. It specifically phosphorylated D-ribose. Under defined conditions, the Km for the substrates D-ribose and ATP were 0.3±0.04 mM and 0.2±0.02 mM, respectively. The turnover numbers of the enzyme for the substrates were 10.8 s-1 and 10.2 s-1, respectively. The enzyme product ribose 5-phosphate inhibited the phosphorylation of D-ribose with an apparent Ki of 0.4 mM, which is close to the Km (0.3 mM) of D-ribose, suggesting that it might play a role in regulating flux through the enzyme.

  20. Biochemical characterization and helix stabilizing properties of HSNP-C' from the thermoacidophilic archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Celestina, F; Suryanarayana, T

    2000-01-19

    Helix stabilizing nucleoid protein HSNP-C' from the thermophilic archaeon Sulfolobus acidocaldarius has been characterized with respect to its interactions with nucleic acids by gel retardation assay, affinities to immobilized matrices, electron microscopy, and fluorescence titration. The amino acids implicated in the DNA binding site of the protein have been shown by selectively modifying specific amino acyl functional groups and looking at their effects on the DNA binding properties of the protein. Lysine, arginine, tryptophan, and tyrosine residues of the protein HSNP-C' were modified with pyridoxal-5-phosphate; 2,3-butanedione; BNPS-skatole; and tetranitromethane, respectively. The modification of residues was assessed according to standard procedures. The effect of the chemical modification on the function of the protein HSNP-C' with respect to DNA protein interactions was studied and the results indicate the definite involvement of tyrosines and also the significant involvement of the flanking tryptophan residues in the DNA binding domain on the protein.

  1. Pyridoxine in clinical toxicology: a review.

    Science.gov (United States)

    Lheureux, Philippe; Penaloza, Andrea; Gris, Mireille

    2005-04-01

    Pyridoxine (vitamin B6) is a co-factor in many enzymatic pathways involved in amino acid metabolism: the main biologically active form is pyridoxal 5-phosphate. Pyridoxine has been used as an antidote in acute intoxications, including isoniazid overdose, Gyromitra mushroom or false morrel (monomethylhydrazine) poisoning and hydrazine exposure. It is also recommended as a co-factor to improve the conversion of glyoxylic acid into glycine in ethylene glycol poisoning. Other indications are recommended by some sources (for example crimidine poisoning, zipeprol and theophylline-induced seizures, adjunct to d-penicillamine chelation), without significant supporting data. The value of pyridoxine or its congener metadoxine as an agent for hastening ethanol metabolism or improving vigilance in acute alcohol intoxication is controversial. This paper reviews the various indications of pyridoxine in clinical toxicology and the supporting literature. The potential adverse effects of excessive pyridoxine dosage will also be summarized.

  2. Use of the pyrG gene as a food-grade selection marker in Monascus.

    Science.gov (United States)

    Wang, Bo-hua; Xu, Yang; Li, Yan-ping

    2010-11-01

    Ma-pyrG was cloned from Monascus aurantiacus AS3.4384 using degenerate PCR with primers designed with an algorithm called CODEHOP, and its complete sequence was obtained by a PCR-based strategy for screening a Monascus fosmid library. Ma-pyrG encodes orotidine-5'-phosphate decarboxylase (OMPdecase), a 283-aminoacid protein with 81% sequence identity to that from Aspergillus flavus NRRL 3357. A pyrG mutant strain from M. aurantiacus AS3.4384, named UM28, was isolated by resistance to 5-fluoroorotic acid after UV mutagenesis. Sequence analysis of this mutated gene revealed that it contained a point mutation at nucleotide position +220. Plasmid pGFP-pyrG, bearing the green fluorescent protein gene (GFP) as a model gene and Ma-pyrG as a selection marker, were constructed. pGFP-pyrG were successfully transformed into UM28 by using the PEG method.

  3. One-pot microbial synthesis of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase.

    Science.gov (United States)

    Horinouchi, Nobuyuki; Ogawa, Jun; Kawano, Takako; Sakai, Takafumi; Saito, Kyota; Matsumoto, Seiichiro; Sasaki, Mie; Mikami, Yoichi; Shimizu, Sakayu

    2006-06-01

    A one-pot enzymatic synthesis of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase was established. Glycolysis by baker's yeast (Saccharomyces cerevisiae) generated ATP which was used to produce D: -glyceraldehyde 3-phosphate production from glucose via fructose 1,6-diphosphate. The D: -glyceraldehyde 3-phosphate produced was transformed to 2'-deoxyribonucleoside via 2-deoxyribose 5-phosphate and then 2-deoxyribose 1-phosphate in the presence of acetaldehyde and a nucleobase by deoxyriboaldolase, phosphopentomutase expressed in Escherichia coli, and a commercial nucleoside phosphorylase. About 33 mM 2'-deoxyinosine was produced from 600 mM glucose, 333 mM acetaldehyde and 100 mM adenine in 24 h. 2'-Deoxyinosine was produced from adenine due to the adenosine deaminase activity of E. coli transformants.

  4. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  5. Crystal structure of the S187F variant of human liver alanine: glyoxylate [corrected] aminotransferase associated with primary hyperoxaluria type I and its functional implications.

    Science.gov (United States)

    Oppici, Elisa; Fodor, Krisztian; Paiardini, Alessandro; Williams, Chris; Voltattorni, Carla Borri; Wilmanns, Matthias; Cellini, Barbara

    2013-08-01

    The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5'-phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP-binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT-pyridoxamine 5'-phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300- to 500-fold decrease in both the rate constant of L-alanine half-transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results.

  6. Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis.

    Science.gov (United States)

    Papini, Marta; Nookaew, Intawat; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Several bacterial species and filamentous fungi utilize the phosphoketolase pathway (PHK) for glucose dissimilation as an alternative to the Embden-Meyerhof-Parnas pathway. In Aspergillus nidulans, the utilization of this metabolic pathway leads to increased carbon flow towards acetate and acetyl CoA. In the first step of the PHK, the pentose phosphate pathway intermediate xylulose-5-phosphate is converted into acetylphosphate and glyceraldehyde-3-phosphate through the action of xylulose-5-phosphate phosphoketolase, and successively acetylphosphate is converted into acetate by the action of acetate kinase. In the present work, we describe a metabolic engineering strategy used to express the fungal genes of the phosphoketolase pathway in Saccharomyces cerevisiae and the effects of the expression of this recombinant route in yeast. The phenotype of the engineered yeast strain MP003 was studied during batch and chemostat cultivations, showing a reduced biomass yield and an increased acetate yield during batch cultures. To establish whether the observed effects in the recombinant strain MP003 were due directly or indirectly to the expression of the phosphoketolase pathway, we resolved the intracellular flux distribution based on (13)C labeling during chemostat cultivations. From flux analysis it is possible to conclude that yeast is able to use the recombinant pathway. Our work indicates that the utilization of the phosphoketolase pathway does not interfere with glucose assimilation through the Embden-Meyerhof-Parnas pathway and that the expression of this route can contribute to increase the acetyl CoA supply, therefore holding potential for future metabolic engineering strategies having acetyl CoA as precursor for the biosynthesis of industrially relevant compounds.

  7. Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: intersecting metabolic pathways.

    Science.gov (United States)

    Hutson, Susan M; Islam, Mohammad Mainul; Zaganas, Ioannis

    2011-09-01

    Branched-chain amino acids (BCAAs) catabolism follows sequential reactions and their metabolites intersect with other metabolic pathways. The initial enzymes in BCAA metabolism, the mitochondrial branched-chain aminotransferase (BCATm), which deaminates the BCAAs to branched-chain α-keto acids (BCKAs); and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), which oxidatively decarboxylates the BCKAs, are organized in a supramolecular complex termed metabolon. Glutamate dehydrogenase (GDH1) is found in the metabolon in rat tissues. Bovine GDH1 binds to the pyridoxamine 5'-phosphate (PMP)-form of human BCATm (PMP-BCATm) but not to pyridoxal 5'-phosphate (PLP)-BCATm in vitro. This protein interaction facilitates reamination of the α-ketoglutarate (αKG) product of the GDH1 oxidative deamination reaction. Human GDH1 appears to act like bovine GDH1 but human GDH2 does not show the same enhancement of BCKDC enzyme activities. Another metabolic enzyme is also found in the metabolon is pyruvate carboxylase (PC). Kinetic results suggest that PC binds to the E1 decarboxylase of BCKDC but does not effect BCAA catabolism. The protein interaction of BCATm and GDH1 promotes regeneration of PLP-BCATm which then binds to BCKDC resulting in channeling of the BCKA products from BCATm first half reaction to E1 and promoting BCAA oxidation and net nitrogen transfer from BCAAs. The cycling of nitrogen through glutamate via the actions of BCATm and GDH1 releases free ammonia. Formation of ammonia may be important for astrocyte glutamine synthesis in the central nervous system. In peripheral tissue association of BCATm and GDH1 would promote BCAA oxidation at physiologically relevant BCAA concentrations.

  8. A carbon-nitrogen lyase from Leucaena leucocephala catalyzes the first step of mimosine degradation.

    Science.gov (United States)

    Negi, Vishal Singh; Bingham, Jon-Paul; Li, Qing X; Borthakur, Dulal

    2014-02-01

    The tree legume Leucaena leucocephala contains a large amount of a toxic nonprotein aromatic amino acid, mimosine, and also an enzyme, mimosinase, for mimosine degradation. In this study, we isolated a 1,520-bp complementary DNA (cDNA) for mimosinase from L. leucocephala and characterized the encoded enzyme for mimosine-degrading activity. The deduced amino acid sequence of the coding region of the cDNA was predicted to have a chloroplast transit peptide. The nucleotide sequence, excluding the sequence for the chloroplast transit peptide, was codon optimized and expressed in Escherichia coli. The purified recombinant enzyme was used in mimosine degradation assays, and the chromatogram of the major product was found to be identical to that of 3-hydroxy-4-pyridone (3H4P), which was further verified by electrospray ionization-tandem mass spectrometry. The enzyme activity requires pyridoxal 5'-phosphate but not α-keto acid; therefore, the enzyme is not an aminotransferase. In addition to 3H4P, we also identified pyruvate and ammonia as other degradation products. The dependence of the enzyme on pyridoxal 5'-phosphate and the production of 3H4P with the release of ammonia indicate that it is a carbon-nitrogen lyase. It was found to be highly efficient and specific in catalyzing mimosine degradation, with apparent Km and Vmax values of 1.16×10(-4) m and 5.05×10(-5) mol s(-1) mg(-1), respectively. The presence of other aromatic amino acids, including l-tyrosine, l-phenylalanine, and l-tryptophan, in the reaction did not show any competitive inhibition. The isolation of the mimosinase cDNA and the biochemical characterization of the recombinant enzyme will be useful in developing transgenic L. leucocephala with reduced mimosine content in the future.

  9. Engineering Bacillus subtilis for the conversion of the antimetabolite 4-hydroxy-l-threonine to pyridoxine.

    Science.gov (United States)

    Commichau, Fabian M; Alzinger, Ariane; Sande, Rafael; Bretzel, Werner; Reuß, Daniel R; Dormeyer, Miriam; Chevreux, Bastien; Schuldes, Jörg; Daniel, Rolf; Akeroyd, Michiel; Wyss, Markus; Hohmann, Hans-Peter; Prágai, Zoltán

    2015-05-01

    Until now, pyridoxine (PN), the most commonly supplemented B6 vitamer for animals and humans, is chemically synthesized for commercial purposes. Thus, the development of a microbial fermentation process is of great interest for the biotech industry. Recently, we constructed a Bacillus subtilis strain that formed significant amounts of PN via a non-native deoxyxylulose 5'-phosphate-(DXP)-dependent vitamin B6 pathway. Here we report the optimization of the condensing reaction of this pathway that consists of the 4-hydroxy-l-threonine-phosphate dehydrogenase PdxA, the pyridoxine 5'-phosphate synthase PdxJ and the native DXP synthase, Dxs. To allow feeding of high amounts of 4-hydroxy-threonine (4-HO-Thr) that can be converted to PN by B. subtilis overexpressing PdxA and PdxJ, we first adapted the bacteria to tolerate the antimetabolite 4-HO-Thr. The adapted bacteria produced 28-34mg/l PN from 4-HO-Thr while the wild-type parent produced only 12mg/l PN. Moreover, by expressing different pdxA and pdxJ alleles in the adapted strain we identified a better combination of PdxA and PdxJ enzymes than reported previously, and the resulting strain produced 65mg/l PN. To further enhance productivity mutants were isolated that efficiently take up and convert deoxyxylulose (DX) to DXP, which is incorporated into PN. Although these mutants were very efficient to convert low amount of exogenous DX, at higher DX levels they performed only slightly better. The present study uncovered several enzymes with promiscuous activity and it revealed that host metabolic pathways compete with the heterologous pathway for 4-HO-Thr. Moreover, the study revealed that the B. subtilis genome is quite flexible with respect to adaptive mutations, a property, which is very important for strain engineering.

  10. Structure-Based Function Discovery of an Enzyme for the Hydrolysis of Phosphorylated Sugar Lactones

    Science.gov (United States)

    Xiang, Dao Feng; Kolb, Peter; Fedorov, Alexander A.; Xu, Chengfu; Fedorov, Elena V.; Narindoshivili, Tamari; Williams, Howard J.; Shoichet, Brian K.; Almo, Steven C.; Raushel, Frank M.

    2012-01-01

    Two enzymes of unknown function from the cog1735 subset of the amidohydrolase superfamily (AHS), LMOf2365_2620 (Lmo2620) from Listeria monocytogenes str. 4b F2365 and Bh0225 from Bacillus halodurans C-125, were cloned, expressed and purified to homogeneity. The catalytic functions of these two enzymes were interrogated by an integrated strategy encompassing bioinformatics, computational docking to three-dimensional crystal structures, and library screening. The three-dimensional structure of Lmo2620 was determined at a resolution of 1.6 Å with two phosphates and a binuclear zinc center in the active site. The proximal phosphate bridges the binuclear metal center and is 7.1 Å away from the distal phosphate. The distal phosphate hydrogen bonds with Lys-242, Lys-244, Arg-275 and Tyr-278. Enzymes within cog1735 of the AHS have previously been shown to catalyze the hydrolysis of substituted lactones. Computational docking of the high energy intermediate (HEI) form of the KEGG database to the three-dimensional structure of Lmo2620 highly enriched anionic lactones versus other candidate substrates. The active site structure and the computational docking results suggested that probable substrates would likely include phosphorylated sugar lactones. A small library of diacid sugar lactones and phosphorylated sugar lactones was synthesized and tested for substrate activity with Lmo2620 and Bh0225. Two substrates were identified for these enzymes, d-lyxono-1,4-lactone-5-phosphate and l-ribono-1,4-lactone-5-phosphate. The kcat/Km values for the cobalt-substituted enzymes with these substrates are ~105 M−1 s−1. PMID:22313111

  11. Kinetic and mutational studies of three NifS homologs from Escherichia coli: mechanistic difference between L-cysteine desulfurase and L-selenocysteine lyase reactions.

    Science.gov (United States)

    Mihara, H; Kurihara, T; Yoshimura, T; Esaki, N

    2000-04-01

    We have purified three NifS homologs from Escherichia coli, CSD, CsdB, and IscS, that appear to be involved in iron-sulfur cluster formation and/or the biosynthesis of selenophosphate. All three homologs catalyze the elimination of Se and S from L-selenocysteine and L-cysteine, respectively, to form L-alanine. These pyridoxal 5'-phosphate enzymes were inactivated by abortive transamination, yielding pyruvate and a pyridoxamine 5'-phosphate form of the enzyme. The enzymes showed non-Michaelis-Menten behavior for L-selenocysteine and L-cysteine. When pyruvate was added, they showed Michaelis-Menten behavior for L-selenocysteine but not for L-cysteine. Pyruvate significantly enhanced the activity of CSD toward L-selenocysteine. Surprisingly, the enzyme activity toward L-cysteine was not increased as much by pyruvate, suggesting the presence of different rate-limiting steps or reaction mechanisms for L-cysteine desulfurization and the degradation of L-selenocysteine. We substituted Ala for each of Cys358 in CSD, Cys364 in CsdB, and Cys328 in IscS, residues that correspond to the catalytically essential Cys325 of Azotobacter vinelandii NifS. The enzyme activity toward L-cysteine was almost completely abolished by the mutations, whereas the activity toward L-selenocysteine was much less affected. This indicates that the reaction mechanism of L-cysteine desulfurization is different from that of L-selenocysteine decomposition, and that the conserved cysteine residues play a critical role only in L-cysteine desulfurization.

  12. His103 in yeast transketolase is required for substrate recognition and catalysis.

    Science.gov (United States)

    Wikner, C; Meshalkina, L; Nilsson, U; Bäckström, S; Lindqvist, Y; Schneider, G

    1995-11-01

    Crystallographic studies of thiamin-diphosphate-dependent transketolase from Saccharomyces cerevisiae suggested the invariant active-site residue H103 as a possible enzymic group binding the C1 hydroxyl group of the donor substrate and stabilizing the reaction intermediate. To test this hypothesis, H103 was replaced by alanine, asparagine and phenylalanine using site-directed mutagenesis. The crystallographic analysis of the mutant transketolases verified that no structural changes occurred as a consequence of the side-chain replacements. The residual catalytic activities of the mutant enzymes were 4.3% for the H103A, 2.4% for the H103N and 0.1% for the H103F mutant transketolase. Further kinetic analysis of the H103A and H103N mutant enzymes showed that the Km values for the coenzyme were increased by about eightfold. The Km values for the acceptor substrate ribose 5-phosphate were similar to the Km value for wild-type transketolase. However, the Km value for the donor substrate, xylulose 5-phosphate is increased more than tenfold in these two mutants. Circular dichroism spectra of the mutant enzymes also indicated a weaker binding of the donor substrate and/or a less stable reaction intermediate. These observations provide further evidence in support of the proposed role for this invariant residue in recognition of the donor substrate by forming a hydrogen bond between the side chain of H103 and the C1 hydroxyl group of the sugar phosphate. The significant decrease in catalytic activity suggests that this residue also facilitates catalysis, possibly by maintaining the optimal orientation of the donor substrate and reaction intermediates.

  13. Cofactor-dependent conformational heterogeneity of GAD65 and its role in autoimmunity and neurotransmitter homeostasis.

    Science.gov (United States)

    Kass, Itamar; Hoke, David E; Costa, Mauricio G S; Reboul, Cyril F; Porebski, Benjamin T; Cowieson, Nathan P; Leh, Hervé; Pennacchietti, Eugenia; McCoey, Julia; Kleifeld, Oded; Borri Voltattorni, Carla; Langley, David; Roome, Brendan; Mackay, Ian R; Christ, Daniel; Perahia, David; Buckle, Malcolm; Paiardini, Alessandro; De Biase, Daniela; Buckle, Ashley M

    2014-06-24

    The human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5'-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form. GAD65, but not GAD67, is a prevalent autoantigen, with autoantibodies to GAD65 being detected at high frequency in patients with autoimmune (type 1) diabetes and certain other autoimmune disorders. The significance of GAD65 autoinactivation into the apo form for regulation of neurotransmitter levels and autoantibody reactivity is not understood. We have used computational and experimental approaches to decipher the nature of the holo → apo conversion in GAD65 and thus, its mechanism of autoinactivation. Molecular dynamics simulations of GAD65 reveal coupling between the C-terminal domain, catalytic loop, and pyridoxal 5'-phosphate-binding domain that drives structural rearrangement, dimer opening, and autoinactivation, consistent with limited proteolysis fragmentation patterns. Together with small-angle X-ray scattering and fluorescence spectroscopy data, our findings are consistent with apoGAD65 existing as an ensemble of conformations. Antibody-binding kinetics suggest a mechanism of mutually induced conformational changes, implicating the flexibility of apoGAD65 in its autoantigenicity. Although conformational diversity may provide a mechanism for cofactor-controlled regulation of neurotransmitter biosynthesis, it may also come at a cost of insufficient development of immune self-tolerance that favors the production of GAD65 autoantibodies.

  14. Linkage of subunit interactions, structural changes, and energetics of coenzyme binding in tryptophan synthase.

    Science.gov (United States)

    Wiesinger, H; Hinz, H J

    1984-10-09

    The energetics of binding of the coenzyme pyridoxal 5'-phosphate (PLP) to both the apo beta 2 subunit and the apo alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli has been investigated as a function of pH and temperature by direct microcalorimetric methods. At 25 degrees C, pH 7.5, the binding process proceeds in the time range of minutes and shows a biphasic heat output which permits resolution of the overall reaction into different reaction steps. Binding studies on the coenzyme analogues pyridoxal (PAL), pyridoxine 5'-phosphate (PNP), and pyridoxine (POL) to the protein as well as a comparison of these results with data from studies on PLP binding to epsilon-aminocaproic acid have led to a deconvolution of the complex heat vs. time curves into fast endothermic contributions from electrostatic interaction and Schiff base formation and slow exothermic contributions from the interactions between PLP and the binding domain. The pH-independent, large negative change in heat capacity of about -9.1 kJ/(mol of beta 2 X K) when binding PLP to beta 2 is indicative of major structural changes resulting from complex formation. The much smaller value of delta Cp = -1.7 kJ/(mol of beta 2 X K) for binding of PLP to alpha 2 beta 2 clearly demonstrates the energetic linkage of protein-protein and protein-ligand interactions. Calorimetric titrations of the apo beta 2 subunit with PLP at 35 degrees C have shown that also at this temperature positive cooperativity between the two binding sites occurs. On the basis of these measurements a complete set of site-specific thermodynamic parameters has been established.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Bioensaio rápido de determinação da sensibilidade da acetolactato sintase (ALS a herbicidas inibidores Rapid bioassay to determine the sensitivity of acetolactate synthase (ALS to inhibitor herbicides

    Directory of Open Access Journals (Sweden)

    Patrícia Andrea Monqueiro

    2001-03-01

    Full Text Available Foi avaliada a atividade da acetolactato sintase (ALS, em plantas resistentes e suscetíveis de B. pilosa e A. quitensis após a aplicação de herbicidas inibidores da ALS. O método baseia-se na utilização do ácido ciclopropanodicarboxílico (CPCA para inibir a cetoácido reductoisomerase (KARI, enzima que catalisa a reação seguinte do acetolactato na cadeia de biossíntese dos aminoácidos valina, leucina e isoleucina, provocando assim, o acúmulo de acetolactato, que na presença de um ácido forte forma acetoína. A base para a distinção entre os biotipos resistentes e suscetíveis é a quantidade de acetoína formada, que será maior nos biotipos em que a enzima ALS não sofreu inibição, ou seja, nos biotipos resistentes. A quantificação da acetoína acumulada ocorreu através da formação de um complexo colorido vermelho, devido a reação entre acetoína, creatina e naftol, cuja densidade ótica a 530 nm é proporcional à concentração do acetolactato formado na reação. Sendo assim, foi desenvolvido um ensaio utilizando este método após a aplicação dos herbicidas chlorimuron-ethyl e imazethapyr nos biotipos R e S de Bidens pilosa, Amaranthus quitensis no estádio de dois pares de folhas. O bioensaio demonstrou que a enzima ALS dos biotipos resistentes é insensível aos herbicidas inibidores da ALS e que este tipo de bioensaio é uma forma rápida e eficaz de diferenciação entre biotipos resistentes e suscetíveis.In order to compare the acetolactate synthase (ALS activity of resistant and susceptible biotypes of Bidens pilosa and Amaranthus quitensis to ALS inhibitor herbicides, a method based on ciclopronocarboxilic acid (CPCA to inhibit the enzyme ketoacidredutoisomerase (KARI is used. This enzyme catalyzes the reaction after acetolactate in the biosynthesis reaction chain of the aminoacids valine, leucine and isoleucine. In the presence of a KARI inhibitor, carbon from pyruvate flows through the branched chain

  16. Improvement of Mobile Phase in Determination Method for Penicillin V Potassium Tablets in Chinese Phar-macopoeia%对《中国药典》青霉素V钾片含量测定方法中流动相的改进

    Institute of Scientific and Technical Information of China (English)

    杨国平

    2014-01-01

    Objective:To improve the determination method for penicillin V potassium tablets. Methods:An Inertis ODS-SP C18 column (150 mm × 4. 6 mm, 5 μm) was used. The mobile phase consisted of A and B(60∶40) [ A: pH 3. 5 phosphate buffer(0. 5 mol·L-1 potassium dihydrogen phosphate solution, adjusting pH to 3. 5 with phosphoric acid)-acetonitrile-water (10∶30∶60);B:pH 3. 5 phosphate buffer-acetonitrile-water (10∶55∶35)]. The flow rate was 1. 0 ml·min-1, the detection wavelength was 268nm, the column temperature was room temperature and the injection volume was 10 μl. Results:The linear range of penicillin V potassium was 0. 032 9-0. 821 6 mg·ml-1(r=0. 999 9, and the average recovery was 99. 9%( RSD=0. 6%, n=9). Conclusion:The method is reproducible and accurate, and can be used in the content determination of penicillin V potassium tablets and capsules.%目的:改进青霉素V钾片含量测定的方法。方法:色谱条件:Inertis ODS-SP C18柱(150 mm ×4.6 mm ,5μm);流动相为A-B(60∶40)[A:pH 3.5磷酸盐缓冲液(取0.5 mol·L-1磷酸二氢钾溶液,用磷酸调节pH至3.5)-乙腈-水(10∶30∶60);B:pH 3.5磷酸盐缓冲液-乙腈-水(10∶55∶35)];流速为1.0 ml·min-1;检测波长268 nm;柱温:室温;进样量:10μl。结果:青霉素V钾在0.0329~0.8216 mg·ml-1范围内呈良好线性关系(r=0.9999);平均回收率99.9%,RSD为0.6%(n=9)。结论:此法重复性好,结果准确,可用于青霉素V钾、青霉素V钾片及胶囊的含量测定。

  17. Intermediates in the transformation of phosphonates to phosphate by bacteria.

    Science.gov (United States)

    Kamat, Siddhesh S; Williams, Howard J; Raushel, Frank M

    2011-11-16

    Phosphorus is an essential element for all known forms of life. In living systems, phosphorus is an integral component of nucleic acids, carbohydrates and phospholipids, where it is incorporated as a derivative of phosphate. However, most Gram-negative bacteria have the capability to use phosphonates as a nutritional source of phosphorus under conditions of phosphate starvation. In these organisms, methylphosphonate is converted to phosphate and methane. In a formal sense, this transformation is a hydrolytic cleavage of a carbon-phosphorus (C-P) bond, but a general enzymatic mechanism for the activation and conversion of alkylphosphonates to phosphate and an alkane has not been elucidated despite much effort for more than two decades. The actual mechanism for C-P bond cleavage is likely to be a radical-based transformation. In Escherichia coli, the catalytic machinery for the C-P lyase reaction has been localized to the phn gene cluster. This operon consists of the 14 genes phnC, phnD, …, phnP. Genetic and biochemical experiments have demonstrated that the genes phnG, phnH, …, phnM encode proteins that are essential for the conversion of phosphonates to phosphate and that the proteins encoded by the other genes in the operon have auxiliary functions. There are no functional annotations for any of the seven proteins considered essential for C-P bond cleavage. Here we show that methylphosphonate reacts with MgATP to form α-D-ribose-1-methylphosphonate-5-triphosphate (RPnTP) and adenine. The triphosphate moiety of RPnTP is hydrolysed to pyrophosphate and α-D-ribose-1-methylphosphonate-5-phosphate (PRPn). The C-P bond of PRPn is subsequently cleaved in a radical-based reaction producing α-D-ribose-1,2-cyclic-phosphate-5-phosphate and methane in the presence of S-adenosyl-L-methionine. Substantial quantities of phosphonates are produced worldwide for industrial processes, detergents, herbicides and pharmaceuticals. Our elucidation of the chemical steps for the

  18. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation

    Directory of Open Access Journals (Sweden)

    Huang Guidong

    2010-11-01

    Full Text Available Abstract Background Gamma-aminobutyric acid is a major inhibitory neurotransmitter in mammalian brains, and has several well-known physiological functions. Lactic acid bacteria possess special physiological activities and are generally regarded as safe. Therefore, using lactic acid bacteria as cell factories for gamma-aminobutyric acid production is a fascinating project and opens up a vast range of prospects for making use of GABA and LAB. We previously screened a high GABA-producer Lactobacillus brevis NCL912 and optimized its fermentation medium composition. The results indicated that the strain showed potential in large-scale fermentation for the production of gamma-aminobutyric acid. To increase the yielding of GABA, further study on the fermentation process is needed before the industrial application in the future. In this article we investigated the impacts of pyridoxal-5'-phosphate, pH, temperature and initial glutamate concentration on gamma-aminobutyric acid production by Lactobacillus brevis NCL912 in flask cultures. According to the data obtained in the above, a simple and effective fed-batch fermentation method was developed to highly efficiently convert glutamate to gamma-aminobutyric acid. Results Pyridoxal-5'-phosphate did not affect the cell growth and gamma-aminobutyric acid production of Lb. brevis NCL912. Temperature, pH and initial glutamate concentration had significant effects on the cell growth and gamma-aminobutyric acid production of Lb. brevis NCL912. The optimal temperature, pH and initial glutamate concentration were 30-35°C, 5.0 and 250-500 mM. In the following fed-batch fermentations, temperature, pH and initial glutamate concentration were fixed as 32°C, 5.0 and 400 mM. 280.70 g (1.5 mol and 224.56 g (1.2 mol glutamate were supplemented into the bioreactor at 12 h and 24 h, respectively. Under the selected fermentation conditions, gamma-aminobutyric acid was rapidly produced at the first 36 h and almost not

  19. Determination of Tylosin Tartrate Related Substances by HPLC%高效液相色谱法测定酒石酸泰乐菌素有关物质的研究

    Institute of Scientific and Technical Information of China (English)

    包洁华; 张金霞; 郭强功; 张萍

    2015-01-01

    The determination method of tylosin tartrate related substances from EP discussion draft, At the wavelength of 280 nm, pH 5. 5 phosphate buffer solution-acetonitrile-water ( 10 ∶ 27. 5 ∶ 62. 5, V/V ) as the mobile phase A, pH 5.5 phosphate buffer solution-water-acetonitrile (10 ∶ 40 ∶ 50, V/V) as the mobile phase B gradient elution, and the specificity,accuracy, precision, limit of detection and limit of quantification, linearity and range, durability,and solution stability was investigated. The results showed that the impurity A, N, O, R, S peak area and the corresponding concentration showed a linear relationship, the correlation coefficient r was greater than 0.999, the indicators are in line with inspection requirements. It was demonstrated that the method can scientific, reasonable analysis, control of tylosin tartrate related substances, It can be sustained, accurately reflect the characteristics of tylosin tartrate.%依据欧洲药典讨论稿中酒石酸泰乐菌素有关物质的检测方法,在280 nm波长处,以pH 5.5的磷酸盐缓冲溶液-乙腈-水(10∶27.5∶62.5,V/V)为A流动相,以pH 5.5的磷酸盐缓冲溶液-水-乙腈(10∶40∶50,V/V)为B流动相进行梯度洗脱,并对专属性、准确度、精密度、检测限和定量限、线性和范围、耐用性、及溶液稳定性进行考察。结果显示,杂质A、N、O、R、S峰峰面积与其对应浓度呈线性关系,其相关系数r均大于0.999,各项考察指标均符合要求。结果证明该分析方法能科学、合理的分析、控制酒石酸泰乐菌素有关物质,可以持续、准确地反映酒石酸泰乐菌素的特性。

  20. Detection of ligation products of DNA linkers with 5'-OH ends by denaturing PAGE silver stain.

    Directory of Open Access Journals (Sweden)

    Feng Gao

    Full Text Available To explore if DNA linkers with 5'-hydroxyl (OH ends could be joined by commercial T4 and E. coli DNA ligase, these linkers were synthesized by using the solid-phase phosphoramidite method and joined by using commercial T4 and E. coli DNA ligases. The ligation products were detected by using denaturing PAGE silver stain and PCR method. About 0.5-1% of linkers A-B and E-F, and 0.13-0.5% of linkers C-D could be joined by T4 DNA ligases. About 0.25-0.77% of linkers A-B and E-F, and 0.06-0.39% of linkers C-D could be joined by E. coli DNA ligases. A 1-base deletion (-G and a 5-base deletion (-GGAGC could be found at the ligation junctions of the linkers. But about 80% of the ligation products purified with a PCR product purification kit did not contain these base deletions, meaning that some linkers had been correctly joined by T4 and E. coli DNA ligases. In addition, about 0.025-0.1% of oligo 11 could be phosphorylated by commercial T4 DNA ligase. The phosphorylation products could be increased when the phosphorylation reaction was extended from 1 hr to 2 hrs. We speculated that perhaps the linkers with 5'-OH ends could be joined by T4 or E. coli DNA ligase in 2 different manners: (i about 0.025-0.1% of linkers could be phosphorylated by commercial T4 DNA ligase, and then these phosphorylated linkers could be joined to the 3'-OH ends of other linkers; and (ii the linkers could delete one or more nucleotide(s at their 5'-ends and thereby generated some 5'-phosphate ends, and then these 5'-phosphate ends could be joined to the 3'-OH ends of other linkers at a low efficiency. Our findings may probably indicate that some DNA nicks with 5'-OH ends can be joined by commercial T4 or E. coli DNA ligase even in the absence of PNK.

  1. High-throughput, cell-free, liposome-based approach for assessing in vitro activity of lipid kinases.

    Science.gov (United States)

    Demian, Douglas J; Clugston, Susan L; Foster, Meta M; Rameh, Lucia; Sarkes, Deborah; Townson, Sharon A; Yang, Lily; Zhang, Melvin; Charlton, Maura E

    2009-08-01

    Lipid kinases are central players in lipid signaling pathways involved in inflammation, tumorigenesis, and metabolic syndrome. A number of these kinase targets have proven difficult to investigate in higher throughput cell-free assay systems. This challenge is partially due to specific substrate interaction requirements for several of the lipid kinase family members and the resulting incompatibility of these substrates with most established, homogeneous assay formats. Traditional, cell-free in vitro investigational methods for members of the lipid kinase family typically involve substrate incorporation of [gamma-32P] and resolution of signal by thin-layer chromatography (TLC) and autoradiograph densitometry. This approach, although highly sensitive, does not lend itself to high-throughput testing of large numbers of small molecules (100 s to 1 MM+). The authors present the development and implementation of a fully synthetic, liposome-based assay for assessing in vitro activity of phosphatidylinositol-5-phosphate-4-kinase isoforms (PIP4KIIbeta and alpha) in 2 commonly used homogeneous technologies. They have validated these assays through compound testing in both traditional TLC and radioactive filterplate approaches as well as binding validation using isothermic calorimetry. A directed library representing known kinase pharmacophores was screened against type IIbeta phosphatidylinositol-phosphate kinase (PIPK) to identify small-molecule inhibitors. This assay system can be applied to other types and isoforms of PIPKs as well as a variety of other lipid kinase targets.

  2. Crystal structure of sulfotransferase STF9 from Mycobacterium avium.

    Science.gov (United States)

    Hossain, Md Murad; Moriizumi, Yuuji; Tanaka, Shotaro; Kimura, Makoto; Kakuta, Yoshimitsu

    2012-02-01

    Sulfotransferases catalyze the sulfate conjugation of a wide variety of endogenous and exogenous molecules. Human pathogenic mycobacteria produce numerous sulfated molecules including sulfolipids which are well related to the virulence of several strains. The genome of Mycobacterium avium encodes eight putative sulfotransferases (stf1, stf4-stf10). Among them, STF9 shows higher similarity to human heparan sulfate 3-O-sulfotransferase isoforms than to the bacterial STs. Here, we determined the crystal structure of sulfotransferase STF9 in complex with a sulfate ion and palmitic acid at a resolution of 2.6 Å. STF9 has a spherical structure utilizing the classical sulfotransferase fold. STF9 exclusively possesses three N-terminal α-helices (α1, α2, α3) parallel to the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) binding motif. The sulfate ion binds to the PAPS binding structural motif and the palmitic acid molecule binds in the deep cleft of the predicted substrate binding site suggesting the nature of endogenous acceptor substrate of STF9 resembles palmitic acid. The substrate binding site is covered by a flexible loop which may have involvement in endogenous substrate recognition. Based on the mutational study (Hossain et al., Mol Cell Biochem 350:155-162; 2011) and structural resemblance of STF9-sulfate ion-palmitic acid complex to the hHS3OST3 complex with PAP (3'-phosphoadenosine-5'-phosphate) and an acceptor sugar chain, Glu170 and Arg96 are appeared to be catalytic residues in STF9 sulfuryl transfer mechanism.

  3. Golgi-resident PAP-specific 3'-phosphatase-coupled sulfotransferase assays.

    Science.gov (United States)

    Prather, Brittany; Ethen, Cheryl M; Machacek, Miranda; Wu, Zhengliang L

    2012-04-01

    Sulfotransferases are a large group of enzymes that transfer a sulfonate group from the donor substrate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS)(1), to various acceptor substrates, generating 3'-phosphoadenosine-5'-phosphate (PAP) as a by-product. A universal phosphatase-coupled sulfotransferase assay is described here. In this method, Golgi-resident PAP-specific 3'-phosphatase (gPAPP) is used to couple to a sulfotransferase reaction by releasing the 3'-phosphate from PAP. The released phosphate is then detected using malachite green reagents. The enzyme kinetics of gPAPP have been determined, which allows calculation of the coupling rate, the ratio of product-to-signal conversion, of the coupled reaction. This assay is convenient, as it eliminates the need for radioisotope labeling and substrate-product separation, and is more accurate through removal of product inhibition and correction of the results with the coupling rate. This assay is also highly reproducible, as a linear correlation factor above 0.98 is routinely achievable. Using this method, we measured the Michaelis-Menten constants for recombinant human CHST10 and SULT1C4 with the substrates phenolphthalein glucuronic acid and α-naphthol, respectively. The activities obtained with the method were also validated by performing simultaneous radioisotope assays. Finally, the removal of PAP product inhibition by gPAPP was clearly demonstrated in radioisotope assays.

  4. Molecular cloning, expression, and functional analysis of a predicted sulfotransferase STF9 from Mycobacterium avium.

    Science.gov (United States)

    Hossain, Md Murad; Moriizumi, Yuuji; Tanaka, Shotaro; Kimura, Makoto; Kakuta, Yoshimitsu

    2011-04-01

    Sulfotransferases catalyze the transfer of sulfate group from para-nitrophenyl sulfate (pNPS) or 3'-phosphoadenosine-5'-phosphosulfate (PAPS) onto acceptor molecules in the biosynthesis of sulfate esters. Human pathogenic mycobacteria are known to produce numerous sulfated molecules on their cell surface which have been implicated as important mediators in host-pathogen interactions. The open reading frame stf9, a predicted homologue of sulfotransferase in the Mycobacterium avium genomic data, was cloned and over expressed in Escherichia coli. The recombinant STF9 conserved the characteristic PAPS binding motif of sulfotransferase and was purified as a 44 kDa soluble protein which exhibited transfer of sulfate group from pNPS (K (m) 1.34 mM, V (max) 7.56 nmol/min/mg) onto 3'-phosphoadenosine-5'-phosphate (K (m) 0.24 mM, V (max) 10.36 nmol/min/mg). The recombinant STF9 protein was also capable of transferring sulfate group from PAPS onto certain acceptor substrates in E. coli, and showed binding affinity to the PAP-agarose resin, supporting the sulfotransferase activity of the recombinant STF9 protein. This is the first report of molecular evidence for sulfotransferase activity of a protein from M. avium. Mutation of Arg96 to Ala and Glu170 to Ala abolishes sulfotransferase activity, indicating the importance of Arg96 and Glu170 in STF9 activity catalysis.

  5. Molecular mechanism of substrate specificity for heparan sulfate 2-O-sulfotransferase.

    Science.gov (United States)

    Liu, Chunhui; Sheng, Juzheng; Krahn, Juno M; Perera, Lalith; Xu, Yongmei; Hsieh, Po-Hung; Dou, Wenfang; Liu, Jian; Pedersen, Lars C

    2014-05-09

    Heparan sulfate (HS) is an abundant polysaccharide in the animal kingdom with essential physiological functions. HS is composed of sulfated saccharides that are biosynthesized through a complex pathway involving multiple enzymes. In vivo regulation of this process remains unclear. HS 2-O-sulfotransferase (2OST) is a key enzyme in this pathway. Here, we report the crystal structure of the ternary complex of 2OST, 3'-phosphoadenosine 5'-phosphate, and a heptasaccharide substrate. Utilizing site-directed mutagenesis and specific oligosaccharide substrate sequences, we probed the molecular basis of specificity and 2OST position in the ordered HS biosynthesis pathway. These studies revealed that Arg-80, Lys-350, and Arg-190 of 2OST interact with the N-sulfo groups near the modification site, consistent with the dependence of 2OST on N-sulfation. In contrast, 6-O-sulfo groups on HS are likely excluded by steric and electrostatic repulsion within the active site supporting the hypothesis that 2-O-sulfation occurs prior to 6-O-sulfation. Our results provide the structural evidence for understanding the sequence of enzymatic events in this pathway.

  6. Crystal structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction.

    Science.gov (United States)

    Teramoto, Takamasa; Fujikawa, Yukari; Kawaguchi, Yoshirou; Kurogi, Katsuhisa; Soejima, Masayuki; Adachi, Rumi; Nakanishi, Yuichi; Mishiro-Sato, Emi; Liu, Ming-Cheh; Sakakibara, Yoichi; Suiko, Masahito; Kimura, Makoto; Kakuta, Yoshimitsu

    2013-01-01

    Post-translational protein modification by tyrosine sulfation has an important role in extracellular protein-protein interactions. The protein tyrosine sulfation reaction is catalysed by the Golgi enzyme called the tyrosylprotein sulfotransferase. To date, no crystal structure is available for tyrosylprotein sulfotransferase. Detailed mechanism of protein tyrosine sulfation reaction has thus remained unclear. Here we present the first crystal structure of the human tyrosylprotein sulfotransferase isoform 2 complexed with a substrate peptide (C4P5Y3) derived from complement C4 and 3'-phosphoadenosine-5'-phosphate at 1.9 Å resolution. Structural and complementary mutational analyses revealed the molecular basis for catalysis being an SN2-like in-line displacement mechanism. Tyrosylprotein sulfotransferase isoform 2 appeared to recognize the C4 peptide in a deep cleft by using a short parallel β-sheet type interaction, and the bound C4P5Y3 forms an L-shaped structure. Surprisingly, the mode of substrate peptide recognition observed in the tyrosylprotein sulfotransferase isoform 2 structure resembles that observed for the receptor type tyrosine kinases.

  7. root uv-b sensitive Mutants Are Suppressed by Specific Mutations in ASPARTATE AMINOTRANSFERASE2 and by Exogenous Vitamin B6

    Institute of Scientific and Technical Information of China (English)

    Colin D. Leasure; Hong-Yun Tong; Xue-Wen Hou; Amy Shelton; Mike Minton; Raymond Esquerra; Sanja Roje; Hanjo Hellmann; Zheng-Hui He

    2011-01-01

    Vitamin B6 (vitB6)serves as an essential cofactor for more than 140 enzymes. Pyridoxal 5'-phosphate (PLP),active cofactor form of vitB6, can be photolytically destroyed by trace amounts of ultraviolet-B (UV-B). How sun-exposed organisms cope with PLP photosensitivity and modulate vitB6 homeostasis is currently unknown. We previously reported on two Arabidopsis mutants, rusl and rus2, that are hypersensitive to trace amounts of UV-B light. We performed mu-tagenesis screens for second-site suppressors of the rus mutant phenotype and identified mutations in the ASPARTATE AMINOTRANSFERASE2 (ASP2)gene. ASP2 encodes for cytosolic aspartate aminotransferase (AAT), a PLP-dependent en-zyme that plays a key role in carbon and nitrogen metabolism. Genetic analyses have shown that specific amino acid substitutions in ASP2 override the phenotypes of rusl and rus2 single mutants as well as rusl rus2 double mutant. These substitutions, all shown to reside at specific positions in the PLP-binding pocket, resulted in no PLP binding. Additional asp2 mutants that abolish AAT enzymatic activity, but which alter amino acids outside of the PLP-binding pocket, fail to suppress the rus phenotype. Furthermore, exogenously adding vitB6 in growth media can rescue both rusl and rus2. Our data suggest that AAT plays a role in vitB6 homeostasis in Arabidopsis.

  8. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts

    Energy Technology Data Exchange (ETDEWEB)

    Gatea, Florentina; Teodor, Eugenia Dumitra, E-mail: eu-teodor@yahoo.com [National Institute for Biological Sciences, Centre of Bioanalysis (Romania); Seciu, Ana-Maria [National Institute for Biological Sciences, Cellular and Molecular Biology Department (Romania); Covaci, Ovidiu Ilie [SARA Pharm Solutions (Romania); Mănoiu, Sorin [National Institute for Biological Sciences, Cellular and Molecular Biology Department (Romania); Lazăr, Veronica [University of Bucharest, Faculty of Biology (Romania); Radu, Gabriel Lucian [University “Politehnica” Bucharest, Faculty of Applied Chemistry and Materials Science (Romania)

    2015-07-15

    The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.

  9. X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation.

    Science.gov (United States)

    Sankaran, Vijay G; Ulirsch, Jacob C; Tchaikovskii, Vassili; Ludwig, Leif S; Wakabayashi, Aoi; Kadirvel, Senkottuvelan; Lindsley, R Coleman; Bejar, Rafael; Shi, Jiahai; Lovitch, Scott B; Bishop, David F; Steensma, David P

    2015-04-01

    Macrocytic anemia with abnormal erythropoiesis is a common feature of megaloblastic anemias, congenital dyserythropoietic anemias, and myelodysplastic syndromes. Here, we characterized a family with multiple female individuals who have macrocytic anemia. The proband was noted to have dyserythropoiesis and iron overload. After an extensive diagnostic evaluation that did not provide insight into the cause of the disease, whole-exome sequencing of multiple family members revealed the presence of a mutation in the X chromosomal gene ALAS2, which encodes 5'-aminolevulinate synthase 2, in the affected females. We determined that this mutation (Y365C) impairs binding of the essential cofactor pyridoxal 5'-phosphate to ALAS2, resulting in destabilization of the enzyme and consequent loss of function. X inactivation was not highly skewed in wbc from the affected individuals. In contrast, and consistent with the severity of the ALAS2 mutation, there was a complete skewing toward expression of the WT allele in mRNA from reticulocytes that could be recapitulated in primary erythroid cultures. Together, the results of the X inactivation and mRNA studies illustrate how this X-linked dominant mutation in ALAS2 can perturb normal erythropoiesis through cell-nonautonomous effects. Moreover, our findings highlight the value of whole-exome sequencing in diagnostically challenging cases for the identification of disease etiology and extension of the known phenotypic spectrum of disease.

  10. Structure of putrescine aminotransferase from Escherichia coli provides insights into the substrate specificity among class III aminotransferases.

    Science.gov (United States)

    Cha, Hyung Jin; Jeong, Jae-Hee; Rojviriya, Catleya; Kim, Yeon-Gil

    2014-01-01

    YgjG is a putrescine aminotransferase enzyme that transfers amino groups from compounds with terminal primary amines to compounds with an aldehyde group using pyridoxal-5'-phosphate (PLP) as a cofactor. Previous biochemical data show that the enzyme prefers primary diamines, such as putrescine, over ornithine as a substrate. To better understand the enzyme's substrate specificity, crystal structures of YgjG from Escherichia coli were determined at 2.3 and 2.1 Å resolutions for the free and putrescine-bound enzymes, respectively. Sequence and structural analyses revealed that YgjG forms a dimer that adopts a class III PLP-dependent aminotransferase fold. A structural comparison between YgjG and other class III aminotransferases revealed that their structures are similar. However, YgjG has an additional N-terminal helical structure that partially contributes to a dimeric interaction with the other subunit via a helix-helix interaction. Interestingly, the YgjG substrate-binding site entrance size and charge distribution are smaller and more hydrophobic than other class III aminotransferases, which suggest that YgjG has a unique substrate binding site that could accommodate primary aliphatic diamine substrates, including putrescine. The YgjG crystal structures provide structural clues to putrescine aminotransferase substrate specificity and binding.

  11. Folate, vitamin B12, and vitamin B6 status of a group of high socioeconomic status women in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort.

    Science.gov (United States)

    Fayyaz, Faiqa; Wang, Flora; Jacobs, René L; O'Connor, Deborah L; Bell, Rhonda C; Field, Catherine J

    2014-12-01

    Folic acid supplementation and food fortification policies have improved folate status in North American women of child bearing age. Recent studies have reported the possible inadequacy of vitamin B12 and B6 in the etiology of neural tube defects in folate-fortified populations. The aims of this study were to describe folate status and its relationship to supplementation and to assess vitamin B12 and B6 status in a cohort of pregnant women. Supplement intake data were collected in each trimester from the first cohort (n = 599) of the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Red blood cell folate (RBCF) and plasma folate, holotranscobalamin, and pyridoxal 5-phosphate were measured. Overt folate deficiency was rare (3%) but 24% of women in their first trimester had suboptimal RBCF concentration (1360 nmol·L(-1)) was observed in approximately half of the women during each pregnancy trimester. Vitamin B12 and B6 deficiencies were rare (pregnancy and over half the women had abnormally high RBCF, suggesting that supplementation during pregnancy is not appropriate in a cohort of women considered to be healthy and a low risk for nutritional deficiencies.

  12. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute.

    Science.gov (United States)

    Li, Ronghua; Wang, Jim J; Zhou, Baoyue; Awasthi, Mukesh Kumar; Ali, Amjad; Zhang, Zengqiang; Lahori, Altaf Hussain; Mahar, Amanullah

    2016-09-01

    The present study deals with the preparation of a novel MgO-impregnated magnetic biochar (MMSB) for phosphate recovery from aqueous solution. The MMSB was evaluated against sugarcane harvest residue biochar (SB) and magnetic biochar without Mg (MSB). The results showed that increasing Mg content in MMSB greatly improved the phosphate adsorption compared to SB and MSB, with 20% Mg-impregnated MMSB (20MMSB) recovering more than 99.5% phosphate from aqueous solution. Phosphate adsorption capacity of 20MMSB was 121.25mgP/g at pH 4 and only 37.53% of recovered phosphate was desorbed by 0.01mol/L HCl solutions. XRD and FTIR analysis showed that phosphate sorption mechanisms involved predominately with surface electrostatic attraction and precipitation with impregnated MgO and surface inner-sphere complexation with Fe oxide. The 20MMSB exhibited both maximum phosphate sorption and strong magnetic separation ability. Overall, phosphate-loaded 20MMSB significantly enhanced plant growth and could be used as a potential substitute for phosphate-based fertilizer.

  13. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231 Breast Cancer Cells Using a Global Metabolomic Approach

    Directory of Open Access Journals (Sweden)

    Alina Uifălean

    2016-08-01

    Full Text Available Despite substantial research, the understanding of the chemopreventive mechanisms of soy isoflavones remains challenging. Promising tools, such as metabolomics, can provide now a deeper insight into their biochemical mechanisms. The purpose of this study was to offer a comprehensive assessment of the metabolic alterations induced by genistein, daidzein and a soy seed extract on estrogen responsive (MCF-7 and estrogen non-responsive breast cancer cells (MDA-MB-231, using a global metabolomic approach. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay showed that all test compounds induced a biphasic effect on MCF-7 cells and only a dose-dependent inhibitory effect on MDA-MB-231 cells. Proton nuclear magnetic resonance (1H-NMR profiling of extracellular metabolites and gas chromatography-mass spectrometry (GC-MS profiling of intracellular metabolites confirmed that all test compounds shared similar metabolic mechanisms. Exposing MCF-7 cells to stimulatory concentrations of isoflavones led to increased intracellular levels of 6-phosphogluconate and ribose 5-phosphate, suggesting a possible upregulation of the pentose phosphate pathway. After exposure to inhibitory doses of isoflavones, a significant decrease in glucose uptake was observed, especially for MCF-7 cells. In MDA-MB-231 cells, the glutamine uptake was significantly restricted, leading to alterations in protein biosynthesis. Understanding the metabolomic alterations of isoflavones represents a step forward in considering soy and soy derivates as functional foods in breast cancer chemoprevention.

  14. In vitro characterization of LmbK and LmbO: identification of GDP-D-erythro-α-D-gluco-octose as a key intermediate in lincomycin A biosynthesis.

    Science.gov (United States)

    Lin, Chia-I; Sasaki, Eita; Zhong, Aoshu; Liu, Hung-wen

    2014-01-22

    Lincomycin A is a clinically useful antibiotic isolated from Streptomyces lincolnensis. It contains an unusual methylmercapto-substituted octose, methylthiolincosamide (MTL). While it has been demonstrated that the C8 backbone of MTL moiety is derived from D-fructose 6-phosphate and D-ribose 5-phosphate via a transaldol reaction catalyzed by LmbR, the subsequent enzymatic transformations leading to the MTL moiety remain elusive. Here, we report the identification of GDP-D-erythro-α-D-gluco-octose (GDP-D-α-D-octose) as a key intermediate in the MTL biosynthetic pathway. Our data show that the octose 1,8-bisphosphate intermediate is first converted to octose 1-phosphate by a phosphatase, LmbK. The subsequent conversion of the octose 1-phosphate to GDP-D-α-D-octose is catalyzed by the octose 1-phosphate guanylyltransferase, LmbO. These results provide significant insight into the lincomycin biosynthetic pathway, because the activated octose likely serves as the acceptor for the installation of the C1 sulfur appendage of MTL.

  15. Capillary zone electrophoresis analysis and detection of mid-spectrum biological warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, C.A.; Townsley, C.

    1995-04-01

    DRE Suffield has initiated a research program to develop methods and equipment for field detection and laboratory identification of mid-spectrum agents, molecules of biological origin such as proteins, peptides and toxins. In this study, a highly efficient and reproducible capillary zone electrophoresis method was developed to separate and identify a series of nine peptides of defence interest: bradykinin, bradykinin fragment 1-5, substance P,ARG8-vasopressin, luteinizing hormone releasing hormone, bombesin, leucine enkephalin, methionine enkephalin, and oxytocin. Using a 50 micrometer x 47 cm capillary column, 22.5 kV separation voltage and a 100 mM pH 2.5 phosphate buffer, all nine peptide could separated in under 10 minutes. Three strategies, which could be used in a fully automated field detection and identification system, were demonstrated for the identification of unknown peptides: comparison of migration times, comparison of electrophoretic mobilities, and co-injection of multiple reference standards. These experiments demonstrate that a separation based analytical method such as capillary electrophoresis could form the basis of a generic detection system for mid-spectrum protein and peptide toxins.

  16. In vitro inhibition of Plasmodium falciparum by pyrazofurin, an inhibitor of pyrimidine biosynthesis de novo.

    Science.gov (United States)

    Scott, H V; Gero, A M; O'Sullivan, W J

    1986-01-01

    The effect of pyrazofurin, an inhibitor of UMP synthesis, on Plasmodium falciparum growth in vitro has been studied. ID50 values (concentration of compound causing 50% inhibition of [3H]hypoxanthine incorporation) for the FCQ-27, FCI-1 and K-1 (chloroquine-resistant) isolates were 10 +/- 8.7, 6.4 +/- 5.3 and 6.3 +/- 0.5 microM, respectively. Comparative ID50 values for chloroquine were 13.5 +/- 4.2, 22.8 +/- 7.6 and 343 +/- 114 microM, respectively. Over the 48-h intraerythrocytic cycle of tightly synchronized parasites, pyrazofurin both reduced the parasitemia and retarded the maturation of trophozoites and schizonts. Addition of uracil or uridine to the in vitro culture did not decrease the anti-parasitic activity of pyrazofurin. Chloroquine reduced the parasitemia, but did not retard development of the remaining viable parasites. Pyrazofurin (20 microM) caused a 50% inhibition of parasite orotate phosphoribosyltransferase (E.C. 2.4.2.10) and, in the presence of adenosine kinase and ATP, a 73% inhibition of orotidine-5'-phosphate decarboxylase (E.C. 4.1.1.23).

  17. Metabolic flux analysis of Saccharomyces cerevisiae in a sealed winemaking fermentation system.

    Science.gov (United States)

    Li, Hua; Su, Jing; Ma, Wen; Guo, Anque; Shan, Zuhua; Wang, Hua

    2015-03-01

    A sealed fermentation (SF) system and an anaerobic fermentation (AF) system (under normal atmospheric pressure conditions) were employed to study the influence of endogenous carbon dioxide (CO2) on the metabolism of Saccharomyces cerevisiae. The results showed that the fermentation stopped when 82.0 g L(-1) glucose was consumed and the endogenously produced CO2: pressure reached to 14.3 MPa in SF system, while the sugar was used up during AF. The total yeast viable count in the end of AF was higher than that of SF. It was also observed that the ethanol yield in AF and SF was similar, the glycerol yield in AF was 1.26 times higher than that in SF, while the succinic acid and acetic acid yields in SF were 24.7 and 26 times higher than that in AF, respectively. Additionally, this work provides a stoichiometric model used for metabolic flux analysis of S. cerevisiae to compare the flux distribution in SF and AF. The results showed that CO2 had an important effect on the pathways of oxaloacetic acid formation from pyruvic acid and ribose-5-phosphate formation from glucose-6-phosphate. However, the pathway of ethanol formation from pyruvic acid (decarboxylation reaction), catalyzed by pyruvate decarboxylase, was insensitive to CO2.

  18. Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain.

    Science.gov (United States)

    Jeong, Bo-Young; Wittmann, Christoph; Kato, Tatsuya; Park, Enoch Y

    2015-01-01

    In the present study, we analyzed the central metabolic pathway of an Ashbya gossypii wild type strain and a riboflavin over-producing mutant strain developed in a previous study in order to characterize the riboflavin over-production pathway. (13)C-Metabolic flux analysis ((13)C-MFA) was carried out in both strains, and the resulting data were fit to a steady-state flux isotopomer model using OpenFLUX. Flux to pentose-5-phosphate (P5P) via the pentose phosphate pathway (PPP) was 9% higher in the mutant strain compared to the wild type strain. The flux from purine synthesis to riboflavin in the mutant strain was 1.6%, while that of the wild type strain was only 0.1%, a 16-fold difference. In addition, the flux from the cytoplasmic pyruvate pool to the extracellular metabolites, pyruvate, lactate, and alanine, was 2-fold higher in the mutant strain compared to the wild type strain. This result demonstrates that increased guanosine triphosphate (GTP) flux through the PPP and purine synthesis pathway (PSP) increased riboflavin production in the mutant strain. The present study provides the first insight into metabolic flux through the central carbon pathway in A. gossypii and sets the foundation for development of a quantitative and functional model of the A. gossypii metabolic network.

  19. Crystal Structure of a Thermostable Alanine Racemase from Thermoanaerobacter tengcongensis MB4 Reveals the Role of Gln360 in Substrate Selection.

    Science.gov (United States)

    Sun, Xiaoliang; He, Guangzheng; Wang, Xiaoyan; Xu, Shujing; Ju, Jiansong; Xu, Xiaoling

    2015-01-01

    Pyridoxal 5'-phosphate (PLP) dependent alanine racemase catalyzes racemization of L-Ala to D-Ala, a key component of the peptidoglycan network in bacterial cell wall. It has been extensively studied as an important antimicrobial drug target due to its restriction in eukaryotes. However, many marketed alanine racemase inhibitors also act on eukaryotic PLP-dependent enzymes and cause side effects. A thermostable alanine racemase (AlrTt) from Thermoanaerobacter tengcongensis MB4 contains an evolutionarily non-conserved residue Gln360 in inner layer of the substrate entryway, which is supposed to be a key determinant in substrate specificity. Here we determined the crystal structure of AlrTt in complex with L-Ala at 2.7 Å resolution, and investigated the role of Gln360 by saturation mutagenesis and kinetic analysis. Compared to typical bacterial alanine racemase, presence of Gln360 and conformational changes of active site residues disrupted the hydrogen bonding interactions necessary for proper PLP immobilization, and decreased both the substrate affinity and turnover number of AlrTt. However, it could be complemented by introduction of hydrophobic amino acids at Gln360, through steric blocking and interactions with a hydrophobic patch near active site pocket. These observations explained the low racemase activity of AlrTt, revealed the essential role of Gln360 in substrate selection, and its preference for hydrophobic amino acids especially Tyr in bacterial alanine racemization. Our work will contribute new insights into the alanine racemization mechanism for antimicrobial drug development.

  20. Crystal Structure of a Thermostable Alanine Racemase from Thermoanaerobacter tengcongensis MB4 Reveals the Role of Gln360 in Substrate Selection.

    Directory of Open Access Journals (Sweden)

    Xiaoliang Sun

    Full Text Available Pyridoxal 5'-phosphate (PLP dependent alanine racemase catalyzes racemization of L-Ala to D-Ala, a key component of the peptidoglycan network in bacterial cell wall. It has been extensively studied as an important antimicrobial drug target due to its restriction in eukaryotes. However, many marketed alanine racemase inhibitors also act on eukaryotic PLP-dependent enzymes and cause side effects. A thermostable alanine racemase (AlrTt from Thermoanaerobacter tengcongensis MB4 contains an evolutionarily non-conserved residue Gln360 in inner layer of the substrate entryway, which is supposed to be a key determinant in substrate specificity. Here we determined the crystal structure of AlrTt in complex with L-Ala at 2.7 Å resolution, and investigated the role of Gln360 by saturation mutagenesis and kinetic analysis. Compared to typical bacterial alanine racemase, presence of Gln360 and conformational changes of active site residues disrupted the hydrogen bonding interactions necessary for proper PLP immobilization, and decreased both the substrate affinity and turnover number of AlrTt. However, it could be complemented by introduction of hydrophobic amino acids at Gln360, through steric blocking and interactions with a hydrophobic patch near active site pocket. These observations explained the low racemase activity of AlrTt, revealed the essential role of Gln360 in substrate selection, and its preference for hydrophobic amino acids especially Tyr in bacterial alanine racemization. Our work will contribute new insights into the alanine racemization mechanism for antimicrobial drug development.

  1. Expression, crystallization and preliminary X-ray crystallographic analysis of alanine racemase from Acinetobacter baumannii OXA-23.

    Science.gov (United States)

    Nguyen, Dinh-Duc; Ngo, Ho-Phuong-Thuy; Hong, Myoung-ki; Pham, Tan-Viet; Lee, Jung Hun; Lee, Jae Jin; Kwon, Dae Beom; Lee, Sang Hee; Kang, Lin-Woo

    2013-09-01

    Acinetobacter baumannii has received much attention owing to its exceptional ability to develop resistance to currently available antibiotics. Alanine racemase (ALR) catalyzes the racemization of L-alanine to D-alanine with pyridoxal 5'-phosphate (PLP) as a cofactor. The D-alanine product is an essential component of the bacterial cell wall and ALR is a potential target for the development of novel antibacterial drugs. The alr gene from A. baumannii was cloned and the protein (AbALR) was expressed, purified and crystallized. The AbALR crystal diffracted to 2.3 Å resolution and belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 55.1, b = 85.0, c = 167.7 Å. Two protomers were present in the asymmetric unit, with a corresponding V(M) value of 2.3 Å(3) Da(-1) and a solvent content of 47.5%.

  2. Crystal Structure of Bacillus subtilis Cysteine Desulfurase SufS and Its Dynamic Interaction with Frataxin and Scaffold Protein SufU.

    Directory of Open Access Journals (Sweden)

    Bastian Blauenburg

    Full Text Available The biosynthesis of iron sulfur (Fe-S clusters in Bacillus subtilis is mediated by a SUF-type gene cluster, consisting of the cysteine desulfurase SufS, the scaffold protein SufU, and the putative chaperone complex SufB/SufC/SufD. Here, we present the high-resolution crystal structure of the SufS homodimer in its product-bound state (i.e., in complex with pyrodoxal-5'-phosphate, alanine, Cys361-persulfide. By performing hydrogen/deuterium exchange (H/DX experiments, we characterized the interaction of SufS with SufU and demonstrate that SufU induces an opening of the active site pocket of SufS. Recent data indicate that frataxin could be involved in Fe-S cluster biosynthesis by facilitating iron incorporation. H/DX experiments show that frataxin indeed interacts with the SufS/SufU complex at the active site. Our findings deepen the current understanding of Fe-S cluster biosynthesis, a complex yet essential process, in the model organism B. subtilis.

  3. Public health significance of elevated homocysteine.

    Science.gov (United States)

    Selhub, Jacob

    2008-06-01

    Homocysteine is a sulfur amino acid whose metabolism stands at the intersection of two pathways: remethylation, which requires folic acid and vitamin B12 coenzymes; and transsulfuration, which requires pyridoxal-5'-phosphate, the vitamin B6 coenzyme. Data from a number of laboratories suggest that mild elevations of homocysteine in plasma are a risk factor for occlusive vascular disease. In the Framingham studies, we have shown that plasma homocysteine concentration is inversely related to the intake and plasma levels of folate and vitamin B6 as well as vitamin B12 plasma levels. Almost two-thirds of the prevalence of high homocysteine is attributable to low vitamin status or intake. Elevated homocysteine concentrations in plasma are a risk factor for prevalence of extracranial carotid-artery stenosis > or = 25% in both men and women. Prospectively elevated plasma homocysteine is associated with increased total and cardiovascular mortality, increased incidence of stroke, increased incidence of dementia and Alzheimer's disease, increased incidence of bone fracture, and higher prevalence of chronic heart failure. It was also shown that elevated plasma homocysteine is a risk factor for preeclampsia and maybe neural tube defects (NTD). This multitude of relationships between elevated plasma homocysteine and diseases that afflict the elderly, pregnant women, and the embryo points to the existence ofa common denominator which may be responsible for these diseases. Whether this denominator is homocysteine itself or homocysteine is merely a marker, remains to be determined.

  4. Pyridoxal phosphate-responsive seizures in a patient with cerebral folate deficiency (CFD) and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM).

    Science.gov (United States)

    Dill, Patricia; Schneider, Jacques; Weber, Peter; Trachsel, Daniel; Tekin, Mustafa; Jakobs, Cornelis; Thöny, Beat; Blau, Nenad

    2011-11-01

    We present an 8-year-old boy with folate receptor alpha (FRα) defect and congenital deafness with labyrinthine aplasia, microtia and microdontia (LAMM syndrome). Both conditions are exceptionally rare autosomal recessive inherited diseases mapped to 11q13. Our patient was found to have novel homozygous nonsense mutations in the FOLR1 gene (p.R204X), and FGF3 gene (p.C50X). While the FRα defect is a disorder of brain-specific folate transport accompanied with cerebral folate deficiency (CFD) causing progressive neurological symptoms, LAMM syndrome is a solely malformative condition, with normal physical growth and cognitive development. Our patient presented with congenital deafness, hypotonia, dysphygia and ataxia in early childhood. At the age of 6 years he developed intractable epilepsy, and deteriorated clinically with respiratory arrest and severe hypercapnea at the age of 8 years. In contrast to the previously published patients with a FOLR1 gene defect, our patient presented with an abnormal l-dopa metabolism in CSF and high 3-O-methyl-dopa. Upon oral treatment with folinic acid the boy regained consciousness while the epilepsy could be successfully managed only with additional pyridoxal 5'-phosphate (PLP). This report pinpoints the importance of CSF folate investigations in children with unexplained progressive neurological presentations, even if a malformative syndrome is obviously present, and suggests a trial with PLP in folinic acid-unresponsive seizures.

  5. Voltage gated calcium channels negatively regulate protective immunity to Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Shashank Gupta

    Full Text Available Mycobacterium tuberculosis modulates levels and activity of key intracellular second messengers to evade protective immune responses. Calcium release from voltage gated calcium channels (VGCC regulates immune responses to pathogens. In this study, we investigated the roles of VGCC in regulating protective immunity to mycobacteria in vitro and in vivo. Inhibiting L-type or R-type VGCC in dendritic cells (DCs either using antibodies or by siRNA increased calcium influx in an inositol 1,4,5-phosphate and calcium release calcium activated channel dependent mechanism that resulted in increased expression of genes favoring pro-inflammatory responses. Further, VGCC-blocked DCs activated T cells that in turn mediated killing of M. tuberculosis inside macrophages. Likewise, inhibiting VGCC in infected macrophages and PBMCs induced calcium influx, upregulated the expression of pro-inflammatory genes and resulted in enhanced killing of intracellular M. tuberculosis. Importantly, compared to healthy controls, PBMCs of tuberculosis patients expressed higher levels of both VGCC, which were significantly reduced following chemotherapy. Finally, blocking VGCC in vivo in M. tuberculosis infected mice using specific antibodies increased intracellular calcium and significantly reduced bacterial loads. These results indicate that L-type and R-type VGCC play a negative role in M. tuberculosis infection by regulating calcium mobilization in cells that determine protective immunity.

  6. Detection of bar gene encoding phosphinothricin herbicide resistance in plants by electrochemical biosensor.

    Science.gov (United States)

    Ligaj, Marta; Tichoniuk, Mariusz; Filipiak, Marian

    2008-11-01

    An electrochemical biosensor for the detection of bar gene coding phosphinothricin herbicide resistance is presented. The detection was based on hybridization reaction between the specific to bar gene 19-mer probe immobilized on the electrode surface and complementary DNA in a sample. Single-stranded DNA probe specific to bar gene was covalently attached by 5'-phosphate end to the surface of carbon paste electrode. Outer layer of a conventional CPE was provided with carboxyl groups of stearic acid. ssDNA was coupled to the electrode through ethylenediamine with the use of water-soluble 1-ethyl-3(3'-dimethylaminopropyl)-carbodiimide and N-hydroxy-sulfosuccinimide as activating reagents. Hybridization reaction at the electrode surface was detected via Co(bpy)(3)(3+), which possess a much higher affinity to the resulting DNA duplex compared to ssDNA probe. Detection limit of the sensor was 0.1 microM of target DNA fragments and its response was linear from 5 to 20 microM. Hybridization event was also detected by measuring guanine peak but this approach presented distinctly higher detection limit (1 muM) and lower reproducibility. Complete time of one measurement with the use of the biosensor including covalent attachment of ethylenediamine (linker) and ssDNA probe to the electrode, hybridization with target and interaction with electroactive indicator was about 70 min.

  7. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017.

    Science.gov (United States)

    Shan, Y; Man, C X; Han, X; Li, L; Guo, Y; Deng, Y; Li, T; Zhang, L W; Jiang, Y J

    2015-04-01

    Most γ-aminobutyric acid (GABA)-producing microorganisms are lactic acid bacteria (LAB), but the yield of GABA is limited in most of these GABA-producing strains. In this study, the production of GABA was carried out by using Lactobacillus plantarum NDC75017, a strain screened from traditional fermented dairy products in China. Concentrations of substrate (l-monosodium glutamate, L-MSG) and coenzyme (pyridoxal-5-phosphate, PLP) of glutamate decarboxylase (GAD) and culture temperature were investigated to evaluate their effects on GABA yield of Lb. plantarum NDC75017. The results indicated that GABA production was related to GAD activity and biomass of Lb. plantarum NDC75017. Response surface methodology was used to optimize conditions of GABA production. The optimal factors for GABA production were L-MSG at 80 mM, PLP at 18 μM, and a culture temperature of 36 °C. Under these conditions, production of GABA was maximized at 314.56 mg/100 g. Addition of Lb. plantarum NDC75017 to a commercial starter culture led to higher GABA production in fermented yogurt. Flavor and texture of the prepared yogurt and the control yogurt did not differ significantly. Thus, Lb. plantarum NDC75017 has good potential for manufacture of GABA-enriched fermented milk products.

  8. Phosphate Adsorption from Membrane Bioreactor Effluent Using Dowex 21K XLT and Recovery as Struvite and Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Tanjina Nur

    2016-03-01

    Full Text Available Discharging phosphate through wastewaters into waterways poses a danger to the natural environment due to the serious risks of eutrophication and health of aquatic organisms. However, this phosphate, if economically recovered, can partly overcome the anticipated future scarcity of phosphorus (P resulting from exhaustion of natural phosphate rock reserves. An experiment was conducted to determine the efficiency of removing phosphate from a membrane bioreactor effluent (pH 7.0–7.5, 20, 35 mg phosphate/L produced in a water reclamation plant by adsorption onto Dowex 21K XLT ion exchange resin and recover the phosphate as fertilisers. The data satisfactorily fitted to Langmuir adsorption isotherm with a maximum adsorption capacity of 38.6 mg·P/g. The adsorbed phosphate was quantitatively desorbed by leaching the column with 0.1 M NaCl solution. The desorbed phosphate was recovered as struvite when ammonium and magnesium were added at the molar ratio of phosphate, ammonium and magnesium of 1:1:1 at pH 9.5. Phosphate was also recovered from the desorbed solution as hydroxyapatite precipitate by adding calcium hydroxide to the solution at a phosphate to calcium molar ratio of 1:2 at pH 7.0. The P contents of struvite and hydroxyapatite produced were close to those of the respective commercial phosphate fertilisers.

  9. Multi-chamber electroosmosis using textile reinforced agar membranes--A promising concept for the future of hemodialysis.

    Science.gov (United States)

    Kofler, Markus; Lenninger, Margit; Mayer, Gert; Neuwirt, Hannes; Grimm, Michael; Bechtold, Thomas

    2016-01-20

    Renal replacement therapy options are limited to hemodialysis and peritoneal dialysis (70% of US patients) or renal transplantation. Diffusion processes are the main physico-chemical principle behind hemodialysis. An alternative way to achieve liquid flow through membranes bases on the electroosmotic flow which is observed as electrokinetic phenomenon in porous membranes which bear surface charges. Agar consists of the non-ionic agarose and the negatively charged agaropectine thus an electroosmotic flux is observed in analytical electrophoresis. In this study the potential electroosmosis on textile reinforced agar membranes as separation method was investigated. Using a five-chamber electrolysis cell and an agar membrane/cellulose fabric composite an intensive electroosmotic flow of 1-2 ml cm(2) h(-1) at 100 mA cell current could be observed. The movement of cations in the negatively charged agar structure led to an intensive electroosmotic flux, which also transported uncharged molecules such as urea, glucose through the membrane. Separation of uncharged low molecular weight molecules is determined by the membrane characteristic. The transport of ions (K(+), PO4(3-), creatinine) and uncharged molecules (urea, glucose) in electroosmotic separation experiments was monitored using a pH 5.5 phosphate electrolyte with the aim to assess the overall transport processes in the electrochemical cell. The results demonstrate the potential of the method for filtration of biological fluids in the absence of external pressure or high shear rates.

  10. Effect of passivator on Cu form transformation in pig manure aerobic composting and application in soil.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Chen, Jian-Jun; Zhang, Hui; Fu, Jie

    2015-10-01

    A sequential extraction approach was used to evaluate the effects of various combinations of passivators (sepiolite, phosphate rock, and coal fly ash) on the concentration and speciation of Cu in swine manure aerobic compost along with soil to which the compost had been applied. The results indicate that the various passivators altered the bound forms of Cu in pig manure and soil; the concentrations of exchangeable and Fe-Mn-bound Cu decreased, whereas the residual Cu concentration increased, indicating that Cu transformed to low-availability forms after the passivator treatments. The concentrations of the carbonate-bound and organic-bound Cu varied widely. Among all treatments, the treatment of the control + straw + sepiolite + coal fly ash (2.5 %) + phosphate rock (5.0 %) resulted in the most efficient passivation of Cu; the percentage of residual Cu reached 3.91-21.14 %, obviously surpassing the percentage for the control without passivation. The treatment of the control + straw + sepiolite + phosphate rock (2.5 %) resulted in the lowest residual Cu fraction (0.85 %) among passivator treatments. These results show that the addition of suitable combinations of passivators to the composting process reduced the availability of Cu and the risk of Cu pollution during the application of composted pig manure to soil. Passivation also decreased the Cu content of Apium graveolens.

  11. Enzymatic synthesis oF L-tryptophan from D,L-2-amino-delta2-thiazoline-4-carboxylic acid and indole by Pseudomonas sp. TS1138 L-2-amino-delta2-thiazoline-4-carboxylic acid hydrolase, S-carbamyl-L-cysteine amidohydrolase, and Escherichia coli L-tryptophanase.

    Science.gov (United States)

    Du, J; Duan, J J; Zhang, Q; Hou, J; Bai, F; Chen, N; Bai, G

    2012-01-01

    L-Tryptophan (L-Trp) is an essential amino acid. It is widely used in medical, health and food products, so a low-cost supply is needed. There are 4 methods for L-Trp production: chemical synthesis, extraction, enzymatic synthesis, and fermentation. In this study, we produced a recombinant bacterial strain pET-tnaA of Escherichia coli which has the L-tryptophanase gene. Using the pET-tnaA E. coli and the strain TS1138 of Pseudomonas sp., a one-pot enzymatic synthesis of L-Trp was developed. Pseudomonas sp. TS1138 was added to a solution of D,L-2-amino-delta2-thiazoline-4-carboxylic acid (DL-ATC) to convert it to L-cysteine (L-Cys). After concentration, E. coli BL21 (DE 3) cells including plasmid pET-tnaA, indole, and pyridoxal 5'-phosphate were added. At the optimum conditions, the conversion rates of DL-ATC and L-Cys were 95.4% and 92.1%, respectively. After purifying using macroporous resin S8 and NKA-II, 10.32 g of L-Trp of 98.3% purity was obtained. This study established methods for one-pot enzymatic synthesis and separation of L-Trp. This method of producing L-Trp is more environmentally sound than methods using chemical synthesis, and it lays the foundations for industrial production of L-Trp from DL-ATC and indole.

  12. Effects of pH and phosphate on CeO2 nanoparticle dissolution.

    Science.gov (United States)

    Dahle, Jessica T; Livi, Ken; Arai, Yuji

    2015-01-01

    As the result of rapidly grown nanotechnology industries, release of engineered nanoparticles (ENPs) to environment has increased, posing in a serious risk to environmental and human health. To better understand the chemical fate of ENPs in aquatic environments, solubility of CeO2 NPs was investigated using batch dissolution experiments as a function of pH (1.65-12.5), [phosphate] and particle size (33 and 78 nm). It was found that CeO2 dissolution was only significant at pHCeO2 NPs was decreased in small NPs by 15% at pH 1.65 and 75% at pH 4.5 and in large NPs by 56% at pH 1.65 and 63% at pH 4.5. The inner-sphere surface complexation of P that is revealed by the zeta potential measurements is effectively suppressing the CeO2 NP dissolution. Predicting the fate and transport of CeO2 NPs in aquatic environment, pH and P ligands might play important roles in controlling the solubility of CeO2 NPs.

  13. Characterization of C-S lyase from Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 and its potential role in food flavour applications.

    Science.gov (United States)

    Allegrini, Alessandra; Astegno, Alessandra; La Verde, Valentina; Dominici, Paola

    2016-12-21

    Volatile thiols have substantial impact on the aroma of many beverages and foods. Thus, the control of their formation, which has been linked to C-S lyase enzymatic activities, is of great significance in industrial applications involving food flavours. Herein, we have carried out a spectroscopic and functional characterization of a putative pyridoxal 5'-phosphate (PLP)-dependent C-S lyase from the lactic acid bacterium Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (LDB C-S lyase). Recombinant LDB C-S lyase exists as a tetramer in solution and shows spectral properties of enzymes containing PLP as cofactor. The enzyme has a broad substrate specificity toward sulphur-containing amino acids with aminoethyl-L-cysteine and L-cystine being the most effective substrates over L-cysteine and L-cystathionine. Notably, the protein also reveals cysteine-S-conjugate β-lyase activity in vitro, and is able to cleave a cysteinylated substrate precursor into the corresponding flavour-contributing thiol, with a catalytic efficiency higher than L-cystathionine. Contrary to similar enzymes of other lactic acid bacteria however, LDB C-S lyase is not capable of α,γ-elimination activity towards L-methionine to produce methanethiol, which is a significant compound in flavour development. Based on our results, future developments can be expected regarding the flavour-forming potential of Lactobacillus C-S lyase and its use in enhancing food flavours.

  14. Platelets and plasma stimulate sheep rotator cuff tendon tenocytes when cultured in an extracellular matrix scaffold.

    Science.gov (United States)

    Kelly, Brian A; Proffen, Benedikt L; Haslauer, Carla M; Murray, Martha M

    2016-04-01

    The addition of platelet-rich plasma (PRP) to rotator cuff repair has not translated into improved outcomes after surgery. However, recent work stimulating ligament healing has demonstrated improved outcomes when PRP or whole blood is combined with an extracellular matrix carrier. The objective of this study was to evaluate the effect of three components of blood (plasma, platelets, and macrophages) on the in vitro activity of ovine rotator cuff cells cultured in an extracellular matrix environment. Tenocytes were obtained from six ovine infraspinatus tendons and cultured over 14 days in an extracellular matrix scaffold with the following additives: (1) plasma (PPP), (2) plasma and platelets (PAP), (3) plasma and macrophages (PPPM), (4) plasma, platelets and macrophages (PAPM), (5) phosphate buffered saline (PBS), and (6) PBS with macrophages (PBSM). Assays measuring cellular metabolism (AlamarBlue), proliferation (Quantitative DNA assay), synthesis of collagen and cytokines (SIRCOL, TNF-α and IL-10 ELISA, and MMP assay), and collagen gene expression (qPCR) were performed over the duration of the experiment, as well as histology at the conclusion. Plasma was found to stimulate cell attachment and spreading on the scaffold, as well as cellular proliferation. Platelets also stimulated cell proliferation, cellular metabolism, transition of cells to a myofibroblast phenotype, and contraction of the scaffolds. The addition of macrophages did not have any significant effect on the sheep rotator cuff cells in vitro. In vivo studies are needed to determine whether these changes in cellular function will translate into improved tendon healing.

  15. Novel 3'-phosphoadenosine-5'-phosphatases from extremely halotolerant Hortaea werneckii reveal insight into molecular determinants of salt tolerance of black yeasts.

    Science.gov (United States)

    Vaupotic, Tomaz; Gunde-Cimerman, Nina; Plemenitas, Ana

    2007-11-01

    The 3'-phosphoadenosine-5'-phosphatase encoded by HAL2 gene, is a ubiquitous enzyme required for the removal of the cytotoxic 3'-phosphoadenosine-5'-phosphate produced during sulfur assimilation in eukaryotes. Salt toxicity in yeast and plants results from Hal2 inhibition by sodium or lithium ions. Two novel HAL2-like genes, HwHAL2A and HwHAL2B, have been cloned from saltern-inhabited extremely halotolerant black yeast Hortaea werneckii. Expression of both HwHAL2 isoforms was differentially inducible upon salt. When the HwHAL2 genes were transferred from such a halotolerant species into the salt sensitive Saccharomyces cerevisiae, the resulting organism can tolerate 1.8M NaCl or 0.8M LiCl, the highest reported salt concentrations at which S. cerevisiae can grow. With genetic and biochemical validation we demonstrated the critical HwHal2B sequence motif--the META sequence--common only to Dothideales fungi, with evident effect on the HwHal2B-dependent salt tolerance. These results may have significance for biosaline agriculture in coastal environments.

  16. Improvement of the riboflavin production by engineering the precursor biosynthesis pathways in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    Zhibo Xu; Zhenquan Lin; Zhiwen Wang; Tao Chen

    2015-01-01

    3,4-Dihydroxy-2-butanone 4-phosphate (DHBP) and GTP are the precursors for riboflavin biosynthesis. In this research, improving the precursor supply for riboflavin production was attempted by overexpressing ribB and engineering purine pathway in a riboflavin-producing Escherichia coli strain. Initially, ribB gene was overexpressed to increase the flux from ribulose 5-phosphate (Ru-5-P) to DHBP. Then ndk and gmk genes were overexpressed to enhance GTP supply. Subsequently, a R419L mutation was introduced into purA to reduce the flux from IMP to AMP. Finally, co-overexpression of mutant purF and prs genes further increased riboflavin production. The final strain RF18S produced 387.6 mg riboflavin · L−1 with a yield of 44.8 mg riboflavin per gram glucose in shake-flask fermentations. The final titer and yield were 72.2%and 55.6%higher than those of RF01S, respectively. It was concluded that simultaneously engineering the DHBP synthase and GTP biosynthetic pathway by rational metabolic engineering can efficiently boost riboflavin production in E. coli.

  17. Recombination of synthetic oligonucleotides with prokaryotic chromosomes: substrate requirements of the Escherichia coli/lambdaRed and Sulfolobus acidocaldarius recombination systems.

    Science.gov (United States)

    Grogan, Dennis W; Stengel, Kristy R

    2008-09-01

    In order to reveal functional properties of recombination involving short ssDNAs in hyperthermophilic archaea, we evaluated oligonucleotide-mediated transformation (OMT) in Sulfolobus acidocaldarius and Escherichia coli as a function of the molecular properties of the ssDNA substrates. Unmodified ssDNAs as short as 20-22 nt yielded recombinants in both organisms, as did longer DNAs forming as few as 2-5 base pairs on one side of the genomic mutation. The two OMT systems showed similar responses to certain end modifications of the oligonucleotides, but E. coli was found to require a 5' phosphate on 5'-limited ssDNA whereas this requirement was not evident in S. acidocaldarius. The ability of both E. coli and S. acidocaldarius to incorporate short, mismatched ssDNAs into their genomes raises questions about the biological significance of this capability, including its phylogenetic distribution among microorganisms and its impact on genome stability. These questions seem particularly relevant for S. acidocaldarius, as this archaeon has natural competence for OMT, encodes no MutSL homologues and thrives under environmental conditions that accelerate DNA decomposition.

  18. Molecular dynamics studies unravel role of conserved residues responsible for movement of ions into active site of DHBPS

    Science.gov (United States)

    Shinde, Ranajit Nivrutti; Karthikeyan, Subramanian; Singh, Balvinder

    2017-01-01

    3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS) catalyzes the conversion of D-ribulose 5-phosphate (Ru5P) to L-3,4-dihydroxy-2-butanone-4-phosphate in the presence of Mg2+. Although crystal structures of DHBPS in complex with Ru5P and non-catalytic metal ions have been reported, structure with Ru5P along with Mg2+ is still elusive. Therefore, mechanistic role played by Mg2+ in the structure of DHBPS is poorly understood. In this study, molecular dynamics simulations of DHBPS-Ru5P complex along with Mg2+ have shown entry of Mg2+ from bulk solvent into active site. Presence of Mg2+ in active site has constrained conformations of Ru5P and has reduced flexibility of loop-2. Formation of hydrogen bonds among Thr-108 and residues - Gly-109, Val-110, Ser-111, and Asp-114 are found to be critical for entry of Mg2+ into active site. Subsequent in silico mutations of residues, Thr-108 and Asp-114 have substantiated the importance of these interactions. Loop-4 of one monomer is being proposed to act as a “lid” covering the active site of other monomer. Further, the conserved nature of residues taking part in the transfer of Mg2+ suggests the same mechanism being present in DHBPS of other microorganisms. Thus, this study provides insights into the functioning of DHBPS that can be used for the designing of inhibitors.

  19. Characteristic features of kynurenine aminotransferase allosterically regulated by (alpha-ketoglutarate in cooperation with kynurenine.

    Directory of Open Access Journals (Sweden)

    Ken Okada

    Full Text Available Kynurenine aminotransferase from Pyrococcus horikoshii OT3 (PhKAT, which is a homodimeric protein, catalyzes the conversion of kynurenine (KYN to kynurenic acid (KYNA. We analyzed the transaminase reaction mechanisms of this protein with pyridoxal-5'-phosphate (PLP, KYN and α-ketoglutaric acid (2OG or oxaloacetic acid (OXA. 2OG significantly inhibited KAT activities in kinetic analyses, suggesting that a KYNA biosynthesis is allosterically regulated by 2OG. Its inhibitions evidently were unlocked by KYN. 2OG and KYN functioned as an inhibitor and activator in response to changes in the concentrations of KYN and 2OG, respectively. The affinities of one subunit for PLP or 2OG were different from that of the other subunit, as confirmed by spectrophotometry and isothermal titration calorimetry, suggesting that the difference of affinities between subunits might play a role in regulations of the KAT reaction. Moreover, we identified two active and allosteric sites in the crystal structure of PhKAT-2OG complexes. The crystal structure of PhKAT in complex with four 2OGs demonstrates that two 2OGs in allosteric sites are effector molecules which inhibit the KYNA productions. Thus, the combined data lead to the conclusion that PhKAT probably is regulated by allosteric control machineries, with 2OG as the allosteric inhibitor.

  20. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose.

    Directory of Open Access Journals (Sweden)

    Darren J Creek

    2015-03-01

    Full Text Available Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.

  1. Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum.

    Science.gov (United States)

    Marienhagen, Jan; Kennerknecht, Nicole; Sahm, Hermann; Eggeling, Lothar

    2005-11-01

    Twenty putative aminotransferase (AT) proteins of Corynebacterium glutamicum, or rather pyridoxal-5'-phosphate (PLP)-dependent enzymes, were isolated and assayed among others with L-glutamate, L-aspartate, and L-alanine as amino donors and a number of 2-oxo-acids as amino acceptors. One outstanding AT identified is AlaT, which has a broad amino donor specificity utilizing (in the order of preference) L-glutamate > 2-aminobutyrate > L-aspartate with pyruvate as acceptor. Another AT is AvtA, which utilizes L-alanine to aminate 2-oxo-isovalerate, the L-valine precursor, and 2-oxo-butyrate. A second AT active with the L-valine precursor and that of the other two branched-chain amino acids, too, is IlvE, and both enzyme activities overlap partially in vivo, as demonstrated by the analysis of deletion mutants. Also identified was AroT, the aromatic AT, and this and IlvE were shown to have comparable activities with phenylpyruvate, thus demonstrating the relevance of both ATs for L-phenylalanine synthesis. We also assessed the activity of two PLP-containing cysteine desulfurases, supplying a persulfide intermediate. One of them is SufS, which assists in the sulfur transfer pathway for the Fe-S cluster assembly. Together with the identification of further ATs and the additional analysis of deletion mutants, this results in an overview of the ATs within an organism that may not have been achieved thus far.

  2. Mutant form C115H of Clostridium sporogenes methionine γ-lyase efficiently cleaves S-Alk(en)yl-l-cysteine sulfoxides to antibacterial thiosulfinates.

    Science.gov (United States)

    Kulikova, Vitalia V; Anufrieva, Natalya V; Revtovich, Svetlana V; Chernov, Alexander S; Telegin, Georgii B; Morozova, Elena A; Demidkina, Tatyana V

    2016-10-01

    Pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) catalyzes the β-elimination reaction of S-alk(en)yl-l-cysteine sulfoxides to thiosulfinates, which possess antimicrobial activity. Partial inactivation of the enzyme in the course of the reaction occurs due to oxidation of active site cysteine 115 conserved in bacterial MGLs. In this work, the C115H mutant form of Clostridium sporogenes MGL was prepared and the steady-state kinetic parameters of the enzyme were determined. The substitution results in an increase in the catalytic efficiency of the mutant form towards S-substituted l-cysteine sulfoxides compared to the wild type enzyme. We used a sulfoxide/enzyme system to generate antibacterial activity in situ. Two-component systems composed of the mutant enzyme and three S-substituted l-cysteine sulfoxides were demonstrated to be effective against Gram-positive and Gram-negative bacteria and three clinical isolates from mice. © 2016 IUBMB Life, 68(10):830-835, 2016.

  3. A novel cysteine desulfurase influencing organosulfur compounds in Lentinula edodes.

    Science.gov (United States)

    Liu, Ying; Lei, Xiao-Yu; Chen, Lian-Fu; Bian, Yin-Bing; Yang, Hong; Ibrahim, Salam A; Huang, Wen

    2015-01-01

    Organosulfur compounds are the basis for the unique aroma of Lentinula edodes, and cysteine sulfoxide lyase (C-S lyase) is the key enzyme in this trait. The enzyme from Alliium sativum has been crystallized and well-characterized; however, there have been no reports of the characterization of fungi C-S lyase at the molecular level. We identified a L. edodes C-S lyase (Lecsl), cloned a gene of Csl encoded Lecsl and then combined modeling, simulations, and experiments to understand the molecular basis of the function of Lecsl. Our analysis revealed Lecsl to be a novel cysteine desulfurase and not a type of cysteine sulfoxide lyase. The pyridoxal-5-phosphate (PLP) molecule bonded tightly to Lecsl to form a Lecsl-PLP complex. Moreover, the Lecsl had one active center that served to bind two kinds of substrates, S-methyl-L-cysteine sulfoxide and L-cysteine, and had both cysteine sulfoxide lyase and cysteine desulfurase activity. We found that the amino acid residue Asn393 was essential for the catalytic activity of Lecsl and that the gene Csl encoded a novel cysteine desulfurase to influence organosulfur compounds in L. edodes. Our results provide a new insight into understanding the formation of the unique aroma of L. edodes.

  4. Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata.

    Science.gov (United States)

    Han, Yong-He; Fu, Jing-Wei; Xiang, Ping; Cao, Yue; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-01-05

    Microbially-mediated arsenic (As) transformation in soils affects As speciation and plant uptake. However, little is known about the impacts of As on bacterial communities and their functional genes in the rhizosphere of As-hyperaccumulator Pteris vittata. In this study, arsenite (AsIII) oxidase genes (aroA-like) and arsenate (AsV) reductase genes (arsC) were amplified from three soils, which were amended with 50mgkg(-1) As and/or 1.5% phosphate rock (PR) and grew P. vittata for 90 d. The aroA-like genes in the rhizosphere were 50 times more abundant than arsC genes, consistent with the dominance of AsV in soils. According to functional gene alignment, most bacteria belonged to α-, β- and γ-Proteobacteria. Moreover, aroA-like genes showed a higher biodiversity than arsC genes based on clone library analysis and could be grouped into nine clusters based on terminal restriction fragment length polymorphism (T-RFLP) analysis. Besides, AsV amendment elevated aroA-like gene diversity, but decreased arsC gene diversity. Redundancy analysis indicated that soil pH, available Ca and P, and AsV concentration were key factors driving diverse compositions in aroA-like gene community. This work identified new opportunities to screen for As-oxidizing and/or -reducing bacteria to aid phytoremediation of As-contaminated soils.

  5. The function of the three phosphoribosyl pyrophosphate synthetase (Prs) genes in hyphal growth and conidiation in Aspergillus nidulans.

    Science.gov (United States)

    Jiang, Ping; Wei, Wen-Fan; Zhong, Guo-Wei; Zhou, Xiao-Gang; Qiao, Wei-Ran; Fisher, Reinhard; Lu, Ling

    2017-02-01

    Phosphoribosyl pyrophosphate synthetase, which is encoded by the Prs gene, catalyses the reaction of ribose-5-phosphate and adenine ribonucleotide triphosphate (ATP) and has central importance in cellular metabolism. However, knowledge about how Prs family members function and contribute to total 5-phosphoribosyl-α-1-pyrophosphate (PRPP) synthetase activity is limited. In this study, we identified that the filamentous fungus Aspergillus nidulans genome contains three PRPP synthase-homologous genes (AnprsA, AnprsB and AnprsC), among which AnprsB and AnprsC but not AnprsA are auxotrophic genes. Transcriptional expression profiles revealed that the mRNA levels of AnprsA, AnprsB and AnprsC are dynamic during germination, hyphal growth and sporulation and that they all showed abundant expression during the vigorous hyphal growth time point. Inhibiting the expression of AnprsB or AnprsC in conditional strains produced more effects on the total PRPP synthetase activity than did inhibiting AnprsA, thus indicating that different AnPrs proteins are unequal in their contributions to Prs enzyme activity. In addition, the constitutive overexpression of AnprsA or AnprsC could significantly rescue the defective phenotype of the AnprsB-absent strain, suggesting that the function of AnprsB is not a specific consequence of this auxotrophic gene but instead comes from the contribution of Prs proteins to PRPP synthetase activity.

  6. Valproic acid- and lithium-sensitivity in prs mutants of Saccharomyces cerevisiae.

    Science.gov (United States)

    Kleineidam, Anna; Vavassori, Stefano; Wang, Ke; Schweizer, Lilian M; Griac, Peter; Schweizer, Michael

    2009-10-01

    Prs [PRPP (phosphoribosyl pyrophosphate) synthetase] catalyses the transfer of pyrophosphate from ATP to ribose 5-phosphate, thereby activating the pentose sugar for incorporation into purine and pyrimidine nucleotides. The Saccharomyces cerevisiae genome contains five genes, PRS1-PRS5, whose products display characteristic PRPP and bivalent-cation-binding sites of Prs polypeptides. Deletion of one or more of the five PRS genes has far-reaching and unexpected consequences, e.g. impaired cell integrity, temperature-sensitivity and sensitivity to VPA (valproic acid) and LiCl. CTP pools in prs1Delta and prs3Delta are reduced to 12 and 31% of the wild-type respectively, resulting in an imbalance in phospholipid metabolism which may have an impact on the intracellular inositol pool which is affected by the administration of either VPA or LiCl. Overexpression of CTP synthetase in prs1Delta prs3Delta strains partially reverses the VPA-sensitive phenotype. Yeast two-hybrid screening revealed that Prs3 and the yeast orthologue of GSK3 (glycogen synthase kinase 3), Rim11, a serine/threonine kinase involved in several signalling pathways, interact with each other. Furthermore, Prs5, an essential partner of Prs3, which also interacts with GSK3 contains three neighbouring phosphorylation sites, typical of GSK3 activation. These studies on yeast PRPP synthetases bring together and expand the current theories for the mood-stabilizing effects of VPA and LiCl in bipolar disorder.

  7. The function of the three phosphoribosyl-pyrophosphate synthetase (Prs) genes in hyphal growth and conidiation in Aspergillus nidulans.

    Science.gov (United States)

    Jiang, Ping; Wei, Wen-Fan; Zhong, Guo-Wei; Zhou, Xiao-Gang; Qiao, Wei-Ran; Lu, Ling

    2017-01-12

    Phosphoribosyl pyrophosphate synthetase, which is encoded by the Prs gene, catalyzes the reaction of ribose-5-phosphate and adenine ribonucleotide triphosphate (ATP) and has central importance in cellular metabolism. However, knowledge about how Prs family members function and contribute to total PRPP synthetase activity is limited. In this study, we identified that the filamentous fungus Aspergillus nidulans genome contains three 5-phosphoribosyl-α-1-pyrophosphate (PRPP) synthase-homologous genes (AnprsA, B, and C), among which AnprsB and AnprsC but not AnprsA are auxotrophic genes. Transcriptional expression profiles revealed that the mRNA levels of AnprsA, B and C are dynamic during germination, hyphal growth and sporulation and that they all showed abundant expression during the vigorous hyphal growth time-point. Inhibiting the expression of AnprsB or AnprsC in conditional strains produced more effects on the total PRPP synthetase activity than did inhibiting AnprsA, thus indicating that different AnPrs proteins are unequal in their contributions to Prs enzyme activity. In addition, the constitutive overexpression of AnprsA or AnprsC could significantly rescue the defective phenotype of the AnprsB-absent strain, suggesting that the function of AnprsB is not a specific consequence of this auxotrophic gene but instead comes from the contribution of Prs proteins to PRPP synthetase activity.

  8. New treatment paradigms in neonatal metabolic epilepsies.

    Science.gov (United States)

    Pearl, P L

    2009-04-01

    Neonatal seizures represent a major challenge among the epilepsies vis-à-vis seizure classification, electroclinical correlation, inherent excitability of neocortex, ontogenic characteristics of neurotransmitter receptors, and responsiveness to standard antiepileptic drugs. Each of these factors renders neonatal seizures more difficult to treat, and therapy has been a vexing area for recent advances in this seizure category. Conversely, specific metabolic disorders have very special therapeutic considerations in the clinical setting of neonatal seizures which require a high index of clinical suspicion and rapid intervention for a successful outcome. The prototype is pyridoxine dependency, although pyridoxal 5'-phosphate dependency is a recently recognized but treatable neonatal epilepsy that deserves earmarked distinction. Clinicians must remain vigilant for these possibilities, including atypical cases where apparent seizure-free intervals may occur. Folinic acid-dependent seizures are allelic with pyridoxine dependency. Serine-dependent seizures and glucose transporter deficiency may present with neonatal seizures and have specific therapy. A vital potassium channel regulated by serum ATP/ADP ratios in the pancreas and brain may be mutated with a resultant neuroendocrinopathy characterized by development delay, epilepsy, and neonatal diabetes (DEND). This requires oral hypoglycaemic therapy, and not insulin, for neurological responsiveness. The startle syndrome of hyperekplexia, which mimics neonatal epilepsy, has been associated with laryngospasm and sudden death but is treated with benzodiazepines.

  9. Vitamin B-6 status of breast-fed neonates: influence of pyridoxine supplementation on mothers and neonates.

    Science.gov (United States)

    Kang-Yoon, S A; Kirksey, A; Giacoia, G; West, K

    1992-09-01

    Vitamin B-6 concentrations in human milk are known to respond rapidly to changes in maternal vitamin B-6 intake. In this study, mothers were supplemented during the first 28 d of lactation with 2 or 27 mg pyridoxine (PN)-HCl/d and a subgroup of breast-fed infants of the 2-mg/d-supplemented mothers were supplemented with 0.4 mg PN-HCl/d. Vitamin B-6 intakes of breast-fed infants reflected the amount of their mother's supplement; intakes were highest for the vitamin-supplemented infants. Vitamin B-6 intake of mothers was a strong indicator of infant vitamin B-6 status. Vitamin intake of infants correlated significantly with five measures of vitamin B-6 status. Plasma pyridoxal-5'-phosphate (PLP) concentrations and birth weight were the strongest predictors of infant growth that were examined. Alkaline phosphatase activity in the mother's milk and infant plasma reflected pyridoxal-PLP ratios in these fluids, suggesting that the enzyme acts in regulating circulating vitamer concentrations.

  10. Status epilepticus in a neonate treated with pyridoxine because of a familial recurrence risk for antiquitin deficiency: pyridoxine toxicity?

    Science.gov (United States)

    Hartmann, Hans; Fingerhut, Michael; Jakobs, Cornelis; Plecko, Barbara

    2011-12-01

    Pyridoxine-dependent epilepsy (PDE) is a treatable inborn error of metabolism with autosomal recessive inheritance. Antenatal and postnatal prophylactic administration of pyridoxine has been recommended to improve the developmental outcome in possible future pregnancies. We report on a male offspring of a second pregnancy at risk for PDE. While on prophylactic treatment with oral pyridoxine, the newborn developed encephalopathy and status epilepticus at age 14 days. Seizures did not respond to parenteral pyridoxine and additional treatment with folinic acid. After treatment was changed to pyridoxal 5'-phosphate, the infant's condition improved. Antiquitin deficiency was excluded by biochemical and molecular genetic testing, and cofactor treatment was stopped on day 26. He has since remained seizure-free with normal psychomotor development. In healthy newborns, high-dose treatment with pyridoxine may result in increased rather than decreased neuroexcitability. Postnatal prophylactic pyridoxine treatment of fetuses and neonates at risk for PDE should be limited to the shortest possible time, by either prenatal diagnosis or immediate postnatal biochemical and genetic testing.

  11. Neonatal vitamin-responsive epileptic encephalopathies.

    Science.gov (United States)

    Gospe, Sidney M

    2010-01-01

    The treatment of neonatal seizures generally relies on the use of one or more anticonvulsant medications along with evaluation and management of any underlying etiology. In some circumstances, neonatal seizures are refractory to therapy and result in poor outcomes, including death. Certain rare vitamin- responsive inborn errors of metabolism may present as neonatal encephalopathy with anticonvulsant-resistant seizures. Therefore, it is vital for the clinicians of caring for seizing encephalopathic newborns to consider these particular disorders early in the hospital course. Pyridoxine-dependent seizures are due to deficiency of alpha-aminoadipic semialdehyde dehydrogenase (antiquitin) which is encoded by ALDH7A1. Seizures in infants who are pyridoxine-dependent must be treated using pharmacologic doses of pyridoxine (vitamin B(6)), and life-long therapy is required. Despite medical therapy, developmental handicaps, particularly in expressive language, are common. Folinic acidresponsive seizures are treated with supplements of folinic acid (5-formyltetrahydrofolate). Recently, patients with this condition were also demonstrated to be antiquitin deficient. Pyridoxal phosphate-dependent seizures result from a deficiency of pyridox(am)ine 5'-phosphate oxidase which is encoded by PNPO. Patients with this cause of seizures respond to pyridoxal phosphate but not to pyridoxine. This review discusses our current understanding of these three neonatal vitamin-responsive epileptic encephalopathies and a diagnostic and treatment protocol is proposed.

  12. Characterization of the putative tryptophan synthase β-subunit from Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    Hongbo Shen; Yanping Yang; Feifei Wang; Ying Zhang; Naihao Ye; Shengfeng Xu; Honghai Wang

    2009-01-01

    The increasing emergence of drug-resistant tuberculosis (TB)poses a serious threat to the control of this disease.It is in urgent need to develop new TB drugs.Tryptophan biosynthetic pathway plays an important role in the growth and replication of Mycobacterium tuberculosis(Mtb).The β-subunit of tryptophan synthase(TrpB)catalyzes the last step of the tryptophan biosynthetic pathway,and it might be a potential target for TB drug design.In this study,we overexpressed,purified,and characterized the putative TrpB-encoding gene Rv1612 in Mtb H37Rv.Results showed that Mtb His-TrpB optimal enzymatic activity is at pH 7.8 with 0.15 M Na+or 0.18 M Mg2+ at 37℃.Structure analysis indicated that Mtb TrpB exhibited a typical β/α barrel structure.The amino acid residues believed to interact with the enzyme cofactor pyridoxal-5'-phosphate were predicted by homology modeling and structure alignment.The role of these residues in catalytic activity of the Mtb His-TrpB was confirmed by site-directed mutagenesis.These results provided reassuring structural information for drug design based on TrpB.

  13. Study on Preparation and Characteristics of Pyridoxalated Polyhemoglobin

    Institute of Scientific and Technical Information of China (English)

    LiangShuguang; TongMingrong; 等

    1994-01-01

    Stroma-free hemoglobin(SFHb) was prepared from fresh or out-dated whole blood by lysing red cells.At different temperatures,pyridoxal 5-phosphate (PLP) was added in a 4:1 molar-ratio to the Hb tetramer followed by reduction with NaBH4 under N2 for 16 hrs subsequent crosslinking by glutaraldehyde in presence of lysine for 14-16 hrs.Yielded soluble pyridoxalated polyhemoglobin (Poly Hb-P).5%-20% gradient SDS-PAGE showed the change of the Hb molecular weight(MW) after crosslinking.Gel chromatography showed that the poly Hb-P had a continuous distribution of molecular weight with the range from about 65,000 to 600,000 Dalton.The poly Hb-P solution provided a nornal oxygen carrying with 23.1 of P50 at pH 7.24 or 26.1 of P50 at pH7.24.

  14. Crystal structures of human pyridoxal kinase in complex with the neurotoxins, ginkgotoxin and theophylline: insights into pyridoxal kinase inhibition.

    Directory of Open Access Journals (Sweden)

    Amit K Gandhi

    Full Text Available Several drugs and natural compounds are known to be highly neurotoxic, triggering epileptic convulsions or seizures, and causing headaches, agitations, as well as other neuronal symptoms. The neurotoxic effects of some of these compounds, including theophylline and ginkgotoxin, have been traced to their inhibitory activity against human pyridoxal kinase (hPL kinase, resulting in deficiency of the active cofactor form of vitamin B₆, pyridoxal 5'-phosphate (PLP. Pyridoxal (PL, an inactive form of vitamin B₆ is converted to PLP by PL kinase. PLP is the B₆ vitamer required as a cofactor for over 160 enzymatic activities essential in primary and secondary metabolism. We have performed structural and kinetic studies on hPL kinase with several potential inhibitors, including ginkgotoxin and theophylline. The structural studies show ginkgotoxin and theophylline bound at the substrate site, and are involved in similar protein interactions as the natural substrate, PL. Interestingly, the phosphorylated product of ginkgotoxin is also observed bound at the active site. This work provides insights into the molecular basis of hPL kinase inhibition and may provide a working hypothesis to quickly screen or identify neurotoxic drugs as potential hPL kinase inhibitors. Such adverse effects may be prevented by administration of an appropriate form of vitamin B₆, or provide clues of how to modify these drugs to help reduce their hPL kinase inhibitory effects.

  15. Parkinson's disease: carbidopa, nausea, and dyskinesia

    Directory of Open Access Journals (Sweden)

    Hinz M

    2014-11-01

    Full Text Available Marty Hinz,1 Alvin Stein,2 Ted Cole3 1Clinical Research, NeuroResearch Clinics, Cape Coral, FL, 2Stein Orthopedic Associates, Plantation, FL, 3Cole Center for Healing, Cincinnati, OH, USA Abstract: When ʟ-dopa use began in the early 1960s for the treatment of Parkinson's disease, nausea and reversible dyskinesias were experienced as continuing side effects. Carbidopa or benserazide was added to ʟ-dopa in 1975 solely to control nausea. Subsequent to the increasing use of carbidopa has been the recognition of irreversible dyskinesias, which have automatically been attributed to ʟ-dopa. The research into the etiology of these phenomena has identified the causative agent of the irreversible dyskinesias as carbidopa, not ʟ-dopa. The mechanism of action of the carbidopa and benserazide causes irreversible binding and inactivation of vitamin B6 throughout the body. The consequences of this action are enormous, interfering with over 300 enzyme and protein functions. This has the ability to induce previously undocumented profound antihistamine dyskinesias, which have been wrongly attributed to ʟ-dopa and may be perceived as irreversible if proper corrective action is not taken. Keywords: vitamin B6, PLP, irreversible, pyridoxal 5'-phosphate

  16. A screen for suppressors of gross chromosomal rearrangements identifies a conserved role for PLP in preventing DNA lesions.

    Directory of Open Access Journals (Sweden)

    Pamela Kanellis

    2007-08-01

    Full Text Available Genome instability is a hallmark of cancer cells. One class of genome aberrations prevalent in tumor cells is termed gross chromosomal rearrangements (GCRs. GCRs comprise chromosome translocations, amplifications, inversions, deletion of whole chromosome arms, and interstitial deletions. Here, we report the results of a genome-wide screen in Saccharomyces cerevisiae aimed at identifying novel suppressors of GCR formation. The most potent novel GCR suppressor identified is BUD16, the gene coding for yeast pyridoxal kinase (Pdxk, a key enzyme in the metabolism of pyridoxal 5' phosphate (PLP, the biologically active form of vitamin B6. We show that Pdxk potently suppresses GCR events by curtailing the appearance of DNA lesions during the cell cycle. We also show that pharmacological inhibition of Pdxk in human cells leads to the production of DSBs and activation of the DNA damage checkpoint. Finally, our evidence suggests that PLP deficiency threatens genome integrity, most likely via its role in dTMP biosynthesis, as Pdxk-deficient cells accumulate uracil in their nuclear DNA and are sensitive to inhibition of ribonucleotide reductase. Since Pdxk links diet to genome stability, our work supports the hypothesis that dietary micronutrients reduce cancer risk by curtailing the accumulation of DNA damage and suggests that micronutrient depletion could be part of a defense mechanism against hyperproliferation.

  17. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    Science.gov (United States)

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA.

  18. Differential Oxidative Metabolism and 5-Ketoclomazone Accumulation Are Involved in Echinochloa phyllopogon Resistance to Clomazone1[C][W][OA

    Science.gov (United States)

    Yasuor, Hagai; Zou, Wei; Tolstikov, Vladimir V.; Tjeerdema, Ronald S.; Fischer, Albert J.

    2010-01-01

    Echinochloa phyllopogon (late watergrass) is a major weed of California rice (Oryza sativa) that has evolved cytochrome P450-mediated metabolic resistance to different herbicides with multiple modes of action. E. phyllopogon populations from Sacramento Valley rice fields have also recently shown resistance to the herbicide clomazone. Clomazone is a proherbicide that must be metabolized to 5-ketoclomazone, which is the active compound that inhibits deoxyxylulose 5-phosphate synthase, a key enzyme of the nonmevalonate isoprenoid pathway. This study evaluated the differential clomazone metabolism within strains of the same species to investigate whether enhanced oxidative metabolism also confers clomazone resistance in E. phyllopogon. Using reverse-phase liquid chromatography-tandem mass spectrometry techniques in the multireaction monitoring mode, we elucidated that oxidative biotransformations are involved as a mechanism of clomazone resistance in this species. E. phyllopogon plants hydroxylated mostly the isoxazolidinone ring of clomazone, and clomazone hydroxylation activity was greater in resistant than in susceptible plants. The major clomazone metabolites resulted from monohydroxylation and dihydroxylation of the isoxazolidinone ring. Resistant plants accumulated 6- to 12-fold more of the monohydroxylated metabolite than susceptible plants, while susceptible plants accumulated 2.5-fold more of the phytotoxic metabolite of clomazone, 5-ketoclomazone. Our results demonstrate that oxidative metabolism endows multiple-herbicide-resistant E. phyllopogon with cross-resistance to clomazone through enhanced herbicide degradation and lower accumulation of the toxic metabolite in resistant versus susceptible plants. PMID:20207709

  19. Differential oxidative metabolism and 5-ketoclomazone accumulation are involved in Echinochloa phyllopogon resistance to clomazone.

    Science.gov (United States)

    Yasuor, Hagai; Zou, Wei; Tolstikov, Vladimir V; Tjeerdema, Ronald S; Fischer, Albert J

    2010-05-01

    Echinochloa phyllopogon (late watergrass) is a major weed of California rice (Oryza sativa) that has evolved cytochrome P450-mediated metabolic resistance to different herbicides with multiple modes of action. E. phyllopogon populations from Sacramento Valley rice fields have also recently shown resistance to the herbicide clomazone. Clomazone is a proherbicide that must be metabolized to 5-ketoclomazone, which is the active compound that inhibits deoxyxylulose 5-phosphate synthase, a key enzyme of the nonmevalonate isoprenoid pathway. This study evaluated the differential clomazone metabolism within strains of the same species to investigate whether enhanced oxidative metabolism also confers clomazone resistance in E. phyllopogon. Using reverse-phase liquid chromatography-tandem mass spectrometry techniques in the multireaction monitoring mode, we elucidated that oxidative biotransformations are involved as a mechanism of clomazone resistance in this species. E. phyllopogon plants hydroxylated mostly the isoxazolidinone ring of clomazone, and clomazone hydroxylation activity was greater in resistant than in susceptible plants. The major clomazone metabolites resulted from monohydroxylation and dihydroxylation of the isoxazolidinone ring. Resistant plants accumulated 6- to 12-fold more of the monohydroxylated metabolite than susceptible plants, while susceptible plants accumulated 2.5-fold more of the phytotoxic metabolite of clomazone, 5-ketoclomazone. Our results demonstrate that oxidative metabolism endows multiple-herbicide-resistant E. phyllopogon with cross-resistance to clomazone through enhanced herbicide degradation and lower accumulation of the toxic metabolite in resistant versus susceptible plants.

  20. Expression analysis of a novel pyridoxal kinase messenger RNA splice variant, PKL, in oil rape suffering abiotic stress and phytohormones

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pyridoxal kinase is key enzyme for the biosynthesis of pyridoxal 5'-phosphate, the biologically active form of vitamin B6, in the salvage pathway. A pyridoxal kinase gene, BnPKL (GenBank accession No. DQ463962), was isolated from oilseed rape (Brassica napus L.) following water stress through rapid amplification of complementary DNA (cDNA) ends. The results showed that the gene had two splice variants: PKL and PKL2. PKL, the long cDNA, encodes a 334 amino acid protein with a complete ATP-binding site, pyridoxai kinase-binding site and dimer interface site of a pyridoxal kinase, while PKL2, the short cDNA, lacked a partial domain. Southern blot showed that there were two copies in Brassica napus. The expression of BnPKL cDNA could rescue the mutant phenotype of Escherichia coil defective in pyridoxai kinase. Real-time reverse transcription-polymerase chain reaction revealed that the relative abundance of two transcripts are modulated by development and environmental stresses.Abscisic acid and NaCI were inclined to decrease PKL expression, but HO and cold temperatures induced the PKL expression. In addition, the PKL expression could be transiently induced by jasmonate acid at an early stage, abscisic acid, salicylic acid and jasmonate acid enhanced the PKL expression in roots. Our results demonstrated that BnPKL was a pyridoxal kinase involved in responses to biotic and abiotic stresses.

  1. Luminescence, electronic absorption and vibrational IR and Raman studies of binary and ternary cerium ortho-, pyro- and meta-phosphates doped with Pr 3+ ions

    Science.gov (United States)

    Szczygieł, I.; Macalik, L.; Radomińska, E.; Znamierowska, T.; Mączka, M.; Godlewska, P.; Hanuza, J.

    2007-05-01

    The broad class of polycrystalline ortho-[Ba 3Ce(PO 4) 3, Ca 3Ce(PO 4) 3, Ba 6Ce(PO 4) 5, K 3Ce(PO 4) 2. Na 3Ce(PO 4) 2, Na 3- xK xCe(PO 4) 2 ( x = 0.5, 1.5 and 2.5)], pyro-[NaCeP 2O 7] and meta-[NaCe(PO 3) 4, KCe(PO 3) 4, K 2Ce(PO 3) 5] phosphates was prepared in the solid state reaction. The Pr 3+ ions have been used as active probe for studies of the spectroscopic properties of these materials. Optical absorption, emission as well as infrared and Raman spectroscopic methods have been applied to characterise the properties and structure of the compounds studied. Their electronic spectra were discussed in terms of the Ce 3+ ion spectroscopic characteristics. The 2F 5/2 → 2F 7/2 transition appears in the typical for this ion region, i.e., at about 2000 cm -1. The absorption bands in the range 25,000-50,000 cm -1 have been assigned to the 4f 1 → 5d 1 transitions of the cerium ion. The role of these transitions in the radiative and radiation-less energy transfer mechanism was discussed. This paper discusses also the emission of Ce 3+ and Pr 3+ and Stokes shift.

  2. Depression of vitamin B6 levels due to gentamicin.

    Science.gov (United States)

    Weir, M R; Keniston, R C; Enriquez, J I; McNamee, G A

    1990-06-01

    The renal toxicity of gentamicin is altered by dietary protein modifications, bicarbonate and acetazolamide administration, magnesium supplementation, polyaspartic acid, piperacillin, hypercalcemia and calcium channel blockers. Renal tissue gentamicin levels have an undetermined role. Reduction of renal pyridoxal 5'-phosphate (PLP- by gentamicin has been shown, as has protection from nephrotoxicity by administration of vitamin B6. To explore an interaction between gentamicin and vitamin B6, gentamicin (5 mg/kg) was given to rabbits by ip injection, with either pyridoxine (10 mg) or isovolemic saline for 3 weeks. There was not a difference between gentamicin levels for animals given gentamicin and pyridoxine versus those given gentamicin and saline. Gentamicin administration led to a 47% fall (p = .0001) in plasma PLP levels. Three days after the last gentamicin administration, the animals maintained a 32% decrease from the pre-gentamicin baseline values (p = 0.02). When pyridoxine was administered concurrently with gentamicin, the PLP rise of 49% was significant (p = 0.001). The mean level after the study (6%) was not significantly lower than baseline (p = .6). We believe that gentamicin interfers with vitamin B6 metabolism, but that vitamin B6 status does not affect levels of gentamicin. A number of drugs affect B6 levels, creating the potential for hypovitaminosis B6 to be an important mechanism of drug-drug interaction in seriously ill patients, particularly in sick newborns or the elderly with lower average PLP levels.

  3. Depression of vitamin B6 levels due to theophylline.

    Science.gov (United States)

    Weir, M R; Keniston, R C; Enriquez, J I; McNamee, G A

    1990-07-01

    Theophylline overdosage can cause life-threatening symptoms, that include seizures and cardiac arrhythmias, and can be fatal. Neither the onset of toxicity nor the severity of symptoms is well predicted by serum theophylline concentrations. Since depressed vitamin B6 plasma levels can occur in patients receiving theophylline, we explored a B6-theophylline interaction in a rabbit model. Administration of theophylline preparations intraperitoneally (aminophylline) or orally (sustained release anhydrous theophylline) resulted in a 47% depression of plasma pyridoxal 5'-phosphate (PLP) levels. The 87% increase in PLP with pyridoxine administration was only 18% when aminophylline was also given. The mechanism of the theophylline-B6 interaction is obscure. Ethylenediamine in some theophylline preparations binds directly to PLP, potentially increasing the less direct theophylline effect. Pyridoxine supplementation resulted in higher average PLP levels but did not prevent death in animals with profoundly low PLP levels. If these data apply to humans, B6 deficiency may contribute to chronic theophylline toxicity; however, pyridoxine administration in the dosage used may not prevent toxicity. Larger doses may prove beneficial after further investigation.

  4. Depression of vitamin B6 levels due to dopamine.

    Science.gov (United States)

    Weir, M R; Keniston, R C; Enriquez, J I; McNamee, G A

    1991-04-01

    Dopamine is a commonly used pressor agent. Frequently recognized side effects other than occasional reports of pedal gangrene respond to reduction of dose. Because a number of compounds interfere with vitamin B6 and dopamine toxicity in animals is modified by B6, we studied the dopamine-vitamin B6 interaction in rabbits. Six animals received 40 mg dopamine/kg and 10 mg pyridoxine injections; 6 received dopamine and saline. Dopamine administration led to an average fall of 20% (p = 0.04) in plasma pyridoxal 5'-phosphate (PLP) levels, which declined 42% by day 5. Three days later, a 25% decrease persisted (p = 0.03). Dopamine with pyridoxine caused a PLP rise of 65% (p = 0.007), but the post-study level was 28% lower than baseline (p = 0.04). We interpret our data to mean that dopamine reduced PLP levels during and 3 days after the study, and that dopamine appeared to increase the requirements for B6. We worry that dopamine given with other drugs, ie gentamicin, digoxin and theophylline which are frequently used in critical care settings, could aggravate alterations of requirements for or body stores of vitamin B6, creating B6 deficiency.

  5. Pyridoxine-dependent epilepsy with elevated urinary α-amino adipic semialdehyde in molybdenum cofactor deficiency.

    Science.gov (United States)

    Struys, Eduard Alexander; Nota, Benjamin; Bakkali, Abdellatif; Al Shahwan, Saad; Salomons, Gajja Sophi; Tabarki, Brahim

    2012-12-01

    α-Amino adipic semialdehyde (α-AASA) accumulates in body fluids from patients with pyridoxine-dependent epilepsy because of mutations in antiquitin (ALDH7A1) and serves as the biomarker for this condition. We have recently found that the urinary excretion of α-AASA was also increased in molybdenum cofactor and sulfite oxidase deficiencies. The seizures in pyridoxine-dependent epilepsy are caused by lowered cerebral levels of pyridoxal-5-phosphate (PLP), the bioactive form of pyridoxine (vitamin B(6)), which can be corrected by the supplementation of pyridoxine. The nonenzymatic trapping of PLP by the cyclic form of α-AASA is causative for the lowered cerebral PLP levels. We describe 2 siblings with clinically evident pyridoxine-responsive seizures associated with increased urinary excretion of α-AASA. Subsequent metabolic investigations revealed several metabolic abnormities, all indicative for molybdenum cofactor deficiency. Molecular investigations indeed revealed a known homozygous mutation in the MOCS2 gene. Based upon the clinically evident pyridoxine-responsive seizures in these 2 siblings, we recommend considering pyridoxine supplementation to patients affected with molybdenum cofactor or sulfite oxidase deficiencies.

  6. Pyridoxine enhances cell proliferation and neuroblast differentiation by upregulating the GABAergic system in the mouse dentate gyrus.

    Science.gov (United States)

    Yoo, Dae Young; Kim, Woosuk; Kim, Dae Won; Yoo, Ki-Yeon; Chung, Jin Young; Youn, Hwa Young; Yoon, Yeo Sung; Choi, Soo Young; Won, Moo-Ho; Hwang, In Koo

    2011-05-01

    We investigated the effects of pyridoxine (vitamin B(6)) on cell death, cell proliferation, neuroblast differentiation, and the GABAergic system in the mouse dentate gyrus. We administered pyridoxine (350 mg/kg intraperitoneally) to 8 week old mice twice a day for 14 days and sacrificed them at 10 weeks of age. Pyridoxine treatment did not induce neuronal death or activate microglia in the dentate gyrus, while glial fibrillary acidic protein (GFAP)-positive cells were significantly increased in the subgranular zone of the dentate gyrus. The increase in GFAP-positive cells was confirmed to be due to proliferating cells based on double immunofluorescence staining. GFAP-positive cells, which were also labeled with Ki67, a marker for cell proliferation, and doublecortin, a marker for neuroblast differentiation, were significantly increased in the pyridoxine-treated group compared to those in the vehicle-treated group. Pyridoxine treatment also increased the protein levels of glutamic acid decarboxylase (GAD) 67, an enzyme for GABA synthesis, and pyridoxal 5'-phosphate (PNP) oxidase, an enzyme for pyridoxal phosphate synthesis, in the dentate gyrus. These results suggest that pyridoxine treatment distinctly increases cell proliferation, neuroblast differentiation, and upregulated the GABAergic system, as revealed by the increases of GAD67 and PNP oxidase in the mouse dentate gyrus.

  7. Enhanced production of recombinant Escherichia coli glutamate decarboxylase through optimization of induction strategy and addition of pyridoxine.

    Science.gov (United States)

    Su, Lingqia; Huang, Yan; Wu, Jing

    2015-12-01

    This report describes the optimization of recombinant Escherichia coli glutamate decarboxylase (GAD) production from engineered E. coli BL21(DE3) in a 3-L fermentor. Investigation of different induction strategies revealed that induction was optimal when the temperature was maintained at 30°C, the inducer (lactose) was fed at a rate of 0.2 g L(-1)h(-1), and protein expression was induced when the cell density (OD600) reached 50. Under these conditions, the GAD activity of 1273.8 U mL(-1) was achieved. Because GAD is a pyridoxal 5'-phosphate (PLP)-dependent enzyme, the effect of supplementing the medium with pyridoxine hydrochloride (PN), a cheap and stable PLP precursor, on GAD production was also investigated. When the culture medium was supplemented with PN to a concentration of 2mM at the initiation of protein expression, and then again 10h later, the GAD activity reached 3193.4 U mL(-1), which represented the highest GAD production ever reported.

  8. Enzymatic conversion from pyridoxal to pyridoxine caused by microorganisms within tobacco phyllosphere.

    Science.gov (United States)

    Huang, ShuoHao; Zhang, JianYun; Tao, Zhen; Lei, Liang; Yu, YongHui; Huang, LongQuan

    2014-12-01

    Vitamin B6 (VB6) comprises six interconvertible pyridine compounds (vitamers), among which pyridoxal 5'-phosphate (PLP) is a coenzyme involved in a high diversity of biochemical reactions. In plants, PLP is de novo synthesized, and pyridoxine (PN) is usually maintained as the predominant B6 vitamer. Although the conversion from pyridoxal (PL) to PN catalyzed by PL reductase in plants has been confirmed, the enzyme itself remains largely unknown. We previously found pre-incubation at 35 °C dramatically enhanced PL reductase activity in tobacco leaf homogenate. In this study, we demonstrated that the increase in the reductase activity was a consequence of phyllosphere microbial proliferation. VB6 was detected from tobacco phyllosphere, and PL level was the highest among three non-phosphorylated B6 vitamers. When the sterile tobacco rich in PL were kept in an open, warm and humid environment to promote microorganism proliferation, a significant change from PL to PN was observed. Our results suggest that there may be a plant-microbe interaction in the conversion from PL to PN within tobacco phyllosphere.

  9. Template switching between PNA and RNA oligonucleotides

    Science.gov (United States)

    Bohler, C.; Nielsen, P. E.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1995-01-01

    The origin of the RNA world is not easily understood, as effective prebiotic syntheses of the components of RNA, the beta-ribofuranoside-5'-phosphates, are hard to envisage. Recognition of this difficulty has led to the proposal that other genetic systems, the components of which are more easily formed, may have preceded RNA. This raises the question of how transitions between one genetic system and another could occur. Peptide nucleic acid (PNA) resembles RNA in its ability to form double-helical complexes stabilized by Watson-Crick hydrogen bonding between adenine and thymine and between cytosine and guanine, but has a backbone that is held together by amide rather than by phosphodiester bonds. Oligonucleotides bases on RNA are known to act as templates that catalyse the non-enzymatic synthesis of their complements from activated mononucleotides, we now show that RNA oligonucleotides facilitate the synthesis of complementary PNA strands and vice versa. This suggests that a transition between different genetic systems can occur without loss of information.

  10. Identification and characterization of two families of F420 H2-dependent reductases from Mycobacteria that catalyse aflatoxin degradation.

    Science.gov (United States)

    Taylor, Matthew C; Jackson, Colin J; Tattersall, David B; French, Nigel; Peat, Thomas S; Newman, Janet; Briggs, Lyndall J; Lapalikar, Gauri V; Campbell, Peter M; Scott, Colin; Russell, Robyn J; Oakeshott, John G

    2010-11-01

    Aflatoxins are polyaromatic mycotoxins that contaminate a range of food crops as a result of fungal growth and contribute to serious health problems in the developing world because of their toxicity and mutagenicity. Although relatively resistant to biotic degradation, aflatoxins can be metabolized by certain species of Actinomycetales. However, the enzymatic basis for their breakdown has not been reported until now. We have identified nine Mycobacterium smegmatis enzymes that utilize the deazaflavin cofactor F(420) H(2) to catalyse the reduction of the α,β-unsaturated ester moiety of aflatoxins, activating the molecules for spontaneous hydrolysis and detoxification. These enzymes belong to two previously uncharacterized F(420) H(2) dependent reductase (FDR-A and -B) families that are distantly related to the flavin mononucleotide (FMN) dependent pyridoxamine 5'-phosphate oxidases (PNPOxs). We have solved crystal structures of an enzyme from each FDR family and show that they, like the PNPOxs, adopt a split barrel protein fold, although the FDRs also possess an extended and highly charged F(420) H(2) binding groove. A general role for these enzymes in xenobiotic metabolism is discussed, including the observation that the nitro-reductase Rv3547 from Mycobacterium tuberculosis that is responsible for the activation of bicyclic nitroimidazole prodrugs belongs to the FDR-A family.

  11. A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3.

    Science.gov (United States)

    Dalton, Jutta C; Bätz, Ulrike; Liu, Jason; Curie, Gemma L; Quail, Peter H

    2016-01-01

    Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5'-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation.

  12. Scleral Cross-linking Using Riboflavin and Ultraviolet-A Radiation for Prevention of Axial Myopia in a Rabbit Model.

    Science.gov (United States)

    Dotan, Assaf; Kremer, Israel; Gal-Or, Orly; Livnat, Tami; Zigler, Arie; Bourla, Dan; Weinberger, Dov

    2016-04-03

    Myopic individuals, especially those with severe myopia, are at higher-than-normal risk of cataract, glaucoma, retinal detachment and chorioretinal abnormalities. In addition, pathological myopia is a common irreversible cause of visual impairment and blindness. Our study demonstrates the effect of scleral crosslinking using riboflavin and ultraviolet-A radiation on the development of axial myopia in a rabbit model. The axial length of the eyeball was measured by A-scan ultrasound in New Zealand white rabbits aged 13 days (male and female). The eye then underwent 360° conjunctival peritomy with scleral crosslinking, followed by tarsorrhaphy. Axial elongation was induced in 13 day-old New Zealand rabbits by suturing their right eye eyelids (tarsorrhaphy). The eyes were divided into quadrants, and every quadrant had two scleral irradiation zones, each with an area of 0.2 cm² and a radius of 4 mm. Crosslinking was performed by dropping 0.1% dextran-free riboflavin-5-phosphate onto the irradiation zones 20 sec before ultraviolet-A irradiation and every 20 sec during the 200 sec irradiation time. UVA radiation (370 nm) was applied perpendicular to the sclera at 57 mW/cm² (total UVA light dose, 57 J/cm²). Tarsorrhaphies were removed on day 55, followed by repeated axial length measurements. This study demonstrates that scleral crosslinking with riboflavin and ultraviolet-A radiation effectively prevents occlusion-induced axial elongation in a rabbit model.

  13. Determination of virginiamycin in feeds.

    Science.gov (United States)

    Ragheb, H S; Black, L J; Waisner, D L

    1979-05-01

    Virginiamycin was extracted from the feed by ethanol-pH 2.5 phosphate buffer (1 + 1). The pH during extraction was adjusted (when necessary) to between 4 and 5. Sample dilutions and the standard dose response line were prepared to contain ethanol pH 6 phosphate buffer (2 + 8), and the test organism was Sarcina lutea. Three feeds (a poultry ration, a swine finishing ration, and a swine starter ration) showed virginiamycin recovery of 88.8--108.9% when standard solutions were added at concentrations of 4.54--90.8 g/ton. The coefficient of variation (4--20%) was larger for low potency feeds (10 g/ton) compared to the higher feeds (100 g/ton). Similarly, excellent recovery was obtained when the swine starter feed was fortified by a commercial premix. Amprolium, roxarsone, and monensin can be present at 20 times the concentration of virginiamycin with little or no interference in the antibiotic determination. Lasalocid at 10 times the concentration of virginiamycin caused a slightly positive bias (recovery, 107.4%).

  14. Immunoelectron microscopy for locating calvin cycle enzymes in the thylakoids of synechocystis 6803.

    Science.gov (United States)

    Agarwal, Rachna; Ortleb, Stefan; Sainis, Jayashree Krishna; Melzer, Michael

    2009-01-01

    Unicellular cyanobacteria Synechocystis 6803 were fixed using high-pressure freezing (HPF) and freeze substitution without any chemical cross-linkers. Immunoelectron microscopy of these cells showed that five sequential enzymes of the Calvin cycle (phosphoriboisomerase, phosphoribulokinase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), 3-phosphoglyceratekinase and glyceraldehyde-3-phosphate dehydrogenase) and the catalytic portion of the chloroplast H+-ATP synthase (CF1) are located adjacent to the thylakoid membranes. Cell-free extracts of Synechocystis were processed by ultracentrifugation to isolate thylakoid fractions sedimenting at 40,000, 90,000, and 150,000 g. Among these, the 150,000-g fraction showed the highest linked activity of the above five sequential Calvin cycle enzymes and also the highest coordinated activity of light and dark reactions as assessed by ribose-5-phosphate (R-5-P) +ADP dependent CO2 fixation. Immunogold labeling of this membrane fraction confirmed the presence of the above five enzymes as well as the catalytic portion of the CF1 ATP synthase. Notably, the protein A-gold labeling of the thylakoids was observed without use of chemical cross-linkers and in spite of the normal washing steps used during standard immunolabeling. The results showed that soluble Calvin cycle enzymes might be organized along the thylakoid membranes.

  15. Structure of putrescine aminotransferase from Escherichia coli provides insights into the substrate specificity among class III aminotransferases.

    Directory of Open Access Journals (Sweden)

    Hyung Jin Cha

    Full Text Available YgjG is a putrescine aminotransferase enzyme that transfers amino groups from compounds with terminal primary amines to compounds with an aldehyde group using pyridoxal-5'-phosphate (PLP as a cofactor. Previous biochemical data show that the enzyme prefers primary diamines, such as putrescine, over ornithine as a substrate. To better understand the enzyme's substrate specificity, crystal structures of YgjG from Escherichia coli were determined at 2.3 and 2.1 Å resolutions for the free and putrescine-bound enzymes, respectively. Sequence and structural analyses revealed that YgjG forms a dimer that adopts a class III PLP-dependent aminotransferase fold. A structural comparison between YgjG and other class III aminotransferases revealed that their structures are similar. However, YgjG has an additional N-terminal helical structure that partially contributes to a dimeric interaction with the other subunit via a helix-helix interaction. Interestingly, the YgjG substrate-binding site entrance size and charge distribution are smaller and more hydrophobic than other class III aminotransferases, which suggest that YgjG has a unique substrate binding site that could accommodate primary aliphatic diamine substrates, including putrescine. The YgjG crystal structures provide structural clues to putrescine aminotransferase substrate specificity and binding.

  16. [Binding to chicken liver lactatedehydrogenase (author's transl)].

    Science.gov (United States)

    Lluís, C; Bozal, J

    1976-06-01

    Some information about the lactate dehydrogenase NAD binding site has been obtained by working with coenzymes analogs of incomplete molecules. 5'AMP, 5'-ADP, ATP, 5'-c-AMP and 3'(2)-AMP inhibit chicken liver LDH activity competitively with NADH. 5"-AMP and 5'-ADP show a stronger inhibition power than ATP, suggesting that the presence of one or two phosphate groups at the 5' position of adenosine, is essential for the binding of the coenzyme analogs at the enzyme binding site. Ribose and ribose-5'-P do not appear to inhibit the LDH activity, proving that purine base lacking mononucleotides do not bind to the enzyme. 5"-ADPG inhibits LDH activity in the exactly as 5'-ADP, showing that ribose moiety may be replaced by glucose, without considerable effects on the coenzyme analog binding. 2'-desoxidenosin-5'-phosphate proves to be a poorer inhibitor of the LDH activity than 5'-AMP, indicating that an interaction between the--OH groups and the amino-acids of the LDH active center takes place. Nicotinamide does not produce any inhibition effect, while NMN and CMP induce a much weaker inhibition than the adenine analogues, thus indicating a lesser binding capacity to the enzyme. Therefore, the LDH binding site seems to show some definite specificity towards the adenina groups of the coenzyme.

  17. Determination of amphetamines in human urine by liquid chromatography with fluorimetric detection using a solid-phase extraction procedure.

    Science.gov (United States)

    Bugamelli, Francesca; Mandrioli, Roberto; Cavallini, Annalisa; Baccini, Cesare; Conti, Matteo; Raggi, Maria Augusta

    2006-10-01

    A precise and feasible HPLC method has been developed for the analysis of amphetamine (AMPH), methamphetamine (MAMPH) and methylenedioxymethamphetamine (MDMA, ecstasy) in human urine. A chromatographic run on a C8 Genesis (150 mm x 4.6 mm, 5 microm) column maintained at 30 degrees C lasts about 17 min, using a mobile phase composed of ACN (12%) and a pH 2.5 phosphate buffer (88%) containing 0.3% triethylamine. Mirtazapine was used as the internal standard. Good linearity was found in the 100-2000 ng/mL concentration range for AMPH and MAMPH and in the 12-2000 ng/mL concentration range for MDMA. The pretreatment of urine samples was carried out by means of a careful SPE procedure on C2 cartridges. The extraction yields were very satisfactory for all analytes, with average values greater than 97%. The leading conditions allowed the determination of AMPH, MAMPH and MDMA with satisfactory precision and accuracy. The method has been successfully applied to the determination of the analytes in urine of AMPH users.

  18. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications

    Science.gov (United States)

    Heng, Chunning; Zheng, Xiaoyan; Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie; Hui, Junfeng; Zhang, Xiaoyong; Wei, Yen

    2016-11-01

    Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for biological imaging and controlled drug delivery applications.

  19. Comparing the pharmacokinetics of doxylamine/pyridoxine delayed-release combination in nonpregnant women of reproductive age and women in the first trimester of pregnancy.

    Science.gov (United States)

    Matok, Ilan; Clark, Shannon; Caritis, Steve; Miodovnik, Menachem; Umans, Jason; Hankins, Gary; Koren, Gideon

    2013-03-01

    Although Diclectin (doxylamine/pyridoxine delayed-released combination) is widely used in Canada, its pharmacokinetics (PK) during pregnancy has never been described. The objective of this study was to compare the PK of doxylamine/pyridoxine delayed-released combination in pregnant versus nonpregnant women. The apparent clearances (CL) of doxylamine and pyridoxal 5'-phosphate (PLP; the active metabolite of vitamin B(6) ) during the first-trimester pregnancy in women who participated in a Diclectin randomized trial were compared with those of healthy, adult, nonpregnant women who participated in a voluntary PK trial. Eighteen nonpregnant women were compared with 50 pregnant women who were treated with Diclectin. There was no difference in the apparent CL of doxylamine in women in their first trimester of pregnancy when compared with nonpregnant women on day 4 (median = 196.7 vs 249.5 mL/h/kg, respectively, P = .065), day 8 (median = 248.4 vs 249.5 mL/h/kg, respectively, P = .82), and day 15 (median = 200.9 vs 249.5 mL/h/kg, respectively, P = .55). No difference was found in the apparent CL of PLP on day 15 (median = 342.3 vs 314.7 mL/h/kg, respectively, P = .92). There was no pregnancy-induced effect in the apparent CL of either doxylamine or PLP in women during the first trimester of pregnancy despite the existence of morning sickness.

  20. Studying the antiemetic effect of vitamin B6 for morning sickness: pyridoxine and pyridoxal are prodrugs.

    Science.gov (United States)

    Matok, Ilan; Clark, Shannon; Caritis, Steve; Miodovnik, Menachem; Umans, Jason G; Hankins, Gary; Mattison, Donald R; Koren, Gideon

    2014-12-01

    Vitamin B6 has been known to possess antiemetic effects since 1942. This water soluble compound has several forms in the circulation including pyridoxine, pyridoxal, and pyridoxal phosphate. The active antiemetic form of vitamin B6 is unknown. This was a pre-specified substudy of a randomized, placebo-controlled trial comparing the antiemetic effect of the doxylamine-vitamin B6 combination (Diclectin®) (n = 131) to placebo (n = 126) in women with nausea and vomiting of pregnancy. Serum concentrations of pyridoxine, pyridoxal, and pyridoxal 5' phosphate (PLP) and doxylamine were measured on Days 4, 8, and 15. With Diclectin® exhibiting a significant antiemetic effect in pregnancy, serum concentrations of pyridoxine were unmeasurable in almost all patients and those of pyridoxal were undetectable in half of patients. In contrast, PLP was measurable at sustained, stable steady-state levels in all patients. Our data suggest that there is a correlation between PLP levels and PUQE score of morning sickness symptoms when pyridoxine and pyridoxal levels are undetectable, and hence they might be prodrugs of PLP, which may be the active antiemetic form of vitamin B6.

  1. The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase.

    Science.gov (United States)

    Léon, Sébastien; Touraine, Brigitte; Briat, Jean-François; Lobréaux, Stéphane

    2002-09-01

    NifS-like proteins are cysteine desulphurases required for the mobilization of sulphur from cysteine. They are present in all organisms, where they are involved in iron-sulphur (Fe-S) cluster biosynthesis. In eukaryotes, these enzymes are present in mitochondria, which are the major site for Fe-S cluster assembly. The genome of the model plant Arabidopsis thaliana contains two putative NifS-like proteins. A cDNA corresponding to one of them was cloned by reverse-transcription PCR, and named AtNFS2. The corresponding transcript is expressed in many plant tissues. It encodes a protein highly related (75% similarity) to the slr0077-gene product from Synechocystis PCC 6803, and is predicted to be targeted to plastids. Indeed, a chimaeric AtNFS2-GFP fusion protein, containing one-third of AtNFS2 from its N-terminal end, was addressed to chloroplasts. Overproduction in Escherichia coli and purification of recombinant AtNFS2 protein enabled one to demonstrate that it bears a pyridoxal 5'-phosphate-dependent cysteine desulphurase activity in vitro, thus being the first NifS homologue characterized to date in plants. The putative physiological functions of this gene are discussed, including the attractive hypothesis of a possible role in Fe-S cluster assembly in plastids.

  2. Characterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism.

    Science.gov (United States)

    Pilon-Smits, Elizabeth A H; Garifullina, Gulnara F; Abdel-Ghany, Salah; Kato, Shin-Ichiro; Mihara, Hisaaki; Hale, Kerry L; Burkhead, Jason L; Esaki, Nobuyoshi; Kurihara, Tatsuo; Pilon, Marinus

    2002-11-01

    NifS-like proteins catalyze the formation of elemental sulfur (S) and alanine from cysteine (Cys) or of elemental selenium (Se) and alanine from seleno-Cys. Cys desulfurase activity is required to produce the S of iron (Fe)-S clusters, whereas seleno-Cys lyase activity is needed for the incorporation of Se in selenoproteins. In plants, the chloroplast is the location of (seleno) Cys formation and a location of Fe-S cluster formation. The goal of these studies was to identify and characterize chloroplast NifS-like proteins. Using seleno-Cys as a substrate, it was found that 25% to 30% of the NifS activity in green tissue in Arabidopsis is present in chloroplasts. A cDNA encoding a putative chloroplast NifS-like protein, AtCpNifS, was cloned, and its chloroplast localization was confirmed using immunoblot analysis and in vitro import. AtCpNIFS is expressed in all major tissue types. The protein was expressed in Escherichia coli and purified. The enzyme contains a pyridoxal 5' phosphate cofactor and is a dimer. It is a type II NifS-like protein, more similar to bacterial seleno-Cys lyases than to Cys desulfurases. The enzyme is active on both seleno-Cys and Cys but has a much higher activity toward the Se substrate. The possible role of AtCpNifS in plastidic Fe-S cluster formation or in Se metabolism is discussed.

  3. Cysteine sulfinate desulfinase, a NIFS-like protein of Escherichia coli with selenocysteine lyase and cysteine desulfurase activities. Gene cloning, purification, and characterization of a novel pyridoxal enzyme.

    Science.gov (United States)

    Mihara, H; Kurihara, T; Yoshimura, T; Soda, K; Esaki, N

    1997-09-05

    Selenocysteine lyase (EC 4.4.1.16) exclusively decomposes selenocysteine to alanine and elemental selenium, whereas cysteine desulfurase (NIFS protein) of Azotobacter vinelandii acts indiscriminately on both cysteine and selenocysteine to produce elemental sulfur and selenium respectively, and alanine. These proteins exhibit some sequence homology. The Escherichia coli genome contains three genes with sequence homology to nifS. We have cloned the gene mapped at 63.4 min in the chromosome and have expressed, purified to homogeneity, and characterized the gene product. The enzyme comprises two identical subunits with 401 amino acid residues (Mr 43,238) and contains pyridoxal 5'-phosphate as a coenzyme. The enzyme catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine. Because L-cysteine sulfinic acid was desulfinated to form L-alanine as the preferred substrate, we have named this new enzyme cysteine sulfinate desulfinase. Mutant enzymes having alanine substituted for each of the four cysteinyl residues (Cys-100, Cys-176, Cys-323, and Cys-358) were all active. Cys-358 corresponds to Cys-325 of A. vinelandii NIFS, which is conserved among all NIFS-like proteins and catalytically essential (Zheng, L., White, R. H., Cash, V. L., and Dean, D. R. (1994) Biochemistry 33, 4714-4720), is not required for cysteine sulfinate desulfinase. Thus, the enzyme is distinct from A. vinelandii NIFS in this respect.

  4. NMR studies of the protonation states of pyridoxal-5‧-phosphate in water

    Science.gov (United States)

    Chan-Huot, Monique; Niether, Christiane; Sharif, Shasad; Tolstoy, Peter M.; Toney, Michael D.; Limbach, Hans-Heinrich

    2010-07-01

    We have measured the 13C NMR spectra of the cofactor pyridoxal-5'-phosphate (vitamin B 6, PLP) at 278 K in aqueous solution as a function of pH. By 13C enrichment of PLP in the C-4' and C-5' positions we were able to measure spectra down to pH 1. From the dependence of the 13C chemical shifts on pH, the p Ka values of PLP could be determined. In particular, the heretofore uncharacterized protonation state of PLP, in which the phosphate group as well as the pyridine ring and the phenolic groups are fully protonated, has been analyzed. The corresponding p Ka value of 2.4 indicates that the phosphate group is solely involved in the first deprotonation step. The 15N chemical shifts of the pyridine ring of PLP published previously are in good agreement with the new results. These shifts contain information about the tautomerism of the different protonation states of PLP. The implications of these findings for the biological function of PLP are discussed.

  5. Immunoelectron Microscopy for Locating Calvin Cycle Enzymes in the Thylakoids of Synechocystis 6803

    Institute of Scientific and Technical Information of China (English)

    Rachna Agarwal; Stefan Ortleb; Jayashree Krishna Saini; Michael Melzer

    2009-01-01

    Unicellular cyanobacteria Synechocystis 6803 were fixed using high-pressure freezing (HPF) and freeze substitution without any chemical cross-linkers. Immunoelectron microscopy of these cells showed that five sequential enzymes of the Calvin cycle (phosphoriboisomerase, phosphoribulokinase, ribulose-l,5-bisphosphate carboxylase/oxygenase (RuBisCO), 3-phosphoglyceratekinase and glyceraldehyde-3-phosphate dehydrogenase) and the catalytic portion of the chloroplast H+-ATP synthase (CF1) are located adjacent to the thylakoid membranes. Cell-free extracts of Synechocystis were processed by ultracentrifugation to isolate thylakoid fractions sedimenting at 40 000, 90 000, and 150 000 g.Among these, the 150 000-g fraction showed the highest linked activity of the above five sequential Calvin cycle enzymes and also the highest coordinated activity of light and dark reactions as assessed by ribose-5-phosphate (R-5-P) +ADP dependent CO2 fixation. Immunogold labeling of this membrane fraction confirmed the presence of the above five enzymes as well as the catalytic portion of the CF1 ATP synthase. Notably, the protein A-gold labeling of the thylakoids was observed without use of chemical cross-linkers and in spite of the normal washing steps used during standard immunolabeling. The results showed that soluble Calvin cycle enzymes might be organized along the thylakoid membranes.

  6. Involvement of the ribose operon repressor RbsR in regulation of purine nucleotide synthesis in Escherichia coli.

    Science.gov (United States)

    Shimada, Tomohiro; Kori, Ayako; Ishihama, Akira

    2013-07-01

    Escherichia coli is able to utilize d-ribose as its sole carbon source. The genes for the transport and initial-step metabolism of d-ribose form a single rbsDACBK operon. RbsABC forms the ABC-type high-affinity d-ribose transporter, while RbsD and RbsK are involved in the conversion of d-ribose into d-ribose 5-phosphate. In the absence of inducer d-ribose, the ribose operon is repressed by a LacI-type transcription factor RbsR, which is encoded by a gene located downstream of this ribose operon. At present, the rbs operon is believed to be the only target of regulation by RbsR. After Genomic SELEX screening, however, we have identified that RbsR binds not only to the rbs promoter but also to the promoters of a set of genes involved in purine nucleotide metabolism. Northern blotting analysis indicated that RbsR represses the purHD operon for de novo synthesis of purine nucleotide but activates the add and udk genes involved in the salvage pathway of purine nucleotide synthesis. Taken together, we propose that RbsR is a global regulator for switch control between the de novo synthesis of purine nucleotides and its salvage pathway.

  7. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    Directory of Open Access Journals (Sweden)

    Wen Li

    2016-08-01

    Full Text Available In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  8. CHANGES IN SELECTIVITY OF GAMMA-AMINOBUTYRIC ACID FORMATION EFFECTED BY FERMENTATION CONDITIONS AND MICROORGANISMS RESOURCES

    Directory of Open Access Journals (Sweden)

    Kamila Kovalovská

    2011-10-01

    Full Text Available In this study we observe the effect of fermentation conditions and resources of microorganisms for production of γ-aminobutyric acid (GABA. The content of produced GABA depends on various conditions such as the amount of precursor, an addition of salt, enzyme and the effect of pH. The highest selectivity of GABA (74.0 % from the precursor (L-monosodium glutamate has been determinate in the follow conditions: in the presence of pre-cultured microorganisms from Encián cheese in amount 1.66 % (w/v the source of microorganisms/volume of the fermentation mixture, after the addition of 0.028 % (w/v of CaCl2/volume of the fermentation mixture, 100 μM of pyridoxal-5-phosphate (P-5-P and the GABA precursor concentration in the fermentation mixture 2.6 mg ml-1 in an atmosphere of gas nitrogen. Pure cultures of lactic acid bacteria increased the selectivity of GABA by an average of 20 % compared with bacteria from the path of Encián.

  9. Vitamin Status among Breastfed Infants in Bhaktapur, Nepal.

    Science.gov (United States)

    Ulak, Manjeswori; Chandyo, Ram K; Thorne-Lyman, Andrew L; Henjum, Sigrun; Ueland, Per M; Midttun, Øivind; Shrestha, Prakash S; Fawzi, Wafaie W; Graybill, Lauren; Strand, Tor A

    2016-03-08

    Vitamin deficiencies are known to be common among infants residing in low- and middle-income countries but relatively few studies have assessed several biochemical parameters simultaneously. The objective of the study was to describe the status of vitamins (A, D, E, B₆, B12 and folate) in breastfed infants. We measured the plasma concentrations of trans retinol, 25 hydroxy vitamin D, α-tocopherol, pyridoxal 5'-phosphate, cobalamin, folate, methylmalonic acid, homocysteine, hemoglobin and C-reactive protein from 467 randomly selected infants. One in five (22%) was deficient in at least one vitamin. Mean (SD) plasma folate concentration was 73 (35) nmol/L, and no infant in the sample was folate deficient. Vitamin B₆ deficiency and vitamin B12 deficiency was found in 22% and 17% of the infants, respectively. Elevated plasma methylmalonic acid or total homocysteine concentration was found in 82% and 62% of infants, respectively. Fifteen percent of infants were vitamin A deficient and 65% were marginally deficient in vitamin A. Fewer than 5% of infants had low plasma vitamin D concentration or vitamin E concentration (α-tocopherol <9.3 µmol/L). Our results illustrate the importance of continued supplementation campaigns and support the expansion of food fortification and dietary diversification programs that target children and women in Nepal.

  10. Electrochemical deoxyribonucleic acid biosensor based on electrodeposited graphene and nickel oxide nanoparticle modified electrode for the detection of salmonella enteritidis gene sequence.

    Science.gov (United States)

    Sun, Wei; Wang, Xiuli; Lu, Yongxi; Gong, Shixing; Qi, Xiaowei; Lei, Bingxin; Sun, Zhenfan; Li, Guangjiu

    2015-04-01

    In this paper a new electrochemical DNA biosensor was prepared by using graphene (GR) and nickel oxide (NiO) nanocomposite modified carbon ionic liquid electrode (CILE) as the substrate electrode. GR and NiO nanoparticles were electrodeposited on the CILE surface step-by-step to get the nanocomposite. Due to the strong affinity of NiO with phosphate groups of ssDNA, oligonucleotide probe with a terminal 5'-phosphate group could be attached on the surface of NiO/GR/CILE, which could further hybridize with the target ssDNA sequence. Methylene blue (MB) was used as the electrochemical indicator for monitoring the hybridization reaction. Under the optimal conditions the reduction peak current of MB was proportional to the concentration of salmonella enteritidis gene sequence in the range from 1.0×10(-13) to 1.0×10(-6)molL(-1) with a detection limit as 3.12×10(-14)molL(-1). This electrochemical DNA sensor exhibited good discrimination ability to one-base and three-base mismatched ssDNA sequences, and the polymerase chain reaction amplification product of salmonella enteritidis gene sequences were further detected with satisfactory results.

  11. Biosynthesis of sphinganine-analog mycotoxins.

    Science.gov (United States)

    Du, L; Zhu, X; Gerber, R; Huffman, J; Lou, L; Jorgenson, J; Yu, F; Zaleta-Rivera, K; Wang, Q

    2008-06-01

    Sphinganine-analog mycotoxins (SAMT) are polyketide-derived natural products produced by a number of plant pathogenic fungi and are among the most economically important mycotoxins. The toxins are structurally similar to sphinganine, a key intermediate in the biosynthesis of ceramides and sphingolipids, and competitive inhibitors for ceramide synthase. The inhibition of ceramide and sphingolipid biosynthesis is associated with several fatal diseases in domestic animals and esophageal cancer and neural tube defects in humans. SAMT contains a highly reduced, acyclic polyketide carbon backbone, which is assembled by a single module polyketide synthase. The biosynthesis of SAMT involves a unique polyketide chain-releasing mechanism, in which a pyridoxal 5'-phosphate-dependent enzyme catalyzes the termination, offloading and elongation of the polyketide chain. This leads to the introduction of a new carbon-carbon bond and an amino group to the polyketide chain. The mechanism is fundamentally different from the thioesterase/cyclase-catalyzed polyketide chain releasing found in bacterial and other fungal polyketide biosynthesis. Genetic data suggest that the ketosynthase domain of the polyketide synthase and the chain-releasing enzyme are important for controlling the final product structure. In addition, several post-polyketide modifications have to take place before SAMT become mature toxins.

  12. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    Science.gov (United States)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Kuranova, I. P.

    2015-09-01

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp. gr. P6322 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.

  13. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231 Breast Cancer Cells Using a Global Metabolomic Approach

    Science.gov (United States)

    Uifălean, Alina; Schneider, Stefanie; Gierok, Philipp; Ionescu, Corina; Iuga, Cristina Adela; Lalk, Michael

    2016-01-01

    Despite substantial research, the understanding of the chemopreventive mechanisms of soy isoflavones remains challenging. Promising tools, such as metabolomics, can provide now a deeper insight into their biochemical mechanisms. The purpose of this study was to offer a comprehensive assessment of the metabolic alterations induced by genistein, daidzein and a soy seed extract on estrogen responsive (MCF-7) and estrogen non-responsive breast cancer cells (MDA-MB-231), using a global metabolomic approach. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that all test compounds induced a biphasic effect on MCF-7 cells and only a dose-dependent inhibitory effect on MDA-MB-231 cells. Proton nuclear magnetic resonance (1H-NMR) profiling of extracellular metabolites and gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites confirmed that all test compounds shared similar metabolic mechanisms. Exposing MCF-7 cells to stimulatory concentrations of isoflavones led to increased intracellular levels of 6-phosphogluconate and ribose 5-phosphate, suggesting a possible upregulation of the pentose phosphate pathway. After exposure to inhibitory doses of isoflavones, a significant decrease in glucose uptake was observed, especially for MCF-7 cells. In MDA-MB-231 cells, the glutamine uptake was significantly restricted, leading to alterations in protein biosynthesis. Understanding the metabolomic alterations of isoflavones represents a step forward in considering soy and soy derivates as functional foods in breast cancer chemoprevention. PMID:27589739

  14. Non-enzymatic glycolysis and pentose phosphate pathway-like reactions in a plausible Archean ocean.

    Science.gov (United States)

    Keller, Markus A; Turchyn, Alexandra V; Ralser, Markus

    2014-04-25

    The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earth's earliest oceans. We reconstructed potential scenarios for oceans of the prebiotic Archean based on the composition of early sediments. We report that the resultant reaction milieu catalyses the interconversion of metabolites that in modern organisms constitute glycolysis and the pentose phosphate pathway. The 29 observed reactions include the formation and/or interconversion of glucose, pyruvate, the nucleic acid precursor ribose-5-phosphate and the amino acid precursor erythrose-4-phosphate, antedating reactions sequences similar to that used by the metabolic pathways. Moreover, the Archean ocean mimetic increased the stability of the phosphorylated intermediates and accelerated the rate of intermediate reactions and pyruvate production. The catalytic capacity of the reconstructed ocean milieu was attributable to its metal content. The reactions were particularly sensitive to ferrous iron Fe(II), which is understood to have had high concentrations in the Archean oceans. These observations reveal that reaction sequences that constitute central carbon metabolism could have been constrained by the iron-rich oceanic environment of the early Archean. The origin of metabolism could thus date back to the prebiotic world.

  15. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose.

    Science.gov (United States)

    Chomvong, Kulika; Bauer, Stefan; Benjamin, Daniel I; Li, Xin; Nomura, Daniel K; Cate, Jamie H D

    2016-01-01

    The efficient use of hemicellulose in the plant cell wall is critical for the economic conversion of plant biomass to renewable fuels and chemicals. Previously, the yeast Saccharomyces cerevisiae has been engineered to convert the hemicellulose-derived pentose sugars xylose and arabinose to d-xylulose-5-phosphate for conversion via the pentose phosphate pathway (PPP). However, efficient pentose utilization requires PPP optimization and may interfere with its roles in NADPH and pentose production. Here, we developed an alternative xylose utilization pathway that largely bypasses the PPP. In the new pathway, d-xylulose is converted to d-xylulose-1-phosphate, a novel metabolite to S. cerevisiae, which is then cleaved to glycolaldehyde and dihydroxyacetone phosphate. This synthetic pathway served as a platform for the biosynthesis of ethanol and ethylene glycol. The use of d-xylulose-1-phosphate as an entry point for xylose metabolism opens the way for optimizing chemical conversion of pentose sugars in S. cerevisiae in a modular fashion.

  16. Structural And Kinetic Studies of Induced Fit in Xylulose Kinase From 'Escherichia Coli'

    Energy Technology Data Exchange (ETDEWEB)

    Di Luccio, E.; Petschacher, B.; Voegtli, J.; Chou, H.-T.; Stahlberg, H.; Nidetzky, B.; Wilson, D.K.; /UC, Davis /Graz, Tech. U.

    2007-07-09

    The primary metabolic route for D-xylose, the second most abundant sugar in nature, is via the pentose phosphate pathway after a two or three step conversion to xylulose-5-phosphate. Xylulose kinase (XK; EC 2.7.1.17) phosphorylates D-xylulose, the last step in this conversion. The apo and xylulose-bound crystal structures of E. coli XK have been determined and show a dimer composed of two domains separated by an open cleft. XK dimerization was directly observed by a cryo-EM reconstruction at 36 angstrom resolution. Kinetic studies reveal that XK has a weak substrate-independent MgATP-hydrolyzing activity and phosphorylates several sugars and polyols with low catalytic efficiencies. Binding of pentulose and MgATP to form the reactive ternary complex is strongly synergistic. Although the steady-state kinetic mechanism of XK is formally random, a path is preferred in which D-xylulose binds before MgATP. Modeling of MgATP binding to XK and the accompanying conformational change suggests that sugar binding is accompanied by a dramatic hinge bending movement that enhances interactions with MgATP, explaining the observed synergism. A catalytic mechanism is proposed and supported by relevant site-directed mutants.

  17. Regulation of the pentose phosphate pathway in cancer.

    Science.gov (United States)

    Jiang, Peng; Du, Wenjing; Wu, Mian

    2014-01-01

    Energy metabolism is significantly reprogrammed in many human cancers, and these alterations confer many advantages to cancer cells, including the promotion of biosynthesis, ATP generation, detoxification and support of rapid proliferation. The pentose phosphate pathway (PPP) is a major pathway for glucose catabolism. The PPP directs glucose flux to its oxidative branch and produces a reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), an essential reductant in anabolic processes. It has become clear that the PPP plays a critical role in regulating cancer cell growth by supplying cells with not only ribose-5-phosphate but also NADPH for detoxification of intracellular reactive oxygen species, reductive biosynthesis and ribose biogenesis. Thus, alteration of the PPP contributes directly to cell proliferation, survival and senescence. Furthermore, recent studies have shown that the PPP is regulated oncogenically and/or metabolically by numerous factors, including tumor suppressors, oncoproteins and intracellular metabolites. Dysregulation of PPP flux dramatically impacts cancer growth and survival. Therefore, a better understanding of how the PPP is reprogrammed and the mechanism underlying the balance between glycolysis and PPP flux in cancer will be valuable in developing therapeutic strategies targeting this pathway.

  18. General Approach for Introduction of Various Chemical Labels in Specific RNA Locations Based on Insertion of Amino Linkers

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2013-11-01

    Full Text Available Introduction of reporter groups at designed RNA sites is a widely accepted approach to gain information about the molecular environment of RNAs in their complexes with other biopolymers formed during various cellular processes. A general approach to obtain RNAs bearing diverse reporter groups at designed locations is based on site-specific insertion of groups containing primary aliphatic amine functions (amino linkers with their subsequent selective derivatization by appropriate chemicals. This article is a brief review on methods for site-specific introduction of amino linkers in different RNAs. These methods comprise: (i incorporation of a nucleoside carrying an amino-linker or a function that can be substituted with it into oligoribonucleotides in the course of their chemical synthesis; (ii assembly of amino linker-containing RNAs from short synthetic fragments via their ligation; (iii synthesis of amino linker-modified RNAs using T7 RNA polymerase; (iv insertion of amino linkers into unmodified RNAs at functional groups of a certain type such as the 5'-phosphates and N7 of guanosine residues and (v introduction of an amino linker into long highly structured RNAs exploiting an approach based on sequence-specific modification of nucleic acids. Particular reporter groups used for derivatization of amino linker-containing RNAs together with types of RNA derivatives obtained and fields of their application are presented.

  19. 5'-(E)-Vinylphosphonate: A Stable Phosphate Mimic Can Improve the RNAi Activity of siRNA-GalNAc Conjugates.

    Science.gov (United States)

    Parmar, Rubina; Willoughby, Jennifer L S; Liu, Jingxuan; Foster, Donald J; Brigham, Benjamin; Theile, Christopher S; Charisse, Klaus; Akinc, Akin; Guidry, Erin; Pei, Yi; Strapps, Walter; Cancilla, Mark; Stanton, Matthew G; Rajeev, Kallanthottathil G; Sepp-Lorenzino, Laura; Manoharan, Muthiah; Meyers, Rachel; Maier, Martin A; Jadhav, Vasant

    2016-06-01

    Small interfering RNA (siRNA)-mediated silencing requires siRNA loading into the RNA-induced silencing complex (RISC). Presence of 5'-phosphate (5'-P) is reported to be critical for efficient RISC loading of the antisense strand (AS) by anchoring it to the mid-domain of the Argonaute2 (Ago2) protein. Phosphorylation of exogenous duplex siRNAs is thought to be accomplished by cytosolic Clp1 kinase. However, although extensive chemical modifications are essential for siRNA-GalNAc conjugate activity, they can significantly impair Clp1 kinase activity. Here, we further elucidated the effect of 5'-P on the activity of siRNA-GalNAc conjugates. Our results demonstrate that a subset of sequences benefit from the presence of exogenous 5'-P. For those that do, incorporation of 5'-(E)-vinylphosphonate (5'-VP), a metabolically stable phosphate mimic, results in up to 20-fold improved in vitro potency and up to a threefold benefit in in vivo activity by promoting Ago2 loading and enhancing metabolic stability.

  20. XRN2 Autoregulation and Control of Polycistronic Gene Expresssion in Caenorhabditis elegans

    Science.gov (United States)

    2016-01-01

    XRN2 is a conserved 5’→3’ exoribonuclease that complexes with proteins that contain XRN2-binding domains (XTBDs). In Caenorhabditis elegans (C. elegans), the XTBD-protein PAXT-1 stabilizes XRN2 to retain its activity. XRN2 activity is also promoted by 3'(2'),5'-bisphosphate nucleotidase 1 (BPNT1) through hydrolysis of an endogenous XRN inhibitor 3’-phosphoadenosine-5'-phosphate (PAP). Here, we find through unbiased screening that loss of bpnt-1 function suppresses lethality caused by paxt-1 deletion. This unexpected finding is explained by XRN2 autoregulation, which occurs through repression of a cryptic promoter activity and destabilization of the xrn-2 transcript. De-repression appears to be triggered such that more robust XRN2 perturbation, by elimination of both PAXT-1 and BPNT1, is less detrimental to worm viability than absence of PAXT-1 alone. Indeed, we find that two distinct XRN2 repression mechanisms are alleviated at different thresholds of XRN2 inactivation. Like more than 15% of C. elegans genes, xrn-2 occurs in an operon, and we identify additional operons under its control, consistent with a broader function of XRN2 in polycistronic gene regulation. Regulation occurs through intercistronic regions that link genes in an operon, but a part of the mechanisms may allow XRN2 to operate on monocistronic genes in organisms lacking operons. PMID:27631780

  1. XRN2 Autoregulation and Control of Polycistronic Gene Expresssion in Caenorhabditis elegans.

    Science.gov (United States)

    Miki, Takashi S; Carl, Sarah H; Stadler, Michael B; Großhans, Helge

    2016-09-01

    XRN2 is a conserved 5'→3' exoribonuclease that complexes with proteins that contain XRN2-binding domains (XTBDs). In Caenorhabditis elegans (C. elegans), the XTBD-protein PAXT-1 stabilizes XRN2 to retain its activity. XRN2 activity is also promoted by 3'(2'),5'-bisphosphate nucleotidase 1 (BPNT1) through hydrolysis of an endogenous XRN inhibitor 3'-phosphoadenosine-5'-phosphate (PAP). Here, we find through unbiased screening that loss of bpnt-1 function suppresses lethality caused by paxt-1 deletion. This unexpected finding is explained by XRN2 autoregulation, which occurs through repression of a cryptic promoter activity and destabilization of the xrn-2 transcript. De-repression appears to be triggered such that more robust XRN2 perturbation, by elimination of both PAXT-1 and BPNT1, is less detrimental to worm viability than absence of PAXT-1 alone. Indeed, we find that two distinct XRN2 repression mechanisms are alleviated at different thresholds of XRN2 inactivation. Like more than 15% of C. elegans genes, xrn-2 occurs in an operon, and we identify additional operons under its control, consistent with a broader function of XRN2 in polycistronic gene regulation. Regulation occurs through intercistronic regions that link genes in an operon, but a part of the mechanisms may allow XRN2 to operate on monocistronic genes in organisms lacking operons.

  2. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boonsri, Pornthip [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Herdendorf, Timothy J.; Miziorko, Henry M. [Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Hannongbua, Supa [Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sem, Daniel S., E-mail: daniel.sem@cuw.edu [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  3. Dry entrapment of enzymes by epoxy or polyester resins hardened on different solid supports.

    Science.gov (United States)

    Barig, Susann; Funke, Andreas; Merseburg, Andrea; Schnitzlein, Klaus; Stahmann, K-Peter

    2014-06-10

    Embedding of enzymes was performed with epoxy or polyester resin by mixing in a dried enzyme preparation before polymerization was started. This fast and low-cost immobilization method produced enzymatically active layers on different solid supports. As model enzymes the well-characterized Thermomyces lanuginosus lipase and a new threonine aldolase from Ashbya gossypii were used. It was shown that T. lanuginosus lipase recombinantly expressed in Aspergillus oryzae is a monomeric enzyme with a molecular mass of 34kDa, while A. gossypii threonine aldolase expressed in Escherichia coli is a pyridoxal-5'-phosphate binding homotetramer with a mass of 180kDa. The enzymes were used freeze dried, in four different preparations: freely diffusing, adsorbed on octyl sepharose, as well as cross-linked enzyme aggregates or as suspensions in organic solvent. They were mixed with standard two-component resins and prepared as layers on solid supports made of different materials e.g. metal, glass, polyester. Polymerization led to encapsulated enzyme preparations showing activities comparable to literature values.

  4. Untargeted metabolomics analysis reveals key pathways responsible for the synergistic killing of colistin and doripenem combination against Acinetobacter baumannii

    Science.gov (United States)

    Maifiah, Mohd Hafidz Mahamad; Creek, Darren J.; Nation, Roger L.; Forrest, Alan; Tsuji, Brian T.; Velkov, Tony; Li, Jian

    2017-01-01

    Combination therapy is deployed for the treatment of multidrug-resistant Acinetobacter baumannii, as it can rapidly develop resistance to current antibiotics. This is the first study to investigate the synergistic effect of colistin/doripenem combination on the metabolome of A. baumannii. The metabolite levels were measured using LC-MS following treatment with colistin (2 mg/L) or doripenem (25 mg/L) alone, and their combination at 15 min, 1 hr and 4 hr (n = 4). Colistin caused early (15 min and 1 hr) disruption of the bacterial outer membrane and cell wall, as demonstrated by perturbation of glycerophospholipids and fatty acids. Concentrations of peptidoglycan biosynthesis metabolites decreased at 4 hr by doripenem alone, reflecting its mechanism of action. The combination induced significant changes to more key metabolic pathways relative to either monotherapy. Down-regulation of cell wall biosynthesis (via D-sedoheptulose 7-phosphate) and nucleotide metabolism (via D-ribose 5-phosphate) was associated with perturbations in the pentose phosphate pathway induced initially by colistin (15 min and 1 hr) and later by doripenem (4 hr). We discovered that the combination synergistically killed A. baumannii via time-dependent inhibition of different key metabolic pathways. Our study highlights the significant potential of systems pharmacology in elucidating the mechanism of synergy and optimizing antibiotic pharmacokinetics/pharmacodynamics. PMID:28358014

  5. A mathematical model of tryptophan metabolism via the kynurenine pathway provides insights into the effects of vitamin B-6 deficiency, tryptophan loading, and induction of tryptophan 2,3-dioxygenase on tryptophan metabolites.

    Science.gov (United States)

    Rios-Avila, Luisa; Nijhout, H Frederik; Reed, Michael C; Sitren, Harry S; Gregory, Jesse F

    2013-09-01

    Vitamin B-6 deficiency is associated with impaired tryptophan metabolism because of the coenzyme role of pyridoxal 5'-phosphate (PLP) for kynureninase and kynurenine aminotransferase. To investigate the underlying mechanism, we developed a mathematical model of tryptophan metabolism via the kynurenine pathway. The model includes mammalian data on enzyme kinetics and tryptophan transport from the intestinal lumen to liver, muscle, and brain. Regulatory mechanisms and inhibition of relevant enzymes were included. We simulated the effects of graded reduction in cellular PLP concentration, tryptophan loads and induction of tryptophan 2,3-dioxygenase (TDO) on metabolite profiles and urinary excretion. The model predictions matched experimental data and provided clarification of the response of metabolites in various extents of vitamin B-6 deficiency. We found that moderate deficiency yielded increased 3-hydroxykynurenine and a decrease in kynurenic acid and anthranilic acid. More severe deficiency also yielded an increase in kynurenine and xanthurenic acid and more pronounced effects on the other metabolites. Tryptophan load simulations with and without vitamin B-6 deficiency showed altered metabolite concentrations consistent with published data. Induction of TDO caused an increase in all metabolites, and TDO induction together with a simulated vitamin B-6 deficiency, as has been reported in oral contraceptive users, yielded increases in kynurenine, 3-hydroxykynurenine, and xanthurenic acid and decreases in kynurenic acid and anthranilic acid. These results show that the model successfully simulated tryptophan metabolism via the kynurenine pathway and can be used to complement experimental investigations.

  6. GC-TOF/MS-based metabolomic strategy for combined toxicity effects of deoxynivalenol and zearalenone on murine macrophage ANA-1 cells.

    Science.gov (United States)

    Ji, Jian; Zhu, Pei; Pi, Fuwei; Sun, Chao; Jiang, Hui; Sun, Jiadi; Wang, Xiumei; Zhang, Yinzhi; Sun, Xiulan

    2016-09-15

    The actual health risk from exposure to combined mycotoxins is unknown, and few studies have focused on changes to cellular biological systems (e.g., metabolomics) caused by combined mycotoxic effects. To evaluate the combined mycotoxic effects of deoxynivalenol (DON) and zearalenone (ZEN) on the level of cellular biological systems, gas chromatographic, time-of-flight mass spectroscopy (GC-TOF/MS) of the complete murine macrophage ANA-1 cell metabolome was implemented in this study. Using optimized chromatography and mass spectrometry parameters, the metabolites detected by GC-TOF/MS were identified and processed using multivariate statistical analysis, including principal component analysis (PCA) and orthogonal projection on latent-structures discriminant analysis (OPLS-DA). The metabolite sets were screened for further pathway analysis under rules of t-test (P) value  1, and similarity value > 500. The mainly interfered metabolism pathways were categorized into two dominant types: amino acid metabolism and glycometabolism. Four metabolites, palmitic acid, 1-monopalmitin, ribose-5-phosphate and 2-deoxy-D-galactose, occur only under combined "DON + ZEN" treatment, indicating abnormal metabolism in ANA-1 cells. The metabolic state of ANA-1 cells under induction by combined "DON + ZEN" illustrates that DON may inhibit the estrogenic effects of ZEN. Thus, the combined effect of "DON + ZEN" may exacerbate toxicity in the pentose phosphate pathway, while palmitic acid metabolism is likely a new pathway effected by the combination, "DON + ZEN."

  7. Phosphoinositide 3-kinase inhibitors induce DNA damage through nucleoside depletion.

    Science.gov (United States)

    Juvekar, Ashish; Hu, Hai; Yadegarynia, Sina; Lyssiotis, Costas A; Ullas, Soumya; Lien, Evan C; Bellinger, Gary; Son, Jaekyoung; Hok, Rosanna C; Seth, Pankaj; Daly, Michele B; Kim, Baek; Scully, Ralph; Asara, John M; Cantley, Lewis C; Wulf, Gerburg M

    2016-07-26

    We previously reported that combining a phosphoinositide 3-kinase (PI3K) inhibitor with a poly-ADP Rib polymerase (PARP)-inhibitor enhanced DNA damage and cell death in breast cancers that have genetic aberrations in BRCA1 and TP53. Here, we show that enhanced DNA damage induced by PI3K inhibitors in this mutational background is a consequence of impaired production of nucleotides needed for DNA synthesis and DNA repair. Inhibition of PI3K causes a reduction in all four nucleotide triphosphates, whereas inhibition of the protein kinase AKT is less effective than inhibition of PI3K in suppressing nucleotide synthesis and inducing DNA damage. Carbon flux studies reveal that PI3K inhibition disproportionately affects the nonoxidative pentose phosphate pathway that delivers Rib-5-phosphate required for base ribosylation. In vivo in a mouse model of BRCA1-linked triple-negative breast cancer (K14-Cre BRCA1(f/f)p53(f/f)), the PI3K inhibitor BKM120 led to a precipitous drop in DNA synthesis within 8 h of drug treatment, whereas DNA synthesis in normal tissues was less affected. In this mouse model, combined PI3K and PARP inhibition was superior to either agent alone to induce durable remissions of established tumors.

  8. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei.

    Science.gov (United States)

    Qin, Zhen; Yan, Qiaojuan; Ma, Qingjun; Jiang, Zhengqiang

    2015-10-23

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5'-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0-9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering.

  9. Direct electrochemistry and electrocatalysis of horseradish peroxidase in MnO2 nanosheet film

    Institute of Scientific and Technical Information of China (English)

    XIAO Han; WU JinLing; CHEN Xu YANG; WenSheng

    2008-01-01

    A novel material MnO2 nanosheet has been used as the support matrix for the immobilization of horseradish peroxidase (HRP), HRP entrapped in MnO2 nanosheet film exhibits facile direct electron transfer with the electron transfer rate constant of 6.86 s-1, The HRP/MnO2 nanosheet film gives a re-versible redox couple with the apparent formal peak potential (E0) of -0,315 V (vs. Ag/AgCl) in pH 6.5 phosphate buffer solution (PBS). The formal potential E0 of HRP shifts linearly with pH with a slope of -53.75 mV.pH-1, denoting that an electron transfer accompanies single-proton transportation. The immobilized HRP shows an electrocatalytic activity to the reduction of H2O2. The response time of the biosensor for H2O2 is less than 3 s, and the detection limit is 0.21μmol· L-1 based on signal/noise=3.

  10. Phosphatic Permian rocks of the Adobe Range, Nevada, and their environment of deposition

    Science.gov (United States)

    Ketner, Keith Brindley

    1979-01-01

    Permian sedimentary rocks in the Adobe range, northern Nevada, are phosphatic, and although the particles of phosphate are relatively more disseminated, they closely resemble the rocks of the Phosphoria Formation. In the northern Adobe Range, where the entire Permian sequence is approximately correlative with the Phosphoria Formation, it is 200 m thick and averages 1.7 percent P2O5 . In the southern Adobe Range, the Permian sequence is more than 1,700 m thick, and the upper half which is roughly correlative with the Phosphoria Formation averages more than 2 percent P2O5. Some thin beds in rocks of Permian age contain more than 20 percent P2O5. Phosphatic rocks of the Adobe Range were deposited in shallow water among islands in the western part of the epicontinental Phosphoria sea. The continental margin and the open ocean lay far to the west. At the same time, the Phosphoria Formation was being deposited in the eastern and central parts of the Phosphoria sea. Theories based on the work of Kasakov done in 1937 relating phosphate deposition directly to sites of upwelling oceanic waters are questioned. Nondeposition of diluent materials such as detritus and carbonate is probably of more importance in producing phosphate in economic concentrations than is geographic position with respect to upwelling waters.

  11. Escherichia coli DNA helicase I catalyzes a sequence-specific cleavage/ligation reaction at the F plasmid origin of transfer.

    Science.gov (United States)

    Sherman, J A; Matson, S W

    1994-10-21

    Recent studies have shown that the Escherichia coli F plasmid-encoded traI gene product (TraIp), also known as DNA helicase I, catalyzes the formation of the site- and strand-specific nick that initiates F plasmid DNA transfer. Scission of the phosphodiester bond at the nic site within the origin of transfer (oriT) is accompanied by the covalent attachment of TraIp to the 5'-phosphate of the nicked DNA strand. This mechanism suggests that TraIp may also be capable of catalyzing a DNA ligation reaction using the energy stored in the protein-DNA intermediate. To test this possibility, an in vitro assay was designed that utilized short single-stranded DNA oligonucleotides of different lengths derived from the region within oriT that spanned the nic site. Purified TraIp was capable of efficiently cleaving single-stranded DNA that contained a nic site, and upon cleavage, the protein became covalently linked to the 5'-end of the nic site. When TraIp was incubated with two oligonucleotides of different length that contained the nic site, there was formation of novel recombinant products resulting from a TraIp-catalyzed cleavage/ligation reaction. Furthermore, the cleavage and ligation reactions were both sequence-specific. These data suggest that TraIp plays an important role in the initiation and termination of conjugative DNA transfer.

  12. Structure of the adenylation domain of NAD(+)-dependent DNA ligase from Staphylococcus aureus.

    Science.gov (United States)

    Han, Seungil; Chang, Jeanne S; Griffor, Matt

    2009-11-01

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3'-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD(+)-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD(+)-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD(+)-binding pocket and the 'C2 tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.

  13. ATP-dependent DNA ligase from Thermococcus sp. 1519 displays a new arrangement of the OB-fold domain.

    Science.gov (United States)

    Petrova, T; Bezsudnova, E Y; Boyko, K M; Mardanov, A V; Polyakov, K M; Volkov, V V; Kozin, M; Ravin, N V; Shabalin, I G; Skryabin, K G; Stekhanova, T N; Kovalchuk, M V; Popov, V O

    2012-12-01

    DNA ligases join single-strand breaks in double-stranded DNA by catalyzing the formation of a phosphodiester bond between adjacent 5'-phosphate and 3'-hydroxyl termini. Their function is essential for maintaining genome integrity in the replication, recombination and repair of DNA. High flexibility is important for the function of DNA ligase molecules. Two types of overall conformations of archaeal DNA ligase that depend on the relative position of the OB-fold domain have previously been revealed: closed and open extended conformations. The structure of ATP-dependent DNA ligase from Thermococcus sp. 1519 (LigTh1519) in the crystalline state determined at a resolution of 3.02 Å shows a new relative arrangement of the OB-fold domain which is intermediate between the positions of this domain in the closed and the open extended conformations of previously determined archaeal DNA ligases. However, small-angle X-ray scattering (SAXS) measurements indicate that in solution the LigTh1519 molecule adopts either an open extended conformation or both an intermediate and an open extended conformation with the open extended conformation being dominant.

  14. Cloning, molecular characterization and expression of a DNA-ligase from a new bacteriophage: Phax1.

    Science.gov (United States)

    Setayesh, Neda; Sabouri-Shahrbabak, Saleheh; Bakherad, Hamid; Sepehrizadeh, Zargham

    2013-12-01

    DNA ligases join 3' hydroxyl and 5' phosphate ends in double stranded DNA and are necessary for maintaining the integrity of genome. The gene encoding a new Escherichia phage (Phax1) DNA ligase was cloned and sequenced. The gene contains an open reading frame with 1,428 base pairs, encoding 475 amino acid residues. Alignment of the entire amino acid sequence showed that Phax1 DNA ligase has a high degree of sequence homology with ligases from Escherichia (vB_EcoM_CBA120), Salmonella (PhiSH19 and SFP10), Shigella (phiSboM-AG3), and Deftia (phiW-14) phages. The Phax1 DNA ligase gene was expressed under the control of the T7lac promoter on the pET-16b (+) in Escherichia coli Rossetta gami. The enzyme was then homogeneously purified by a metal affinity column. Enzymatic activity of the recombinant DNA ligase was assayed by an in-house PCR-based method.

  15. Chromosome-specific families in Vibrio genomes

    Directory of Open Access Journals (Sweden)

    Oksana eLukjancenko

    2014-03-01

    Full Text Available We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown. Of the chromosome specific core protein families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different `Molecular Function` GO categories were found for chromosome 1 specific protein families, and these include several broad activities: pyridoxine 5' phosphate synthetase, glucosylceramidase, heme transport, DNA ligase, amino acid binding, and ribosomal components; in contrast, chromosome 2 specific protein families have only 66 Molecular Function GO terms and include many membrane-associated activities, such as ion channels, transmembrane transporters, and electron transport chain proteins. Thus, it appears that whilst there are many 'housekeeping systems' encoded in chromosome 1, there are far fewer core functions found in chromosome 2. However, the presence of many membrane-associated encoded proteins in chromosome 2 is surprising.

  16. In Silico Identification for α-Amino-ε-Caprolactam Racemases by Using Information on the Structure and Function Relationship.

    Science.gov (United States)

    Payoungkiattikun, Wisarut; Okazaki, Seiji; Nakano, Shogo; Ina, Atsutoshi; H-Kittikun, Aran; Asano, Yasuhisa

    2015-07-01

    In silico identification for enzymes having desired functions is attractive because there is a possibility that numerous desirable enzymes have been deposited in databases. In this study, α-amino-ε-caprolactam (ACL) racemases were searched from the NCBI protein database. Four hundred thirteen fold-type I pyridoxal 5'-phosphate-dependent enzymes which are considered to contain sequences of ACL racemase were firstly obtained by submitting the sequence of ACL racemase from Achromobacter obae to the database. By identifying Lys241 as a key amino acid residue, 13 candidates for ACL racemase were selected. Then, putative ACL racemase genes were synthesized as codon-optimized sequences for expression in Escherichia coli. They were subcloned and expressed in E. coli BL21 and underwent His-tag purification. ACL and amino acid amide racemizing activities were detected among ten of the candidates. The locus tags Oant_4493, Smed_5339, and CSE45_2055 derived from Ochrobactrum anthropi ATCC49188, Sinorhizobium medicae WSM 419, and Citreicella sp. SE45, respectively, showed higher racemization activity against D- and L-ACLs rather than that of ACL racemase from A. obae. Our results demonstrate that the newly discovered ACL racemases were unique from ACL racemase from A. obae and might be useful for applications in dynamic kinetic resolution for D- or L-amino acid production.

  17. Z proteins of New World arenaviruses bind RIG-I and interfere with type I interferon induction.

    Science.gov (United States)

    Fan, Lina; Briese, Thomas; Lipkin, W Ian

    2010-02-01

    The retinoic acid-inducible gene I product (RIG-I) is a cellular sensor of RNA virus infection that regulates the cellular beta interferon (IFN-beta) response. The nucleoproteins (NP) of arenaviruses are reported to antagonize the IFN response by inhibiting interferon regulatory factor 3 (IRF-3). Here, we demonstrate that the Z proteins of four New World (NW) arenaviruses, Guanarito virus (GTOV), Junin virus (JUNV), Machupo virus (MAVC), and Sabia virus (SABV), bind to RIG-I, resulting in downregulation of the IFN-beta response. We show that expression of the four NW arenavirus Z proteins inhibits IFN-beta mRNA induction in A549 cells in response to RNA bearing 5' phosphates (5'pppRNA). NW arenavirus Z proteins interact with RIG-I in coimmunoprecipitation studies and colocalize with RIG-I. Furthermore, expression of Z proteins interferes with the interaction between RIG-I and MAVS. Z expression also impedes the nuclear factor kappa light chain enhancer of activated B cells (NF-kappaB) and IRF-3 activation. Our results indicate that NW arenavirus Z proteins, but not Z protein of the Old World (OW) arenavirus lymphocytic choriomeningitis virus (LCMV) or Lassa virus, bind to RIG-I and inhibit downstream activation of the RIG-I signaling pathway, preventing the transcriptional induction of IFN-beta.

  18. Effects of Temperature and Energy on Stability of Oligomeric Enzyme Probed on Electrospray Ionization Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-li

    2008-01-01

    Escherichia coli 3-Deoxy-D-manno-octulosonate 8-phosphate(KDO8P) synthase catalyzed the condensation reaction between D-arabinose 5-phosphate(A5P) and phosphoenolpyruvate(PEP) to form KDO8P and inorganic phosphate(P1).The noncovalent tetrameric association of KDO8P synthase was observed and dissociated in gas phase by means of electrospray ionization mass spectrometry under the very "soft" conditions.The results indicate that PEP-bound enzyme generated abundant tetrameric species as well as monomeric species at the "soft" conditions,whereas,the unbound enzyme favored the formation of a dimeric species.The mass spectra of the mixture of the enzyme with one of substrates,PEP,and A5P or one of products,KDO8P and Pi show that the complex of the unbound enzyme with PEP or P1 was prone to the formation of a monomeric species,whereas,that of the unbound enzyme with ASP or KDO8P was similar to the unbound enzyme.The intensity of the dimeric species increased with the increase of temperature at a collision voltage of 10 V.Taken together,the results presented here suggest that mass spectrometry will be a powerful tool to explore subtile conformational changes and/or subunit-subunit interactions of multiprotein assembly induced by ligand-binding and/or the changes of environmental conditions.

  19. Convulsions and inhibition of glutamate decarboxylase by pyridoxal phosphate-gamma-glutamyl hydrazone in the developing rat.

    Science.gov (United States)

    Massieu, L; Rivera, A; Tapia, R

    1994-02-01

    We have previously shown that in the adult rat the inhibition of brain glutamate decarboxylase (GAD) activity by pyridoxal phosphate-gamma-glutamyl hydrazone (PLPGH) administration does not result in convulsions, whereas in the adult mouse intense convulsions invariably occur. In the present study we report that, surprisingly, immature rats from 2 to 20 days of age treated with PLPGH (80 mg/kg) showed generalized tonic-clonic convulsions, whereas no convulsions at all were present in 30 days-old or older rats. GAD activity, measured by enzymic determination of GABA formed in forebrain homogenates, was inhibited by about 60% at the time of convulsions in 15 days-old and younger rats, whereas the inhibition was between 40 and 50% in older animals. The addition of the coenzyme pyridoxal 5'-phosphate to the incubation medium completely reversed this inhibition. In all treated animals GABA levels were lower compared to controls. The results indicate that the susceptibility of GAD in vivo to a diminished cofactor concentration decreases with age. It seems possible that changes in the expression of enzyme forms are reflected in developmental variations in the susceptibility to seizures induced by vitamin B6 depletion, but alterations of other B6-dependent biochemical pathways cannot be discarded.

  20. Identification of some benproperine metabolites in humans and investigation of their antitussive effect

    Institute of Scientific and Technical Information of China (English)

    Yan LI; Da-fang ZHONG; Si-wei CHEN; Isamu MAEBA

    2005-01-01

    Aim: To identify 4 unknown metabolites of benproperine (BPP, 1) in human urine after a po dose, and to investigate the antitussive effect of monohydroxylate metabolites. Methods: The putative metabolite references were prepared using chemical synthesis. Their structures were identified using 1H and 13C nuclear magnetic resonance, and mass spectrometry. The metabolites in human urine were separated and assayed using liquid chromatography-ion trap mass spectrometry (LC/MS/MS), and further confirmed by comparison of their mass spectra and chromatographic retention times with those of synthesized reference substances. The antitussive effects of metabolites were evaluated on coughs induced by 7.5% citric acid in conscious guinea pigs. Results: 1-[1-Methyl-2-[2-(phenylmethyl)phenoxy] -ethyl] -4-piperidinol (2), 1- [ 1-methyl-2- [2-(phenylmethyl)phenoxy] ethyl]-3-piperidinol (3) and their glucuronides 4 and 5 were obtained from chemical synthesis. Four urinary metabolites in human urine showed peaks with the same chromatographic retention times and mass spectra in LC/MS/MS as synthetic substances 2, 3, 4 and 5. Phosphates of compounds 2 and 3 prolonged the latency of cough and reduced the number of coughs during the 3 min test using citric acid, but did not reduce the number of coughs during the 5 min immediately after the test in conscious guinea pigs. Conclusion: Compounds 2, 3, 4,and 5 were identified as the metabolites of BPP in human urine. Among them,compounds 2 and 3 are inactive in the antitussive effect.

  1. The transcriptional activators AraR and XlnR from Aspergillus niger regulate expression of pentose catabolic and pentose phosphate pathway genes.

    Science.gov (United States)

    Battaglia, Evy; Zhou, Miaomiao; de Vries, Ronald P

    2014-09-01

    The pentose catabolic pathway (PCP) and the pentose phosphate pathway (PPP) are required for the conversion of pentose sugars in fungi and are linked via d-xylulose-5-phosphate. Previously, it was shown that the PCP is regulated by the transcriptional activators XlnR and AraR in Aspergillus niger. Here we assessed whether XlnR and AraR also regulate the PPP. Expression of two genes, rpiA and talB, was reduced in the ΔaraR/ΔxlnR strain and increased in the xylulokinase negative strain (xkiA1) on d-xylose and/or l-arabinose. Bioinformatic analysis of the 1 kb promoter regions of rpiA and talB showed the presence of putative XlnR binding sites. Combining all results in this study, it strongly suggests that these two PPP genes are under regulation of XlnR in A. niger.

  2. Preliminary Screening Assessment of the Potential Impact of the Phosphate Fertilizer Industry on Wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Vandenhove, Hildegarde; Sweeck, Lieve; Vives i Batlle, Jordi [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)

    2014-07-01

    The activities of the phosphate industry may lead to enhanced levels of naturally occurring radioactivity in terrestrial and freshwater ecosystems. We here perform a preliminary environmental risk assessment (ERA) of the activities of the phosphate industry (phosphate ore mining, phosphate fertilizer factories, phosphate export platforms). We evaluated the environmental impact of 5 phosphate fertilizer plants (located in Belgium, Spain, Syria, Egypt, Brazil) and one phosphate-mine and phosphate-export platforms in the harbour(both located in Syria). These sites were selected because of the enhanced concentrations of naturally occurring radionuclides in the surrounding environments. The ERICA non-human biota assessment tool was used to predict radiation dose rates to the reference organisms and associated risks. Reference organisms were those assigned as default by the ERICA Tool. Potential impact is expressed as a risk quotient (RQ) based on a radiation screening value of 10 μGy h{sup -1}. If RQ ≤ 1, the environment is unlikely at risk and further radiological assessment is deemed not to be required. For all the cases assessed, RQ exceeded 1 for at least one of the reference organisms. {sup 226}Ra or {sup 210}Po were generally the highest contributors to the dose. The aquatic ecosystems in the vicinity of the phosphate fertilizer plants in Tessenderlo (Belgium), Huelva (Spain), Goias (Brazil) and the terrestrial environment around the phosphate mine in Palmyra (Syria) are the ecosystems predicted most at risk. (authors)

  3. Microemulsion electrokinetic chromatography for the analysis of green tea catechins: effect of the cosurfactant on the separation selectivity.

    Science.gov (United States)

    Pomponio, Romeo; Gotti, Roberto; Luppi, Barbara; Cavrini, Vanni

    2003-05-01

    Microemulsion electrokinetic chromatography (MEEKC) was applied to the separation of six catechins and caffeine, the major constituents of the green tea. The developed methods involved the use of sodium dodecyl sulfate (SDS) as surfactant, n-heptane as organic solvent and an alcohol as cosurfactant. The separations were performed under acidic conditions (pH 2.5 phosphate buffer, 50 mM) to ensure good stability of the catechins, with reversed polarity (anodic outlet). The effect of the alcohol nature on the MEEKC selectivity was evaluated; nine alcohols were used as cosurfactant: 1-butanol, tert-butanol, 1-pentanol, 2-pentanol, 3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, and cyclohexanol. The migration order of (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-gallocatechin (GC), (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate (ECG), caffeine and theophylline was significantly affected by the alcohol used as cosurfactant. Using nine microemulsions, four different selectivities were achieved: A (cyclohexanol); B (2-pentanol, 3-pentanol, 1-hexanol, 2-hexanol); C (1-butanol, 1-pentanol, cyclopentanol); D (tert-butanol). MEEKC methods, based on 2-hexanol and cyclohexanol as cosurfactant were validated and successfully applied to the analysis of catechins and caffeine in commercial green tea products.

  4. Global RNA Fold and Molecular Recognition for a pfl Riboswitch Bound to ZMP, a Master Regulator of One-Carbon Metabolism.

    Science.gov (United States)

    Ren, Aiming; Rajashankar, Kanagalaghatta R; Patel, Dinshaw J

    2015-08-04

    ZTP, the pyrophosphorylated analog of ZMP (5-amino-4-imidazole carboxamide ribose-5'-monophosphate), was identified as an alarmone that senses 10-formyl-tetrahydroflate deficiency in bacteria. Recently, a pfl riboswitch was identified that selectively binds ZMP and regulates genes associated with purine biosynthesis and one-carbon metabolism. We report on the structure of the ZMP-bound Thermosinus carboxydivorans pfl riboswitch sensing domain, thereby defining the pseudoknot-based tertiary RNA fold, the binding-pocket architecture, and principles underlying ligand recognition specificity. Molecular recognition involves shape complementarity, with the ZMP 5-amino and carboxamide groups paired with the Watson-Crick edge of an invariant uracil, and the imidazole ring sandwiched between guanines, while the sugar hydroxyls form intermolecular hydrogen bond contacts. The burial of the ZMP base and ribose moieties, together with unanticipated coordination of the carboxamide by Mg(2+), contrasts with exposure of the 5'-phosphate to solvent. Our studies highlight the principles underlying RNA-based recognition of ZMP, a master regulator of one-carbon metabolism.

  5. A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae.

    Science.gov (United States)

    Wang, Guanyi; Huang, Di; Li, Yong; Wen, Jianping; Jia, Xiaoqiang

    2015-03-01

    In this work, wheat bran (WB) was utilized as feedstock to synthesize fumaric acid by Rhizopus oryzae. Firstly, the pretreatment process of WB by dilute sulfuric acid hydrolysis undertaken at 100°C for 30min offered the best performance for fumaric acid production. Subsequently, through optimizing the seed culture medium, a suitable morphology (0.55mm pellets diameter) of R. oryzae was obtained. Furthermore, a metabolic-based approach was developed to profile the differences of intracellular metabolites concentration of R. oryzae between xylose (the abundant sugar in wheat bran hydrolysate (WBH)) and glucose metabolism. The xylitol, sedoheptulose 7-phosphate, ribulose 5-phosphate, glucose 6-phosphate, proline and serine were responsible for fumaric acid biosynthesis limitation in xylose fermentation. Consequently, regulation strategies were proposed, leading to a 149% increase in titer (up to 15.4g/L). Finally, by combinatorial regulation strategies the highest production was 20.2g/L from WBH, 477% higher than that of initial medium.

  6. Crystallization and preliminary X-ray diffraction study of phosphoribosyl pyrophosphate synthetase from E. Coli

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, V. I., E-mail: inna@ns.crys.ras.ru; Abramchik, Yu. A., E-mail: tostars@mail.ru; Zhukhlistova, N. E., E-mail: ugama@yandex.ru; Kuranova, I. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2015-09-15

    Enzymes of the phosphoribosyl pyrophosphate synthetase family (PRPPS, EC 2.7.6.1) catalyze the formation of 5-phosphoribosyl pyrophosphate (5-PRPP) from adenosine triphosphate and ribose 5-phosphate. 5-Phosphoribosyl pyrophosphate is an important intermediate in the synthesis of purine, pyrimidine, and pyridine nucleotides, as well as of the amino acids histidine and tryptophan. The crystallization conditions for E. coli PRPPS were found by the vapor-diffusion technique and were optimized to apply the capillary counter-diffusion technique. The X-ray diffraction data set was collected from the crystals grown by the counter-diffusion technique using a synchrotron radiation source to 3.1-Å resolution. The crystals of PRPPS belong to sp. gr. P6{sub 3}22 and have the following unit-cell parameters: a = b = 104.44 Å, c = 124.98 Å, α = β = 90°, γ = 120°. The collected X-ray diffraction data set is suitable for the solution of the three-dimensional structure of PRPPS at 3.1-Å resolution.

  7. Thermodynamics of Damaged DNA Binding and Catalysis by Human AP Endonuclease 1.

    Science.gov (United States)

    Miroshnikova, A D; Kuznetsova, A A; Kuznetsov, N A; Fedorova, O S

    2016-01-01

    Apurinic/apyrimidinic (AP) endonucleases play an important role in DNA repair and initiation of AP site elimination. One of the most topical problems in the field of DNA repair is to understand the mechanism of the enzymatic process involving the human enzyme APE1 that provides recognition of AP sites and efficient cleavage of the 5'-phosphodiester bond. In this study, a thermodynamic analysis of the interaction between APE1 and a DNA substrate containing a stable AP site analog lacking the C1' hydroxyl group (F site) was performed. Based on stopped-flow kinetic data at different temperatures, the steps of DNA binding, catalysis, and DNA product release were characterized. The changes in the standard Gibbs energy, enthalpy, and entropy of sequential specific steps of the repair process were determined. The thermodynamic analysis of the data suggests that the initial step of the DNA substrate binding includes formation of non-specific contacts between the enzyme binding surface and DNA, as well as insertion of the amino acid residues Arg177 and Met270 into the duplex, which results in the removal of "crystalline" water molecules from DNA grooves. The second binding step involves the F site flipping-out process and formation of specific contacts between the enzyme active site and the everted 5'-phosphate-2'-deoxyribose residue. It was shown that non-specific interactions between the binding surfaces of the enzyme and DNA provide the main contribution into the thermodynamic parameters of the DNA product release step.

  8. Serotonin and dopamine protect from hypothermia/rewarming damage through the CBS/H2S pathway.

    Directory of Open Access Journals (Sweden)

    Fatemeh Talaei

    Full Text Available Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H(2S production by the endogenous enzyme cystathionine-β-synthase (CBS and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR and increased H(2S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H(2S and activation of CBS by Prydoxal 5'-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H(2S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H(2S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters.

  9. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, D.-I.; Calabrese, J.C.; Wawrzak, Z.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

    2010-03-05

    3,4-Dihydroxy-2-butanone-4-phosphate synthase catalyzes a commitment step in the biosynthesis of riboflavin. On the enzyme, ribulose 5-phosphate is converted to 3,4-dihydroxy-2-butanone 4-phosphate and formate in steps involving enolization, ketonization, dehydration, skeleton rearrangement, and formate elimination. The enzyme is absent in humans and an attractive target for the discovery of antimicrobials for pathogens incapable of acquiring sufficient riboflavin from their hosts. The homodimer of 23 kDa subunits requires Mg{sup 2+} for activity. The first three-dimensional structure of the enzyme was determined at 1.4 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on Escherichia coli protein crystals containing gold. The protein consists of an {alpha} + {beta} fold having a complex linkage of {beta} strands. Intersubunit contacts are mediated by numerous hydrophobic interactions and three hydrogen bond networks. A proposed active site was identified on the basis of amino acid residues that are conserved among the enzyme from 19 species. There are two well-separated active sites per dimer, each of which comprise residues from both subunits. In addition to three arginines and two threonines, which may be used for recognizing the phosphate group of the substrate, the active site consists of three glutamates, two aspartates, two histidines, and a cysteine which may provide the means for general acid and base catalysis and for coordinating the Mg{sup 2+} cofactor within the active site.

  10. Density functional theory studies on the oxidation of 5'-dGMP and 5'-dAMP by a platinum(IV) complex.

    Science.gov (United States)

    Ariafard, Alireza; Tabatabaie, Elham S; Aghmasheh, Simin; Najaflo, Sahar; Yates, Brian F

    2012-08-06

    Density functional theory has been used to investigate the oxidation of a guanine nucleotide by platinum(IV), a process that can be important in the degradation of DNA. For the first time, we have provided a comprehensive mechanism for all of the steps in this process. A number of intermediates are predicted to occur but with short lifetimes that would make them difficult to observe experimentally. A key step in the mechanism is electron transfer from guanine to platinum(IV), and we show that this is driven by the loss of a chloride ligand from the platinum complex after nucleophilic attack of 5'-phosphate to C8 of guanine. We have investigated several different initial platinum(IV) guanine adducts and shown that the adduct formed from replacement of an axial chlorine ligand in the platinum(IV) complex undergoes oxidation more easily. We have studied adenine versus guanine adducts, and our results show that oxidation of the former is more difficult because of disruption of the aromatic π system that occurs during the process. Finally, our results show that the acidic hydrolysis step to form the final oxidized product occurs readily via an initial protonation of N7 of the guanine.

  11. Kinetic Parameters and Cytotoxic Activity of Recombinant Methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii.

    Science.gov (United States)

    Morozova, E A; Kulikova, V V; Yashin, D V; Anufrieva, N V; Anisimova, N Y; Revtovich, S V; Kotlov, M I; Belyi, Y F; Pokrovsky, V S; Demidkina, T V

    2013-07-01

    The steady-state kinetic parameters of pyridoxal 5'-phosphate-dependent recombinant methionine γ -lyase from three pathogenic bacteria, Clostridium tetani, Clostridium sporogenes, and Porphyromonas gingivalis, were determined in β- and γ-elimination reactions. The enzyme from C. sporogenes is characterized by the highest catalytic efficiency in the γ-elimination reaction of L-methionine. It was demonstrated that the enzyme from these three sources exists as a tetramer. The N-terminal poly-histidine fragment of three recombinant enzymes influences their catalytic activity and facilitates the aggregation of monomers to yield dimeric forms under denaturing conditions. The cytotoxicity of methionine γ-lyase from C. sporogenes and C. tetani in comparison with Citrobacter freundii was evaluated using K562, PC-3, LnCap, MCF7, SKOV-3, and L5178y tumor cell lines. K562 (IC50=0.4-1.3 U/ml), PC-3 (IC50=0.1-0.4 U/ml), and MCF7 (IC50=0.04-3.2 U/ml) turned out to be the most sensitive cell lines.

  12. Glutamate 190 is a general acid catalyst in the 6-phosphogluconate-dehydrogenase-catalyzed reaction.

    Science.gov (United States)

    Karsten, W E; Chooback, L; Cook, P F

    1998-11-10

    Site-directed mutagenesis was used to change E190 of sheep liver 6-phosphogluconate dehydrogenase to A, D, H, K, Q, and R to probe its possible role as a general acid catalyst. Each of the mutant proteins was characterized with respect to the pH dependence of kinetic parameters. Mutations that eliminate a titrable group at position 190, result in pH-rate profiles with no observable pK on the basic side of the V/K6PG profile. Mutations that change the pK of the group at position 190 result in the expected pK perturbations in the V/K6PG profile. Kinetic parameters obtained at the pH optimum in the pH-rate profiles are consistent with a rate-limiting tautomerization of the 1,2-enediol of ribulose 5-phosphate consistent with the proposed role of E190. Data are also consistent with some participation of E190 in an isomerization required to form the active Michaelis complex.

  13. The magic dance of the alarmones (p)ppGpp.

    Science.gov (United States)

    Steinchen, Wieland; Bange, Gert

    2016-08-01

    The alarmones (p)ppGpp are important second messengers that orchestrate pleiotropic adaptations of bacteria and plant chloroplasts in response to starvation and stress. Here, we review our structural and mechanistic knowledge on (p)ppGpp metabolism including their synthesis, degradation and interconversion by a highly diverse set of enzymes. Increasing structural information shows how (p)ppGpp interacts with an incredibly diverse set of different targets that are essential for replication, transcription, translation, ribosome assembly and metabolism. This raises the question how the chemically rather simple (p)ppGpp is able to interact with these different targets? Structural analysis shows that the diversity of (p)ppGpp interaction with cellular targets critically relies on the conformational flexibility of the 3' and 5' phosphate moieties allowing alarmones to efficiently modulate the activity of target structures in a broad concentration range. Current approaches in the design of (p)ppGpp-analogs as future antibiotics might be aided by the comprehension of conformational flexibility exhibited by the magic dancers (p)ppGpp.

  14. Studies on gene structure, enzymatic activity and regulatory mechanism of acetohydroxy acid isomeroreductase from G2 pea

    Institute of Scientific and Technical Information of China (English)

    XU; Yunjian; (

    2003-01-01

    [1]Zhu, Y. X., Zhang, Y. F., Li, H. Y., Molecular cloning of GA suppressed G2 pea genes by cDNA RDA, Science in China, Ser. C, 1997, 40(4): 379-383.[2]Xu, H., Xu, Y., Gu, X. et al., Cloning and analysis of a cDNA encoding acetohydroxy acid isomeroreductase from G2 pea, Chinese Science Bulletin, 2001, 46(21): 1808-1811.[3]Dumas, R., Joyard, J., Douce, R., Purification and characterization of acetohydroxy acid reductoisomerase from spinach chloroplasts, Biochem. J., 1989, 262: 971-976.[4]Dumas, R., Butikofer, M. C., Job, D. et al., Evidence for two catalytically different magnesium binding sites in acetohydroxy acid isomeroreductase by site-directed mutagenesis, Biochemistry, 1995, 34: 6026-6036.[5]Singh, B. K., Biosynthesis of valine, leucine, and isoleucine, in Plant Amino Acids-Biochemistry and Biotechnology (ed. Singh, B. K.), New York: Marcel Dekker Inc., 1999, 227-247.[6]Reynolds, T. L., Effect of chlorsulfuron valine and isoleucine on division and tracheary element differentiation in cell suspension cultures of Solanum carolinense, J. Plant Physiol., 1986, 125(1-2): 179-184.[7]Spackman, V. M. T., Cobb, A. H., Cell cycle inhibition of potato root tips treated with Imazethapyr, Annals of Applied Biology, 1999, 135(3): 585-587.[8]Zelenaya-Troitskaya, O., Perlman, P. S., Butow, R. A., An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino acid biosynthesis also functions in mitochondrial DNA stability, EMBO J., 1995, 14: 3268-3276.[9]MacAlpine, D. M., Perlman, P. S., Butow, R. A., The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway, EMBO J., 2000, 19(4): 767-775.[10]Kaufman, B. A., Newman, S. M., Hallberg, R. L. et al., In organello formaldehyde crosslinking of proteins to mtDNA: Identification of bifunctional proteins, Proc. Natl. Acad. Sci. USA, 2000, 97: 7772-7777.[11]Mazliak, P., Plant membrane

  15. NMR determination of lysine pKa values in the Pol lambda lyase domain: mechanistic implications.

    Science.gov (United States)

    Gao, Guanghua; DeRose, Eugene F; Kirby, Thomas W; London, Robert E

    2006-02-14

    The base excision repair (BER) process requires removal of an abasic deoxyribose-5-phosphate group, a catalytic activity that has been demonstrated for the N-terminal 8 kDa domain of DNA polymerase beta (Pol beta), and for the homologous domain of DNA polymerase lambda (Pol lambda). Previous studies have demonstrated that this activity results from formation of a Schiff base adduct of the abasic deoxyribose C-1' with a lysine residue (K312 in the case of Pol lambda), followed by a beta-elimination reaction. To better understand the underlying chemistry, we have determined pKa values for the lysine residues in the Pol lambda lyase domain labeled with [epsilon-13C]lysine. At neutral pH, the H(epsilon) protons on 3 of the 10 lysine residues in this domain, K287, K291, and K312, exhibit chemical shift inequivalence that results from immobilization of the lysyl side chains. For K287 and K291, this results from the K287-E261 and K291-E298 salt bridge interactions, while for K312, immobilization apparently results from steric and hydrogen-bonding interactions that constrain the position of the lysine side chain. The pKa value of K312 is depressed to 9.58, a value indicating that at physiological pH K312 will exist predominantly in the protonated form. Titration of the domain with hairpin DNA containing a 5'-tetrahydrofuran terminus to model the abasic site produced shifts of the labeled lysine resonances that were in fast exchange but appeared to be complete at a stoichiometry of approximately 1:1.3, consistent with a dissociation constant of approximately 1 microM. The epsilon-proton shifts of K273 were the most sensitive to the addition of the DNA, apparently due to changes in the relative orientation between K273 and W274 in the DNA complex. The average pKa values increased by 0.55, consistent with the formation of some DNA-lysine salt bridges and with the general pH increase expected to result from a reduction in the net positive charge of the complex. A general

  16. Cloning and expression analysis of a lysine decarboxylase gene in Sophora alopecuroides%苦豆子赖氨酸脱羧酶基因克隆与表达分析

    Institute of Scientific and Technical Information of China (English)

    杨毅; 陆姗姗; 刘萍; 田蕾

    2016-01-01

    赖氨酸脱羧酶(lysine decarboxylase,LDC)基因是苦豆子中氧化苦参碱(oxymatrine,OMA)生物合成的第一个关键酶基因。根据近缘物种苦参的赖氨酸脱羧酶基因设计特异引物,同源克隆法克隆了苦豆子赖氨酸脱羧酶基因的蛋白质编码区序列,全长1368 bp,命名为 Sa-LDC,GenBank 登录号为 KM249871。生物信息学分析表明 Sa-LDC 编码区序列无内含子,与苦参和狗苦参的 LDC 序列一致性均达到97%;属于Ⅲ型5-磷酸吡哆醛依赖酶[typeⅢ pyridoxal 5-phosphate (PLP)-dependent enzymes,PLPDE-Ⅲ]超基因家族,功能活跃。Sa-LDC 编码455个氨基酸残基,其编码的肽链相对分子质量49.14 kD,理论等电点5.63,无信号肽和跨膜结构;在其氨基酸序列中具有产喹诺里西啶生物碱的特征性保守位点 Phe340;系统进化树将苦豆子与其他产喹诺里西啶类生物碱的植物聚为一类。qPCR 和 HPLC 检测显示,苦豆子赖氨酸脱羧酶基因的表达和氧化苦参碱的积累均受干旱胁迫的影响,且基因的表达量与氧化苦参碱的积累呈正相关关系。%In the biochemical metabolic processes of Sophora alopecuroides ,a lysine decarboxylase (LDC)gene is one of the key enzyme genes involved in the process of Oxymatrine biosynthesis.In the present study,the full length of the LDC coding sequence in S .alopecuroides was cloned using a pair of specific primers designed based on the LDC sequence of Sophora flavescens and was named Sa-LDC (gene bank accession number:KM249871).Sa-LDC belongs to the Type Ⅲ Pyridoxal 5-phosphate (PLP)-Dependent enzyme supergene fami-ly,is comprised of a 1368 bps open reading frame (ORF)without intron,and has 97% identity with the LDC of Echinosophora koreensis and S .flavescens in GeneBank.Its nucleotide sequence encodes 455 amino acid resi-dues whose putative protein had a relative molecular mass of 49.14 kD and the theoretical isoelectric point

  17. Analysis of vitamin B6 vitamers in tobacco plants by high performance liquid chromatography%采用高效液相色谱技术分析烟草体内的维生素B6化合物

    Institute of Scientific and Technical Information of China (English)

    曾海彬; 张剑韵; 黄龙全

    2011-01-01

    Vitamin B6(VB6)is the general term for a kind of chemical compounds . VB6 exists in several forms,and has been linked to stress responses in plants. Until now no reports about the distribution of B6 vitamers in tobacco plants have been observed. In our experiment,the determination of VB6 vitamers in tobacco plants was described by using HPLC with fluorescence detector. The results indicated that, the contents of VB6 in leaves, tender stem and roots were 2. 9,1. 7 and 3. 0 μg/g fresh weight,respectively. Leaves of tobacco plants grown on MS basal media exhibited a high content of 3. 9 μg/g fresh weight. The constituent ratio of B6 vitamers were as follows: pyridoxamine 5'-phosphate(PMP) 7% , pyridoxamine(PM) 14%, pyridoxal 5'-phosphate(PLP) 19%, pyridoxal(PL) 29% and pyridoxine(PN) 30%. During the determination period of three weeks,the contents of PLP and PL decreased,and that of PN increased. The amount of VB6 was relatively constant. Our results would be favorable for further study on the metabolic mechanism and special physiological mechanism in tobacco plants.%维生素B6 (VB6)是一类化合物的总称.近年来研究发现VB6在植物体内发挥抗逆作用.烟草作为模式植物其体内VB6的存在形态还未见报道.本研究采用高效液相色谱结合荧光检测技术对烟草体内VB6的存在形态进行了分析.结果表明:土壤栽培烟草叶、茎和根中VB6的含量依次为2.9、1.7、3.0 μg/g鲜重;组培烟草叶片的VB6含量为3.9 μg/g鲜重,构成比为磷酸吡哆胺(PMP)7%、吡哆胺(PM)14%、磷酸吡哆醛(PLP)19%、吡哆醛(PL)29%、吡哆醇(PN)30%;组培烟草在连续3周的检测过程中,PLP和PL含量下降、PN含量上升,VB6总量保持相对稳定.研究结果有助于以烟草为材料,进一步开展植物体内VB6代谢机制和特殊生理机制的研究.

  18. Functionalizing Designer DNA Crystals

    Science.gov (United States)

    Chandrasekaran, Arun Richard

    Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine

  19. The pentose phosphate pathway in Trypanosoma cruzi: a potential target for the chemotherapy of Chagas disease

    Directory of Open Access Journals (Sweden)

    Mariana Igoillo-Esteve

    2007-12-01

    Full Text Available Trypanosoma cruzi is highly sensitive to oxidative stress caused by reactive oxygen species. Trypanothione, the parasite's major protection against oxidative stress, is kept reduced by trypanothione reductase, using NADPH; the major source of the reduced coenzyme seems to be the pentose phosphate pathway. Its seven enzymes are present in the four major stages in the parasite's biological cycle; we have cloned and expressed them in Escherichia coli as active proteins. Glucose 6-phosphate dehydrogenase, which controls glucose flux through the pathway by its response to the NADP/NADPH ratio, is encoded by a number of genes per haploid genome, and is induced up to 46-fold by hydrogen peroxide in metacyclic trypomastigotes. The genes encoding 6-phosphogluconolactonase, 6-phosphogluconate dehydrogenase, transaldolase and transketolase are present in the CL Brener clone as a single copy per haploid genome. 6-phosphogluconate dehydrogenase is very unstable, but was stabilized introducing two salt bridges by site-directed mutagenesis. Ribose-5-phosphate isomerase belongs to Type B; genes encoding Type A enzymes, present in mammals, are absent. Ribulose-5-phosphate epimerase is encoded by two genes. The enzymes of the pathway have a major cytosolic component, although several of them have a secondary glycosomal localization, and also minor localizations in other organelles.Trypanosoma cruzi é altamente sensível ao estresse oxidativo causado por espécies reativas do oxigênio. Tripanotiona, o principal protetor do parasita contra o estresse oxidativo, é mantido reduzido pela tripanotiona redutase, pela presença deNADPH; a principal fonte da coenzima reduzida parece ser a via da pentose fosfato. As sete enzimas dessa via estão presentes nos quatro principais estágios do ciclo biológico do parasita; nós clonamos e expressamos as enzimas em Escherichia coli como proteínas ativas. Glucose 6-fosfato desidrogenase, que controla o fluxo da glucose da

  20. Ribose Supplementation Alone or with Elevated Creatine Does Not Preserve High Energy Nucleotides or Cardiac Function in the Failing Mouse Heart.

    Directory of Open Access Journals (Sweden)

    Kiterie M E Faller

    Full Text Available Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE.FOUR GROUPS WERE STUDIED: sham; myocardial infarction (MI; MI+ribose; MI+CrT-OE+ribose. In a pilot study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN pool was decreased to a similar amount (8-14% in all infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial degree of left ventricular (LV dysfunction (3-fold reduction in ejection fraction and LV hypertrophy (32-47% increased mass. Ejection fraction closely correlated with infarct size independently of treatment (r(2 = 0.63, p<0.0001, but did not correlate with myocardial creatine or TAN levels.Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically failing mouse heart and that alternative strategies to preserve TAN pool should be investigated.

  1. Protonation states and catalysis: Molecular dynamics studies of intermediates in tryptophan synthase.

    Science.gov (United States)

    Huang, Yu-Ming M; You, Wanli; Caulkins, Bethany G; Dunn, Michael F; Mueller, Leonard J; Chang, Chia-En A

    2016-01-01

    The importance of protonation states and proton transfer in pyridoxal 5'-phosphate (PLP)-chemistry can hardly be overstated. Although experimental approaches to investigate pKa values can provide general guidance for assigning proton locations, only static pictures of the chemical species are available. To obtain the overall protein dynamics for the interpretation of detailed enzyme catalysis in this study, guided by information from solid-state NMR, we performed molecular dynamics (MD) simulations for the PLP-dependent enzyme tryptophan synthase (TRPS), whose catalytic mechanism features multiple quasi-stable intermediates. The primary objective of this work is to elucidate how the position of a single proton on the reacting substrate affects local and global protein dynamics during the catalytic cycle. In general, proteins create a chemical environment and an ensemble of conformational motions to recognize different substrates with different protonations. The study of these interactions in TRPS shows that functional groups on the reacting substrate, such as the phosphoryl group, pyridine nitrogen, phenolic oxygen and carboxyl group, of each PLP-bound intermediate play a crucial role in constructing an appropriate molecular interface with TRPS. In particular, the protonation states of the ionizable groups on the PLP cofactor may enhance or weaken the attractions between the enzyme and substrate. In addition, remodulation of the charge distribution for the intermediates may help generate a suitable environment for chemical reactions. The results of our study enhance knowledge of protonation states for several PLP intermediates and help to elucidate their effects on protein dynamics in the function of TRPS and other PLP-dependent enzymes.

  2. Insights into the N-sulfation mechanism: molecular dynamics simulations of the N-sulfotransferase domain of NDST1 and mutants.

    Science.gov (United States)

    Gesteira, Tarsis F; Pol-Fachin, Laércio; Coulson-Thomas, Vivien Jane; Lima, Marcelo A; Verli, Hugo; Nader, Helena B

    2013-01-01

    Sulfation patterns along glycosaminoglycan (GAG) chains dictate their functional role. The N-deacetylase N-sulfotransferase family (NDST) catalyzes the initial downstream modification of heparan sulfate and heparin chains by removing acetyl groups from subsets of N-acetylglucosamine units and, subsequently, sulfating the residual free amino groups. These enzymes transfer the sulfuryl group from 3'-phosphoadenosine-5'-phosphosulfate (PAPS), yielding sulfated sugar chains and 3'-phosphoadenosine-5'-phosphate (PAP). For the N-sulfotransferase domain of NDST1, Lys833 has been implicated to play a role in holding the substrate glycan moiety close to the PAPS cofactor. Additionally, Lys833 together with His716 interact with the sulfonate group, stabilizing the transition state. Such a role seems to be shared by Lys614 through donation of a proton to the bridging oxygen of the cofactor, thereby acting as a catalytic acid. However, the relevance of these boundary residues at the hydrophobic cleft is still unclear. Moreover, whether Lys833, His716 and Lys614 play a role in both glycan recognition and glycan sulfation remains elusive. In this study we evaluate the contribution of NDST mutants (Lys833, His716 and Lys614) to dynamical effects during sulfate transfer using comprehensive combined docking and essential dynamics. In addition, the binding location of the glycan moiety, PAPS and PAP within the active site of NDST1 throughout the sulfate transfer were determined by intermediate state analysis. Furthermore, NDST1 mutants unveiled Lys833 as vital for both the glycan binding and subsequent N-sulfotransferase activity of NDST1.

  3. Insights into the N-sulfation mechanism: molecular dynamics simulations of the N-sulfotransferase domain of NDST1 and mutants.

    Directory of Open Access Journals (Sweden)

    Tarsis F Gesteira

    Full Text Available Sulfation patterns along glycosaminoglycan (GAG chains dictate their functional role. The N-deacetylase N-sulfotransferase family (NDST catalyzes the initial downstream modification of heparan sulfate and heparin chains by removing acetyl groups from subsets of N-acetylglucosamine units and, subsequently, sulfating the residual free amino groups. These enzymes transfer the sulfuryl group from 3'-phosphoadenosine-5'-phosphosulfate (PAPS, yielding sulfated sugar chains and 3'-phosphoadenosine-5'-phosphate (PAP. For the N-sulfotransferase domain of NDST1, Lys833 has been implicated to play a role in holding the substrate glycan moiety close to the PAPS cofactor. Additionally, Lys833 together with His716 interact with the sulfonate group, stabilizing the transition state. Such a role seems to be shared by Lys614 through donation of a proton to the bridging oxygen of the cofactor, thereby acting as a catalytic acid. However, the relevance of these boundary residues at the hydrophobic cleft is still unclear. Moreover, whether Lys833, His716 and Lys614 play a role in both glycan recognition and glycan sulfation remains elusive. In this study we evaluate the contribution of NDST mutants (Lys833, His716 and Lys614 to dynamical effects during sulfate transfer using comprehensive combined docking and essential dynamics. In addition, the binding location of the glycan moiety, PAPS and PAP within the active site of NDST1 throughout the sulfate transfer were determined by intermediate state analysis. Furthermore, NDST1 mutants unveiled Lys833 as vital for both the glycan binding and subsequent N-sulfotransferase activity of NDST1.

  4. Processing the Interspecies Quorum-sensing Signal Autoinducer-2 (AI-2)

    Energy Technology Data Exchange (ETDEWEB)

    J Marques; P Lamosa; C Russell; R Ventura; C Maycock; M Semmelhack; S Miller; K Xavier

    2011-12-31

    The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is the precursor of the signal molecule autoinducer-2 (AI-2). AI-2 mediates interspecies communication and facilitates regulation of bacterial behaviors such as biofilm formation and virulence. A variety of bacterial species have the ability to sequester and process the AI-2 present in their environment, thereby interfering with the cell-cell communication of other bacteria. This process involves the AI-2-regulated lsr operon, comprised of the Lsr transport system that facilitates uptake of the signal, a kinase that phosphorylates the signal to phospho-DPD (P-DPD), and enzymes (like LsrG) that are responsible for processing the phosphorylated signal. Because P-DPD is the intracellular inducer of the lsr operon, enzymes involved in P-DPD processing impact the levels of Lsr expression. Here we show that LsrG catalyzes isomerization of P-DPD into 3,4,4-trihydroxy-2-pentanone-5-phosphate. We present the crystal structure of LsrG, identify potential catalytic residues, and determine which of these residues affects P-DPD processing in vivo and in vitro. We also show that an lsrG deletion mutant accumulates at least 10 times more P-DPD than wild type cells. Consistent with this result, we find that the lsrG mutant has increased expression of the lsr operon and an altered profile of AI-2 accumulation and removal. Understanding of the biochemical mechanisms employed by bacteria to quench signaling of other species can be of great utility in the development of therapies to control bacterial behavior.

  5. Probing the Subunit-Subunit Interaction of the Tetramer of E. coli KDO8P Synthase by Electrospray Ionization Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    LI Zhili; SAU,Apurba Kumar

    2009-01-01

    Escherichia coli 3-Deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyzes the condensation reaction between D-arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP) to form KDO8P and inorganic phosphate (Pi).This enzyme exists as a tetramer in solution, which is important for catalysis. Two different states of the enzyme were obtained: i) PEP-bound and ii) PEP-unbound. The effect of the substrates and products on the overall structure of KDO8P synthase in both PEP-bound and unbound states was examined using electrospray ioni-zation mass spectrometry. The analysis of our data showed that the complexes of the PEP-unbound enzyme with PEP (or P,) favored the formation of monomers, while the complexes with A5P (or KDO8P) mainly favored dimers. The PEP-bound enzyme was found to exist in the monomer and dimer with a small amount of the tetramer, whereas the PEP-unbound form primarily exists in the monomer and dimer, and no tetramer was observed, suggesting that the bound PEP have a role in stabilization of the tetrameric structure. Taken together, the results imply that the ad-dition of the substrates or products to the unbound enzyme may alter the subunit-subunit interactions and/or con-formational change of the protein at the active site, and this study also demonstrates that the electrospray ionization mass spectrometric method may be a powerful tool in probing the subunit-subunit interactions and/or conforma-tional change of multi-subunit protein upon binding to ligand.

  6. Reactivation of Lysosomal Ca2+ Efflux Rescues Abnormal Lysosomal Storage in FIG4-Deficient Cells.

    Science.gov (United States)

    Zou, Jianlong; Hu, Bo; Arpag, Sezgi; Yan, Qing; Hamilton, Audra; Zeng, Yuan-Shan; Vanoye, Carlos G; Li, Jun

    2015-04-29

    Loss of function of FIG4 leads to Charcot-Marie-Tooth disease Type 4J, Yunis-Varon syndrome, or an epilepsy syndrome. FIG4 is a phosphatase with its catalytic specificity toward 5'-phosphate of phosphatidylinositol-3,5-diphosphate (PI3,5P2). However, the loss of FIG4 decreases PI3,5P2 levels likely due to FIG4's dominant effect in scaffolding a PI3,5P2 synthetic protein complex. At the cellular level, all these diseases share similar pathology with abnormal lysosomal storage and neuronal degeneration. Mice with no FIG4 expression (Fig4(-/-)) recapitulate the pathology in humans with FIG4 deficiency. Using a flow cytometry technique that rapidly quantifies lysosome sizes, we detected an impaired lysosomal fission, but normal fusion, in Fig4(-/-) cells. The fission defect was associated with a robust increase of intralysosomal Ca(2+) in Fig4(-/-) cells, including FIG4-deficient neurons. This finding was consistent with a suppressed Ca(2+) efflux of lysosomes because the endogenous ligand of lysosomal Ca(2+) channel TRPML1 is PI3,5P2 that is deficient in Fig4(-/-) cells. We reactivated the TRPML1 channels by application of TRPML1 synthetic ligand, ML-SA1. This treatment reduced the intralysosomal Ca(2+) level and rescued abnormal lysosomal storage in Fig4(-/-) culture cells and ex vivo DRGs. Furthermore, we found that the suppressed Ca(2+) efflux in Fig4(-/-) culture cells and Fig4(-/-) mouse brains profoundly downregulated the expression/activity of dynamin-1, a GTPase known to scissor organelle membranes during fission. This downregulation made dynamin-1 unavailable for lysosomal fission. Together, our study revealed a novel mechanism explaining abnormal lysosomal storage in FIG4 deficiency. Synthetic ligands of the TRPML1 may become a potential therapy against diseases with FIG4 deficiency.

  7. Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts.

    Science.gov (United States)

    Hirata, Hiroshi; Ohnishi, Toshiyuki; Ishida, Haruka; Tomida, Kensuke; Sakai, Miwa; Hara, Masakazu; Watanabe, Naoharu

    2012-03-15

    In rose flowers, 2-phenylethanol (2PE) is biosynthesized from l-phenylalanine (l-Phe) via phenylacetaldehyde (PAld) by the actions of two enzymes, pyridoxal-5'-phosphate (PLP)-dependent aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). We here report that Rosa 'Yves Piaget' aromatic amino acid aminotransferase produced phenylpyruvic acid (PPA) from l-Phe in isolated petal protoplasts. We have cloned three full length cDNAs (RyAAAT1-3) of aromatic amino acid aminotransferase families based on rose EST database and homology regions. The RyAAATs enzymes were heterogeneously expressed in Escherichia coli and characterized biochemically. The recombinant RyAAAT3 showed the highest activity toward l-Phe in comparison with l-tryptophan, l-tyrosine, d-Phe, glycine, and l-alanine, and showed 9.7-fold higher activity with l-Phe rather than PPA as a substrate. RyAAAT3 had an optimal activity at pH 9 and at 45-55°C with α-ketoglutaric acid, and was found to be a PLP dependent enzyme based on the inhibition test using Carbidopa, an inhibitor of PLP-dependent enzymes. The transcript of RyAAAT3 was expressed in flowers as well as other organs of R. 'Yves Piaget'. RNAi suppression of RyAAAT3 decreased 2PE production, revealing the involvement of RyAAAT3 in 2PE biosynthesis in rose protoplasts and indicating that rose protoplasts have potentially two different 2PE biosynthetic pathways, the AADC route and the new route via PPA from l-Phe.

  8. Influences of phosphate nutritional level on the phytoavailability and speciation distribution of cadmium and lead in soil

    Institute of Scientific and Technical Information of China (English)

    CHEN Su; SUN Tie-heng; SUN Li-na; ZHOU Qi-xing; CHAO Lei

    2006-01-01

    A pot experiment was conducted to examine the influence of phosphate levels on the phytoavailability and speciation distribution of cadmium (Cd), lead (Pb) in soil. Spring wheat (Triticum aestivum L.) was selected as the tested plant. There were 5phosphate fertilizer(Ca(H2PO4)2) levels including 0, 50, 100, 200, and 400 mg P2O5/kg soil, marked by P0, P1, P2, P3, and P4, respecby TI, T2, and T3, respectively. The results showed that the P fertilizer promoted the dry weight of wheat in all treatments and alleviated the contamination induced by Cd and Pb. With increasing levels of the additional P fertilizer, Cd concentration in different parts (root, haulm, chaffand grain) of wheat decreased at the P1 level at first and then increased. The soluble plus exchangeable (SE)fraction of Cd in soil decreased at the P1 level and then increased from P2 to P4 levels. The moderate P fertilizer reduced the phytoavailability of Cd. The application of P could obviously restrain the uptake of Pb by wheat and there were significantly negative correlations between the levels of P and the uptake of Pb. Phosphorus supply resulted in a decrease in the SE fraction of Pb and there was a significantly negative correlation between the levels of P and the SE fraction of Pb in soil. All the levels of the P fertilizer in this experiment could reduce the phytoavailability of Pb. Thus, it is feasible to apply the P fertilizer (Ca(H2PO4)2) to Pb contaminated soils.However, the levels of P application should be restricted in case that redundant P may increase the phytoavailability of Cd.

  9. Exposure of Lycopersicon esculentum to microcystin-LR: effects in the leaf proteome and toxin translocation from water to leaves and fruits.

    Science.gov (United States)

    Gutiérrez-Praena, Daniel; Campos, Alexandre; Azevedo, Joana; Neves, Joana; Freitas, Marisa; Guzmán-Guillén, Remédios; Cameán, Ana María; Renaut, Jenny; Vasconcelos, Vitor

    2014-06-11

    Natural toxins such as those produced by freshwater cyanobacteria have been regarded as an emergent environmental threat. However, the impact of these water contaminants in agriculture is not yet fully understood. The aim of this work was to investigate microcystin-LR (MC-LR) toxicity in Lycopersicon esculentum and the toxin accumulation in this horticultural crop. Adult plants (2 month-old) grown in a greenhouse environment were exposed for 2 weeks to either pure MC-LR (100 μg/L) or Microcystis aeruginosa crude extracts containing 100 μg/L MC-LR. Chlorophyll fluorescence was measured, leaf proteome investigated with two-dimensional gel electrophoresis and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF)/TOF, and toxin bioaccumulation assessed by liquid chromatography-mass spectrometry (LC-MS)/MS. Variations in several protein markers (ATP synthase subunits, Cytochrome b6-f complex iron-sulfur, oxygen-evolving enhancer proteins) highlight the decrease of the capacity of plants to synthesize ATP and to perform photosynthesis, whereas variations in other proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and ribose-5-phosphate isomerase) suggest an increase of carbon fixation and decrease of carbohydrate metabolism reactions in plants exposed to pure MC-LR and cyanobacterial extracts, respectively. MC-LR was found in roots (1635.21 μg/kg fw), green tomatoes (5.15-5.41 μg/kg fw), mature tomatoes (10.52-10.83 μg/kg fw), and leaves (12,298.18 μg/kg fw). The results raise concerns relative to food safety and point to the necessity of monitoring the bioaccumulation of water toxins in agricultural systems affected by cyanotoxin contamination.

  10. Homology modeling and docking studies of IscS from extremophile Acidithiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The gene iscS-3 from Acidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacteria, an integral three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and further used to search bind sites, carry out flexible docking with cofactor pyridoxal 5'-phosphate(PLP) and substrate cysteine and hereby detect its key residues. Through these procedures, the detail conformations of PLP-IscS(P-I) and cysteine-PLP-IscS(C-P-I) complexes were obtained. In P-I complex, the residues of Lys208, His106, Thr78, Ser205, His207, Asp182 and Gln185 have large interaction energies and/or hydrogen bonds fixation with PLP. In C-P-I complex, the amino group in cysteine is very near His106, Lys208 and PLP, the interaction energies for cysteine with them are very high. The above results are well consistent with those experimental facts of the homologues from other sources. Interestingly, the four residues of Glu105, Glu79, Ser203 and His180 in P-I docking and the residue of Lys213 in C-P-I docking also have great interaction energies, which are fitly conservation in IscSs from all kinds of sources but have not been identified before. From these results, this gene can be confirmed at 3D level to encode the iron-sulfur cluster assembly protein lscS and subsequently play a sulfur traffic role. Furthermore, the substrate cysteine can be presumed to be effectively recruited into the active site. Finally, the above detected key residues can be conjectured to be directly responsible for the bind and/or catalysis of PLP and cysteine.

  11. Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history.

    Science.gov (United States)

    Lewis, Charles A; Crayle, Jesse; Zhou, Shuntai; Swanstrom, Ronald; Wolfenden, Richard

    2016-07-19

    The hydrolytic deamination of cytosine and 5-methylcytosine residues in DNA appears to contribute significantly to the appearance of spontaneous mutations in microorganisms and in human disease. In the present work, we examined the mechanism of cytosine deamination and the response of the uncatalyzed reaction to changing temperature. The positively charged 1,3-dimethylcytosinium ion was hydrolyzed at a rate similar to the rate of acid-catalyzed hydrolysis of 1-methylcytosine, for which it furnishes a satisfactory kinetic model and a probable mechanism. In agreement with earlier reports, uncatalyzed deamination was found to proceed at very similar rates for cytosine, 1-methylcytosine, cytidine, and cytidine 5'-phosphate, and also for cytosine residues in single-stranded DNA generated from a phagemid, in which we sequenced an insert representing the gene of the HIV-1 protease. Arrhenius plots for the uncatalyzed deamination of cytosine were linear over the temperature range from 90 °C to 200 °C and indicated a heat of activation (ΔH(‡)) of 23.4 ± 0.5 kcal/mol at pH 7. Recent evidence indicates that the surface of the earth has been cool enough to support life for more than 4 billion years and that life has been present for almost as long. If the temperature at Earth's surface is assumed to have followed Newton's law of cooling, declining exponentially from 100 °C to 25 °C during that period, then half of the cytosine-deaminating events per unit biomass would have taken place during the first 0.2 billion years, and <99.4% would have occurred during the first 2 billion years.

  12. Role of active-site residues Tyr55 and Tyr114 in catalysis and substrate specificity of Corynebacterium diphtheriae C-S lyase.

    Science.gov (United States)

    Astegno, Alessandra; Allegrini, Alessandra; Piccoli, Stefano; Giorgetti, Alejandro; Dominici, Paola

    2015-01-01

    In recent years, there has been increased interest in bacterial methionine biosynthesis enzymes as antimicrobial targets because of their pivotal role in cell metabolism. C-S lyase from Corynebacterium diphtheriae is a pyridoxal 5'-phosphate-dependent enzyme in the transsulfuration pathway that catalyzes the α,β-elimination of sulfur-containing amino acids, such as L-cystathionine, to generate ammonia, pyruvate, and homocysteine, the immediate precursor of L-methionine. In order to gain deeper insight into the functional and dynamic properties of the enzyme, mutants of two highly conserved active-site residues, Y55F and Y114F, were characterized by UV-visible absorbance, fluorescence, and CD spectroscopy in the absence and presence of substrates and substrate analogs, as well as by steady-state kinetic studies. Substitution of Tyr55 with Phe apparently causes a 130-fold decrease in K(d)(PLP) at pH 8.5 providing evidence that Tyr55 plays a role in cofactor binding. Moreover, spectral data show that the mutant accumulates the external aldimine intermediate suggesting that the absence of interaction between the hydroxyl moiety and PLP-binding residue Lys222 causes a decrease in the rate of substrate deprotonation. Mutation of Tyr114 with Phe slightly influences hydrolysis of L-cystathionine, and causes a change in substrate specificity towards L-serine and O-acetyl-L-serine compared to the wild type enzyme. These findings, together with computational data, provide useful insights in the substrate specificity of C-S lyase, which seems to be regulated by active-site architecture and by the specific conformation in which substrates are bound, and will aid in development of inhibitors.

  13. Analysis of molecular markers as predictive factors of lymph node involvement in breast carcinoma.

    Science.gov (United States)

    Paula, Luciana Marques; De Moraes, Luis Henrique Ferreira; Do Canto, Abaeté Leite; Dos Santos, Laurita; Martin, Airton Abrahão; Rogatto, Silvia Regina; De Azevedo Canevari, Renata

    2017-01-01

    Nodal status is the most significant independent prognostic factor in breast cancer. Identification of molecular markers would allow stratification of patients who require surgical assessment of lymph nodes from the large numbers of patients for whom this surgical procedure is unnecessary, thus leading to a more accurate prognosis. However, up to now, the reported studies are preliminary and controversial, and although hundreds of markers have been assessed, few of them have been used in clinical practice for treatment or prognosis in breast cancer. The purpose of the present study was to determine whether protein phosphatase Mg2+/Mn2+ dependent 1D, β-1,3-N-acetylglucosaminyltransferase, neural precursor cell expressed, developmentally down-regulated 9, prohibitin, phosphoinositide-3-kinase regulatory subunit 5 (PIK3R5), phosphatidylinositol-5-phosphate 4-kinase type IIα, TRF1-interacting ankyrin-related ADP-ribose polymerase 2, BCL2 associated agonist of cell death, G2 and S-phase expressed 1 and PAX interacting protein 1 genes, described as prognostic markers in breast cancer in a previous microarray study, are also predictors of lymph node involvement in breast carcinoma Reverse transcription-quantitative polymerase chain reaction analysis was performed on primary breast tumor tissues from women with negative lymph node involvement (n=27) compared with primary tumor tissues from women with positive lymph node involvement (n=23), and was also performed on primary tumors and paired lymph node metastases (n=11). For all genes analyzed, only the PIK3R5 gene exhibited differential expression in samples of primary tumors with positive lymph node involvement compared with primary tumors with negative lymph node involvement (P=0.0347). These results demonstrate that the PIK3R5 gene may be considered predictive of lymph node involvement in breast carcinoma. Although the other genes evaluated in the present study have been previously characterized to be involved with

  14. Radiation effects on rat testes. VIII. Kinetic properties of hydrolases following partial body gamma irradiation of rats.

    Science.gov (United States)

    Gupta, G S; Bawa, S R

    1975-05-01

    Kinetic properties such as Michaelis constant (Km), maximum velocity (Vmax), temperature coefficient (Q10) and energy of activation (Ea) for hydrolysis of adenosine-5'-phosphate at pH 9.5 and sodium pyrophosphate at pH 8.35 by normal and radiated testes supernatants have been described. Kinetic parameters are related to respective phosphohydrolases (phosphatases). (1) Km values for 5'nucleotidase and inorganic pyrophosphatase of normal testis were determined as 1.25 X 10(-3)M and 0.81 X 10(-3)M respectively; (II) Vmax correspond to 318 mug P/15 min and 430 mug P/15 min for 100 mg tissue respectively; (III) Q10 for 5 nucleotidase is 1.7 and for inorganic pyrophosphatase is 4.2 at a temperature 10-30degreesC; (IV) Ea for hydrolysis of AMP and sodium pyrophosphate were calculated by Arrhenius plots as 17000 and 9000 cal/mol. (V) Km values for irradiated enzymes are similar to the control values suggesting that the binding capacities of these enzymes with their substrates remain unaffected after radiation; (VI) Vmax for radiated enzymes correspond to a value of 500 mug P/100 mg tissue/15 min for 5'nucleotidase and 118 mug P/100 mug tissue/15 min for inorganic pyrophosphatase; (VII) 110 for 5'nucleotidase is 2.2 and inorganic pyrophosphatase 1.16 at 10-30degreesC; (VIII) Ea for irradiated 5'nucleotidase is comparable to those of normal rats whereas for inorganic pyrophosphatase Ea is moderately declined. The observed changes have been related to the different types of metabolic activity in germinal and nongerminal cells of testes.

  15. Growth stress triggers riboflavin overproduction in Ashbya gossypii.

    Science.gov (United States)

    Schlösser, Thomas; Wiesenburg, Andreas; Gätgens, Cornelia; Funke, Andreas; Viets, Ulrike; Vijayalakshmi, Swaminathan; Nieland, Susanne; Stahmann, K-Peter

    2007-09-01

    The filamentous fungus Ashbya gossypii is used for riboflavin biosynthesis on an industrial scale, but even the wild type displays overproduction. Because riboflavin overproduction was known to start at the transition between growth and stationary phase, it was suspected that overproduction was induced at low growth rates. However, chemostatic cultivations performed at different growth rates did not result in any detectable riboflavin formation. In this study, we report that it was not the final growth rate that triggered riboflavin overproduction but a decline in growth rate. Therefore, continuous fermenter cultivations with dilution rate shifts were performed. Peaks of riboflavin overproduction were observed in the wild type and in a RIB3placZ reporter strain after downshifts in dilution rate. Accumulation of riboflavin correlated with an increased expression of lacZ reporter activity. The step size of the downshifts corresponded to the peak size of riboflavin formation and reporter activity. Expression of further RIB genes encoding riboflavin biosynthetic enzymes was analyzed by RT-PCR. RIB mRNA levels of the ribulose-5-phosphate branch of the divided riboflavin biosynthesis pathway (RIB3, RIB4, and RIB5) were found to increase in the riboflavin production phase, whereas the RIB2 and RIB7 mRNA levels belonging to the GTP branch remained constant. We propose that a decline in growth rate triggers the increased expression of RIB3, RIB4, and RIB5 resulting in riboflavin overproduction. Because although a reduction in oxygen supply, temperature increase or decrease, or salt stress did affect growth, but neither did lead to riboflavin overproduction nor did induce RIB3 reporter expression, we conclude that declining nutrition must be the stress stimulus. Because about half of the cells in the hyphae of Ashbya gossypii did not accumulate riboflavin, the regulatory response on the cellular level can be estimated to be at least twice as great in comparison to what we

  16. Identification and transcript analysis of two glutamate decarboxylase genes, CsGAD1 and CsGAD2, reveal the strong relationship between CsGAD1 and citrate utilization in citrus fruit.

    Science.gov (United States)

    Liu, Xiao; Hu, Xiao-Mei; Jin, Long-Fei; Shi, Cai-Yun; Liu, Yong-Zhong; Peng, Shu-Ang

    2014-09-01

    Glutamate decarboxylase (GAD, EC 4.1.1.15) has been suggested to be a key, regulatory point in the biosynthesis of γ-aminobutyrate (GABA) and in the utilization of citric acid through GABA shunt pathway. In this study we discovered two GAD genes, named as CsGAD1 and CsGAD2, in citrus genome database and then successfully cloned. Both CsGAD1 and CsGAD2 have a putative pyridoxal 5-phosphate binding domain in the middle region and a putative calmodulin-binding domain at the carboxyl terminus. Gene structure analysis showed that much difference exists in the size of exons and introns or in cis-regulatory elements in promoter region between the two GAD genes. Gene expression indicated that CsGAD1 transcript was predominantly expressed in flower and CsGAD2 transcript was predominantly expressed in fruit juice sacs; in the ripening fruit, CsGAD1 transcript level was at least 2-time higher than CsGAD2 transcript level. Moreover, CsGAD1 transcript level was increased significantly along with the increase of GAD activity and accompanied by a significant decrease of titratable acid (TA), suggesting that it is CsGAD1 rather than CsGAD2 plays a role in the citric acid utilization during fruit ripening. In addition, injection of abscisic acid and foliar spray of K2SO4 significantly increased the TA content of Satsuma mandarin, and significantly decreased GAD activity as well as CsGAD1 transcript, further suggesting the important role of CsGAD1 in the citrate utilization of citrus fruit.

  17. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations.

    Science.gov (United States)

    Mehere, Prajwalini; Han, Qian; Lemkul, Justin A; Vavricka, Christopher J; Robinson, Howard; Bevan, David R; Li, Jianyong

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using α-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 Å resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  18. Clostridium Perfringens Epsilon Toxin Binds to Membrane Lipids and Its Cytotoxic Action Depends on Sulfatide.

    Directory of Open Access Journals (Sweden)

    Carles Gil

    Full Text Available Epsilon toxin (Etx is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3-phosphate and phosphatidylinositol (5-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology.

  19. Molybdate transport in a chemically complex aquifer: Field measurements compared with solute-transport model predictions

    Science.gov (United States)

    Stollenwerk, K.G.

    1998-01-01

    A natural-gradient tracer test was conducted in an unconfined sand and gravel aquifer on Cape Cod, Massachusetts. Molybdate was included in the injectate to study the effects of variable groundwater chemistry on its aqueous distribution and to evaluate the reliability of laboratory experiments for identifying and quantifying reactions that control the transport of reactive solutes in groundwater. Transport of molybdate in this aquifer was controlled by adsorption. The amount adsorbed varied with aqueous chemistry that changed with depth as freshwater recharge mixed with a plume of sewage-contaminated groundwater. Molybdate adsorption was strongest near the water table where pH (5.7) and the concentration of the competing solutes phosphate (2.3 micromolar) and sulfate (86 micromolar) were low. Adsorption of molybdate decreased with depth as pH increased to 6.5, phosphate increased to 40 micromolar, and sulfate increased to 340 micromolar. A one-site diffuse-layer surface-complexation model and a two-site diffuse-layer surface-complexation model were used to simulate adsorption. Reactions and equilibrium constants for both models were determined in laboratory experiments and used in the reactive-transport model PHAST to simulate the two-dimensional transport of molybdate during the tracer test. No geochemical parameters were adjusted in the simulation to improve the fit between model and field data. Both models simulated the travel distance of the molybdate cloud to within 10% during the 2-year tracer test; however, the two-site diffuse-layer model more accurately simulated the molybdate concentration distribution within the cloud.

  20. Determination of cystathionine beta-synthase activity in human plasma by LC-MS/MS: potential use in diagnosis of CBS deficiency.

    LENUS (Irish Health Repository)

    Krijt, Jakub

    2011-02-01

    Cystathionine β-synthase (CBS) deficiency is usually confirmed by assaying the enzyme activity in cultured skin fibroblasts. We investigated whether CBS is present in human plasma and whether determination of its activity in plasma could be used for diagnostic purposes. We developed an assay to measure CBS activity in 20 μL of plasma using a stable isotope substrate - 2,3,3-(2)H serine. The activity was determined by measurement of the product of enzyme reaction, 3,3-(2)H-cystathionine, using LC-MS\\/MS. The median enzyme activity in control plasma samples was 404 nmol\\/h\\/L (range 66-1,066; n = 57). In pyridoxine nonresponsive CBS deficient patients, the median plasma activity was 0 nmol\\/ho\\/L (range 0-9; n = 26), while in pyridoxine responsive patients the median activity was 16 nmol\\/hour\\/L (range 0-358; n = 28); this overlapped with the enzyme activity from control subject. The presence of CBS in human plasma was confirmed by an in silico search of the proteome database, and was further evidenced by the activation of CBS by S-adenosyl-L-methionine and pyridoxal 5\\'-phosphate, and by configuration of the detected reaction product, 3,3-(2)H-cystathionine, which was in agreement with the previously observed CBS reaction mechanism. We hypothesize that the CBS enzyme in plasma originates from liver cells, as the plasma CBS activities in patients with elevated liver aminotransferase activities were more than 30-fold increased. In this study, we have demonstrated that CBS is present in human plasma and that its catalytic activity is detectable by LC-MS\\/MS. CBS assay in human plasma brings new possibilities in the diagnosis of pyridoxine nonresponsive CBS deficiency.

  1. Self-assembled superamolecular switch based on liposome regulates LDH activities%脂质体超分子开关的自组装及其对酶活性的调控

    Institute of Scientific and Technical Information of China (English)

    刘宝全; 王剑锋; 李春斌; 范圣第

    2011-01-01

    以十六烷基胺与十六烷基溴为原料,通过取代反应与缩合反应等5步反应分别合成人工脂质(肽脂质)与人工受体.利用自组装技术在脂质体上构建了超分子开关体系,其中磷酸吡哆醛(PLP)为信号分子,铜离子做为中间信使.在没有调控信号时,铜离子与乳酸脱氢酶结合,抑制酶的活性;当加入信号分子PLP时,信号分子与人工受体作用形成席夫碱,席夫碱与乳酸脱氢酶竞争铜离子,解除铜离子对乳酸脱氢酶活性的抑制,恢复乳酸脱氢酶的催化活性.%A cationic peptide lipid named N, N-dihexadecyl-Na-[6-( trimethylammonio ) hexanoyl]-alaninamide bromide ( N+ C5Ala2C16 ) and a artificial receptor were synthesized with 1-hexadecylamine and 1 -bromohexadecane through five steps, including substitution and condensation reactions. A self assembled superamolecular switch system was obtained based on liposome. In this system, pyridoxal 5'-phosphate acts as artificial signal,Cu2+ acts as a mediator. Without signal molecules, Cu2+ bound LDH and inhibited LDH activities. When signal molecule--PLP was added to this system, PLP attached to liposome surface,and reacted with the amino group of the artificial receptor, and formed Schiff base, and captured copper cation, and led to the recovery of LDH activities which has been inhibited by copper cation.

  2. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    Science.gov (United States)

    Peña-Soler, Esther; Fernandez, Francisco J; López-Estepa, Miguel; Garces, Fernando; Richardson, Andrew J; Quintana, Juan F; Rudd, Kenneth E; Coll, Miquel; Vega, M Cristina

    2014-01-01

    In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA). Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  3. Structural and biochemical analyses of alanine racemase from the multidrug-resistant Clostridium difficile strain 630.

    Science.gov (United States)

    Asojo, Oluwatoyin A; Nelson, Sarah K; Mootien, Sara; Lee, Yashang; Rezende, Wanderson C; Hyman, Daniel A; Matsumoto, Monica M; Reiling, Scott; Kelleher, Alan; Ledizet, Michel; Koski, Raymond A; Anthony, Karen G

    2014-07-01

    Clostridium difficile, a Gram-positive, spore-forming anaerobic bacterium, is the leading cause of infectious diarrhea among hospitalized patients. C. difficile is frequently associated with antibiotic treatment, and causes diseases ranging from antibiotic-associated diarrhea to life-threatening pseudomembranous colitis. The severity of C. difficile infections is exacerbated by the emergence of hypervirulent and multidrug-resistant strains, which are difficult to treat and are often associated with increased mortality rates. Alanine racemase (Alr) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the reversible racemization of L- and D-alanine. Since D-alanine is an essential component of the bacterial cell-wall peptidoglycan, and there are no known Alr homologs in humans, this enzyme is being tested as an antibiotic target. Cycloserine is an antibiotic that inhibits Alr. In this study, the catalytic properties and crystal structures of recombinant Alr from the virulent and multidrug-resistant C. difficile strain 630 are presented. Three crystal structures of C. difficile Alr (CdAlr), corresponding to the complex with PLP, the complex with cycloserine and a K271T mutant form of the enzyme with bound PLP, are presented. The structures are prototypical Alr homodimers with two active sites in which the cofactor PLP and cycloserine are localized. Kinetic analyses reveal that the K271T mutant CdAlr has the highest catalytic constants reported to date for any Alr. Additional studies are needed to identify the basis for the high catalytic activity. The structural and activity data presented are first steps towards using CdAlr for the development of structure-based therapeutics for C. difficile infections.

  4. Crystal structures of lysine-preferred racemases, the non-antibiotic selectable markers for transgenic plants.

    Directory of Open Access Journals (Sweden)

    Hsin-Mao Wu

    Full Text Available Lysine racemase, a pyridoxal 5'-phosphate (PLP-dependent amino acid racemase that catalyzes the interconversion of lysine enantiomers, is valuable to serve as a novel non-antibiotic selectable marker in the generation of transgenic plants. Here, we have determined the first crystal structure of a lysine racemase (Lyr from Proteus mirabilis BCRC10725, which shows the highest activity toward lysine and weaker activity towards arginine. In addition, we establish the first broad-specificity amino acid racemase (Bar structure from Pseudomonas putida DSM84, which presents not only the highest activity toward lysine but also remarkably broad substrate specificity. A complex structure of Bar-lysine is also established here. These structures demonstrate the similar fold of alanine racemase, which is a head-to-tail homodimer with each protomer containing an N-terminal (α/β(8 barrel and a C-terminal β-stranded domain. The active-site residues are located at the protomer interface that is a funnel-like cavity with two catalytic bases, one from each protomer, and the PLP binding site is at the bottom of this cavity. Structural comparisons, site-directed mutagenesis, kinetic, and modeling studies identify a conserved arginine and an adjacent conserved asparagine that fix the orientation of the PLP O3 atom in both structures and assist in the enzyme activity. Furthermore, side chains of two residues in α-helix 10 have been discovered to point toward the cavity and define the substrate specificity. Our results provide a structural foundation for the design of racemases with pre-determined substrate specificity and for the development of the non-antibiotic selection system in transgenic plants.

  5. Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase.

    Science.gov (United States)

    Han, Qian; Robinson, Howard; Gao, Yi Gui; Vogelaar, Nancy; Wilson, Scott R; Rizzi, Menico; Li, Jianyong

    2006-12-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75A high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1A resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  6. Structural and mutational studies on substrate specificity and catalysis of Salmonella typhimurium D-cysteine desulfhydrase.

    Directory of Open Access Journals (Sweden)

    Sakshibeedu R Bharath

    Full Text Available Salmonella typhimurium DCyD (StDCyD is a fold type II pyridoxal 5' phosphate (PLP-dependent enzyme that catalyzes the degradation of D-Cys to H(2S and pyruvate. It also efficiently degrades β-chloro-D-alanine (βCDA. D-Ser is a poor substrate while the enzyme is inactive with respect to L-Ser and 1-amino-1-carboxy cyclopropane (ACC. Here, we report the X-ray crystal structures of StDCyD and of crystals obtained in the presence of D-Cys, βCDA, ACC, D-Ser, L-Ser, D-cycloserine (DCS and L-cycloserine (LCS at resolutions ranging from 1.7 to 2.6 Å. The polypeptide fold of StDCyD consisting of a small domain (residues 48-161 and a large domain (residues 1-47 and 162-328 resembles other fold type II PLP dependent enzymes. The structures obtained in the presence of D-Cys and βCDA show the product, pyruvate, bound at a site 4.0-6.0 Å away from the active site. ACC forms an external aldimine complex while D- and L-Ser bind non-covalently suggesting that the reaction with these ligands is arrested at Cα proton abstraction and transimination steps, respectively. In the active site of StDCyD cocrystallized with DCS or LCS, electron density for a pyridoxamine phosphate (PMP was observed. Crystals soaked in cocktail containing these ligands show density for PLP-cycloserine. Spectroscopic observations also suggest formation of PMP by the hydrolysis of cycloserines. Mutational studies suggest that Ser78 and Gln77 are key determinants of enzyme specificity and the phenolate of Tyr287 is responsible for Cα proton abstraction from D-Cys. Based on these studies, a probable mechanism for the degradation of D-Cys by StDCyD is proposed.

  7. Structural analysis and mutant growth properties reveal distinctive enzymatic and cellular roles for the three major L-alanine transaminases of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Esther Peña-Soler

    Full Text Available In order to maintain proper cellular function, the metabolism of the bacterial microbiota presents several mechanisms oriented to keep a correctly balanced amino acid pool. Central components of these mechanisms are enzymes with alanine transaminase activity, pyridoxal 5'-phosphate-dependent enzymes that interconvert alanine and pyruvate, thereby allowing the precise control of alanine and glutamate concentrations, two of the most abundant amino acids in the cellular amino acid pool. Here we report the 2.11-Å crystal structure of full-length AlaA from the model organism Escherichia coli, a major bacterial alanine aminotransferase, and compare its overall structure and active site composition with detailed atomic models of two other bacterial enzymes capable of catalyzing this reaction in vivo, AlaC and valine-pyruvate aminotransferase (AvtA. Apart from a narrow entry channel to the active site, a feature of this new crystal structure is the role of an active site loop that closes in upon binding of substrate-mimicking molecules, and which has only been previously reported in a plant enzyme. Comparison of the available structures indicates that beyond superficial differences, alanine aminotransferases of diverse phylogenetic origins share a universal reaction mechanism that depends on an array of highly conserved amino acid residues and is similarly regulated by various unrelated motifs. Despite this unifying mechanism and regulation, growth competition experiments demonstrate that AlaA, AlaC and AvtA are not freely exchangeable in vivo, suggesting that their functional repertoire is not completely redundant thus providing an explanation for their independent evolutionary conservation.

  8. Diagnosis and treatment of neurotransmitter disorders.

    Science.gov (United States)

    Pearl, Phillip L; Hartka, Thomas R; Taylor, Jacob

    2006-11-01

    The neurotransmitter disorders represent an enigmatic and enlarging group of neurometabolic conditions caused by abnormal neurotransmitter metabolism or transport. A high index of clinical suspicion is important, given the availability of therapeutic strategies. This article covers disorders of monoamine (catecholamine and serotonin) synthesis, glycine catabolism, pyridoxine dependency, and gamma-aminobutyric acid (GABA) metabolism. The technological aspects of appropriate cerebrospinal fluid (CSF) collection, shipment, study, and interpretation merit special consideration. Diagnosis of disorders of monoamines requires analysis of CSF homovanillic acid, 5-hydroxyindoleacetic acid, ortho-methyldopa, BH4, and neopterin. The delineation of new disorders with important therapeutic implications, such as cerebral folate deficiency and PNPO deficiency, serves to highlight the value of measuring CSF neurotransmitter precursors and metabolites. The impressive responsiveness of Segawa fluctuating dystonia to levodopa is a hallmark feature of previously unrecognized neurologic morbidity becoming treatable at any age. Aromatic amino acid decarboxylase and tyrosine hydroxylase deficiency have more severe phenotypes and show variable responsiveness to levodopa. Glycine encephalopathy usually has a poor outcome; benzoate therapy may be helpful in less affected cases. Pyridoxine-dependent seizures are a refractory but treatable group of neonatal and infantile seizures; rare cases require pyridoxal-5-phosphate. Succinic semialdehyde dehydrogenase deficiency is relatively common in comparison to the remainder of this group of disorders. Treatment directed at the metabolic defect with vigabatrin has been disappointing, and multiple therapies are targeted toward specific but protean symptoms. Other disorders of GABA metabolism, as is true of the wide spectrum of neurotransmitter disorders, will require increasing use of CSF analysis for diagnosis, and ultimately, treatment.

  9. CARINA: nutrient data in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    T. Tanhua

    2009-07-01

    Full Text Available Data on carbon and carbon-relevant hydrographic and hydrochemical parameters from previously non-publicly available cruise data sets in the Arctic, Atlantic and Southern Ocean have been retrieved and merged to a new database: CARINA (CARbon IN the Atlantic. These data have gone through rigorous quality control (QC procedures to assure the highest possible quality and consistency. The data for most of the measured parameters in the CARINA data base were objectively examined in order to quantify systematic differences in the reported values, i.e. secondary quality control. Systematic biases found in the data have been corrected in the data products, i.e. three merged data files with measured, calculated and interpolated data for each of the three CARINA regions; Arctic, Atlantic and Southern Ocean. Out of a total of 188 cruise entries in the CARINA database, 98 were conducted in the Atlantic Ocean and of these 84 cruises report nitrate values, 79 silicate, and 78 phosphate. Here we present details of the secondary QC for nutrients for the Atlantic Ocean part of CARINA. Procedures of quality control, including crossover analysis between cruises and inversion analysis of all crossover data are briefly described. Adjustments were applied to the nutrient values for 43 of the cruises in the Atlantic Ocean region. With these adjustments the CARINA database is consistent both internally as well as with GLODAP data, an oceanographic data set based on the World Hydrographic Program in the 1990s (Key et al., 2004. Based on our analysis we estimate the internal accuracy of the CARINA-ATL nutrient data to be: nitrate 1.5%; phosphate 2.6%; silicate 3.1%. The CARINA data are now suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation.

  10. Structural features and kinetic characterization of alanine racemase from Staphylococcus aureus (Mu50).

    Science.gov (United States)

    Scaletti, Emma R; Luckner, Sylvia R; Krause, Kurt L

    2012-01-01

    Staphylococcus aureus is an opportunistic Gram-positive bacterium which causes a wide variety of diseases ranging from minor skin infections to potentially fatal conditions such as pneumonia, meningitis and septicaemia. The pathogen is a leading cause of nosocomial acquired infections, a problem that is exacerbated by the existence of methicillin- and glycopeptide antibiotic-resistant strains which can be challenging to treat. Alanine racemase (Alr) is a pyridoxal-5'-phosphate-dependent enzyme which catalyzes reversible racemization between enantiomers of alanine. As D-alanine is an essential component of the bacterial cell-wall peptidoglycan, inhibition of Alr is lethal to prokaryotes. Additionally, while ubiquitous amongst bacteria, this enzyme is absent in humans and most eukaryotes, making it an excellent antibiotic drug target. The crystal structure of S. aureus alanine racemase (Alr(Sas)), the sequence of which corresponds to that from the highly antibiotic-resistant Mu50 strain, has been solved to 2.15 Å resolution. Comparison of the Alr(Sas) structure with those of various alanine racemases demonstrates a conserved overall fold, with the enzyme sharing most similarity to those from other Gram-positive bacteria. Structural examination indicates that the active-site binding pocket, dimer interface and active-site entryway of the enzyme are potential targets for structure-aided inhibitor design. Kinetic constants were calculated in this study and are reported here. The potential for a disulfide bond in this structure is noted. This structural and biochemical information provides a template for future structure-based drug-development efforts targeting Alr(Sas).

  11. The 2-C-methylerythritol 4-phosphate pathway in melon is regulated by specialized isoforms for the first and last steps.

    Science.gov (United States)

    Saladié, Montserrat; Wright, Louwrance P; Garcia-Mas, Jordi; Rodriguez-Concepcion, Manuel; Phillips, Michael A

    2014-09-01

    The 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway provides the precursors for the biosynthesis of plastidial isoprenoids, which include the carotenoid pigments of many fruits. We have analysed the genes encoding the seven enzymes of the MEP pathway in melon (Cucumis melo L.) and determined that the first one, 1-deoxyxylulose 5-phosphate synthase (DXS), and the last one, 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (HDR), are represented in the genome as a small gene family and paralogous pair, respectively. In the case of DXS, three genes encode functional DXS activities which fall into previously established type I (CmDXS1) and II (CmDXS2a and CmDXS2b) categories, while a fourth DXS-like gene belonging to the type III group did not encode a protein with DXS activity. Their expression patterns and phylogenies suggest that CmDXS1 is functionally specialized for developmental and photosynthetic processes, while CmDXS2a and CmDXS2b are induced in flowers and ripening fruit of orange- (but not white-) fleshed varieties, coinciding with β-carotene accumulation. This is the first instance connecting type II DXS genes to specialized isoprenoid biosynthesis in the fruit of an agronomically important species. Two HDR paralogues were shown to encode functional enzymes, although only CmHDR1 was highly expressed in the tissues and developmental stages tested. Phylogenetic analysis showed that in cucurbits such as melon, these HDR paralogues probably arose through individual gene duplications in a common angiosperm ancestor, mimicking a prior division in gymnosperms, while other flowering plants, including apple, soy, canola, and poplar, acquired HDR duplicates recently as homoeologues through large-scale genome duplications. We report the influence of gene duplication history on the regulation of the MEP pathway in melon and the role of specialized MEP-pathway isoforms in providing precursors for β-carotene production in orange-fleshed melon varieties.

  12. Crystal Structures of Aedes Aegypt Alanine Glyoxylate Aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Han,Q.; Robinson, H.; Gao, Y.; Vogelaar, N.; Wilson, S.; Rizzi, M.; Li, J.

    2006-01-01

    Mosquitoes are unique in having evolved two alanine glyoxylate aminotransferases (AGTs). One is 3-hydroxykynurenine transaminase (HKT), which is primarily responsible for catalyzing the transamination of 3-hydroxykynurenine (3-HK) to xanthurenic acid (XA). Interestingly, XA is used by malaria parasites as a chemical trigger for their development within the mosquito. This 3-HK to XA conversion is considered the major mechanism mosquitoes use to detoxify the chemically reactive and potentially toxic 3-HK. The other AGT is a typical dipteran insect AGT and is specific for converting glyoxylic acid to glycine. Here we report the 1.75{angstrom} high-resolution three-dimensional crystal structure of AGT from the mosquito Aedes aegypti (AeAGT) and structures of its complexes with reactants glyoxylic acid and alanine at 1.75 and 2.1{angstrom} resolution, respectively. This is the first time that the three-dimensional crystal structures of an AGT with its amino acceptor, glyoxylic acid, and amino donor, alanine, have been determined. The protein is dimeric and adopts the type I-fold of pyridoxal 5-phosphate (PLP)-dependent aminotransferases. The PLP co-factor is covalently bound to the active site in the crystal structure, and its binding site is similar to those of other AGTs. The comparison of the AeAGT-glyoxylic acid structure with other AGT structures revealed that these glyoxylic acid binding residues are conserved in most AGTs. Comparison of the AeAGT-alanine structure with that of the Anopheles HKT-inhibitor complex suggests that a Ser-Asn-Phe motif in the latter may be responsible for the substrate specificity of HKT enzymes for 3-HK.

  13. Adipose tissue proteomes of intrauterine growth-restricted piglets artificially reared on a high-protein neonatal formula.

    Science.gov (United States)

    Sarr, Ousseynou; Louveau, Isabelle; Le Huërou-Luron, Isabelle; Gondret, Florence

    2012-11-01

    The eventuality that adipose tissues adapt to neonatal nutrition in a way that may program later adiposity or obesity in adulthood is receiving increasing attention in neonatology. This study assessed the immediate effects of a high-protein neonatal formula on proteome profiles of adipose tissues in newborn piglets with intrauterine growth restriction. Piglets (10th percentile) were fed milk replacers formulated to provide an adequate (AP) or a high (HP) protein supply from day 2 to the day prior weaning (day 28, n=5 per group). Adipocytes with small diameters were present in greater proportions in subcutaneous and perirenal adipose tissues from HP piglets compared with AP ones at this age. Two-dimensional gel electrophoresis analysis of adipose tissue depots revealed a total of 32 protein spots being up- or down-regulated (P<.10) for HP piglets compared with AP piglets; 18 of them were unambiguously identified by mass spectrometry. These proteins were notably related to signal transduction (annexin 2), redox status (peroxiredoxin 6, glutathione S-transferase omega 1, cyclophilin-A), carbohydrate metabolism (ribose-5-phosphate dehydrogenase, lactate dehydrogenase), amino acid metabolism (glutamate dehydrogenase 1) and cell cytoskeleton dynamics (dynactin and cofilin-1). Proteomic changes occurred mainly in dorsal subcutaneous adipose tissue, with the notable exception of annexin 1 involved in lipid metabolic process having a lower abundance in HP piglets for perirenal adipose tissue only. Together, modulation in those proteins could represent a novel starting point for elucidating catch-up fat growth observed in later life in growing animals having been fed HP formula.

  14. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance.

    Science.gov (United States)

    Hove-Jensen, Bjarne; Andersen, Kasper R; Kilstrup, Mogens; Martinussen, Jan; Switzer, Robert L; Willemoës, Martin

    2017-03-01

    Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.

  15. XRCC1 and DNA polymerase β in cellular protection against cytotoxic DNA single-strand breaks

    Institute of Scientific and Technical Information of China (English)

    Julie K Horton; Mary Watson; Donna F Stefanick; Daniel T Shaughnessy; Jack A Taylor; Samuel H Wilson

    2008-01-01

    Single-strand breaks (SSBs) can occur in cells either directly, or indirectly following initiation of base excision re-pair (BER). SSBs generally have blocked termini lacking the conventional 5'-phosphate and 3'-hydroxyl groups and require further processing prior to DNA synthesis and ligation. XRCC1 is devoid of any known enzymatic activity, but it can physically interact with other proteins involved in all stages of the overlapping SSB repair and BER pathways, including those that conduct the rate-limiting end-tailoring, and in many cases can stimulate their enzymatic activities. XRCC1-/- mouse fibroblasts are most hypersensitive to agents that produce DNA lesions repaired by monofunctional glycosylase-initiated BER and that result in formation of indirect SSBs. A requirement for the deoxyribose phosphate lyase activity of DNA polymerase β (polβ) is specific to this pathway, whereas pol β is implicated in gap-filling during repair of many types of SSBs. Elevated levels of strand breaks, and diminished repair, have been demonstrated in MMS-treated XRCC1-/-, and to a lesser extent in polβ-/- cell lines, compared with wild-type cells. Thus a strong correlation is observed between cellular sensitivity to MMS and the ability of cells to repair MMS-induced damage. Exposure of wild-type andpolβ-/- cells to an inhibitor of PARP activity dramatically potentiates MMS-induccd cytotoxicity. XRCC1-/- cellsare also sensitized by PARP inhibition demonstrating that PARP-mediated poly(ADP-ribosyl)ation plays a role inmodulation of cytotoxicity beyond recruitment of XRCC1 to sites of DNA damage.

  16. In vitro dissolution of proton-pump inhibitor products intended for paediatric and geriatric use in physiological bicarbonate buffer.

    Science.gov (United States)

    Liu, Fang; Shokrollahi, Honaz

    2015-05-15

    Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products.

  17. Purification and properties of thermostable tryptophanase from an obligately symbiotic thermophile, Symbiobacterium thermophilum.

    Science.gov (United States)

    Suzuki, S; Hirahara, T; Horinouchi, S; Beppu, T

    1991-12-01

    A thermostable tryptophanase was extracted from a thermophilic bacterium, Symbiobacterium thermophilum strain T, which is obligately symbiotic with the thermophilic Bacillus strain S. The enzyme was purified 21-fold to homogeneity with 19% recovery by a series of chromatographies using anion-exchange, hydroxylapatite, hydrophobic interaction, and MonoQ anion-exchange columns. The molecular weight of the purified enzyme was estimated to be approximately 210,000 by gel filtration, while the molecular weight of its subunit was 46,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which indicates that the native enzyme is composed of four homologous subunits. The isoelectric point of the enzyme was 4.9. The tryptophanase was stable to heating at 65 degrees C for 20 min and the optimum temperature for the enzyme activity for 20 min reaction was 70 degrees C. The optimum pH was 7.0. The NH2-terminal amino acid sequence of this tryptophanase shows similarity to that of Escherichia coli K-12, despite a great difference in the thermostability of these two enzymes. The purified enzyme catalyzed the degradation (alpha, beta-elimination) of L-tryptophan into indole, pyruvate, and ammonia in the presence of pyridoxal-5'-phosphate. The Km value for L-tryptophan was 1.47 mM. 5-Hydroxy-L-tryptophan, 5-methyl-DL-tryptophan, L-cysteine, S-methyl-L-cysteine, and L-serine were also used as substrates and converted to pyruvate. The reverse reaction of alpha, beta-elimination of this tryptophanase produced L-tryptophan from indole and pyruvate in the presence of a high concentration of ammonium acetate.

  18. Structure of Escherichia coli tryptophanase.

    Science.gov (United States)

    Ku, Shao Yang; Yip, Patrick; Howell, P Lynne

    2006-07-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the alpha-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the alpha-proton of the substrate for beta-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal.

  19. A structural view of the dissociation of Escherichia coli tryptophanase.

    Science.gov (United States)

    Green, Keren; Qasim, Nasrin; Gdaelvsky, Garik; Kogan, Anna; Goldgur, Yehuda; Parola, Abraham H; Lotan, Ofra; Almog, Orna

    2015-12-01

    Tryptophanase (Trpase) is a pyridoxal 5'-phosphate (PLP)-dependent homotetrameric enzyme which catalyzes the degradation of L-tryptophan. Trpase is also known for its cold lability, which is a reversible loss of activity at low temperature (2°C) that is associated with the dissociation of the tetramer. Escherichia coli Trpase dissociates into dimers, while Proteus vulgaris Trpase dissociates into monomers. As such, this enzyme is an appropriate model to study the protein-protein interactions and quaternary structure of proteins. The aim of the present study was to understand the differences in the mode of dissociation between the E. coli and P. vulgaris Trpases. In particular, the effect of mutations along the molecular axes of homotetrameric Trpase on its dissociation was studied. To answer this question, two groups of mutants of the E. coli enzyme were created to resemble the amino-acid sequence of P. vulgaris Trpase. In one group, residues 15 and 59 that are located along the molecular axis R (also termed the noncatalytic axis) were mutated. The second group included a mutation at position 298, located along the molecular axis Q (also termed the catalytic axis). Replacing amino-acid residues along the R axis resulted in dissociation of the tetramers into monomers, similar to the P. vulgaris Trpase, while replacing amino-acid residues along the Q axis resulted in dissociation into dimers only. The crystal structure of the V59M mutant of E. coli Trpase was also determined in its apo form and was found to be similar to that of the wild type. This study suggests that in E. coli Trpase hydrophobic interactions along the R axis hold the two monomers together more strongly, preventing the dissociation of the dimers into monomers. Mutation of position 298 along the Q axis to a charged residue resulted in tetramers that are less susceptible to dissociation. Thus, the results indicate that dissociation of E. coli Trpase into dimers occurs along the molecular Q axis.

  20. The catalytic mechanism of indole-3-glycerol phosphate synthase: crystal structures of complexes of the enzyme from Sulfolobus solfataricus with substrate analogue, substrate, and product.

    Science.gov (United States)

    Hennig, Michael; Darimont, B D; Jansonius, J N; Kirschner, K

    2002-06-07

    Indoleglycerol phosphate synthase catalyzes the ring closure of an N-alkylated anthranilate to a 3-alkyl indole derivative, a reaction requiring Lewis acid catalysis in vitro. Here, we investigated the enzymatic reaction mechanism through X-ray crystallography of complexes of the hyperthermostable enzyme from Sulfolobus solfataricus with the substrate 1-(o-carboxyphenylamino) 1-deoxyribulose 5-phosphate, a substrate analogue and the product indole-3-glycerol phosphate. The substrate and the substrate analogue are bound to the active site in a similar, extended conformation between the previously identified phosphate binding site and a hydrophobic pocket for the anthranilate moiety. This binding mode is unproductive, because the carbon atoms that are to be joined are too far apart. The indole ring of the bound product resides in a second hydrophobic pocket adjacent to that of the anthranilate moiety of the substrate. Although the hydrophobic moiety of the substrate moves during catalysis from one hydrophobic pocket to the other, the triosephosphate moiety remains rigidly bound to the same set of hydrogen-bonding residues. Simultaneously, the catalytically important residues Lys53, Lys110 and Glu159 maintain favourable distances to the atoms of the ligand undergoing covalent changes. On the basis of these data, the structures of two putative catalytic intermediates were modelled into the active site. This new structural information and the modelling studies provide further insight into the mechanism of enzyme-catalyzed indole synthesis. The charged epsilon-amino group of Lys110 is the general acid, and the carboxylate group of Glu159 is the general base. Lys53 guides the substrate undergoing conformational transitions during catalysis, by forming a salt-bridge to the carboxylate group of its anthranilate moiety.