WorldWideScience

Sample records for 1,4-dihydroxyanthraquinone

  1. Novel synthetic approach for 1, 4-dihydroxyanthraquinone and the development of its Lithiated salts as anode material for aqueous rechargeable Lithium-ion batteries

    KAUST Repository

    Gurukar, Suresh Shivappa

    2015-08-17

    The influence of organic electrode materials in the field of lithium ion battery is becoming a keen interest for the present generation scientists. Here we are reporting a novel method of synthesis of electrode material by the combination of sono-chemical and thermal methods. The advantages of organic active material towards lithium ion battery are of core interest of this study. The structural confirmations are by FT-IR, 1H NMR, MALDI-TOF Mass Spectroscopy and powder XRD data. The electrochemical properties of Lithiated-1,4-dihydroxyanthraquinone were studied using electrochemical-techniques such as Cyclic Voltammetry, Galvanostatic Cyclic Potential Limitation and Potentiostatic Electrochemical Impedance Spectroscopy. The satisfactory results towards stability of active species in the aqueous media, reasonable discharge capacity with 0.9 V average voltages and agreeable cycling performance during charge-discharge process with reproducibility are achieved. For the construction of the full cell, the anode material was coupled with the LiNi1/3Co1/3Mn1/3O2 as a cathode material.

  2. Exploring 1,4-dihydroxyanthraquinone as long-range emissive ratiometric fluorescent probe for signaling Zn(2+)/PO4(3-): Ensemble utilization for live cell imaging.

    Science.gov (United States)

    Sinha, Sougata; Gaur, Pankaj; Mukherjee, Trinetra; Mukhopadhyay, Subhrakanti; Ghosh, Subrata

    2015-07-01

    Fluorescent 1,4-dihydroxyanthraquinone 1 was found to demonstrate its ratiometric signaling property upon interaction with divalent zinc (Zn(2+)). While the probe itself exhibited fluorescence emission in the yellow region (λem=544 nm and 567 nm), binding with Zn(2+) induced strong emission in the orange region (λem=600 nm) which was mainly due to a combination of CHEF and ICT mechanism. The probe was found to be highly sensitive toward the detection of zinc and the limit of detection (LOD) was calculated to be 9×10(-7) M. The possibility of using this probe for real-time analysis was strongly supported by the striking stability of fluorescence signal for more than five days with similar fluorescence intensity as observed during instant signaling. The present probe works within physiological pH range and is devoid of any interference caused by the same group elements such as Cd(2+)/Hg(2+). The probe possesses excellent excitation/emission wavelength profile and can penetrate cell membrane to image low concentration of zing inside living system. The in situ formed zinc-probe ensemble was further explored as ratiometric sensing platform for detecting another bio-relevant analyte phosphate anion through a zinc-displacement approach.

  3. Synthesis of New Cytotoxic Aminoanthraquinone Derivatives via Nucleophilic Substitution Reactions

    Directory of Open Access Journals (Sweden)

    Hasimah Alimon

    2013-07-01

    Full Text Available Aminoanthraquinones were successfully synthesized via two reaction steps. 1,4-Dihydroxyanthraquinone (1 was first subjected to methylation, reduction and acylation to give an excellent yield of anthracene-1,4-dione (3, 1,4-dimethoxyanthracene-9,10-dione (5 and 9,10-dioxo-9,10-dihydroanthracene-1,4-diyl diacetate (7. Treatment of 1, 3, 5 and 7 with BuNH2 in the presence of PhI(OAc2 as catalyst produced seven aminoanthraquinone derivatives 1a, b, 3a, and 5a–d. Amination of 3 and 5 afforded three new aminoanthraquinones, namely 2-(butylaminoanthracene-1,4-dione (3a, 2-(butylaminoanthracene-9,10-dione (5a and 2,3-(dibutylaminoanthracene-9,10-dione (5b. All newly synthesised aminoanthraquinones were examined for their cytotoxic activity against MCF-7 (estrogen receptor positive human breast and Hep-G2 (human hepatocellular liver carcinoma cancer cells using MTT assay. Aminoanthraquinones 3a, 5a and 5b exhibited strong cytotoxicity towards both cancer cell lines (IC50 1.1–13.0 µg/mL.

  4. Characterization of secondary metabolites of an endophytic fungus from Curcuma wenyujin.

    Science.gov (United States)

    Yan, Jvfen; Qi, Ningbo; Wang, Suping; Gadhave, Kiran; Yang, Shulin

    2014-11-01

    Endophytic fungi are ubiquitous in the plant kingdom and they produce a variety of secondary metabolites to protect plant communities and to show some potential for human use. However, secondary metabolites produced by endophytic fungi in the medicinal plant Curcuma wenyujin are sparsely explored and characterized. The aim of this study was to characterize the secondary metabolites of an active endophytic fungus. M7226, the mutant counterpart of endophytic fungus EZG0807 previously isolated from the root of C. wenyujin, was as a target strain. After fermentation, the secondary metabolites were purified using a series of purification methods including thin layer chromatography, column chromatography with silica, ODS-C18, Sephadex LH-20, and macroporous resin, and were analyzed using multiple pieces of data (UV, IR, MS, and NMR). Five compounds were isolated and identified as curcumin, cinnamic acid, 1,4-dihydroxyanthraquinone, gibberellic acid, and kaempferol. Interestingly, curcumin, one of the main active ingredients of C. wenyujin, was isolated as a secondary metabolite from a fungal endophyte for the first time.

  5. Solvent effects on the photophysical properties of poly[1,4-dihydroxyanthraquinoneimine-1,3-bis(phenylene-ester-methylene)tetramethyldisiloxane].

    Science.gov (United States)

    Dorneanu, Petronela Pascariu; Homocianu, Mihaela; Tigoianu, Ionut Radu; Airinei, Anton; Zaltariov, Mirela; Cazacu, Maria

    2015-01-05

    Absorption and fluorescence spectra of a polyquinoneimine, PQI, built on 1,4-dihydroxyanthraquinone and a siloxane diamine, 1,3-bis(amino-phenylene-ester-methylene)tetramethyldisiloxane, have been investigated in solvents of different polarities. The effect of solvents on the spectral properties was investigated using Lippert-Mataga and Bakhshiev polarity functions and Catalán's multiple linear regression approach. Absorption and fluorescence spectra in studied solvents exhibit hypsochromic and bathochromic shifts, respectively. The polarity of the solvent was the main parameter which changes the spectral properties of PQI. Also, the binary mixtures of chloroform with methanol and dimethyl sulfoxide were used to analyze the intermolecular interactions and preferential solvation. The preferential solvation parameters (local mole fraction (X₂(L)), excess function (δs₂) and preferential solvation constant (KPS)) were calculated from spectral data and discussed as a function of cosolvent content. The values of quantum yield, decreased linearly with increasing solvent polarity (for non-polar and polar solvents).

  6. Evaluation of natural anthracene-derived compounds as antimitotic agents.

    Science.gov (United States)

    Badria, Farid A; Ibrahim, Ahmed S

    2013-04-01

    Plants that contain anthracene-derived compounds such as anthraquinones have been reported to act as anticancer besides their use for millennia to treat constipation, but the mechanism of action is still unfolding. Therefore we pursue this study to explore a new horizon in the anticancer property of these agents with relevance to mitotic arrest. To achieve this goal, the antimitotic activity of a series of naturally occurring anthracene-derived anthraquinones including anthrone, alizarin (1,2-dihydroxyanthraquinone), quinizarin (1,4-dihydroxyanthraquinone), rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid), emodin (1,6,8-trihydroxy-3-methylanthraquinone), and aloe emodin (1,8-dihydroxy-3-hydroxymethylanthraquinone) were evaluated using Allium cepa root tips. Initial results revealed that the mitosis was inhibited after 3, 6, and 24 h, respectively, of incubation with 500, 250, and 125 ppm of each compound in a dose-dependent manner. Furthermore, alizarin at 500 ppm was proved to be the most active compound to arrest the mitosis after 24 h followed by emodin, aloe emodin, rhein, and finally quinizarin. Interestingly, this inhibition of mitosis was irreversible in root tips incubated with each compound at concentration of 500 ppm but not with 250 ppm or 125 ppm, where the roots regained their normal mitotic activity after 96 h post-incubation in water. This re-evaluation of an old remedy suggests that several bioactive anthraquinones possess promising anti-mitotic activity that may have the potential to be lead compounds for the development of a new class of multifaceted natural anticancer/antimitotic agents.