WorldWideScience

Sample records for 1-d 2-d 3-d

  1. Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns

    Science.gov (United States)

    Dong, Pinliang

    2009-10-01

    Spatial scale plays an important role in many fields. As a scale-dependent measure for spatial heterogeneity, lacunarity describes the distribution of gaps within a set at multiple scales. In Earth science, environmental science, and ecology, lacunarity has been increasingly used for multiscale modeling of spatial patterns. This paper presents the development and implementation of a geographic information system (GIS) software extension for lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Depending on the application requirement, lacunarity analysis can be performed in two modes: global mode or local mode. The extension works for: (1) binary (1-bit) and grey-scale datasets in any raster format supported by ArcGIS and (2) 1D, 2D, and 3D point datasets as shapefiles or geodatabase feature classes. For more effective measurement of lacunarity for different patterns or processes in raster datasets, the extension allows users to define an area of interest (AOI) in four different ways, including using a polygon in an existing feature layer. Additionally, directionality can be taken into account when grey-scale datasets are used for local lacunarity analysis. The methodology and graphical user interface (GUI) are described. The application of the extension is demonstrated using both simulated and real datasets, including Brodatz texture images, a Spaceborne Imaging Radar (SIR-C) image, simulated 1D points on a drainage network, and 3D random and clustered point patterns. The options of lacunarity analysis and the effects of polyline arrangement on lacunarity of 1D points are also discussed. Results from sample data suggest that the lacunarity analysis extension can be used for efficient modeling of spatial patterns at multiple scales.

  2. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    Science.gov (United States)

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-12-01

    A consistent "2D/1D" neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  3. 1-D and 2-D resonances in an Alpine valley identified from ambient noise measurements and 3-D modelling

    Science.gov (United States)

    Le Roux, Olivier; Cornou, Cécile; Jongmans, Denis; Schwartz, Stéphane

    2012-09-01

    H/V spectral ratios are regularly used for estimating the bedrock depth in 1-D like basins exhibiting smooth lateral variations. In the case of 2-D or 3-D pronounced geometries, observational and numerical studies have shown that H/V curves exhibit peculiar shapes and that the H/V frequency generally overestimates 1-D theoretical resonance frequency. To investigate the capabilities of the H/V method in complex structures, a detailed comparison between measured and 3-D-simulated ambient vibrations was performed in the small-size lower Romanche valley (French Alps), which shows significant variations in geometry, downstream and upstream the Séchilienne basin. Analysing the H/V curve characteristics, two different wave propagation modes were identified along the valley. Relying on previous geophysical investigation, a power-law relationship was derived between the bedrock depth and the H/V peak frequency, which was used for building a 3-D model of the valley geometry. Simulated and experimental H/V curves were found to exhibit quite similar features in terms of curve shape and peak frequency values, validating the 3-D structure. This good agreement also evidenced two different propagation modes in the valley: 2-D resonance in the Séchilienne basin and 1-D resonance in the external parts. This study underlines the interest of H/V curves for investigating complex basin structures.

  4. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Benjamin, E-mail: collinsbs@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Stimpson, Shane, E-mail: stimpsonsg@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Kelley, Blake W., E-mail: kelleybl@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Young, Mitchell T.H., E-mail: youngmit@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Kochunas, Brendan, E-mail: bkochuna@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Graham, Aaron, E-mail: aarograh@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Larsen, Edward W., E-mail: edlarsen@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Downar, Thomas, E-mail: downar@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Godfrey, Andrew, E-mail: godfreyat@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States)

    2016-12-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  5. Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators

    KAUST Repository

    Mansingka, Abhinav S.

    2012-10-07

    This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness and positive Lyapunov exponent. Low-significance bits form a PRNG and pass all tests in the NIST SP. 800-22 suite without post-processing. Real-time control of the number of scrolls allows distinct output streams with 2-D and 3-D multiscroll chaos enabling greater controllability. The proposed PRNGs are experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.25%, throughput up to 5.25 Gbits/s and up to 512 distinct output streams with low cross-correlation.

  6. Comparing 1D, 2D and 3D models for predicting root water uptake at the plant scale

    Science.gov (United States)

    de Willigen, Peter; van Dam, Jos; Heinen, Marius; Javaux, Mathieu

    2010-05-01

    Numerous modeling approaches exist to simulate soil water extraction by plant roots. They mainly differ in terms of dimensionality (from 1-D to 3-D) and in the degree of detail involved in the root geometry. One dimensional models consider 1-D root length density profiles and assume uniform horizontal soil water distribution and are very efficient regarding computation time. On the opposite, very detailed 3-D approaches, which consider explicitly the root architecture and the root water flow, may need more computation power and time. In between these two extreme cases, other approaches exist, which may be more accurate and less computationally demanding. Our objective is to compare different modeling approaches and check how their implicit or explicit simplifications or assumptions affect the root water uptake (RWU) predictions. Four models were subject to our comparison, all based on Richards equation. The first is a 1-D model solving Richards equation (SWAP) with the Feddes (1978) approach for RWU. The second one is also based on SWAP but with the root water uptake defined by a microscopic approach developed by de Jong van Lier (2008). The third one, FUSSIM, solves the Richards equation in 2-D based on a 2-D distribution of root length density (RLD). The fourth one is R-SWMS, a 3-D model simulating the water flow in the soil and in the roots, based on the complete root architecture description. A 45-day maize root was generated in 3-D and simplified in 2-D or 1-D RLD distributions. We simulated a constant uptake rate for 30 days with a 1-day rainfall at day 15 in three different soil types. We compared relative water uptake versus relative root length density profiles, and actual transpiration time series. On the one hand, the general trends of cumulative transpiration with time for the three soils were relatively similar for all models. On the other hand, some features like hydraulic lift are simulated by both FUSSIM and RSWMS models while other models do not

  7. Structural mapping and framework interconversions in 1D, 2D, and 3D divalent metal R,S-hydroxyphosphonoacetate hybrids.

    Science.gov (United States)

    Colodrero, Rosario M P; Olivera-Pastor, Pascual; Cabeza, Aurelio; Papadaki, Maria; Demadis, Konstantinos D; Aranda, Miguel A G

    2010-01-18

    Reactions of divalent cations (Mg(2+), Co(2+), Ni(2+), and Zn(2+)) with R,S-hydroxyphosphonoacetic acid (HPAA) in aqueous solutions (pH values ranging 1.0-4.0) yielded a range of crystalline hydrated M-HPAA hybrids. One-dimensional (1D) chain compounds were formed at room temperature whereas reactions conducted under hydrothermal conditions resulted in two-dimensional (2D) layered frameworks or, in some cases, three-dimensional (3D) networks incorporating various alkaline cations. 1D phases with compositions [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)].2H(2)O (M = Mg, Co, and Zn) were isolated. These compounds were dehydrated in liquid water to yield the corresponding [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] compounds lacking the lattice water between the 1D chains. [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] (M = Mg, Ni, Co, Zn) compounds were formed by crystallization at room temperature (at higher pH values) or also by partial dehydration of 1D compounds with higher hydration degrees. Complete dehydration of these 1D solids at 240-270 degrees C led to 3D phases, [M{HO3PCH(OH)CO(2)}]. The 2D layered compound [Mg{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] was obtained under hydrothermal conditions. For both synthesis methods, addition of alkali metal hydroxides to adjust the pH usually led to mixed phase materials, whereas direct reactions between the metal oxides and the hydroxyphosphonoacetic acid gave single phase materials. On the other hand, adjusting the pH with acetate salts and increasing the ratio M(2+)/HPAA and/or the A(+)/M(2+) ratio (A = Na, K) resulted in 3D networks, where the alkali cations were incorporated within the frameworks for charge compensation. The crystal structures of eight new M(II)-HPAA hybrids are reported herein and the thermal behavior related to dehydration/rehydration of some compounds are studied in detail.

  8. Kondo effect at low electron density and high particle-hole asymmetry in 1D, 2D, and 3D

    Science.gov (United States)

    Žitko, Rok; Horvat, Alen

    2016-09-01

    Using the perturbative scaling equations and the numerical renormalization group, we study the characteristic energy scales in the Kondo impurity problem as a function of the exchange coupling constant J and the conduction-band electron density. We discuss the relation between the energy gain (impurity binding energy) Δ E and the Kondo temperature TK. We find that the two are proportional only for large values of J , whereas in the weak-coupling limit the energy gain is quadratic in J , while the Kondo temperature is exponentially small. The exact relation between the two quantities depends on the detailed form of the density of states of the band. In the limit of low electron density the Kondo screening is affected by the strong particle-hole asymmetry due to the presence of the band-edge van Hove singularities. We consider the cases of one- (1D), two- (2D), and three-dimensional (3D) tight-binding lattices (linear chain, square lattice, cubic lattice) with inverse-square-root, step-function, and square-root onsets of the density of states that are characteristic of the respective dimensionalities. We always find two different regimes depending on whether TK is higher or lower than μ , the chemical potential measured from the bottom of the band. For 2D and 3D, we find a sigmoidal crossover between the large-J and small-J asymptotics in Δ E and a clear separation between Δ E and TK for TKband edge. Furthermore, we find that in 1D the particle-hole asymmetry leads to a large decrease of TK compared to the standard result obtained by approximating the density of states to be constant (flat-band approximation), while in 3D the opposite is the case; this is due to the nontrivial interplay of the exchange and potential scattering renormalization in the presence of particle-hole asymmetry. The 2D square-lattice density of states behaves to a very good approximation as a band with constant density of states.

  9. Estimation of 2-D and 3-D Fracture Densities from 1-D Data Experimental and Field Results

    Institute of Scientific and Technical Information of China (English)

    XU Jiandong; Robert D. JACOBI

    2003-01-01

    2-D and 3-D densities of fractures are commonly used in mining safety design, natural gas and oil productionin fractured reservoirs, and the characterization of subsurface flow and transportation systems in fractured rocks. However,many field data sets are collected in 1-D frequency (f) (e.g., scanlines and borehole data). We have developed an ARC/INFO-based technology to calculate fracture frequency and densities for a given fracture network. A series of numericalsimulations are performed in order to determine the optimal orientation of a scanline, along which the maximum fracturefrequency of a fracture network can be obtained. We calculated the frequency (f) and densities (both D1 and D2) of 36natural fracture trace maps, and investigated the statistical relationship between fracture frequency and fracture density D1,i.e. D1=l.340f + 0.034. We derived analytical solutions for converting dimensional density (D1) to non-dimensionaldensities (D2 and D3) assuming that fracture length distribution follows an exponential or power law. A comparisonbetween observed and calculated results based on the equations we developed shows that (1) there exists a linearrelationship between fracture frequency and fracture density (D1), and this relationship can be used to estimate fracturedensity (D1) if the fracture frequency is determined from a scanline survey or from borehole data; (2) the analyticalsolutions we derived can accurately determine the non-dimensional 2-D fracture density (D2) in practice and 3-D fracturedensity (D3) in theory if the fracture length distribution function is assumed.

  10. Synthesis of 1D, 2D, and 3D ZnO Polycrystalline Nanostructures Using the Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Tseng

    2012-01-01

    Full Text Available This study employed various polyol solvents to synthesize zinc oxide polycrystalline nanostructures in the form of fibers (1D, rhombic flakes (2D, and spheres (3D. The synthetic process primarily involved the use of zinc acetate dihydrate in polyol solutions, which were used to derive precursors of zinc alkoxides. Following hydrolysis at 160°C, the zinc alkoxide particles self-assembled into polycrystalline nanostructures with different morphologies. Following calcination at 500°C for 1 h, polycrystalline ZnO with good crystallinity was obtained. FE-SEM explored variations in surface morphology; XRD was used to analyze the crystalline structures and crystallinity of the products, which were confirmed as ZnO wurtzite structures. FE-TEM verified that the ZnO nanostructures were polycrystalline. Furthermore, we employed TGA/DSC to observe the phase transition. According to the results of property analyses, we proposed models of the relevant formation mechanisms. Finally, various ZnO structures were applied in the degradation of methylene blue to compare their photocatalytic efficiency.

  11. Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media

    CERN Document Server

    Semblat, Jean-François

    2011-01-01

    To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the B...

  12. Monte Carlo Simulations of the Magnetic Behavior, Ordering Temperature and Magnetocaloric Effects in 1D, 2D and 3D Ferrimagnetic Systems.

    Science.gov (United States)

    Stanica, Nicolae; Cimpoesu, Fanica; Radu, Cosmin; Chihaia, Viorel; Suh, Soong-Hyuck

    2015-01-01

    As for the systematic investigations of magnetic behaviors and its related properties, computer simulations in extended quantum spin networks have been performed in good conditions via the generalized Ising model using the Monte Carlo-Metropolis algorithm with proven efficiencies. The present work, starting from a real magnetic system, provides detailed insights into the finite size effects and the ferrimagnetic properties in various 1 D, 2D and 3D geometries such as the magnetic moment, ordering temperature, and magnetocaloric effects with the different values of spins localized on the different coordinated sites.

  13. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huai-Xia, E-mail: yanghuaixia886@163.com [Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008 (China); Liang, Zhen; Hao, Bao-Lian [Pharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008 (China); Meng, Xiang-Ru, E-mail: mxr@zzu.edu.cn [The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2014-10-15

    Three new 1D to 3D complexes, namely, ([Ni(btec)(Himb){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O){sub n} (1), ([Cd(btec){sub 0.5}(imb)(H{sub 2}O)]·1.5H{sub 2}O){sub n} (2), and ([Zn(btec){sub 0.5}(imb)]·H{sub 2}O){sub n} (3) (H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (5{sup 3}·6{sup 2}·7)(5{sup 2}·6{sup 4}). Complex 3 presents a 3D framework with a point symbol of (4·6{sup 4}·8)(4{sup 2}·6{sup 2}·8{sup 2}). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature. - Graphical abstract: Three new 1D to 3D complexes with different structural and topological motifs have been obtained by modifying the central metal ions. Additionally, their IR, TG analyses and fluorescent properties are also investigated. - Highlights: • Three complexes based on mixed multidentate N- and O-donor ligands. • The complexes are characterized by IR, luminescence and TGA techniques. • Benzenetetracarboxylates display different coordination modes in complexes 1–3. • Changing the metal ions can result in complexes with completely different structures.

  14. Versatile structures of group 13 metal halide complexes with 4,4'-bipy: from 1D coordination polymers to 2D and 3D metal-organic frameworks.

    Science.gov (United States)

    Sevastianova, Tatiana N; Bodensteiner, Michael; Maulieva, Albina F; Davydova, Elena I; Virovets, Alexander V; Peresypkina, Eugenia V; Balázs, Gábor; Graßl, Christian; Seidl, Michael; Scheer, Manfred; Frenking, Gernot; Berezovskaya, Ekaterina A; Kazakov, Igor V; Khoroshilova, Olesya V; Timoshkin, Alexey Y

    2015-12-21

    A systematic structural study of complexes formed by aluminium and gallium trihalides with 4,4'-bipyridine (bipy) in 2 : 1, 1 : 1, and 1 : 2 stoichiometric ratios has been performed. Molecular structures of 11 complexes in the solid state have been determined for the first time. Complexes of 2 : 1 composition are molecular, while complexes of 1 : 1 composition form metal-organic frameworks of different kinds: an ionic 3D network (three interpenetrated lvt nets for AlCl3bipy), an ionic 2D network for AlBr3bipy and GaBr3bipy and a 1D coordination polymer in the case of GaCl3bipy. Thus, the nature of the Lewis acid plays a critical role in the structural type of the complex in the solid state. Incorporation of excess bipy molecules into (GaCl3bipy)∞ (formation of crystallosolvate) leads to an unprecedented change of the molecular structure from a non-ionic 1D coordination polymer to an ionic 2D metal organic framework [GaCl2bipy2](+)[GaCl4](-)·2bipy. As indicated by the temperature-dependent XRD study, removal of bipy by heating in a vacuum restores the non-ionic 1D structure. Quantum chemical computations for simple cluster model systems (up to eight Al and Ga atoms) reveal that ionic forms are slightly favourable, although the energy differences between the ionic and non-ionic structures are not large. These theoretical predictions are in good agreement with experimental findings. Thus, even relatively simple cluster models may be used to indicate the structural preferences in the solid state. Both experimental and computational IR frequency shifts of the in-plane ring bending mode of bipy upon complexation correlate well with the M-N bond distances in the complexes.

  15. Cyano-bridged coordination polymer hydrogel-derived Sn-Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance

    Science.gov (United States)

    Zhang, Weiyu; Zhu, Xiaoshu; Chen, Xuguang; Zhou, Yiming; Tang, Yawen; Ding, Liangxin; Wu, Ping

    2016-05-01

    Metal oxide nanohybrids with uniform dimensions and controlled architectures possess unique compositional and structural superiorities, and thus harbor promising potential for a series of applications in energy, catalysis, and sensing systems. Herein, we propose a facile, general, and scalable cyano-bridged coordination polymer hydrogel-derived thermal-oxidation route for the construction of main-group metal and transition-metal heterometallic oxide nanohybrids with controlled constituents and architectures. The formation of Sn-Fe binary oxide nanohybrids has been demonstrated as an example by using cyano-bridged Sn(iv)-Fe(ii) bimetallic coordination polymer hydrogels (i.e., SnCl4-K4Fe(CN)6 cyanogels, Sn-Fe cyanogels) as precursors. The physicochemical properties of Sn-Fe cyanogels with different Sn/Fe ratios have been systematically examined, and it is found that perfect Sn-Fe cyanogels without unbridged Sn(iv) or Fe(ii) can be formed with Sn/Fe ratios from 2 : 1 to 1 : 2. More importantly, the simple adjustment of Sn/Fe ratios in the Sn-Fe cyanogel precursors can realize flexible dimensional control of the Sn-Fe binary oxide nanohybrids, and 2D/1D SnO2-Fe2O3 hierarchitectures, 2D SnO2-Fe2O3 nanosheets, and 3D SnO2-Fe2O3 networks have been synthesized using the Sn-Fe 1 : 2, Sn-Fe 1 : 1, and Sn-Fe 2 : 1 cyanogels as precursors, respectively. To demonstrate their compositional/structural superiorities and potential applications, the lithium-storage utilization of the Sn-Fe binary oxide nanohybrids has been selected as an objective application, and the nanohybrids exhibit Sn/Fe ratio-dependent lithium-storage performance. As a representative example, the 2D/1D SnO2-Fe2O3 hierarchitectures manifest markedly enhanced Li-storage performance in terms of reversible capacities and cycling stability in comparison with their constituent units, i.e., bare SnO2 nanosheets and Fe2O3 nanorods. The proposed cyanogel-derived thermal-oxidation strategy could open up new

  16. 2D/3D switchable displays

    Science.gov (United States)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  17. Assembly of 1D, 2D and 3D lanthanum(iii) coordination polymers with perchlorinated benzenedicarboxylates: positional isomeric effect, structural transformation and ring-opening polymerisation of glycolide.

    Science.gov (United States)

    Chen, Sheng-Chun; Dai, An-Qi; Huang, Kun-Lin; Zhang, Zhi-Hui; Cui, Ai-Jun; He, Ming-Yang; Chen, Qun

    2016-02-28

    Utilizing a series of positional isomers of tetrachlorinated benzenedicarboxylic acid ligands, seven La(iii)-based coordination polymers were solvothermally synthesized and structurally characterized. Their structural dimensionalities varying from 1D double chains, to the 2D 3,4,5-connected network, to 3D 6-connected pcu topological nets are only governed by the positions of carboxyl groups on the tetrachlorinated benzene ring. A comprehensive analysis and comparison reveals that the size of the carbonyl solvent molecules (DMF, DEF, DMA, and NMP) can affect the coordination geometries around the La(iii) ions, the coordination modes of carboxylate groups, the packing arrangements, and the void volumes of the overall crystal lattices. One as-synthesized framework further shows an unprecedented structural transformation from a 3D 6-connected network to a 3D 4,5-connected net through the dissolution and reformation pathway in water, suggesting that these easily hydrolyzed lanthanide complexes may serve as precursors to produce new high-dimensional frameworks. The bulk solvent-free melt polymerisation of glycolide utilizing these La(iii) complexes as initiators has been reported herein for the first time. All complexes were found to promote the polymerization of glycolide over a temperature range of 200 to 220 °C, producing poly(glycolic acid) (PGA) with a molecular weight up to 93,280. Under the same experimental conditions, the different catalytic activities for these complexes may result from their structural discrepancy.

  18. 3D/2D Registration of medical images

    OpenAIRE

    Tomaževič, D.

    2008-01-01

    The topic of this doctoral dissertation is registration of 3D medical images to corresponding projective 2D images, referred to as 3D/2D registration. There are numerous possible applications of 3D/2D registration in image-aided diagnosis and treatment. In most of the applications, 3D/2D registration provides the location and orientation of the structures in a preoperative 3D CT or MR image with respect to intraoperative 2D X-ray images. The proposed doctoral dissertation tries to find origin...

  19. 3D, 2D and 1D networks via N-H…O and N-H…N hydrogen bonding by the bis-amide analogues: Effect of chain lengths and odd-even spacers

    Indian Academy of Sciences (India)

    Gargi Mukherjee; Kumar Biradha

    2014-09-01

    The synthesis, crystal structures and hydrogen bonding networks of four members of the bis(pyridinecarboxamido)alkane and bis(pyridyl)alkanediamides series (1 ≤ ≤ 8), where the amide moieties are separated by alkyl chain (-(CH2)-) having even or odd number of -(CH2)-groups are explored and correlated with the previously reported structures. The odd members (n= odd) of both the series are found to adopt three-dimensional networks in contrast to the 1D or 2D structures of the even members (n= even). This odd-even effect on the dimensionality of the networks however disappears with increase in chain length.

  20. 2D vs. 3D mammography observer study

    Science.gov (United States)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  1. 2-D Versus 3-D Magnetotelluric Data Interpretation

    Science.gov (United States)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  2. A simultaneous 2D/3D autostereo workstation

    Science.gov (United States)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  3. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the perfo

  4. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the

  5. Twin characterisation using 2D and 3D EBSD

    Institute of Scientific and Technical Information of China (English)

    M. D. NAVE; J. J. L. MULDERS; A. GHOLINIA

    2005-01-01

    Electron backscatter diffraction (EBSD) is a superior technique for twin characterisation due to its ability to provide highly detailed classification (by generation, system and variant) of a significant number of twins in a relatively short time. 2D EBSD is now widely used for twin characterisation and provides quite good estimates of twin volume fractions under many conditions. Nevertheless, its accuracy is limited by assumptions that have to be made due to the 2D nature of the technique. With 3D EBSD, two key assumptions are no longer required, as additional information can be derived from the 3D map. This paper compares the benefits and limitations of 2D and 3D EBSD for twin characterisation. 2D EBSD enables a larger number of twins to be mapped in a given space of time, giving better statistics. 3D EBSD provides more comprehensive twin characterisation and will be a valuable tool for validation of 2D stereological methods and microstructural models of twinning during deformation.

  6. Hybrid 3D-2D printing for bone scaffolds fabrication

    Science.gov (United States)

    Seleznev, V. A.; Prinz, V. Ya

    2017-02-01

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  7. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, M; Hornegger, J [Pattern Recognition Lab, University Erlangen-Nuremberg, Erlangen (Germany); Redel, T [Siemens AG Healthcare Sector, Forchheim (Germany); Struffert, T; Doerfler, A, E-mail: martin.spiegel@informatik.uni-erlangen.de [Department of Neuroradiology, University Erlangen-Nuremberg, Erlangen (Germany)

    2011-10-07

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  8. Building 3D scenes from 2D image sequences

    Science.gov (United States)

    Cristea, Paul D.

    2006-05-01

    Sequences of 2D images, taken by a single moving video receptor, can be fused to generate a 3D representation. This dynamic stereopsis exists in birds and reptiles, whereas the static binocular stereopsis is common in mammals, including humans. Most multimedia computer vision systems for stereo image capture, transmission, processing, storage and retrieval are based on the concept of binocularity. As a consequence, their main goal is to acquire, conserve and enhance pairs of 2D images able to generate a 3D visual perception in a human observer. Stereo vision in birds is based on the fusion of images captured by each eye, with previously acquired and memorized images from the same eye. The process goes on simultaneously and conjointly for both eyes and generates an almost complete all-around visual field. As a consequence, the baseline distance is no longer fixed, as in the case of binocular 3D view, but adjustable in accordance with the distance to the object of main interest, allowing a controllable depth effect. Moreover, the synthesized 3D scene can have a better resolution than each individual 2D image in the sequence. Compression of 3D scenes can be achieved, and stereo transmissions with lower bandwidth requirements can be developed.

  9. Hybrid 3D-2D printing of bone scaffolds Hybrid 3D-2D printing methods for bone scaffolds fabrication.

    Science.gov (United States)

    Prinz, V Ya; Seleznev, Vladimir

    2016-12-13

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields. Copyright 2016 IOP Publishing Ltd.

  10. Applications of Doppler Tomography in 2D and 3D

    Science.gov (United States)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  11. 2D/3D Image Registration using Regression Learning.

    Science.gov (United States)

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-09-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object's 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region's motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method's application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof.

  12. Automatic 2D-to-3D image conversion using 3D examples from the internet

    Science.gov (United States)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  13. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  14. BGK electron solitary waves: 1D and 3D

    Directory of Open Access Journals (Sweden)

    L.-J. Chen

    2002-01-01

    Full Text Available This paper presents new results for 1D BGK electron solitary wave (phase-space electron hole solutions and, based on the new results, extends the solutions to include the 3D electrical interaction (E ~ 1/r 2 of charged particles. Our approach for extending to 3D is to solve the nonlinear 3D Poisson and 1D Vlasov equations based on a key feature of 1D electron hole (EH solutions; the positive core of an EH is screened by electrons trapped inside the potential energy trough. This feature has not been considered in previous studies. We illustrate this key feature using an analytical model and argue that the feature is independent of any specific model. We then construct azimuthally symmetric EH solutions under conditions where electrons are highly field-aligned and ions form a uniform background along the magnetic field. Our results indicate that, for a single humped electric potential, the parallel cut of the perpendicular component of the electric field (E⊥ is unipolar and that of the parallel component (E|| bipolar, reproducing the multi-dimensional features of the solitary waves observed by the FAST satellite. Our analytical solutions presented in this article capture the 3D electric interaction and the observed features of (E|| and E⊥. The solutions predict a dependence of the parallel width-amplitude relation on the perpendicular size of EHs. This dependence can be used in conjunction with experimental data to yield an estimate of the typical perpendicular size of observed EHs; this provides important information on the perpendicular span of the source region as well as on how much electrostatic energy is transported by the solitary waves.

  15. 2D/3D Program work summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author).

  16. 2D and 3D Traveling Salesman Problem

    Science.gov (United States)

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  17. 2D and 3D Traveling Salesman Problem

    Science.gov (United States)

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  18. 2D to 3D conversion implemented in different hardware

    Science.gov (United States)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  19. Design Application Translates 2-D Graphics to 3-D Surfaces

    Science.gov (United States)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  20. Cross-Correlating 2D and 3D Galaxy Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Passaglia, Samuel [Chicago U., KICP; Manzotti, Alessandro [Chicago U., KICP; Dodelson, Scott [Fermilab

    2017-02-09

    Galaxy surveys probe both structure formation and the expansion rate, making them promising avenues for understanding the dark universe. Photometric surveys accurately map the 2D distribution of galaxy positions and shapes in a given redshift range, while spectroscopic surveys provide sparser 3D maps of the galaxy distribution. We present a way to analyse overlapping 2D and 3D maps jointly and without loss of information. We represent 3D maps using spherical Fourier-Bessel (sFB) modes, which preserve radial coverage while accounting for the spherical sky geometry, and we decompose 2D maps in a spherical harmonic basis. In these bases, a simple expression exists for the cross-correlation of the two fields. One very powerful application is the ability to simultaneously constrain the redshift distribution of the photometric sample, the sample biases, and cosmological parameters. We use our framework to show that combined analysis of DESI and LSST can improve cosmological constraints by factors of ${\\sim}1.2$ to ${\\sim}1.8$ on the region where they overlap relative to identically sized disjoint regions. We also show that in the overlap of DES and SDSS-III in Stripe 82, cross-correlating improves photo-$z$ parameter constraints by factors of ${\\sim}2$ to ${\\sim}12$ over internal photo-$z$ reconstructions.

  1. 2D to 3D transition of polymeric carbon nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro-Posada, Pedro [Dpto. de Teoría de la Señal y Comunicaciones e IT, Universidad de Valladolid, ETSI Telecomunicación, Paseo Belén 15, 47011 Valladolid (Spain); Vázquez-Cabo, José [Dpto. de Teoría de la Señal y Comunicaciones, Universidad de Vigo, ETSI Telecomunicación, Lagoas Marcosende s/n, Vigo (Spain); Sánchez-Arévalo, Francisco M. [Instituto de Investigaciones en Materiales (IIM), Universidad Nacional Autónoma de México, Apdo. Postal 70–360, Cd. Universitaria, México D.F. 04510 (Mexico); Martín-Ramos, Pablo [Dpto. de Teoría de la Señal y Comunicaciones e IT, Universidad de Valladolid, ETSI Telecomunicación, Paseo Belén 15, 47011 Valladolid (Spain); Laboratorio de Materiales Avanzados (Advanced Materials Laboratory) ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Martín-Gil, Jesús; Navas-Gracia, Luis M. [Laboratorio de Materiales Avanzados (Advanced Materials Laboratory) ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Dante, Roberto C., E-mail: rcdante@yahoo.com [Laboratorio de Materiales Avanzados (Advanced Materials Laboratory) ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain)

    2014-11-15

    The transition from a prevalent turbostratic arrangement with low planar interactions (2D) to an array of polymeric carbon nitride nanosheets with stronger interplanar interactions (3D), occurring for samples treated above 650 °C, was detected by terahertz-time domain spectroscopy (THz-TDS). The simulated 3D material made of stacks of shifted quasi planar sheets composed of zigzagged polymer ribbons, delivered a XRD simulated pattern in relatively good agreement with the experimental one. The 2D to 3D transition was also supported by the simulation of THz-TDS spectra obtained from quantum chemistry calculations, in which the same broad bands around 2 THz and 1.5 THz were found for 2D and 3D arrays, respectively. This transition was also in accordance with the tightening of the interplanar distance probably due to an interplanar π bond contribution, as evidenced also by a broad absorption around 2.6 eV in the UV–vis spectrum, which appeared in the sample treated at 650 °C, and increased in the sample treated at 700 °C. The band gap was calculated for 1D and 2D cases. The value of 3.374 eV for the 2D case is, within the model accuracy and precision, in a relative good agreement with the value of 3.055 eV obtained from the experimental results. - Graphical abstract: 2D lattice mode vibrations and structural changes correlated with the so called “2D to 3D transition”. - Highlights: • A 2D to 3D transition has been detected for polymeric carbon nitride. • THz-TDS allowed us to discover and detect the 2D to 3D transition of polymeric carbon nitride. • We propose a structure for polymeric carbon nitride confirming it with THz-TDS.

  2. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2‧,3‧-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    Science.gov (United States)

    Liu, Guocheng; Chen, Yongqiang; Wang, Xiuli; Chen, Baokuan; Lin, Hongyan

    2009-03-01

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H 2O) 2][Cd(Dpq)(1,8-NDC)]·2H 2O ( 1), [Cd(Dpq)(1,4-NDC)(H 2O)] ( 2), and [Cd(Dpq)(2,6-NDC)] ( 3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H 2NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H 2NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H 2NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and π- π stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer π- π stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature.

  3. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    Science.gov (United States)

    Bäck, A.

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK® (Sun Nuclear), MatriXXEvolution (IBA Dosimetry) and OCTAVIOUS® 1500 (PTW), 3D phantoms such as OCTAVIUS® 4D (PTW), ArcCHECK® (Sun Nuclear) and Delta4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDoseTM (Sun Nuclear) and Dosimetry CheckTM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific pretreatment IMRT

  4. Automatische Annotation medizinischer 2D- und 3D-Visualisierungen

    Science.gov (United States)

    Mühler, Konrad; Preim, Bernhard

    Wir stellen ein Framework vor, mit dem medizinische 2D- und 3D-Visualisierungen automatisch annotiert werden können. Annotationstexte wie St beirukturbenennungen oder Kurzbefunde werden so in der Darstellung platziert, dass sie gut lesbar sind und keine anderen Texte oder Strukturen verdecken. Weiterhin führen wir Techniken ein, mit denen sich eine Überfrachtung von Schichtbildern mit Annotationen vermeiden lassen. Unser System kommt sowohl in der chirurgischen OP-Planung wie auch in medizinischen Ausbildungssystemen zum Einsatz.

  5. High Current Density 2D/3D Esaki Tunnel Diodes

    CERN Document Server

    Krishnamoorthy, Sriram; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D; Johnson, Jared M; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-01-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based novel device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area, Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  6. Interactive 2D to 3D stereoscopic image synthesis

    Science.gov (United States)

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  7. Scaling in Gravitational Clustering, 2D and 3D Dynamics

    CERN Document Server

    Munshi, D; Melott, A L; Schäffer, R

    1999-01-01

    Perturbation Theory (PT) applied to a cosmological density field with Gaussian initial fluctuations suggests a specific hierarchy for the correlation functions when the variance is small. In particular quantitative predictions have been made for the moments and the shape of the one-point probability distribution function (PDF) of the top-hat smoothed density. In this paper we perform a series of systematic checks of these predictions against N-body computations both in 2D and 3D with a wide range of featureless power spectra. In agreement with previous studies, we found that the reconstructed PDF-s work remarkably well down to very low probabilities, even when the variance approaches unity. Our results for 2D reproduce the features for the 3D dynamics. In particular we found that the PT predictions are more accurate for spectra with less power on small scales. The nonlinear regime has been explored with various tools, PDF-s, moments and Void Probability Function (VPF). These studies have been done with unprec...

  8. Projection-slice theorem based 2D-3D registration

    Science.gov (United States)

    van der Bom, M. J.; Pluim, J. P. W.; Homan, R.; Timmer, J.; Bartels, L. W.

    2007-03-01

    In X-ray guided procedures, the surgeon or interventionalist is dependent on his or her knowledge of the patient's specific anatomy and the projection images acquired during the procedure by a rotational X-ray source. Unfortunately, these X-ray projections fail to give information on the patient's anatomy in the dimension along the projection axis. It would be very profitable to provide the surgeon or interventionalist with a 3D insight of the patient's anatomy that is directly linked to the X-ray images acquired during the procedure. In this paper we present a new robust 2D-3D registration method based on the Projection-Slice Theorem. This theorem gives us a relation between the pre-operative 3D data set and the interventional projection images. Registration is performed by minimizing a translation invariant similarity measure that is applied to the Fourier transforms of the images. The method was tested by performing multiple exhaustive searches on phantom data of the Circle of Willis and on a post-mortem human skull. Validation was performed visually by comparing the test projections to the ones that corresponded to the minimal value of the similarity measure. The Projection-Slice Theorem Based method was shown to be very effective and robust, and provides capture ranges up to 62 degrees. Experiments have shown that the method is capable of retrieving similar results when translations are applied to the projection images.

  9. Interactive initialization of 2D/3D rigid registration

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ren Hui; Güler, Özgür [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 (United States); Kürklüoglu, Mustafa [Department of Cardiac Surgery, Children' s National Medical Center, Washington, DC 20010 (United States); Lovejoy, John [Department of Orthopaedic Surgery and Sports Medicine, Children' s National Medical Center, Washington, DC 20010 (United States); Yaniv, Ziv, E-mail: ZYaniv@childrensnational.org [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)

    2013-12-15

    Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on

  10. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    Science.gov (United States)

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  11. CASTOR3D: linear stability studies for 2D and 3D tokamak equilibria

    Science.gov (United States)

    Strumberger, E.; Günter, S.

    2017-01-01

    The CASTOR3D code, which is currently under development, is able to perform linear stability studies for 2D and 3D, ideal and resistive tokamak equilibria in the presence of ideal and resistive wall structures and coils. For these computations ideal equilibria represented by concentric nested flux surfaces serve as input (e.g. computed with the NEMEC code). Solving an extended eigenvalue problem, the CASTOR3D code takes simultaneously plasma inertia and wall resistivity into account. The code is a hybrid of the CASTOR_3DW stability code and the STARWALL code. The former is an extended version of the CASTOR and CASTOR_FLOW code, respectively. The latter is a linear 3D code computing the growth rates of resistive wall modes in the presence of multiply-connected wall structures. The CASTOR_3DW code, and some parts of the STARWALL code have been reformulated in a general 3D flux coordinate representation that allows to choose between various types of flux coordinates. Furthermore, the implemented many-valued current potentials in the STARWALL part allow a correct treatment of the m  =  0, n  =  0 perturbation. In this paper, we outline the theoretical concept, and present some numerical results which illustrate the present status of the code and demonstrate its numerous application possibilities.

  12. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Science.gov (United States)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  13. TRANSITION FROM 2D TO 3D WITH GEOGEBRA

    Directory of Open Access Journals (Sweden)

    MARIA MIHAILOVA

    2014-12-01

    Full Text Available This article presents the definition of projection plane, its importance for the geometry constructions used in civil engineering and comparative analysis of three opportunities for creating a three dimensional basis, used in drawing such a plane. First method consists of transforming affine and orthonormal coordinates and its application in GeoGebra is presented. Second method, using combination of spherical and polar coordinates in space, is introduced. The third suggested method is an application of descriptive geometry for transforming 2D to 3D and a new method of forming a plane of projection, which will be used later in the reviewed example below. The example shows how GeoGebra software can be used in technical drawing used in civil engineering.

  14. 2D- and 3D-culture of cell

    Directory of Open Access Journals (Sweden)

    Khoruzhenko A. I.

    2011-02-01

    Full Text Available The cultivation of mammalian cells in three-dimensional conditions acquires a priority in a variety of biomedical applications. In the areas of toxicology and anticancer drug development it concerns a significant difference of responses to proapoptotic factors of the cells cultured in 2D versus 3D environment. Besides, the clear-cut differences have been found in cell polarity, cytoskeleton structure, distribution of receptors to wide range of hormones, growth factors, etc. in mammalian cells depending on culture conditions. It is resulted in different response of cultured cells to extracellular stimuli. Multicellular spheroids are regarded presently as the most convenient model of solid tumour growth in vitro. The cultivation of thyroid follicles, mammary acini and other structure units, maintaining initial tissue organization, allows studying the behavior, biochemical features and gene profile of differentiated cells. On the other hand, 3D cultures have some limitations in comparison with a well established monolayer culture. The advantages and disadvantages of each type of cultures and their application in biological and medical researches will be discussed in this review

  15. Image Appraisal for 2D and 3D Electromagnetic Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  16. Improvement of the 2D/1D Method in MPACT Using the Sub-Plane Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Aaron M [ORNL; Collins, Benjamin S [ORNL; Downar, Thomas [University of Michigan

    2017-01-01

    Oak Ridge National Laboratory and the University of Michigan are jointly developing the MPACTcode to be the primary neutron transport code for the Virtual Environment for Reactor Applications (VERA). To solve the transport equation, MPACT uses the 2D/1D method, which decomposes the problem into a stack of 2D planes that are then coupled with a 1D axial calculation. MPACT uses the Method of Characteristics for the 2D transport calculations and P3 for the 1D axial calculations, then accelerates the solution using the 3D Coarse mesh Finite Dierence (CMFD) method. Increasing the number of 2D MOC planes will increase the accuracy of the alculation, but will increase the computational burden of the calculations and can cause slow convergence or instability. To prevent these problems while maintaining accuracy, the sub-plane scheme has been implemented in MPACT. This method sub-divides the MOC planes into sub-planes, refining the 1D P3 and 3D CMFD calculations without increasing the number of 2D MOC planes. To test the sub-plane scheme, three of the VERA Progression Problems were selected: Problem 3, a single assembly problem; Problem 4, a 3x3 assembly problem with control rods and pyrex burnable poisons; and Problem 5, a quarter core problem. These three problems demonstrated that the sub-plane scheme can accurately produce intra-plane axial flux profiles that preserve the accuracy of the fine mesh solution. The eigenvalue dierences are negligibly small, and dierences in 3D power distributions are less than 0.1% for realistic axial meshes. Furthermore, the convergence behavior with the sub-plane scheme compares favorably with the conventional 2D/1D method, and the computational expense is decreased for all calculations due to the reduction in expensive MOC calculations.

  17. Homogenization of 1D and 2D magnetoelastic lattices

    Directory of Open Access Journals (Sweden)

    Schaeffer Marshall

    2015-01-01

    Full Text Available This paper investigates the equivalent in-plane mechanical properties of one dimensional (1D and two dimensional (2D, periodic magneto-elastic lattices. A lumped parameter model describes the lattices using magnetic dipole moments in combination with axial and torsional springs. The homogenization procedure is applied to systems linearized about stable configurations, which are identified by minimizing potential energy. Simple algebraic expressions are derived for the properties of 1D structures. Results for 1D lattices show that a variety of stiffness changes are possible through reconfiguration, and that magnetization can either stiffen or soften a structure. Results for 2D hexagonal and re-entrant lattices show that both reconfigurations and magnetization have drastic effects on the mechanical properties of lattice structures. Lattices can be stiffened or softened and the Poisson’s ratio can be tuned. Furthermore for certain hexagonal lattices the sign of Poisson’s ratio can change by varying the lattice magnetization. In some cases presented, analytical and numerically estimated equivalent properties are validated through numerical simulations that also illustrate the unique characteristics of the investigated configurations.

  18. Hemimegalencephaly: 2D, 3D Ultrasound and MRI Correlation.

    Science.gov (United States)

    Romero, X C; Molina, F S; Pastor, E; Amaya, F

    2011-01-01

    Hemimegalencephaly (HMC) is a disorder associated with enlarged and dysplastic hamartomatous overgrowth of all or part of the one cerebral hemisphere that can be isolated or associated with other syndromes. In the normal development of the brain it is important to bear in mind that there are two main processes: firstly the development of the hemispheres and the corpus callosum, and secondly the cortical formation with proliferation, migration and organization of the cortex, which occurs mostly between 12 and 20 weeks of gestation. We present a 22-week-old fetus with macrocephaly depending on HMC and emphasize the possibility of an early ultrasound diagnosis, the correlation in the diagnosis between 2D and 3D ultrasound, and the use of magnetic resonance imaging as an imaging method for a more precise diagnosis of neuronal migration anomalies. The diagnosis of HMC is possible at the time of the anomaly scan. The use and correlation with other diagnostic tools provide essential information for parent counseling in these complex cases. Copyright © 2010 S. Karger AG, Basel.

  19. Automatic simulation of 1D and 2D chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Tlelo-Cuautle, E; Munoz-Pacheco, J-M [Department of Electronics, INAOE, Luis Enrique Erro No. 1, Tonantzintla, Puebla, 72840 MEXICO (Mexico)], E-mail: e.tlelo@ieee.org, E-mail: mpacheco@inaoep.mx

    2008-02-15

    A new method is introduced for automatic simulation of three kinds of chaotic oscillators: Chua's circuit, generalized Chua's circuit and chaotic oscillator implemented with saturated functions. The former generates the double-scroll, and the others 1D n-scroll attractors. The third chaotic oscillator is modified to generate 2D n-scrolls attractors. The oscillators are modelled by applying state variables and piecewise-linear approximation. Basically, the method computes the eigenvalues of the oscillators to begin time simulation and to make control of step-size automatically.

  20. Assembling carbon fiber-graphene-carbon fiber hetero-structures into 1D-2D-1D junction fillers and patterned structures for improved microwave absorption

    Science.gov (United States)

    Li, Huimin; Liu, Lin; Li, Hai-Bing; Song, Wei-Li; Bian, Xing-Ming; Zhao, Quan-Liang; Chen, Mingji; Yuan, Xujin; Chen, Haosen; Fang, Daining

    2017-04-01

    Since carbon-based structures of various dimensions, including one-dimensional (1D) carbon nanotubes, two-dimensional (2D) graphene and three-dimensional (3D) carbon foams, have attracted significant attention as microwave absorption fillers, we present an exceptional hetero-junction filler with a 1D-2D-1D feature, achieved by manipulating 2D graphene into 1D carbon fibers in the fiber-extruding process under the electric field. The as-fabricated 1D-2D-1D structural fillers exhibited much-improved dielectric properties and promoted microwave absorption performance in their composites, which is linked to the establishment of enhanced polarization capability, the generation of increased electric loss pathway and the creation of more favorable electromagnetic energy consumption conditions. The results suggest that employing 2D graphene in the 1D-2D-1D nanostructures played the critical role in tuning the electromagnetic response ability, because of its intrinsic electric advantages and dimensional features. To broaden the effective absorption bandwidth, periodic pattern-absorbing structures were designed, which showed combined absorption advantages for various thicknesses. Our strategy for fabricating 1D-2D-1D structural fillers illuminates a universal approach for manipulating dimensions and structures in the nanotechnology.

  1. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    Science.gov (United States)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  2. A fast convolution-based methodology to simulate 2-D/3-D cardiac ultrasound images.

    Science.gov (United States)

    Gao, Hang; Choi, Hon Fai; Claus, Piet; Boonen, Steven; Jaecques, Siegfried; Van Lenthe, G Harry; Van der Perre, Georges; Lauriks, Walter; D'hooge, Jan

    2009-02-01

    This paper describes a fast convolution-based methodology for simulating ultrasound images in a 2-D/3-D sector format as typically used in cardiac ultrasound. The conventional convolution model is based on the assumption of a space-invariant point spread function (PSF) and typically results in linear images. These characteristics are not representative for cardiac data sets. The spatial impulse response method (IRM) has excellent accuracy in the linear domain; however, calculation time can become an issue when scatterer numbers become significant and when 3-D volumetric data sets need to be computed. As a solution to these problems, the current manuscript proposes a new convolution-based methodology in which the data sets are produced by reducing the conventional 2-D/3-D convolution model to multiple 1-D convolutions (one for each image line). As an example, simulated 2-D/3-D phantom images are presented along with their gray scale histogram statistics. In addition, the computation time is recorded and contrasted to a commonly used implementation of IRM (Field II). It is shown that COLE can produce anatomically plausible images with local Rayleigh statistics but at improved calculation time (1200 times faster than the reference method).

  3. Improving 1D Stellar Models with 3D Atmospheres

    CERN Document Server

    Mosumgaard, Jakob Rørsted; Weiss, Achim; Christensen-Dalsgaard, Jørgen; Trampedach, Regner

    2016-01-01

    Stellar evolution codes play a major role in present-day astrophysics, yet they share common issues. In this work we seek to remedy some of those by the use of results from realistic and highly detailed 3D hydrodynamical simulations of stellar atmospheres. We have implemented a new temperature stratification extracted directly from the 3D simulations into the Garching Stellar Evolution Code to replace the simplified atmosphere normally used. Secondly, we have implemented the use of a variable mixing-length parameter, which changes as a function of the stellar surface gravity and temperature -- also derived from the 3D simulations. Furthermore, to make our models consistent, we have calculated new opacity tables to match the atmospheric simulations. Here, we present the modified code and initial results on stellar evolution using it.

  4. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.

  5. Comparison of 2D and 3D Neutron Transport Analyses on Yonggwang Unit 3 Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, Aoung Jae; Kim, Byoung Chul; Lim, Mi Joung; Kim, Kyung Sik; Jeon, Young Kyou [Korea Reactor Integrity Surveillance Technology, Daejeon (Korea, Republic of); Yoo, Choon Sung [Korea Atomic Energy Research Institutes, Daejeon (Korea, Republic of)

    2012-10-15

    10 CFR Part 50 Appendix H requires periodical surveillance program in the reactor vessel (RV) belt line region of light water nuclear power plant to check vessel integrity resulting from the exposure to neutron irradiation and thermal environment. Exact exposure analysis of the neutron fluence based on right modeling and simulations is the most important in the evaluation. Traditional 2 dimensional (D) and 1D synthesis methodologies have been widely applied to evaluate the fast neutron (E > 1.0 MeV) fluence exposure to RV. However, 2D and 1D methodologies have not provided accurate fast neutron fluence evaluation at elevations far above or below the active core region. RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries) program for 3D geometries calculation was therefore developed both by Westinghouse Electronic Company, USA and Korea Reactor Integrity Surveillance Technology (KRIST) for the analysis of In-Vessel Surveillance Test and Ex-Vessel Neutron Dosimetry (EVND). Especially EVND which is installed at active core height between biological shielding material and concrete also evaluates axial neutron fluence by placing three dosimetries each at Top, Middle and Bottom part of the angle representing maximum neutron fluence. The EVND programs have been applied to the Korea Nuclear Plants. The objective of this study is therefore to compare the 3D and the 2D Neutron Transport Calculations and Analyses on the Yonggwang unit 3 Reactor as an example.

  6. From 1D to 3D - macroscopic nanowire aerogel monoliths

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-07-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h

  7. A discrete 2-D Formulation for 3-D Field Problems with Continuous Symmetry

    CERN Document Server

    Auchmann, B; Kurz, S

    2010-01-01

    We describe a general formalism that allows to reduce the spatial dimension of a field problem from 3-D to (2+1)-D. Subsequently we identify conditions under which the third dimension can be eliminated.We see that the resulting 2-D field problems only decouple if an orthogonality criterion is fulfilled.The approach is based solely on differential-form calculus and can therefore be easily transferred into a discrete setting. As a numerical example we compute the field of twisted wires.

  8. Electronic, bonding, and optical properties of 1d [CuCN]n (n = 1-10) chains, 2d [CuCN]n (n = 2-10) nanorings, and 3d [Cun (CN)n ]m (n = 4, m = 2, 3; n = 10, m = 2) tubes studied by DFT/TD-DFT methods.

    Science.gov (United States)

    Tsipis, Athanassios C; Stalikas, Alexandros V

    2015-06-30

    The electronic, bonding, and photophysical properties of one-dimensional [CuCN](n) (n = 1-10) chains, 2-D [CuCN](n) (n = 2-10) nanorings, and 3-D [Cu(n)(CN)(n)](m) (n = 4, m = 2, 3; n = 10, m = 2) tubes are investigated by means of a multitude of computational methodologies using density functional theory (DFT) and time-dependent-density-functional theory (TD-DFT) methods. The calculations revealed that the 2-D [CuCN](n) (n = 2-10) nanorings are more stable than the respective 1-D [CuCN](n) (n = 2-10) linear chains. The 2-D [CuCN](n) (n = 2-10) nanorings are predicted to form 3-D [Cun (CN)(n)](m) (n = 4, m = 2, 3; n = 10, m = 2) tubes supported by weak stacking interactions, which are clearly visualized as broad regions in real space by the 3D plots of the reduced density gradient. The bonding mechanism in the 1-D [CuCN](n) (n = 1-10) chains, 2-D [CuCN](n) (n = 2-10) nanorings, and 3-D [Cu(n)(CN)(n)](m) (n = 4, m = 2, 3; n = 10, m = 2) tubes are easily recognized by a multitude of electronic structure calculation approaches. Particular emphasis was given on the photophysical properties (absorption and emission spectra) of the [CuCN](n) chains, nanorings, and tubes which were simulated by TD-DFT calculations. The absorption and emission bands in the simulated TD-DFT absorption and emission spectra have thoroughly been analyzed and assignments of the contributing principal electronic transitions associated to individual excitations have been made.

  9. Seismic Wave Amplification in 3D Alluvial Basins: 3D/1D Amplification Ratios from Fast Multipole BEM Simulations

    CERN Document Server

    Fajardo, Kristel C Meza; Chaillat, Stéphanie; Lenti, Luca

    2016-01-01

    In this work, we study seismic wave amplification in alluvial basins having 3D standard geometries through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how much 3D amplification differs from the 1D (horizontal layering) case. Considering incident fields of plane harmonic waves, we examine the relationships between the amplification level and the most relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique incidence of plane waves). The FMBEM results show that the most important parameters for wave amplification are the impedance contrast and the so-called equivalent shape ratio. Using these two parameters, we derive simple rules to compute the fundamental frequency for various 3D basin shapes and the corresponding 3D/1D amplification factor for 5% damping. Effects on amplification due to 3D basin asymmetry are also studied and incorporated in the derived rules.

  10. Neural Network Based Reconstruction of a 3D Object from a 2D Wireframe

    CERN Document Server

    Johnson, Kyle; Lipson, Hod

    2010-01-01

    We propose a new approach for constructing a 3D representation from a 2D wireframe drawing. A drawing is simply a parallel projection of a 3D object onto a 2D surface; humans are able to recreate mental 3D models from 2D representations very easily, yet the process is very difficult to emulate computationally. We hypothesize that our ability to perform this construction relies on the angles in the 2D scene, among other geometric properties. Being able to reproduce this reconstruction process automatically would allow for efficient and robust 3D sketch interfaces. Our research focuses on the relationship between 2D geometry observable in the sketch and 3D geometry derived from a potential 3D construction. We present a fully automated system that constructs 3D representations from 2D wireframes using a neural network in conjunction with a genetic search algorithm.

  11. 3D Surface Configuration Modulated 2D Symmetry Detection

    Directory of Open Access Journals (Sweden)

    Lok-Teng Sio

    2011-05-01

    Full Text Available To perceive a symmetric pattern, an observer needs to find correspondence between two image elements across the symmetric axis, implying an excitatory relationship between perceptual mechanisms responding to these elements. To perceive a 3D structure in a random dot stereogram (RDS, the perceptual mechanisms tuned to different disparities would inhibit each other. We investigated whether putting corresponding elements of a symmetric pattern in different depths would affect symmetry detection. The symmetry patterns consisted of dots (0.19degx0.19deg occupying .5% of the display. We measured the coherence threshold for detecting symmetric patterns rendered on 14 possible 3D structures that were produced by an RDS. The coherence threshold for symmetric patterns on a slant surface was similar to that on a frontoparallel plane even though in the former the depths of the two sides of the symmetric axis were different. The threshold increased dramatically when one side of the axis inclined toward the observer while the other side inclined away though the depth difference between the two sides was the same as that in the slant condition. The threshold reduced on a hinge configuration whose joint coincide with the symmetry axis. Our result suggests that co-planarity is a decisive factor for symmetry detection.

  12. 3D-2D ultrasound feature-based registration for navigated prostate biopsy: A feasibility study

    OpenAIRE

    Selmi, Sonia,; Promayon, Emmanuel; Troccaz, Jocelyne

    2016-01-01

    International audience; The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity...

  13. 3D-2D ultrasound feature-based registration for navigated prostate biopsy: a feasibility study.

    Science.gov (United States)

    Selmi, Sonia Y; Promayon, Emmanuel; Troccaz, Jocelyne

    2016-08-01

    The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity-based function. The results are encouraging and show acceptable errors with simulated transforms applied on ultrasound volumes from real patients.

  14. The role of the cytoskeleton in cellular force generation in 2D and 3D environments

    Science.gov (United States)

    Kraning-Rush, Casey M.; Carey, Shawn P.; Califano, Joseph P.; Smith, Brooke N.; Reinhart-King, Cynthia A.

    2011-02-01

    To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments.

  15. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    Science.gov (United States)

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data.

    Science.gov (United States)

    Leandro, J; Djordjević, S; Chen, A S; Savić, D A; Stanić, M

    2011-01-01

    Recently increased flood events have been prompting researchers to improve existing coupled flood-models such as one-dimensional (1D)/1D and 1D/two-dimensional (2D) models. While 1D/1D models simulate sewer and surface networks using a one-dimensional approach, 1D/2D models represent the surface network by a two-dimensional surface grid. However their application raises two issues to urban flood modellers: (1) stormwater systems planning/emergency or risk analysis demands for fast models, and the 1D/2D computational time is prohibitive, (2) and the recognized lack of field data (e.g. Hunter et al. (2008)) causes difficulties for the calibration/validation of 1D/1D models. In this paper we propose to overcome these issues by calibrating a 1D/1D model with the results of a 1D/2D model. The flood-inundation results show that: (1) 1D/2D results can be used to calibrate faster 1D/1D models, (2) the 1D/1D model is able to map the 1D/2D flood maximum extent well, and the flooding limits satisfactorily in each time-step, (3) the 1D/1D model major differences are the instantaneous flow propagation and overestimation of the flood-depths within surface-ponds, (4) the agreement in the volume surcharged by both models is a necessary condition for the 1D surface-network validation and (5) the agreement of the manholes discharge shapes measures the fitness of the calibrated 1D surface-network.

  17. Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.

    2012-06-01

    To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.

  18. From 1D chain to 3D network: A theoretical study on TiO{sub 2} low dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Ling-ju; He, Tao, E-mail: het@nanoctr.cn [CAS Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); Zeng, Zhi [Chinese Academy of Sciences, Institute of Solid State Physics, Hefei 230031 (China)

    2015-06-14

    We have performed a systematic study on a series of low dimensional TiO{sub 2} nanostructures under density functional theory methods. The geometries, stabilities, growth mechanism, and electronic structures of 1D chain, 2D ring, 2D ring array, and 3D network of TiO{sub 2} nanostructures are analyzed. Based on the Ti{sub 2}O{sub 4} building unit, a series of 1D TiO{sub 2} nano chains and rings can be built. Furthermore, 2D ring array and 3D network nanostructures can be constructed from 1D chains and rings. Among non-periodic TiO{sub 2} chain and ring structures, one series of ring structures is found to be more stable. The geometry model of the 2D ring arrays and 3D network structures in this work has provided a theoretical understanding on the structure information in experiments. Based on these semiconductive low dimensional structures, moreover, it can help to understand and design new hierarchical TiO{sub 2} nanostructure in the future.

  19. 2D/3D velocity model for the high resolution 2D and 3D seismic data from the CO2SINK Ketzin Project

    Science.gov (United States)

    Ivanova, A.; Asch, G.; Lueth, S.; Goetz, J.

    2009-04-01

    Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with characterization and monitoring aspects at a carbon dioxide (CO2) geological storage site at Ketzin, Germany (the CO2SINK project) (S.Yordkayhun, 2008). A seismic source comparison from the 2D pilot study regarding acquisition parameters have been tested at the side has shown the weight drop source is suitable concerning the signal penetration, frequency content of the data and minimizing time and costs for the 3D data acquisition. For the Ketzin seismic data, the ability to obtain an accurate 2D/3D interval velocity model is limited by the acquisition geometry, source-generated noise and time shifts due to the near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, has resulted in key improvements of the images and has allowed new information about the 2D/3D interval velocities. The results from these studies together with borehole information, hydrogeologic models and seismic modeling will be combined into an integrated 2D/3D velocity model. After that a careful 2D/3D depth migration is to be provided. It can be used as a database for the future monitoring program at the site.

  20. A positioning QA procedure for 2D/2D (kV/MV) and 3D/3D (CT/CBCT) image matching for radiotherapy patient setup.

    Science.gov (United States)

    Guan, Huaiqun; Hammoud, Rabih; Yin, Fang-Fang

    2009-10-06

    A positioning QA procedure for Varian's 2D/2D (kV/MV) and 3D/3D (planCT/CBCT) matching was developed. The procedure was to check: (1) the coincidence of on-board imager (OBI), portal imager (PI), and cone beam CT (CBCT)'s isocenters (digital graticules) to a linac's isocenter (to a pre-specified accuracy); (2) that the positioning difference detected by 2D/2D (kV/MV) and 3D/3D(planCT/CBCT) matching can be reliably transferred to couch motion. A cube phantom with a 2 mm metal ball (bb) at the center was used. The bb was used to define the isocenter. Two additional bbs were placed on two phantom surfaces in order to define a spatial location of 1.5 cm anterior, 1.5 cm inferior, and 1.5 cm right from the isocenter. An axial scan of the phantom was acquired from a multislice CT simulator. The phantom was set at the linac's isocenter (lasers); either AP MV/R Lat kV images or CBCT images were taken for 2D/2D or 3D/3D matching, respectively. For 2D/2D, the accuracy of each device's isocenter was obtained by checking the distance between the central bb and the digital graticule. Then the central bb in orthogonal DRRs was manually moved to overlay to the off-axis bbs in kV/MV images. For 3D/3D, CBCT was first matched to planCT to check the isocenter difference between the two CTs. Manual shifts were then made by moving CBCT such that the point defined by the two off-axis bbs overlay to the central bb in planCT. (PlanCT can not be moved in the current version of OBI1.4.) The manual shifts were then applied to remotely move the couch. The room laser was used to check the accuracy of the couch movement. For Trilogy (or Ix-21) linacs, the coincidence of imager and linac's isocenter was better than 1 mm (or 1.5 mm). The couch shift accuracy was better than 2 mm.

  1. Complexity and distortion analysis on methods for unrolling 3D to 2D fingerprints

    CSIR Research Space (South Africa)

    Mlambo, CS

    2015-11-01

    Full Text Available and studies involve the application of three-dimensional (3D) fingerprint systems, where the details of the finger are captured using 3D technologies and the captured 3D fingerprints are converted into two-dimensional (2D) fingerprints. This paper presents a...

  2. A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Edward

    2013-06-17

    The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.

  3. 3D-2D registration of cerebral angiograms: a method and evaluation on clinical images.

    Science.gov (United States)

    Mitrovic, Uroš; Špiclin, Žiga; Likar, Boštjan; Pernuš, Franjo

    2013-08-01

    Endovascular image-guided interventions (EIGI) involve navigation of a catheter through the vasculature followed by application of treatment at the site of anomaly using live 2D projection images for guidance. 3D images acquired prior to EIGI are used to quantify the vascular anomaly and plan the intervention. If fused with the information of live 2D images they can also facilitate navigation and treatment. For this purpose 3D-2D image registration is required. Although several 3D-2D registration methods for EIGI achieve registration accuracy below 1 mm, their clinical application is still limited by insufficient robustness or reliability. In this paper, we propose a 3D-2D registration method based on matching a 3D vasculature model to intensity gradients of live 2D images. To objectively validate 3D-2D registration methods, we acquired a clinical image database of 10 patients undergoing cerebral EIGI and established "gold standard" registrations by aligning fiducial markers in 3D and 2D images. The proposed method had mean registration accuracy below 0.65 mm, which was comparable to tested state-of-the-art methods, and execution time below 1 s. With the highest rate of successful registrations and the highest capture range the proposed method was the most robust and thus a good candidate for application in EIGI.

  4. Resolution-optimized NMR measurement of (1)D(CH), (1)D(CC) and (2)D(CH) residual dipolar couplings in nucleic acid bases.

    Science.gov (United States)

    Boisbouvier, Jérôme; Bryce, David L; O'neil-Cabello, Erin; Nikonowicz, Edward P; Bax, Ad

    2004-11-01

    New methods are described for accurate measurement of multiple residual dipolar couplings in nucleic acid bases. The methods use TROSY-type pulse sequences for optimizing resolution and sensitivity, and rely on the E.COSY principle to measure the relatively small two-bond (2)D(CH) couplings at high precision. Measurements are demonstrated for a 24-nt stem-loop RNA sequence, uniformly enriched in (13)C, and aligned in Pf1. The recently described pseudo-3D method is used to provide homonuclear (1)H-(1)H decoupling, which minimizes cross-correlation effects and optimizes resolution. Up to seven (1)H-(13)C and (13)C-(13)C couplings are measured for pyrimidines (U and C), including (1)D(C5H5), (1)D(C6H6), (2)D(C5H6), (2)D(C6H5), (1)D(C5C4), (1)D(C5C6), and (2)D(C4H5). For adenine, four base couplings ((1)D(C2H2), (1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)) are readily measured whereas for guanine only three couplings are accessible at high relative accuracy ((1)D(C8H8), (1)D(C4C5), and (1)D(C5C6)). Only three dipolar couplings are linearly independent in planar structures such as nucleic acid bases, permitting cross validation of the data and evaluation of their accuracies. For the vast majority of dipolar couplings, the error is found to be less than +/-3% of their possible range, indicating that the measurement accuracy is not limiting when using these couplings as restraints in structure calculations. Reported isotropic values of the one- and two-bond J couplings cluster very tightly for each type of nucleotide.

  5. Controllable liquid crystal gratings for an adaptive 2D/3D auto-stereoscopic display

    Science.gov (United States)

    Zhang, Y. A.; Jin, T.; He, L. C.; Chu, Z. H.; Guo, T. L.; Zhou, X. T.; Lin, Z. X.

    2017-02-01

    2D/3D switchable, viewpoint controllable and 2D/3D localizable auto-stereoscopic displays based on controllable liquid crystal gratings are proposed in this work. Using the dual-layer staggered structure on the top substrate and bottom substrate as driven electrodes within a liquid crystal cell, the ratio between transmitting region and shielding region can be selectively controlled by the corresponding driving circuit, which indicates that 2D/3D switch and 3D video sources with different disparity images can reveal in the same auto-stereoscopic display system. Furthermore, the controlled region in the liquid crystal gratings presents 3D model while other regions maintain 2D model in the same auto-stereoscopic display by the corresponding driving circuit. This work demonstrates that the controllable liquid crystal gratings have potential applications in the field of auto-stereoscopic display.

  6. Similarities between 2D and 3D convection for large Prandtl number

    Indian Academy of Sciences (India)

    PANDEY AMBRISH; VERMA MAHENDRA K; CHATTERJEE ANANDO G; DUTTA BIPLAB

    2016-07-01

    Using direct numerical simulations of Rayleigh–Bénard convection (RBC), we perform a comparative study of the spectra and fluxes of energy and entropy, and the scaling of large-scale quantities for large and infinite Prandtl numbers in two (2D) and three (3D) dimensions. We observe close similarities between the 2D and 3D RBC, in particular, the kinetic energy spectrum $E^{u}(k) ∼ k^{−13/3}$, and the entropy spectrum exhibits a dual branch with a dominant $k^{−2}$ spectrum. We showed that the dominant Fourier modes in 2D and 3D flows are very close. Consequently, the 3D RBC is quasi-two-dimensional, which is the reason for the similarities between the 2D and 3D RBC for large and infinite Prandtl numbers.

  7. Guidelines for designing 2D and 3D plasmonic stub resonators

    CERN Document Server

    Naghizadeh, Solmaz

    2016-01-01

    In this work we compare the performance of plasmonic waveguide integrated stub resonators based on 2D metal-dielectric-metal (MDM) and 3D slot-waveguide (SWG) geometries. We show that scattering matrix theory can be extended to 3D devices, and by employing scattering matrix theory we provide the guidelines for designing plasmonic 2D and 3D single-stub and double-stub resonators with a desired spectral response at the design wavelength. We provide transmission maps of 2D and 3D double-stub resonators versus stub lengths, and we specify the different regions on these maps that result in a minimum, a maximum or a plasmonically induced transparency (PIT) shape in the transmission spectrum. Radiation loss from waveguide terminations leads to a degradation of the 3D slot-waveguide based resonators. We illustrate improved waveguide terminations that boost resonator properties. We verify our results with 3D FDTD simulations.

  8. Character animation fundamentals developing skills for 2D and 3D character animation

    CERN Document Server

    Roberts, Steve

    2012-01-01

    Expand your animation toolkit and remain competitive in the industry with this leading resource for 2D and 3D character animation techniques. Apply the industry's best practices to your own workflows and develop 2D, 3D and hybrid characters with ease. With side by side comparisons of 2D and 3D character design, improve your character animation and master traditional principles and processes including weight and balance, timing and walks. Develop characters inspired by humans, birds, fish, snakes and four legged animals. Breathe life into your character and develop a characters personality w

  9. Analysis of the IEA 2D test. 2D, 3D, steady or unsteady airflow?

    DEFF Research Database (Denmark)

    Cortes, Ines Olmedo; Nielsen, Peter V.

    The “IEA Annex 20 two-dimensional test case” was defined by proffesor Peter V. Nielsen (1990) and was originally considered two-dimensional and steady flow. However, some recent works considering the case as three dimensional have shown different solutions from the 2D case as well as different so...

  10. Optimal Control of 1D and 2D Circuit QED

    CERN Document Server

    Fisher, R; Glaser, S J; Marquardt, F; Schulte-Herbrueggen, T

    2009-01-01

    Optimal control can be used to significantly improve multi-qubit gates in quantum information processing hardware architectures based on superconducting circuit quantum electrodynamics. We apply this approach not only to dispersive gates of two qubits inside a cavity, but, more generally, to architectures based on two-dimensional arrays of cavities and qubits. For high-fidelity gate operations, simultaneous evolutions of controls and couplings in the two coupling dimensions of cavity grids are shown to be significantly faster than conventional sequential implementations. Even under experimentally realistic conditions speedups by a factor of three can be gained. The methods immediately scale to large grids and indirect gates between arbitrary pairs of qubits on the grid. They are anticipated to be paradigmatic for 2D arrays and lattices of controllable qubits.

  11. Membranes from nanoporous 1D and 2D materials: A review of opportunities, developments, and challenges

    KAUST Repository

    Kim, Wun-gwi

    2013-12-01

    Membranes utilizing nanoporous one-dimensional (1D) and two-dimensional (2D) materials are emerging as attractive candidates for applications in molecular separations and related areas. Such nanotubular and nanolayered materials include carbon nanotubes, metal oxide nanotubes, layered zeolites, porous layered oxides, layered aluminophosphates, and porous graphenes. By virtue of their unique shape, size, and structure, they possess transport properties that are advantageous for membrane and thin film applications. These materials also have very different chemistry from more conventional porous 3D materials, due to the existence of a large, chemically active, external surface area. This feature also necessitates the development of innovative strategies to process these materials into membranes and thin films with high performance. This work provides the first comprehensive review of this emerging area. We first discuss approaches for the synthesis and structural characterization of nanoporous 1D and 2D materials. Thereafter, we elucidate different approaches for fabrication of membranes and thin films from these materials, either as multiphase (composite/hybrid) or single-phase membranes. The influence of surface chemistry and processing techniques on the membrane morphology is highlighted. We then discuss the applications of such membranes in areas relating to molecular transport and separation, e.g. gas and liquid-phase separations, water purification, and ion-conducting membranes. The review concludes with a discussion of the present outlook and some of the key scientific challenges to be addressed on the path to industrially applicable membranes containing nanoporous 1D and 2D materials. © 2013 Elsevier Ltd.

  12. Correspondenceless 3D-2D registration based on expectation conditional maximization

    Science.gov (United States)

    Kang, X.; Taylor, R. H.; Armand, M.; Otake, Y.; Yau, W. P.; Cheung, P. Y. S.; Hu, Y.

    2011-03-01

    3D-2D registration is a fundamental task in image guided interventions. Due to the physics of the X-ray imaging, however, traditional point based methods meet new challenges, where the local point features are indistinguishable, creating difficulties in establishing correspondence between 2D image feature points and 3D model points. In this paper, we propose a novel method to accomplish 3D-2D registration without known correspondences. Given a set of 3D and 2D unmatched points, this is achieved by introducing correspondence probabilities that we model as a mixture model. By casting it into the expectation conditional maximization framework, without establishing one-to-one point correspondences, we can iteratively refine the registration parameters. The method has been tested on 100 real X-ray images. The experiments showed that the proposed method accurately estimated the rotations (< 1°) and in-plane (X-Y plane) translations (< 1 mm).

  13. 3D-2D registration of cerebral angiograms based on vessel directions and intensity gradients

    Science.gov (United States)

    Mitrovic, Uroš; Špiclin, Žiga; Štern, Darko; Markelj, Primož; Likar, Boštjan; Miloševic, Zoran; Pernuš, Franjo

    2012-02-01

    Endovascular treatment of cerebral aneurysms and arteriovenous malformations (AVM) involves navigation of a catheter through the femoral artery and vascular system to the site of pathology. Intra-interventional navigation is done under the guidance of one or at most two two-dimensional (2D) X-ray fluoroscopic images or 2D digital subtracted angiograms (DSA). Due to the projective nature of 2D images, the interventionist needs to mentally reconstruct the position of the catheter in respect to the three-dimensional (3D) patient vasculature, which is not a trivial task. By 3D-2D registration of pre-interventional 3D images like CTA, MRA or 3D-DSA and intra-interventional 2D images, intra-interventional tools such as catheters can be visualized on the 3D model of patient vasculature, allowing easier and faster navigation. Such a navigation may consequently lead to the reduction of total ionizing dose and delivered contrast medium. In the past, development and evaluation of 3D-2D registration methods for endovascular treatments received considerable attention. The main drawback of these methods is that they have to be initialized rather close to the correct position as they mostly have a rather small capture range. In this paper, a novel registration method that has a higher capture range and success rate is proposed. The proposed method and a state-of-the-art method were tested and evaluated on synthetic and clinical 3D-2D image-pairs. The results on both databases indicate that although the proposed method was slightly less accurate, it significantly outperformed the state-of-the-art 3D-2D registration method in terms of robustness measured by capture range and success rate.

  14. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.

    Science.gov (United States)

    Kuznetsov, A I; Kiyan, R; Chichkov, B N

    2010-09-27

    A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated.

  15. Accurate positioning for head and neck cancer patients using 2D and 3D image guidance

    Science.gov (United States)

    Kang, Hyejoo; Lovelock, Dale M.; Yorke, Ellen D.; Kriminiski, Sergey; Lee, Nancy; Amols, Howard I.

    2011-01-01

    Our goal is to determine an optimized image-guided setup by comparing setup errors determined by two-dimensional (2D) and three-dimensional (3D) image guidance for head and neck cancer (HNC) patients immobilized by customized thermoplastic masks. Nine patients received weekly imaging sessions, for a total of 54, throughout treatment. Patients were first set up by matching lasers to surface marks (initial) and then translationally corrected using manual registration of orthogonal kilovoltage (kV) radiographs with DRRs (2D-2D) on bony anatomy. A kV cone beam CT (kVCBCT) was acquired and manually registered to the simulation CT using only translations (3D-3D) on the same bony anatomy to determine further translational corrections. After treatment, a second set of kVCBCT was acquired to assess intrafractional motion. Averaged over all sessions, 2D-2D registration led to translational corrections from initial setup of 3.5 ± 2.2 (range 0–8) mm. The addition of 3D-3D registration resulted in only small incremental adjustment (0.8 ± 1.5 mm). We retrospectively calculated patient setup rotation errors using an automatic rigid-body algorithm with 6 degrees of freedom (DoF) on regions of interest (ROI) of in-field bony anatomy (mainly the C2 vertebral body). Small rotations were determined for most of the imaging sessions; however, occasionally rotations > 3° were observed. The calculated intrafractional motion with automatic registration was < 3.5 mm for eight patients, and < 2° for all patients. We conclude that daily manual 2D-2D registration on radiographs reduces positioning errors for mask-immobilized HNC patients in most cases, and is easily implemented. 3D-3D registration adds little improvement over 2D-2D registration without correcting rotational errors. We also conclude that thermoplastic masks are effective for patient immobilization. PMID:21330971

  16. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    Science.gov (United States)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  17. 2D-to-3D conversion by using visual attention analysis

    Science.gov (United States)

    Kim, Jiwon; Baik, Aron; Jung, Yong Ju; Park, Dusik

    2010-02-01

    This paper proposes a novel 2D-to-3D conversion system based on visual attention analysis. The system was able to generate stereoscopic video from monocular video in a robust manner with no human intervention. According to our experiment, visual attention information can be used to provide rich 3D experience even when depth cues from monocular view are not enough. Using the algorithm introduced in the paper, 3D display users can watch 2D media in 3D. In addition, the algorithm can be embedded into 3D displays in order to deliver better viewing experience with more immersive feeling. Using visual attention information to give a 3D effect is first tried in this research as far as we know.

  18. Device and methods for "gold standard" registration of clinical 3D and 2D cerebral angiograms

    Science.gov (United States)

    Madan, Hennadii; Likar, Boštjan; Pernuš, Franjo; Å piclin, Žiga

    2015-03-01

    Translation of any novel and existing 3D-2D image registration methods into clinical image-guidance systems is limited due to lack of their objective validation on clinical image datasets. The main reason is that, besides the calibration of the 2D imaging system, a reference or "gold standard" registration is very difficult to obtain on clinical image datasets. In the context of cerebral endovascular image-guided interventions (EIGIs), we present a calibration device in the form of a headband with integrated fiducial markers and, secondly, propose an automated pipeline comprising 3D and 2D image processing, analysis and annotation steps, the result of which is a retrospective calibration of the 2D imaging system and an optimal, i.e., "gold standard" registration of 3D and 2D images. The device and methods were used to create the "gold standard" on 15 datasets of 3D and 2D cerebral angiograms, whereas each dataset was acquired on a patient undergoing EIGI for either aneurysm coiling or embolization of arteriovenous malformation. The use of the device integrated seamlessly in the clinical workflow of EIGI. While the automated pipeline eliminated all manual input or interactive image processing, analysis or annotation. In this way, the time to obtain the "gold standard" was reduced from 30 to less than one minute and the "gold standard" of 3D-2D registration on all 15 datasets of cerebral angiograms was obtained with a sub-0.1 mm accuracy.

  19. Validity of Mixed 2D and 3D Cadastral Parcels in the Land Administration Domain Model

    NARCIS (Netherlands)

    Thompson, R.J.; Van Oosterom, P.J.M.

    2012-01-01

    In the move towards a 3D Cadastre, many jurisdictions are considering a hybrid 2D/3D database as either a stage of development or as a target in itself (van Oosterom, Stoter, Ploeger, Thompson and Karki 2011). The Land Administration Domain Model (LADM), which is the underlying model for the ISO 191

  20. Improving 2D change detection by using available 3D data

    NARCIS (Netherlands)

    Van der Sande, C.J.; Zanoni, M.; Gorte, B.G.H.

    2008-01-01

    Change detection with very high resolution imagery is difficult, because 3D objects as buildings appear differently in 2D imagery due to varying viewing angles and sun positions. This research proposes a method to improve change detection by using simple 3D models of buildings. Buildings have been m

  1. 2D-3D image registration in diagnostic and interventional X-Ray imaging

    NARCIS (Netherlands)

    Bom, I.M.J. van der

    2010-01-01

    Clinical procedures that are conventionally guided by 2D x-ray imaging, may benefit from the additional spatial information provided by 3D image data. For instance, guidance of minimally invasive procedures with CT or MRI data provides 3D spatial information and visualization of structures that are

  2. 2D vs 3D gamma analysis: Establishment of comparable clinical action limits

    Directory of Open Access Journals (Sweden)

    Kiley B Pulliam

    2014-03-01

    Full Text Available Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT quality assurance; these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, because of the different search space available. We compared the results of 2D and 3D gamma analysis (where both datasets were generated the same way for clinical treatment plans.                    Methods: 50 IMRT plans were selected from our database and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated” and Monte Carlo-recalculated (“reference” dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1% and distance-to-agreement (5, 3, 2, and 1 mm acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose, and data grid sizes (1.0, 1.5, and 3.0 mm. Each comparison was evaluated to determine the average 2D and 3D gamma and percentage of pixels passing gamma.Results: Average gamma and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. Average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a differences ranging from 0.8% to 1.5%. No appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs. 3D were observed.Conclusion: We found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis.  Factors such as inherent dosimeter differences may be an important additional consideration to the extra dimension of available data that was evaluated in this study.------------------------------------Cite this article as

  3. Introduction to AutoCAD 2013 2D and 3D design

    CERN Document Server

    Yarwood, Alf

    2013-01-01

    Master the complexities of the world's bestselling 2D and 3D software with Alf Yarwood's Introduction to AutoCAD 2013. Ideally suited to new users of AutoCAD, this book will be a useful resource for drawing modules in both vocational and introductory undergraduate courses in engineering and construction.Alf Yarwood has once again produced a comprehensive, step-by-step introduction to the latest release of AutoCAD. Covering all the basic principles and acting as an introduction to 2D drawing, it also contains extensive coverage of all 3D topics, including 3D solid modelling a

  4. 3D motion graphics for 2D artists conquering the 3rd dimension

    CERN Document Server

    Byrne, Bill

    2011-01-01

    Add 3D to your mograph skillset! For the experienced 2D artist, this lavishly illustrated, 4 color book presents the essentials to building and compositing 3D elements into your 2D world of film and broadcast. Concepts and techniques are presented in concise, step-by-step tutorials, hundreds of which are featured throughout. Featured applications include Photoshop, Illustrator, After Effects, and Cinema 4D. Lessons include exploring the expanded 3D functionality of the Adobe Creative Suite applications (After Effects, Photoshop, and Illustrator) through a series of practical tutorials. More

  5. Comparison of 2D versus 3D mammography with screening cases: an observer study

    Science.gov (United States)

    Fernandez, James Reza; Deshpande, Ruchi; Hovanessian-Larsen, Linda; Liu, Brent

    2012-02-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using human studies collected from was performed to compare traditional 2D mammography with this new 3D mammography technique. A prior study using a mammography phantom revealed no difference in calcification detection, but improved mass detection in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Data for this current study is currently being obtained, and a full report should be available in the next few weeks.

  6. TDSIFT: a new descriptor for 2D and 3D ear recognition

    Science.gov (United States)

    Chen, Long; Mu, Zhichun; Nan, Bingfei; Zhang, Yi; Yang, Ruyin

    2017-02-01

    Descriptor is the key of any image-based recognition algorithm. For ear recognition, conventional descriptors are either based on 2D data or 3D data. 2D images provide rich texture information and human ear is a 3D surface that could offer shape information. It also inspires us that 2D data is more robust against occlusion while 3D data shows more robustness against illumination variation and pose variation. In this paper, we introduce a novel Texture and Depth Scale Invariant Feature Transform (TDSIFT) descriptor to encode 2D and 3D local features for ear recognition. Compared to the original Scale Invariant Feature Transform (SIFT) descriptor, the proposed TDSIFT shows its superiority by fusing 2D local information and 3D local information. Firstly, keypoints are detected and described on texture images. Then, 3D information of the keypoints located on the corresponding depth images is added to form the TDSIFT descriptor. Finally, a local feature based classification algorithm is adopted to identify ear samples by TDSIFT. Experimental results on a benchmark dataset demonstrate the feasibility and effectiveness of our proposed descriptor. The rank-1 recognition rate achieved on a gallery of 415 persons is 95.9% and the time involved in the computation is satisfactory compared to state-of-the-art methods.

  7. Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer

    Science.gov (United States)

    Reese, Daniel; Weber, Christopher

    2016-11-01

    A nominally two-dimensional interface, unstable to the Rayleigh-Taylor or Richtmyer-Meshkov instability, will become three-dimensional at high Reynolds numbers due to the growth of background noise and 3D effects like vortex stretching. This three-dimensionality changes macroscopic features, such as the perturbation growth rate and mixing, as it enhances turbulent dissipation. In this study, a 2D perturbation with small-scale, 3D fluctuations is modeled using the hydrodynamics code Miranda. A Mach 1.95 shockwave accelerates a helium-over-SF6 interface, similar to the experiments of Motl et al. ["Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges," Phys. Fluids 21(12), 126102 (2009)], to explore the regime where a 2D dominated flow will experience 3D effects. We report on the structure, growth, and mixing of the post-shocked interface in 2D and 3D.

  8. A Very Simple Approach for 3-D to 2-D Mapping

    CERN Document Server

    Dey, Sandipan; Sanyal, Sugata

    2010-01-01

    Many times we need to plot 3-D functions e.g., in many scientificc experiments. To plot this 3-D functions on 2-D screen it requires some kind of mapping. Though OpenGL, DirectX etc 3-D rendering libraries have made this job very simple, still these libraries come with many complex pre- operations that are simply not intended, also to integrate these libraries with any kind of system is often a tough trial. This article presents a very simple method of mapping from 3D to 2D, that is free from any complex pre-operation, also it will work with any graphics system where we have some primitive 2-D graphics function. Also we discuss the inverse transform and how to do basic computer graphics transformations using our coordinate mapping system.

  9. Seepage Analysis of Upper Gotvand Dam Concerning Gypsum Karstification (2D and 3D Approaches)

    DEFF Research Database (Denmark)

    Sadrekarimi, Jamshid; Kiyani, Majid; Fakhri, Behnam;

    2011-01-01

    Upper Gotvand Dam is constructed on the Karun River at the south west of Iran. In this paper, 2D and 3D models of the dam together with the foundation and abutments were established, and several seepage analyses were carried out. Then, the gypsum veins that are scattered throughout the foundation...... ground were included in the models, and the seepage pattern, considering the dissolution law of gypsum, was analyzed. It was disclosed that the discharge fluxes obtained from 2D and 3D analyses are not similar, and the discharge flux in 3D model is about four times that of the 2D model. Also, the 3D...... model locates the phreatic surface somewhat higher than the 2D model. This means that the 2D model estimates lower pore water pressure pattern in comparison with the 3D model. These may be attributed to the fact that with 2D model the lateral components of vectors of seepage velocity are ignored...

  10. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    Science.gov (United States)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  11. Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy

    Science.gov (United States)

    Naaz, Farah

    Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups: Whole then Sections, and Integrated 2D3D. Both groups learned whole anatomy (3D neuroanatomy) before learning sectional anatomy (2D neuroanatomy). The Whole then Sections group then learned sectional anatomy using 2D representations only. The Integrated 2D3D group learned sectional anatomy from a graphically integrated 3D and 2D model. A set of tests for generalization of knowledge to interpreting biomedical images was conducted immediately after learning was completed. The order of presentation of the tests of generalization of knowledge was counterbalanced across participants to explore a secondary hypothesis of the study: preparation for future learning. If the computer-based instruction programs used in this study are effective tools for teaching anatomy, the participants should continue learning neuroanatomy with exposure to new representations. A test of long-term retention of sectional anatomy was conducted 4-8 weeks after learning was completed. The Integrated 2D3D group was better than the Whole then Sections group in retaining knowledge of difficult instances of sectional anatomy after the retention interval. The benefit

  12. 3D Modeling of Transformer Substation Based on Mapping and 2D Images

    Directory of Open Access Journals (Sweden)

    Lei Sun

    2016-01-01

    Full Text Available A new method for building 3D models of transformer substation based on mapping and 2D images is proposed in this paper. This method segments objects of equipment in 2D images by using k-means algorithm in determining the cluster centers dynamically to segment different shapes and then extracts feature parameters from the divided objects by using FFT and retrieves the similar objects from 3D databases and then builds 3D models by computing the mapping data. The method proposed in this paper can avoid the complex data collection and big workload by using 3D laser scanner. The example analysis shows the method can build coarse 3D models efficiently which can meet the requirements for hazardous area classification and constructions representations of transformer substation.

  13. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection

    Energy Technology Data Exchange (ETDEWEB)

    Phatak, C.; Knoop, L. de; Houdellier, F.; Gatel, C.; Hÿtch, M. J.; Masseboeuf, A.

    2016-05-01

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.

  14. Visual storytelling in 2D and stereoscopic 3D video: effect of blur on visual attention

    Science.gov (United States)

    Huynh-Thu, Quan; Vienne, Cyril; Blondé, Laurent

    2013-03-01

    Visual attention is an inherent mechanism that plays an important role in the human visual perception. As our visual system has limited capacity and cannot efficiently process the information from the entire visual field, we focus our attention on specific areas of interest in the image for detailed analysis of these areas. In the context of media entertainment, the viewers' visual attention deployment is also influenced by the art of visual storytelling. To this date, visual editing and composition of scenes in stereoscopic 3D content creation still mostly follows those used in 2D. In particular, out-of-focus blur is often used in 2D motion pictures and photography to drive the viewer's attention towards a sharp area of the image. In this paper, we study specifically the impact of defocused foreground objects on visual attention deployment in stereoscopic 3D content. For that purpose, we conducted a subjective experiment using an eyetracker. Our results bring more insights on the deployment of visual attention in stereoscopic 3D content viewing, and provide further understanding on visual attention behavior differences between 2D and 3D. Our results show that a traditional 2D scene compositing approach such as the use of foreground blur does not necessarily produce the same effect on visual attention deployment in 2D and 3D. Implications for stereoscopic content creation and visual fatigue are discussed.

  15. Gradient-based 3D-2D registration of cerebral angiograms

    Science.gov (United States)

    Mitrović, Uroš; Markelj, Primož; Likar, Boštjan; Miloševič, Zoran; Pernuš, Franjo

    2011-03-01

    Endovascular treatment of cerebral aneurysms and arteriovenous malformations (AVM) involves navigation of a catheter through the femoral artery and vascular system into the brain and into the aneurysm or AVM. Intra-interventional navigation utilizes digital subtraction angiography (DSA) to visualize vascular structures and X-ray fluoroscopy to localize the endovascular components. Due to the two-dimensional (2D) nature of the intra-interventional images, navigation through a complex three-dimensional (3D) structure is a demanding task. Registration of pre-interventional MRA, CTA, or 3D-DSA images and intra-interventional 2D DSA images can greatly enhance visualization and navigation. As a consequence of better navigation in 3D, the amount of required contrast medium and absorbed dose could be significantly reduced. In the past, development and evaluation of 3D-2D registration methods received considerable attention. Several validation image databases and evaluation criteria were created and made publicly available in the past. However, applications of 3D-2D registration methods to cerebral angiograms and their validation are rather scarce. In this paper, the 3D-2D robust gradient reconstruction-based (RGRB) registration algorithm is applied to CTA and DSA images and analyzed. For the evaluation purposes five image datasets, each comprised of a 3D CTA and several 2D DSA-like digitally reconstructed radiographs (DRRs) generated from the CTA, with accurate gold standard registrations were created. A total of 4000 registrations on these five datasets resulted in mean mTRE values between 0.07 and 0.59 mm, capture ranges between 6 and 11 mm and success rates between 61 and 88% using a failure threshold of 2 mm.

  16. Multi-modal 2D-3D non-rigid registration

    Science.gov (United States)

    Prümmer, M.; Hornegger, J.; Pfister, M.; Dörfler, A.

    2006-03-01

    In this paper, we propose a multi-modal non-rigid 2D-3D registration technique. This method allows a non-rigid alignment of a patient pre-operatively computed tomography (CT) to few intra operatively acquired fluoroscopic X-ray images obtained with a C-arm system. This multi-modal approach is especially focused on the 3D alignment of high contrast reconstructed volumes with intra-interventional low contrast X-ray images in order to make use of up-to-date information for surgical guidance and other interventions. The key issue of non-rigid 2D-3D registration is how to define the distance measure between high contrast 3D data and low contrast 2D projections. In this work, we use algebraic reconstruction theory to handle this problem. We modify the Euler-Lagrange equation by introducing a new 3D force. This external force term is computed from the residual of the algebraic reconstruction procedures. In the multi-modal case we replace the residual between the digitally reconstructed radiographs (DRR) and observed X-ray images with a statistical based distance measure. We integrate the algebraic reconstruction technique into a variational registration framework, so that the 3D displacement field is driven to minimize the reconstruction distance between the volumetric data and its 2D projections using mutual information (MI). The benefits of this 2D-3D registration approach are its scalability in the number of used X-ray reference images and the proposed distance that can handle low contrast fluoroscopies as well. Experimental results are presented on both artificial phantom and 3D C-arm CT images.

  17. The Impact of Interactivity on Comprehending 2D and 3D Visualizations of Movement Data.

    Science.gov (United States)

    Amini, Fereshteh; Rufiange, Sebastien; Hossain, Zahid; Ventura, Quentin; Irani, Pourang; McGuffin, Michael J

    2015-01-01

    GPS, RFID, and other technologies have made it increasingly common to track the positions of people and objects over time as they move through two-dimensional spaces. Visualizing such spatio-temporal movement data is challenging because each person or object involves three variables (two spatial variables as a function of the time variable), and simply plotting the data on a 2D geographic map can result in overplotting and occlusion that hides details. This also makes it difficult to understand correlations between space and time. Software such as GeoTime can display such data with a three-dimensional visualization, where the 3rd dimension is used for time. This allows for the disambiguation of spatially overlapping trajectories, and in theory, should make the data clearer. However, previous experimental comparisons of 2D and 3D visualizations have so far found little advantage in 3D visualizations, possibly due to the increased complexity of navigating and understanding a 3D view. We present a new controlled experimental comparison of 2D and 3D visualizations, involving commonly performed tasks that have not been tested before, and find advantages in 3D visualizations for more complex tasks. In particular, we tease out the effects of various basic interactions and find that the 2D view relies significantly on "scrubbing" the timeline, whereas the 3D view relies mainly on 3D camera navigation. Our work helps to improve understanding of 2D and 3D visualizations of spatio-temporal data, particularly with respect to interactivity.

  18. Simulation of engine cooling with coupled 1D and 3D flow computation; Simulation der Motorkuehlung mit Hilfe gekoppelter 1D- und 3D-Stroemungsberechnung

    Energy Technology Data Exchange (ETDEWEB)

    Grafenberger, P.; Klinner, P.; Nefischer, P. [BMW Motoren GmbH, Steyr (Austria); Klingebiel, F. [AMSTRAL Engineering fuer Stroemungsmechanik GmbH, Idstein (Germany)

    2000-04-01

    Shorting the development time for new engines and vehicles is leading to the increasing use of computational design and simulation methods in the automotive industry. For several years now, both one-dimensional and three-dimensional flow computation have been used successfully in the development of cooling systems. However, the fact that less hardware is used in the early development stages makes new demands on the quality and quantity of these simulation results. BMW's diesel development division has been able to improve the quality of the results and to reduce the processing time by improving the model quality and by coupling existing 1D and 3D computational fluid dynamic programmes. (orig.) [German] Die Verkuerzung der Entwicklungszeit neuer Motoren und Automobile fuehrt zu einem verstaerkten Einsatz von rechnergestuetzten Konstruktions- und Simulationsmethoden in der Fahrzeugindustrie. Sowohl eindimensionale als auch dreidimensionale Stroemungsberechnungen werden seit Jahren erfolgreich bei der Entwicklung von Kuehlsystemen eingesetzt. Der Entfall von Hardware-Baugruppen in der fruehen Entwicklungsphase stellt jedoch neue Anforderungen an die Qualitaet und Quantitaet dieser Simulationsergebnisse. Durch Verbesserung der Modellqualitaet und durch Kopplung vorhandener 1D- und 3D-Stroemungsberechnungsprogramme konnten in der Dieselmotorenentwicklung von BMW die Qualitaet der Ergebnisse und die Bearbeitungsgeschwindigkeit deutlich gesteigert werden. (orig.)

  19. Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation.

    Science.gov (United States)

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William

    2016-07-01

    Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.

  20. From 2D to 3D: novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks

    Science.gov (United States)

    Bosi, Susanna; Rauti, Rossana; Laishram, Jummi; Turco, Antonio; Lonardoni, Davide; Nieus, Thierry; Prato, Maurizio; Scaini, Denis; Ballerini, Laura

    2015-01-01

    To recreate in vitro 3D neuronal circuits will ultimately increase the relevance of results from cultured to whole-brain networks and will promote enabling technologies for neuro-engineering applications. Here we fabricate novel elastomeric scaffolds able to instruct 3D growth of living primary neurons. Such systems allow investigating the emerging activity, in terms of calcium signals, of small clusters of neurons as a function of the interplay between the 2D or 3D architectures and network dynamics. We report the ability of 3D geometry to improve functional organization and synchronization in small neuronal assemblies. We propose a mathematical modelling of network dynamics that supports such a result. Entrapping carbon nanotubes in the scaffolds remarkably boosted synaptic activity, thus allowing for the first time to exploit nanomaterial/cell interfacing in 3D growth support. Our 3D system represents a simple and reliable construct, able to improve the complexity of current tissue culture models. PMID:25910072

  1. From 2D to 3D: novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks.

    Science.gov (United States)

    Bosi, Susanna; Rauti, Rossana; Laishram, Jummi; Turco, Antonio; Lonardoni, Davide; Nieus, Thierry; Prato, Maurizio; Scaini, Denis; Ballerini, Laura

    2015-04-24

    To recreate in vitro 3D neuronal circuits will ultimately increase the relevance of results from cultured to whole-brain networks and will promote enabling technologies for neuro-engineering applications. Here we fabricate novel elastomeric scaffolds able to instruct 3D growth of living primary neurons. Such systems allow investigating the emerging activity, in terms of calcium signals, of small clusters of neurons as a function of the interplay between the 2D or 3D architectures and network dynamics. We report the ability of 3D geometry to improve functional organization and synchronization in small neuronal assemblies. We propose a mathematical modelling of network dynamics that supports such a result. Entrapping carbon nanotubes in the scaffolds remarkably boosted synaptic activity, thus allowing for the first time to exploit nanomaterial/cell interfacing in 3D growth support. Our 3D system represents a simple and reliable construct, able to improve the complexity of current tissue culture models.

  2. 2D and 3D stability analysis of slurry trench in frictional/cohesive soil

    Institute of Scientific and Technical Information of China (English)

    Chang-yu HAN; Jin-jian CHEN; Jian-hua WANG; Xiao-he XIA

    2013-01-01

    A 2D and 3D kinematically admissible rotational failure mechanism is presented for homogeneous slurry trenches in frictional/cohesive soils.Analytical approaches are derived to obtain the upper bounds on slurry trench stability in the strict framework of limit analysis.It is shown that the factor of safety from a 3D analysis will be greater than that from a 2D analysis.Compared with the limit equilibrium method,the limit analysis method yields an unconservative estimate on the safety factors.A set of examples are presented in a wide range of parameters for 2D and 3D homogeneous slurry trenches.The factor of safety increases with increasing slurry and soil bulk density ratio,cohesion,friction angle,and with decreasing slurry level depth and trench depth ratio,trench width and depth ratio.It is convenient to assess the safety for the homogeneous slurry trenches in practical applications.

  3. 2D and 3D Mechanobiology in Human and Nonhuman Systems.

    Science.gov (United States)

    Warren, Kristin M; Islam, Md Mydul; LeDuc, Philip R; Steward, Robert

    2016-08-31

    Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology.

  4. Spectroscopic investigation of the 3d 2D → nf 2F transitions in lithium

    Science.gov (United States)

    Shahzada, S.; Shah, M.; Haq, S. U.; Nawaz, M.; Ahmed, M.; Nadeem, Ali

    2016-05-01

    We report term energies and effective quantum numbers of the odd parity 3d 2D → nf 2F series of lithium using multi-step and multi-photon laser excitation schemes. The experiments were performed using three dye lasers simultaneously pumped by the second harmonic (532 nm) of a Q-switched Nd:YAG laser in conjunction with an atomic beam apparatus and thermionic diode ion detector. The first ionization potential of lithium has been determined as 43,487.13 ± 0.02 cm- 1 from the much extended 3d 2D → nf 2F (17 ≤ n ≤ 70) series. In addition, the oscillator strengths of the 3d 2D → nf 2F (15 ≤ n ≤ 48) transitions have been determined, showing a decreasing trend with the increase in principal quantum number n.

  5. Structure-From-Motion in 3D Space Using 2D Lidars

    Directory of Open Access Journals (Sweden)

    Dong-Geol Choi

    2017-02-01

    Full Text Available This paper presents a novel structure-from-motion methodology using 2D lidars (Light Detection And Ranging. In 3D space, 2D lidars do not provide sufficient information for pose estimation. For this reason, additional sensors have been used along with the lidar measurement. In this paper, we use a sensor system that consists of only 2D lidars, without any additional sensors. We propose a new method of estimating both the 6D pose of the system and the surrounding 3D structures. We compute the pose of the system using line segments of scan data and their corresponding planes. After discarding the outliers, both the pose and the 3D structures are refined via nonlinear optimization. Experiments with both synthetic and real data show the accuracy and robustness of the proposed method.

  6. 3D vision accelerates laparoscopic proficiency and skills are transferable to 2D conditions

    DEFF Research Database (Denmark)

    Sørensen, Stine Maya Dreier; Konge, Lars; Bjerrum, Flemming

    2017-01-01

    BACKGROUND: Laparoscopy is difficult to master, in part because surgeons operate in a three-dimensional (3D) space guided by two-dimensional (2D) images. This trial explores the effect of 3D vision during a laparoscopic training program, and examine whether it is possible to transfer skills......: Mean training time were reduced in the intervention group; 231 min versus 323 min; P = 0.012. There was no significant difference in the mean times to completion of the retention test; 92 min versus 95 min; P = 0.85. CONCLUSION: 3D vision reduced time to proficiency on a virtual-reality laparoscopy...... simulator. Furthermore, skills learned with 3D vision can be transferred to 2D vision conditions. Clinicaltrials.gov (NCT02361463)....

  7. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  8. 3D RECORDING FOR 2D DELIVERING – THE EMPLOYMENT OF 3D MODELS FOR STUDIES AND ANALYSES –

    Directory of Open Access Journals (Sweden)

    A. Rizzi

    2012-09-01

    Full Text Available In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d’Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino. APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying

  9. Cell counting in human endobronchial biopsies--disagreement of 2D versus 3D morphometry.

    Directory of Open Access Journals (Sweden)

    Vlad A Bratu

    Full Text Available QUESTION: Inflammatory cell numbers are important endpoints in clinical studies relying on endobronchial biopsies. Assumption-based bidimensional (2D counting methods are widely used, although theoretically design-based stereologic three-dimensional (3D methods alone offer an unbiased quantitative tool. We assessed the method agreement between 2D and 3D counting designs in practice when applied to identical samples in parallel. MATERIALS AND METHODS: Biopsies from segmental bronchi were collected from healthy non-smokers (n = 7 and smokers (n = 7, embedded and sectioned exhaustively. Systematic uniform random samples were immunohistochemically stained for macrophages (CD68 and T-lymphocytes (CD3, respectively. In identical fields of view, cell numbers per volume unit (NV were assessed using the physical disector (3D, and profiles per area unit (NA were counted (2D. For CD68+ cells, profiles with and without nucleus were separately recorded. In order to enable a direct comparison of the two methods, the zero-dimensional CD68+/CD3+-ratio was calculated for each approach. Method agreement was tested by Bland-Altmann analysis. RESULTS: In both groups, mean CD68+/CD3+ ratios for NV and NA were significantly different (non-smokers: 0.39 and 0.68, p<0.05; smokers: 0.49 and 1.68, p<0.05. When counting only nucleated CD68+ profiles, mean ratios obtained by 2D and 3D counting were similar, but the regression-based Bland-Altmann analysis indicated a bias of the 2D ratios proportional to their magnitude. This magnitude dependent deviation differed between the two groups. CONCLUSIONS: 2D counts of cell and nuclear profiles introduce a variable size-dependent bias throughout the measurement range. Because the deviation between the 3D and 2D data was different in the two groups, it precludes establishing a 'universal conversion formula'.

  10. Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D

    DEFF Research Database (Denmark)

    Mukherjee, Krishnendu; Fæster, Søren; Hansen, Niels

    2017-01-01

    Thick-walled ductile iron casts have been studied by applying (i) cooling rate calculations by FVM, (ii) microstructural characterization by 2D SEM and 3D X-ray tomography techniques and (iii) fatigue testing of samples drawn from components cast in sand molds and metal molds. An analysis has shown...... correlations between cooling rate, structure and fatigue strengths demonstrating the benefit of 3D structural characterization to identify possible causes of premature fatigue failure of ductile cast iron....

  11. Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties.

    Directory of Open Access Journals (Sweden)

    Julie Nikolaisen

    Full Text Available Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. "mitochondrial dynamics" are linked to cellular (patho physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs. Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT. 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate

  12. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    Science.gov (United States)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  13. Statistical 2D and 3D shape analysis using Non-Euclidean Metrics

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Hilger, Klaus Baggesen; Wrobel, Mark Christoph

    2002-01-01

    We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition. Furtherm......We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition...

  14. Fabrication of 2D and 3D dendritic nanoarchitectures of CdS

    Institute of Scientific and Technical Information of China (English)

    GU Li

    2008-01-01

    The controlled preparation of two-dimensional (2D) and three-dimensional (3D) dendritic nanostructures of CdS was reported. 2D dendritic patterns are obtained through the self-assembly of nanoparticles under the entropy-driven force. 3D dendritic needle-like nanocrystals are prepared through an aqueous solution synthesis regulated by oleic acid molecules. Their growth mechanism is presumed to be the selective binding of OA molecules onto growing crystal planes. Techniques such as SEM, TEM, XRD, and FT-IR were employed to characterize the morphologies and structures of the obtained products.

  15. 2D divertor heat flux distribution using a 3D heat conduction solver in National Spherical Torus Experiment.

    Science.gov (United States)

    Gan, K F; Ahn, J-W; Park, J-W; Maingi, R; McLean, A G; Gray, T K; Gong, X; Zhang, X D

    2013-02-01

    The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as α and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of α led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated.

  16. Non-Iterative Rigid 2D/3D Point-Set Registration Using Semidefinite Programming.

    Science.gov (United States)

    Khoo, Yuehaw; Kapoor, Ankur

    2016-07-01

    We describe a convex programming framework for pose estimation in 2D/3D point-set registration with unknown point correspondences. We give two mixed-integer nonlinear program (MINLP) formulations of the 2D/3D registration problem when there are multiple 2D images, and propose convex relaxations for both the MINLPs to semidefinite programs that can be solved efficiently by interior point methods. Our approach to the 2D/3D registration problem is non-iterative in nature as we jointly solve for pose and correspondence. Furthermore, these convex programs can readily incorporate feature descriptors of points to enhance registration results. We prove that the convex programs exactly recover the solution to the MINLPs under certain noiseless condition. We apply these formulations to the registration of 3D models of coronary vessels to their 2D projections obtained from multiple intra-operative fluoroscopic images. For this application, we experimentally corroborate the exact recovery property in the absence of noise and further demonstrate robustness of the convex programs in the presence of noise.

  17. 2D-3D Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment

    Directory of Open Access Journals (Sweden)

    Allen R

    2010-01-01

    Full Text Available This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.

  18. Interpretation of mandibular condyle fractures using 2D- and 3D-computed tomography

    Directory of Open Access Journals (Sweden)

    Costa e Silva Adriana Paula de Andrade da

    2003-01-01

    Full Text Available Computed tomography (CT has been increasingly used in the examination of patients with craniofacial trauma. This technique is useful in the examination of the temporomandibular joint and allows the diagnosis of fractures of the mandibular condyle. Aiming to verify whether the three-dimensional reconstructed images from CT (3D-CT produce more effective visual information than the two-dimensional (2D-CT ones, we evaluated 2D-CT and 3D-CT examinations of 18 patients with mandibular condyle fractures. We observed that 2D-CT and 3D-CT reconstructed images produced similar information for the diagnosis of fractures of the mandibular condyle, although the 3D-CT allowed a better visualization of the position and displacement of bone fragments, as well as the comminution of fractures. These results, together with the possibility of refining and manipulating perspectives in 3D images, reinforce the importance of its use in the surgical planning and evaluation of treatment. We concluded that 3D-CT presented supplementary information for a more effective diagnosis of mandibular condyle fractures.

  19. From 2D to 3D GIS for CyberCity

    Institute of Scientific and Technical Information of China (English)

    LI Deren; ZHU Qing; LIU Qiang; XU Peng

    2004-01-01

    In order to understand the 3D landscape with many high buildings in a city, the 2D GIS has to be extended to 3D GIS. The further development of CyberCity has to include various applications of 3D scenes from the outdoor scenes to the indoor ones. In thispaper, some key techniques, such as data management method and dynamicalvisualization method for the outdoor and the indoor scenes, are discussed.The indoor scene is compared with the outdoor one. The idea of integratedrepresentation of the outdoor and the indoor scenes in CyberCity GIS is discussed.

  20. 3D Reconstruction from 2D Line Drawings only with Visible Vertices and Edges

    Institute of Scientific and Technical Information of China (English)

    WANG Xuan; DONG Li-jun

    2014-01-01

    The human vision system can reconstruct a 3D object easily from single 2D line drawings even if the hidden lines of the object are invisible. Now, there are many methods have emulated this ability, but when the hidden lines of the object are invisible, these methods cannot reconstruct a complete 3D object. Therefore, we put forward a new algorithm to settle this hard problem. Our approach consists of two steps: (1) infer the invisible vertices and edges to complete the line drawing, (2) propose a vertex-based optimization method to reconstruct a 3D object.

  1. Fabrication of 2D and 3D photonic structures using laser lithography

    Science.gov (United States)

    Gaso, P.; Jandura, D.; Pudis, D.

    2016-12-01

    In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.

  2. Wide area 2D/3D imaging development, analysis and applications

    CERN Document Server

    Langmann, Benjamin

    2014-01-01

    Imaging technology is an important research area and it is widely utilized in a growing number of disciplines ranging from gaming, robotics and automation to medicine. In the last decade 3D imaging became popular mainly driven by the introduction of novel 3D cameras and measuring devices. These cameras are usually limited to indoor scenes with relatively low distances. Benjamin Langmann introduces medium and long-range 2D/3D cameras to overcome these limitations. He reports measurement results for these devices and studies their characteristic behavior. In order to facilitate the application o

  3. Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance

    Science.gov (United States)

    Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2014-09-01

    An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).

  4. A 2D and 3D electrical impedance tomography imaging using experimental data

    OpenAIRE

    Shulga, Dmitry

    2012-01-01

    In this paper model, method and results of 2D and 3D conductivity distribution imaging using experimental data are described. The 16-electrodes prototype of computer tomography system, special Matlab and Java software were used to perform imaging procedure. The developed system can be used for experimental conductivity distribution imaging and further research work.

  5. Estimating 3D Object Parameters from 2D Grey-Level Images

    NARCIS (Netherlands)

    Houkes, Zweitze

    2000-01-01

    This thesis describes a general framework for parameter estimation, which is suitable for computer vision applications. The approach described combines 3D modelling, animation and estimation tools to determine parameters of objects in a scene from 2D grey-level images. The animation tool predicts im

  6. 2D-3D Face Recognition Method Based on a Modified CCA-PCA Algorithm

    Directory of Open Access Journals (Sweden)

    Patrik Kamencay

    2014-03-01

    Full Text Available This paper presents a proposed methodology for face recognition based on an information theory approach to coding and decoding face images. In this paper, we propose a 2D-3D face-matching method based on a principal component analysis (PCA algorithm using canonical correlation analysis (CCA to learn the mapping between a 2D face image and 3D face data. This method makes it possible to match a 2D face image with enrolled 3D face data. Our proposed fusion algorithm is based on the PCA method, which is applied to extract base features. PCA feature-level fusion requires the extraction of different features from the source data before features are merged together. Experimental results on the TEXAS face image database have shown that the classification and recognition results based on the modified CCA-PCA method are superior to those based on the CCA method. Testing the 2D-3D face match results gave a recognition rate for the CCA method of a quite poor 55% while the modified CCA method based on PCA-level fusion achieved a very good recognition score of 85%.

  7. A Comparison of Iterative 2D-3D Pose Estimation Methods for Real-Time Applications

    DEFF Research Database (Denmark)

    Grest, Daniel; Krüger, Volker; Petersen, Thomas

    2009-01-01

    This work compares iterative 2D-3D Pose Estimation methods for use in real-time applications. The compared methods are available for public as C++ code. One method is part of the openCV library, namely POSIT. Because POSIT is not applicable for planar 3Dpoint congurations, we include the planar...

  8. Utilizing Semantic Interpretation of Junctions for 3D-2D Pose Estimation

    DEFF Research Database (Denmark)

    Pilz, Florian; Yan, Shi; Grest, Daniel

    2007-01-01

    In this paper we investigate the quality of 3D-2D pose estimates using hand labeled line and point correspondences. We select point correspondences from junctions in the image, allowing to construct a meaningful interpretation about how the junction is formed, as proposed in e.g. [1], [2], [3]. We...

  9. Student performance and appreciation using 3D vs. 2D vision in a virtual learning environment

    NARCIS (Netherlands)

    de Boer, I.R.; Wesselink, P.R.; Vervoorn, J.M.

    2016-01-01

    Aim The aim of this study was to investigate the differences in the performance and appreciation of students working in a virtual learning environment with two (2D)- or three (3D)-dimensional vision. Material and methods One hundred and twenty-four randomly divided first-year dental students

  10. Utilizing Semantic Interpretation of Junctions for 3D-2D Pose Estimation

    DEFF Research Database (Denmark)

    Pilz, Florian; Yan, Shi; Grest, Daniel;

    2007-01-01

    In this paper we investigate the quality of 3D-2D pose estimates using hand labeled line and point correspondences. We select point correspondences from junctions in the image, allowing to construct a meaningful interpretation about how the junction is formed, as proposed in e.g. [1], [2], [3]. We...

  11. 2D vario-scale representations based on real 3D structure

    NARCIS (Netherlands)

    Suba, R.; Meijers, B.M.; Van Oosterom, P.J.M.

    2013-01-01

    This paper focuses on 3D data structures supporting an alternative approach for creating 2D vario-scale maps. The smooth animated zooming functionality have lead us to investigate a volumetric representation of gradually changing vario-scale objects. In this paper, the principle of vario-scale maps

  12. Towards Malaysian LADM Country Profile for 2D and 3D Cadastral Registration System

    NARCIS (Netherlands)

    Zulkifli, N.A.; Abdul Rahman, A.; Jamil, H.; Teng, C.H.; Tan, L.C.; Looi, K.S.; Chan, K.L.; Van Oosterom, P.J.M.

    2014-01-01

    This paper proposes a comprehensive Land Administration Domain Model (LADM, ISO 2012) country profile for 2D and 3D cadastral registration system for Malaysia. The proposed Malaysian country profile is partly based on the existing spatial (including survey) and administrative registration systems, a

  13. Method, Software and Aparatus for Segmenting a Series of 2D or 3D Images

    NARCIS (Netherlands)

    Noble, Nicholas M.I.; Spreeuwers, Lieuwe Jan; Breeuwer, Marcel

    2005-01-01

    he invention relates to an apparatus having means for segmenting a series of 2D or 3D images obtained by monitoring a patient's organ or other body part, wherein a first segmentation is carried out on a first image of the series of images and wherein the first segmentation is used for the subsequent

  14. Method, Software and Aparatus for Segmenting a Series of 2D or 3D Images

    NARCIS (Netherlands)

    Noble, Nicholas Michael Ian; Spreeuwers, Lieuwe Jan; Breeuwer, Marcel

    2010-01-01

    he invention relates to an apparatus having means for segmenting a series of 2D or 3D images obtained by monitoring a patient's organ or other body part, wherein a first segmentation is carried out on a first image of the series of images and wherein the first segmentation is used for the subsequent

  15. 2D-3D Face Recognition Method Basedon a Modified CCA-PCA Algorithm

    Directory of Open Access Journals (Sweden)

    Patrik Kamencay

    2014-03-01

    Full Text Available This paper presents a proposed methodology for face recognition based on an information theory approach to coding and decoding face images. In this paper, we propose a 2D-3D face-matching method based on a principal component analysis (PCA algorithm using canonical correlation analysis (CCA to learn the mapping between a 2D face image and 3D face data. This method makes it possible to match a 2D face image with enrolled 3D face data. Our proposed fusion algorithm is based on the PCA method, which is applied to extract base features. PCA feature-level fusion requires the extraction of different features from the source data before features are merged together. Experimental results on the TEXAS face image database have shown that the classification and recognition results based on the modified CCA-PCA method are superior to those based on the CCA method. Testing the 2D-3D face match results gave a recognition rate for the CCA method of a quite poor 55% while the modified CCA method based on PCA-level fusion achieved a very good recognition score of 85%.

  16. Student performance and appreciation using 3D vs. 2D vision in a virtual learning environment

    NARCIS (Netherlands)

    de Boer, I.R.; Wesselink, P.R.; Vervoorn, J.M.

    2016-01-01

    Aim The aim of this study was to investigate the differences in the performance and appreciation of students working in a virtual learning environment with two (2D)- or three (3D)-dimensional vision. Material and methods One hundred and twenty-four randomly divided first-year dental students perform

  17. New technologies of 2-D and 3-D modeling for analysis and management of natural resources

    Science.gov (United States)

    Cheremisina, E. N.; Lyubimova, A. V.; Kirpicheva, E. Yu.

    2016-09-01

    For ensuring technological support of research and administrative activity in the sphere of environmental management a specialized modular program complex was developed. The special attention in developing a program complex is focused to creation of convenient and effective tools for creation and visualization 2d and 3D models providing the solution of tasks of the analysis and management of natural resources.

  18. Advances in research on 2D and 3D graphene-based supercapacitors

    Science.gov (United States)

    Mensing, Johannes Ph.; Poochai, Chatwarin; Kerdpocha, Sadanan; Sriprachuabwong, Chakrit; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2017-09-01

    Graphene-based materials in two-dimensional (2D) and three-dimensional (3D) configurations are promising as electrode materials for supercapacitors due to their large surface area, excellent electrical conductivity, high electrochemical activity and high stability. In this article recent advances in research on 2D and 3D graphene-based materials for supercapacitor electrodes are reviewed extensively in aspects of fabrication methods and electrochemical performances. From the survey, the performance of 2D and 3D graphene-based materials could be significantly enhanced by employing nanostructures of metal oxides, metals and polymers as well as doping graphene with hetero atoms such as nitrogen and boron. In addition, the charge storage performances were found to depend greatly on materials, preparation method and structural configuration. With similar material components, 3D graphene-based networks tended to exhibit superior supercapacitive performances. Therefore, future research should be focusing on further development of 3D graphene-based materials for supercapacitor applications. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  19. Comparing and visualizing titanium implant integration in rat bone using 2D and 3D techniques.

    Science.gov (United States)

    Arvidsson, Anna; Sarve, Hamid; Johansson, Carina B

    2015-01-01

    The aim was to compare the osseointegration of grit-blasted implants with and without a hydrogen fluoride treatment in rat tibia and femur, and to visualize bone formation using state-of-the-art 3D visualization techniques. Grit-blasted implants were inserted in femur and tibia of 10 Sprague-Dawley rats (4 implants/rat). Four weeks after insertion, bone implant samples were retrieved. Selected samples were imaged in 3D using Synchrotron Radiation-based μCT (SRμCT). The 3D data was quantified and visualized using two novel visualization techniques, thread fly-through and 2D unfolding. All samples were processed to cut and ground sections and 2D histomorphometrical comparisons of bone implant contact (BIC), bone area (BA), and mirror image area (MI) were performed. BA values were statistically significantly higher for test implants than controls (p 3D analysis was a valuable complement to 2D analysis, facilitating improved visualization. However, further studies are required to evaluate aspects of 3D quantitative techniques, with relation to light microscopy that traditionally is used for osseointegration studies.

  20. Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko

    2015-01-01

    The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations......, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo......-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D...

  1. 2D and 3D CMOS MAPS with high performance pixel-level signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Traversi, Gianluca, E-mail: gianluca.traversi@unibg.i [University of Bergamo and INFN Pavia, Via Marconi 5, Dalmine 24044 (Italy); Gaioni, Luigi; Manghisoni, Massimo [University of Bergamo and INFN Pavia, Via Marconi 5, Dalmine 24044 (Italy); Ratti, Lodovico [University of Pavia and INFN Pavia (Italy); Re, Valerio [University of Bergamo and INFN Pavia, Via Marconi 5, Dalmine 24044 (Italy)

    2011-02-01

    Deep N-well (DNW) MAPS have been developed in the last few years with the aim of building monolithic sensors with similar functionalities as hybrid pixels systems. These devices have been fabricated in a planar (2D) 130 nm CMOS technology. The triple-well structure available in such an ultra-deep submicron technology is exploited by using the deep N-well as the charge-collecting electrode. This paper intends to discuss the design features and measurement results of the last prototype (Apsel5T chip) recently fabricated in a 2D 130 nm CMOS technology. Recent advances in microelectronics industry have made 3D integrated circuits an option for High Energy Physics experiments. A 3D version of the Apsel5T chip has been designed in a 130 nm CMOS, two-layer, vertically integrated technology. The main features of this new 3D monolithic detector are presented in this paper.

  2. Models of Late-Type Disk Galaxies: 1-D Versus 2-D

    CERN Document Server

    Mineikis, Tadas

    2015-01-01

    We investigate the effects of stochasticity on the observed galaxy parameters by comparing our stochastic star formation two-dimensional (2-D) galaxy evolution models with the commonly used one-dimensional (1-D) models with smooth star formation. The 2-D stochastic models predict high variability of the star formation rate and the surface photometric parameters across the galactic disks and in time.

  3. Framework for 2D-3D image fusion of infrared thermography with preoperative MRI.

    Science.gov (United States)

    Hoffmann, Nico; Weidner, Florian; Urban, Peter; Meyer, Tobias; Schnabel, Christian; Radev, Yordan; Schackert, Gabriele; Petersohn, Uwe; Koch, Edmund; Gumhold, Stefan; Steiner, Gerald; Kirsch, Matthias

    2017-01-23

    Multimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.

  4. Decoupled Estimation of 2D DOA for Coherently Distributed Sources Using 3D Matrix Pencil Method

    Directory of Open Access Journals (Sweden)

    Tang Bin

    2008-08-01

    Full Text Available A new 2D DOA estimation method for coherently distributed (CD source is proposed. CD sources model is constructed by using Taylor approximation to the generalized steering vector (GSV, whereas the angular and angular spread are separated from signal pattern. The angular information is in the phase part of the GSV, and the angular spread information is in the module part of the GSV, thus enabling to decouple the estimation of 2D DOA from that of the angular spread. The array received data is used to construct three-dimensional (3D enhanced data matrix. The 2D DOA for coherently distributed sources could be estimated from the enhanced matrix by using 3D matrix pencil method. Computer simulation validated the efficiency of the algorithm.

  5. Quasiperiodicity and 2D topology in 1D charge-ordered materials

    NARCIS (Netherlands)

    Flicker, F.; van Wezel, J.

    2015-01-01

    The mathematical description of 1D quasicrystals has recently been linked to that of 2D quantum Hall states. The topological classification of 1D quasicrystals and the corresponding interpretation of their observed charge transport have been widely discussed. We demonstrate the equivalence of both 1

  6. An Efficient Multimodal 2D + 3D Feature-based Approach to Automatic Facial Expression Recognition

    KAUST Repository

    Li, Huibin

    2015-07-29

    We present a fully automatic multimodal 2D + 3D feature-based facial expression recognition approach and demonstrate its performance on the BU-3DFE database. Our approach combines multi-order gradient-based local texture and shape descriptors in order to achieve efficiency and robustness. First, a large set of fiducial facial landmarks of 2D face images along with their 3D face scans are localized using a novel algorithm namely incremental Parallel Cascade of Linear Regression (iPar-CLR). Then, a novel Histogram of Second Order Gradients (HSOG) based local image descriptor in conjunction with the widely used first-order gradient based SIFT descriptor are used to describe the local texture around each 2D landmark. Similarly, the local geometry around each 3D landmark is described by two novel local shape descriptors constructed using the first-order and the second-order surface differential geometry quantities, i.e., Histogram of mesh Gradients (meshHOG) and Histogram of mesh Shape index (curvature quantization, meshHOS). Finally, the Support Vector Machine (SVM) based recognition results of all 2D and 3D descriptors are fused at both feature-level and score-level to further improve the accuracy. Comprehensive experimental results demonstrate that there exist impressive complementary characteristics between the 2D and 3D descriptors. We use the BU-3DFE benchmark to compare our approach to the state-of-the-art ones. Our multimodal feature-based approach outperforms the others by achieving an average recognition accuracy of 86.32%. Moreover, a good generalization ability is shown on the Bosphorus database.

  7. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D

    Science.gov (United States)

    Zhu, Y.; Appenzeller, J.

    2015-10-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  8. On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.

    Science.gov (United States)

    Zhu, Y; Appenzeller, J

    2015-12-01

    Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.

  9. Mentor Graphics在京发布1D-3D CFD解决方案

    Institute of Scientific and Technical Information of China (English)

    杜莹

    2012-01-01

    7月10日,Mentor Graphics1D-3D CFD解决方案战略发布会在北京举行。作为领先的电子设计自动化技术和MCAE技术的领导厂商,Mentor Graphics Mechanical Analysis部门总经理Erich Buergel分享了最新的产品解决方案。

  10. 2D sparse array transducer optimization for 3D ultrasound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Hoon; Park, Kwan Kyu [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

  11. IGUANA A high-performance 2D and 3D visualisation system

    CERN Document Server

    Alverson, G; Muzaffar, S; Osborne, I; Taylor, L; Tuura, L A

    2004-01-01

    The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high- performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, sl...

  12. 2D but not 3D: pictorial-depth deficits in a case of visual agnosia.

    Science.gov (United States)

    Turnbull, Oliver H; Driver, Jon; McCarthy, Rosaleen A

    2004-01-01

    Patients with visual agnosia exhibit acquired impairments in visual object recognition, that may or may not involve deficits in low-level perceptual abilities. Here we report a case (patient DM) who after head injury presented with object-recognition deficits. He still appears able to extract 2D information from the visual world in a relatively intact manner; but his ability to extract pictorial information about 3D object-structure is greatly compromised. His copying of line drawings is relatively good, and he is accurate and shows apparently normal mental rotation when matching or judging objects tilted in the picture-plane. But he performs poorly on a variety of tasks requiring 3D representations to be derived from 2D stimuli, including: performing mental rotation in depth, rather than in the picture-plane; judging the relative depth of two regions depicted in line-drawings of objects; and deciding whether a line-drawing represents an object that is 'impossible' in 3D. Interestingly, DM failed to show several visual illusions experienced by normals (Muller-Lyer and Ponzo), that some authors have attributed to pictorial depth cues. Taken together, these findings indicate a deficit in achieving 3D intepretations of objects from 2D pictorial cues, that may contribute to object-recognition problems in agnosia.

  13. Monoplane 3D Overlay Roadmap versus Conventional Biplane 2D Roadmap Technique for Neurointervenional Procedures.

    Science.gov (United States)

    Jang, Dong-Kyu; Stidd, David A; Schafer, Sebastian; Chen, Michael; Moftakhar, Roham; Lopes, Demetrius K

    2016-09-01

    We investigated whether a 3D overlay roadmap using monoplane fluoroscopy offers advantages over a conventional 2D roadmap using biplane fluoroscopy during endovascular aneurysm treatment. A retrospective chart review was conducted for 131 consecutive cerebral aneurysm embolizations by three neurointerventionalists at a single institution. Allowing for a transition period, the periods from January 2012 to August 2012 (Time Period 1) and February 2013 to July 2013 (Time Period 2) were analyzed for radiation exposure, contrast administration, fluoroscopy time, procedure time, angiographic results, and perioperative complications. Two neurointerventionalists (Group 1) used a conventional 2D roadmap for both Time Periods, and one neurointerventionalist (Group 2) transitioned from a 2D roadmap during Time Period 1 to a 3D overlay roadmap during Time Period 2. During Time Period 2, Group 2 demonstrated reduced fluoroscopy time (poverlay roadmap technique reduced fluoroscopy dose and fluoroscopy time during neurointervention of cerebral aneurysms with similar angiographic occlusions and complications rate relative to biplane 2D roadmap, which implies possible compensation of limitations of monoplane fluoroscopy by 3D overlay technique.

  14. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    Science.gov (United States)

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  15. MDCT in the assessment of laryngeal trauma: value of 2D multiplanar and 3D reconstructions.

    Science.gov (United States)

    Becker, Minerva; Duboé, Pier-Olivier; Platon, Alexandra; Kohler, Romain; Tasu, Jean-Pierre; Becker, Christoph D; Poletti, Pierre-Alexandre

    2013-10-01

    The purpose of this study was to analyze fracture patterns and related effects of laryngeal trauma and to assess the value of 2D multiplanar reformation (MPR) and 3D reconstruction. Among 4222 consecutively registered trauma patients who underwent emergency MDCT, 38 patients had presented with laryngeal trauma. Axial, 2D MPR, 3D volume-rendered, and virtual endoscopic images were analyzed retrospectively by two blinded observers according to predefined criteria. Laryngeal fractures, soft-tissue injuries, and airway compromise were evaluated and correlated with clinical, endoscopic, surgical, and follow-up findings. Fifty-nine fractures (37 thyroid, 13 cricoid, nine arytenoid) were present in 38 patients. They were isolated in 21 (55%) patients. The other 17 (45%) patients had additional injuries to the neck, face, brain, chest, or abdomen. Laryngeal fractures were bilateral in 31 (82%) patients and were associated with hyoid bone fractures in nine (24%) patients. Arytenoid luxation was present in eight cartilages. Axial imaging missed 7 of 59 (12%) laryngeal fractures, six of eight (75%) arytenoid luxations, and four of nine (44%) hyoid bone fractures. Additional 2D MPR imaging missed 5 of 59 (8%) laryngeal fractures, five of eight (62.5%) arytenoid luxations, and two of nine (22%) hyoid bone fractures, whereas 3D volume-rendered images depicted them all. Virtual endoscopy and 3D volume rendering added diagnostic accuracy with respect to the length, width, shape, and spatial orientation of fractures in 22 of 38 (58%) patients; arytenoid luxation in six of eight (75%) luxations; and the evaluation of airway narrowing in 19 of 38 (50%) patients. Three-dimensional volume rendering was not of additional value in evaluation of the cricoid cartilage. The use of 2D MPR and 3D volume rendering with or without virtual endoscopy improved assessment of thyroid and hyoid bone fractures, arytenoid luxations, and laryngotracheal narrowing, providing helpful data for optimal

  16. 3-Phase Recognition Approach to Pseudo 3D Building Generation from 2D Floor Plan

    CERN Document Server

    Moloo, Raj Kishen; Auleear, Abu Salmaan

    2011-01-01

    Nowadays three dimension (3D) architectural visualisation has become a powerful tool in the conceptualisation, design and presentation of architectural products in the construction industry, providing realistic interaction and walkthrough on engineering products. Traditional ways of implementing 3D models involves the use of specialised 3D authoring tools along with skilled 3D designers with blueprints of the model and this is a slow and laborious process. The aim of this paper is to automate this process by simply analyzing the blueprint document and generating the 3D scene automatically. For this purpose we have devised a 3-Phase recognition approach to pseudo 3D building generation from 2D floor plan and developed a software accordingly. Our 3-phased 3D building system has been implemented using C, C++ and OpenCV library [24] for the Image Processing module; The Save Module generated an XML file for storing the processed floor plan objects attributes; while the Irrlitch [14] game engine was used to impleme...

  17. Comparison of 2-D and 3-D estimates of placental volume in early pregnancy.

    Science.gov (United States)

    Aye, Christina Y L; Stevenson, Gordon N; Impey, Lawrence; Collins, Sally L

    2015-03-01

    Ultrasound estimation of placental volume (PlaV) between 11 and 13 wk has been proposed as part of a screening test for small-for-gestational-age babies. A semi-automated 3-D technique, validated against the gold standard of manual delineation, has been found at this stage of gestation to predict small-for-gestational-age at term. Recently, when used in the third trimester, an estimate obtained using a 2-D technique was found to correlate with placental weight at delivery. Given its greater simplicity, the 2-D technique might be more useful as part of an early screening test. We investigated if the two techniques produced similar results when used in the first trimester. The correlation between PlaV values calculated by the two different techniques was assessed in 139 first-trimester placentas. The agreement on PlaV and derived "standardized placental volume," a dimensionless index correcting for gestational age, was explored with the Mann-Whitney test and Bland-Altman plots. Placentas were categorized into five different shape subtypes, and a subgroup analysis was performed. Agreement was poor for both PlaV and standardized PlaV (p < 0.001 and p < 0.001), with the 2-D technique yielding larger estimates for both indices compared with the 3-D method. The mean difference in standardized PlaV values between the two methods was 0.007 (95% confidence interval: 0.006-0.009). The best agreement was found for regular rectangle-shaped placentas (p = 0.438 and p = 0.408). The poor correlation between the 2-D and 3-D techniques may result from the heterogeneity of placental morphology at this stage of gestation. In early gestation, the simpler 2-D estimates of PlaV do not correlate strongly with those obtained with the validated 3-D technique.

  18. Micro/nanoscale electrohydrodynamic printing: from 2D to 3D.

    Science.gov (United States)

    Zhang, Bing; He, Jiankang; Li, Xiao; Xu, Fangyuan; Li, Dichen

    2016-08-25

    Electrohydrodynamic printing (EHDP), based on the electrohydrodynamically induced flow of materials, enables the production of micro/nanoscale fibers or droplets and has recently attracted extensive interest to fabricate user-specific patterns in a controlled and high-efficiency manner. However, most of the existing EHDP techniques can only print two-dimensional (2D) micropatterns which cannot meet the increasing demands for the direct fabrication of three-dimensional (3D) microdevices. The integration of EHDP techniques with the layer-by-layer stacking principle of additive manufacturing has emerged as a promising solution to this limitation. Here we present a state-of-the-art review on the translation of 2D EHDP technique into a viable micro/nanoscale 3D printing strategy. The working principle, essential components as well as critical process parameters for EHDP are discussed. We highlight recent explorations on both solution-based and melt-based 3D EHDP techniques in cone-jet and microdripping modes for the fabrication of multimaterial structures, microelectronics and biological constructs. Finally, we discuss the major challenges as well as possible solutions with regard to translating the 3D EHDP process into a real micro/nanoscale additive manufacturing strategy for the freeform fabrication of 3D structures.

  19. 2D and 3D refraction-based visualization of breast cancer for early clinical check

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ductal carcinoma in-situ (DCIS) has been visualized by 2D XDFI (X-ray dark-field imaging) and further by a 3D X-ray CT, and the data was acquired by the X-ray optics DEI (diffraction-enhanced imaging). A newly made algorithm was used for CT Data of 900 projections with interval of 0.2 degrees were used. Ductus lactiferi, microcalcification in a 3D form have been clearly visible. The spatial resolution available was approximately 30 μm.

  20. Generalizations of the Distance and Dependent Function in Extenics to 2D, 3D, and n−D

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2012-07-01

    Full Text Available Dr. Cai Wen defined in his 1983 paper: — the distance formula be tween a point x 0 and a one-dimensional (1D interval ; — and the dependence function which gives the degree of dependence of a point with respect to a pair of in cluded 1 D -intervals. His paper inspired us to generalize the Extension Set to two- dimensions, i.e. in plane of real numbers R 2 where one has a rectangle (instead of a segment of line, dete r- mined by two arbitrary points A ( a 1 , a 2 and B ( b 1 , b 2 . And similarly in R 3 , where one has a prism determined by two arbitrary points A ( a 1 , a 2 , a 3 and B ( b 1 , b 2 , b 3 . We ge- ometrically define the linear and non-linear distance betwe en a point and the 2 D and 3 D -extension set and the dependent function for a nest of two in cluded 2 D and 3 D - extension sets. Linearly and non-linearly attraction poin t principles towards the optimal point are presented as well. The same procedure can be then us ed considering, instead of a rectangle, any bounded 2 D -surface and similarly any bounded 3 D -solid, and any bounded ( n − D -body in R n . These generalizations are very important since the Ex- tension Set is generalized from one-dimension to 2, 3 and eve n n -dimensions, therefore more classes of applications will result in consequence.

  1. Nanoelectronic Modeling (NEMO): Moving from commercial grade 1-D simulation to prototype 3-D simulation

    Science.gov (United States)

    Klimeck, Gerhard

    2001-03-01

    The quantum mechanical functionality of commercially pursued heterostructure devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, and quantum well lasers are enabled by material variations on an atomic scale. The creation of these heterostructure devices is realized in a vast design space of material compositions, layer thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a reliable design tool is needed. The Nanoelectronic Modeling tool (NEMO) is one of the first commercial grade attempts for such a modeling tool. NEMO was developed as a general-purpose quantum mechanics-based 1-D device design and analysis tool from 1993-97 by the Central Research Laboratory of Texas Instruments (later Raytheon Systems). NEMO enables(R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81), 7845 (1997). the fundamentally sound inclusion of the required(G. Klimeck et al.), in the 1997 55th Annual Device Research Conference Digest, (IEEE, NJ, 1997), p. 92^,(R. C. Bowen et al.), J. Appl. Phys 81, 3207 (1997). physics: bandstructure, scattering, and charge self-consistency based on the non-equilibrium Green function approach. A new class of devices which require full 3-D quantum mechanics based models is starting to emerge: quantum dots, or in general semiconductor based deca-nano devices. We are currently building a 3-D modeling tool based on NEMO to include the important physics to understand electronic stated in such superscaled structures. This presentation will overview various facets of the NEMO 1-D tool such electron transport physics in RTDs, numerical technology, software engineering and graphical user interface. The lessons learned from that work are now entering the NEMO 3-D development and first results using the NEMO 3-D prototype will be shown. More information about the publically available NEMO 1-D executables can be found at http://hpc.jpl.nasa.gov/ PEP/gekco/nemo

  2. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics.

    Science.gov (United States)

    Song, Hyun Seok; Kwon, Oh Seok; Kim, Jae-Hong; Conde, João; Artzi, Natalie

    2017-03-15

    Hydrogels consisting of three-dimensional (3D) polymeric networks have found a wide range of applications in biotechnology due to their large water capacity, high biocompatibility, and facile functional versatility. The hydrogels with stimulus-responsive swelling properties have been particularly instrumental to realizing signal transduction in biosensors and bioelectronics. Graphenes are two-dimensional (2D) nanomaterials with unprecedented physical, optical, and electronic properties and have also found many applications in biosensors and bioelectronics. These two classes of materials present complementary strengths and limitations which, when effectively coupled, can result in significant synergism in their electrical, mechanical, and biocompatible properties. This report reviews recent advances made with hydrogel and graphene materials for the development of high-performance bioelectronics devices. The report focuses on the interesting intersection of these materials wherein 2D graphenes are hybridized with 3D hydrogels to develop the next generation biosensors and bioelectronics.

  3. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    Science.gov (United States)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-03-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.

  4. Sub-wavelength Lithography of Complex 2D and 3D Nanostructures without Dyes

    CERN Document Server

    Chaudhary, Raghvendra P; Ummethala, Govind; Hawal, Suyog R; Saxena, Sumit; Shukla, Shobha

    2016-01-01

    One-photon or two photon absorption by dye molecules in photopolymers enable direct 2D & 3D lithography of micro/nano structures with high spatial resolution and can be used effectively in fabricating artificially structured nanomaterials. However, the major bottleneck in unleashing the potential of this useful technique is the indispensable usage of dyes that are extremely expensive, highly toxic and usually insoluble in commercially available photopolymers. Here we report a simple, inexpensive and one-step technique for direct-writing of micro/nanostructures, with sub-wavelength resolution at extremely high speeds without using any one photon or two photon absorbing dye. We incorporated large amount (20 weight %) of inexpensive photoinitiator into the photopolymer and utilized its two-photon absorbing property for sub-wavelength patterning. Complex 2D and 3D patterns were fabricated with sub-micron resolution, in commercially available liquid photopolymer to show the impact/versatility of this technique...

  5. 2D/3D Program work summary report, [January 1988--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Damerell, P. S.; Simons, J. W. [eds., MPR Associates, Washington, DC (United States)

    1993-06-01

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants.

  6. Analysis results from the Los Alamos 2D/3D program

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, B.E.; Cappiello, M.W.; Harmony, S.C.; Shire, P.R.; Siebe, D.A.

    1987-01-01

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, The Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 will be summarized; several significant accomplishments will be described in more detail to illustrate the work activities at Los Alamos.

  7. Efficient and high speed depth-based 2D to 3D video conversion

    Science.gov (United States)

    Somaiya, Amisha Himanshu; Kulkarni, Ramesh K.

    2013-09-01

    Stereoscopic video is the new era in video viewing and has wide applications such as medicine, satellite imaging and 3D Television. Such stereo content can be generated directly using S3D cameras. However, this approach requires expensive setup and hence converting monoscopic content to S3D becomes a viable approach. This paper proposes a depth-based algorithm for monoscopic to stereoscopic video conversion by using the y axis co-ordinates of the bottom-most pixels of foreground objects. This code can be used for arbitrary videos without prior database training. It does not face the limitations of single monocular depth cues nor does it combine depth cues, thus consuming less processing time without affecting the efficiency of the 3D video output. The algorithm, though not comparable to real-time, is faster than the other available 2D to 3D video conversion techniques in the average ratio of 1:8 to 1:20, essentially qualifying as high-speed. It is an automatic conversion scheme, hence directly gives the 3D video output without human intervention and with the above mentioned features becomes an ideal choice for efficient monoscopic to stereoscopic video conversion. [Figure not available: see fulltext.

  8. Efficient Sample Delay Calculation for 2-D and 3-D Ultrasound Imaging.

    Science.gov (United States)

    Ibrahim, Aya; Hager, Pascal A; Bartolini, Andrea; Angiolini, Federico; Arditi, Marcel; Thiran, Jean-Philippe; Benini, Luca; De Micheli, Giovanni

    2017-08-01

    Ultrasound imaging is a reference medical diagnostic technique, thanks to its blend of versatility, effectiveness, and moderate cost. The core computation of all ultrasound imaging methods is based on simple formulae, except for those required to calculate acoustic propagation delays with high precision and throughput. Unfortunately, advanced three-dimensional (3-D) systems require the calculation or storage of billions of such delay values per frame, which is a challenge. In 2-D systems, this requirement can be four orders of magnitude lower, but efficient computation is still crucial in view of low-power implementations that can be battery-operated, enabling usage in numerous additional scenarios. In this paper, we explore two smart designs of the delay generation function. To quantify their hardware cost, we implement them on FPGA and study their footprint and performance. We evaluate how these architectures scale to different ultrasound applications, from a low-power 2-D system to a next-generation 3-D machine. When using numerical approximations, we demonstrate the ability to generate delay values with sufficient throughput to support 10 000-channel 3-D imaging at up to 30 fps while using 63% of a Virtex 7 FPGA, requiring 24 MB of external memory accessed at about 32 GB/s bandwidth. Alternatively, with similar FPGA occupation, we show an exact calculation method that reaches 24 fps on 1225-channel 3-D imaging and does not require external memory at all. Both designs can be scaled to use a negligible amount of resources for 2-D imaging in low-power applications and for ultrafast 2-D imaging at hundreds of frames per second.

  9. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    Science.gov (United States)

    Babaei, J.; Gizzi, L. A.; Londrillo, P.; Mirzanejad, S.; Rovelli, T.; Sinigardi, S.; Turchetti, G.

    2017-04-01

    The Target Normal Sheath Acceleration regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for the rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations, for a model target given by a uniform foil plus a contaminant layer that is hydrogen-rich. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitting 2D and 3D simulations for the same target and laser pulse configuration, are comparable. This suggests that parametric scans can be performed with 2D simulations since 3D ones are computationally very expensive, delegating their role only to a correspondence check. In this paper, the simulations are carried out with the PIC code ALaDyn by changing the target thickness L and the incidence angle α, with a fixed a0 = 3. A monotonic dependence, on L for normal incidence and on α for fixed L, is found, as in the experimental results for high temporal contrast pulses.

  10. The EOS 2D/3D X-ray imaging system

    OpenAIRE

    Faria, Rita; McKenna, Claire; Wade, Rosalind Fay; Yang, Huiqin; Woolacott, Nerys; Sculpher, Mark

    2013-01-01

    OBJECTIVES: To evaluate the cost-effectiveness of the EOS® 2D/3D X-ray imaging system compared with standard X-ray for the diagnosis and monitoring of orthopaedic conditions. MATERIALS AND METHODS: A decision analytic model was developed to quantify the long-term costs and health outcomes, expressed as quality-adjusted life years (QALYs) from the UK health service perspective. Input parameters were obtained from medical literature, previously developed cancer models and expert advice. Thresho...

  11. Monoplane 3D Overlay Roadmap versus Conventional Biplane 2D Roadmap Technique for Neurointervenional Procedures

    Science.gov (United States)

    Jang, Dong-Kyu; Stidd, David A.; Schafer, Sebastian; Chen, Michael; Moftakhar, Roham

    2016-01-01

    Purpose We investigated whether a 3D overlay roadmap using monoplane fluoroscopy offers advantages over a conventional 2D roadmap using biplane fluoroscopy during endovascular aneurysm treatment. Materials and Methods A retrospective chart review was conducted for 131 consecutive cerebral aneurysm embolizations by three neurointerventionalists at a single institution. Allowing for a transition period, the periods from January 2012 to August 2012 (Time Period 1) and February 2013 to July 2013 (Time Period 2) were analyzed for radiation exposure, contrast administration, fluoroscopy time, procedure time, angiographic results, and perioperative complications. Two neurointerventionalists (Group 1) used a conventional 2D roadmap for both Time Periods, and one neurointerventionalist (Group 2) transitioned from a 2D roadmap during Time Period 1 to a 3D overlay roadmap during Time Period 2. Results During Time Period 2, Group 2 demonstrated reduced fluoroscopy time (p<0.001), procedure time (P=0.023), total radiation dose (p=0.001), and fluoroscopy dose (P=0.017) relative to Group 1. During Time Period 2, there was no difference of immediate angiographic results and procedure complications between the two groups. Through the transition from Time Period 1 to Time Period 2, Group 2 demonstrated decreased fluoroscopy time (p< 0.001), procedure time (p=0.022), and procedure complication rate (p=0.041) in Time Period 2 relative to Time Period 1. Conclusion The monoplane 3D overlay roadmap technique reduced fluoroscopy dose and fluoroscopy time during neurointervention of cerebral aneurysms with similar angiographic occlusions and complications rate relative to biplane 2D roadmap, which implies possible compensation of limitations of monoplane fluoroscopy by 3D overlay technique. PMID:27621947

  12. Comparison between 2D and 3D Modelling of Induction Machine Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Zelmira Ferkova

    2015-01-01

    Full Text Available The paper compares two different ways (2D and 3D of modelling of two-phase squirrel-cage induction machine using the finite element method (FEM. It focuses mainly on differences between starting characteristics given from both types of the model. It also discusses influence of skew rotor slots on harmonic content in air gap flux density and summarizes some issues of both approaches.

  13. Weak lensing reconstructions in 2D & 3D: implications for cluster studies

    CERN Document Server

    Leonard, Adrienne; Starck, Jean-Luc

    2015-01-01

    We compare the efficiency with which 2D and 3D weak lensing mass mapping techniques are able to detect clusters of galaxies using two state-of-the-art mass reconstruction techniques: MRLens in 2D and GLIMPSE in 3D. We simulate otherwise-empty cluster fields for 96 different virial mass-redshift combinations spanning the ranges $3\\times10^{13}h^{-1}M_\\odot \\le M_{vir}\\le 10^{15}h^{-1}M_\\odot$ and $0.05 \\le z_{\\rm cl} \\le 0.75$, and for each generate 1000 realisations of noisy shear data in 2D and 3D. For each field, we then compute the cluster (false) detection rate as the mean number of cluster (false) detections per reconstruction over the sample of 1000 reconstructions. We show that both MRLens and GLIMPSE are effective tools for the detection of clusters from weak lensing measurements, and provide comparable quality reconstructions at low redshift. At high redshift, GLIMPSE reconstructions offer increased sensitivity in the detection of clusters, yielding cluster detection rates up to a factor of $\\sim 10\\...

  14. [Rapid 2D-3D medical image registration based on CUDA].

    Science.gov (United States)

    Li, Lingzhi; Zou, Beiji

    2014-08-01

    The medical image registration between preoperative three-dimensional (3D) scan data and intraoperative two-dimensional (2D) image is a key technology in the surgical navigation. Most previous methods need to generate 2D digitally reconstructed radiographs (DRR) images from the 3D scan volume data, then use conventional image similarity function for comparison. This procedure includes a large amount of calculation and is difficult to archive real-time processing. In this paper, with using geometric feature and image density mixed characteristics, we proposed a new similarity measure function for fast 2D-3D registration of preoperative CT and intraoperative X-ray images. This algorithm is easy to implement, and the calculation process is very short, while the resulting registration accuracy can meet the clinical use. In addition, the entire calculation process is very suitable for highly parallel numerical calculation by using the algorithm based on CUDA hardware acceleration to satisfy the requirement of real-time application in surgery.

  15. Designing 2D and 3D network-on-chip architectures

    CERN Document Server

    Tatas, Konstantinos; Soudris, Dimitrios; Jantsch, Axel

    2014-01-01

    This book covers key concepts in the design of 2D and 3D Network-on-Chip interconnect.  It highlights design challenges and discusses fundamentals of NoC technology, including architectures, algorithms and tools.  Coverage focuses on topology exploration for both 2D and 3D NoCs, routing algorithms, NoC router design, NoC-based system integration, verification and testing, and NoC reliabilty.  Case studies are used to illuminate new design methodologies.  ·         Describes essential theory, practice and state-of-the-art applications of 2D and 3D Network-on-Chip interconnect; ·         Enables readers to exploit parallelism in processor architecture, with interconnect design that is efficient in terms of energy and performance; ·         Covers topics not available in other books, such as NoC and distributed memory organization, dynamic memory management and abstract data type support in many-core platforms, and distributed hierarchical power management.

  16. From 2D Silhouettes to 3D Object Retrieval: Contributions and Benchmarking

    Directory of Open Access Journals (Sweden)

    Napoléon Thibault

    2010-01-01

    Full Text Available 3D retrieval has recently emerged as an important boost for 2D search techniques. This is mainly due to its several complementary aspects, for instance, enriching views in 2D image datasets, overcoming occlusion and serving in many real-world applications such as photography, art, archeology, and geolocalization. In this paper, we introduce a complete "2D photography to 3D object" retrieval framework. Given a (collection of picture(s or sketch(es of the same scene or object, the method allows us to retrieve the underlying similar objects in a database of 3D models. The contribution of our method includes (i a generative approach for alignment able to find canonical views consistently through scenes/objects and (ii the application of an efficient but effective matching method used for ranking. The results are reported through the Princeton Shape Benchmark and the Shrec benchmarking consortium evaluated/compared by a third party. In the two gallery sets, our framework achieves very encouraging performance and outperforms the other runs.

  17. Evaluation of Fish Passage at Whitewater Parks Using 2D and 3D Hydraulic Modeling

    Science.gov (United States)

    Hardee, T.; Nelson, P. A.; Kondratieff, M.; Bledsoe, B. P.

    2016-12-01

    In-stream whitewater parks (WWPs) are increasingly popular recreational amenities that typically create waves by constricting flow through a chute to increase velocities and form a hydraulic jump. However, the hydraulic conditions these structures create can limit longitudinal habitat connectivity and potentially inhibit upstream fish migration, especially of native fishes. An improved understanding of the fundamental hydraulic processes and potential environmental effects of whitewater parks is needed to inform management decisions about Recreational In-Channel Diversions (RICDs). Here, we use hydraulic models to compute a continuous and spatially explicit description of velocity and depth along potential fish swimming paths in the flow field, and the ensemble of potential paths are compared to fish swimming performance data to predict fish passage via logistic regression analysis. While 3d models have been shown to accurately predict trout movement through WWP structures, 2d methods can provide a more cost-effective and manager-friendly approach to assessing the effects of similar hydraulic structures on fish passage when 3d analysis in not feasible. Here, we use 2d models to examine the hydraulics in several WWP structures on the North Fork of the St. Vrain River at Lyons, Colorado, and we compare these model results to fish passage predictions from a 3d model. Our analysis establishes a foundation for a practical, transferable and physically-rigorous 2d modeling approach for mechanistically evaluating the effects of hydraulic structures on fish passage.

  18. RNA 3D modules in genome-wide predictions of RNA 2D structure

    DEFF Research Database (Denmark)

    Theis, Corinna; Zirbel, Craig L; Zu Siederdissen, Christian Höner

    2015-01-01

    Recent experimental and computational progress has revealed a large potential for RNA structure in the genome. This has been driven by computational strategies that exploit multiple genomes of related organisms to identify common sequences and secondary structures. However, these computational...... approaches have two main challenges: they are computationally expensive and they have a relatively high false discovery rate (FDR). Simultaneously, RNA 3D structure analysis has revealed modules composed of non-canonical base pairs which occur in non-homologous positions, apparently by independent evolution....... These modules can, for example, occur inside structural elements which in RNA 2D predictions appear as internal loops. Hence one question is if the use of such RNA 3D information can improve the prediction accuracy of RNA secondary structure at a genome-wide level. Here, we use RNAz in combination with 3D...

  19. Transparent Conducting Electrodes based on 1D and 2D Ag Nanogratings for Organic Photovoltaics

    CERN Document Server

    Zeng, Beibei; Bartoli, Filbert J

    2014-01-01

    The optical and electrical properties of optically-thin one-dimensional (1D) Ag nanogratings and two-dimensional (2D) Ag nanogrids are studied, and their use as transparent electrodes in organic photovoltaics are explored. A large broadband and polarization-insensitive optical absorption enhancement in the organic light-harvesting layers is theoretically and numerically demonstrated using either single-layer 2D Ag nanogrids or two perpendicular 1D Ag nanogratings, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes. Total photon absorption enhancements of 150% and 200% are achieved for the optimized single-layer 2D Ag nanogrids and double (top and bottom) perpendicular 1D Ag nanogratings, respectively.

  20. Recent advances in bioactive 1D and 2D carbon nanomaterials for biomedical applications.

    Science.gov (United States)

    Erol, Ozlem; Uyan, Idil; Hatip, Meryem; Yilmaz, Canelif; Tekinay, Ayse B; Guler, Mustafa O

    2017-05-26

    One-dimensional (1D) carbon nanotubes (CNTs) and the two-dimensional (2D) graphene represent the most widely studied allotropes of carbon. Due to their unique structural, electrical, mechanical and optical properties, 1D and 2D carbon nanostructures are considered to be leading candidates for numerous applications in biomedical fields, including tissue engineering, drug delivery, bioimaging and biosensors. The biocompatibility and toxicity issues associated with these nanostructures have been a critical impediment for their use in biomedical applications. In this review, we present an overview of the various materials types, properties, functionalization strategies and characterization methods of 1D and 2D carbon nanomaterials and their derivatives in terms of their biomedical applications. In addition, we discuss various factors and mechanisms affecting their toxicity and biocompatibility. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. DEVELOPMENT OF COUPLED 1D-2D MATHEMATICAL MODELS FOR TIDAL RIVERS

    Institute of Scientific and Technical Information of China (English)

    XU Zu-xin; YIN Hai-long

    2004-01-01

    Some coupled 1D-2D hydrodynamic and water quality models depicting tidal water bodies with complex topography were presented. For the coupled models, finite element method was used to solve the governing equations so as to study tidal rivers with complex topography. Since the 1D and 2D models were coupled, the principle of model coupling was proposed to account appropriately for the factors of water level, flow and pollutant flux and the related dynamical behavior was simulated. Specifically the models were used to probe quantitative pollution contribution of receiving water from neighboring Jiangsu and Zhejiang Provinces to the pollution in the Huangpu River passing through Shanghai City. Numerical examples indicated that the developed coupled 1D-2D models are applicable in tidal river network region of Shanghai.

  2. 3D-2D registration for surgical guidance: effect of projection view angles on registration accuracy

    Science.gov (United States)

    Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Siewerdsen, J. H.

    2014-01-01

    An algorithm for intensity-based 3D-2D registration of CT and x-ray projections is evaluated, specifically using single- or dual-projection views to provide 3D localization. The registration framework employs the gradient information similarity metric and covariance matrix adaptation evolution strategy to solve for the patient pose in six degrees of freedom. Registration performance was evaluated in an anthropomorphic phantom and cadaver, using C-arm projection views acquired at angular separation, Δθ, ranging from ˜0°-180° at variable C-arm magnification. Registration accuracy was assessed in terms of 2D projection distance error and 3D target registration error (TRE) and compared to that of an electromagnetic (EM) tracker. The results indicate that angular separation as small as Δθ ˜10°-20° achieved TRE registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers and manual registration.

  3. 3D Vector Velocity Estimation using a 2D Phased Array

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2011-01-01

    A method to estimate the three dimensional (3D) velocity vector is presented is this paper. 3D velocity vector techniques are needed to measure the full velocity and characterize the complicated flow patterns in the human body. The Transverse Oscillation (TO) method introduces oscillations...... transverse to the ultrasound beam, which enables the estimation of the transverse velocity. To expand the method from 2D to 3D, it is proposed to decouple the velocity estimation into separate estimates of vx, vy, and vz in combination with a 2D phased matrix array. Through simulations the feasibility...... of using the TO method for estimation 3D velocity vectors, and the proposed decoupling is demonstrated. A 64x64 and a 32x32 elements transducer are emulated using Field II. Plug flow with a speed of 1 m/s in a small region is rotated in the XY -plane. A binary flow example with [vx,vy]=[1,0] and [0,1] m...

  4. Influence of Underhood Flow on Engine Cooling Using 1-D And 3-D Approach

    Directory of Open Access Journals (Sweden)

    Bolehovský Ondřej

    2015-12-01

    Full Text Available This work deals with numerical simulation of complete cooling system of internal combustion engine (GT-SUITE, which also involves the simulation of flow in underhood using the computationally undemanding simulation. A detailed model of the internal combustion engine is extended to a cooling circuit model which is then coupled to a simplified underhood model which is created with the help of GT-COOL application as a 3-D model and afterwards transferred to a 1-D form. The approaches, one using 1-D solution of arrangement of the heat exchangers and the other 3-D approach using the underhood model, were investigated in two steady states corresponding to various vehicle speeds and engine load. These simulations have shown the inappropriateness of 1-D approach when solving the flow in the heat exchangers in the underhood and helped to explore a relatively undemanding method of flow simulation in the underhood, which enables to detect the interaction between the models of the cooling system and the internal combustion engine and the issue of arrangement of the heat exchangers in the underhood.

  5. Scaled, patient-specific 3D vertebral model reconstruction based on 2D lateral fluoroscopy.

    Science.gov (United States)

    Zheng, Guoyan; Nolte, Lutz-P; Ferguson, Stephen J

    2011-05-01

    Accurate three-dimensional (3D) models of lumbar vertebrae are required for image-based 3D kinematics analysis. MRI or CT datasets are frequently used to derive 3D models but have the disadvantages that they are expensive, time-consuming or involving ionizing radiation (e.g., CT acquisition). An alternative method using 2D lateral fluoroscopy was developed. A technique was developed to reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image and a statistical shape model of the lumbar vertebrae. Four cadaveric lumbar spine segments and two statistical shape models were used for testing. Reconstruction accuracy was determined by comparison of the surface models reconstructed from the single lateral fluoroscopic images to the ground truth data from 3D CT segmentation. For each case, two different surface-based registration techniques were used to recover the unknown scale factor, and the rigid transformation between the reconstructed surface model and the ground truth model before the differences between the two discrete surface models were computed. Successful reconstruction of scaled surface models was achieved for all test lumbar vertebrae based on single lateral fluoroscopic images. The mean reconstruction error was between 0.7 and 1.6 mm. A scaled, patient-specific surface model of the lumbar vertebra from a single lateral fluoroscopic image can be synthesized using the present approach. This new method for patient-specific 3D modeling has potential applications in spine kinematics analysis, surgical planning, and navigation.

  6. Highly Omnidirectional and Frequency Controllable Carbon/Polyaniline-based 2D and 3D Monopole Antenna

    Science.gov (United States)

    Shin, Keun-Young; Kim, Minkyu; Lee, James S.; Jang, Jyongsik

    2015-09-01

    Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π-π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands.

  7. Transformation of 1-D Chiral-chained Titanium Phosphate to 2-D Layer Structure Through a 1-D Zigzag Chain

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; YANG Yu-lin; LI Wei-sheng; LIU Yun-ling; YI Zhuo; GUO Yang-hong; PANG Wen-qin

    2005-01-01

    The transformation of titanium phosphate from 1-D chiral- chain(JTP-A) to 2-D layer(TP-J1) has been carefully investigated. Through a hydrolysis-condensation self-assembly pathway, the crystals of TP-J1 can be obtained from the JTP-A phase under hydrothermal conditions. An intermediate material with zigzag chain during the transformation was observed by XRD characterization. A hypothesis of the transformation mechanism is also described in this article. It is noteworthy that ethylenediamine plays an important role in the transformation.

  8. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  9. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis.

    Science.gov (United States)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Dance, David R; Young, Kenneth C; Van Ongeval, Chantal

    2014-08-01

    This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly suggestive for malignancy (BIRADS 5

  10. Human factors flight trial analysis for 2D/3D SVS

    Science.gov (United States)

    Schiefele, Jens; Howland, Duncan; Maris, John; Wipplinger, Patrick

    2004-08-01

    The paper describes flight trials performed in Reno, NV. Flight trial were conducted with a Cheyenne 1 from Marinvent. Twelve pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely andomized settings. Three different settings (standard displays, 2D moving map, and 2D/3D moving map) were evaluated. They included seamless evaluation for STAR, approach, and taxi operations. The flight trial goal was to evaluate the objective performance of pilots compared among the different settings. As dependent variables, positional and time accuracy were measured. Analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, situation awareness rating technique (SART), situational awareness probe (SAP), and questionnaires.This article describes the human factor analysis from flight trials performed in Reno, NV. Flight trials were conducted with a Cheyenne 1 from Marinvent. Thirteen pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely randomized settings. Three different display configurations: Elec. Flight Information System (EFIS), EFIS and 2D moving map, and 3D SVS Primary Flight Display (PFD) and 2D moving map were evaluated. They included normal/abnormal procedure evaluation for: Steep turns and reversals, Unusual attitude recovery, Radar vector guidance towards terrain, Non-precision approaches, En-route alternate for non-IFR rated pilots encountering IMC, and Taxiing on complex taxi-routes. The flight trial goal was to evaluate the objective performance of pilots for the different display configurations. As dependent variables, positional and time data were measured. Analysis was performed by an ANOVA test. In parallel, all pilots answered subjective NASA Task Load Index, Cooper-Harper, Situation Awareness Rating Technique (SART), and questionnaires. The result shows that pilots flying 2D/3D SVS perform no worse than pilots with conventional

  11. A NEW TECHNIQUE FOR THE EXTRACTION OF CHARACTERISTIC VIEWS FOR 2D/3D INDEXATION

    Directory of Open Access Journals (Sweden)

    Mohamed El far,

    2010-07-01

    Full Text Available The tridimensional models are increasingly used in applications that require visualizing realistic objects (CAD/CAO, medical simulations, games, virtual reality, etc.. Therefore, the management of collecting 3D data of big size is becoming a significant field.For example, the indexation of these data allows a designer to easily retrieve the data that are visually and semantically similar to a featured query object. To that effect, two main approaches exist: searching by using a 3D model directly and searching by using a 2D view of the 3D query object. In our case/study, we are interested by this last approach and we emphasize on the extraction of haracteristic views of 3D models using the Datamining Algorithms “Apriori and extraction of association rules” from a description ofcharacteristic views based on the moments of Zernike. Moreover, the featured system relies on a Bayesian probabilistic approach. We present the obtained results in a set of 120 3D models of the rinceton benchmark. Then we compare them to results obtained using classical methods

  12. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    Science.gov (United States)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  13. 2D and 3D modelling of magnetic and resistivity data from Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Haakan (GeoVista AB, Luleaa (Sweden))

    2011-05-15

    This report presents results from modelling of geophysical data. Ground magnetic and geo electric data were collected in 1988 as part of the pre-investigations carried out before the construction of the Aespoe Hard Rock Laboratory (HRL). The work presented in this report is an evaluation of the magnetic and geo electric data with the focus on estimating variations in geometry and dip of some of the possible deformation zones indicated in lineament interpretations presented earlier. This was done by 2D forward magnetic modelling, 2D forward resistivity modelling and 3D inversion of the magnetic data. The specific aims of this work are: 1. Produce magnetic 2D forward models across 12 selected linked lineaments. 2. Produce a 3D susceptibility model of the entire data set of Aespoe. 3. Use 2D forward resistivity modelling to produce electric anomaly response diagrams for a dipole-dipole survey across low resistivity zones with various dips. The results of the modelling work will mainly be used as supportive information for deterministic geological modelling of deformation zones and rock units in the vicinity of the Aespoe HRL. The results of the 2D forward modelling of magnetic data show geologically reasonable solutions, and in most cases it is possible to make reliable estimates of the width and orientation of the cause of the targeted lineament. The possible deformation zones generally dip steeply (80 deg-90 deg) and have a width of c. 30-50 m. In some cases the modelled lineament has a diffuse character with low amplitude, which makes the model solution uncertain. Two 3D susceptibility models were created by use of inversion of the ground magnetic data; one coarse model of the entire Island of Aespoe and one more detailed model of the south-eastern peninsula of the Island, covering the volume of the Aespoe HRL. The two models fit nicely to the measured data and they are geologically realistic. It is possible to identify well-defined bodies (rock volumes) of

  14. Automatic pose initialization for accurate 2D/3D registration applied to abdominal aortic aneurysm endovascular repair

    Science.gov (United States)

    Miao, Shun; Lucas, Joseph; Liao, Rui

    2012-02-01

    Minimally invasive abdominal aortic aneurysm (AAA) stenting can be greatly facilitated by overlaying the preoperative 3-D model of the abdominal aorta onto the intra-operative 2-D X-ray images. Accurate 2-D/3-D registration in 3-D space makes the 2-D/3-D overlay robust to the change of C-Arm angulations. By far, the 2-D/3-D registration methods based on simulated X-ray projection images using multiple image planes have been shown to be able to provide satisfactory 3-D registration accuracy. However, one drawback of the intensity-based 2-D/3-D registration methods is that the similarity measure is usually highly non-convex and hence the optimizer can easily be trapped into local minima. User interaction therefore is often needed in the initialization of the position of the 3-D model in order to get a successful 2-D/3-D registration. In this paper, a novel 3-D pose initialization technique is proposed, as an extension of our previously proposed bi-plane 2-D/3-D registration method for AAA intervention [4]. The proposed method detects vessel bifurcation points and spine centerline in both 2-D and 3-D images, and utilizes landmark information to bring the 3-D volume into a 15mm capture range. The proposed landmark detection method was validated on real dataset, and is shown to be able to provide a good initialization for 2-D/3-D registration in [4], thus making the workflow fully automatic.

  15. PEMBUATAN PERANGKAT LUNAK EDITOR DENAH RUANG 2D UNTUK DIVISUALISASIKAN SECARA 3D

    Directory of Open Access Journals (Sweden)

    Rudy Adipranata

    2006-01-01

    Full Text Available Usually we use paper to draw sketch of room for designing building. Using paper can cause a problem especially for changing the sketch or size of the room. To solve that problem, we can use software to design sketch of the room. Nowadays there are many software can be used but many of those can only view in two dimension, top side. Using only two dimensions viewing, user have difficulties to imagine the real room in three dimensions. Also there are software which can view in three dimensions, but unfortunately the price of those software is so high. In this paper, we implement software to help user to design the sketch of the room in two dimensions, but the result can be viewed in three dimensions. In three dimensions view, user can do movement like view the real world. This software also can be used to create building have multi level, and the accessories that can be used are floor, wall, door, window and stair. To implement this software we use OpenGL library. Abstract in Bahasa Indonesia : Untuk merancang denah ruang pada sebuah bangunan, biasanya dilakukan penggambaran sketsa ruang yang diinginkan pada kertas. Tidak semua orang, terutama orang yang awam terhadap bidang arsitektur, membayangkan sebuah gambar denah sebagai ruangan akan sangat menyulitkan. Untuk menjembatani antara perancang dengan pelanggan, antara rancangan denah dalam bentuk 2D dengan visualisasi dalam bentuk 3D, maka dalam penelitian ini dikembangkan sebuah perangkat lunak yang mampu menghasilkan visualisasi bentuk sebuah ruang dari inputan berupa gambar denah 2D tampak atas. Dengan adanya fasilitas editor pada perangkat lunak ini, maka perancang dapat melakukan perubahan denah ataupun ukuran yang sudah tergambar dan langsung menampilkan hasil visualisasinya. Oleh karena itu, pada penelitian ini, dikembangkan pembuatan perangkat lunak editor denah ruang secara 2D yang dapat langsung divisualisasikan dalam bentuk 3D dengan ukuran yang sama dengan yang diinputkan pada gambar

  16. Automatic 2D/3D Vessel Enhancement in Multiple Modality Images Using a Weighted Symmetry Filter.

    Science.gov (United States)

    Zhao, Yitian; Zhao, Yitian; Zheng, Yalin; Liu, Yonghuai; Zhao, Yifan; Luo, Lingling; Yang, Siyuan; Na, Tong; Wang, Yongtian; Liu, Jiang

    2017-09-25

    Automated detection of vascular structures is of great importance in understanding the mechanism, diagnosis and treatment of many vascular pathologies. However, automatic vascular detection continues to be an open issue because of difficulties posed by multiple factors such as poor contrast, inhomogeneous backgrounds, anatomical variations, and the presence of noise during image acquisition. In this paper, we propose a novel 2D/3D symmetry filter to tackle these challenging issues for enhancing vessels from different imaging modalities. The proposed filter not only considers local phase features by using a quadrature filter to distinguish between lines and edges, but also uses the weighted geometric mean of the blurred and shifted responses of the quadrature filter, which allows more tolerance of vessels with irregular appearance. As a result, this filter shows a strong response to the vascular features under typical imaging conditions. Results based on 8 publicly available datasets (six 2D datasets, one 3D dataset and one 3D synthetic dataset) demonstrate its superior performance to other state-ofthe- art methods.

  17. 2D image classification for 3D anatomy localization: employing deep convolutional neural networks

    Science.gov (United States)

    de Vos, Bob D.; Wolterink, Jelmer M.; de Jong, Pim A.; Viergever, Max A.; Išgum, Ivana

    2016-03-01

    Localization of anatomical regions of interest (ROIs) is a preprocessing step in many medical image analysis tasks. While trivial for humans, it is complex for automatic methods. Classic machine learning approaches require the challenge of hand crafting features to describe differences between ROIs and background. Deep convolutional neural networks (CNNs) alleviate this by automatically finding hierarchical feature representations from raw images. We employ this trait to detect anatomical ROIs in 2D image slices in order to localize them in 3D. In 100 low-dose non-contrast enhanced non-ECG synchronized screening chest CT scans, a reference standard was defined by manually delineating rectangular bounding boxes around three anatomical ROIs -- heart, aortic arch, and descending aorta. Every anatomical ROI was automatically identified using a combination of three CNNs, each analyzing one orthogonal image plane. While single CNNs predicted presence or absence of a specific ROI in the given plane, the combination of their results provided a 3D bounding box around it. Classification performance of each CNN, expressed in area under the receiver operating characteristic curve, was >=0.988. Additionally, the performance of ROI localization was evaluated. Median Dice scores for automatically determined bounding boxes around the heart, aortic arch, and descending aorta were 0.89, 0.70, and 0.85 respectively. The results demonstrate that accurate automatic 3D localization of anatomical structures by CNN-based 2D image classification is feasible.

  18. Accurate Numerical Methods for Computing 2D and 3D Robot Workspace

    Directory of Open Access Journals (Sweden)

    Yi Cao

    2011-12-01

    Full Text Available Exact computation of the shape and size of robot manipulator workspace is very important for its analysis and optimum design. First, the drawbacks of the previous methods based on Monte Carlo are pointed out in the paper, and then improved strategies are presented systematically. In order to obtain more accurate boundary points of two-dimensional (2D robot workspace, the Beta distribution is adopted to generate random variables of robot joints. And then, the area of workspace is acquired by computing the area of the polygon what is a closed path by connecting the boundary points together. For comparing the errors of workspaces which are generated by the previous and the improved method from shape and size, one planar robot manipulator is taken as example. A spatial robot manipulator is used to illustrate that the methods can be used not only on planar robot manipulator, but also on the spatial. The optimal parameters are proposed in the paper to computer the shape and size of 2D and 3D workspace. Finally, we provided the computation time and discussed the generation of 3D workspace which is based on 3D reconstruction from the boundary points.

  19. Medical anatomy segmentation kit: combining 2D and 3D segmentation methods to enhance functionality

    Science.gov (United States)

    Tracton, Gregg S.; Chaney, Edward L.; Rosenman, Julian G.; Pizer, Stephen M.

    1994-07-01

    Image segmentation, in particular, defining normal anatomic structures and diseased or malformed tissue from tomographic images, is common in medical applications. Defining tumors or arterio-venous malformation from computed tomography or magnetic resonance images are typical examples. This paper describes a program, Medical Anatomy Segmentation Kit (MASK), whose design acknowledges that no single segmentation technique has proven to be successful or optimal for all object definition tasks associated with medical images. A practical solution is offered through a suite of complementary user-guided segmentation techniques and extensive manual editing functions to reach the final object definition goal. Manual editing can also be used to define objects which are abstract or otherwise not well represented in the image data and so require direct human definition - e.g., a radiotherapy target volume which requires human knowledge and judgement regarding image interpretation and tumor spread characteristics. Results are either in the form of 2D boundaries or regions of labeled pixels or voxels. MASK currently uses thresholding and edge detection to form contours, and 2D or 3D scale-sensitive fill and region algebra to form regions. In addition to these proven techniques, MASK's architecture anticipates clinically practical automatic 2D and 3D segmentation methods of the future.

  20. Prediction of positive and negative elastic dilatancy in 2D and 3D liquid foams

    Science.gov (United States)

    Rognon, P.; Molino, F.; Gay, C.

    2010-05-01

    Liquid foams have been observed to behave like immersed granular materials in at least one respect: deformation tends to raise their liquid contents, a phenomenon called dilatancy. While experimental observations evidenced the effect of a continuous deformation rate (dynamic dilatancy), we present a geometrical interpretation of both main contributions to elastic dilatancy (during elastic deformation) in foams squeezed between two solid plates (2D GG foams), which contain pseudo Plateau borders along the plates, and in 3D foams. The positive contribution is related to the increase in total Plateau border length while the negative contribution reflects the increase in total surface area of the foam. In 2D, we show that the negative dilatancy predicted by Weaire and Hutzler (Philos. Mag., 83 (2003) 2747) at very low liquid fractions is specific to ideal 2D foams (with no glass plates). In 3D, we predict that dilatancy should be positive at low liquid fractions (below 1%) and negative at moderate liquid fractions (above 4%).

  1. 2D and 3D Self-Assembling Nanofiber Hydrogels for Cardiomyocyte Culture

    Directory of Open Access Journals (Sweden)

    Liisa Ikonen

    2013-01-01

    Full Text Available Collagen is a widely used biomaterial in cardiac tissue engineering studies. However, as a natural material, it suffers from variability between batches that can complicate the standardization of culture conditions. In contrast, synthetic materials are modifiable, have well-defined structures and more homogeneous batches can be produced. In this study, several collagen-like synthetic self-assembling nanofiber hydrogels were examined for their suitability for cardiomyocyte culture in 2D and 3D. Six different nanofiber coatings were used in the 2D format with neonatal rat cardiomyocytes (NRCs and human embryonic stem-cell-derived cardiomyocytes (hESC-CMs. The viability, growth, and functionality of the 2D-cultured cardiomyocytes were evaluated. The best-performing nanofiber coatings were selected for 3D experiments. Hydrophilic pH-sensitive nanofiber hydrogel coassembled with hyaluronic acid performed best with both NRCs and hESC-CMs. Hydrophilic non-pH-sensitive nanofiber hydrogels supported the growth of NRCs; however, their ability to promote attachment and growth of hESC-CMs was limited. NRCs also grew on hydrophobic nanofiber hydrogels; however, the cell-supporting capacity of these hydrogels was inferior to that of the hydrophilic hydrogel materials. This is the first study demonstrating that hydrophilic self-assembling nanofiber hydrogels support the culture of both NRCs and hESC-CMs, which suggests that these biomaterials hold promise for cardiac tissue engineering.

  2. Plasma as a tool for growth of 1D and 2D nanomaterials and their conversions

    Science.gov (United States)

    Cvelbar, Uros

    2015-09-01

    The growth of 1D and 2D nanostructures in low pressure oxygen plasma is presented with the special stress on metal-oxide nanowires and their deterministic growth mechanisms. Since the resulting nanostructures not always have required properties for applications their modifications are required. Therefore their conversions into different oxides or sulphites/nitrides are required with either molecules, atoms, electrons or photons.

  3. Subplane-based Control Rod Decusping Techniques for the 2D/1D Method in MPACT

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Aaron M [ORNL; Collins, Benjamin S [ORNL; Downar, Thomas [University of Michigan

    2017-01-01

    The MPACT transport code is being jointly developed by Oak Ridge National Laboratory and the University of Michigan to serve as the primary neutron transport code for the Virtual Environment for Reactor Applications Core Simulator. MPACT uses the 2D/1D method to solve the transport equation by decomposing the reactor model into a stack of 2D planes. A fine mesh flux distribution is calculated in each 2D plane using the Method of Characteristics (MOC), then the planes are coupled axially through a 1D NEM-P$_3$ calculation. This iterative calculation is then accelerated using the Coarse Mesh Finite Difference method. One problem that arises frequently when using the 2D/1D method is that of control rod cusping. This occurs when the tip of a control rod falls between the boundaries of an MOC plane, requiring that the rodded and unrodded regions be axially homogenized for the 2D MOC calculations. Performing a volume homogenization does not properly preserve the reaction rates, causing an error known as cusping. The most straightforward way of resolving this problem is by refining the axial mesh, but this can significantly increase the computational expense of the calculation. The other way of resolving the partially inserted rod is through the use of a decusping method. This paper presents new decusping methods implemented in MPACT that can dynamically correct the rod cusping behavior for a variety of problems.

  4. Comparison of a unidirectional panoramic 3D endoluminal interpretation technique to traditional 2D and bidirectional 3D interpretation techniques at CT colonography: preliminary observations

    Energy Technology Data Exchange (ETDEWEB)

    Lenhart, D.K.; Babb, J.; Bonavita, J.; Kim, D. [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Bini, E.J. [Department of Medicine, NYU School of Medicine, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Megibow, A.J. [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Macari, M., E-mail: michael.macari@med.nyu.ed [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States)

    2010-02-15

    Aim: To compare the evaluation times and accuracy of unidirectional panoramic three-dimensional (3D) endoluminal interpretation to traditional two-dimensional (2D) and bidirectional 3D endoluminal techniques. materials and methods: Sixty-nine patients underwent computed tomography colonography (CTC) after bowel cleansing. Forty-five had no polyps and 24 had at least one polyp >=6 mm. Patients underwent same-day colonoscopy with segmental unblinding. Three experienced abdominal radiologists evaluated the data using one of three primary interpretation techniques: (1) 2D; (2) bidirectional 3D; (3) panoramic 3D. Mixed model analysis of variance and logistic regression for correlated data were used to compare techniques with respect to time and sensitivity and specificity. Results: Mean evaluation times were 8.6, 14.6, and 12.1 min, for 2D, 3D, and panoramic, respectively. 2D was faster than either 3D technique (p < 0.0001), and the panoramic technique was faster than bidirectional 3D (p = 0.0139). The overall sensitivity of each technique per polyp and per patient was 68.4 and 76.7% for 2D, 78.9 and 93.3% for 3D; and 78.9 and 86.7% for panoramic 3D. Conclusion: 2D interpretation was the fastest overall, the panoramic technique was significantly faster than the bidirectional with similar sensitivity and specificity. The sensitivity for a single reader was significantly lower using the 2D technique. Each reader should select the technique with which they are most successful.

  5. Quantitative Multiscale Analysis using Different Wavelets in 1D Voice Signal and 2D Image

    CERN Document Server

    Shakhakarmi, Niraj

    2012-01-01

    Mutiscale analysis represents multiresolution scrutiny of a signal to improve its signal quality. Multiresolution analysis of 1D voice signal and 2D image is conducted using DCT, FFT and different wavelets such as Haar, Deubachies, Morlet, Cauchy, Shannon, Biorthogonal, Symmlet and Coiflet deploying the cascaded filter banks based decomposition and reconstruction. The outstanding quantitative analysis of the specified wavelets is done to investigate the signal quality, mean square error, entropy and peak-to-peak SNR at multiscale stage-4 for both 1D voice signal and 2D image. In addition, the 2D image compression performance is significantly found 93.00% in DB-4, 93.68% in bior-4.4, 93.18% in Sym-4 and 92.20% in Coif-2 during the multiscale analysis.

  6. Improving object detection in 2D images using a 3D world model

    Science.gov (United States)

    Viggh, Herbert E. M.; Cho, Peter L.; Armstrong-Crews, Nicholas; Nam, Myra; Shah, Danelle C.; Brown, Geoffrey E.

    2014-05-01

    A mobile robot operating in a netcentric environment can utilize offboard resources on the network to improve its local perception. One such offboard resource is a world model built and maintained by other sensor systems. In this paper we present results from research into improving the performance of Deformable Parts Model object detection algorithms by using an offboard 3D world model. Experiments were run for detecting both people and cars in 2D photographs taken in an urban environment. After generating candidate object detections, a 3D world model built from airborne Light Detection and Ranging (LIDAR) and aerial photographs was used to filter out false alarm using several types of geometric reasoning. Comparison of the baseline detection performance to the performance after false alarm filtering showed a significant decrease in false alarms for a given probability of detection.

  7. Towards a Stable Robotic Object Manipulation Through 2D-3D Features Tracking

    Directory of Open Access Journals (Sweden)

    Sorin M. Grigorescu

    2013-04-01

    Full Text Available In this paper, a new object tracking system is proposed to improve the object manipulation capabilities of service robots. The goal is to continuously track the state of the visualized environment in order to send visual information in real time to the path planning and decision modules of the robot; that is, to adapt the movement of the robotic system according to the state variations appearing in the imaged scene. The tracking approach is based on a probabilistic collaborative tracking framework developed around a 2D patch‐based tracking system and a 2D‐3D point features tracker. The real‐time visual information is composed of RGB‐D data streams acquired from state‐of‐the‐art structured light sensors. For performance evaluation, the accuracy of the developed tracker is compared to a traditional marker‐based tracking system which delivers 3D information with respect to the position of the marker.

  8. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    Science.gov (United States)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  9. Automatic masking for robust 3D-2D image registration in image-guided spine surgery

    Science.gov (United States)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-03-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  10. Grain detection from 2d and 3d EBSD data-Specification of the MTEX algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Florian [Geoscience Mathematics and Informatics, TU Bergakademie Freiberg (Germany); Hielscher, Ralf, E-mail: ralf.hielscher@mathematik.tu-chemnitz.de [Applied Functional Analysis, TU Chemnitz (Germany); Schaeben, Helmut [Geoscience Mathematics and Informatics, TU Bergakademie Freiberg (Germany)

    2011-12-15

    We present a fast and versatile algorithm for the reconstruction of the grain structure from 2d and 3d Electron Back Scatter Diffraction (EBSD) data. The algorithm is rigorously derived from the modeling assumption that grain boundaries are located at the bisectors of adjacent measurement locations. This modeling assumption immediately implies that grains are composed of Voronoi cells corresponding to the measurement locations. Thus our algorithm is based on the Voronoi decomposition of the 2d or 3d measurement domain. It applies to any geometrical configuration of measurement locations and allows for missing data due to measurement errors. The definition of grains as compositions of Voronoi cells implies another fundamental feature of the proposed algorithm-its invariance with respect to spatial displacements, i.e., rotations or shifts of the specimen. This paper also serves as a reference paper for the texture analysis software MTEX, which is a comprehensive and versatile, freely available MATLAB toolbox that covers a wide range of problems in quantitative texture analysis, including the analysis of EBSD data. -- Highlights: Black-Right-Pointing-Pointer We present an algorithm for grain reconstruction from 2d and 3d EBSD data. Black-Right-Pointing-Pointer The algorithm allows for any measurement geometries and missing data. Black-Right-Pointing-Pointer The algorithm does not introduce any bias towards certain phases. Black-Right-Pointing-Pointer The algorithm does not require any interpolation of orientation measurements. Black-Right-Pointing-Pointer The algorithm is implemented into the free texture analysis software MTEX.

  11. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    Science.gov (United States)

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  12. In vitro evaluation of curcumin effects on breast adenocarcinoma 2D and 3D cell cultures.

    Science.gov (United States)

    Abuelba, Hussam; Cotrutz, Carmen Elena; Stoica, Bogdan Alexandru; Stoica, Laura; Olinici, DoiniŢa; Petreuş, Tudor

    2015-01-01

    Breast adenocarcinoma cell line MDA-MB-231, even if it expresses low levels of E-cadherin, still readily form multicellular aggregates of cells, namely spheroids. Curcumin is a diarylheptanoid antitumoral drug while it significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. Curcumin photoactivation may enhance antiapoptotic role against cancer cells. To evaluate the effect of low curcumin concentrations, ranged from 1.9 to 15 μM, with and without photoactivation, using a manufactured 670 nm LED-matrix. A secondary aim was to evaluate the ideal method to produce easy-to-use tumor cell spheroids, comparing two low adherence plate supports. Breast adenocarcinoma cell line MDA-MB-231 were cultured according to 2D monolayer and 3D spheroid models then submitted to normal and photoactivated curcumin in micromolar concentrations. MTT assay was used to evaluate cell viability following curcumin application on cells. On 2D cell cultures, curcumin inhibits cell tumor development and proliferation at concentrations of 15 μM, with a viability of 65.7% at 48 hours incubation time. A decreased viability up to 25% for a concentration of 15 μM was recorded following photoactivation and cytotoxic action on breast cancer tumor cell line continued at concentrations of 7.5 and 3.75 μM. Curcumin photoactivation increases pro-apoptotic effects in both 2D and 3D tumor cell culture models and also responsiveness to curcumin is slightly reduced in spheroid-like structures. Thus, 3D tumor cell culture systems appear to be the ideal environment for in vitro assays regarding anticancer drug effects on cell viability.

  13. Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride.

    Science.gov (United States)

    Ruzmetov, Dmitry; Zhang, Kehao; Stan, Gheorghe; Kalanyan, Berc; Bhimanapati, Ganesh R; Eichfeld, Sarah M; Burke, Robert A; Shah, Pankaj B; O'Regan, Terrance P; Crowne, Frank J; Birdwell, A Glen; Robinson, Joshua A; Davydov, Albert V; Ivanov, Tony G

    2016-03-22

    When designing semiconductor heterostructures, it is expected that epitaxial alignment will facilitate low-defect interfaces and efficient vertical transport. Here, we report lattice-matched epitaxial growth of molybdenum disulfide (MoS2) directly on gallium nitride (GaN), resulting in high-quality, unstrained, single-layer MoS2 with strict registry to the GaN lattice. These results present a promising path toward the implementation of high-performance electronic devices based on 2D/3D vertical heterostructures, where each of the 3D and 2D semiconductors is both a template for subsequent epitaxial growth and an active component of the device. The MoS2 monolayer triangles average 1 μm along each side, with monolayer blankets (merged triangles) exhibiting properties similar to that of single-crystal MoS2 sheets. Photoluminescence, Raman, atomic force microscopy, and X-ray photoelectron spectroscopy analyses identified monolayer MoS2 with a prominent 20-fold enhancement of photoluminescence in the center regions of larger triangles. The MoS2/GaN structures are shown to electrically conduct in the out-of-plane direction, confirming the potential of directly synthesized 2D/3D semiconductor heterostructures for vertical current flow. Finally, we estimate a MoS2/GaN contact resistivity to be less than 4 Ω·cm(2) and current spreading in the MoS2 monolayer of approximately 1 μm in diameter.

  14. Deformable 3D-2D registration for guiding K-wire placement in pelvic trauma surgery

    Science.gov (United States)

    Goerres, J.; Jacobson, M.; Uneri, A.; de Silva, T.; Ketcha, M.; Reaungamornrat, S.; Vogt, S.; Kleinszig, G.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.

    2017-03-01

    Pelvic Kirschner wire (K-wire) insertion is a challenging surgical task requiring interpretation of complex 3D anatomical shape from 2D projections (fluoroscopy) and delivery of device trajectories within fairly narrow bone corridors in proximity to adjacent nerves and vessels. Over long trajectories ( 10-25 cm), K-wires tend to curve (deform), making conventional rigid navigation inaccurate at the tip location. A system is presented that provides accurate 3D localization and guidance of rigid or deformable surgical devices ("components" - e.g., K-wires) based on 3D-2D registration. The patient is registered to a preoperative CT image by virtually projecting digitally reconstructed radiographs (DRRs) and matching to two or more intraoperative x-ray projections. The K-wire is localized using an analogous procedure matching DRRs of a deformably parametrized model for the device component (deformable known-component registration, or dKC-Reg). A cadaver study was performed in which a K-wire trajectory was delivered in the pelvis. The system demonstrated target registration error (TRE) of 2.1 ± 0.3 mm in location of the K-wire tip (median ± interquartile range, IQR) and 0.8 ± 1.4º in orientation at the tip (median ± IQR), providing functionality analogous to surgical tracking / navigation using imaging systems already in the surgical arsenal without reliance on a surgical tracker. The method offers quantitative 3D guidance using images (e.g., inlet / outlet views) already acquired in the standard of care, potentially extending the advantages of navigation to broader utilization in trauma surgery to improve surgical precision and safety.

  15. Comparative analysis of 2D and 3D model of a PEMFC in COMSOL

    Science.gov (United States)

    Lakshmi, R. Bakiya; Harikrishnan, N. P.; Juliet, A. Vimala

    2017-10-01

    In this article, 2D and 3D model of a PEMFC has been simulated in order to study their performance when subjected to similar operating conditions. The comparison reveals interesting phenomena of performance enhancement of the fuel cell. Design of fuel cell channel and stationary studies were done in COMSOL. Variations in current density and electrolyte potential from simulation results were observed when operated at a temperature of 120 °C. The electrolyte potential was found to have increased from 1 to 2.5 V and the surface pressure due to fluid flow was found to have increased from 3 to 9.58 Pa.

  16. Polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets

    CERN Document Server

    Clément, R; Gruselle, M; Train, C

    2003-01-01

    We report major results concerning polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets. As a consequence of their specific organization they are composed of an anionic sub-lattice and a cationic counter-part. These bimetallic polymers can accommodate various counter-cations possessing specific physical properties in addition to the magnetic ones resulting from the interactions between the metallic ions in the anionic sub-lattice. Thus, molecular magnets possessing paramagnetic, conductive and optical properties are presented in this review. Refs. 60 (author)

  17. A 2-D/3-D cartesian geometry non-conforming spherical harmonic neutron transport solver

    Energy Technology Data Exchange (ETDEWEB)

    Van Criekingen, S. [Laboratoire J.-L. Lions, Universite Pierre et Marie Curie, 175 rue du Chevaleret, 75013 Paris (France)]. E-mail: vancriekingen@ann.jussieu.fr

    2007-03-15

    A new 2-D/3-D transport core solver for the time-independent Boltzmann transport equation is presented. This solver, named FIESTA, is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux into spherical harmonics (P {sub N} method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous scalar flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations discretized using Raviart-Thomas finite elements. Encouraging numerical results are presented.

  18. JetCurry: Modeling 3D geometry of AGN jets from 2D images

    Science.gov (United States)

    Kosak, Katie; Li, KunYang; Avachat, Sayali S.; Perlman, Eric S.

    2017-02-01

    Written in Python, JetCurry models the 3D geometry of jets from 2-D images. JetCurry requires NumPy and SciPy and incorporates emcee (ascl:1303.002) and AstroPy (ascl:1304.002), and optionally uses VPython. From a defined initial part of the jet that serves as a reference point, JetCurry finds the position of highest flux within a bin of data in the image matrix and fits along the x axis for the general location of the bends in the jet. A spline fitting is used to smooth out the resulted jet stream.

  19. Combination of Monte Carlo and transfer matrix methods to study 2D and 3D percolation

    Energy Technology Data Exchange (ETDEWEB)

    Saleur, H.; Derrida, B.

    1985-07-01

    In this paper we develop a method which combines the transfer matrix and the Monte Carlo methods to study the problem of site percolation in 2 and 3 dimensions. We use this method to calculate the properties of strips (2D) and bars (3D). Using a finite size scaling analysis, we obtain estimates of the threshold and of the exponents wich confirm values already known. We discuss the advantages and the limitations of our method by comparing it with usual Monte Carlo calculations.

  20. Polarizablity of 2D and 3D conducting objects using method of moments

    CERN Document Server

    Shahpari, Morteza; Lewis, Andrew

    2014-01-01

    Fundamental antenna limits of the gain-bandwidth product are derived from polarizability calculations. This electrostatic technique has significant value in many antenna evaluations. Polarizability is not available in closed form for most antenna shapes and no commercial electromagnetic packages have this facility. Numerical computation of the polarizability for arbitrary conducting bodies was undertaken using an unstructured triangular mesh over the surface of 2D and 3D objects. Numerical results compare favourably with analytical solutions and can be implemented efficiently for large structures of arbitrary shape.

  1. The 2D effective field theory of interfaces derived from 3D field theory

    CERN Document Server

    Provero, P; Provero, Paolo; Vinti, Stefano

    1995-01-01

    The one--loop determinant computed around the kink solution in the 3D \\phi^4 theory, in cylindrical geometry, allows one to obtain the partition function of the interface separating coexisting phases. The quantum fluctuations of the interface around its equilibrium position are described by a c=1 two--dimensional conformal field theory, namely a 2D free massless scalar field living on the interface. In this way the capillary wave model conjecture for the interface free energy in its gaussian approximation is proved.

  2. The Y(4140), X(4260), psi(2D), psi(4S) and tentative psi(3D)

    CERN Document Server

    van Beveren, Eef

    2009-01-01

    Data on B+ --> J/psi phi K+ and the Y(4140) enhancement recently reported by the CDF collaboration [arxiv:0903.2229] are analysed. The threshold behaviour, as well as traces of the X(4260) enhancement, the known c-cbar resonances psi(2D), psi(4S), and a tentative psi(3D) state, as observed in the mass distribution, suggest that the J/psi+phi system has quantum numbers JPC=1--. It is then argued that the Y(4140) enhancement does not represent any kind of resonance, but instead is a natural consequence of the opening of the J/psi+phi channel.

  3. Hybrid 2D-3D modelling of GTA welding with filler wire addition

    KAUST Repository

    Traidia, Abderrazak

    2012-07-01

    A hybrid 2D-3D model for the numerical simulation of Gas Tungsten Arc welding is proposed in this paper. It offers the possibility to predict the temperature field as well as the shape of the solidified weld joint for different operating parameters, with relatively good accuracy and reasonable computational cost. Also, an original approach to simulate the effect of immersing a cold filler wire in the weld pool is presented. The simulation results reveal two important observations. First, the weld pool depth is locally decreased in the presence of filler metal, which is due to the energy absorption by the cold feeding wire from the hot molten pool. In addition, the weld shape, maximum temperature and thermal cycles in the workpiece are relatively well predicted even when a 2D model for the arc plasma region is used. © 2012 Elsevier Ltd. All rights reserved.

  4. Assessment of prosthesis alignment after revision total knee arthroplasty using EOS 2D and 3D imaging: a reliability study.

    Directory of Open Access Journals (Sweden)

    Marrigje F Meijer

    Full Text Available INTRODUCTION: A new low-dose X-ray device, called EOS, has been introduced for determining lower-limb alignment in 2D and 3D. Reliability has not yet been assessed when using EOS on lower limbs containing a knee prosthesis. Therefore purpose of this study was to determine intraobserver and interobserver reliability of EOS 2D and 3D knee prosthesis alignment measurements after revision total knee arthroplasty (rTKA. METHODS: Forty anteroposterior and lateral images of 37 rTKA patients were included. Two observers independently performed measurements on these images twice. Varus/valgus angles were measured in 2D (VV2D and 3D (VV3D. Intraclass correlation coefficients and the Bland and Altman method were used to determine reliability. T-tests were used to test potential differences. RESULTS: Intraobserver and interobserver reliability were excellent for VV2D and VV3D. No significant difference or bias between the first and second measurements or the two observers was found. A significant mean and absolute difference of respectively 1.00° and 1.61° existed between 2D and 3D measurements. CONCLUSIONS: EOS provides reliable varus/valgus measurements in 2D and 3D for the alignment of the knee joint with a knee prosthesis. However, significant differences exist between varus/valgus measurements in 2D and 3D.

  5. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    Science.gov (United States)

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  6. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    Directory of Open Access Journals (Sweden)

    Zichun Zhong

    2016-01-01

    Full Text Available By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  7. D Recording for 2d Delivering - the Employment of 3d Models for Studies and Analyses -

    Science.gov (United States)

    Rizzi, A.; Baratti, G.; Jiménez, B.; Girardi, S.; Remondino, F.

    2011-09-01

    In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d'Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino). APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy) with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying and 3D material to

  8. Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures

    Science.gov (United States)

    Aly, Arafa H.; Mehaney, Ahmed

    2016-11-01

    This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification.

  9. Robust and Fast Initialization for Intensity-Based 2D/3D Registration

    Directory of Open Access Journals (Sweden)

    Zhenzhou Shao

    2014-06-01

    Full Text Available Intensity-based 2D/3D registration is a key technique using digitally reconstructed radiographs (DRRs to register the preoperative volume to the patient setup during the operation. Although DRR-based method provides a high accuracy, the small capture range hinders its clinical use. In this paper, such problem was addressed by a robust and fast initialization method using a two-level scheme including automatic tracking-based initialization (Level I and multiresolution estimation based on central-slice theorem and phase correlation (Level II. It provided almost optimal transformation parameters for intensity-based registration. Experiments using a public gold standard data set and a spinal phantom have been conducted. The mean target registration error (mTRE was limited in the range from 2.12 mm to 22.57 mm after tracking-based initialization. The capture range based on level II only was 20.1 mm and the mTRE in this capture range was 2.92 ± 2.21 mm. The intensity-based 2D/3D registration using proposed two-level initialization achieved the successful rate of 84.8% with the average error of 2.36 mm. The experimental results showed that the proposed method yielded the robust and fast initialization for intensity-based registration methods. In a similar way, it can be applied to other registration methods to enable a larger capture range and robust implementation.

  10. Rise time of proton cut-off energy in 2D and 3D PIC simulations

    CERN Document Server

    Babaei, Javad; Londrillo, Pasquale; Mirzanejad, Saeed; Rovelli, Tiziano; Sinigardi, Stefano; Turchetti, Giorgio

    2016-01-01

    The Target Normal Sheath Acceleration (TNSA) regime for proton acceleration by laser pulses is experimentally consolidated and fairly well understood. However, uncertainties remain in the analysis of particle-in-cell (PIC) simulation results. The energy spectrum is exponential with a cut-off, but the maximum energy depends on the simulation time, following different laws in two and three dimensional (2D, 3D) PIC simulations, so that the determination of an asymptotic value has some arbitrariness. We propose two empirical laws for rise time of the cut-off energy in 2D and 3D PIC simulations, suggested by a model in which the proton acceleration is due to a surface charge distribution on the target rear side. The kinetic energy of the protons that we obtain follows two distinct laws, which appear to be nicely satisfied by PIC simulations. The laws depend on two parameters: the scaling time, at which the energy starts to rise, and the asymptotic cut-off energy. The values of the cut-off energy, obtained by fitti...

  11. One-Year stable perovskite solar cells by 2D/3D interface engineering

    Science.gov (United States)

    Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; De Angelis, F.; Graetzel, M.; Nazeeruddin, Mohammad Khaja

    2017-01-01

    Despite the impressive photovoltaic performances with power conversion efficiency beyond 22%, perovskite solar cells are poorly stable under operation, failing by far the market requirements. Various technological approaches have been proposed to overcome the instability problem, which, while delivering appreciable incremental improvements, are still far from a market-proof solution. Here we show one-year stable perovskite devices by engineering an ultra-stable 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3PbI3 perovskite junction. The 2D/3D forms an exceptional gradually-organized multi-dimensional interface that yields up to 12.9% efficiency in a carbon-based architecture, and 14.6% in standard mesoporous solar cells. To demonstrate the up-scale potential of our technology, we fabricate 10 × 10 cm2 solar modules by a fully printable industrial-scale process, delivering 11.2% efficiency stable for >10,000 h with zero loss in performances measured under controlled standard conditions. This innovative stable and low-cost architecture will enable the timely commercialization of perovskite solar cells. PMID:28569749

  12. One-Year stable perovskite solar cells by 2D/3D interface engineering

    Science.gov (United States)

    Grancini, G.; Roldán-Carmona, C.; Zimmermann, I.; Mosconi, E.; Lee, X.; Martineau, D.; Narbey, S.; Oswald, F.; de Angelis, F.; Graetzel, M.; Nazeeruddin, Mohammad Khaja

    2017-06-01

    Despite the impressive photovoltaic performances with power conversion efficiency beyond 22%, perovskite solar cells are poorly stable under operation, failing by far the market requirements. Various technological approaches have been proposed to overcome the instability problem, which, while delivering appreciable incremental improvements, are still far from a market-proof solution. Here we show one-year stable perovskite devices by engineering an ultra-stable 2D/3D (HOOC(CH2)4NH3)2PbI4/CH3NH3PbI3 perovskite junction. The 2D/3D forms an exceptional gradually-organized multi-dimensional interface that yields up to 12.9% efficiency in a carbon-based architecture, and 14.6% in standard mesoporous solar cells. To demonstrate the up-scale potential of our technology, we fabricate 10 × 10 cm2 solar modules by a fully printable industrial-scale process, delivering 11.2% efficiency stable for >10,000 h with zero loss in performances measured under controlled standard conditions. This innovative stable and low-cost architecture will enable the timely commercialization of perovskite solar cells.

  13. RGB-D SLAM Based on Extended Bundle Adjustment with 2D and 3D Information

    Directory of Open Access Journals (Sweden)

    Kaichang Di

    2016-08-01

    Full Text Available In the study of SLAM problem using an RGB-D camera, depth information and visual information as two types of primary measurement data are rarely tightly coupled during refinement of camera pose estimation. In this paper, a new method of RGB-D camera SLAM is proposed based on extended bundle adjustment with integrated 2D and 3D information on the basis of a new projection model. First, the geometric relationship between the image plane coordinates and the depth values is constructed through RGB-D camera calibration. Then, 2D and 3D feature points are automatically extracted and matched between consecutive frames to build a continuous image network. Finally, extended bundle adjustment based on the new projection model, which takes both image and depth measurements into consideration, is applied to the image network for high-precision pose estimation. Field experiments show that the proposed method has a notably better performance than the traditional method, and the experimental results demonstrate the effectiveness of the proposed method in improving localization accuracy.

  14. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    Science.gov (United States)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-01-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work. PMID:28262671

  15. RGB-D SLAM Based on Extended Bundle Adjustment with 2D and 3D Information.

    Science.gov (United States)

    Di, Kaichang; Zhao, Qiang; Wan, Wenhui; Wang, Yexin; Gao, Yunjun

    2016-08-13

    In the study of SLAM problem using an RGB-D camera, depth information and visual information as two types of primary measurement data are rarely tightly coupled during refinement of camera pose estimation. In this paper, a new method of RGB-D camera SLAM is proposed based on extended bundle adjustment with integrated 2D and 3D information on the basis of a new projection model. First, the geometric relationship between the image plane coordinates and the depth values is constructed through RGB-D camera calibration. Then, 2D and 3D feature points are automatically extracted and matched between consecutive frames to build a continuous image network. Finally, extended bundle adjustment based on the new projection model, which takes both image and depth measurements into consideration, is applied to the image network for high-precision pose estimation. Field experiments show that the proposed method has a notably better performance than the traditional method, and the experimental results demonstrate the effectiveness of the proposed method in improving localization accuracy.

  16. Interfacing 2D and 3D Topological Insulators: Bi(111) Bilayer on Bi2Te3

    Science.gov (United States)

    Hirahara, Toru; Bihlmayer, Gustav; Sakamoto, Yusuke; Yamada, Manabu; Miyazaki, Hidetoshi; Kimura, Shin-Ichi; Blügel, Stefan; Hasegawa, Shuji

    2012-02-01

    Topological insulators (TI) are insulating materials but have metallic edge states that carry spin currents and are robust against nonmagnetic impurities [1]. While there have been a large number of reports on three-dimensional (3D) TI, only few works have been done in terms of two-dimensional (2D) TI. In the present paper, we report the successful formation of bilayer Bi, which was theoretically predicted to be a 2D TI [2]. We deposited bilayer Bi on a 3D TI Bi2Te3, which the lattice mismatch is very small. From angle-resolved photoemission spectroscopy measurements and ab initio calculations, the electronic structure of the system can be understood as an overlap of the band dispersions of bilayer Bi and Bi2Te3. Our results show that the Dirac cone is actually robust against nonmagnetic perturbations and imply a unique situation where the topologically protected one- and two-dimensional edge states are coexisting at the surface [3]. [0pt] [1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).[0pt] [2] S. Murakami, Phys. Rev. Lett. 97, 236805 (2006).[0pt] [3] T. Hirahara et al., Phys. Rev. Lett. 107, 166801 (2011).

  17. Localization of significant 3D objects in 2D images for generic vision tasks

    Science.gov (United States)

    Mokhtari, Marielle; Bergevin, Robert

    1995-10-01

    Computer vision experiments are not very often linked to practical applications but rather deal with typical laboratory experiments under controlled conditions. For instance, most object recognition experiments are based on specific models used under limitative constraints. Our work proposes a general framework for rapidly locating significant 3D objects in 2D static images of medium to high complexity, as a prerequisite step to recognition and interpretation when no a priori knowledge of the contents of the scene is assumed. In this paper, a definition of generic objects is proposed, covering the structures that are implied in the image. Under this framework, it must be possible to locate generic objects and assign a significance figure to each one from any image fed to the system. The most significant structure in a given image becomes the focus of interest of the system determining subsequent tasks (like subsequent robot moves, image acquisitions and processing). A survey of existing strategies for locating 3D objects in 2D images is first presented and our approach is defined relative to these strategies. Perceptual grouping paradigms leading to the structural organization of the components of an image are at the core of our approach.

  18. Reactor safety issues resolved by the 2D/3D program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated. This report was prepared in a coordination among US, Germany and Japan. US and Germany have published the report as NUREG/IA-0127 and GRS-101 respectively. (author).

  19. Effects of 2D and 3D Error Fields on the SAS Divertor Magnetic Topology

    Science.gov (United States)

    Trevisan, G. L.; Lao, L. L.; Strait, E. J.; Guo, H. Y.; Wu, W.; Evans, T. E.

    2016-10-01

    The successful design of plasma-facing components in fusion experiments is of paramount importance in both the operation of future reactors and in the modification of operating machines. Indeed, the Small Angle Slot (SAS) divertor concept, proposed for application on the DIII-D experiment, combines a small incident angle at the plasma strike point with a progressively opening slot, so as to better control heat flux and erosion in high-performance tokamak plasmas. Uncertainty quantification of the error fields expected around the striking point provides additional useful information in both the design and the modeling phases of the new divertor, in part due to the particular geometric requirement of the striking flux surfaces. The presented work involves both 2D and 3D magnetic error field analysis on the SAS strike point carried out using the EFIT code for 2D equilibrium reconstruction, V3POST for vacuum 3D computations and the OMFIT integrated modeling framework for data analysis. An uncertainty in the magnetic probes' signals is found to propagate non-linearly as an uncertainty in the striking point and angle, which can be quantified through statistical analysis to yield robust estimates. Work supported by contracts DE-FG02-95ER54309 and DE-FC02-04ER54698.

  20. Reticular synthesis of porous molecular 1D nanotubes and 3D networks

    Science.gov (United States)

    Slater, A. G.; Little, M. A.; Pulido, A.; Chong, S. Y.; Holden, D.; Chen, L.; Morgan, C.; Wu, X.; Cheng, G.; Clowes, R.; Briggs, M. E.; Hasell, T.; Jelfs, K. E.; Day, G. M.; Cooper, A. I.

    2017-01-01

    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  1. Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems

    Science.gov (United States)

    Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.

    2013-01-01

    NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing

  2. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy

    Science.gov (United States)

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-12-01

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D-3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D-2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D-3D registration method. The comparison is done for a range of 4-60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D-3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse

  3. Advanced 3-D Ultrasound Imaging: 3-D Synthetic Aperture Imaging using Fully Addressed and Row-Column Addressed 2-D Transducer Arrays

    DEFF Research Database (Denmark)

    Bouzari, Hamed

    with transducer arrays using this addressing scheme, when integrated into probe handles. For that reason, two in-house prototyped 62+62 row-column addressed 2-D array transducer probes were manufactured using capacitive micromachined ultrasonic transducer (CMUT) and piezoelectric transducer (PZT) technology...... in many clinical applications. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D ultrasound imaging. Two limiting factors have traditionally been the low image quality as well as low volume rate achievable with a 2-D transducer array using the conventional 3-D...... and measurements with the ultrasound research scanner SARUS and a 3.8 MHz 1024 element 2-D transducer array. In all investigations, 3-D synthetic aperture imaging achieved a better resolution, lower side-lobes, higher contrast, and better signal to noise ratio than parallel beamforming. This is achieved partly...

  4. Adaptive optofluidic lens(es) for switchable 2D and 3D imaging

    Science.gov (United States)

    Huang, Hanyang; Wei, Kang; Zhao, Yi

    2016-03-01

    The stereoscopic image is often captured using dual cameras arranged side-by-side and optical path switching systems such as two separate solid lenses or biprism/mirrors. The miniaturization of the overall size of current stereoscopic devices down to several millimeters is at a sacrifice of further device size shrinkage. The limited light entry worsens the final image resolution and brightness. It is known that optofluidics offer good re-configurability for imaging systems. Leveraging this technique, we report a reconfigurable optofluidic system whose optical layout can be swapped between a singlet lens with 10 mm in diameter and a pair of binocular lenses with each lens of 3 mm in diameter for switchable two-dimensional (2D) and three-dimensional (3D) imaging. The singlet and the binoculars share the same optical path and the same imaging sensor. The singlet acquires a 3D image with better resolution and brightness, while the binoculars capture stereoscopic image pairs for 3D vision and depth perception. The focusing power tuning capability of the singlet and the binoculars enable image acquisition at varied object planes by adjusting the hydrostatic pressure across the lens membrane. The vari-focal singlet and binoculars thus work interchangeably and complementarily. The device is thus expected to have applications in robotic vision, stereoscopy, laparoendoscopy and miniaturized zoom lens system.

  5. Depth map resolution enhancement for 2D/3D imaging system via compressive sensing

    Science.gov (United States)

    Han, Juanjuan; Loffeld, Otmar; Hartmann, Klaus

    2011-08-01

    This paper introduces a novel approach for post-processing of depth map which enhances the depth map resolution in order to achieve visually pleasing 3D models from a new monocular 2D/3D imaging system consists of a Photonic mixer device (PMD) range camera and a standard color camera. The proposed method adopts the revolutionary inversion theory framework called Compressive Sensing (CS). The depth map of low resolution is considered as the result of applying blurring and down-sampling techniques to that of high-resolution. Based on the underlying assumption that the high-resolution depth map is compressible in frequency domain and recent theoretical work on CS, the high-resolution version can be estimated and furthermore reconstructed via solving non-linear optimization problem. And therefore the improved depth map reconstruction provides a useful help to build an improved 3D model of a scene. The experimental results on the real data are presented. In the meanwhile the proposed scheme opens new possibilities to apply CS to a multitude of potential applications on various multimodal data analysis and processing.

  6. Reconstruction of 3d video from 2d real-life sequences

    Directory of Open Access Journals (Sweden)

    Eduardo Ramos Diaz

    2010-01-01

    Full Text Available En este artículo, se propone un método novedoso que permite generar secuencias de video en 3D usando secuencias de video reales en 2D. La reconstrucción de la secuencia de video en 3D se realiza usando el cálculo del mapa de profundidad y la síntesis de anaglifos. El mapa de profundidad es formado usando la técnica de correspondencia estéreo basada en la minimización de la energía de error global a partir de funciones de suavizado. La construcción del anaglifo es realizada usando la alineación del componente de color interpolándolo con el mapa de profundidad previamente formado. Adicionalmente, se emplea la transformación del mapa de profundidad para reducir el rango dinámico de los valores de disparidad, minimizando el efecto fantasma mejorando la preservación de color. Se usaron numerosas secuencias de video a color reales que contienen diferentes tipos de movimientos como traslacional, rotacional, acercamiento, y la combinación de los anteriores, demostrando buen funcionamiento visual de la reconstrucción de secuencias de video en 3D propuesta.

  7. Lossless Geometry Compression Through Changing 3D Coordinates into 1D

    Directory of Open Access Journals (Sweden)

    Yongkui Liu

    2013-08-01

    Full Text Available A method of lossless geometry compression on the coordinates of the vertexes for grid model is presented. First, the 3D coordinates are pre-processed to be transformed into a specific form. Then these 3D coordinates are changed into 1D data by making the three coordinates of a vertex represented by only a position number, which is made of a large integer. To minimize the integers, they are sorted and the differences between two adjacent vertexes are stored in a vertex table. In addition to the technique of geometry compression on coordinates, an improved method for storing the compressed topological data in a facet table is proposed to make the method more complete and efficient. The experimental results show that the proposed method has a better compression rate than the latest method of lossless geometry compression, the Isenburg-Lindstrom-Snoeyink method. The theoretical analysis and the experiment results also show that the important decompression time of the new method is short. Though the new method is explained in the case of a triangular grid, it can also be used in other forms of grid model.

  8. Comparison of Transport Calculation Between 2D/1D synthesis and RAPTOR-M3G at Core Barrel of Korea Standard Nuclear Plant(KSNP), OPR-1000

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, Young Jae; Kim, Byoung Chul; Lim, Mi Joung; Kim, Kyung Sik; Jeon, Young Kyou [Korea Reactor Integrity Surveillance Technology, Daejeon (Korea, Republic of); Yoo, Chun Sung [Korea Atomic Energy Research Institutes, Daejeon (Korea, Republic of)

    2013-10-15

    The DORT code for 2D/1D synthesis has been actively applied to calculate the fast neutron (E>1.0MeV) fluence exposure of RPV. RAPTOR-M3G code is also applied for the comparison of 2D/1D synthesis, and it was found that 2D/1D synthesis method generally provided more conservative results than RAPTOR-M3G at both RPV and surveillance capsule locations. As a result, definitely RAPTOR-M3G for 3D calculation must apply for accurate evaluation of the integrity and ageing of RPV and internal structures. Therefore, the purpose of this paper is to compare the differences in terms of geometric aspect of KSNP model between 2D/1D synthesis and RAPTOR-M3G at core barrel area. 2D/1D synthesis method shows still higher results at the shortest distance of bypass water region. The reason is that 2D/1D synthesis method has excessive conservatism because of having just one model of R-θ and R-Z separately. Angles (5, 25, 45, 65 and 90 degrees) that RAPTOR-M3G results are higher than 2D/1D synthesis results seem to have almost regular interval. The reason can be that neutron flux to reach to barrel is affected by the nearest core definitely and all of near core areas including bypass water. RAPTOR-M3G performing 3D calculation can be applied to various reactor structures, because the code can simulate the model realistically and reasonably in geometric view points. Understanding the phenomenon that 45 degree shows downward peak, in spite of baffle corner location, remains.

  9. Numerical Methods and Comparisons for 1D and Quasi 2D Streamer Propagation Models

    CERN Document Server

    Huang, Mengmin; Guan, Huizhe; Zeng, Rong

    2016-01-01

    In this work, we propose four different strategies to simulate the one-dimensional (1D) and quasi two-dimensional (2D) model for streamer propagation. Each strategy involves of one numerical method for solving Poisson's equation and another method for solving continuity equations in the models, and a total variation diminishing three-stage Runge-Kutta method in temporal discretization. The numerical methods for Poisson's equation include finite volume method, discontinuous Galerkin methods, mixed finite element method and least-squared finite element method. The numerical method for continuity equations is chosen from the family of discontinuous Galerkin methods. The accuracy tests and comparisons show that all of these four strategies are suitable and competitive in streamer simulations from the aspects of accuracy and efficiency. By applying any strategy in real simulations, we can study the dynamics of streamer propagations and influences due to the change of parameters in both of 1D and quasi 2D models. T...

  10. Polarons in endohedral Li+@C60- dimers and in 1D and 2D crystals

    Science.gov (United States)

    Kawazoe, Yoshiyuki; Belosludov, Vladimir R.; Zhdanov, Ravil K.; Belosludov, Rodion V.

    2017-10-01

    The electron charge distribution and polaron formation on the carbon sites of dimer clusters Li+@C60- and of 1D or 2D Li+@C60- periodic systems are studied with the use of the generalized Su-Schrieffer-Heeger model with respect to the intermolecular and intramolecular degrees of freedom. The charge distributions over the molecular surface and Jahn-Teller bond distortions of carbon atoms are calculated using the self-consistent iterative methods. Polarons formed in periodic 1D and 2D systems (chains and planar layers) as well as in dimer cluster system are examined. In the periodic systems polaron formation may be described by the cooperative Jahn-Teller effect. Orientation of the polarons on the molecule surface depends on the doping of the system, moreover, electron doping changes the energy levels in the system.

  11. Shape and motion reconstruction from 3D-to-1D orthographically projected data via object-image relations.

    Science.gov (United States)

    Ferrara, Matthew; Arnold, Gregory; Stuff, Mark

    2009-10-01

    This paper describes an invariant-based shape- and motion reconstruction algorithm for 3D-to-1D orthographically projected range data taken from unknown viewpoints. The algorithm exploits the object-image relation that arises in echo-based range data and represents a simplification and unification of previous work in the literature. Unlike one proposed approach, this method does not require uniqueness constraints, which makes its algorithmic form independent of the translation removal process (centroid removal, range alignment, etc.). The new algorithm, which simultaneously incorporates every projection and does not use an initialization in the optimization process, requires fewer calculations and is more straightforward than the previous approach. Additionally, the new algorithm is shown to be the natural extension of the approach developed by Tomasi and Kanade for 3D-to-2D orthographically projected data and is applied to a realistic inverse synthetic aperture radar imaging scenario, as well as experiments with varying amounts of aperture diversity and noise.

  12. Combination of 3D skin surface texture features and 2D ABCD features for improved melanoma diagnosis.

    Science.gov (United States)

    Ding, Yi; John, Nigel W; Smith, Lyndon; Sun, Jiuai; Smith, Melvyn

    2015-10-01

    Two-dimensional asymmetry, border irregularity, colour variegation and diameter (ABCD) features are important indicators currently used for computer-assisted diagnosis of malignant melanoma (MM); however, they often prove to be insufficient to make a convincing diagnosis. Previous work has demonstrated that 3D skin surface normal features in the form of tilt and slant pattern disruptions are promising new features independent from the existing 2D ABCD features. This work investigates that whether improved lesion classification can be achieved by combining the 3D features with the 2D ABCD features. Experiments using a nonlinear support vector machine classifier show that many combinations of the 2D ABCD features and the 3D features can give substantially better classification accuracy than using (1) single features and (2) many combinations of the 2D ABCD features. The best 2D and 3D feature combination includes the overall 3D skin surface disruption, the asymmetry and all the three colour channel features. It gives an overall 87.8 % successful classification, which is better than the best single feature with 78.0 % and the best 2D feature combination with 83.1 %. These demonstrate that (1) the 3D features have additive values to improve the existing lesion classification and (2) combining the 3D feature with all the 2D features does not lead to the best lesion classification. The two ABCD features not selected by the best 2D and 3D combination, namely (1) the border feature and (2) the diameter feature, were also studied in separate experiments. It found that inclusion of either feature in the 2D and 3D combination can successfully classify 3 out of 4 lesion groups. The only one group not accurately classified by either feature can be classified satisfactorily by the other. In both cases, they have shown better classification performances than those without the 3D feature in the combinations. This further demonstrates that (1) the 3D feature can be used to

  13. Calibrating the Micromechanical Parameters of the PFC2D(3D Models Using the Improved Simulated Annealing Algorithm

    Directory of Open Access Journals (Sweden)

    Min Wang

    2017-01-01

    Full Text Available PFC2D(3D is commercial software, which is commonly used to model the crack initiation of rock and rock-like materials. For the PFC2D(3D numerical simulation, a proper set of microparameters need to be determined before the numerical simulation. To obtain a proper set of microparameters for PFC2D(3D model based on the macroparameters obtained from physical experiments, a novel technique has been carried out in this paper. The improved simulated annealing algorithm was employed to calibrate the microparameters of the numerical simulation model of PFC2D(3D. A Python script completely controls the calibration process, which can terminate automatically based on a termination criterion. The microparameter calibration process is not based on establishing the relationship between microparameters and macroparameters; instead, the microparameters are calibrated according to the improved simulated annealing algorithm. By using the proposed approach, the microparameters of both the contact-bond model and parallel-bond model in PFC2D(3D can be determined. To verify the validity of calibrating the microparameters of PFC2D(3D via the improved simulated annealing algorithm, some examples were selected from the literature. The corresponding numerical simulations were performed, and the numerical simulation results indicated that the proposed method is reliable for calibrating the microparameters of PFC2D(3D model.

  14. Study on Development of 1D-2D Coupled Real-time Urban Inundation Prediction model

    Science.gov (United States)

    Lee, Seungsoo

    2017-04-01

    In recent years, we are suffering abnormal weather condition due to climate change around the world. Therefore, countermeasures for flood defense are urgent task. In this research, study on development of 1D-2D coupled real-time urban inundation prediction model using predicted precipitation data based on remote sensing technology is conducted. 1 dimensional (1D) sewerage system analysis model which was introduced by Lee et al. (2015) is used to simulate inlet and overflow phenomena by interacting with surface flown as well as flows in conduits. 2 dimensional (2D) grid mesh refinement method is applied to depict road networks for effective calculation time. 2D surface model is coupled with 1D sewerage analysis model in order to consider bi-directional flow between both. Also parallel computing method, OpenMP, is applied to reduce calculation time. The model is estimated by applying to 25 August 2014 extreme rainfall event which caused severe inundation damages in Busan, Korea. Oncheoncheon basin is selected for study basin and observed radar data are assumed as predicted rainfall data. The model shows acceptable calculation speed with accuracy. Therefore it is expected that the model can be used for real-time urban inundation forecasting system to minimize damages.

  15. Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters

    Directory of Open Access Journals (Sweden)

    Adeniyi Ganiyu Adeogun

    2015-10-01

    Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain.

  16. 3D imaging of soil apparent electrical conductivity from VERIS data using a 1D spatially constrained inversion algorithm

    Science.gov (United States)

    Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando

    2016-04-01

    Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.

  17. 2D and 3D ordered arrays of Co magnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J. [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Prida, V.M., E-mail: vmpp@uniovi.es [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Vega, V. [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Rosa, W.O. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 Urca., 22290-180 Rio de Janeiro, RJ (Brazil); Caballero-Flores, R.; Iglesias, L.; Hernando, B. [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain)

    2015-06-01

    Cobalt nanowire arrays spatially distributed in 2D and 3D arrangements have been performed by pulsed electrodeposition into the pores of planar and cylindrical nanoporous anodic alumina membranes, respectively. Morphological characterization points out the good filling factor reached by electroplated Co nanowires in both kinds of alumina membranes exhibiting hexagonally self-ordered porous structures. Co nanowires grown in both kinds of alumina templates exhibit the same crystalline phases. DC magnetometry and First Order Reversal Curve (FORC) analysis were carried out in order to determine the overall magnetic behavior for both nanowire array geometries. It is found that when the Co nanowires of two kinds of arrays are perpendicularly magnetized, both hysteresis loops are identical, suggesting that neither the intrinsic magnetic behavior of the nanowires nor the collective one depend on the arrays geometry. FORC analysis performed along the radial direction of the Co nanowire arrays embedded in the cylindrical alumina template reveals that the contribution of each nanowire to the magnetization reversal process involves its specific orientation with respect to the applied field direction. Furthermore, the comparison between the magnetic properties for both kinds of Co nanowire arrays allows discussing about the effect of the cylindrical geometry of the template on the magnetostatic interaction among nanowires. - Graphical abstract: Scanning electronic microscope images of cylindrical anodic aluminum membranes (CAAM) electrodeposited with Co nanowires. From top, SEM micrographs of the nanoporous CAAM template at different magnifications, to bottom at the left, a cross-section image showing Co nanowires embedded in the nanopores of the alumina template. On the right at the bottom are shown the radial and axial hysteresis loops together FORC diagram obtained for the Co nanowires array along the radial direction of the CAAM template. - Highlights: • Co nanowire

  18. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells.

    Science.gov (United States)

    Ma, Chaoyan; Leng, Chongqian; Ji, Yixiong; Wei, Xingzhan; Sun, Kuan; Tang, Linlong; Yang, Jun; Luo, Wei; Li, Chaolong; Deng, Yunsheng; Feng, Shuanglong; Shen, Jun; Lu, Shirong; Du, Chunlei; Shi, Haofei

    2016-11-03

    The lifetime and power conversion efficiency are the key issues for the commercialization of perovskite solar cells (PSCs). In this paper, the development of 2D/3D perovskite hybrids (CA2PbI4/MAPbIxCl3-x) was firstly demonstrated to be a reliable method to combine their advantages, and provided a new concept for achieving both stable and efficient PSCs through the hybridization of perovskites. 2D/3D perovskite hybrids afforded significantly-improved moisture stability of films and devices without encapsulation in a high humidity of 63 ± 5%, as compared with the 3D perovskite (MAPbIxCl3-x). The 2D/3D perovskite-hybrid film did not undergo any degradation after 40 days, while the 3D perovskite decomposed completely under the same conditions after 8 days. The 2D/3D perovskite-hybrid device maintained 54% of the original efficiency after 220 hours, whereas the 3D perovskite device lost all the efficiency within only 50 hours. Moreover, the 2D/3D perovskite hybrid achieved comparable device performances (PCE: 13.86%) to the 3D perovskite (PCE: 13.12%) after the optimization of device fabrication conditions.

  19. Ultra-Rapid 2-D and 3-D Laser Microprinting of Proteins

    Science.gov (United States)

    Scott, Mark Andrew

    When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3

  20. Wound Measurement Techniques: Comparing the Use of Ruler Method, 2D Imaging and 3D Scanner.

    Science.gov (United States)

    Shah, Aj; Wollak, C; Shah, J B

    2013-12-01

    The statistics on the growing number of non-healing wounds is alarming. In the United States, chronic wounds affect 6.5 million patients. An estimated US $25 billion is spent annually on treatment of chronic wounds and the burden is rapidly growing due to increasing health care costs, an aging population and a sharp rise in the incidence of diabetes and obesity worldwide.(1) Accurate wound measurement techniques will help health care personnel to monitor the wounds which will indirectly help improving care.(7,9) The clinical practice of measuring wounds has not improved even today.(2,3) A common method like the ruler method to measure wounds has poor interrater and intrarater reliability.(2,3) Measuring the greatest length by the greatest width perpendicular to the greatest length, the perpendicular method, is more valid and reliable than other ruler based methods.(2) Another common method like acetate tracing is more accurate than the ruler method but still has its disadvantages. These common measurement techniques are time consuming with variable inaccuracies. In this study, volumetric measurements taken with a non-contact 3-D scanner are benchmarked against the common ruler method, acetate grid tracing, and 2-D image planimetry volumetric measurement technique. A liquid volumetric fill method is used as the control volume. Results support the hypothesis that the 3-D scanner consistently shows accurate volumetric measurements in comparison to standard volumetric measurements obtained by the waterfill technique (average difference of 11%). The 3-D scanner measurement technique was found more reliable and valid compared to other three techniques, the ruler method (average difference of 75%), acetate grid tracing (average difference of 41%), and 2D planimetric measurements (average difference of 52%). Acetate tracing showed more accurate measurements compared to the ruler method (average difference of 41% (acetate tracing) compared to 75% (ruler method)). Improving

  1. Quantum Diffusion on Molecular Tubes: Universal Scaling of the 1D to 2D Transition

    Science.gov (United States)

    Chuang, Chern; Lee, Chee Kong; Moix, Jeremy M.; Knoester, Jasper; Cao, Jianshu

    2016-05-01

    The transport properties of disordered systems are known to depend critically on dimensionality. We study the diffusion coefficient of a quantum particle confined to a lattice on the surface of a tube, where it scales between the 1D and 2D limits. It is found that the scaling relation is universal and independent of the temperature, disorder, and noise parameters, and the essential order parameter is the ratio between the localization length in 2D and the circumference of the tube. Phenomenological and quantitative expressions for transport properties as functions of disorder and noise are obtained and applied to real systems: In the natural chlorosomes found in light-harvesting bacteria the exciton transfer dynamics is predicted to be in the 2D limit, whereas a family of synthetic molecular aggregates is found to be in the homogeneous limit and is independent of dimensionality.

  2. A comparison of 1D and 2D LSTM architectures for the recognition of handwritten Arabic

    Science.gov (United States)

    Yousefi, Mohammad Reza; Soheili, Mohammad Reza; Breuel, Thomas M.; Stricker, Didier

    2015-01-01

    In this paper, we present an Arabic handwriting recognition method based on recurrent neural network. We use the Long Short Term Memory (LSTM) architecture, that have proven successful in different printed and handwritten OCR tasks. Applications of LSTM for handwriting recognition employ the two-dimensional architecture to deal with the variations in both vertical and horizontal axis. However, we show that using a simple pre-processing step that normalizes the position and baseline of letters, we can make use of 1D LSTM, which is faster in learning and convergence, and yet achieve superior performance. In a series of experiments on IFN/ENIT database for Arabic handwriting recognition, we demonstrate that our proposed pipeline can outperform 2D LSTM networks. Furthermore, we provide comparisons with 1D LSTM networks trained with manually crafted features to show that the automatically learned features in a globally trained 1D LSTM network with our normalization step can even outperform such systems.

  3. 1D and 2D economical FIR filters generated by Chebyshev polynomials of the first kind

    Science.gov (United States)

    Dragoljub Pavlović, Vlastimir; Stanojko Dončov, Nebojša; Gradimir Ćirić, Dejan

    2013-11-01

    Christoffel-Darboux formula for Chebyshev continual orthogonal polynomials of the first kind is proposed to find a mathematical solution of approximation problem of a one-dimensional (1D) filter function in the z domain. Such an approach allows for the generation of a linear phase selective 1D low-pass digital finite impulse response (FIR) filter function in compact explicit form by using an analytical method. A new difference equation and structure of corresponding linear phase 1D low-pass digital FIR filter are given here. As an example, one extremely economic 1D FIR filter (with four adders and without multipliers) is designed by the proposed technique and its characteristics are presented. Global Christoffel-Darboux formula for orthonormal Chebyshev polynomials of the first kind and for two independent variables for generating linear phase symmetric two-dimensional (2D) FIR digital filter functions in a compact explicit representative form, by using an analytical method, is proposed in this paper. The formula can be most directly applied for mathematically solving the approximation problem of a filter function of even and odd order. Examples of a new class of extremely economic linear phase symmetric selective 2D FIR digital filters obtained by the proposed approximation technique are presented.

  4. Intensity-based 2D 3D registration for lead localization in robot guided deep brain stimulation

    Science.gov (United States)

    Hunsche, Stefan; Sauner, Dieter; El Majdoub, Faycal; Neudorfer, Clemens; Poggenborg, Jörg; Goßmann, Axel; Maarouf, Mohammad

    2017-03-01

    Intraoperative assessment of lead localization has become a standard procedure during deep brain stimulation surgery in many centers, allowing immediate verification of targeting accuracy and, if necessary, adjustment of the trajectory. The most suitable imaging modality to determine lead positioning, however, remains controversially discussed. Current approaches entail the implementation of computed tomography and magnetic resonance imaging. In the present study, we adopted the technique of intensity-based 2D 3D registration that is commonly employed in stereotactic radiotherapy and spinal surgery. For this purpose, intraoperatively acquired 2D x-ray images were fused with preoperative 3D computed tomography (CT) data to verify lead placement during stereotactic robot assisted surgery. Accuracy of lead localization determined from 2D 3D registration was compared to conventional 3D 3D registration in a subsequent patient study. The mean Euclidian distance of lead coordinates estimated from intensity-based 2D 3D registration versus flat-panel detector CT 3D 3D registration was 0.7 mm  ±  0.2 mm. Maximum values of these distances amounted to 1.2 mm. To further investigate 2D 3D registration a simulation study was conducted, challenging two observers to visually assess artificially generated 2D 3D registration errors. 95% of deviation simulations, which were visually assessed as sufficient, had a registration error below 0.7 mm. In conclusion, 2D 3D intensity-based registration revealed high accuracy and reliability during robot guided stereotactic neurosurgery and holds great potential as a low dose, cost effective means for intraoperative lead localization.

  5. 2D or 3D? New user interfaces for control rooms in process industries. A feasibility study; 2D eller 3D? Nya graenssnitt foer processindustrins kontrollrum

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, MariAnne

    2008-01-15

    Three dimensional user interfaces and techniques for visualisation have been discussed as possible ways to improve the work situation for control room operators in process industries. The aims of the project, which is a pilot project, has been: (i) to compile existing knowledge on the pro's and con's of 2D versus 3D user interfaces in order to assess and conclude if, and how, 3-dimensional visualisations could be applied when designing new user interfaces for modern process control rooms and (ii) to investigate operators' attitudes towards and acceptance of 3-dimensional user interfaces for visualisation of information. The project has included the following activities: a literature review has been completed in order to collect information on different projects and tests in which 3-dimensional user interfaces have been evaluated for different tasks; an identification of feasible use cases has been made, partly on basis of a workshop in which participated researchers from the field and partly on basis of study visits to different process plants on the west coast of Sweden; an interview study has been carried with control room operators at four different power plants in order to find out the operators' assessments of and attitudes towards 3-dimensional information visualisation; and interviews with representatives of system developers have been completed in order to elicit information on ongoing development work and experiences of developing and implementing 3-dimensional user interfaces in control rooms. On basis of the literature review as well as the interview studies cannot be concluded that 3-dimensional user interfaces and 3-dimensional visualisation of information hold any general advantages compared to 2-dimensional solutions. Pro's and con's are, instead, highly contextual and dependant upon (i) the characteristics of user (in terms e.g. of computer skills); (ii) the (work) task; and (iii) the specific design of the user

  6. 明导电子推出1D-3D CFD解决方案

    Institute of Scientific and Technical Information of China (English)

    龚淑娟

    2012-01-01

    FloEFD与Flowmaster结合起来可以作为一个1D-3D CFD应用的最佳组合,帮助设计工程师更加快速地实现更完美的产品设计开发。除了FloEFD,其他3D CFD工具也可通过MCPPI接口转移到Flowmaster进行1D CFD分析。

  7. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography.

    Science.gov (United States)

    Satriano, Alessandro; Heydari, Bobak; Narous, Mariam; Exner, Derek V; Mikami, Yoko; Attwood, Monica M; Tyberg, John V; Lydell, Carmen P; Howarth, Andrew G; Fine, Nowell M; White, James A

    2017-07-06

    Two-dimensional (2D) strain analysis is constrained by geometry-dependent reference directions of deformation (i.e. radial, circumferential, and longitudinal) following the assumption of cylindrical chamber architecture. Three-dimensional (3D) principal strain analysis may overcome such limitations by referencing intrinsic (i.e. principal) directions of deformation. This study aimed to demonstrate clinical feasibility of 3D principal strain analysis from routine 2D cine MRI with validation to strain from 2D tagged cine analysis and 3D speckle tracking echocardiography. Thirty-one patients undergoing cardiac MRI were studied. 3D strain was measured from routine, multi-planar 2D cine SSFP images using custom software designed to apply 4D deformation fields to 3D cardiac models to derive principal strain. Comparisons of strain estimates versus those by 2D tagged cine, 2D non-tagged cine (feature tracking), and 3D speckle tracking echocardiography (STE) were performed. Mean age was 51 ± 14 (36% female). Mean LV ejection fraction was 66 ± 10% (range 37-80%). 3D principal strain analysis was feasible in all subjects and showed high inter- and intra-observer reproducibility (ICC range 0.83-0.97 and 0.83-0.98, respectively-p tracking) estimates of longitudinal (r = 0.85 and -0.83), circumferential (r = 0.88 and r = -0.87), and radial strain (r = -0.79 and r = 0.84, p < 0.0001 for all). 3D principal strain analysis is feasible using routine, multi-planar 2D cine MRI and shows high reproducibility with strong correlations to 2D conventional strain analysis and 3D STE-based analysis. Given its independence from geometry-related directions of deformation this technique may offer unique benefit for the detection and prognostication of myocardial disease, and warrants expanded investigation.

  8. Robust autonomous model learning from 2D and 3D data sets.

    Science.gov (United States)

    Langs, Georg; Donner, René; Peloschek, Philipp; Bischof, Horst

    2007-01-01

    In this paper we propose a weakly supervised learning algorithm for appearance models based on the minimum description length (MDL) principle. From a set of training images or volumes depicting examples of an anatomical structure, correspondences for a set of landmarks are established by group-wise registration. The approach does not require any annotation. In contrast to existing methods no assumptions about the topology of the data are made, and the topology can change throughout the data set. Instead of a continuous representation of the volumes or images, only sparse finite sets of interest points are used to represent the examples during optimization. This enables the algorithm to efficiently use distinctive points, and to handle texture variations robustly. In contrast to standard elasticity based deformation constraints the MDL criterion accounts for systematic deformations typical for training sets stemming from medical image data. Experimental results are reported for five different 2D and 3D data sets.

  9. Cylindrical liquid crystal lenses system for autostereoscopic 2D/3D display

    Science.gov (United States)

    Chen, Chih-Wei; Huang, Yi-Pai; Chang, Yu-Cheng; Wang, Po-Hao; Chen, Po-Chuan; Tsai, Chao-Hsu

    2012-06-01

    The liquid crystal lenses system, which could be electrically controlled easily for autostereoscopic 2D/3D switchable display was proposed. The High-Resistance liquid crystal (HRLC) lens utilized less controlled electrodes and coated a high-resistance layer between the controlled-electrodes was proposed and was used in this paper. Compare with the traditional LC lens, the HR-LC Lens could provide smooth electric-potential distribution within the LC layer under driving status. Hence, the proposed HR-LC Lens had less circuit complexity, low driving voltage, and good optical performance also could be obtained. In addition, combining with the proposed driving method called dual-directional overdriving method, the above method could reduce the switching time by applying large voltage onto cell. Consequently, the total switching time could be further reduced to around 2second. It is believed that the LC lens system has high potential in the future.

  10. 2D and 3D reconstructions in acousto-electric tomography

    KAUST Repository

    Kuchment, Peter

    2011-04-18

    We propose and test stable algorithms for the reconstruction of the internal conductivity of a biological object using acousto-electric measurements. Namely, the conventional impedance tomography scheme is supplemented by scanning the object with acoustic waves that slightly perturb the conductivity and cause the change in the electric potential measured on the boundary of the object. These perturbations of the potential are then used as the data for the reconstruction of the conductivity. The present method does not rely on \\'perfectly focused\\' acoustic beams. Instead, more realistic propagating spherical fronts are utilized, and then the measurements that would correspond to perfect focusing are synthesized. In other words, we use synthetic focusing. Numerical experiments with simulated data show that our techniques produce high-quality images, both in 2D and 3D, and that they remain accurate in the presence of high-level noise in the data. Local uniqueness and stability for the problem also hold. © 2011 IOP Publishing Ltd.

  11. 2D-3D μXRF elemental mapping of archeological samples

    Science.gov (United States)

    Hampai, D.; Liedl, A.; Cappuccio, G.; Capitolo, E.; Iannarelli, M.; Massussi, M.; Tucci, S.; Sardella, R.; Sciancalepore, A.; Polese, C.; Dabagov, S. B.

    2017-07-01

    Recently opened for users at LNF XLab-Frascati a μ XRF station, named ;Rainbow X-ray; - RXR, has been optimized for most of X-ray analytical research fields. The basic principle of the station is in the use of various geometrical combinations of polycapillary optics for X-ray beam shaping (focusing/collimation) at specially designed laboratory unit. In this work we have presented the results of archaeological studies on the artifacts of Paleolithic period and Iron Age (9th century BC to the midway of the 8th BC). The elemental analysis of these artifacts has been first performed by compact laboratory setup. Superficial (2D) and bulk (3D) micro-fluorescence mapping provides useful informations for the geologists in order to identify the possible artifacts provenience and origin. The results presented in this work are a part of wider anthropological/archeological investigations aimed at the understanding of social and economical relations of prehistorical communities.

  12. Using 2D and 3D Computer Games to Detect Colorblindness – a Comparative Study

    Directory of Open Access Journals (Sweden)

    Laskowski Maciej

    2015-12-01

    Full Text Available Computer games have accompanied the development of computer technologies since the very beginning. Despite their basic, purely entertainment-targeted appliance, games can also be used for many other purposes. Medical applications are especially interesting, as games (especially different kinds of simulations are widely used for training personnel, e.g. to perform certain procedures or in learning to use equipment. This allows the trainees to gain knowledge and proper habits, as well as test themselves in different situations without any risk. Computer games can also be used as a diagnostic tool, although this topic is still insufficiently researched. This paper discusses the possibility of using serious games for diagnosing color vision disorders, focusing especially on two problems: differences in diagnosing colorblindness using 2D and 3D environments, and the influence of individual features, such as reflex or agility, on the diagnostic process.

  13. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion.

    Science.gov (United States)

    Collins, Gillian; Armstrong, Eileen; McNulty, David; O'Hanlon, Sally; Geaney, Hugh; O'Dwyer, Colm

    2016-01-01

    This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic-photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.

  14. 3D morphology of a random field from its 2D cross-section

    CERN Document Server

    Makarenko, Irina; Shukurov, Anvar

    2014-01-01

    We show that both aspect ratios of randomly oriented triaxial ellipsoids (representing isosurfaces of an isotropic 3D random field) can be determined from a single 2D cross-section of their sample using the probability distribution of the filamentarity F of the structures seen in the cross-section (F=0 for a circle and F=1 for a line). The probability distribution of F has a robust form with a sharp maximum and truncation that are sensitive to the ellipsoids' aspect ratios. We show that the aspect ratios of triaxial ellipsoids with randomly distributed dimensions can still be recovered from the probability distribution of F. This method is applicable to many shape recognition and classification problems, here illustrated with neutral hydrogen density in the turbulent interstellar medium of the Milky Way. The gas distribution is shown to be filamentary with the mean axis ratio 1:2:20.

  15. A solidification constitutive model for NIKE2D and NIKE3D

    Energy Technology Data Exchange (ETDEWEB)

    Raboin, P.J.

    1994-03-17

    This memo updates the current status of a solidification material model development which has been underway for more than a year. Significant modeling goals such as predicting cut-off stresses, thermo-elasto-plasticity, strain rate dependent plasticity and dynamic recovery have been completed. The model is called SOLMAT for solidification material model, and while developed for NIKE2D, it has already been implemented in NIKE3D and NIT03D by B. Maker. This memo details the future development strategy of SOLMAT including liquid and solid constitutive improvements, coupling of deviatoric and dilatational deformation and a plan to switch between constitutive theories. It explains some of the difficulties associated solidification modeling and proposes two experiments to measure properties for using SOLMAT. Due to the sensitive nature of these plans in relation to programmatic and CRADA concerns, this memo should be treated as confidential document.

  16. 2D/3D registration for X-ray guided bronchoscopy using distance map classification.

    Science.gov (United States)

    Xu, Di; Xu, Sheng; Herzka, Daniel A; Yung, Rex C; Bergtholdt, Martin; Gutierrez, Luis F; McVeigh, Elliot R

    2010-01-01

    In X-ray guided bronchoscopy of peripheral pulmonary lesions, airways and nodules are hardly visible in X-ray images. Transbronchial biopsy of peripheral lesions is often carried out blindly, resulting in degraded diagnostic yield. One solution of this problem is to superimpose the lesions and airways segmented from preoperative 3D CT images onto 2D X-ray images. A feature-based 2D/3D registration method is proposed for the image fusion between the datasets of the two imaging modalities. Two stereo X-ray images are used in the algorithm to improve the accuracy and robustness of the registration. The algorithm extracts the edge features of the bony structures from both CT and X-ray images. The edge points from the X-ray images are categorized into eight groups based on the orientation information of their image gradients. An orientation dependent Euclidean distance map is generated for each group of X-ray feature points. The distance map is then applied to the edge points of the projected CT images whose gradient orientations are compatible with the distance map. The CT and X-ray images are registered by matching the boundaries of the projected CT segmentations to the closest edges of the X-ray images after the orientation constraint is satisfied. Phantom and clinical studies were carried out to validate the algorithm's performance, showing a registration accuracy of 4.19(± 0.5) mm with 48.39(± 9.6) seconds registration time. The algorithm was also evaluated on clinical data, showing promising registration accuracy and robustness.

  17. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions.

    Science.gov (United States)

    Podesta, Mark; Persoon, Lucas C G G; Verhaegen, Frank

    2014-10-21

    Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors.The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation fields

  18. Automatic 2D to 3D conversion implemented for real-time applications

    Science.gov (United States)

    Ponomaryov, Volodymyr; Ramos-Diaz, Eduardo; Gonzalez Huitron, Victor

    2014-05-01

    Different hardware implementations of designed automatic 2D to 3D video color conversion employing 2D video sequence are presented. The analyzed framework includes together processing of neighboring frames using the following blocks: CIELa*b* color space conversion, wavelet transform, edge detection using HF wavelet sub-bands (HF, LH and HH), color segmentation via k-means on a*b* color plane, up-sampling, disparity map (DM) estimation, adaptive postfiltering, and finally, the anaglyph 3D scene generation. During edge detection, the Donoho threshold is computed, then each sub-band is binarized according to a threshold chosen and finally the thresholding image is formed. DM estimation is performed in the following matter: in left stereo image (or frame), a window with varying sizes is used according to the information obtained from binarized sub-band image, distinguishing different texture areas into LL sub-band image. The stereo matching is performed between two (left and right) LL sub-band images using processing with different window sizes. Upsampling procedure is employed in order to obtain the enhanced DM. Adaptive post-processing procedure is based on median filter and k-means segmentation in a*b* color plane. The SSIM and QBP criteria are applied in order to compare the performance of the proposed framework against other disparity map computation techniques. The designed technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7 and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode.

  19. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    Science.gov (United States)

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  20. The MICHELLE 2D/3D ES PIC Code Advances and Applications

    CERN Document Server

    Petillo, John; De Ford, John F; Dionne, Norman J; Eppley, Kenneth; Held, Ben; Levush, Baruch; Nelson, Eric M; Panagos, Dimitrios; Zhai, Xiaoling

    2005-01-01

    MICHELLE is a new 2D/3D steady-state and time-domain particle-in-cell (PIC) code* that employs electrostatic and now magnetostatic finite-element field solvers. The code has been used to design and analyze a wide variety of devices that includes multistage depressed collectors, gridded guns, multibeam guns, annular-beam guns, sheet-beam guns, beam-transport sections, and ion thrusters. Latest additions to the MICHELLE/Voyager tool are as follows: 1) a prototype 3D self magnetic field solver using the curl-curl finite-element formulation for the magnetic vector potential, employing edge basis functions and accumulating current with MICHELLE's new unstructured grid particle tracker, 2) the electrostatic field solver now accommodates dielectric media, 3) periodic boundary conditions are now functional on all grids, not just structured grids, 4) the addition of a global optimization module to the user interface where both electrical parameters (such as electrode voltages)can be optimized, and 5) adaptive mesh ref...

  1. Some applications of 2-D and 3-D photogrammetry during laboratory experiments for hydrogeological risk assessment

    Directory of Open Access Journals (Sweden)

    M. Scaioni

    2015-07-01

    Full Text Available Scaled-down flume tests are largely used to support investigations for the assessment of hydrogeological risk. Achieved outcomes can be integrated to numerical analyses for the study of unstable slope collapse, debris transport, and hydrological models in general. In the set-up of such simulation platforms, a relevant role has to be given to the Spatial Sensor Network (SSN which is in charge of collecting geo-referenced, quantitative information during experiments. Photogrammetry (including 3-D imaging sensors can play an important role in SSN because of its capability of collecting information covering wide surfaces without any contact. The aim of this paper is to give an overview and some examples of the potential of photogrammetry in hydrogeological simulation experiments. After a general introduction on a few preliminary issues (sensors, calibration, ground reference, usage of imaging or ranging sensors, potential applications are classified into 2-D and 3-D categories. Examples are focused on a scaled-down landslide simulation platform, which has been developed at Tongji University (Shanghai, P.R. China.

  2. 3D Materials image segmentation by 2D propagation: a graph-cut approach considering homomorphism.

    Science.gov (United States)

    Waggoner, Jarrell; Zhou, Youjie; Simmons, Jeff; De Graef, Marc; Wang, Song

    2013-12-01

    Segmentation propagation, similar to tracking, is the problem of transferring a segmentation of an image to a neighboring image in a sequence. This problem is of particular importance to materials science, where the accurate segmentation of a series of 2D serial-sectioned images of multiple, contiguous 3D structures has important applications. Such structures may have distinct shape, appearance, and topology, which can be considered to improve segmentation accuracy. For example, some materials images may have structures with a specific shape or appearance in each serial section slice, which only changes minimally from slice to slice, and some materials may exhibit specific inter-structure topology that constrains their neighboring relations. Some of these properties have been individually incorporated to segment specific materials images in prior work. In this paper, we develop a propagation framework for materials image segmentation where each propagation is formulated as an optimal labeling problem that can be efficiently solved using the graph-cut algorithm. Our framework makes three key contributions: 1) a homomorphic propagation approach, which considers the consistency of region adjacency in the propagation; 2) incorporation of shape and appearance consistency in the propagation; and 3) a local non-homomorphism strategy to handle newly appearing and disappearing substructures during this propagation. To show the effectiveness of our framework, we conduct experiments on various 3D materials images, and compare the performance against several existing image segmentation methods.

  3. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.

    Science.gov (United States)

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-10-14

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  4. Video lensfree microscopy of 2D and 3D culture of cells

    Science.gov (United States)

    Allier, C. P.; Vinjimore Kesavan, S.; Coutard, J.-G.; Cioni, O.; Momey, F.; Navarro, F.; Menneteau, M.; Chalmond, B.; Obeid, P.; Haguet, V.; David-Watine, B.; Dubrulle, N.; Shorte, S.; van der Sanden, B.; Di Natale, C.; Hamard, L.; Wion, D.; Dolega, M. E.; Picollet-D'hahan, N.; Gidrol, X.; Dinten, J.-M.

    2014-03-01

    Innovative imaging methods are continuously developed to investigate the function of biological systems at the microscopic scale. As an alternative to advanced cell microscopy techniques, we are developing lensfree video microscopy that opens new ranges of capabilities, in particular at the mesoscopic level. Lensfree video microscopy allows the observation of a cell culture in an incubator over a very large field of view (24 mm2) for extended periods of time. As a result, a large set of comprehensive data can be gathered with strong statistics, both in space and time. Video lensfree microscopy can capture images of cells cultured in various physical environments. We emphasize on two different case studies: the quantitative analysis of the spontaneous network formation of HUVEC endothelial cells, and by coupling lensfree microscopy with 3D cell culture in the study of epithelial tissue morphogenesis. In summary, we demonstrate that lensfree video microscopy is a powerful tool to conduct cell assays in 2D and 3D culture experiments. The applications are in the realms of fundamental biology, tissue regeneration, drug development and toxicology studies.

  5. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    Directory of Open Access Journals (Sweden)

    Rubaiyet Iftekharul Haque

    2015-10-01

    Full Text Available A capacitive acoustic resonator developed by combining three-dimensional (3D printing and two-dimensional (2D printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  6. Filters in 2D and 3D Cardiac SPECT Image Processing

    Directory of Open Access Journals (Sweden)

    Maria Lyra

    2014-01-01

    Full Text Available Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  7. Filters in 2D and 3D Cardiac SPECT Image Processing.

    Science.gov (United States)

    Lyra, Maria; Ploussi, Agapi; Rouchota, Maritina; Synefia, Stella

    2014-01-01

    Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT) evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP) analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  8. Initiating 3D air target tracks from 2D naval radar sensor reports

    Science.gov (United States)

    Valin, Pierre; Aurag, Hassan; Kjiri, Mounia

    2000-07-01

    The topic studied here involves target tracking of aircraft using naval radar, and can be also used in civilian applications such as airport traffic management. The aim is to initiate a 3-D track from lower- dimensional 2-D radar contact data for 3-D track initiation and/or promotion. Because it is meant to be used at long ranges, the main assumption is that the target is performing rectilinear motion at a given altitude. The solution to this problem will facilitate track management, as all tracks will eventually be three-dimensional. The two cascaded algorithms presented here consist in first determining speed and altitude independently of the actual trajectory, then determining the actual trajectory given the best-fit value for the altitude. The algorithms are shown to work perfectly for noiseless data and adequately enough for typical naval radar parameters. The added sensory components will help resolve the association problem in multiple target scenarios by providing altitude information hidden from the sensors and revealed only through this mathematical modeling and its related algorithmic processing. In addition, the fact that one can deduce speed and altitude at the early stages of tracking permits the elimination of many platform identifications at the outset of the Multi-Sensor Data Fusion process.

  9. The modular approach enables a fully ab initio simulation of the contacts between 3D and 2D materials

    Science.gov (United States)

    Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio

    2016-10-01

    Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces—for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts—metal/graphene contacts—and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties.

  10. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L. [School of Nuclear Science and Technology, Xi' an Jiaotong University, No. 28, Xianning West Road, Xi' an, Shaanxi 710049 (China)

    2013-07-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  11. Clinical application of 3-D conformal radiotherapy for carcinoma of the ethmoid sinus: 1. Comparative analysis between conventional 2-D and 3-D conformal plans

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. W.; Kim, G. E.; Keum, K. C.; Park, H. C.; Cho, J. H.; Han, S. U.; Lee, K. K.; Suh, C. O.; Hong, W. P.; Park, I. Y. [Yonsei Univ., Seoul (Korea, Republic of). Coll. of Medicine

    1997-12-01

    This is study of whether 3-D conformal radiotherapy for carcinomas of the ethmoid sinus were better than those treated with conventional 2-D plan. The 3-D conformal treatment plans were compared with conventional 2-D plans in 4 patients with malignancy of the ethmoid sinus. Isodose distribution , dose statistics, and dose volume histogram of the planning target volume were used to evaluate differences between 2-D and 3-D plans. In addition, the risk of radiation exposure of surrounding normal critical organs are evaluated by means of point dose calculation and dose volume histogram. 3-D conformal treatment plans for each patient that the better tumor coverages by the planning target volume with improved dose homogeneity, compared to 2-D conventional treatment plans in the same patient. On the other hand, the radiation dose distributions to the surrounding normal tissue organs, such as the orbit and optic nerves are not significantly reduced with our technique, but a substantial sparing in the brain stem and optic chiasm for each patient. Our findings represented the potential advantage of 3-D treatment planning for dose homogeneity as well as sparing of the normal tissue surrounding the tumor. However, further investigational studies are required to define the clinical benefit. (author).

  12. Model-based segmentation and quantification of subcellular structures in 2D and 3D fluorescent microscopy images

    Science.gov (United States)

    Wörz, Stefan; Heinzer, Stephan; Weiss, Matthias; Rohr, Karl

    2008-03-01

    We introduce a model-based approach for segmenting and quantifying GFP-tagged subcellular structures of the Golgi apparatus in 2D and 3D microscopy images. The approach is based on 2D and 3D intensity models, which are directly fitted to an image within 2D circular or 3D spherical regions-of-interest (ROIs). We also propose automatic approaches for the detection of candidates, for the initialization of the model parameters, and for adapting the size of the ROI used for model fitting. Based on the fitting results, we determine statistical information about the spatial distribution and the total amount of intensity (fluorescence) of the subcellular structures. We demonstrate the applicability of our new approach based on 2D and 3D microscopy images.

  13. Efficient 3D/1D self-consistent integral-equation analysis of ICRH antennae

    Science.gov (United States)

    Maggiora, R.; Vecchi, G.; Lancellotti, V.; Kyrytsya, V.

    2004-08-01

    This work presents a comprehensive account of the theory and implementation of a method for the self-consistent numerical analysis of plasma-facing ion-cyclotron resonance heating (ICRH) antenna arrays. The method is based on the integral-equation formulation of the boundary-value problem, solved via a weighted-residual scheme. The antenna geometry (including Faraday shield bars and a recess box) is fairly general and three-dimensional (3D), and the plasma is in the one-dimensional (1D) 'slab' approximation; finite-Larmor radius effects, as well as plasma density and temperature gradients, are considered. Feeding via the voltages in the access coaxial lines is self-consistently accounted throughout and the impedance or scattering matrix of the antenna array obtained therefrom. The problem is formulated in both the dual space (physical) and spectral (wavenumber) domains, which allows the extraction and simple handling of the terms that slow the convergence in the spectral domain usually employed. This paper includes validation tests of the developed code against measured data, both in vacuo and in the presence of plasma. An example of application to a complex geometry is also given.

  14. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    Energy Technology Data Exchange (ETDEWEB)

    Giaddui, T; Yu, J; Xiao, Y [Thomas Jefferson University, Philadelphia, PA (United States); Jacobs, P [MIM Software, Inc, Cleavland, Ohio (United States); Manfredi, D; Linnemann, N [IROC Philadelphia, RTQA Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  15. Evaluation of interface models for 3D-1D coupling of compressible Euler methods for the application on cavitating flows

    Directory of Open Access Journals (Sweden)

    Deininger Martina

    2013-01-01

    Full Text Available Numerical simulations of complete hydraulic systems (e.g. diesel injectors can, due to high computational costs, currently not be done entirely in three dimensions. Our aim is to substitute the 3D solver by a corresponding 1D method in some parts of the system and develop a solver coupling with suitable interface models. Firstly, we investigate an interface model for non-cavitating flow passing the interface. A flux-coupling with a thin interface approach is considered and the jump in dimensions at the interface is transferred to an additional variable φ, which switches between the 3D and the 1D domain. As shown in two testcases, the error introduced in the vicinity of the interface is quite small. Two numerical flux formulations for the flux over the 3D-1D interface are compared and the Roe-type flux formulation is recommended. Secondly, extending the first method to cavitating flows passing the interface, we divide the density equation in two equations - one for liquid and one for vapor phase of the two-phase fluid - and couple the two equations by source terms depending on the free enthalpy. We propose two interface models for coupling 3D and 1D compressible density-based Euler methods that have potential for considering the entire (non- cavitating hydraulic system behaviour by a 1D method in combination with an embedded detailed 3D simulation at much lower computational costs than the pure 3D simulation.

  16. Clinical evaluation of 2D versus 3D whole-body PET image quality using a dedicated BGO PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Visvikis, D. [CHU Morvan, U650 INSERM, Laboratoire de Traitement de l' Information Medicale (LaTIM), Brest (France); Griffiths, D. [Lister Healthcare, London PET Centre, London (United Kingdom); Costa, D.C. [Middlesex Hospital, Institute of Nuclear Medicine, Royal Free and University College Medical School, London (United Kingdom); HPP Medicina Molecular, SA Porto (Portugal); Bomanji, J.; Ell, P.J. [Middlesex Hospital, Institute of Nuclear Medicine, Royal Free and University College Medical School, London (United Kingdom)

    2005-09-01

    Three-dimensional positron emission tomography (3D PET) results in higher system sensitivity, with an associated increase in the detection of scatter and random coincidences. The objective of this work was to compare, from a clinical perspective, 3D and two-dimensional (2D) acquisitions in terms of whole-body (WB) PET image quality with a dedicated BGO PET system. 2D and 3D WB emission acquisitions were carried out in 70 patients. Variable acquisition parameters in terms of time of emission acquisition per axial field of view (aFOV) and slice overlap between sequential aFOVs were used during the 3D acquisitions. 3D and 2D images were reconstructed using FORE+WLS and OSEM respectively. Scatter correction was performed by convolution subtraction and a model-based scatter correction in 2D and 3D respectively. All WB images were attenuation corrected using segmented transmission scans. Images were blindly assessed by three observers for the presence of artefacts, confidence in lesion detection and overall image quality using a scoring system. Statistically significant differences between 2D and 3D image quality were only obtained for 3D emission acquisitions of 3 min. No statistically significant differences were observed for image artefacts or lesion detectability scores. Image quality correlated significantly with patient weight for both modes of operation. Finally, no differences were seen in image artefact scores for the different axial slice overlaps considered, suggesting the use of five slice overlaps in 3D WB acquisitions. 3D WB imaging using a dedicated BGO-based PET scanner offers similar image quality to that obtained in 2D considering similar overall times of acquisitions. (orig.)

  17. A semi-automatic 2D-to-3D video conversion with adaptive key-frame selection

    Science.gov (United States)

    Ju, Kuanyu; Xiong, Hongkai

    2014-11-01

    To compensate the deficit of 3D content, 2D to 3D video conversion (2D-to-3D) has recently attracted more attention from both industrial and academic communities. The semi-automatic 2D-to-3D conversion which estimates corresponding depth of non-key-frames through key-frames is more desirable owing to its advantage of balancing labor cost and 3D effects. The location of key-frames plays a role on quality of depth propagation. This paper proposes a semi-automatic 2D-to-3D scheme with adaptive key-frame selection to keep temporal continuity more reliable and reduce the depth propagation errors caused by occlusion. The potential key-frames would be localized in terms of clustered color variation and motion intensity. The distance of key-frame interval is also taken into account to keep the accumulated propagation errors under control and guarantee minimal user interaction. Once their depth maps are aligned with user interaction, the non-key-frames depth maps would be automatically propagated by shifted bilateral filtering. Considering that depth of objects may change due to the objects motion or camera zoom in/out effect, a bi-directional depth propagation scheme is adopted where a non-key frame is interpolated from two adjacent key frames. The experimental results show that the proposed scheme has better performance than existing 2D-to-3D scheme with fixed key-frame interval.

  18. Land use regression models for total particle number concentrations using 2D, 3D and semantic parameters

    Science.gov (United States)

    Ghassoun, Yahya; Löwner, Marc-Oliver

    2017-10-01

    Total particle number concentration (TNC) was studied in a 1 × 2 km area in Berlin, the capital of Germany by three Land Use Regression models (LUR). The estimation of TNC was established and compared using one 2D-LUR and two 3D-LUR models. All models predict total number concentrations TNC by using urban morphological (2D resp. 3D) and additional semantical parameters. 2D and semantical parameters were derived from Open Street Map data (OSM) whereas 3D parameters were derived from a CityGML-based 3D city model. While the models are capable to depict the spatial variation of TNC across the study area, the two 3D-LUR showed better results than the 2D-LUR. The 2D-LUR model explained 74% of the variance of TNC for the full data set with root mean square error (RMSE) of 4014 cm-3 while the 3D-LUR explained 79% of the variance with an RMSE of 3477 cm-3. The further introduction of a new spatial parameter, the Frontal Area Index (FAI) that represents the dynamic factor wind direction enhanced the 3D-LUR to explain 82% of the variance with RMSE of 3389 cm-3. Furthermore, the semantical parameters (e.g. streets type) played a significant role in all models.

  19. Method of coupling 1-D unsaturated flow with 3-D saturated flow on large scale

    Directory of Open Access Journals (Sweden)

    Yan ZHU

    2011-12-01

    Full Text Available A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regarding the Dirichlet boundary condition, the Neumann boundary condition, the atmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-1D, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation.

  20. Electrochemical cortisol immunosensors based on sonochemically synthesized zinc oxide 1D nanorods and 2D nanoflakes.

    Science.gov (United States)

    Vabbina, Phani Kiran; Kaushik, Ajeet; Pokhrel, Nimesh; Bhansali, Shekhar; Pala, Nezih

    2015-01-15

    We report on label free, highly sensitive and selective electrochemical immunosensors based on one-dimensional 1D ZnO nanorods (ZnO-NRs) and two-dimensional 2D ZnO nanoflakes (ZnO-NFs) which were synthesized on Au-coated substrates using simple one step sonochemical approach. Selective detection of cortisol using cyclic voltammetry (CV) is achieved by immobilizing anti-cortisol antibody (Anti-C(ab)) on the ZnO nanostructures (NSs). 1D ZnO-NRs and 2D ZnO-NFs provide unique sensing advantages over bulk materials. While 1D-NSs boast a high surface area to volume ratio, 2D-NSs with large area in polarized (0001) plane and high surface charge density could promote higher Anti-C(ab) loading and thus better sensing performance. Beside large surface area, ZnO-NSs also exhibit higher chemical stability, high catalytic activity, and biocompatibility. TEM studies showed that both ZnO-NSs are single crystalline oriented in (0001) plane. The measured sensing parameters are in the physiological range with a sensitivity of 11.86 µA/M exhibited by ZnO-NRs and 7.74 µA/M by ZnO-NFs with the lowest detection limit of 1 pM which is 100 times better than conventional enzyme-linked immunosorbant immunoassay (ELISA). ZnO-NSs based cortisol immunosensors were tested on human saliva samples and the performance were validated with conventional (ELISA) method which exhibits a remarkable correlation. The developed sensors can be integrated with microfluidic system and miniaturized potentiostat for point-of-care cortisol detection and such developed protocol can be used in personalized health monitoring/diagnostic.

  1. Comprehensive evaluation of latest 2D/3D monitors and comparison to a custom-built 3D mirror-based display in laparoscopic surgery

    Science.gov (United States)

    Wilhelm, Dirk; Reiser, Silvano; Kohn, Nils; Witte, Michael; Leiner, Ulrich; Mühlbach, Lothar; Ruschin, Detlef; Reiner, Wolfgang; Feussner, Hubertus

    2014-03-01

    Though theoretically superior, 3D video systems did not yet achieve a breakthrough in laparoscopic surgery. Furthermore, visual alterations, such as eye strain, diplopia and blur have been associated with the use of stereoscopic systems. Advancements in display and endoscope technology motivated a re-evaluation of such findings. A randomized study on 48 test subjects was conducted to investigate whether surgeons can benefit from using most current 3D visualization systems. Three different 3D systems, a glasses-based 3D monitor, an autostereoscopic display and a mirror-based theoretically ideal 3D display were compared to a state-of-the-art 2D HD system. The test subjects split into a novice and an expert surgeon group, which high experience in laparoscopic procedures. Each of them had to conduct a well comparable laparoscopic suturing task. Multiple performance parameters like task completion time and the precision of stitching were measured and compared. Electromagnetic tracking provided information on the instruments path length, movement velocity and economy. The NASA task load index was used to assess the mental work load. Subjective ratings were added to assess usability, comfort and image quality of each display. Almost all performance parameters were superior for the 3D glasses-based display as compared to the 2D and the autostereoscopic one, but were often significantly exceeded by the mirror-based 3D display. Subjects performed the task at average 20% faster and with a higher precision. Work-load parameters did not show significant differences. Experienced and non-experienced laparoscopists profited equally from 3D. The 3D mirror system gave clear evidence for additional potential of 3D visualization systems with higher resolution and motion parallax presentation.

  2. Efficient 2D and 3D multiparameters frequency-domain full waveform inversion (Invited)

    Science.gov (United States)

    Virieux, J.; Operto, S.; Ribodetti, A.; Ben Hadj Ali, H.; Brossier, R.; Etienne, V.; Gholami, Y.; Hu, G.; Jia, Y.; Pageot, D.; Prieux, V.

    2010-12-01

    With the tremendous increase of the computational power provided by large-scale distributed-memory platforms and the development of dense 3D multi-component wide-aperture/wide-azimuth surveys, full waveform inversion (FWI) introduced in geophysics by Albert Tarantola has become a re-emerging technique to build high-resolution velocity models of the subsurface. Because of the cost of the forward modeling and the high dimensionality of the model space, full waveform inversion is actually a local optimization problem, the aim of which is the minimization of the misfit between the recorded and modeled seismic wavefields. Among all possible minimization criteria, the L1 norm provides the most robust and easy-to-tune criterion. With such criterion, white noise in all seismograms with outliers does not prevent the convergence to the nearly same minimum as for noise-free data. The frequency formulation of the FWI allows coarse sampling of the frequencies data over few frequencies for the reconstruction of the medium when wide-aperture geometries are considered. A preconditioned quasi-Newton L-BFGS modified algorithm provides scaled gradients of the misfit function for each class of parameters. The gradient is computed by the adjoint-state method where the forward field is stored in the core memory of the computer while computing the backpropagation of residuals for cross-correlation at each point of the medium, thanks to the frequency-domain approach. We are using a sequential multiscale hierarchical inversion algorithm with two nested levels of data preconditioning with respect to frequency and first-arrival time. We are able to reconstruct both Vp and Vs velocity structures in various offshore and onshore environments various configurations of crustal investigation where both body waves (and surface) waves are progressively included in the inversion scheme. Solving the forward problem for 2D geometry could be efficiently performed in frequency by using a direct solver

  3. Enhanced perception of terrain hazards in off-road path choice: stereoscopic 3D versus 2D displays

    Science.gov (United States)

    Merritt, John O.; CuQlock-Knopp, V. Grayson; Myles, Kimberly

    1997-06-01

    Off-road mobility at night is a critical factor in modern military operations. Soldiers traversing off-road terrain, both on foot and in combat vehicles, often use 2D viewing devices (such as a driver's thermal viewer, or biocular or monocular night-vision goggles) for tactical mobility under low-light conditions. Perceptual errors can occur when 2D displays fail to convey adequately the contours of terrain. Some off-road driving accidents have been attributed to inadequate perception of terrain features due to using 2D displays (which do not provide binocular-parallax cues to depth perception). In this study, photographic images of terrain scenes were presented first in conventional 2D video, and then in stereoscopic 3D video. The percentage of possible correct answers for 2D and 3D were: 2D pretest equals 52%, 3D pretest equals 80%, 2D posttest equals 48%, 3D posttest equals 78%. Other recent studies conducted at the US Army Research Laboratory's Human Research and Engineering Directorate also show that stereoscopic 3D displays can significantly improve visual evaluation of terrain features, and thus may improve the safety and effectiveness of military off-road mobility operation, both on foot and in combat vehicles.

  4. High Sensitivity 1-D and 2-D Microwave Spectroscopy via Cryogenic Buffer Gas Cooling

    Science.gov (United States)

    Patterson, David; Eibenberger, Sandra

    2017-06-01

    All rotationally resolved spectroscopic methods rely on sources of cold molecules. For the last three decades, the workhorse technique for producing highly supersaturated samples of cold molecules has been the pulsed supersonic jet. We present here progress on our alternative method, cryogenic buffer gas cooling. Our high density, continuous source, and low noise temperature allow us to record microwave spectra at unprecedented sensitivity, with a dynamic range in excess of 10^6 achievable in a few minutes of integration time. This high sensitivity enables new protocols in both 1-D and 2-D microwave spectroscopy, including sensitive chiral analysis via nonlinear three wave mixing and applications as an analytical chemistry tool

  5. Application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs.

    Science.gov (United States)

    López, Marcos; Martínez, Javier; Matías, José María; Vilán, José Antonio; Taboada, Javier

    2010-01-01

    Dimensional control based on 3D laser scanning techniques is widely used in practice. We describe the application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs with structural defects that are difficult for the human eye to characterize objectively. Our study is based on automating the process using a 3D laser scanner and a 2D camera. Our results demonstrate that the application of this hybrid system optimally characterizes slate slabs in terms of the defects described by the Spanish UNE-EN 12326-1 standard.

  6. A simplified 2D to 3D video conversion technology——taking virtual campus video production as an example

    Directory of Open Access Journals (Sweden)

    ZHUANG Huiyang

    2012-10-01

    Full Text Available This paper describes a simplified 2D to 3D Video Conversion Technology, taking virtual campus 3D video production as an example. First, it clarifies the meaning of the 2D to 3D Video Conversion Technology, and points out the disadvantages of traditional methods. Second, it forms an innovative and convenient method. A flow diagram, software and hardware configurations are presented. Finally, detailed description of the conversion steps and precautions are given in turn to the three processes, namely, preparing materials, modeling objects and baking landscapes, recording screen and converting videos .

  7. Application of adaptive non-linear 2D and 3D postprocessing filters for reduced dose abdominal CT.

    Science.gov (United States)

    Borgen, Lars; Kalra, Mannudeep K; Laerum, Frode; Hachette, Isabelle W; Fredriksson, Carina H; Sandborg, Michael; Smedby, Orjan

    2012-04-01

    Abdominal computed tomography (CT) is a frequently performed imaging procedure, resulting in considerable radiation doses to the patient population. Postprocessing filters are one of several dose reduction measures that might help to reduce radiation doses without loss of image quality. To assess and compare the effect of two- and three-dimensional (2D, 3D) non-linear adaptive filters on reduced dose abdominal CT images. Two baseline abdominal CT image series with a volume computer tomography dose index (CTDI (vol)) of 12 mGy and 6 mGy were acquired for 12 patients. Reduced dose images were postprocessed with 2D and 3D filters. Six radiologists performed blinded randomized, side-by-side image quality assessments. Objective noise was measured. Data were analyzed using visual grading regression and mixed linear models. All image quality criteria were rated as superior for 3D filtered images compared to reduced dose baseline and 2D filtered images (P 0.05). There were no significant variations of objective noise between standard dose and 2D or 3D filtered images. The quality of 3D filtered reduced dose abdominal CT images is superior compared to reduced dose unfiltered and 2D filtered images. For patients with BMI < 30 kg/m(2), 3D filtered images are comparable to standard dose images.

  8. A Review of Swarm-Based 1D/2D Signal Processing

    Directory of Open Access Journals (Sweden)

    Horia Mihail Teodorescu

    2012-10-01

    Full Text Available While swarming behavior, widely encountered in nature, has recently sparked numerous models and interest in domains as optimization, data clustering, and control, their application to signal processing remains sporadic. In this paper I provide a unitary treatment and a review of former results obtained in signal filtering and enhancement using swarms. General equations are presented for these procedures and stability issues are considered, with examples. The paper overviews several swarming model I introduced in previous papers and provides new evidence of the applicability of these models in signal processing. In all the models for 1D signal processing, the key idea is that the swarm hunts a prey that impersonates the filtered signal. In the 2D models, the signal (image represents the “landscape” over which the swarm moves at a distance, while the swarm interacts with the signal (landscape. I provide and discuss details of the underlying theory of the models for processing time-domain signals and images. While this paper partly follows and summarizes previous papers, it nevertheless includes supplementary theoretical and algorithmic considerations and new results for both 1D and 2D signal processing. Although following either biological models or physical models in swarm algorithms is not generally accepted for technical applications, we prefer to emphasize the analogies established by our biomimetic approach with these two groups of models.

  9. Atomic layer deposition of 1D and 2D nickel nanostructures on graphite

    Science.gov (United States)

    Ryu, Seung Wook; Yoon, Jaehong; Moon, Hyoung-Seok; Shong, Bonggeun; Kim, Hyungjun; Lee, Han-Bo-Ram

    2017-03-01

    One-dimensional (1D) nanowires (NWs) and two-dimensional (2D) thin films of Ni were deposited on highly ordered pyrolytic graphite (HOPG) by atomic layer deposition (ALD), using NH3 as a counter reactant. Thermal ALD using NH3 gas forms 1D NWs along step edges, while NH3 plasma enables the deposition of a continuous 2D film over the whole surface. The lateral and vertical growth rates of the Ni NWs are numerically modeled as a function of the number of ALD cycles. Pretreatment with NH3 gas promotes selectivity in deposition by the reduction of oxygenated functionalities on the HOPG surface. On the other hand, NH3 plasma pretreatment generates surface nitrogen species, and results in a morphological change in the basal plane of graphite, leading to active nucleation across the surface during ALD. The effects of surface nitrogen species on the nucleation of ALD Ni were theoretically studied by density functional theory calculations. Our results suggest that the properties of Ni NWs, such as their density and width, and the formation of Ni thin films on carbon surfaces can be controlled by appropriate use of NH3.

  10. Effects of Carbon Nanotubes on Mechanical and 2D-3D Microstructure Properties of Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    LIU Qiaoling; SUN Wei; JIANG Hao; WANG Caihui

    2014-01-01

    To study the influence of multi-wall carbon nanotubes (MWCNTs) on the mechanical and microstructural properties of cementitious composites, 0.00, 0.02, 0.08, 0.10, and 0.20 wt% of multi-wall carbon nanotubes were added into cement mortar, in which the cement-sand ratio was 1:1.5. The flexural and compressive strengths of cement mortar at the age of 3, 7, 28 and 90 d and the fracture performance at the age of 28 d were determined, its 2D micrograph was tested by means of SEM, and the 3D defects distribution was firstly determined with or without CNTs by means of XCT (X-ray computerized tomography). The results showed that 0.08 wt% of CNTs improved the compressive strength and flexural strength by 18% and 19%, respectively, and a significant improvement of its fracture property was observed. Moreover lower addition of carbon nanotubes to cement mortars can improve its microstructure and decrease the defects significantly compared to the cement mortar without CNTs. With the increase of the content of CNTs, the mechanical properties of cement mortars presented to be declined largely due to the agglomeration of CNTs.

  11. An update on transesophageal echocardiography views 2016: 2D versus 3D tee views

    Directory of Open Access Journals (Sweden)

    Poonam Malhotra Kapoor

    2016-01-01

    Full Text Available In 1980, Transesophageal Echocardiography (TEE first technology has introduced the standard of practice for most cardiac operating rooms to facilitate surgical decision making. Transoesophageal echocardiography as a diagnostic tool is now an integral part of intraoperative monitoring practice of cardiac anaesthesiology. Practice guidelines for perioperative transesophageal echocardiography are systematically developed recommendations that assist in the management of surgical patients, were developed by Indian Association of Cardiac Anaesthesiologists (IACTA. This update relates to the former IACTA practice guidelines published in 2013 and the ASE/EACTA guidelines of 2015. The current authors believe that the basic echocardiographer should be familiar with the technical skills for acquiring 28 cross sectional imaging planes. These 28 cross sections would provide also the format for digital acquisition and storage of a comprehensive TEE examination and adds 5 more additional views, introduced for different clinical scenarios in recent times. A comparison of 2D TEE views versus 3D TEE views is attempted for the first time in literature, in this manuscript. Since, cardiac anaesthesia variability exists in the precise anatomic orientation between the heart and the oesophagus in individual patients, an attempt has been made to provide specific criteria based on identifiable anatomic landmarks to improve the reproducibility and consistency of image acquisition for each of the standard cross sections.

  12. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments.

    Directory of Open Access Journals (Sweden)

    Krzysztof Wrzesinski

    Full Text Available INTRODUCTION: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures and the other by a dynamic equilibrium (in 3D cultures. We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. RESULTS: Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell--along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. SUMMARY: We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance.

  13. Remapping of digital subtraction angiography on a standard fluoroscopy system using 2D-3D registration

    Science.gov (United States)

    Alhrishy, Mazen G.; Varnavas, Andreas; Guyot, Alexis; Carrell, Tom; King, Andrew; Penney, Graeme

    2015-03-01

    Fluoroscopy-guided endovascular interventions are being performing for more and more complex cases with longer screening times. However, X-ray is much better at visualizing interventional devices and dense structures compared to vasculature. To visualise vasculature, angiography screening is essential but requires the use of iodinated contrast medium (ICM) which is nephrotoxic. Acute kidney injury is the main life-threatening complication of ICM. Digital subtraction angiography (DSA) is also often a major contributor to overall patient radiation dose (81% reported). Furthermore, a DSA image is only valid for the current interventional view and not the new view once the C-arm is moved. In this paper, we propose the use of 2D-3D image registration between intraoperative images and the preoperative CT volume to facilitate DSA remapping using a standard fluoroscopy system. This allows repeated ICM-free DSA and has the potential to enable a reduction in ICM usage and radiation dose. Experiments were carried out using 9 clinical datasets. In total, 41 DSA images were remapped. For each dataset, the maximum and averaged remapping accuracy error were calculated and presented. Numerical results showed an overall averaged error of 2.50 mm, with 7 patients scoring averaged errors < 3 mm and 2 patients < 6 mm.

  14. Optochemically Responsive 2D Nanosheets of a 3D Metal-Organic Framework Material.

    Science.gov (United States)

    Chaudhari, Abhijeet K; Kim, Ha Jin; Han, Intaek; Tan, Jin-Chong

    2017-07-01

    Outstanding functional tunability underpinning metal-organic framework (MOF) confers a versatile platform to contrive next-generation chemical sensors, optoelectronics, energy harvesters, and converters. A rare exemplar of a porous 2D nanosheet material constructed from an extended 3D MOF structure is reported. A rapid supramolecular self-assembly methodology at ambient conditions to synthesize readily exfoliatable MOF nanosheets, functionalized in situ by adopting the guest@MOF (host) strategy, is developed. Nanoscale confinement of light-emitting molecules (as functional guest) inside the MOF pores generates unusual combination of optical, electronic, and chemical properties, arising from the strong host-guest coupling effects. Highly promising photonics-based chemical sensing opened up by the new guest@MOF composite systems is shown. By harnessing host-guest optochemical interactions of functionalized MOF nanosheets, detection of an extensive range of volatile organic compounds and small molecules important for many practical applications has been accomplished. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Surveillance of a 2D Plane Area with 3D Deployed Cameras

    Directory of Open Access Journals (Sweden)

    Yi-Ge Fu

    2014-01-01

    Full Text Available As the use of camera networks has expanded, camera placement to satisfy some quality assurance parameters (such as a good coverage ratio, an acceptable resolution constraints, an acceptable cost as low as possible, etc. has become an important problem. The discrete camera deployment problem is NP-hard and many heuristic methods have been proposed to solve it, most of which make very simple assumptions. In this paper, we propose a probability inspired binary Particle Swarm Optimization (PI-BPSO algorithm to solve a homogeneous camera network placement problem. We model the problem under some more realistic assumptions: (1 deploy the cameras in the 3D space while the surveillance area is restricted to a 2D ground plane; (2 deploy the minimal number of cameras to get a maximum visual coverage under more constraints, such as field of view (FOV of the cameras and the minimum resolution constraints. We can simultaneously optimize the number and the configuration of the cameras through the introduction of a regulation item in the cost function. The simulation results showed the effectiveness of the proposed PI-BPSO algorithm.

  16. Surveillance of a 2D plane area with 3D deployed cameras.

    Science.gov (United States)

    Fu, Yi-Ge; Zhou, Jie; Deng, Lei

    2014-01-24

    As the use of camera networks has expanded, camera placement to satisfy some quality assurance parameters (such as a good coverage ratio, an acceptable resolution constraints, an acceptable cost as low as possible, etc.) has become an important problem. The discrete camera deployment problem is NP-hard and many heuristic methods have been proposed to solve it, most of which make very simple assumptions. In this paper, we propose a probability inspired binary Particle Swarm Optimization (PI-BPSO) algorithm to solve a homogeneous camera network placement problem. We model the problem under some more realistic assumptions: (1) deploy the cameras in the 3D space while the surveillance area is restricted to a 2D ground plane; (2) deploy the minimal number of cameras to get a maximum visual coverage under more constraints, such as field of view (FOV) of the cameras and the minimum resolution constraints. We can simultaneously optimize the number and the configuration of the cameras through the introduction of a regulation item in the cost function. The simulation results showed the effectiveness of the proposed PI-BPSO algorithm.

  17. Adaptive Filters for 2-D and 3-D Digital Images Processing

    OpenAIRE

    Martišek, Karel

    2012-01-01

    Práce se zabývá adaptivními filtry pro vizualizaci obrazů s vysokým rozlišením. V teoretické části je popsán princip činnosti konfokálního mikroskopu a matematicky korektně zaveden pojem digitální obraz. Pro zpracování obrazů je volen jak frekvenční přístup (s využitím 2-D a 3-D diskrétní Fourierovy transformace a frekvenčních filtrů), tak přístup pomocí digitální geometrie (s využitím adaptivní ekvalizace histogramu s adaptivním okolím). Dále jsou popsány potřebné úpravy pro práci s neideáln...

  18. Neurite outgrowth at the interface of 2D and 3D growth environments

    Science.gov (United States)

    Kofron, Celinda M.; Fong, Vivian J.; Hoffman-Kim, Diane

    2009-02-01

    Growing neurons navigate complex environments, but in vitro systems for studying neuronal growth typically limit the cues to flat surfaces or a single type of cue, thereby limiting the resulting growth. Here we examined the growth of neurons presented with two-dimensional (2D) substrate-bound cues when these cues were presented in conjunction with a more complex three-dimensional (3D) architecture. Dorsal root ganglia (DRG) explants were cultured at the interface between a collagen I matrix and a glass coverslip. Laminin (LN) or chondroitin sulfate proteoglycans (CSPG) were uniformly coated on the surface of the glass coverslip or patterned in 50 µm tracks by microcontact printing. Quantitative analysis of neurite outgrowth with a novel grid system at multiple depths in the gel revealed several interesting trends. Most of the neurites extended at the surface of the gel when LN was presented whereas more neurites extended into the gel when CSPG was presented. Patterning of cues did not affect neurite density or depth of growth. However, neurite outgrowth near the surface of the gel aligned with LN patterns, and these extensions were significantly longer than neurites extended in other cultures. In interface cultures, DRG growth patterns varied with the type of cue where neurite density was higher in cultures presenting LN than in cultures presenting CSPG. These results represent an important step toward understanding how neurons integrate local structural and chemical cues to make net growth decisions.

  19. Coupling heat conduction and radiation in complex 2D and 3D geometries

    Energy Technology Data Exchange (ETDEWEB)

    Peniguel, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Rupp, I. [SIMULOG, 78 - Guyancourt (France)

    1997-12-31

    Thermal radiation is a very important mode of heat transfer in most real industrial systems. A numerical approach coupling radiation (restricted to non participant medium) and conduction is presented. The code (SYRTHES) is able to handle 2D and 3D problems (including cases with symmetries and periodicity). Radiation is solved by a radiosity approach, and conduction by a finite element method. Accurate and efficient algorithms based on a mixing of analytical/numerical integration, and ray tracing techniques are used to compute the view factors. Validation has been performed on numerous test cases. A conjugate residual algorithm solves the radiosity system. An explicit interactive numerical procedure is then used to couple conduction and radiation. No stability problem has been encountered so far. One specificity of SYRTHES is that conduction and radiation are solved on independent grids. This brings much flexibility and allows to keep the number of independent radiation patches at a reasonable level. Several industrial examples are given as illustration. (author) 6 refs.

  20. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals

    CERN Document Server

    Burgess, Ian B; Loncar, Marko

    2012-01-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  1. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

    Science.gov (United States)

    Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko

    2013-12-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  2. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    Science.gov (United States)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    interpretation. Geometry and location of ERT profiles on the Puy de Dôme volcano allow to compute 3D inversion models of the electrical resistivity distribution with a new inversion code. This code uses tetrahedrons to discretize the 3D model and uses also a conventional Gauss-Newton inversion scheme combined to an Occam regularisation to process the data. It allows to take into account all the data information and prevents the construction of 3D artefacts present in conventional 2D inversion results. Inversion results show a strong electrical resistivity heterogeneity of the entire dome. Underlying volcanic edifices are clearly identified below the lava dome. Generally speaking, the flanks of the volcano show high resistivity values, and the summit part is more conductive but also very heterogeneous.

  3. Registration of 3D+t coronary CTA and monoplane 2D+t X-ray angiography.

    Science.gov (United States)

    Metz, Coert T; Schaap, Michiel; Klein, Stefan; Baka, Nora; Neefjes, Lisan A; Schultz, Carl J; Niessen, Wiro J; van Walsum, Theo

    2013-05-01

    A method for registering preoperative 3D+t coronary CTA with intraoperative monoplane 2D+t X-ray angiography images is proposed to improve image guidance during minimally invasive coronary interventions. The method uses a patient-specific dynamic coronary model, which is derived from the CTA scan by centerline extraction and motion estimation. The dynamic coronary model is registered with the 2D+t X-ray sequence, considering multiple X-ray time points concurrently, while taking breathing induced motion into account. Evaluation was performed on 26 datasets of 17 patients by comparing projected model centerlines with manually annotated centerlines in the X-ray images. The proposed 3D+t/2D+t registration method performed better than a 3D/2D registration method with respect to the accuracy and especially the robustness of the registration. Registration with a median error of 1.47 mm was achieved.

  4. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    Science.gov (United States)

    Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2016-07-01

    Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When

  5. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maskaly, Karlene Rosera [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  6. A Fast Hybrid (3-D/1-D) Model for Thermal Radiative Transfer in Cirrus via Successive Orders of Scattering

    Science.gov (United States)

    Fauchez, Thomas; Davis, Anthony B.; Cornet, Celine; Szczap, Frederic; Platnick, Steven; Dubuisson, Philippe; Thieuleux, Francois

    2017-01-01

    We investigate the impact of cirrus cloud heterogeneity on the direct emission by cloud or surface and on the scattering by ice particles in the thermal infrared (TIR). Realistic 3-D cirri are modeled with the 3DCLOUD code, and top-of-atmosphere radiances are simulated by the 3-D Monte Carlo radiative transfer (RT) algorithm 3DMCPOL for two (8.65 micrometers and 12.05 micrometers) channels of the Imaging Infrared Radiometer on CALIPSO. At nadir, comparisons of 1-D and 3-D RT show that 3-D radiances are larger than their 1-D counterparts for direct emission but smaller for scattered radiation. For our cirrus cases, 99% of the 3-D total radiance is computed by the third scattering order, which corresponds to 90% of the total computational effort, but larger optical thicknesses need more scattering orders. To radically accelerate the 3-D RT computations (using only few percent of 3-D RT time with a Monte Carlo code), even in the presence of large optical depths, we develop a hybrid model based on exact 3-D direct emission, the first scattering order from 1-D in each homogenized column, and an empirical adjustment linearly dependent on the optical thickness to account for higher scattering orders. Good agreement is found between the hybrid model and the exact 3-D radiances for two very different cirrus models without changing the empirical parameters. We anticipate that a future deterministic implementation of the hybrid model will be fast enough to process multiangle thermal imagery in a practical tomographic reconstruction of 3-D cirrus fields.

  7. TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections.

    Science.gov (United States)

    Zhou, Zhi; Liu, Xiaoxiao; Long, Brian; Peng, Hanchuan

    2016-01-01

    Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images.

  8. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Chitcholtan, Kenny, E-mail: kenny.chitcholtan@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Asselin, Eric, E-mail: Eric.Asselin@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Parent, Sophie, E-mail: Sophie.Parent@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Sykes, Peter H., E-mail: peter.sykes@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Evans, John J., E-mail: john.evans@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Centre of Neuroendocrinology and The MacDiarmid Institute of Advanced Materials and Nanotechnology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand)

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  9. A Hidden Markov Model for 3D Catheter Tip Tracking with 2D X-ray Catheterization Sequence and 3D Rotational Angiography.

    Science.gov (United States)

    Ambrosini, Pierre; Smal, Ihor; Ruijters, Daniel; Niessen, Wiro; Moelker, Adriaan; van Walsum, Theo

    2016-11-07

    In minimal invasive image guided catheterization procedures, physicians require information of the catheter position with respect to the patient's vasculature. However, in fluoroscopic images, visualization of the vasculature requires toxic contrast agent. Static vasculature roadmapping, which can reduce the usage of iodine contrast, is hampered by the breathing motion in abdominal catheterization. In this paper, we propose a method to track the catheter tip inside the patient's 3D vessel tree using intra-operative single-plane 2D X-ray image sequences and a peri-operative 3D rotational angiography (3DRA). The method is based on a hidden Markov model (HMM) where states of the model are the possible positions of the catheter tip inside the 3D vessel tree. The transitions from state to state model the probabilities for the catheter tip to move from one position to another. The HMM is updated following the observation scores, based on the registration between the 2D catheter centerline extracted from the 2D X-ray image, and the 2D projection of 3D vessel tree centerline extracted from the 3DRA. The method is extensively evaluated on simulated and clinical datasets acquired during liver abdominal catheterization. The evaluations show a median 3D tip tracking error of 2.3 mm with optimal settings in simulated data. The registered vessels close to the tip have a median distance error of 4.7 mm with angiographic data and optimal settings. Such accuracy is sufficient to help the physicians with an up-to-date roadmapping. The method tracks in real-time the catheter tip and enables roadmapping during catheterization procedures.

  10. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy

    Science.gov (United States)

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-05-01

    Many real-time imaging techniques have been developed to localize a target in 3D space or in a 2D beam’s eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, the 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and to determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved  >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for the 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting in on average only  <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem

  11. Chemotherapeutic efficiency of drugs in vitro: Comparison of doxorubicin exposure in 3D and 2D culture matrices.

    Science.gov (United States)

    Casey, A; Gargotti, M; Bonnier, F; Byrne, H J

    2016-06-01

    The interest in the use of 3D matrices for in vitro analysis, with a view to increasing the relevance of in vitro studies and reducing the dependence on in vivo studies, has been growing in recent years. Cells grown in a 3D in vitro matrix environment have been reported to exhibit significantly different properties to those in a conventional 2D culture environment. However, comparison of 2D and 3D cell culture models have recently been noted to result in differing responses of cytotoxic assays, without any associated change in viability. The effect was attributed to differing conversion rates and effective concentrations of the resazurin assay in 2D and 3D environments, rather than differences in cellular metabolism. In this study, the efficacy of a chemotherapeutic agent, doxorubicin, is monitored and compared in conventional 2D and 3D collagen gel exposures of immortalized human cervical cells. Viability was monitored with the aid of the Alamar Blue assay and drug internalisation was verified using confocal microscopy. Drug uptake and retention within the collagen matrix was monitored by absorption spectroscopy. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to a 3D environment causing alterations to dye resazurin uptake and conversion rates. The use of 3D culture matrices has widely been interpreted to result in "reduced" toxicity or cellular "resistance" to the chemotherapeutic agent. The results of this study show that the reduced efficiency of the drug to cells grown in the 3D environment can be accounted for by a sequential reduction of the effective concentration of the test compound and assay. This is due to absorption within the collagen gel inducing a higher uptake of both drug and assay thereby influencing the toxic impact of the drug and conversion rate of resazurin, and. The increased effective surface area of the cell exposed to the drug

  12. Confined Etching within 2D and 3D Colloidal Crystals for Tunable Nanostructured Templates: Local Environment Matters.

    Science.gov (United States)

    Wendisch, Fedja J; Oberreiter, Richard; Salihovic, Miralem; Elsaesser, Michael S; Bourret, Gilles R

    2017-02-01

    We report the isotropic etching of 2D and 3D polystyrene (PS) nanosphere hcp arrays using a benchtop O2 radio frequency plasma cleaner. Unexpectedly, this slow isotropic etching allows tuning of both particle diameter and shape. Due to a suppressed etching rate at the point of contact between the PS particles originating from their arrangement in 2D and 3D crystals, the spherical PS templates are converted into polyhedral structures with well-defined hexagonal cross sections in directions parallel and normal to the crystal c-axis. Additionally, we found that particles located at the edge (surface) of the hcp 2D (3D) crystals showed increased etch rates compared to those of the particles within the crystals. This indicates that 2D and 3D order affect how nanostructures chemically interact with their surroundings. This work also shows that the morphology of nanostructures periodically arranged in 2D and 3D supercrystals can be modified via gas-phase etching and programmed by the superlattice symmetry. To show the potential applications of this approach, we demonstrate the lithographic transfer of the PS template hexagonal cross section into Si substrates to generate Si nanowires with well-defined hexagonal cross sections using a combination of nanosphere lithography and metal-assisted chemical etching.

  13. Application of adaptive non-linear 2D and 3D postprocessing filters for reduced dose abdominal CT

    Energy Technology Data Exchange (ETDEWEB)

    Borgen, Lars (Dept. of Radiology, Drammen Hospital, Drammen and Buskerud Univ. College, Drammen (Norway)), Email: lars.borgen@vestreviken.no; Kalra, Mannudeep K. (Massachusetts General Hospital Imaging, Harvard Medical School, Massachusetts General Hospital, Boston (United States)); Laerum, Frode (Dept. of Radiology, Akershus Univ. Hospital, Loerenskog (Norway)); Hachette, Isabelle W.; Fredriksson, Carina H. (ContextVision AB, Linkoeping (Sweden)); Sandborg, Michael (Dept. of Medical Physics, IMH, Faculty of Health Sciences, Linkoeping Univ., County Council of Oestergoetland, Linkoeping (Sweden); Center for Medical Image Science and Visualization, Linkoeping (Sweden)); Smedby, Oerjan (Center for Medical Image Science and Visualization, Linkoeping (Sweden); Dept. of Radiology, Linkoeping Univ., Linkoeping (Sweden))

    2012-04-15

    Background: Abdominal computed tomography (CT) is a frequently performed imaging procedure, resulting in considerable radiation doses to the patient population. Postprocessing filters are one of several dose reduction measures that might help to reduce radiation doses without loss of image quality. Purpose: To assess and compare the effect of two- and three-dimensional (2D, 3D) non-linear adaptive filters on reduced dose abdominal CT images. Material and Methods: Two baseline abdominal CT image series with a volume computer tomography dose index (CTDI{sub vol}) of 12 mGy and 6 mGy were acquired for 12 patients. Reduced dose images were postprocessed with 2D and 3D filters. Six radiologists performed blinded randomized, side-by-side image quality assessments. Objective noise was measured. Data were analyzed using visual grading regression and mixed linear models. Results: All image quality criteria were rated as superior for 3D filtered images compared to reduced dose baseline and 2D filtered images (P < 0.01). Standard dose images had better image quality than reduced dose 3D filtered images (P < 0.01), but similar image noise. For patients with body mass index (BMI) < 30 kg/m2 however, 3D filtered images were rated significantly better than normal dose images for two image criteria (P < 0.05), while no significant difference was found for the remaining three image criteria (P > 0.05). There were no significant variations of objective noise between standard dose and 2D or 3D filtered images. Conclusion: The quality of 3D filtered reduced dose abdominal CT images is superior compared to reduced dose unfiltered and 2D filtered images. For patients with BMI < 30 kg/m2, 3D filtered images are comparable to standard dose images

  14. Polychromatic light-induced osteogenic activity in 2D and 3D cultures.

    Science.gov (United States)

    Ülker, Nazife; Çakmak, Anıl S; Kiremitçi, Arlin S; Gümüşderelioğlu, Menemşe

    2016-11-01

    Photobiomodulation (PBM) has been applied to manipulate cellular responses by using monochromatic light in different wavelengths from ultraviolet (UV) to infrared (IR) region. Until now, an effective wavelength has not been revealed to induce proliferation and/or differentiation of cells. Therefore, in the presented study, we decided to use a specially designed plasma arc light source providing wavelengths between 590 and 1500 nm in order to investigate its biomodulatory effects on chitosan scaffold-supported three-dimensional (3D) cell cultures. For comparison, two-dimensional (2D) cell cultures were also carried out in tissue-culture polystyrene dishes (TCPS). The results showed that light-induced temperature rise did not affect cells when the distance between the light source and the cells was 10 cm and the frequency of administration was daily. Moreover, light was applied for 5 and 10 min to the cells in TCPS and in chitosan scaffold groups, respectively. Cell culture studies under static conditions indicated that polychromatic light significantly stimulated bone nodule formation via the prolonged cell survival and stimulated differentiation of MC3T3-E1 preosteoblastic cells in both TCPS and chitosan scaffold groups. In conclusion, specially designed plasma arc light source used in this study induces formation of bone tissue and so, this light source is proposed as an appropriate system for in vitro bone tissue engineering applications. Statistical analyses were performed with one-way ANOVA by using GraphPad Instat software and standard deviations were calculated by using data of three parallel samples for each group.

  15. Segmentation of Textures Defined on Flat vs. Layered Surfaces using Neural Networks: Comparison of 2D vs. 3D Representations.

    Science.gov (United States)

    Oh, Sejong; Choe, Yoonsuck

    2007-08-01

    Texture boundary detection (or segmentation) is an important capability in human vision. Usually, texture segmentation is viewed as a 2D problem, as the definition of the problem itself assumes a 2D substrate. However, an interesting hypothesis emerges when we ask a question regarding the nature of textures: What are textures, and why did the ability to discriminate texture evolve or develop? A possible answer to this question is that textures naturally define physically distinct (i.e., occluded) surfaces. Hence, we can hypothesize that 2D texture segmentation may be an outgrowth of the ability to discriminate surfaces in 3D. In this paper, we conducted computational experiments with artificial neural networks to investigate the relative difficulty of learning to segment textures defined on flat 2D surfaces vs. those in 3D configurations where the boundaries are defined by occluding surfaces and their change over time due to the observer's motion. It turns out that learning is faster and more accurate in 3D, very much in line with our expectation. Furthermore, our results showed that the neural network's learned ability to segment texture in 3D transfers well into 2D texture segmentation, bolstering our initial hypothesis, and providing insights on the possible developmental origin of 2D texture segmentation function in human vision.

  16. Analysis of EEG signals regularity in adults during video game play in 2D and 3D.

    Science.gov (United States)

    Khairuddin, Hamizah R; Malik, Aamir S; Mumtaz, Wajid; Kamel, Nidal; Xia, Likun

    2013-01-01

    Video games have long been part of the entertainment industry. Nonetheless, it is not well known how video games can affect us with the advancement of 3D technology. The purpose of this study is to investigate the EEG signals regularity when playing video games in 2D and 3D modes. A total of 29 healthy subjects (24 male, 5 female) with mean age of 21.79 (1.63) years participated. Subjects were asked to play a car racing video game in three different modes (2D, 3D passive and 3D active). In 3D passive mode, subjects needed to wear a passive polarized glasses (cinema type) while for 3D active, an active shutter glasses was used. Scalp EEG data was recorded during game play using 19-channel EEG machine and linked ear was used as reference. After data were pre-processed, the signal irregularity for all conditions was computed. Two parameters were used to measure signal complexity for time series data: i) Hjorth-Complexity and ii) Composite Permutation Entropy Index (CPEI). Based on these two parameters, our results showed that the complexity level increased from eyes closed to eyes open condition; and further increased in the case of 3D as compared to 2D game play.

  17. Quantum simulation of 2D topological physics in a 1D array of optical cavities.

    Science.gov (United States)

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-07-06

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.

  18. A Stochastic Wavelet Finite Element Method for 1D and 2D Structures Analysis

    Directory of Open Access Journals (Sweden)

    Xingwu Zhang

    2014-01-01

    Full Text Available A stochastic finite element method based on B-spline wavelet on the interval (BSWI-SFEM is presented for static analysis of 1D and 2D structures in this paper. Instead of conventional polynomial interpolation, the scaling functions of BSWI are employed to construct the displacement field. By means of virtual work principle and BSWI, the wavelet finite elements of beam, plate, and plane rigid frame are obtained. Combining the Monte Carlo method and the constructed BSWI elements together, the BSWI-SFEM is formulated. The constructed BSWI-SFEM can deal with the problems of structural response uncertainty caused by the variability of the material properties, static load amplitudes, and so on. Taking the widely used Timoshenko beam, the Mindlin plate, and the plane rigid frame as examples, numerical results have demonstrated that the proposed method can give a higher accuracy and a better constringency than the conventional stochastic finite element methods.

  19. Quantum simulation of 2D topological physics in a 1D array of optical cavities

    Science.gov (United States)

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-01-01

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. PMID:26145177

  20. 1D to 3D diffusion-reaction kinetics of defects in crystals

    DEFF Research Database (Denmark)

    Trinkaus, H.; Heinisch, H.L.; Barashev, A.V.

    2002-01-01

    Microstructural features evolving in crystalline solids from diffusion-reaction kinetics of mobile components depend crucially on the dimension of the underlying diffusion process which is commonly assumed to be three-dimensional (3D). In metals, irradiation-induced displacement cascades produce ...... and 3D limiting cases. The analytical result is fully confirmed by kinetic Monte Carlo simulations.......Microstructural features evolving in crystalline solids from diffusion-reaction kinetics of mobile components depend crucially on the dimension of the underlying diffusion process which is commonly assumed to be three-dimensional (3D). In metals, irradiation-induced displacement cascades produce...

  1. Comparison of 1D, 2D and 2.5D Constrained Inversion of Electrical Resistivity Data

    Science.gov (United States)

    Catt, L. M.; West, J.; Clark, R. A.

    2007-05-01

    Clay-rich till plains cover much of the UK. Such sites are attractive locations for landfills, since the till cover lowers the risk of landfill leachate entering groundwater. However, such tills often contain discrete sand and gravel bodies that can act as leachate flow routes. Such bodies may not be detected by conventional site investigation techniques such as drilling boreholes and trial pitting. A combined geoelectrical survey was carried out at a study site typical of such till plains and close to cliff exposures, which allowed direct mapping of sand bodies. Electrical resistivity tomography (ERT), resistivity cone penetrometry (RCPT) and frequency-domain electromagnetic data were collected. In a previous study, the electromagnetic and RCPT data were used to construct reference models for 2D inversion of the ERT data. The use of these reference models improved the solution models produced by inversion. We showed that the best solution model produced by inversion with a range of reference models could be determined without a priori knowledge of the true geoelectrical structure. This was done by using the area-weighted L2 norm between the solution models and associated reference models as a proxy for the misfit between the solution models and the true geoelectrical structure of the ground. In order to assess the most suitable method for combining invasive and non-invasive measurements, we compare both constrained and unconstrained 1D, 2D and 2.5D inversions of resistivity data collected at the study site. Preliminary results suggest that for 2.5D inversion the true 3D geoelectrical structure of the ground at the field study site is not sufficiently well known for comparison between the solution models and the true geoelectrical structure of the ground to be made. The results of work in progress evaluating layer-depth- constrained 1D inversion will be presented at the meeting.

  2. Feasibility and limitations of an automated 2D-3D rigid image registration system for complex endovascular aortic procedures.

    Science.gov (United States)

    Carrell, Tom W G; Modarai, Bijan; Brown, James R I; Penney, Graeme P

    2010-08-01

    To examine the feasibility of an automated 2-dimensional (2D) to 3- dimensional (3D) image registration system to simplify the navigational challenges faced in complex endovascular aortic procedures. An automated 2D-3D image registration system was used to overlay pre-acquired 3D computed tomography images onto fluoroscopy images taken during endovascular aneurysm repair. Errors between the 3D overlay and digital subtraction angiograms were measured and correlated with aortic neck angulation. A mean discrepancy r = 0.75). Aortas with a maximum neck angulation 30 degrees had a mean error of 6.2+/-2.5 mm (p<0.0001). The major source of registration errors is aortic deformation caused by the presence of the introducer and endovascular graft. Further work is required if this technology is to be routinely applied to severely angulated aortic anatomy.

  3. 1D and 2D ~1H NMR studies on bisantrene complexes with short DNA oligomers

    Institute of Scientific and Technical Information of China (English)

    姚世杰; WILSON.W.David

    1995-01-01

    The binding of bisantrene to four DNA tetramers,d(CGCG)2,d(GCGC)2,d(CATG)2,and d(GTAC)2,was investigated by 1D and 2D NMR spectroscopy.Bisantrene is.a well knownanticancer drug and has been used clinically for years.DNA is believed to be one of its cellular targets.Re-suits from both ID and 2D 1H NMR are in agreement with an intercalation binding mode of bisantrene withthe four DNA tetramers in this study.The results further indicate that a threading intercalation birdingmode,in which one bisantrene side chain is in the minor groove and the other in the major groove of DNA,is preferred.The NMR results also suggest that bisantrene prefers binding at pyrimidine-(3’,5’)-purineintercalation sequences rather than at purine-(3’,5’)-pyrimidine sequences.The intramolecular andintermolecular NOE contacts of bisantrene-DNA tetramer complexes indicate that a C2’-endo uniform sugarpucker,rather than a mixed sugar conformation,is preferred by the intercalation site of both the 5’-(TA)-3’and the 5’-(CG)-3’ binding steps.

  4. An FCT finite element scheme for ideal MHD equations in 1D and 2D

    Science.gov (United States)

    Basting, Melanie; Kuzmin, Dmitri

    2017-06-01

    This paper presents an implicit finite element (FE) scheme for solving the equations of ideal magnetohydrodynamics in 1D and 2D. The continuous Galerkin approximation is constrained using a flux-corrected transport (FCT) algorithm. The underlying low-order scheme is constructed using a Rusanov-type artificial viscosity operator based on scalar dissipation proportional to the fast wave speed. The accuracy of the low-order solution can be improved using a shock detector which makes it possible to prelimit the added viscosity in a monotonicity-preserving iterative manner. At the FCT correction step, the changes of conserved quantities are limited in a way which guarantees positivity preservation for the density and thermal pressure. Divergence-free magnetic fields are extracted using projections of the FCT predictor into staggered finite element spaces forming exact sequences. In the 2D case, the magnetic field is projected into the space of Raviart-Thomas finite elements. Numerical studies for standard test problems are performed to verify the ability of the proposed algorithms to enforce relevant constraints in applications to ideal MHD flows.

  5. 1-D and 2-D electrophoresis protein profiles of the scorpion venom from Brotheas amazonicus

    Energy Technology Data Exchange (ETDEWEB)

    Higa, A.M.; Noronha, M.D.N. [Universidade do Estado do Amazonas (UEA), Manaus, AM (Brazil). Rede Proteomica do Amazonas (Proteam). Lab. de Genomica e Proteomica; Rocha-Oliveira, F.; Lopez-Lozano, J.L.L. [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Pos-Graduacao em Biotecnologia

    2008-07-01

    Full text: Introduction: Scorpions venoms show specific neurotoxins to insect or mammals. These toxins are very important molecular tools to development of news drugs or bioinsecticides. Brotheas amazonicus scorpion is an endemic specie in Amazonian Rain Forest, but your venom do not show toxicity in humans. Information about biological specific activity on insect of this venom is not known yet. Objectives: Molecular protein toxins profiles of the venom from Brotheas amazonicus scorpion by 1-D and 2-D electrophoresis methods to detected toxins with potential biotech applications. Results: Several spots 'families' with {approx} 60, 70 and 80 kDa were detected in gel acidic region with pI {approx} 4,5 - 6 range, in the same region 1-D zimography showed proteolytic activity on gelatin and fibrinogen and proteolytic activity was inhibited by PMSF, suggesting scorpion serine proteinases. 50 kDa proteins were detected with pI {approx} 6,5 - 7 range. In 23 - 50 kDa gel acid region were observed some proteins. In 23 - 14 kDa gel acidic region were detected proteins with pI 4 - 7 range. 1-D Tris-tricine gel showed proteins with {approx} 7 kDa, suggesting scorpion neurotoxins. In gel basic region only 14 kDa proteins were observed with pI {approx} 9 - 10 range. Conclusion: Molecular profile of the scorpion venom from B. amazonicus showed proteins with high and low molecular masses, mainly with acidic pI. Proteolytic activity suggest serine proteinases with high molecular masses and 7 kDa proteins in B. amazonicus venom suggest scorpion neurotoxins. Purification and molecular characterization of these toxins are in course.

  6. From 1D to 3D: A new route to fabricate tridimensional structures via photo-generation of silver networks

    NARCIS (Netherlands)

    Wang, Zhanhua; Shen, Huaizhong; Wu, Yuxin; Fang, Liping; Ye, Shunsheng; Wang, Zhaoyi; Liu, Wendong; Cheng, Zhongkai; Zhang, Junhu; Yang, Bai

    2015-01-01

    A rapid and cost effective method has been developed to fabricate 3 dimensional (3D) ordered structures by photo-generating silver networks inside a 1D layered heterogeneous laminate composed of poly(vinyl alcohol) (PVA) and poly(methyl methacrylate) (PMMA). By designing the photo-mask meticulously,

  7. Island Shape-Induced Transition from 2D to 3D Growth for Pt/Pt(111)

    DEFF Research Database (Denmark)

    Jacobsen, Joachim; Jacobsen, Karsten Wedel; Stoltze, Per

    1995-01-01

    We present a kinetic Monte Carlo simulation of the growth of Pt on Pt(111) capable of describing the experimentally observed temperature dependence of the island shapes and the growth mode. We show that the transition from a 2D growth mode at low temperatures to a 3D mode at higher temperatures...... is closely related to the disappearance of kink sites and the appearance of the triangular islands observed in the 3D growth regime....

  8. COMPARISON OF FATIGUE AND CREEP BEHAVIOR BETWEEN 2D AND 3D-C/SiC COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    D. Han; S.R. Qiao; M. Li; J.T. Hou; X.J. Wu

    2004-01-01

    The differences of tension-tension fatigue and tensile creep characters of 2D-C/SiCand 3D-C/SiC composites have been scrutinized to meet the engineering needs. Experiments of tension-tension fatigue and tensile creep are carried out under vacuum high temperature condition. All of the high temperature fatigue curves are flat; the fatigue curves of the 2D-C/SiC are flatter and even parallel to the horizontal axis. While the tension-tension fatigue limit of the 3D-C/SiC is higher than that of the 2D-C/SiC, the fiber pullout length of the fatigue fracture surface of the 3D-C/SiC is longer than that of the 2D-C/SiC, and fracture morphology of the 3D-C/SiC is rougher, and pullout length of the fiber tows is longer. At the same time the 3D-C/SiC has higher tensile creep resistance. The tensile curve and the tensile creep curve of both materials consist of a series of flat step. These phenomena can be explained by the non-continuity of the damage.

  9. Enhanced Geometric Map:a 2D & 3D Hybrid City Model of Large Scale Urban Environment for Robot Navigation

    Institute of Scientific and Technical Information of China (English)

    LI Haifeng; HU Zunhe; LIU Jingtai

    2016-01-01

    To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map (EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model, and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping (SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.

  10. Photogrammetric Techniques for Analysis and Visualization of Changes in 2d and 3d Data: Plastic Surgery Application

    Science.gov (United States)

    Knyaz, V. A.; Zheltov, S. Y.; Chibunichev, A.

    2017-05-01

    Accurate measurements of 3D scenes and change detection of spatial distributed data are of great importance in different areas of research and application. For more accurate data analysis it is useful to take into account the all available data from various sensors and sources. The common case is that the different kinds of data available in their own coordinate systems and it is needed to transform all data in common coordinate system. This can be provided by finding correspondence between features in data of different types and different sources. Photogrammetry provides structurally connected 2D and 3D data which gives valuable information about correspondence of 2D and 3D features. The approaches to 2D and 3D data fusion and analysis are proposed which are based on complex processing of 2D and 3D data for changes detection and visualization. The techniques for data fusion are developed. The results of applying the developed techniques are presented for plastic surgery application.

  11. A procedure for the evaluation of 2D radiographic texture analysis to assess 3D bone micro-architecture

    Science.gov (United States)

    Apostol, Lian; Peyrin, Francoise; Yot, Sophie; Basset, Olivier; Odet, Christophe; Tabary, Joachim; Dinten, Jean-Marc; Boller, Elodie; Boudousq, Vincent; Kotzki, Pierre-Olivier

    2004-05-01

    Although the diagnosis of osteoporosis is mainly based on Dual X-ray Absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regards of fracture risk, which can be efficiently assessed in vitro using three-dimensional x-ray microtomography (μCT). In vivo, techniques based on high-resolution s-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. The purpose of this work was to develop a method for evaluating the relationships betweeen 3D micro-architecture and 2D texture parameters, and optimizing the conditions for radiographic imaging. Bone sample images taken from cortical to cortical were acquired using 3D-synchrotron x-ray μCT at the ESRF. The 3D digital imagees were further used for two purposes: 1) quantification of three-dimensional bone micro-architecture, 2) simulation of realistic x-ray radiographs under different acquisition conditions. Texture analysis was then applied to these 2D radiographs using a large variety of methods (co-occurence, spectrum, fractal...). First results of the statistical analysis between 2D and 3D parameters allowed identfying the most relevant 2D texture parameters.

  12. Comparison of Simultaneous and Sequential Two-View Registration for 3D/2D Registration of Vascular Images

    OpenAIRE

    Pathak, Chetna; Van Horn, Mark; Weeks, Susan; Bullitt, Elizabeth

    2005-01-01

    Accurate 3D/2D vessel registration is complicated by issues of image quality, occlusion, and other problems. This study performs a quantitative comparison of 3D/2D vessel registration in which vessels segmented from preoperative CT or MR are registered with biplane x-ray angiograms by either a) simultaneous two-view registration with advance calculation of the relative pose of the two views, or b) sequential registration with each view. We conclude on the basis of phantom studies that, even i...

  13. 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals

    DEFF Research Database (Denmark)

    Faure, Bertrand; Wetterskog, Erik; Gunnarsson, Klas

    2013-01-01

    The magnetic 2D to 3D crossover behavior of well-ordered arrays of monodomain γ-Fe2O3 spherical nanoparticles with different thicknesses has been investigated by magnetometry and Monte Carlo (MC) simulations. Using the structural information of the arrays obtained from grazing incidence small...... interactions induce a ferromagnetic coupling that increases in strength with decreasing thickness of the array. The 2D to 3D transition in the magnetic properties is mainly driven by a change in the orientation of the magnetic vortex states with increasing thickness, becoming more isotropic as the thickness...

  14. Tension-Compression Fatigue Behavior of 2D and 3D Polymer Matrix Composites at Elevated Temperature

    Science.gov (United States)

    2015-09-21

    specimen test, a) b) c) d) 21 with two specimens left untested. A new furnace insulation insert was craved to fit the furnace. Then another...noteworthy, that Wilkinson [11] reported that the tensile properties and the tensile stress- strain response of the 3D PMC also appeared to be independent of...as-processed 2D PMC specimen C1-11 with 0/90˚ fiber orientation. In contrast to the 3D PMC, the surface of the 2D PMC specimen appears to be smooth

  15. STUDY OF AXIAL VELOCITY IN GAS CYCLONES BY 2D-PIV, 3D-PIY, AND SIMULATION

    Institute of Scientific and Technical Information of China (English)

    Zhengliang Liu; Jinyu Jiao; Ying Zheng

    2006-01-01

    The axial velocity distribution in a gas cyclone has been examined with two-dimensional particle image velocimetry (2D-PIV) and three-dimensional particle image velocimetry (3D-PIV) experiments in this study. Due to the limitation of 2D-PIV configuration, the contamination generated by the strong tangential velocity in the cyclone can be registered in the axial velocity detected by 2D-PIV. Efficient methods are proposed in this work to remove this contamination. The contamination-removed 2D-PIV data agree well with 3D-PIV results. The distributions of the axial velocity are also computed by the Reynolds stress model (RSM) and verified using the PIV experimental results. Reasonable agreements are obtained.

  16. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    Science.gov (United States)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  17. Comparing 2D pictures with 3D replicas for the digital preservation and analysis of tangible heritage.

    OpenAIRE

    Galeazzi, Fabrizio; Di Giuseppantonio Di Franco, Paola; Matthews, Justin L.

    2015-01-01

    This is the author accepted manuscript. The final version is available from Taylor & Francis via http://dx.doi.org/10.1080/09647775.2015.1042515 In this paper, we present two experiments designed to compare 2D digital pictures and 3D digital replicas of artefacts, to understand how differently these media facilitate the perception and understanding of our past. Archaeologists and museum experts have commonly used 2D digital pictures to preserve and study artefacts. Recently these scholars ...

  18. Self-calibration of cone-beam CT geometry using 3D-2D image registration

    Science.gov (United States)

    Ouadah, S.; Stayman, J. W.; Gang, G. J.; Ehtiati, T.; Siewerdsen, J. H.

    2016-04-01

    Robotic C-arms are capable of complex orbits that can increase field of view, reduce artifacts, improve image quality, and/or reduce dose; however, it can be challenging to obtain accurate, reproducible geometric calibration required for image reconstruction for such complex orbits. This work presents a method for geometric calibration for an arbitrary source-detector orbit by registering 2D projection data to a previously acquired 3D image. It also yields a method by which calibration of simple circular orbits can be improved. The registration uses a normalized gradient information similarity metric and the covariance matrix adaptation-evolution strategy optimizer for robustness against local minima and changes in image content. The resulting transformation provides a ‘self-calibration’ of system geometry. The algorithm was tested in phantom studies using both a cone-beam CT (CBCT) test-bench and a robotic C-arm (Artis Zeego, Siemens Healthcare) for circular and non-circular orbits. Self-calibration performance was evaluated in terms of the full-width at half-maximum (FWHM) of the point spread function in CBCT reconstructions, the reprojection error (RPE) of steel ball bearings placed on each phantom, and the overall quality and presence of artifacts in CBCT images. In all cases, self-calibration improved the FWHM—e.g. on the CBCT bench, FWHM  =  0.86 mm for conventional calibration compared to 0.65 mm for self-calibration (p  <  0.001). Similar improvements were measured in RPE—e.g. on the robotic C-arm, RPE  =  0.73 mm for conventional calibration compared to 0.55 mm for self-calibration (p  <  0.001). Visible improvement was evident in CBCT reconstructions using self-calibration, particularly about high-contrast, high-frequency objects (e.g. temporal bone air cells and a surgical needle). The results indicate that self-calibration can improve even upon systems with presumably accurate geometric calibration and is

  19. 3D-2D registration in mobile radiographs: algorithm development and preliminary clinical evaluation

    Science.gov (United States)

    Otake, Yoshito; Wang, Adam S.; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Aygun, Nafi; Lo, Sheng-fu L.; Wolinsky, Jean-Paul; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

    2015-03-01

    An image-based 3D-2D registration method is presented using radiographs acquired in the uncalibrated, unconstrained geometry of mobile radiography. The approach extends a previous method for six degree-of-freedom (DOF) registration in C-arm fluoroscopy (namely ‘LevelCheck’) to solve the 9-DOF estimate of geometry in which the position of the source and detector are unconstrained. The method was implemented using a gradient correlation similarity metric and stochastic derivative-free optimization on a GPU. Development and evaluation were conducted in three steps. First, simulation studies were performed that involved a CT scan of an anthropomorphic body phantom and 1000 randomly generated digitally reconstructed radiographs in posterior-anterior and lateral views. A median projection distance error (PDE) of 0.007 mm was achieved with 9-DOF registration compared to 0.767 mm for 6-DOF. Second, cadaver studies were conducted using mobile radiographs acquired in three anatomical regions (thorax, abdomen and pelvis) and three levels of source-detector distance (~800, ~1000 and ~1200 mm). The 9-DOF method achieved a median PDE of 0.49 mm (compared to 2.53 mm for the 6-DOF method) and demonstrated robustness in the unconstrained imaging geometry. Finally, a retrospective clinical study was conducted with intraoperative radiographs of the spine exhibiting real anatomical deformation and image content mismatch (e.g. interventional devices in the radiograph that were not in the CT), demonstrating a PDE = 1.1 mm for the 9-DOF approach. Average computation time was 48.5 s, involving 687 701 function evaluations on average, compared to 18.2 s for the 6-DOF method. Despite the greater computational load, the 9-DOF method may offer a valuable tool for target localization (e.g. decision support in level counting) as well as safety and quality assurance checks at the conclusion of a procedure (e.g. overlay of planning data on the radiograph for verification of

  20. 2D and 3D GPR imaging of structural ceilings in historic and existing constructions

    Science.gov (United States)

    Colla, Camilla

    2014-05-01

    GPR applications in civil engineering are to date quite diversified. With respect to civil constructions and monumental buildings, detection of voids, cavities, layering in structural elements, variation of geometry, of moisture content, of materials, areas of decay, defects, cracks have been reported in timber, concrete and masonry elements. Nonetheless, many more fields of investigation remain unexplored. This contribution gives an account of a variety of examples of structural ceilings investigation by GPR radar in reflection mode, either as 2D or 3D data acquisition and visualisation. Ceilings have a pre-eminent role in buildings as they contribute to a good structural behaviour of the construction. Primarily, the following functions can be listed for ceilings: a) they carry vertical dead and live loads on floors and distribute such loads to the vertical walls; b) they oppose to external horizontal forces such as wind loads and earthquakes helping to transfer such forces from the loaded element to the other walls; c) they contribute to create the box skeleton and behaviour of a building, connecting the different load bearing walls and reducing the slenderness and flexural instability of such walls. Therefore, knowing how ceilings are made in specific buildings is of paramount importance for architects and structural engineers. According to the type of building and age of construction, ceilings may present very different solutions and materials. Moreover, in existing constructions, ceilings may have been substituted, modified or strengthened due to material decay or to change of use of the building. These alterations may often go unrecorded in technical documentation or technical drawings may be unavailable. In many cases, the position, orientation and number of the load carrying elements in ceilings may be hidden or not be in sight, due for example to the presence of false ceilings or to technical plants. GPR radar can constitute a very useful tool for

  1. 1D-3D Hybrid Modelling - From Multi-Compartment Models to Full Resolution Models in Space and Time

    Directory of Open Access Journals (Sweden)

    Stephan eGrein

    2014-07-01

    Full Text Available Investigation of cellular and network dynamics in the brain by means of modeling & simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling & simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in level of detail to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing spatial aspects of the cells. For single cell or small-world networks, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the 3D morphology of cells and organelles into 3D space and time-dependent simulations. Every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. We present a hybrid simulation approach, that makes use of reduced 1D-models using e.g. the NEURON which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed 3D-morphology of neurons and organelles. To couple 1D- & 3D-simulations, we present a geometry and membrane potential mapping framework, with which graph-based morphologies, e.g. in swc-/hoc-format, are mapped to full surface and volume representations of the neuron; membrane potential data from 1D-simulations are used as boundary conditions for full 3D simulations. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved highly detailed 3D-modeling approaches. The new framework is applied to investigate electrically active neurons and their intracellular spatio

  2. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    Directory of Open Access Journals (Sweden)

    Agurto Carla

    2011-01-01

    Full Text Available Abstract Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions

  3. Known-component 3D-2D registration for image guidance and quality assurance in spine surgery pedicle screw placement

    Science.gov (United States)

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2015-03-01

    Purpose. To extend the functionality of radiographic / fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods. Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TREΦ) from planned trajectory. Results. Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TRExConclusions. 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.

  4. Influence of the 3D-2D crossover on the critical current of Nb/Cu multilayers

    DEFF Research Database (Denmark)

    Krasnov, V. M.; Pedersen, Niels Falsig; Oboznov, V. A.

    1994-01-01

    of the dimensional 3D-2D cross-over on the I(c)perpendicular-to was observed. Thus, as the temperature becomes smaller than T2D, hysteresis in the current-voltage characteristic appears and the behavior of the temperature dependence of the I(c)perpendicular-to changes. For T > T2D the diminishing of the hysteresis......(c)perpendicular-to (T) was found. From the theoretical simulations, we have obtained the dependence of the crossover and the critical temperatures of multilayers on the layer thicknesses, the boundary transparency, and layer conductivity....

  5. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions

    Science.gov (United States)

    Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.

    2005-01-01

    Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.

  6. In vitro systems to study nephropharmacology : 2D versus 3D models

    NARCIS (Netherlands)

    Sánchez-Romero, Natalia; Schophuizen, Carolien M S; Giménez, Ignacio; Masereeuw, Rosalinde

    2016-01-01

    The conventional 2-dimensional (2D) cell culture is an invaluable tool in, amongst others, cell biology and experimental pharmacology. However, cells cultured in 2D, on the top of stiff plastic plates lose their phenotypical characteristics and fail in recreating the physiological environment found

  7. Magnetic field decoupling and 3D-2D crossover in Nb/Cu multilayers

    DEFF Research Database (Denmark)

    Krasnov, V.M.; Kovalev, A.E.; Oboznov, V.A.

    1996-01-01

    , sharpening of the resistive transition with current along layers occurs due to the appearance of a strong intrinsic pinning in the 2D state. Evidence for the intrinsic Josephson effect in the 2D state is provided both by the pei-iodic modulation of the dynamic resistance across layers versus the parallel...

  8. 3D versus 2D Systematic Transrectal Ultrasound-Guided Prostate Biopsy: Higher Cancer Detection Rate in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Alexandre Peltier

    2013-01-01

    Full Text Available Objectives. To compare prostate cancer detection rates of extended 2D versus 3D biopsies and to further assess the clinical impact of this method in day-to-day practice. Methods. We analyzed the data of a cohort of 220 consecutive patients with no prior history of prostate cancer who underwent an initial prostate biopsy in daily practice due to an abnormal PSA and/or DRE using, respectively, the classical 2D and the new 3D systems. All the biopsies were done by a single experienced operator using the same standardized protocol. Results. There was no significant difference in terms of age, total PSA, or prostate volume between the two groups. However, cancer detection rate was significantly higher using the 3D versus the 2D system, 50% versus 34% (P<0.05. There was no statistically significant difference while comparing the 2 groups in term of nonsignificant cancer detection. Conclusion. There is reasonable evidence demonstrating the superiority of the 3D-guided biopsies in detecting prostate cancers that would have been missed using the 2D extended protocol.

  9. Comparing 2D and 3D Game-Based Learning Environments in Terms of Learning Gains and Student Perceptions

    Science.gov (United States)

    Ak, Oguz; Kutlu, Birgul

    2017-01-01

    The aim of this study was to investigate the effectiveness of traditional, 2D and 3D game-based environments assessed by student achievement scores and to reveal student perceptions of the value of these learning environments. A total of 60 university students from the Faculty of Education who were registered in three sections of a required…

  10. How Perceived Distractor Distance Influences Reference Production : Effects of Perceptual Grouping in 2D and 3D Scenes

    NARCIS (Netherlands)

    Koolen, R.M.F.; Houben, E.; Huntjens, J.; Krahmer, E.J.; Bello, Paul; Guarini, Marcello; McShane, Marjorie; Scassellati, Brian

    2014-01-01

    This study explored two factors that might have an impact on how participants perceive distance between objects in a visual scene: perceptual grouping and presentation mode (2D versus 3D). More specifically, we examined how these factors affect language production, asking if they cause speakers to i

  11. Assessment of Prosthesis Alignment after Revision Total Knee Arthroplasty Using EOS 2D and 3D Imaging : A Reliability Study

    NARCIS (Netherlands)

    Meijer, Marrigje F.; Boerboom, Alexander L.; Stevens, Martin; Bulstra, Sjoerd K.; Reininga, Inge H. F.

    2014-01-01

    Introduction: A new low-dose X-ray device, called EOS, has been introduced for determining lower-limb alignment in 2D and 3D. Reliability has not yet been assessed when using EOS on lower limbs containing a knee prosthesis. Therefore purpose of this study was to determine intraobserver and interobse

  12. Comparing 2D and 3D Game-Based Learning Environments in Terms of Learning Gains and Student Perceptions

    Science.gov (United States)

    Ak, Oguz; Kutlu, Birgul

    2017-01-01

    The aim of this study was to investigate the effectiveness of traditional, 2D and 3D game-based environments assessed by student achievement scores and to reveal student perceptions of the value of these learning environments. A total of 60 university students from the Faculty of Education who were registered in three sections of a required…

  13. Estimating elastic moduli of rocks from thin sections: Digital rock study of 3D properties from 2D images

    Science.gov (United States)

    Saxena, Nishank; Mavko, Gary

    2016-03-01

    Estimation of elastic rock moduli using 2D plane strain computations from thin sections has several numerical and analytical advantages over using 3D rock images, including faster computation, smaller memory requirements, and the availability of cheap thin sections. These advantages, however, must be weighed against the estimation accuracy of 3D rock properties from thin sections. We present a new method for predicting elastic properties of natural rocks using thin sections. Our method is based on a simple power-law transform that correlates computed 2D thin section moduli and the corresponding 3D rock moduli. The validity of this transform is established using a dataset comprised of FEM-computed elastic moduli of rock samples from various geologic formations, including Fontainebleau sandstone, Berea sandstone, Bituminous sand, and Grossmont carbonate. We note that using the power-law transform with a power-law coefficient between 0.4-0.6 contains 2D moduli to 3D moduli transformations for all rocks that are considered in this study. We also find that reliable estimates of P-wave (Vp) and S-wave velocity (Vs) trends can be obtained using 2D thin sections.

  14. Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals

    Indian Academy of Sciences (India)

    X Wang; E Pan

    2008-05-01

    We study some typical defect problems in one-dimensional (1D) hexagonal and two-dimensional (2D) octagonal quasicrystals. The first part of this investigation addresses in detail a uniformly moving screw dislocation in a 1D hexagonal piezoelectric quasicrystal with point group 6. A general solution is derived in terms of two functions 1, 2, which satisfy wave equations, and another harmonic function 3. Elementary expressions for the phonon and phason displacements, strains, stresses, electric potential, electric fields and electric displacements induced by the moving screw dislocation are then arrived at by employing the obtained general solution. The derived solution is verified by comparison with existing solutions. Also obtained in this part of the investigation is the total energy of the moving screw dislocation. The second part of this investigation is devoted to the study of the interaction of a straight dislocation with a semi-infinite crack in an octagonal quasicrystal. Here the crack penetrates through the solid along the period direction and the dislocation line is parallel to the period direction. We first derive a general solution in terms of four analytic functions for plane strain problem in octagonal quasicrystals by means of differential operator theory and the complex variable method. All the phonon and phason displacements and stresses can be expressed in terms of the four analytic functions. Then we derive the exact solution for a straight dislocation near a semi-infinite crack in an octagonal quasicrystal, and also present the phonon and phason stress intensity factors induced by the straight dislocation and remote loads.

  15. Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals

    Science.gov (United States)

    Wang, X.; Pan, E.

    2008-05-01

    We study some typical defect problems in one-dimensional (1D) hexagonal and two-dimensional (2D) octagonal quasicrystals. The first part of this investigation addresses in detail a uniformly moving screw dislocation in a 1D hexagonal piezoelectric quasicrystal with point group 6mm. A general solution is derived in terms of two functions \\varphi_1, \\varphi_2, which satisfy wave equations, and another harmonic function \\varphi_3. Elementary expressions for the phonon and phason displacements, strains, stresses, electric potential, electric fields and electric displacements induced by the moving screw dislocation are then arrived at by employing the obtained general solution. The derived solution is verified by comparison with existing solutions. Also obtained in this part of the investigation is the total energy of the moving screw dislocation. The second part of this investigation is devoted to the study of the interaction of a straight dislocation with a semi-infinite crack in an octagonal quasicrystal. Here the crack penetrates through the solid along the period direction and the dislocation line is parallel to the period direction. We first derive a general solution in terms of four analytic functions for plane strain problem in octagonal quasicrystals by means of differential operator theory and the complex variable method. All the phonon and phason displacements and stresses can be expressed in terms of the four analytic functions. Then we derive the exact solution for a straight dislocation near a semi-infinite crack in an octagonal quasicrystal, and also present the phonon and phason stress intensity factors induced by the straight dislocation and remote loads.

  16. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    Science.gov (United States)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  17. Identification and classification in le fort type fractures by using 2D and 3D computed tomography

    Institute of Scientific and Technical Information of China (English)

    CHEN We-jian; YANG Yun-jun; FANG Yi-ming; XU Fang-hong; ZHANG Lin; CAO Guo-quan

    2006-01-01

    Objective:To evaluate the usefulness of twodimensional (2D) and three-dimensional (3D) computed tomography (CT) in the identification and classification of Le Fort type fractures.Methods: Sixty-two patients with different types of Le Fort fractures underwent CT scanning and 3D-CT reconstruction. The data were analyzed by multiplanar reconstruction (MPR), surface shaded display (SSD) and volume rendering (VR) respectively.Results: The patients with Le Fort Ⅰ , Le Fort Ⅱfracture and Le Fort Ⅲ fracture accounted for 16.1%,14.5 % and 12.9 % respectively. The compound fractures were the most common type and accounted for 56.5 % ( n =35, 18 cases with Le Fort Ⅰ + Ⅱ fracture, 10 cases with Le Fort Ⅱ + Ⅲ fracture and 7 cases with Le Fort Ⅰ + Ⅱ + Ⅲfracture). Fifty-five cases coexisted with other fractures in maxillofacial region. 2D-CT could be used to define the tiny fractures and the deep-structure fractures more accurately compared with 3D-CT, but the real impression of Le Fort type fractures could not be correctly evaluated on 2D-CT.3D-CT could clearly demonstrate the whole shape of Le Fort type fractures and identify the classification of Le Fort fractures.Conclusions: 3D-CT is the best imaging method for the diagnosis of Le Fort type fractures and can provide valuable information of space relationship, especially for the design of treatment plan before operation.

  18. Simulation of unsteady state performance of a secondary air system by the 1D-3D-Structure coupled method

    Science.gov (United States)

    Wu, Hong; Li, Peng; Li, Yulong

    2016-02-01

    This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.

  19. TU-CD-207-04: Radiation Exposure Comparisons of CESM with 2D FFDM and 3D Tomosynthesis Mammography

    Energy Technology Data Exchange (ETDEWEB)

    James, J; Boltz, T; Pavlicek, W [Mayo Clinic Arizona, Scottsdale, AZ (United States)

    2015-06-15

    Purpose: While mammography is considered the standard for front-line breast cancer screening, image sensitivity and specificity can be affected by factors like dense breast tissue. Contrast-enhanced spectral mammography (CESM) shows promising initial results for dense breasts but comes at the cost of increased dose compared with full-field-digital-mammography (FFDM). The goal of this study is to quantitatively assess the dose increase of CESM in comparison with 2D-FFDM and 3D-Tomo at varying breast thickness. Methods: The experiments were conducted on a Hologic-Selenia-Dimensions system that performed 2D-FFDM, 3D-Tomo and CESM (high and low energies) on regular (50/50) and dense (70/30) breast tissue-mimicking phantoms. Both the phantoms had 6, 1-cm thick slabs (total thickness 6cm), compressed at 20-lbs using an 18×24 paddle. A single exposure was performed for each of the 3 mammo techniques with the following settings: AEC-Auto; Focal Spot-Large; kVp-Auto; mAs- Auto, Target/Filter combination-Auto; AEC Sensor/Exposure compensation Step-2/0. Average glandular dose (AGD) in mGy was obtained and compared as a function of breast thickness (1 – 6 cm) for both the phantom types. Results: The study shows that dose from the total CESM from 50/50 phantom at a breast thickness of a) 4.5 cm was 37.5% higher than 2D-FFDM and 30% higher than 3D-Tomo, b) 6 cm was 36.2% higher than 2D-FFDM and 41% higher than 3D-Tomo. For a dense breast tissue of 70/30 phantom, it was found that CESM dose at a breast thickness of: a) 4.5 cm was 33.3% higher than 2D-FFDM and 28.8% higher than 3D-Tomo, b) 6 cm was 35.4% higher than 2D-FFDM and 48.0% higher than 3D-Tomo. The overall CESM dose for the dense breast phantom was 12.5% higher at 4.5cm and 35% higher at 6 cm compared to the 50/50 phantom. Conclusion: This quantitative comparison study showed that CESM technique has an increased radiation dose compared to conventional 2D-FFDM and 3D-Tomo.

  20. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    Science.gov (United States)

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability.

  1. Diagnostic value of 2D and 3D imaging in odontogenic maxillary sinusitis: a review of literature.

    Science.gov (United States)

    Shahbazian, M; Jacobs, R

    2012-04-01

    This review aims to explore whether 3D imaging offers an added value in diagnosis of odontogenic sinusitis. Odontogenic maxillary sinusitis accounts for approximately 10-12% of maxillary sinusitis cases. Proper diagnosis of odontogenic sinusitis is based on a thorough dental and medical examination and crucial to ensure therapeutic efficacy. To establish the odontogenic cause of maxillary sinusitis, 2D and 3D imaging modalities may be considered, each presenting distinct advantages and drawbacks. The available research indicates that 2D imaging modalities may often mask the origin of odontogenic maxillary sinusitis. This limitation is particularly evident in the maxillary molar region, stressing the need for 3D cross-sectional imaging. The advent of low-dose cone beam computed tomography in dentistry may be particularly useful when odontogenic maxillary sinusitis is not responsive to therapy. Yet, it seems that more research is needed to validate its use in odontogenic maxillary sinusitis.

  2. The Dynamics of Neutrino-Driven Supernova Explosions after Shock Revival in 2D and 3D

    CERN Document Server

    Müller, Bernhard

    2015-01-01

    We study the growth of the explosion energy after shock revival in neutrino-driven explosions in two and three dimensions (2D/3D) using multi-group neutrino hydrodynamics simulations of an $11.2 M_\\odot$ star. The 3D model shows a faster and steadier growth of the explosion energy and already shows signs of subsiding accretion after one second. By contrast, the growth of the explosion energy in 2D is unsteady, and accretion lasts for several seconds as confirmed by additional long-time simulations of stars of similar masses. Appreciable explosion energies can still be reached, albeit at the expense of rather high neutron star masses. In 2D, the binding energy at the gain radius is larger because the strong excitation of downward-propagating $g$-modes removes energy from the freshly accreted material in the downflows. Consequently, the mass outflow rate is considerably lower in 2D than in 3D. This is only partially compensated by additional heating by outward-propagating acoustic waves in 2D. Moreover, the mas...

  3. Comparison of 3D cube FLAIR with 2D FLAIR for multiple sclerosis imaging at 3 tesla

    Energy Technology Data Exchange (ETDEWEB)

    Patzig, M.; Brueckmann, H.; Fesl, G. [Muenchen Univ. (Germany). Dept. of Neuroradiology; Burke, M. [GE Healthcare, Solingen (Germany)

    2014-05-15

    Purpose: Three-dimensional (3 D) MRI sequences allow improved spatial resolution with good signal and contrast properties as well as multiplanar reconstruction. We sought to compare Cube, a 3 D FLAIR sequence, to a standard 2 D FLAIR sequence in multiple sclerosis (MS) imaging. Materials and Methods: Examinations were performed in the clinical routine on a 3.0 Tesla scanner. 12 patients with definite MS were included. Lesions with MS-typical properties on the images of Cube FLAIR and 2 D FLAIR sequences were counted and allocated to different brain regions. Signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) were calculated. Results: With 384 the overall number of lesions found with Cube FLAIR was significantly higher than with 2 D FLAIR (N = 221). The difference was mostly accounted for by supratentorial lesions (N = 372 vs. N = 216) while the infratentorial lesion counts were low in both sequences. SNRs and CNRs were significantly higher in CUBE FLAIR with the exception of the CNR of lesion to gray matter, which was not significantly different. Conclusion: Cube FLAIR showed a higher sensitivity for MS lesions compared to a 2 D FLAIR sequence. 3 D FLAIR might replace 2 D FLAIR sequences in MS imaging in the future. (orig.)

  4. Modeling of lamps through a diffuser with 2D and 3D picket-fence backlight models

    Science.gov (United States)

    Belshaw, Richard J.; Wilmott, Roger; Thomas, John T.

    2002-08-01

    Laboratory photometric measurements are taken of a display backlight one metre away from the emission surface (diffuser) with a whole acceptance angle on the photometer of about 0.125 degrees (2.182mm spot size at emission surface). A simulation method was sought to be able to obtain the brightness uniformity (luminance peak to trough ratio from above one lamp to the null between lamps in a picket-fence backlight). A 3D raytrace BackLight model in TracePro and a 2D Mathematical model in Matlab have been developed. With a specimen backlight in the laboratory, a smooth luminance profile was measured by the photometer on the diffuser surface. Ray Trace models in both 3D and 2D take too long to produce smooth 'continuous filled' distributions. The Mathematical 2D approach, although with limitations, yielded smooth solutions in a very reasonable time frame.

  5. Pose-aware C-arm for automatic re-initialization of interventional 2D/3D image registration.

    Science.gov (United States)

    Fotouhi, Javad; Fuerst, Bernhard; Johnson, Alex; Lee, Sing Chun; Taylor, Russell; Osgood, Greg; Navab, Nassir; Armand, Mehran

    2017-07-01

    In minimally invasive interventions assisted by C-arm imaging, there is a demand to fuse the intra-interventional 2D C-arm image with pre-interventional 3D patient data to enable surgical guidance. The commonly used intensity-based 2D/3D registration has a limited capture range and is sensitive to initialization. We propose to utilize an opto/X-ray C-arm system which allows to maintain the registration during intervention by automating the re-initialization for the 2D/3D image registration. Consequently, the surgical workflow is not disrupted and the interaction time for manual initialization is eliminated. We utilize two distinct vision-based tracking techniques to estimate the relative poses between different C-arm arrangements: (1) global tracking using fused depth information and (2) RGBD SLAM system for surgical scene tracking. A highly accurate multi-view calibration between RGBD and C-arm imaging devices is achieved using a custom-made multimodal calibration target. Several in vitro studies are conducted on pelvic-femur phantom that is encased in gelatin and covered with drapes to simulate a clinically realistic scenario. The mean target registration errors (mTRE) for re-initialization using depth-only and RGB [Formula: see text] depth are 13.23 mm and 11.81 mm, respectively. 2D/3D registration yielded 75% success rate using this automatic re-initialization, compared to a random initialization which yielded only 23% successful registration. The pose-aware C-arm contributes to the 2D/3D registration process by globally re-initializing the relationship of C-arm image and pre-interventional CT data. This system performs inside-out tracking, is self-contained, and does not require any external tracking devices.

  6. Integration of 3D and 2D imaging data for assured navigation in unknown environments: initial steps

    Science.gov (United States)

    Dill, Evan; Uijt de Haag, Maarten

    2009-05-01

    This paper discusses the initial steps of the development of a novel navigation method that integrates three-dimensional (3D) point cloud data, two-dimensional (2D) gray-level (intensity), and data from an Inertial Measurement Unit (IMU). A time-of-flight camera such as MESA's Swissranger will output both the 3D and 2D data. The target application is position and attitude determination of unmanned aerial vehicles (UAV) and autonomous ground vehicles (AGV) in urban or indoor environments. In urban and indoor environments a GPS position capability may not only be unavailable due to shadowing, significant signal attenuation or multipath, but also due to intentional denial or deception. The proposed algorithm extracts key features such as planar surfaces, lines and corner-points from both the 3D (point-cloud) and 2D (intensity) imagery. Consecutive observations of corresponding features in the 3D and 2D image frames are then used to compute estimates of position and orientation changes. Since the use of 3D image features for positioning suffers from limited feature observability resulting in deteriorated position accuracies, and the 2D imagery suffers from an unknown depth when estimating the pose from consecutive image frames, it is expected that the integration of both data sets will alleviate the problems with the individual methods resulting in an position and attitude determination method with a high level of assurance. An Inertial Measurement Unit (IMU) is used to set up the tracking gates necessary to perform data association of the features in consecutive frames. Finally, the position and orientation change estimates can be used to correct for the IMU drift errors.

  7. Toward 3D Integration of 1D Conductors: Junctions of InAs Nanowires

    Directory of Open Access Journals (Sweden)

    Phillip M. Wu

    2011-01-01

    Full Text Available A vision and one of the next challenges in nanoelectronics is the 3D integration of nanowire building blocks. Here we show that capillary forces associated with a liquid-air meniscus between two nanowires provides a simple, controllable technique to bend vertical nanowires into designed, interconnected assemblies. We characterize the electric nature of the junctions between crossed nanowires in a lateral geometry, which is one type of basic unit that can be found in interconnected-bent vertical nanowires. The crossed nanowire junction is capacitive in nature, and we demonstrate that one nanowire can be used to field effect gate the other nanowire, allowing for the possibility to develop extremely narrow conducting channels in nanowire planar or 3D electronic devices.

  8. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining.

    Science.gov (United States)

    Thiele, Herbert; Heldmann, Stefan; Trede, Dennis; Strehlow, Jan; Wirtz, Stefan; Dreher, Wolfgang; Berger, Judith; Oetjen, Janina; Kobarg, Jan Hendrik; Fischer, Bernd; Maass, Peter

    2014-01-01

    3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image

  9. Dimensional heterostructures of 1D CdS/2D ZnIn2S4 composited with 2D graphene: designed synthesis and superior photocatalytic performance.

    Science.gov (United States)

    Tian, Qingyong; Wu, Wei; Liu, Jun; Wu, Zhaohui; Yao, Weijing; Ding, Jin; Jiang, Changzhong

    2017-02-28

    The development of photocatalysts with superior photoactivity and stability for the degradation of organic dyes is very important for environmental remediation. In this study, we have presented a multidimensional (1D and 2D) structured CdS/ZnIn2S4/RGO photocatalyst with superior photocatalytic performance. The CdS/ZnIn2S4 helical dimensional heterostructures (DHS) were prepared via a facile solvothermal synthesis method to facilitate the epitaxial growth of 2D ZnIn2S4 nanosheets on 1D CdS nanowires. Ultrathin 2D ZnIn2S4 nanosheets have grown uniformly and perpendicular to the surface of 1D CdS nanowires. The as-obtained 1D/2D CdS/ZnIn2S4 helical DHS show good photocatalytic properties for malachite green (MG). Subsequently, 2D reduced graphene oxide (RGO) was introduced into the 1D/2D CdS/ZnIn2S4 helical DHS as a co-catalyst. The photoactivity and stability of the CdS/ZnIn2S4/RGO composites are significantly improved after 6 cycles. The enhanced photoactivity can be attributed to the high surface area of RGO, the improved adsorption of organic dyes and the efficient spatial separation of photo-induced charge carriers. The transfer of photo-generated electrons from the interface of CdS and ZnIn2S4 to RGO also restricted the photocorrosion of metal sulfide, suggesting an improved stability of the reused CdS/ZnIn2S4/RGO composited photocatalyst.

  10. 3-D Imaging using Row--Column-Addressed 2-D Arrays with a Diverging Lens

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Engholm, Mathias; Stuart, Matthias Bo

    2016-01-01

    with equipment in the price range of conventional 2-D imaging. This study proposes a delay-and-sum (DAS) beamformation scheme specific to double-curved RCA 2-D arrays and validates its focusing ability based on simulations. A synthetic aperture imaging (SAI) sequence with single element transmissions at a time...... is accurate for achieving correct time-of-flight calculations, and hence avoids geometrical distortions....

  11. 1D Ladder-like Chain and 1D Channeled 3D Supramolecular Architectures Based on Benzophenone-2,4'-dicarboxylic Acid

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Gang; LI Dong-Sheng; FU Feng; WU Ya-Pan; WANG Ji-Jiang; WANG Yao-Yu

    2008-01-01

    The hydrothermal reactions of AgNO3, 2,2'-bipyridyl, and benzophenone-2,4'-dicarboxylic acid gave rise to two benzophenone-2,4'-dicarboxylic acid). The two compounds are extended by hydrogen bonds in two different apbonding between H2L ligands and water molecules, then extended to a 3D supramolecular architecture. Compound 2 possesses 3D supramolecular architecture containing 1D open channels, which are driven due to the strong H-bonding interactions occurring between the HL anions and water molecules; interestingly, [Ag(bpy)2]+ cations vestigated, the emission maxima for 2 exhibits red-shift compared with that of free ligand and 1 due to chelating effect of the 2,2'-bipyridine ligand to the silver ion and the presence of aromatic π-packing.

  12. Direct Printing of 1-D and 2-D Electronically Conductive Structures by Molten Lead-Free Solder

    Directory of Open Access Journals (Sweden)

    Chien-Hsun Wang

    2016-12-01

    Full Text Available This study aims to determine the effects of appropriate experimental parameters on the thermophysical properties of molten micro droplets, Sn-3Ag-0.5Cu solder balls with an average droplet diameter of 50 μm were prepared. The inkjet printing parameters of the molten micro droplets, such as the dot spacing, stage velocity and sample temperature, were optimized in the 1D and 2D printing of metallic microstructures. The impact and mergence of molten micro droplets were observed with a high-speed digital camera. The line width of each sample was then calculated using a formula over a temperature range of 30 to 70 °C. The results showed that a metallic line with a width of 55 μm can be successfully printed with dot spacing (50 μm and the stage velocity (50 mm∙s−1 at the substrate temperature of 30 °C. The experimental results revealed that the height (from 0.63 to 0.58 and solidification contact angle (from 72° to 56° of the metallic micro droplets decreased as the temperature of the sample increased from 30 to 70 °C. High-speed digital camera (HSDC observations showed that the quality of the 3D micro patterns improved significantly when the droplets were deposited at 70 °C.

  13. 3D/2D Registration of Mapping Catheter Images for Arrhythmia Interventional Assistance

    Directory of Open Access Journals (Sweden)

    Pascal Fallavollita

    2009-09-01

    Full Text Available Radiofrequency (RF catheter ablation has transformed treatment for tachyarrhythmias and has become first-line therapy for some tachycardias. The precise localization of the arrhythmogenic site and the positioning of the RF catheter over that site are problematic: they can impair the efficiency of the procedure and are time consuming (several hours. Electroanatomic mapping technologies are available that enable the display of the cardiac chambers and the relative position of ablation lesions. However, these are expensive and use custom-made catheters. The proposed methodology makes use of standard catheters and inexpensive technology in order to create a 3D volume of the heart chamber affected by the arrhythmia. Further, we propose a novel method that uses a priori 3D information of the mapping catheter in order to estimate the 3D locations of multiple electrodes across single view C-arm images. The monoplane algorithm is tested for feasibility on computer simulations and initial canine data.

  14. 3D/2D Registration of Mapping Catheter Images for Arrhythmia Interventional Assistance

    CERN Document Server

    Fallavollita, Pascal

    2009-01-01

    Radiofrequency (RF) catheter ablation has transformed treatment for tachyarrhythmias and has become first-line therapy for some tachycardias. The precise localization of the arrhythmogenic site and the positioning of the RF catheter over that site are problematic: they can impair the efficiency of the procedure and are time consuming (several hours). Electroanatomic mapping technologies are available that enable the display of the cardiac chambers and the relative position of ablation lesions. However, these are expensive and use custom-made catheters. The proposed methodology makes use of standard catheters and inexpensive technology in order to create a 3D volume of the heart chamber affected by the arrhythmia. Further, we propose a novel method that uses a priori 3D information of the mapping catheter in order to estimate the 3D locations of multiple electrodes across single view C-arm images. The monoplane algorithm is tested for feasibility on computer simulations and initial canine data.

  15. 2D virtual texture on 3D real object with coded structured light

    Science.gov (United States)

    Molinier, Thierry; Fofi, David; Salvi, Joaquim; Gorria, Patrick

    2008-02-01

    Augmented reality is used to improve color segmentation on human body or on precious no touch artifacts. We propose a technique to project a synthesized texture on real object without contact. Our technique can be used in medical or archaeological application. By projecting a suitable set of light patterns onto the surface of a 3D real object and by capturing images with a camera, a large number of correspondences can be found and the 3D points can be reconstructed. We aim to determine these points of correspondence between cameras and projector from a scene without explicit points and normals. We then project an adjusted texture onto the real object surface. We propose a global and automatic method to virtually texture a 3D real object.

  16. Stress and Displacement Distribution of Soft Clay Slope with 2D and 3D Elastoplastic Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    YAN Zuwe; YAN Shuwang; LI Sa

    2006-01-01

    Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio.

  17. The dynamics of neutrino-driven supernova explosions after shock revival in 2D and 3D

    Science.gov (United States)

    Müller, B.

    2015-10-01

    We study the growth of the explosion energy after shock revival in neutrino-driven explosions in two and three dimensions (2D/3D) using multi-group neutrino hydrodynamics simulations of an 11.2 M⊙ star. The 3D model shows a faster and steadier growth of the explosion energy and already shows signs of subsiding accretion after one second. By contrast, the growth of the explosion energy in 2D is unsteady, and accretion lasts for several seconds as confirmed by additional long-time simulations of stars of similar masses. Appreciable explosion energies can still be reached, albeit at the expense of rather high neutron star masses. In 2D, the binding energy at the gain radius is larger because the strong excitation of downward-propagating g modes removes energy from the freshly accreted material in the downflows. Consequently, the mass outflow rate is considerably lower in 2D than in 3D. This is only partially compensated by additional heating by outward-propagating acoustic waves in 2D. Moreover, the mass outflow rate in 2D is reduced because much of the neutrino energy deposition occurs in downflows or bubbles confined by secondary shocks without driving outflows. Episodic constriction of outflows and vertical mixing of colder shocked material and hot, neutrino-heated ejecta due to Rayleigh-Taylor instability further hamper the growth of the explosion energy in 2D. Further simulations will be necessary to determine whether these effects are generic over a wider range of supernova progenitors.

  18. 2D-DSA与R-DSA及3D-DSA在脑动脉瘤诊疗中的应用%Comparision of 2D-DSA,R-DSA,3D-DSA in diagnosis and treatment of intracranial aneurysms

    Institute of Scientific and Technical Information of China (English)

    董富山; 翟水亭; 王子亮; 李天晓

    2008-01-01

    Objective To evaluate the advantages of 3D-DSA as compared to 2D-DSA,R-DSA in detecting the saccular size and neck size of the aneurysm and its relationship with parent vessels. Methods Forty-two patients with cerebral aneurysms underwent 3D-DSA,2D-DSA and R-DSA.After standard 2D-DSA3rotational DSA was performed,then R-DSA images were transined to the 3D-workstation.The volume-rendering images were created from the rotational-DSA data sets by the workstation.All images were assessed for overall image quality,presence of aneurysm,visualization of aneurysmal neck,and relationship to adiacent vessels.Statistical analysis was conducted for 50 aneurysms by endovaseular treatment. Results 1.The presence of aneurysm:Three aneurysms that were not detected at 2D-DSA were classified as uncertain on the basis of rotational-DSA.All aneurysms were classified as definitive presence on the basis of volume-rendering findings.2.Overall image quality of rotational-DSA and 3D-DSA was statistically inferior to that of the standard 2D-DSA for visualization of distal arteries.3.For detection of aneurysmal shape,visualization of aneurysmal neck and its relationship to neighboring arteries,volume-rendering images were significantly suDerior to 2D-DSA and R-DSA.Conclusion 3D-DSA is superior to the standard 2D-DSA and R-DSA in diagnosis of intracranial aneurysm,particularly visualization of aneurysmal neck,and this is very important for endovascular treatment of intracranial anerysm.%目的 通过对比2D-DSA、R-DSA与3D-DSA在显示脑动脉瘤瘤体的大小、瘤颈的宽窄及与毗邻血管的关系,说明3D-DSA优于2D-DSA及R-DSA.方法 42例资料完整的颅内动脉瘤患者均行2D-DSA、R-DSA及3D-DSA检查,常规2D-DSA检查后即行R-DSA检查,把R-DSA图像传送到3D工作站,由3D工作站生成容积再现图像(VR).通过图像在对脑动脉瘤瘤体的大小、形态、瘤颈的宽窄与毗邻血管的关系等方面显示评价分析.对50个行血管内栓塞治疗

  19. Comparison Between 2-D and 3-D Stiffness Matrix Model Simulation of Sasw Inversion for Pavement Structure

    Directory of Open Access Journals (Sweden)

    Sri Atmaja P. Rosidi

    2007-01-01

    Full Text Available The Spectral Analysis of Surface Wave (SASW method is a non-destructive in situ seismic technique used to assess and evaluate the material stiffness (dynamic elastic modulus and thickness of pavement layers at low strains. These values can be used analytically to calculate load capacities in order to predict the performance of pavement system. The SASW method is based on the dispersion phenomena of Rayleigh waves in layered media. In order to get the actual shear wave velocities, 2-D and 3-D models are used in the simulation of the inversion process for best fitting between theoretical and empirical dispersion curves. The objective of this study is to simulate and compare the 2-D and 3-D model of SASW analysis in the construction of the theoretical dispersion curve for pavement structure evaluation. The result showed that the dispersion curve from the 3-D model was similar with the dispersion curve of the actual pavement profile compared to the 2-D model. The wave velocity profiles also showed that the 3-D model used in the SASW analysis is able to detect all the distinct layers of flexible pavement units.

  20. 2D and 3D interconnect fabrication by picosecond Laser Induced Forward Transfer

    NARCIS (Netherlands)

    Oosterhuis, G.; Huis in 't veld, A.J.; Chall, P.

    2011-01-01

    Interconnects are an important cost driver in advanced 3D chip packaging. This holds for Through Silicon Vias (TSV) for chip stacking, but also for other integrated Si-technology. Especially in applications with a low number (<100 mm-2) of relatively large (10-2- um diameter), high aspect ratio (1:5

  1. 2D and 3D interconnect fabrication by picosecond Laser Induced Forward Transfer

    NARCIS (Netherlands)

    Oosterhuis, G.; Huis in 't veld, A.J.; Chall, P.

    2011-01-01

    Interconnects are an important cost driver in advanced 3D chip packaging. This holds for Through Silicon Vias (TSV) for chip stacking, but also for other integrated Si-technology. Especially in applications with a low number (<100 mm-2) of relatively large (10-2- um diameter), high aspect ratio

  2. 2D and 3D interconnect fabrication by picosecond Laser Induced Forward Transfer

    NARCIS (Netherlands)

    Oosterhuis, G.; Huis in 't veld, A.J.; Chall, P.

    2011-01-01

    Interconnects are an important cost driver in advanced 3D chip packaging. This holds for Through Silicon Vias (TSV) for chip stacking, but also for other integrated Si-technology. Especially in applications with a low number (<100 mm-2) of relatively large (10-2- um diameter), high aspect ratio (1:5

  3. Boundary Conditions in 2D Numerical and 3D Exact Models for Cylindrical Bending Analysis of Functionally Graded Structures

    Directory of Open Access Journals (Sweden)

    F. Tornabene

    2016-01-01

    Full Text Available The cylindrical bending condition for structural models is very common in the literature because it allows an incisive and simple verification of the proposed plate and shell models. In the present paper, 2D numerical approaches (the Generalized Differential Quadrature (GDQ and the finite element (FE methods are compared with an exact 3D shell solution in the case of free vibrations of functionally graded material (FGM plates and shells. The first 18 vibration modes carried out through the 3D exact model are compared with the frequencies obtained via the 2D numerical models. All the 18 frequencies obtained via the 3D exact model are computed when the structures have simply supported boundary conditions for all the edges. If the same boundary conditions are used in the 2D numerical models, some modes are missed. Some of these missed modes can be obtained modifying the boundary conditions imposing free edges through the direction perpendicular to the direction of cylindrical bending. However, some modes cannot be calculated via the 2D numerical models even when the boundary conditions are modified because the cylindrical bending requirements cannot be imposed for numerical solutions in the curvilinear edges by definition. These features are investigated in the present paper for different geometries (plates, cylinders, and cylindrical shells, types of FGM law, lamination sequences, and thickness ratios.

  4. Simulated radiographic bone and joint modeling from 3D ankle MRI: feasibility and comparison with radiographs and 2D MRI

    Energy Technology Data Exchange (ETDEWEB)

    Nordeck, Shaun M. [University of Texas Southwestern Medical College, Dallas, TX (United States); University of Texas Southwestern Medical Center, Musculoskeletal Radiology, Dallas, TX (United States); Koerper, Conrad E.; Adler, Aaron [University of Texas Southwestern Medical College, Dallas, TX (United States); Malhotra, Vidur; Xi, Yin [University of Texas Southwestern Medical Center, Musculoskeletal Radiology, Dallas, TX (United States); Liu, George T. [University of Texas Southwestern Medical Center, Orthopaedic Surgery, Dallas, TX (United States); Chhabra, Avneesh [University of Texas Southwestern Medical Center, Musculoskeletal Radiology, Dallas, TX (United States); University of Texas Southwestern Medical Center, Orthopaedic Surgery, Dallas, TX (United States)

    2017-05-15

    The purpose of this work is to simulate radiographs from isotropic 3D MRI data, compare relationship of angle and joint space measurements on simulated radiographs with corresponding 2D MRIs and real radiographs (XR), and compare measurement times among the three modalities. Twenty-four consecutive ankles were included, eight males and 16 females, with a mean age of 46 years. Segmented joint models simulating radiographs were created from 3D MRI data sets. Three readers independently performed blinded angle and joint space measurements on the models, corresponding 2D MRIs, and XRs at two time points. Linear mixed models and the intraclass correlation coefficient (ICC) was ascertained, with p values less than 0.05 considered significant. Simulated radiograph models were successfully created in all cases. Good agreement (ICC > 0.65) was noted among all readers across all modalities and among most measurements. Absolute measurement values differed between modalities. Measurement time was significantly greater (p < 0.05) on 2D versus simulated radiographs for most measurements and on XR versus simulated radiographs (p < 0.05) for nearly half the measurements. Simulated radiographs can be successfully generated from 3D MRI data; however, measurements differ. Good inter-reader and moderate-to-good intra-reader reliability was observed and measurements obtained on simulated radiograph models took significantly less time compared to measurements with 2D and generally less time than XR. (orig.)

  5. Comparison of linear and angular measurements in CBCT scans using 2D and 3D rendering software

    Directory of Open Access Journals (Sweden)

    Secil Aksoy

    2016-07-01

    Full Text Available The aim of this study was to compare the reliability of both linear and angular measurements conducted on two-dimensional (2D lateral cephalometric images and three-dimensional (3D cone-beam computed tomography-generated cephalograms derived from various rendering software. Pre-treatment cephalometric digital radiographs of 15 patients and their corresponding cone beam computed tomographic images were randomly selected. Vista Dent OC as 2D, In vivo 5.1.2, Maxilim and Romexis software were used to generate cephalograms from the CBCT scans (NewTom 3G, QR Verona, Italy. In total, 19 cephalometric landmarks were identified and 18 widely used (11 linear, 7 angular measurements were performed by an independent observer. Mann–Whitney and Kruskall–Wallis H tests were also used to compare the four methods (p 0.05. The ICCs for Vista Dent OC (2D measurements indicated high reproducibility (p < 0.05. The 2D and 3D generated cephalograms from various rendering software were found to be similar; however, measurements on curved surfaces are not easily reproducible for 3D software.

  6. A comparative study of 1D and 3D hemodynamics in patient-specific hepatic portal vein networks

    Directory of Open Access Journals (Sweden)

    Jonášová A.

    2014-12-01

    Full Text Available The development of software for use in clinical practice is often associated with many requirements and restrictions set not only by the medical doctors, but also by the hospital’s budget. To meet the requirement of reliable software, which is able to provide results within a short time period and with minimal computational demand, a certain measure of modelling simplification is usually inevitable. In case of blood flow simulations carried out in large vascular networks such as the one created by the hepatic portal vein, simplifications are made by necessity. The most often employed simplification includes the approach in the form of dimensional reduction, when the 3D model of a large vascular network is substituted with its 1D counterpart. In this context, a question naturally arises, how this reduction can affect the simulation accuracy and its outcome. In this paper, we try to answer this question by performing a quantitative comparison of 3D and 1D flow models in two patient-specific hepatic portal vein networks. The numerical simulations are carried out under average flow conditions and with the application of the three-element Windkessel model, which is able to approximate the downstream flow resistance of real hepatic tissue. The obtained results show that, although the 1D model can never truly substitute the 3D model, its easy implementation, time-saving model preparation and almost no demands on computer technology dominate as advantages over obvious but moderate modelling errors arising from the performed dimensional reduction.

  7. Protein adsorption resistant surface on polymer composite based on 2D- and 3D-controlled grafting of phospholipid moieties

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Toru [Department of Materials Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Matsuno, Ryosuke [Department of Materials Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Sawaguchi, Takashi [Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14 Kanda-surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Konno, Tomohiro; Takai, Madoka [Department of Materials Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ishihara, Kazuhiko [Department of Materials Engineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Bioengineering, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)], E-mail: ishihara@mpc.t.u-tokyo.ac.jp

    2008-11-15

    To prepare the biocompatible surface, a phosphorylcholine (PC) group was introduced on this hydroxyl group generated by surface hydrolysis on the polymer composite composed of polyethylene (PE) and poly (vinyl acetate) (PVAc) prepared by supercritical carbon dioxide. Two different procedures such as two-dimensional (2D) modification and three-dimensional (3D) modification were applied to obtain the steady biocompatible surface. 2D modification was that PC groups were directly anchored on the surface of the polymer composite. 3D modification was that phospholipid polymer was grafted from the surface of the polymer composite by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC). The surfaces were characterized by X-ray photoelectron spectroscopy, dynamic water contact angle measurements, and atomic force microscope. The effects of the poly(MPC) chain length on the protein adsorption resistivity were investigated. The protein adsorption on the polymer composite surface with PC groups modified by 2D or 3D modification was significantly reduced as compared with that on the unmodified PE. Further, the amount of protein adsorbed on the 3D modified surface that is poly(MPC)-grafted surface decreased with an increase in the chain length of the poly(MPC). The surface with an arbitrary structure and the characteristic can be constructed by using 2D and 3D modification. We conclude that the polymer composites of PE/PVAc with PC groups on the surface are useful for fabricating biomedical devices due to their good mechanical and surface properties.

  8. 2-D-3-D frequency registration using a low-dose radiographic system for knee motion estimation.

    Science.gov (United States)

    Jerbi, Taha; Burdin, Valerie; Leboucher, Julien; Stindel, Eric; Roux, Christian

    2013-03-01

    In this paper, a new method is presented to study the feasibility of the pose and the position estimation of bone structures using a low-dose radiographic system, the entrepreneurial operating system (designed by EOS-Imaging Company). This method is based on a 2-D-3-D registration of EOS bi-planar X-ray images with an EOS 3-D reconstruction. This technique is relevant to such an application thanks to the EOS ability to simultaneously make acquisitions of frontal and sagittal radiographs, and also to produce a 3-D surface reconstruction with its attached software. In this paper, the pose and position of a bone in radiographs is estimated through the link between 3-D and 2-D data. This relationship is established in the frequency domain using the Fourier central slice theorem. To estimate the pose and position of the bone, we define a distance between the 3-D data and the radiographs, and use an iterative optimization approach to converge toward the best estimation. In this paper, we give the mathematical details of the method. We also show the experimental protocol and the results, which validate our approach.

  9. Known-component 3D-2D registration for quality assurance of spine surgery pedicle screw placement

    Science.gov (United States)

    Uneri, A.; De Silva, T.; Stayman, J. W.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gokaslan, Z. L.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2015-10-01

    A 3D-2D image registration method is presented that exploits knowledge of interventional devices (e.g. K-wires or spine screws—referred to as ‘known components’) to extend the functionality of intraoperative radiography/fluoroscopy by providing quantitative measurement and quality assurance (QA) of the surgical product. The known-component registration (KC-Reg) algorithm uses robust 3D-2D registration combined with 3D component models of surgical devices known to be present in intraoperative 2D radiographs. Component models were investigated that vary in fidelity from simple parametric models (e.g. approximation of a screw as a simple cylinder, referred to as ‘parametrically-known’ component [pKC] registration) to precise models based on device-specific CAD drawings (referred to as ‘exactly-known’ component [eKC] registration). 3D-2D registration from three intraoperative radiographs was solved using the covariance matrix adaptation evolution strategy (CMA-ES) to maximize image-gradient similarity, relating device placement relative to 3D preoperative CT of the patient. Spine phantom and cadaver studies were conducted to evaluate registration accuracy and demonstrate QA of the surgical product by verification of the type of devices delivered and conformance within the ‘acceptance window’ of the spinal pedicle. Pedicle screws were successfully registered to radiographs acquired from a mobile C-arm, providing TRE 1-4 mm and  registration. Using advanced pKC models, screws that did not match the device models specified in the surgical plan were detected with an accuracy of  >99%. Visualization of registered devices relative to surgical planning and the pedicle acceptance window provided potentially valuable QA of the surgical product and reliable detection of pedicle screw breach. 3D-2D registration combined with 3D models of known surgical devices offers a novel method for intraoperative QA. The method provides a near-real-time independent

  10. Dynamical Models of SAURON and CALIFA Galaxies: 1D and 2D Rotational Curves

    Science.gov (United States)

    Kalinova, Veselina; van de Ven, G.; Lyubenova, M.; Falcon-Barroso, J.; van den Bosch, R.

    2013-01-01

    The mass of a galaxy is the most important parameter to understand its structure and evolution. The total mass we can infer by constructing dynamical models that fit the motion of the stars and gas in the galaxy. The dark matter content then follows after subtracting the luminous matter inferred from colors and/or spectra. Here, we present the mass distribution of a sample of 18 late-type spiral (Sb-Sd) galaxies, using two-dimensional stellar kinematics obtained with the integral-field spectrograph SAURON. The observed second order velocity moments of these galaxies are fitted with solutions of the Axisymmetric Jeans equations and give us an accurate estimation of the mass-to-light ratio profiles and rotational curves. The rotation curves of the galaxies are obtained by the Asymmetric Drift Correction (ADC) and Multi-Gaussian Expansion (MGE) methods, corresponding to one- and two-dimensional mass distribution. Their comparison shows that the mass distribution based on the 2D stellar kinematics is much more reliable than 1D one. SAURON integral field of view looks at the inner parts of the galaxies in contrast with CALIFA survey. CALIFA survey provides PMAS/PPAK integral-field spectroscopic data of ~ 600 nearby galaxies as part of the Calar Alto Legacy Integral Field Area. We show the first CALIFA dynamical models of different morphological type of galaxies, giving the clue about the mass distribution of galaxies through the whole Hubble sequence and their evolution from the blue cloud to the red sequence.

  11. A new method to create depth information based on lighting analysis for 2D/3D conversion

    Institute of Scientific and Technical Information of China (English)

    Hyunho; Han; Gangseong; Lee; Jongyong; Lee; Jinsoo; Kim; Sanghun; Lee

    2013-01-01

    A new method creating depth information for 2D/3D conversion was proposed. The distance between objects is determined by the distances between objects and light source position which is estimated by the analysis of the image. The estimated lighting value is used to normalize the image. A threshold value is determined by some weighted operation between the original image and the normalized image. By applying the threshold value to the original image, background area is removed. Depth information of interested area is calculated from the lighting changes. The final 3D images converted with the proposed method are used to verify its effectiveness.

  12. Simulation of the load rejection transient process of a francis turbine by using a 1-D-3-D coupling approach

    Institute of Scientific and Technical Information of China (English)

    张晓曦; 程永光; 杨建东; 夏林生; 赖旭

    2014-01-01

    This paper presents the simulation and the analysis of the transient process of a Francis turbine during the load rejection by employing a one-dimensional and three-dimensional (1-D-3-D) coupling approach. The coupling is realized by partly overlapping the 1-D and 3-D parts, the water hammer wave is modeled by defining the pressure dependent density, and the guide vane closure is treated by a dynamic mesh method. To verify the results of the coupling approach, the transient parameters for both typical models and a real power station are compared with the data obtained by the 1-D approach, and good agreements are found. To investigate the differences between the transient and steady states at the corresponding operating parameters, the flow characteristics inside a turbine of the real power station are simulated by both transient and steady methods, and the results are analyzed in details. Our analysis suggests that there are just a little differences in the turbine outer characteristics, thus the traditional 1-D method is in general acceptable. However, the flow patterns in the spiral casing, the draft tube, and the runner passages are quite different: the transient situation has obvious water hammer waves, the water inertia, and some other effects. These may be crucial for the draft tube pul- sation and need further studies.

  13. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    CERN Document Server

    Godolt, M; Kitzmann, D; Kunze, M; Langematz, U; Patzer, A B C; Rauer, H; Stracke, B

    2016-01-01

    The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. While 3D climate studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for exoplanets. We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like exoplanets by comparing our 1D model results to those of 3D climate studies in the literature. We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. These parameters depend on climate feedbacks that are not treated self-consistently in most...

  14. 2D and 3D Multiscale/Multicomponent Modeling of Impact Response of Heterogeneous Energetic Composites

    Science.gov (United States)

    2016-06-01

    of molecular crystals such as HMX and RDX, and (4) full coupling of mechanical deformation and heat generation/conduction. An algorithm for the...heating process; (2) heating overall becomes more severe as packing density increases and the most severe heating in binder occurs for a packing ...transition may affect the distribution more than packing density, loading rate, or stress state. 10 3D Modelling of Impact Response of HMX Granule

  15. Real-time hand gesture recognition exploiting multiple 2D and 3D cues

    OpenAIRE

    Dominio, Fabio

    2015-01-01

    The recent introduction of several 3D applications and stereoscopic display technologies has created the necessity of novel human-machine interfaces. The traditional input devices, such as keyboard and mouse, are not able to fully exploit the potential of these interfaces and do not offer a natural interaction. Hand gestures provide, instead, a more natural and sometimes safer way of interacting with computers and other machines without touching them. The use cases for gesture-based interface...

  16. All-To-All Personalized Communication in Wormhole-Routed 2D/3D Meshes and Multidimensional Interconnection Networks

    Institute of Scientific and Technical Information of China (English)

    Huizhi Xu; Shuming Zhou

    2004-01-01

    All-to-all personalized communication ,or complete exchange ,is at the heart of numerous applications in parallel computing. It is one of the most dense communication patterns. In this paper,we consider this problem in a 2D/ 3D mesh and a multidimensional interconnection network with the wormhole-routing capability. We propose complete exchange algorithms for them respectively. We propose O(mn2)phase algorithm for 2D mesh Pm×Pn and O(mn2l2)phase algorithm for 3D mesh Pm×Pn×Pl,where m,n,l are any positive integers. Also O(ph(G1)n2)phase algorithm is proposed for a multidimensional interconnection network G1×G2,where ph(G1)stands for complete exchange phases of G1 and |G2|=n.

  17. A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum

    Science.gov (United States)

    Sternberger, Z.; Maddox, B. R.; Opachich, Y. P.; Wehrenberg, C. E.; Kraus, R. G.; Remington, B. A.; Randall, G. C.; Farrell, M.; Ravichandran, G.

    2017-01-01

    Driving a shock wave through the interface between two materials with different densities can result in the Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength. Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 50 GPa up to 150 GPa and were calibrated using VISAR drive targets.

  18. FEM Simulation of Dissimilar Aluminum Titanium Fiber Laser Welding Using 2D and 3D Gaussian Heat Sources

    Directory of Open Access Journals (Sweden)

    Sonia D’Ostuni

    2017-08-01

    Full Text Available For a dissimilar laser weld, the model of the heat source is a paramount boundary condition for the prediction of the thermal phenomena, which occur during the welding cycle. In this paper, both two-dimensional (2D and three-dimensional (3D Gaussian heat sources were studied for the thermal analysis of the fiber laser welding of titanium and aluminum dissimilar butt joint. The models were calibrated comparing the fusion zone of the experiment with that of the numerical model. The actual temperature during the welding cycle was registered by a thermocouple and used for validation of the numerical model. When it came to calculate the fusion zone dimensions in the transversal section, the 2D heat source showed more accurate results. The 3D heat source provided better results for the simulated weld pool and cooling rate.

  19. 2D Sketch based recognition of 3D freeform shapes by using the RBF Neural Network

    OpenAIRE

    Qin, S F; Sun, Guangmin; Wright, D K; Lim, S.; Khan, U.; Mao, C.

    2005-01-01

    This paper presents a novel free-form surface recognition method from 2D freehand sketching. The approach is based on the Radial basis function (RBF), an artificial intelligence technique. A simple three-layered network has been designed and constructed. After training and testing with two types of surfaces (four sided boundary surfaces and four close section surfaces), it has been shown that the method is useful in freeform surface recognition. The testing results are very satisfactory.

  20. 2D sketch based recognition of 3D freeform shape by using the RBF neural network

    OpenAIRE

    Qin, SF; Sun, GM; Wright, DK; Lim, S.; Khan, U.; Mao, C.

    2005-01-01

    This paper presents a novel free-form surface recognition method from 2D freehand sketching. The approach is based on the Radial basis function (RBF), an artificial intelligence technique. A simple three-layered network has been designed and constructed. After training and testing with two types of surfaces (four sided boundary surfaces and four close section surfaces), it has been shown that the method is useful in freeform surface recognition. The testing results are very satisfactory.

  1. Prenatal diagnosis of a giant foetal lymphangioma and haemangiolymphoma in the second trimester using 2D and 3D ultrasound.

    Science.gov (United States)

    Mittermayer, C; Blaicher, W; Deutinger, J; Bernaschek, G; Lee, A

    2003-12-01

    Lymphangiomas are benign tumours of the lymphatic system. Early prenatal diagnosis is important to permit a planned delivery and provide adequate postnatal care. It thereby improves prognosis and allows the option of terminating the pregnancy if poor outcome is predicted. We report two cases, a giant haemangiolymphoma and a lymphangioma. 2D and 3D US findings are presented and differential diagnosis, therapeutic options and prognosis are discussed.

  2. 1-integrin and MT1-MMP promote tumor cell migration in 2D but not in 3D fibronectin microenvironments

    Science.gov (United States)

    Corall, Silke; Haraszti, Tamas; Bartoschik, Tanja; Spatz, Joachim Pius; Ludwig, Thomas; Cavalcanti-Adam, Elisabetta Ada

    2014-03-01

    Cell migration is a crucial event for physiological processes, such as embryonic development and wound healing, as well as for pathological processes, such as cancer dissemination and metastasis formation. Cancer cell migration is a result of the concerted action of matrix metalloproteinases (MMPs), expressed by cancer cells to degrade the surrounding matrix, and integrins, the transmembrane receptors responsible for cell binding to matrix proteins. While it is known that cell-microenvironment interactions are essential for migration, the role of the physical state of such interactions remains still unclear. In this study we investigated human fibrosarcoma cell migration in two-dimensional (2D) and three-dimensional (3D) fibronectin (FN) microenvironments. By using antibody blocking approach and cell-binding site mutation, we determined that -integrin is the main mediator of fibrosarcoma cell migration in 2D FN, whereas in 3D fibrillar FN, the binding of - and -integrins is not necessary for cell movement in the fibrillar network. Furthermore, while the general inhibition of MMPs with GM6001 has no effect on cell migration in both 2D and 3D FN matrices, we observed opposing effect after targeted silencing of a membrane-bound MMP, namely MT1-MMP. In 2D fibronectin, silencing of MT1-MMP results in decreased migration speed and loss of directionality, whereas in 3D FN matrices, cell migration speed is increased and integrin-mediated signaling for actin dynamics is promoted. Our results suggest that the fibrillar nature of the matrix governs the migratory behavior of fibrosarcoma cells. Therefore, to hinder migration and dissemination of diseased cells, matrix molecules should be directly targeted, rather than specific subtypes of receptors at the cell membrane.

  3. 2D and 3D Modeling Efforts in Fuel Film Cooling of Liquid Rocket Engines (Conference Paper with Briefing Charts)

    Science.gov (United States)

    2017-01-12

    to determine what parameters drive unsteadiness in fuel films, and how these parameters affect wall temperature profiles. Parametric studies performed...temperature profiles. Parametric studies performed in 2D suggest that a Helmholtz resonator exists for simple slot geometries. Frequencies in 3D were...effect on film cooling effectiveness. In general, the heat flux exhibits complex trends and did not scale well with chamber pressure. ∗Aerospace

  4. Linking 1D evolutionary to 3D hydrodynamical simulations of massive stars

    Science.gov (United States)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.

    2016-03-01

    Stellar evolution models of massive stars are important for many areas of astrophysics, for example nucleosynthesis yields, supernova progenitor models and understanding physics under extreme conditions. Turbulence occurs in stars primarily due to nuclear burning at different mass coordinates within the star. The understanding and correct treatment of turbulence and turbulent mixing at convective boundaries in stellar models has been studied for decades but still lacks a definitive solution. This paper presents initial results of a study on convective boundary mixing (CBM) in massive stars. The ‘stiffness’ of a convective boundary can be quantified using the bulk Richardson number ({{Ri}}{{B}}), the ratio of the potential energy for restoration of the boundary to the kinetic energy of turbulent eddies. A ‘stiff’ boundary ({{Ri}}{{B}}˜ {10}4) will suppress CBM, whereas in the opposite case a ‘soft’ boundary ({{Ri}}{{B}}˜ 10) will be more susceptible to CBM. One of the key results obtained so far is that lower convective boundaries (closer to the centre) of nuclear burning shells are ‘stiffer’ than the corresponding upper boundaries, implying limited CBM at lower shell boundaries. This is in agreement with 3D hydrodynamic simulations carried out by Meakin and Arnett (2007 Astrophys. J. 667 448-75). This result also has implications for new CBM prescriptions in massive stars as well as for nuclear burning flame front propagation in super-asymptotic giant branch stars and also the onset of novae.

  5. A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings

    Science.gov (United States)

    Yates, John E.

    1991-01-01

    A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples. The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta condition in the high Reynolds number limit. A new theory of 2-D<