WorldWideScience

Sample records for 1,3,5-trimethylbenzene

  1. Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2008-03-01

    Full Text Available A new denuder-filter sampling technique has been used to investigate the gas/particle partitioning behaviour of the carbonyl products from the photooxidation of isoprene and 1,3,5-trimethylbenzene. A series of experiments was performed in two atmospheric simulation chambers at atmospheric pressure and ambient temperature in the presence of NOx and at a relative humidity of approximately 50%. The denuder and filter were both coated with the derivatizing agent O-(2,3,4,5,6-pentafluorobenzyl-hydroxylamine (PFBHA to enable the efficient collection of gas- and particle-phase carbonyls respectively. The tubes and filters were extracted and carbonyls identified as their oxime derivatives by GC-MS. The carbonyl products identified in the experiments accounted for around 5% and 10% of the mass of secondary organic aerosol formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene respectively.

    Experimental gas/particle partitioning coefficients were determined for a wide range of carbonyl products formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene and compared with the theoretical values based on standard absorptive partitioning theory. Photooxidation products with a single carbonyl moiety were not observed in the particle phase, but dicarbonyls, and in particular, glyoxal and methylglyoxal, exhibited gas/particle partitioning coefficients several orders of magnitude higher than expected theoretically. These findings support the importance of heterogeneous chemistry as a pathway for SOA formation and growth during the atmospheric degradation of anthropogenic and biogenic hydrocarbons.

  2. Effects of inorganic seed aerosols on the particulate products of aged 1,3,5-trimethylbenzene secondary organic aerosol

    Science.gov (United States)

    Huang, Mingqiang; Hao, Liqing; Cai, Shunyou; Gu, Xuejun; Zhang, Weixiong; Hu, Changjin; Wang, Zhenya; Fang, Li; Zhang, Weijun

    2017-03-01

    Inorganic aerosols such as (NH4)2SO4, NaNO3 and CaCl2 are commonly present in the Chinese urban atmosphere. They could significantly affect the formation and aging of ambient secondary organic aerosols (SOA), but the underlying mechanisms remain unknown. In this work we studied SOA formation from the photooxidation reaction of 1,3,5-trimethylbenzene (135-TMB) with 100 μg/m3 of the above three types of inorganic aerosols as seeds in a laboratory chamber. We focused on the aging products of SOA particles by exposing them to high levels of oxidizing hydroxyl radicals (OH). The particulate products of SOA were measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) and Fuzzy C-Means (FCM) were applied to organic mass spectra for clustering. In the presence of (NH4)2SO4 seeds, 4-methyl-1H-imidazole, 4-methyl-imidazole-2-acetaldehyde and other imidazole derivative compounds formed from reactions of NH4+ with methylglyoxal were detected as new aged products. We also observed aromatic nitrogen-containing organic compounds as the major aged products in the presence of NaNO3 seeds as a consequence of reaction with OH and NO2 radicals, which were generated by UV irradiation of acidic aqueous nitrate, inducing nitration reactions with phenolic compounds. As CaCl2 has the strongest hygroscopic properties of the three salt particles tested, the greater water content on the surface of the aerosol may facilitate the condensing of more gas-phase organic acid products to the hygroscopic CaCl2 seeds, forming H+ ions that catalyze the heterogeneous reaction of aldehydes, products of photooxidation of 135-TMB, and forming high-molecular-weight (HMW) compounds. These results provide new insight into the aromatic SOA aging mechanisms.

  3. Analysis of high mass resolution PTR-TOF mass spectra from 1,3,5-trimethylbenzene (TMB environmental chamber experiments

    Directory of Open Access Journals (Sweden)

    M. Müller

    2011-09-01

    Full Text Available A series of 1,3,5-trimethylbenzene (TMB photo-oxidation experiments was performed in the 27-m3 Paul Scherrer Institute environmental chamber under various NOx conditions. A University of Innsbruck prototype high resolution Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF was used for measurements of gas and particulate phase organics. The gas phase mass spectrum displayed ~200 ion signals during the TMB photo-oxidation experiments. Molecular formulas CNmHnNoOp were determined and ion signals were separated and grouped according to their C, O and N numbers. This allowed to determine the time evolution of the O:C ratio and of the average carbon oxidation state OSC of the reaction mixture. Both quantities were compared with master chemical mechanism (MCMv3.1 simulations. The O:C ratio in the particle phase was about twice the O:C ratio in the gas phase. Average carbon oxidation states of secondary organic aerosol (SOA samples OSCSOA were in the range of −0.34 to −0.31, in agreement with expected average carbon oxidation states of fresh SOA (OSC = −0.5 − 0.

  4. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1212, LB4827_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1212, LB4827_V)' providing data by calculation of molar excess volume from low-pressure density measurements at variable mole fraction and constant temperature.

  5. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1511, LB4832_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1511, LB4832_V)' providing data from direct measurement of low-pressure thermodynamic speed of sound at variable mole fraction and constant temperature, in the single-phase region(s).

  6. Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1111, LB4822_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Cyclohexanone C6H10O + C9H12 1,3,5-Trimethylbenzene (VMSD1111, LB4822_V)' providing data from direct low-pressure measurement of mass density at variable mole fraction and constant temperature, in the single-phase region(s).

  7. Solubilities of 1,2,3-trimethylbenzene and 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene in t-butyl alcohol + water mixtures and hydrophobic interaction

    Institute of Scientific and Technical Information of China (English)

    邹立壮; 杨冠英; 韩布兴; 刘瑞麟; 阎海科

    1999-01-01

    The solubilities of 1,2,3- trimethylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene in mixed solvents of t-butyl alcohol (TBA) and water at 283.15, 288.15, 293.15 and 298.15 K have been determined by spectrophotometry. The mole fractions of TBA [x(TBA)] in the mixed solvent are 0.000, 0.010, 0.020, 0.030, 0.040, 0.045, 0.050, 0.060, 0.080 and 0. 1000. The Gibbs energies of hydrophobie interaction (HI) for the aggregating process of three methane molecules with one benene molecule in the mixed solvent are studied, and the effect of solvent structure and solute aggregating state on the strength of HI is discussed.

  8. 均三甲苯/二异丁基甲醇混合溶剂黏度测定及关联%Measurement and correlation of viscosities of mixed solvents 1,3,5-trimethylbenzene and diisobutylcarbinol

    Institute of Scientific and Technical Information of China (English)

    张蓉蓉; 窦茂斌; 袁恩先; 李海静; 王莅

    2015-01-01

    采用乌氏黏度仪,在常压和 293.15~323.15 K 温度范围内测定了均三甲苯与二异丁基甲醇混合溶剂以及两种纯溶剂的黏度,计算了不同温度和组成下混合溶剂的超额黏度.用 Redlich-Kister 方程对超额黏度进行了关联;用 Andrade 方程、UNIFA-VISCO 模型以及 Grunberg-Nissan 模型对黏度进行了关联与预测.结果表明,混合溶剂的黏度随温度升高和均三甲苯含量增加而减小.超额黏度均为负值,且随均三甲苯含量增加呈 U 形变化,约在均三甲苯摩尔分数为 0.3 时达到最低.Grunberg-Nissan 模型对黏度数据的关联和预测性最好,预测值与实测值的最大和平均相对偏差分别为 12.96%和 5.74%.%The viscosities of mixed solvents consisted of 1,3,5-trimethylbenzene (TMB) and diisobutylcarbinol (DIBC) were determined at temperature ranging from 293.15 to 323.15 K and atmospheric pressure for the whole range of compositions by using viscometer. The excess molar viscosities of the mixed solvents were calculated and correlated by Redlich-Kister equation. The viscosities of the mixtures were correlated and predicted by Andrade equation, UNIFA-VISCO model, and Grunberg-Nissan model. The viscosities of the mixtures decreased with the increase of temperature and molar fraction of TMB. The excess viscosities showed negative deviations from ideal behavior, gave U-shaped curves as the molar fraction of TMB (x1) increased, and reached the minimum values at ca x1=0.3. The Grunberg-Nissan model was quite reasonable with the maximum and average relative errors between predicted and experimental data of 12.96% and 5.74%.

  9. Evaluation of 1,3,5 trimethylbenzene degradation in the detailed tropospheric chemistry mechanism, MCMv3.1, using environmental chamber data

    Directory of Open Access Journals (Sweden)

    A. Metzger

    2008-11-01

    Full Text Available The degradation mechanism of 1,3,5-trimethyl- benzene (TMB as implemented in the Master Chemical Mechanism version 3.1 (MCM was evaluated using data from the environmental chamber at the Paul Scherrer Institute. The results show that the MCM provides a consistent description of the photo-oxidation of TMB/NOx mixtures for a range of conditions. In all cases the agreement between the measurement and the simulation decreases with decreasing VOC-NOx ratio and in addition with increasing precursor concentration. A significant underestimation of the decay rate of TMB and thus underestimation of reactivity in the system, consistent with results from previous appraisals of the MCM, was observed.

    Much higher nitrous acid (HONO concentrations compared to simulations and expected from chamber characterization experiments were measured during these smog chamber experiments. A light induced NO2 to HONO conversion at the chamber walls is suggested to occur. This photo-enhanced NO2 to HONO conversion with subsequent HONO photolysis enhances the reactivity of the system. After the implementation of this reaction in the model it describes the decay of TMB properly. Nevertheless, the model still over-predicts ozone at a later stage of the experiment. This can be attributed to a too slow removal of NO2. It is also shown that this photo-enhanced HONO formation is not restricted to TMB photo-oxidation but also occurs in other chemical systems (e.g. α-pinene. However, the influence of HONO as a source of OH radicals is less important in these more reactive systems and therefore the importance of the HONO chemistry is less obvious.

  10. Evaluation of 1,3,5 trimethylbenzene degradation in the detailed tropospheric chemistry mechanism, MCMv3.1, using environmental chamber data

    OpenAIRE

    Metzger, A.; Dommen, J.; Gaeggeler, K.; Duplissy, J.; A. S. H. Prevot; Kleffmann, J.; Elshorbany, Y.; Wisthaler, A; Baltensperger, U.

    2008-01-01

    The degradation mechanism of 1,3,5-trimethyl- benzene (TMB) as implemented in the Master Chemical Mechanism version 3.1 (MCM) was evaluated using data from the environmental chamber at the Paul Scherrer Institute. The results show that the MCM provides a consistent description of the photo-oxidation of TMB/NOx mixtures for a range of conditions. In all cases the agreement between the measurement and the simulation decreases with decreasing VOC-NOx...

  11. 77 FR 38799 - Draft Toxicological Review of 1,2,3-, 1,2,4-, and 1,3,5-Trimethylbenzene: In Support of the...

    Science.gov (United States)

    2012-06-29

    ... will need audio-visual aid (e.g., lap top and slide projector). In general, each presentation should be... presentation has been completed. If you would like to make a presentation at the listening session, you should... management decisions designed to protect public health. II. How To Register for the Listening Session...

  12. Excess Molar Volumes of Binary Liquid Mixtures of Trichloromethane or Nitrobenzene with 1,3,5-Trimethylbenzene and 1,2,4-Trimethylbenzene at 298.15 K%氯仿、硝基苯与三甲苯异构体的过量摩尔体积

    Institute of Scientific and Technical Information of China (English)

    陆贵增; 欧阳钢锋; 邓桂茹; 杨洋溢; 黄钟奇

    2004-01-01

    在298.15 K下,用振动管密度计在全浓度范围内测量了氯仿、硝基苯分别与均三甲苯、偏三甲苯构成的二元液体混合物的过量摩尔体积VE.其中氯仿与均、偏三甲苯的VE为正值,且均三甲苯>偏三甲苯;硝基苯与均、偏三甲苯的VE为负值,且偏三甲苯>均三甲苯.

  13. Chemical Composition of Gas Phase and Secondary Organic Aerosol from Aromatic Precursors Produced in a Smog Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sax, M. [ETH Zuerich and PSI (Switzerland); Kalberer, M. [ETH Zuerich (Switzerland); Zenobi, R. [ETH Zuerich (Switzerland); Paulsen, D.; Baltensperger, U.

    2004-03-01

    Reaction products formed during photooxidation of aromatic compounds contribute to secondary organic aerosol (SOA) mass. In this study we performed experiments with 1,3,5-trimethylbenzene (135TMB) in the PSI smog chamber to study the formation and composition of SOA. We used different techniques to analyze the aerosol and the gas phase. (author)

  14. (Continuous chemical reaction chromatography): Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.W.; Aris, R.

    1988-01-01

    Theoretical and experimental studies of the countercurrent moving bed chromatographic reactor were completed; the catalytic hydrogeneration of 1,3,5-trimethylbenzene to 1,3,5-trimethylcyclohexane was carried out. Mixtures of these two were also separated in the countercurrent moving bed separator (CMBS). The CMBS was simulated using four sections and used to separate mixtures of propylene and dimethyl ether. Simulated conutercurrent configurations were modelled mathematically. (DLC)

  15. Mechanistic Study Of The Atmospheric Photooxidation Of Trimethylbenzene In The Smog Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dommen, J.; Steinbacher, M.

    2005-03-01

    Mixtures of 1,3,5-trimethylbenzene, propene, NO and NO{sub 2} have been irradiated in our smog chamber. The temporal development of these precursors and many of the formed gaseous oxidation products have been measured and compared with model simulations based on the Master chemical mechanism. The fast reaction progress in the beginning of the experiment lets us assume that there is an additional OH radical source probably due to wall production of HONO. Higher production rates of photo oxidants in the model despite lower reactivity point to some mechanistic deficiencies of the model. (author)

  16. Evaluation of Optimal Pore Size of (3-Aminopropyl)triethoxysilane Grafted MCM-41 for Improved CO2 Adsorption

    OpenAIRE

    2015-01-01

    An array of new MCM-41 with substantially larger average pore diameters was synthesized through adding 1,3,5-trimethylbenzene (TMB) as the swelling agent to explore the effect of pore size on final adsorbent properties. The pore expanded MCM-41 was also grafted with (3-Aminopropyl)triethoxysilane (APTES) to determine the optimal pore size for CO2 adsorption. The pore-expanded mesoporous MCM-41s showed relatively less structural regularity but significant increments of pore diameter (4.64 to 7...

  17. Chlorination of (PheboxIr(mesityl(OAc by Thionyl Chloride

    Directory of Open Access Journals (Sweden)

    Meng Zhou

    2015-06-01

    Full Text Available Pincer (PheboxIr(mesityl(OAc (2 (Phebox = 3,5-dimethylphenyl-2,6-bis(oxazolinyl complex, formed by benzylic C-H activation of mesitylene (1,3,5-trimethylbenzene using (PheboxIr(OAc2OH2 (1, was treated with thionyl chloride to rapidly form 1-(chloromethyl-3,5-dimethylbenzene in 50% yield at 23 °C. A green species was obtained at the end of reaction, which decomposed during flash column chromatography to form (PheboxIrCl2OH2 in 87% yield.

  18. Validation of the calibration of a laser-induced fluorescence instrument for the measurement of OH radicals in the atmosphere

    Directory of Open Access Journals (Sweden)

    W. J. Bloss

    2004-01-01

    Full Text Available An assessment of the accuracy of OH concentrations measured in a smog chamber by a calibrated laser-induced fluorescence (LIF instrument has been made, in the course of 9 experiments performed to study the photo-oxidation of benzene, toluene, 1,3,5-trimethylbenzene, para-xylene, ortho-cresol and ethene at the European Photoreactor facility (EUPHORE. The LIF system was calibrated via the water photolysis / ozone actinometry approach. OH concentrations were inferred from the instantaneous rate of removal of each hydrocarbon species (measured by FTIR or HPLC via the appropriate rate coefficient for their reaction with OH, and compared with those obtained from the LIF system. Good agreement between the two approaches was found for all species with the exception of 1,3,5-trimethylbenzene, for which OH concentrations inferred from hydrocarbon removal were a factor of 3 lower than those measured by the LIF system. From the remaining 8 experiments, an overall value of 1.15±0.13 (±1σ was obtained for [OH]LIF / [OH]Hydrocarbon Decay, compared with the estimated uncertainty in the accuracy of the water photolysis / ozone actinometry OH calibration technique of 26% (1σ.

  19. Excess Molar Volume of Binary Systems Containing Mesitylene

    Directory of Open Access Journals (Sweden)

    Morávková, L.

    2013-05-01

    Full Text Available This paper presents a review of density measurements for binary systems containing 1,3,5-trimethylbenzene (mesitylene with a variety of organic compounds at atmospheric pressure. Literature data of the binary systems were divided into nine basic groups by the type of contained organic compound with mesitylene. The excess molar volumes calculated from the experimental density values have been compared with literature data. Densities were measured by a few experimental methods, namely using a pycnometer, a dilatometer or a commercial apparatus. The overview of the experimental data and shape of the excess molar volume curve versus mole fraction is presented in this paper. The excess molar volumes were correlated by Redlich–Kister equation. The standard deviations for fitting of excess molar volume versus mole fraction are compared. Found literature data cover a huge temperature range from (288.15 to 343.15 K.

  20. Evaluation of Optimal Pore Size of (3-Aminopropyltriethoxysilane Grafted MCM-41 for Improved CO2 Adsorption

    Directory of Open Access Journals (Sweden)

    Zhilin Liu

    2015-01-01

    Full Text Available An array of new MCM-41 with substantially larger average pore diameters was synthesized through adding 1,3,5-trimethylbenzene (TMB as the swelling agent to explore the effect of pore size on final adsorbent properties. The pore expanded MCM-41 was also grafted with (3-Aminopropyltriethoxysilane (APTES to determine the optimal pore size for CO2 adsorption. The pore-expanded mesoporous MCM-41s showed relatively less structural regularity but significant increments of pore diameter (4.64 to 7.50 nm; the fraction of mesopore volume also illustrated an increase. The adsorption heat values were correlated with the order of the adsorption capacities for pore expanded MCM-41s. After amine functionalization, the adsorption capacities and heat values showed a significant increase. APTES-grafted pore-expanded MCM-41s depicted a high potential for CO2 capture regardless of the major drawback of the high energy required for regeneration.

  1. Mussel-inspired polydopamine coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release.

    Science.gov (United States)

    Zheng, Qishan; Lin, Tianran; Wu, Hanyin; Guo, Liangqia; Ye, Peirong; Hao, Yanli; Guo, Qingquan; Jiang, Jinzhi; Fu, Fengfu; Chen, Guonan

    2014-03-10

    A novel pH-sensitive controlled release system is proposed by using mussel-inspired polydopamine (PDA) coated mesoporous silica nanoparticles (MSNs) as nanocarriers. MSNs with a large pore diameter are synthesized by using 1,3,5-trimethylbenzene as a pore-expanding agent and are modified with a PDA coating by virtue of oxidative self-polymerization of dopamine in neutral pH. PDA coated MSNs are characterized by FTIR, TEM, N₂ adsorption and XPS techniques. The PDA coating can work as pH-sensitive gatekeepers to control the release of drug molecules from MSNs in response to the pH-stimulus. Doxorubicin (DOX, an anticancer drug) can be released in the acid media and blocked in the neutral media. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. An anionic two-dimensional indium carboxylate framework derived from a pseudo 3-symmetric semi-flexible tricarboxylic acid

    Indian Academy of Sciences (India)

    Pratap Vishnoi; Alok Ch Kalita; Ramaswamy Murugavel

    2014-09-01

    Hydrothermal treatment of indium(III) nitrate with a flexible pseudo 3-symmetric tricarboxylic acid at 115°C for 5 days in DMF yields a new layered anionic indium carboxylate framework, [(CH3)2 NH2)][In(L)(HCOO)(DMF)] (1) (L = 2,4,6-tris[(4′-carboxyphenoxy)methyl]-1,3,5-trimethylbenzene), existing as two-dimensional sheets. The framework solid has been characterized by elemental analysis, FT-IR spectroscopy, TGA, PXRD and single crystal X-ray diffraction studies. DMF undergoes cleavage to dimethyl ammonium and formate ions, which are incorporated in the framework. A slipped stacking of the two dimensional sheets along -axis in 1 results in a drastic decrease in the anticipated large porosity of the framework.

  3. On the possibility of the electron polarization to be the driving force for the C60-TMB nanowire growth

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Geng, Junfeng; Solov'yov, Andrey V.;

    2009-01-01

    The effect of electron polarization has been suggested to explain the exceptionally large length-to width aspect ratio (more than 3000) in recently observed C_60-based nanowires. The theoretical estimates performed in the present Letter show that at room temperature the effect of electron...... polarization is negligibly small and, therefore, cannot become the driving force for nanowire growth along one preferential direction. Experimental measurements are in agreement with the theoretical analysis: the nanowires have been observed to emerge from the polar 1,2,4-trimethylbenzene and non-polar 1......,3,5-trimethylbenzene solution of C_60, while no nanowires from polar toluene, 1,2,3-trimethylbenzene and non-polar benzene solutions could be recorded....

  4. Ambiental volatile organic compounds in the megacity of São Paulo

    Directory of Open Access Journals (Sweden)

    Leila Droprinchinski Martins

    2008-01-01

    Full Text Available In order to characterize the composition of the main urban air organic compounds in the megacity of Sao Paulo, analysis of samples collected during the winter of 2003 downtown was carried out. The samplings were performed on the roof of a building in the commercial center of São Paulo. Hydrocarbons and carbonyls compounds were collected on August 4, 5 and 6. Comparing to previous data, the concentration of hydrocarbons presented no decrease in the concentration, except for the aldehydes, which decreased when compared to previous data. Among the HCs species analyzed, the highest concentrations observed were those of toluene (7.5 ± 3.4 ppbv, n-decane (3.2 ± 2.0 ppbv, benzene (2.7 ± 1.4 ppbv and 1,3,5-trimethylbenzene (2.2 ± 1.5 ppbv.

  5. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-05-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to formation and to the early growth of nucleated particles, respectively. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two Chemical Ionization Mass Spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a Condensation Particle Counter battery and a Scanning Mobility Particle Sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is dominated by organic compounds already at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particles growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. The size resolved growth analysis finally indicates that both condensation of oxidized organic compounds and reactive uptake contribute to

  6. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  7. High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Romonosky, Dian E.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-03-19

    A significant fraction of atmospheric organic compounds is predominantly found in condensed phases, such as aerosol particles and cloud droplets. Many of these compounds are photolabile and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of aqueous droplets (hours) and particles (days). This paper presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d- limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features, and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx generated SOA had more unique visual appearance, and indicated a lower extent of products overlap. Furthermore, the fraction of nitrogen containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone driven oxidation. Comparison of the SOA constituents

  8. Kinetics and mechanism of the reaction of OH with the trimethylbenzenes--experimental evidence for the formation of adduct isomers.

    Science.gov (United States)

    Bohn, Birger; Zetzsch, Cornelius

    2012-10-28

    The reversible gas-phase addition of OH radicals to the trimethylbenzenes was investigated in pulsed experiments utilizing VUV flash-photolysis resonance-fluorescence of H(2)O in the temperature range of 275-340 K. Triexponential OH decays were observed in the presence of the trimethylbenzenes, indicating the participation of more than one adduct species. Analytical solutions for the system of differential equations with two adduct isomers were derived, and the OH decay curves were evaluated based on this reaction model. This led to significant improvements of fit qualities and notable changes in OH rate constants compared to a previous model with a single adduct species. The detailed analysis was confined to 1,3,5-trimethylbenzene where reversible formation of two OH-aromatic ortho- and ipso-adduct isomers is feasible in accordance with the extended reaction model. Only after inclusion of additional isomerization reactions, consistent thermochemical data were obtained from the fitted rate constants. Reaction enthalpies of -83 ± 7 kJ mol(-1) and -35 ± 22 kJ mol(-1) were derived for the formation of one adduct isomer and the isomerization into the other, respectively. Based on literature data, the more and less stable adducts were assigned to ipso- and ortho-adduct isomers, respectively. The potential isomerization precluded the determination of primary yields of adduct isomers but formation of the ipso-adduct in any case is a minor process. For the rate constants of the OH + 1,3,5-trimethylbenzene reaction an Arrhenius expression k(OH) = 1.32 × 10(-11) cm(3) s(-1) exp(450 ± 50 K/T) was obtained. Based on the same approach, the rate constants of the OH reactions with 1,2,3-trimethylbenzene and 1,2,4-trimethylbenzene were derived as k(OH) = 3.61 × 10(-12) cm(3) s(-1) exp(620 ± 80 K/T) and k(OH) = 2.73 × 10(-12) cm(3) s(-1) exp(730 ± 70 K/T), respectively.

  9. Effect of compositional heterogeneity on dissolution of non-ideal LNAPL mixtures

    Science.gov (United States)

    Vasudevan, M.; Johnston, C. D.; Bastow, T. P.; Lekmine, G.; Rayner, J. L.; Nambi, I. M.; Suresh Kumar, G.; Ravi Krishna, R.; Davis, G. B.

    2016-11-01

    The extent of dissolution of petroleum hydrocarbon fuels into groundwater depends greatly on fuel composition. Petroleum fuels can consist of thousands of compounds creating different interactions within the non-aqueous phase liquid (NAPL), thereby affecting the relative dissolution of the components and hence a groundwater plume's composition over long periods. Laboratory experiments were conducted to study the variability in the effective solubilities and activity coefficients for common constituents of gasoline fuels (benzene, toluene, p-xylene and 1,2,4-trimethylbenzene) (BTX) in matrices with an extreme range of molar volumes and chemical affinities. Four synthetic mixtures were investigated comprising BTX with the bulk of the NAPL mixtures made up of either, ethylbenzene (an aromatic like BTX with similar molar volume); 1,3,5-trimethylbenzene (an aromatic with a greater molar volume); n-hexane (an aliphatic with a low molar volume); and n-decane (an aliphatic with a high molar volume). Equilibrium solubility values for the constituents were under-predicted by Raoult's law by up to 30% (higher experimental concentrations) for the mixture with n-hexane as a filler and over-predicted by up to 12% (lower experimental concentrations) for the aromatic mixtures with ethylbenzene and 1,3,5-trimethylbenzene as fillers. Application of PP-LFER (poly-parameter linear free energy relationship) model for non-ideal mixtures also resulted in poor correlation between experimentally measured and predicted concentrations, indicating that differences in chemical affinities can be the major cause of deviation from ideal behavior. Synthetic mixtures were compared with the dissolution behavior of fresh and naturally weathered unleaded gasoline. The presence of lighter aliphatic components in the gasoline had a profound effect on estimating effective solubility due to chemical affinity differences (estimated at 0.0055 per percentage increase in the molar proportion of aliphatic) as

  10. Influence of ethanol-gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine.

    Science.gov (United States)

    Jia, Li-Wei; Shen, Mei-Qing; Wang, Jun; Lin, Man-Qun

    2005-08-31

    Emission characteristics from a four-stroke motorcycle engine using 10% (v/v) ethanol-gasoline blended fuel (E10) were investigated at different driving modes on the chassis dynamometers. The results indicate that CO and HC emissions in the engine exhaust are lower with the operation of E10 as compared to the use of unleaded gasoline, whereas the effect of ethanol on NO(X) emission is not significant. Furthermore, species of both unburned hydrocarbons and their ramifications were analyzed by the combination of gas chromatography/mass spectrometry (GC/MS) and gas chromatography/flame ionization detection (GC/FID). This analysis shows that aromatic compounds (benzene, toluene, xylene isomers (o-xylene, m-xylene and p-xylene), ethyltoluene isomers (o-ethyltoluene, m-ethyltoluene and p-ethyltoluene) and trimethylbenzene isomers (1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene)) and fatty group ones (ethylene, methane, acetaldehyde, ethanol, butene, pentane and hexane) are major compounds in motorcycle engine exhaust. It is found that the E10-fueled motorcycle engine produces more ethylene, acetaldehyde and ethanol emissions than unleaded gasoline engine does. The no significant reduction of aromatics is observed in the case of ethanol-gasoline blended fuel. The ethanol-gasoline blended fuel can somewhat improve emissions of the rest species.

  11. Spatial and temporal trends of volatile organic compounds (VOC) in a rural area of northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Parra, M.A.; Gonzalez, L.; Elustondo, D.; Garrigo, J.; Bermejo, R.; Santamaria, J.M. [Laboratorio Integrado de Calidad Ambiental (LICA), Departamento de Quimica y Edafologia, Facultad de Ciencias, Universidad de Navarra, Irunlarrea s/n, 31080, Pamplona, Navarra (Spain)

    2006-10-15

    Ambient concentrations of volatile organic compounds (VOCs) were measured at 40 rural sampling points in Navarre (northern Spain). Air samples were collected by means of sorbent passive sampling and analyzed by thermal desorption (TD) and gas chromatography/mass-selective detector (GC/MSD). A total of 140 VOCs were identified during the study, which was carried out between May to October 2004 for a total of a 10 biweekly sampling campaigns. Concentrations of benzene, toluene, ethylbenzene, m/p-xylenes, o-xylene (BTEX) and 1,3,5-trimethylbenzene were determined in order to investigate their temporal and spatial distributions. Geostatistical analysis pointed to traffic as the main emission source of these compounds. Supporting this idea, BTEX and nitrogen oxides concentrations were found to be highly significantly correlated (r=0.495, P=0.001), whereas a strong negative correlation between BTEX and ozone was also observed (r=-0.355, P=0.025). The concentrations for the BTEX group were similar to the values that have been previously reported for other rural areas. (author)

  12. High electronic couplings of single mesitylene molecular junctions

    Directory of Open Access Journals (Sweden)

    Yuki Komoto

    2015-12-01

    Full Text Available We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene molecular junctions. The electronic conductance and the current–voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10−1G0 and of more than 10−3G0 (G0 = 2e2/h in the electronic conductance measurements. We further performed a statistical analysis of the current–voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current–voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV. Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I–V analysis, we proposed two structural models, in which (i mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii mesitylene has tilted from the perpendicular orientation.

  13. Carbonaceous sorbents for high-temperature interactive liquid chromatography of polyolefins.

    Science.gov (United States)

    Chitta, Rajesh; Macko, Tibor; Brüll, Robert; Miller, Matthew; Cong, Rongjuan; deGroot, Willem

    2013-07-01

    The elution behavior of polyethylene (PE) and the three stereoisomers of polypropylene (PP) was studied on porous graphite along with three other carbon-based sorbents, carbon-clad zirconia particles, activated carbon, and exfoliated graphite in a systematic way in this work. Decahydronaphthalene, 1,2,3,4-tetrahydronaphthalene, 1,3,5-trimethylbenzene, tetrachloroethylene, xylene and p-xylene were used as mobile phases. While PE is adsorbed to various extents on all the tested carbonaceous sorbents from the majority of the solvents, PP is fully adsorbed only in selected cases. Testing alcohols (C7-C9) as mobile phase with Hypercarb™ indicates that all stereoisomers of PP are selectively adsorbed and desorbed when a solvent gradient alcohol→1,2,4-trichlorobenzene is used at 160°C. The retention of all stereoisomers of PP increases with the polarity of the alcohol. Linear PE is retained on Hypercarb™ even from 1,2-dichloro- and 1,2,4-trichlorobenzene, when a temperature below 120°C is applied, while it is not retained from these solvents at higher temperatures. All stereoisomeric forms of PP are not adsorbed under the same conditions. Some of the tested new sorbent/solvent systems have potential to be applied in routine analysis of industrially synthesised polyolefins.

  14. Study of OH-initiated degradation of 2-aminoethanol

    Directory of Open Access Journals (Sweden)

    M. Karl

    2011-10-01

    Full Text Available The degradation of 2-aminoethanol (MEA by the hydroxyl radical (OH was studied in the European Photoreactor (EUPHORE, a large outdoor environmental chamber. High-Temperature Proton-Transfer-Reaction Mass Spectrometry (HT-PTR-MS and Fast Fourier Transform Infrared (FT-IR were used to follow concentrations of reactants in the gas phase. Aerosol mass concentrations were tracked with Aerosol Mass Spectrometry (AMS. The chamber aerosol model MAFOR was applied to quantify losses of MEA to the particle phase. The rate constant k(OH+MEA was determined relative to the rate constant of the 1,3,5-trimethylbenzene reaction with OH and was found to be (9.2 ± 1.1×10−11 cm3 molecule−1 s−1, and thus the reaction between OH radicals and MEA proceeds a factor of 2–3 faster than estimated by structure-activity relationship (SAR methods. Main uncertainty of the relative rate determination is the unknown temporal behaviour of the loss rate of MEA to chamber wall surfaces during the sunlit experiments. Nucleation and growth of particles observed in the experiments could be reproduced by the chamber model that accounted for condensation of gaseous oxidation products, condensation of ethanolaminium nitrate and nucleation involving MEA and nitric acid.

  15. Atmospheric photooxidation of alkylbenzenes—I. Carbonyl product analyses

    Science.gov (United States)

    Yu, Jianzhen; Jeffries, Harvey E.; Sexton, Kenneth G.

    Six alkylbenzenes—toluene, p-xylene, m-xylene, o-xylene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene—were selected to investigate the carbonyl products resulting from OH-initiated oxidation of aromatic compounds. Experiments were conducted in both indoor and outdoor smog chambers under simulated atmospheric conditions. Both batch samples and 30 min interval samples were taken in the outdoor smog chamber experiments using 1 ppmV alkylbenzene, 0.67 ppm NO x and sunlight as the light source. A wide variety of carbonyl products were detected and identified using gas chromatography/mass spectrometric (GC/MS) detection by their O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine (PFBHA) derivatives. Among the observed carbonyl products are aromatic aldehydes, quinones, di-unsaturated 1,6-dicarbonyls, unsaturated 1,4-dicarbonyls, saturated dicarbonyls, hydroxy dicarbonyls, glycolaldehyde, hydroxy acetone, and possibly triones and epoxy carbonyls. Quantification was achieved using 13C 3-acetone as a gas-phase internal standard. The numerous carbonyl products detected in itself partially explain previous difficulties in balancing the reacted carbon. They also provide additional insight into the oxidation mechanism for aromatic compounds, which will be discussed in this paper.

  16. Volatile organic compounds in the air of Izmir, Turkey

    Science.gov (United States)

    Muezzinoglu, Aysen; Odabasi, Mustafa; Onat, Levent

    A sampling program was conducted to determine the ambient VOC levels in the city of Izmir, Turkey during daytime and overnight periods between mid-August and mid-September 1998. Sampling sites were selected at high-density traffic roads and junctions far from stationary VOC sources. Samples were analyzed for benzene, toluene, m, p-xylene and o-xylene (BTX), alkylbenzenes (ethylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene), n-hexane and, n-heptane. Results were compared with similar data from other cities around the world and for probable health dangers and sources of the compounds. Results of this study indicated that Izmir has rather high ambient BTX concentrations compared to many polluted cities in the world. Toluene was the most abundant VOC in Izmir air and was followed by xylenes, benzene and alkylbenzenes, respectively. All were strongly dependent on the expected daily variations of traffic flow in the city. The concentrations of other VOCs correlated well with benzene concentration at most sampling sites, excluding Gumuldur station indicating that ambient VOC levels were mainly affected by motor vehicle emissions. The toluene-to-benzene ratios for urban and non-urban sites were in good agreement with previously reported values, indicating a good relationship between the motor vehicle emissions and ambient VOC levels.

  17. Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China

    Science.gov (United States)

    Wang, P.; Zhao, W.

    2008-08-01

    Volatile organic compounds (VOCs) are a major component of atmospheric pollutants in Nanjing, a large city in the east of China. Accordingly, 12-h diurnal monitoring for ten consecutive days was performed adjacent to major roads in five districts, ca.1.5 m above ground level, in April, July and October 2006, and January 2007. The most numerous species of VOCs (benzene, toluene, ethylbenzene, m/ p-xylene, o-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, tetrachloromethane, trichloroethane and tetrachloroethane) were selected as the target pollutants for this field study of atmospheric distribution. The eleven VOCs were mostly found in gas phase due to their high vapor pressures. Gas-phase concentrations ranged between 0.6 and 67.9 μg m - 3 . Simultaneously, the levels of those VOCs measured near major roads were associated slightly with their regional background level. For all these areas, as expected, the high traffic area was the highest in terms of concentration. A positive correlation was also found between the VOC levels and traffic density. Our studies also provided VOC distribution, and vertical/horizontal profiles. The results show that traffic-related exposure to VOCs in major road microenvironments is higher than elsewhere and poses a potential threat to pedestrians, commuters, and traffic-exposed workers.

  18. Characteristics of volatile organic compounds from motorcycle exhaust emission during real-world driving

    Science.gov (United States)

    Tsai, Jiun-Horng; Huang, Pei-Hsiu; Chiang, Hung-Lung

    2014-12-01

    The number of motorcycles has increased significantly in Asia, Africa, Latin American and Europe in recent years due to their reasonable price, high mobility and low fuel consumption. However, motorcycles can emit significant amounts of air pollutants; therefore, the emission characteristics of motorcycles are an important consideration for the implementation of control measures for motorcycles in urban areas. Results of this study indicate that most volatile organic compound (VOC) emission factors were in the range of several decades mg/km during on-road driving. Toluene, isopentane, 1,2,4-trimethylbenzene, m,p-xylene, and o-xylene were the most abundant VOCs in motorcycle exhaust, with emission factors of hundreds mg/km. Motorcycle exhaust was 15.4 mg/km for 15 carbonyl species. Acetaldehyde, acetone, formaldehyde and benzaldehyde were the major carbonyl species, and their emission factors ranged from 1.4 to 3.5 mg/km 1,2,4-trimethylbenzene, m,p-xylene, 1-butene, toluene, o-xylene, 1,2,3-trimethylbenzene, propene, 1,3,5-trimethylbenzene, isoprene, m-diethylbenzene, and m-ethyltoluene were the main ozone formation potential (OFP) species, and their OFP was 200 mg-O3/km or higher.

  19. High electronic couplings of single mesitylene molecular junctions.

    Science.gov (United States)

    Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2015-01-01

    We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene) molecular junctions. The electronic conductance and the current-voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10(-1) G 0 and of more than 10(-3) G 0 (G 0 = 2e (2)/h) in the electronic conductance measurements. We further performed a statistical analysis of the current-voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current-voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV). Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I-V analysis, we proposed two structural models, in which (i) mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii) mesitylene has tilted from the perpendicular orientation.

  20. Adsorptive characterization of the ZIF-68 metal-organic framework: a complex structure with amphiphilic properties.

    Science.gov (United States)

    Van der Perre, Stijn; Van Assche, Tom; Bozbiyik, Belgin; Lannoeye, Jeroen; De Vos, Dirk E; Baron, Gino V; Denayer, Joeri F M

    2014-07-22

    In this experimental study, the adsorption behavior of the ZIF-68 heterolinked zeolitic imidazolate framework has been explored. Vapor phase adsorption isotherms of linear C1-C6 alcohols, C6 alkane isomers, aromatics (benzene, toluene, xylene isomers, 1,3,5-trimethylbenzene, and 1,3,5-triisopropylbenzene), and polar adsorbates (water, acetonitrile, and acetone) are reported and discussed. The complex pore structure of ZIF-68, with two one-dimensional channels, each with a different polarity, displays an overall hydrophobic character. Its two-pore system results in S-shaped isotherms for small polar adsorbates (small alcohols, acetone, and acetonitrile), while longer alcohols and nonpolar molecules, such as aromatics and C6 alkane isomers, lead to type I adsorption isotherms. Bulky molecules, with a kinetic diameter significantly larger than the pore windows, are adsorbed in large amounts, which gave reason to think that this ZIF-68 material has a certain degree of framework flexibility to enlarge the free aperture of the channels. Besides, diffusion coefficients from vapor phase uptake and infrared experiments point to a different adsorption mechanism for polar and nonpolar adsorbates. Liquid phase adsorption experiments demonstrated the separation of alcohol mixtures (ethanol/1-butanol) at low concentration from water, with a clear preference for 1-butanol.

  1. Analysis of human exhaled breath in a population of young volunteers

    Directory of Open Access Journals (Sweden)

    Zarić Božidarka

    2014-01-01

    Full Text Available Analysis of volatile organic compounds (VOCs in human breath can provide information about the current physiological state of an individual, such as clinical conditions and exposure to exogenous pollutants. The blood-borne VOCs present in exhaled breath offer the possibility of exploring physiological and pathological processes in a noninvasive way. However, the field of exhaled breath analysis is still in its infancy. We undertook this study in order to define interindividual variation and common compounds in breath VOCs of 48 young human volunteers. Alveolar breath samples were analyzed by automated thermal desorption, gas chromatography with flame ionization detector (FID and electron capture detector (ECD using SUPELCO standards with 66 compounds. Predominant compounds in the alveolar breath of analyzed subjects are ethylbenzene, 1-ethyl-4-methylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene (over 50% of the subjects. Isopropyl alcohol, propylene, acetone, ethanol were found as well. We detected substituted compounds in exhaled breath. [Projekat Ministarstva nauke Republike Srbije, br. 172001

  2. Dynamics around solutes and solute-solvent complexes in mixed solvents.

    Science.gov (United States)

    Kwak, Kyungwon; Park, Sungnam; Fayer, M D

    2007-09-04

    Ultrafast 2D-IR vibrational echo experiments, IR pump-probe experiments, and FT-IR spectroscopy of the hydroxyl stretch of phenol-OD in three solvents, CCl4, mesitylene (1, 3, 5 trimethylbenzene), and the mixed solvent of mesitylene and CCl4 (0.83 mole fraction CCl4), are used to study solute-solvent dynamics via observation of spectral diffusion. Phenol forms a complex with Mesitylene. In the mesitylene solution, there is only complexed phenol; in the CCl4 solution, there is only uncomplexed phenol; and in the mixed solvent, both phenol species are present. Dynamics of the free phenol in CCl4 or the mixed solvent are very similar, and dynamics of the complex in mesitylene and in the mixed solvent are very similar. However, there are differences in the slowest time scale dynamics between the pure solvents and the mixed solvents. The mixed solvent produces slower dynamics that are attributed to first solvent shell solvent composition variations. The composition variations require a longer time to randomize than is required in the pure solvents, where only density variations occur. The experimental results and recent MD simulations indicate that the solvent structure around the solute may be different from the mixed solvent's mole fraction.

  3. Nanoscale Polydopamine (PDA) Meets π-π Interactions: An Interface-Directed Coassembly Approach for Mesoporous Nanoparticles.

    Science.gov (United States)

    Chen, Feng; Xing, Yuxin; Wang, Zhenqiang; Zheng, Xianying; Zhang, Jixi; Cai, Kaiyong

    2016-11-22

    Well known for the adhesive property, mussel-inspired polydopamine (PDA) has been shown to enhance performance in a wide range of adsorption-based applications. However, imparting porous nanostructures to PDA materials for enhanced loading capacities has not been demonstrated even when surfactants were present in the synthesis. Herein, we report on the preparation of mesoporous PDA particles (MPDA) based on the assembly of primary PDA particles and Pluronic F127 stabilized emulsion droplets on water/1,3,5-trimethylbenzene (TMB) interfaces. The key to the formation of this new type of the MPDA structure is the full utilization of the π-π stacking interactions between PDA structures and the π-electron-rich TMB molecules. Remarkably, this method presents a facile approach for MPDA particles with an average diameter of ∼90 nm, slit-like pores with a peak size of ∼5.0 nm as well as hollow cavities. When used as the adsorbent for a model dye RhB, the MPDA particles achieved an ultrahigh RhB adsorption capacity of 1100 μg mg(-1), which is significantly higher than that for the PDA-reactive dyes with Eschenmoser structure. Moreover, it was demonstrated that the cavity space in MPDA can facilitate high volumetric uptake in a capillary filling/stacking manner via the π-π interactions. These developments pave a new avenue on the mechanism and the designed synthesis of functional PDA materials by organic-organic composite assembly for advanced adsorption applications.

  4. Determination of tobacco smoking influence on volatile organic compounds constituent by indoor tobacco smoking simulation experiment

    Science.gov (United States)

    Xie, Juexin; Wang, Xingming; Sheng, Guoying; Bi, Xinhui; Fu, Jiamo

    Tobacco smoking simulation experiment was conducted in a test room under different conditions such as cigarette brands, smoking number, and post-smoke decay in forced ventilation or in closed indoor environments. Thirty-seven chemical species were targeted and monitored, including volatile organic compounds (VOCs) and environmental tobacco smoke (ETS) markers. The results indicate that benzene, d-limonene, styrene, m-ethyltoluene and 1,2,4/1,3,5-trimethylbenzene are correlated well with ETS markers, but toluene, xylene, and ethylbenzene are not evidently correlated with ETS markers because there are some potential indoor sources of these compounds. 2,5-dimethylfuran is considered to be a better ETS marker due to the relative stability in different cigarette brands and a good relationship with other ETS markers. The VOCs concentrations emitted by tobacco smoking were linearly associated with the number of cigarettes consumed, and different behaviors were observed in closed indoor environment, of which ETS markers, d-limonene, styrene, trimethylbenzene, etc. decayed fast, whereas benzene, toluene, xylene, ethylbenzene, etc. decayed slowly and even increased in primary periods of the decay; hence ETS exposure in closed environments is believed to be more dangerous. VOCs concentrations and the relative percentage constituent of ETS markers of different brand cigarettes emissions vary largely, but the relative percentage constituent of ETS markers for the same brand cigarette emissions is similar.

  5. Development of a detailed chemical mechanism (MCMv3.1 for the atmospheric oxidation of aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    C. Bloss

    2005-01-01

    Full Text Available The Master Chemical Mechanism has been updated from MCMv3 to MCMv3.1 in order to take into account recent improvements in the understanding of aromatic photo-oxidation. Newly available kinetic and product data from the literature have been incorporated into the mechanism. In particular, the degradation mechanisms for hydroxyarenes have been revised following the observation of high yields of ring-retained products, and product studies of aromatic oxidation under relatively low NOx conditions have provided new information on the branching ratios to first generation products. Experiments have been carried out at the European Photoreactor (EUPHORE to investigate key subsets of the toluene system. These results have been used to test our understanding of toluene oxidation, and, where possible, refine the degradation mechanisms. The evaluation of MCMv3 and MCMv3.1 using data on benzene, toluene, p-xylene and 1,3,5-trimethylbenzene photosmog systems is described in a companion paper, and significant model shortcomings are identified. Ideas for additional modifications to the mechanisms, and for future experiments to further our knowledge of the details of aromatic photo-oxidation are discussed.

  6. Development of a detailed chemical mechanism (MCMv3.1 for the atmospheric oxidation of aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    C. Bloss

    2004-09-01

    Full Text Available The Master Chemical Mechanism has been updated from MCMv3 to MCMv3.1 in order to take into account recent improvements in the understanding of aromatic photo-oxidation. Newly available kinetic and product data from the literature has been incorporated into the mechanism. In particular, the degradation mechanisms for hydroxyarenes have been revised following the observation of high yields of ring-retained products, and product studies of aromatic oxidation under relatively low NOx conditions have provided new information on the branching ratios to first generation products. Experiments have been carried out at the European Photoreactor (EUPHORE to investigate key subsets of the toluene system. These results have been used to test our understanding of toluene oxidation, and where possible, refine the degradation mechanisms. The evaluation of MCMv3 and MCMv3.1 using data on benzene, toluene, p-xylene and 1,3,5-trimethylbenzene photosmog systems is described in a companion paper, and significant model shortcomings are identified. Ideas for additional modifications to the mechanisms, and for future experiments to further our knowledge of the details of aromatic photo-oxidation are discussed.

  7. Using a biological aerated filter to treat mixed water-borne volatile organic compounds and assessing its emissions

    Institute of Scientific and Technical Information of China (English)

    CHENG Wen-Hsi

    2009-01-01

    A biological aerated filter (BAF) was evaluated as a fixed-biofilm processes to remove water-borne volatile organic compounds (VOCs) from a multiple layer ceramic capacitor (MLCC) manufacturing plant in southern Taiwan.The components of VOC were identified to be toluene,1,2,4-trimethylbenzene,1,3,5-trimethylbenzene,bromodichloromethane and isopropanol (IPA).The full-scale BAF was constructed of two separate reactors in series,respectively using 10-cm and 15-cm diameter polypropylene balls as the packing materials and a successful preliminary bench-scale experiment was performed to feasibility.Performance results show that the BAF removed over 90% chemical oxygen demand (COD) from the influent with (1188 ± 605) mg/L of COD.A total organic loading of 2.76 kg biochemical oxygen demand (BOD)/(m~3 packing·d) was determined for the packed bed,in which the flow pattern approached that of a mixed flow.A limited VOC concentration of (0.97 ± 0.29) ppmv (as methane) was emitted from the BAF system.Moreover,the emission rate of VOC was calculated using the proposed formula,based on an air-water mass equilibrium relationship,and compared to the simulated results obtained using the Water 9 model.Both estimation approaches of calculation and model simulation using Water 9 evaluating VOC emissions reveal that 0.1% IPA (0.0031-0.0037 kg/d) was aerated into a gaseous phase,and 30% to 40% (0.006-0.008 kg/d) of the toluene was aerated.

  8. A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber

    Directory of Open Access Journals (Sweden)

    M. R. Alfarra

    2006-01-01

    Full Text Available An Aerodyne Aerosol Mass Spectrometer (AMS has been utilised to provide on-line measurements of the mass spectral signatures and mass size distributions of the oxidation products resulting from irradiating 1,3,5-trimethylbenzene (1,3,5-TMB and α-pinene, separately, in the presence of nitrogen oxide, nitrogen dioxide and propene in a reaction chamber. Mass spectral results indicate that both precursors produce SOA with broadly similar chemical functionality of a highly oxidised nature. However, significant differences occur in the minor mass spectral fragments for the SOA in the two reaction systems, indicating that they have different molecular composition. Nitrogen-containing organic compounds have been observed in the photooxidation products of both precursors, and their formation appeared to be controlled by the temporal variability of NOx. Although the overall fragmentation patterns of the photooxidation products in both systems did not change substantially over the duration of each experiment, the contribution of some individual mass fragments to total mass appeared to be influenced by the irradiation time. The effective densities of the 1,3,5-TMB and α-pinene SOA particles were determined for various particle sizes using the relationship between mobility and vacuum aerodynamic diameters. The effective density for the 1,3,5-TMB SOA ranged from 1.35–1.40 g/cm3, while that for α-pinene SOA ranged from 1.29–1.32 g/cm3. The determined effective densities did not show dependence on irradiation time. Results suggest that further chemical processing of SOA takes place in the real atmosphere, as neither the α-pinene nor the 1,3,5-TMB experimental results reproduce the right relative product distribution between carbonyl-containing and multifunctional carboxylic acid species measured at ambient locations influenced by aged continental organic aerosols.

  9. Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site.

    Science.gov (United States)

    Parisi, Victoria A; Brubaker, Gaylen R; Zenker, Matthew J; Prince, Roger C; Gieg, Lisa M; Da Silva, Marcio L B; Alvarez, Pedro J J; Suflita, Joseph M

    2009-03-01

    Field metabolomics and laboratory assays were used to assess the in situ anaerobic attenuation of hydrocarbons in a contaminated aquifer underlying a former refinery. Benzene, ethylbenzene, 2-methylnaphthalene, 1,2,4- and 1,3,5-trimethylbenzene were targeted as contaminants of greatest regulatory concern (COC) whose intrinsic remediation has been previously reported. Metabolite profiles associated with anaerobic hydrocarbon decay revealed the microbial utilization of alkylbenzenes, including the trimethylbenzene COC, PAHs and several n-alkanes in the contaminated portions of the aquifer. Anaerobic biodegradation experiments designed to mimic in situ conditions showed no loss of exogenously amended COC; however, a substantive rate of endogenous electron acceptor reduction was measured (55 ± 8 µM SO(4) day(-1)). An assessment of hydrocarbon loss in laboratory experiments relative to a conserved internal marker revealed that non-COC hydrocarbons were being metabolized. Purge and trap analysis of laboratory assays showed a substantial loss of toluene, m- and o-xylene, as well as several alkanes (C(6)-C(12)). Multiple lines of evidence suggest that benzene is persistent under the prevailing site anaerobic conditions. We could find no in situ benzene intermediates (phenol or benzoate), the parent molecule proved recalcitrant in laboratory assays and low copy numbers of Desulfobacterium were found, a genus previously implicated in anaerobic benzene biodegradation. This study also showed that there was a reasonable correlation between field and laboratory findings, although with notable exception. Thus, while the intrinsic anaerobic bioremediation was clearly evident at the site, non-COC hydrocarbons were preferentially metabolized, even though there was ample literature precedence for the biodegradation of the target molecules.

  10. Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution

    Science.gov (United States)

    Liu, Yanjun; Lu, Wenjing; Guo, Hanwen; Ming, Zhongyuan; Wang, Chi; Xu, Sai; Liu, Yanting; Wang, Hongtao

    2016-08-01

    Aromatic compounds (ACs) are major components of volatile organic compounds emitted from municipal solid waste (MSW) landfills. The ACs emissions from the working face of a landfill in Beijing were studied from 2014 to 2015 using a modified wind tunnel system. Emission factors (EFs) of fugitive ACs emissions from the working face of the landfill were proposed according to statistical analyses to cope with their uncertainty. And their impacts on air quality were assessed for the first time. Toluene was the dominant AC with an average emission rate of 38.8 ± 43.0 μg m-2 s-1 (at a sweeping velocity of 0.26 m s-1). An increasing trend in AC emission rates was observed from 12:00 to 18:00 and then peaked at 21:00 (314.3 μg m-2 s-1). The probability density functions (PDFs) of AC emission rates could be classified into three distributions: Gaussian, log-normal, and logistic. EFs of ACs from the working face of the landfill were proposed according to the 95th percentile cumulative emission rates and the wind effects on ACs emissions. The annual ozone formation and secondary organic aerosol formation potential caused by AC emissions from landfills in Beijing were estimated to be 8.86 × 105 kg year-1 and 3.46 × 104 kg year-1, respectively. Toluene, m + p-xylene, and 1,3,5-trimethylbenzene were the most significant contributors to air pollution. Although ACs pollutions from landfills accounts for less percentage (∼0.1%) compared with other anthropogenic sources, their fugitive emissions which cannot be controlled efficiently deserve more attention and further investigation.

  11. Measurements of OH and HO2 yields from the gas phase ozonolysis of isoprene

    Directory of Open Access Journals (Sweden)

    P. W. Seakins

    2009-08-01

    Full Text Available The reactions of ozone with alkenes are an important source of hydroxyl (OH radicals; however, quantification of their importance is hindered by uncertainties in the absolute OH yield. Hydroxyl radical yields for the gas-phase ozonolysis of isoprene are determined in this paper by four different methods: (1 The use of cyclohexane as an OH scavenger, and the production of cyclohexanone, (2 The use of 1,3,5-trimethylbenzene as an OH tracer, and the diminution in its concentration, (3 A kinetic method in which the OH yield was obtained by performing a series of pseudo-first-order experiments in the presence or absence of an OH scavenger (cyclohexane, (4 The OH and HO2 yields were determined by fitting the temporal OH and HO2 profiles following direct detection of absolute OH and HO2 concentrations by laser induced fluorescence at low pressure (Fluorescence Assay by Gas Expansion-FAGE. The following OH yields for the ozonolysis of isoprene were obtained, relative to alkene consumed, for each method: (1 Scavenger (0.25 ± 0.04, (2 Tracer (0.25 ± 0.03, (3 Kinetic study (0.27 ± 0.02, and (4 Direct observation (0.26 ± 0.02, the error being one standard deviation. An averaged OH yield of 0.26 ± 0.02 is recommended at room temperature and atmospheric pressure and this result is compared with recent literature determinations. The HO2 yield was directly determined for the first time using FAGE to be 0.26 ± 0.03.

  12. Measurements of OH and HO2 yields from the gas phase ozonolysis of isoprene

    Directory of Open Access Journals (Sweden)

    P. W. Seakins

    2010-02-01

    Full Text Available The reactions of ozone with alkenes are an important source of hydroxyl (OH radicals; however, quantification of their importance is hindered by uncertainties in the absolute OH yield. Hydroxyl radical yields for the gas-phase ozonolysis of isoprene are determined in this paper by four different methods: (1 The use of cyclohexane as an OH scavenger, and the production of cyclohexanone, (2 The use of 1,3,5-trimethylbenzene as an OH tracer, and the diminution in its concentration, (3 A kinetic method in which the OH yield was obtained by performing a series of pseudo-first-order experiments in the presence or absence of an OH scavenger (cyclohexane, (4 The OH and HO2 yields were determined by fitting the temporal OH and HO2 profiles following direct detection of absolute OH and HO2 concentrations by laser induced fluorescence at low pressure (Fluorescence Assay by Gas Expansion- FAGE. The following OH yields for the ozonolysis of isoprene were obtained, relative to alkene consumed, for each method: (1 Scavenger (0.25±0.04, (2 Tracer (0.25±0.03, (3 Kinetic study (0.27±0.02, and (4 Direct observation (0.26±0.02, the error being one standard deviation. An averaged OH yield of 0.26±0.02 is recommended at room temperature and atmospheric pressure and this result is compared with recent literature determinations. The HO2 yield was directly determined for the first time using FAGE to be 0.26±0.03.

  13. Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges

    Science.gov (United States)

    Etzkorn, Thomas; Klotz, Björn; Sørensen, Søren; Patroescu, Iulia V.; Barnes, Ian; Becker, Karl H.; Platt, Ulrich

    Absorption cross sections of 24 volatile and non-volatile derivatives of benzene in the ultraviolet (UV) and the infrared (IR) regions of the electromagnetic spectrum have been determined using a 1080 l quartz cell. For the UV a 0.5 m Czerny-Turner spectrometer coupled with a photodiode array detector (spectral resolution 0.15 nm) was used. IR spectra were recorded with an FT-IR spectrometer (Bruker IFS-88, spectral resolution 1 cm -1). Absolute absorption cross sections and the instrument function are given for the UV, while for the IR, absorption cross sections and integrated band intensities are reported. The study focused primarily on the atmospherically relevant methylated benzenes (benzene, toluene, o-xylene, m-xylene, p-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, styrene) and their ring retaining oxidation products (benzaldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,4,6-trimethylphenol and ( E,Z)- and ( E,E)-2,4-hexadienedial). The UV absorption cross sections reported here can be used for the evaluation of DOAS spectra (Differential Optical Absorption Spectroscopy) for measurements of the above compounds in the atmosphere and in reaction chambers, while the IR absorption cross sections will primarily be useful in laboratory studies on atmospheric chemistry, where FT-IR spectrometry is an important tool.

  14. Assessing in situ rates of anaerobic hydrocarbon bioremediation.

    Science.gov (United States)

    Gieg, Lisa M; Alumbaugh, Robert E; Field, Jennifer; Jones, Jesse; Istok, Jonathon D; Suflita, Joseph M

    2009-03-01

    Identifying metabolites associated with anaerobic hydrocarbon biodegradation is a reliable way to garner evidence for the intrinsic bioremediation of problem contaminants. While such metabolites have been detected at numerous sites, the in situ rates of anaerobic hydrocarbon decay remain largely unknown. Yet, realistic rate information is critical for predicting how long individual contaminants will persist and remain environmental threats. Here, single-well push-pull tests were conducted at two fuel-contaminated aquifers to determine the in situ biotransformation rates of a suite of hydrocarbons added as deuterated surrogates, including toluene-d(8), o-xylene-d(10), m-xylene-d(10), ethylbenzene-d(5) (or -d(10)), 1, 2, 4-trimethylbenzene-d(12), 1, 3, 5-trimethylbenzene-d(12), methylcyclohexane-d(14) and n-hexane-d(14). The formation of deuterated fumarate addition and downstream metabolites was quantified and found to be somewhat variable among wells in each aquifer, but generally within an order of magnitude. Deuterated metabolites formed in one aquifer at rates that ranged from 3 to 50 µg l(-1) day(-1), while the comparable rates at another aquifer were slower and ranged from 0.03 to 15 µg l(-1) day(-1). An important observation was that the deuterated hydrocarbon surrogates were metabolized in situ within hours or days at both sites, in contrast to many laboratory findings suggesting that long lag periods of weeks to months before the onset of anaerobic biodegradation are typical. It seems clear that highly reduced conditions are not detrimental to the intrinsic bioremediation of fuel-contaminated aquifers.

  15. Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions

    Science.gov (United States)

    Im, Y.; Jang, M.; Beardsley, R. L.

    2014-04-01

    The Unified Partitioning-Aerosol phase Reaction (UNIPAR) model has been developed to predict the secondary organic aerosol (SOA) formation through multiphase reactions. The model was evaluated with aromatic SOA data produced from the photooxidation of toluene and 1,3,5-trimethylbenzene (135-TMB) under various concentrations of NOx and SO2 using an outdoor reactor (University of Florida Atmospheric PHotochemical Outdoor Reactor (UF-APHOR) chamber). When inorganic species (sulfate, ammonium and water) are present in aerosol, the prediction of both toluene SOA and 135-TMB SOA, in which the oxygen-to-carbon (O : C) ratio is lower than 0.62, are approached under the assumption of a complete organic/electrolyte-phase separation below a certain relative humidity. An explicit gas-kinetic model was employed to express gas-phase oxidation of aromatic hydrocarbons. Gas-phase products are grouped based on their volatility (6 levels) and reactivity (5 levels) and exploited to construct the stoichiometric coefficient (αi,j) matrix, the set of parameters used to describe the concentrations of organic compounds in multiphase. Weighting of the αi,j matrix as a function of NOx improved the evaluation of NOx effects on aromatic SOA. The total amount of organic matter (OMT) is predicted by two modules in the UNIPAR model: OMP by a partitioning process and OMAR by aerosol-phase reactions. The OMAR module predicts multiphase reactions of organic compounds, such as oligomerization, acid-catalyzed reactions, and organosulfate (OS) formation. The model reasonably simulates SOA formation under various aerosol acidities, NOx concentrations, humidities and temperatures. Furthermore, the OS fractions in the SOA predicted by the model were in good agreement with the experimentally measured OS fractions.

  16. Exploring reverse shape selectivity and molecular sieving effect of metal-organic framework UIO-66 coated capillary column for gas chromatographic separation.

    Science.gov (United States)

    Chang, Na; Yan, Xiu-Ping

    2012-09-28

    Metal-organic frameworks (MOFs) which offer a variety of topologies, porous networks and high surface areas are promising and have potential for the applications of specific adsorption, isomerization, catalysis and separation. UIO-66 is the first MOF that has been observed to have reverse shape selectivity. However, such reverse shape selectivity of MOFs has never been explored for capillary gas chromatographic separation. Here we report the fabrication of MOF UIO-66 coated capillary column and exploration of the reverse shape selectivity and molecular sieving effect of such column for capillary gas chromatographic separation of alkane isomers and benzene homologues with excellent selectivity and precision. The adsorption enthalpies and entropies on the interaction between hydrocarbons and UIO-66 were measured to illustrate the energy effect on the separation of alkane isomers and benzene homologues on the UIO-66 coated capillary column. UIO-66 coated capillary column gave preferential retention of branched alkane isomers over their linear isomer, showing reverse shape selectivity, making UIO-66 coated capillary column attractive for capillary gas chromatographic separation of alkane isomers. iso-Propylbenzene (branched) eluted after n-propylbenzene on the UIO-66 coated capillary column again shows reverse shape selectivity. However, much bulkier 1,3,5-trimethylbenzene eluted earlier than n-propylbenzene and iso-propylbenzene on the UIO-66 coated capillary column, exhibiting molecular sieving effect. The combination of reverse shape selectivity with molecular sieving effect makes the UIO-66 coated capillary column promising for the separation of structural isomers. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Development of micromachined preconcentrators and gas chromatographic separation columns by an electroless gold plating technology

    Science.gov (United States)

    Kuo, C.-Y.; Chen, P.-S.; Chen, H.-T.; Lu, C.-J.; Tian, W.-C.

    2017-03-01

    In this study, a simple process for fabricating a novel micromachined preconcentrator (μPCT) and a gas chromatographic separation column (μSC) for use in a micro gas chromatograph (μGC) using one photomask is described. By electroless gold plating, a high-surface-area gold layer was deposited on the surface of channels inside the μPCT and μSC. For this process, (3-aminopropyl) trimethoxysilane (APTMS) was used as a promoter for attaching gold nanoparticles on a silicon substrate to create a seed layer. For this purpose, a gold sodium sulfite solution was used as reagent for depositing gold to form heating structures. The microchannels of the μPCT and μSC were coated with the adsorbent and stationary phase, Tenax-TA and polydimethylsiloxane (DB-1), respectively. μPCTs were heated at temperatures greater than 280 °C under an applied electrical power of 24 W and a heating rate of 75 °C s‑1. Repeatable thermal heating responses for μPCTs were achieved; good linearity (R 2  >  0.9997) was attained at three heating rates for the temperature programme for the μSC (0.2, 0.5 and 1 °C s‑1). The volatile organic compounds (VOCs) toluene and m-xylene were concentrated over the μPCT by rapid thermal desorption (peak width of half height (PWHH)  7900. The VOCs acetone, benzene, toluene, m-xylene and 1,3,5-trimethylbenzene were also separated on the μSC as evidenced by their different retention times (47–184 s).

  18. Atmospheric photochemistry of aromatic hydrocarbons: OH budgets during SAPHIR chamber experiments

    Science.gov (United States)

    Nehr, S.; Bohn, B.; Dorn, H.-P.; Fuchs, H.; Häseler, R.; Hofzumahaus, A.; Li, X.; Rohrer, F.; Tillmann, R.; Wahner, A.

    2014-07-01

    Current photochemical models developed to simulate the atmospheric degradation of aromatic hydrocarbons tend to underestimate OH radical concentrations. In order to analyse OH budgets, we performed experiments with benzene, toluene, p-xylene and 1,3,5-trimethylbenzene in the atmosphere simulation chamber SAPHIR. Experiments were conducted under low-NO conditions (typically 0.1-0.2 ppb) and high-NO conditions (typically 7-8 ppb), and starting concentrations of 6-250 ppb of aromatics, dependent on OH rate constants. For the OH budget analysis a steady-state approach was applied in which OH production and destruction rates (POH and DOH) have to be equal. The POH were determined from measurements of HO2, NO, HONO, and O3 concentrations, considering OH formation by photolysis and recycling from HO2. The DOH were calculated from measurements of the OH concentrations and total OH reactivities. The OH budgets were determined from DOH/POH ratios. The accuracy and reproducibility of the approach were assessed in several experiments using CO as a reference compound where an average ratio DOH/POH = 1.13 ± 0.19 was obtained. In experiments with aromatics, these ratios ranged within 1.1-1.6 under low-NO conditions and 0.9-1.2 under high-NO conditions. The results indicate that OH budgets during photo-oxidation experiments with aromatics are balanced within experimental accuracies. Inclusion of a further, recently proposed OH production via HO2 + RO2 reactions led to improvements under low-NO conditions but the differences were small and insignificant within the experimental errors.

  19. Effects of Fuel Composition on Combustion Stability and NO X Emissions for Traditional and Alternative Jet Fuels

    Science.gov (United States)

    Vijlee, Shazib Z.

    differences in flame stabilization can be attributed to the rate at which these fuels are attacked and destroyed by radical species. The slow disintegration of the aromatic rings reduces the radical pool available for chain-initiating and chain-branching, which ultimately leads to an earlier blowout. The NOX study compares JP8, the aromatic additive, the synthetic fuels with and without an aromatic additive, and an aromatic surrogate (1,3,5-trimethylbenzene). A jet stirred reactor is used to try and isolate temperature and chemical effects. The reactor has a volume of 15.8 mL and a residence time of approximately 2.5 ms. The fuel flow rate (hence equivalence ratio) is adjusted to achieve nominally consistent temperatures of 1800, 1850, and 1900K. Small oscillations in fuel flow rate cause the data to appear in bands, which facilitated Arrhenius-type NOX-temperature correlations for direct comparison between fuels. The fuel comparisons are somewhat inconsistent, especially when the aromatic fuel is blended into the synthetic fuels. In general, the aromatic surrogate (1,3,5-trimethylbenzene) produces the most NOX, followed by JP8. The synthetic fuels (without aromatic additive) are always in the same ranking order for NOX production (HP Camelina > FT Coal > FT Natural Gas > HP Tallow). The aromatic additive ranks differently based on the temperature, which appears to indicate that some of the differences in NOX formation are due to the Zeldovich NOX formation pathway. The aromatic additive increases NOX for the HP Tallow and decreases NOX for the FT Coal. The aromatic additive causes increased NOX at low temperatures but decreases NOX at high temperatures for the HP Camelina and FT Natural Gas. A single perfectly stirred reactor model is used with several chemical kinetic mechanisms to study the effects of fuel (and fuel class) on NO X formation. The 27 unique NOX formation reactions from GRI 3.0 are added to published mechanisms for jet fuel surrogates. The investigation first

  20. Volatile aromatic compounds in Mexico City atmosphere: levels and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V. [Universidad Autonoma Metropolitana - Unidad Azcapotzalco, Mexico, D.F. (Mexico); Ruiz, M.E. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Watson, J.; Chow, J. [Desert Research Institute, Reno, Nevada (United States)

    2003-01-01

    Samples of ambient air were simultaneously collected at three different sites of Mexico City in March of 1997 in order to quantify the most abundant volatile aromatic compounds and estimate the source contributions by application of the chemical mass balance model (CMB). Volatile aromatic compounds were around 20% of the total of non-methane hydrocarbons present in morning air samples. The most abundant volatile aromatic species in urban air were toluene and xylenes followed by 1, 2, 4 trimethylbenzene, benzene, ethylbenzene, metaethyltoluene, 1, 3, 5 trimethylbenzene, styrene, n propylbenzene, and isopropylbenzene. Sampling campaigns were carried out at crossroads, a bus station, a parking place, and areas where solvents and petroleum distillates are used, with the objective of determining people's exposure to volatile aromatic compounds. The CMB was applied for estimating the contribution of different sources to the presence of each one of the most abundant aromatic compounds. Motor vehicle exhaust was the main source of all aromatic compounds, especially gasoline exhaust, although diesel exhausts and asphalt operations also accounted for toluene, xylenes, ethylbenzene, propylbenzenes, and styrene. Graphic arts and paint applications had an important impact on the presence of toluene. [Spanish] Se colectaron simultaneamente muestras de aire ambiente en tres sitios de la Ciudad de Mexico durante el mes de marzo de 1997 con el fin de conocer las concentraciones y el origen de compuestos aromaticos utilizando el modelo de balance de masa de especies quimicas (CMB). Los compuestos aromaticos volatiles representaron alrededor del 20% del total de hidrocarburos no metalicos presentes en las muestras matutinas colectadas. Las especies aromaticas volatiles mas abundantes en el ambiente fueron el tolueno y los xilenos, seguidos por 1, 2, 4 trimetilbenceno, benceno, etilbenceno, metaetiltolueno, nporpilbenceno, isopropilbenceno, 1, 3, 5 trimetilbenceno y estireno. Se

  1. Occurrence of 13 volatile organic compounds in foods from the Canadian total diet study.

    Science.gov (United States)

    Cao, Xu-Liang; Sparling, Melissa; Dabeka, Robert

    2016-01-01

    Volatile organic compounds (VOCs) are ubiquitous in the environment due to evaporation and incomplete combustion of fuels, use of consumer and personal care products, etc. and they can accumulate in foods. Some VOCs in foods can also be formed during food processing and preparation and migrate from food packaging. In this pilot study, a GC-MS method based on headspace solid-phase microextraction (SPME) was validated and used to analyse selected individual foods which can be consumed directly and 153 different total diet composite food samples for 13 VOCs. Vinyl chloride was not detected in any of the 153 composite food samples, while the other 12 VOCs were detected at various frequencies, with m-xylene being the most frequently detected (in 151 of the 153 samples), followed by toluene (145), 1,3,5-trimethylbenzene (140), ethylbenzene (139), styrene (133), 1,2,4-trimethylbenzene (122), benzene (96), p-dichlorobenzene (95), n-butylbenzene (55), chloroform (45), naphthalene (45) and trichloroethylene (31). Concentrations of the 12 VOCs in most of the food composite samples were low, with the 90th percentiles from 1.6 ng g(-1) for n-butylbenzene to 20 ng g(-1) for toluene. However, some VOCs were detected at higher levels with maxima, for example, of 948 ng g(-1) for m-xylene and 320 ng g(-1) for ethylbenzene in chewing gum, 207 ng g(-1) for styrene and 157 ng g(-1) for toluene in herbs and spices. VOCs were detected at higher levels in most of the individual food items than their corresponding composite samples, for example, the average chloroform concentration in the individual canned soft drinks was 20 ng g(-1) compared with 3.0 ng g(-1) in their composite, and the average toluene concentration in the individual canned citrus juice was 96 ng g(-1) compared with 0.68 ng g(-1) in their composite. Thus, for determination of VOCs in foods which can be consumed directly, their individual food items should be analysed whenever possible for accurate

  2. Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006

    Directory of Open Access Journals (Sweden)

    E. Starokozhev

    2009-05-01

    Full Text Available Volatile organic compounds (VOCs were analyzed in air and snow samples at the Jungfraujoch high alpine research station in Switzerland as part of CLACE 5 (CLoud and Aerosol Characterization Experiment during February/March 2006. The fluxes of individual compounds in ambient air were calculated from gas phase concentrations and wind speed. The highest concentrations and flux values were observed for the aromatic hydrocarbons benzene (14.3 μg.m−2 s−1, 1,3,5-trimethylbenzene (5.27 μg.m−2 s−1, toluene (4.40 μg.m−2 −1, and the aliphatic hydrocarbons i-butane (7.87 μg.m−2 s−1, i-pentane (3.61 μg.m−2 s−1 and n-butane (3.23 μg.m−2 s−1. The measured concentrations and fluxes were used to calculate the efficiency of removal of VOCs by snow, which is defined as difference between the initial and final concentration/flux values of compounds before and after wet deposition. The removal efficiency was calculated at −24°C (−13.7°C and ranged from 37% (35% for o-xylene to 93% (63% for i-pentane. The distribution coefficients of VOCs between the air and snow phases were derived from published poly-parameter linear free energy relationship (pp-LFER data, and compared with distribution coefficients obtained from the simultaneous measurements of VOC concentrations in air and snow at Jungfraujoch. The coefficients calculated from pp-LFER exceeded those values measured in the present study, which indicates more efficient snow scavenging of the VOCs investigated than suggested by theoretical predictions.

  3. Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene

    Directory of Open Access Journals (Sweden)

    A. Yamazaki

    2012-06-01

    Full Text Available Recently, secondary organic aerosols (SOAs generated from anthropogenic volatile organic compounds have been proposed as a possible source of lightabsorbing organic compounds "brown carbon" in the urban atmosphere. However, the atmospheric importance of these SOAs remains unclear due to limited information about their optical properties. In this study, the complex refractive index (RI, m=n − ki values at 405, 532, and 781 nm of the SOAs generated during the photooxidation of toluene (toluene-SOAs under a variety of initial nitrogen oxide (NOx= NO + NO2 conditions were examined by photoacoustic spectroscopy (PAS and cavity ring down spectroscopy (CRDS. The complex RI values obtained in the present study and reported in the literature indicate that the k value, which represents the light absorption of the toluene-SOAs steeply increased to shorter wavelengths at n value gradually increased to shorter wavelengths from 781 to 355 nm. The k values at 405 nm were found to increase from 1.8 × 10−3 to 7.2 × 10−3 with increasing initial NOx concentration from 109 to 571 ppbv. The nitrate to organics ratio of the SOAs determined using a highresolution time-of-flight aerosol mass spectrometer (H-ToF-AMS also increased with increasing initial NOx concentration. The RI values of the SOAs generated during the photooxidation of 1,3,5-trimethylbenzene in the presence of NOx (1,3,5-TMB-SOAs were also determined to investigate the influence of the chemical structure of the precursor on the optical properties of the SOAs, and it was found that the light absorption of the 1,3,5-TMB-SOAs is negligible at all of the wavelengths investigated (405, 532, and 781 nm. These results can be reasonably explained by the hypothesis that nitro-aromatic compounds such as nitro-cresols are the major contributors to the light absorption of the toluene-SOAs. Using the obtained RI values, mass absorption cross sections of the toluene-SOAs at 405 and 532 nm were estimated to

  4. [Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China].

    Science.gov (United States)

    Li, Lei; Li, Hong; Wang, Xue-Zhong; Zhang, Xin-Min; Wen, Chong

    2013-12-01

    The measurements of 31 kinds of VOCs in the ambient air of a site were carried out in the downtown of Guangzhou by online method from November 5, 2009 to November 9, 2009. The ambient level and composition characteristics, temporal variation characteristics, sources identification, and chemical reactivity of VOCs were studied, and the health risk of VOCs in the ambient air in the study area was assessed by using the international recognized health risk assessment method. Results showed that the mean and the range of the mass concentrations of 31 VOCs were 114.51 microg x m(-3) and 29.42-546.06 microg x m(-3), respectively. The mass concentrations of 31 VOCs, and those of alkanes, alkenes, and aromatics all showed a changing trend of higher in the morning and in the evening, and lower at noontime. Vehicular exhaust, gasoline and liquefied petroleum gas evaporates were the main sources of VOCs with the volatilization of paints and solvents being important emission sources. Toluene, trans-2-butene, m/p-xylene, i-butane, and 1,3,5-trimethylbenzene were the key reactive species among the 31 VOCs. Vehicular exhaust and gasoline evaporation were the main sources of VOCs leading to the formation of ozone. Health risk assessment showed that n-hexane, 1,3-butadiene, benzene, toluene, ethylbenzene, m/p-xylene and o-xylene had no appreciable risk of adverse non-cancer health effect on the exposed population, but 1, 3-butadiene and benzene had potential cancer risk. By comparing the corresponding data about health risk assessment of benzene compounds in some cities in China, it is concluded that benzene can impose relatively high cancer risk to the exposed populations in the ambient air of some cities in China. Therefore, strict countermeasures should be taken to further control the pollution of benzene in the ambient air of cities, and it is imperative to start the related studies and develop the atmospheric environmental health criteria and national ambient air quality

  5. Development of a distance-to-roadway proximity metric to compare near-road pollutant levels to a central site monitor

    Science.gov (United States)

    Barzyk, Timothy M.; George, Barbara Jane; Vette, Alan F.; Williams, Ronald W.; Croghan, Carry W.; Stevens, Carvin D.

    The primary objective of the Detroit Exposure and Aerosol Research Study (DEARS) was to compare air pollutant concentrations measured at various neighborhoods, or exposure monitoring areas (EMAs), throughout a major metropolitan area to levels measured at a central site or community monitor. One of the EMAs was located near a busy freeway (annual average daily traffic (AADT) of ˜130,000) so that impacts of mobile sources could be examined. Air pollution concentrations from the roadway-proximate sites were compared to the central site monitor. The volatile organic compounds (VOCs) selected (benzene, toluene, ethylbenzene, m,p- and o-xylene, 1,3 butadiene, 1,3,5-trimethylbenzene and 4-ethyltoluene) are typically associated with mobile sources. Gradients were also evident that demonstrated the amplification of pollutant levels near the roadway compared to the community monitor. A novel distance-to-roadway proximity metric was developed to plot the measurements and model these gradients. Effective distance represents the actual distance an air parcel travels from the middle of a roadway to a site and varies as a function of wind direction, whereas perpendicular distance is a fixed distance oriented normal to the roadway. Perpendicular distance is often used as a proxy for exposures to traffic emissions in epidemiological studies. Elevated concentrations of all the compounds were found for both a summer and winter season. Effective distance was found to be a statistically significant ( p p-xylene and o-xylene for summer 2005. For each of these pollutants, effective distance yielded lower p-values than the corresponding perpendicular distance models, and model fit improved. Results demonstrate that this near-road EMA had elevated levels of traffic-related VOCs compared to the community monitor, and that effective distance was a more accurate predictor of the degree to which they were elevated as a function of distance. Effective distance produced a range of distance

  6. Uptake of gaseous aromatic hydrocarbons by non-growing ice crystals

    Science.gov (United States)

    Fries, Elke; Haunold, Werner; Jaeschke, Wolfgang; Hoog, Ines; Mitra, Subir K.; Borrmann, Stephan

    Laboratory studies were performed in a walk-in cold chamber to investigate the uptake of aromatic hydrocarbons by non-growing ice crystals at -20 °C. Dendritic ice crystals were grown by vapor deposition and exposed to organic gases (benzene, toluene, ethylbenzene, m/ p-xylene, o-xylene, n-propylbenzene, 4-ethyltoluene, 1,3,5-trimethylbenzene, tert-butylbenzene, 1,2,4-trimethylbenzene, and 1,2,3-trimethylbenzene) at gas-phase concentrations between 2.8 and 33.1 μg m -3. During all exposure experiments, the gas/air stream was maintained at ice saturation to avoid ice crystal growth or evaporation. An analytical method comprising of solid-phase-micro-extraction followed by gas chromatography/mass spectrometry (SPME/GC-MS) was applied, which allows detection of organic compounds in melted ice at 0.025 ng g ice-1. The SPME/GC-MS method was an appropriate tool to determine the uptake of organic compounds by ice crystals at the applied gas-phase concentrations. However, it was not possible to detect any of the test substances in ice samples after exposure. No adsorption could be detected by increasing gas-phase concentrations. Neither increasing exposure time nor lowering flow rate of the carrier gas caused detectable adsorption effects of aromatic compounds on ice. Our results indicate that adsorption of aromatic hydrocarbons is either insignificant or highly reversible at -20 °C. These findings are consistent with reversible adsorption processes reported already for many oxygenated organic compounds like alcohols, acids, and aldehydes. Although the specific surface area of dendritic ice crystals is large, the results of our study demonstrate that gas uptake by ice surfaces is negligible for the removal of aromatic hydrocarbons in the atmosphere. This is an indication that the occurrence of aromatic hydrocarbons in precipitation cannot be explained by surface adsorption. There must be another accumulation process leading to concentrations of aromatic hydrocarbons

  7. Measurement and Correlation of Ambient VOCs in Windsor, Ontario, Canada and Detroit, Michigan, USA

    Science.gov (United States)

    Miller, L. J.; You, H.; Xu, X.; Molaroni, S.; Lemke, L.; Weglicki, L.; Krouse, H.; Krajenta, R.

    2009-05-01

    An air quality study has been carried out in Windsor, Ontario, Canada and Detroit, Michigan, USA as part of a pilot research study undertaken by the Geospatial Determinants of Health Outcomes Consortium (GeoDHOC), a multidisciplinary, international effort aimed at understanding the health effects of air pollution in urban environments. Exposure to volatile organic compounds has long been associated with adverse health conditions such as atrophy of skeletal muscles, loss of coordination, neurological damage, dizziness, throat, nose, and eye irritation, nervous system depression, liver damage, and respiratory symptoms. Twenty-six species of ambient volatile organic compounds (VOCs) were monitored during a 2-week period in September, 2008 at 100 sites across Windsor and Detroit, using 3M # 3500 Organic Vapour Monitors. Ten species with highest concentrations were selected for further investigation; Toluene (mean concentration =4.14 μm/m3), (m+p)-Xylene (2.30 μm/m3), Hexane (1.87 μm/m3), Benzene (1.37 μm/m3), 1,2,4-Trimethylbenzene (0.87 μm/m3), Dichloromethane (0.77 μm/m3), Ethylbenzene (0.68 μm/m3), o-Xylene (0.63 μm/m3), n-Decane (0.42 μm/m3), and 1,3,5-Trimethylbenzene (0.39 μm/m3). Comparison to a similar investigation in Sarnia, Ontario in October 2005 revealed that the mean concentrations of VOCs were higher in Windsor-Detroit for all species by a significant margin (31-958%), indicating substantial impact of local industrial and vehicular emissions in the WindsorVDetroit area. For most VOCs, the concentrations were higher in Detroit than in Windsor. The mean concentration of total VOC was 9.7 μm/m3 in Windsor, which is slightly higher than that in Sarnia in 2005 (7.9 um/m3), whilst total VOC concentration in Detroit was much higher (16.5 μm/m3). There were strong correlations among several of the 10 species, with the highest Pearson correlation coefficients (r=0.78 - 0.99, p<0.05) amongst the BTEX (benzene, toluene, ethylbenzene, and xylenes) group

  8. Steady state and dynamic control of divided-wall column for separating aromatics%分壁精馏塔分离芳烃的稳态及动态研究

    Institute of Scientific and Technical Information of China (English)

    杨剑; 沈本强; 蔺锡钰; 吴昊; 凌昊

    2014-01-01

    采用分壁精馏塔(DWC)严格稳态模型,对比苯、甲苯、二甲苯以及均三甲苯四组分混合物的常规分离和分壁精馏塔分离方法,稳态分析结果表明:直接序列分壁精馏塔流程较常规三塔分离序列可减小再沸器负荷18.9%,年度总成本TAC可降低13.0%,DWC有效避免了常规塔器分离过程中中间组分的返混现象。在Aspen Dynamic环境下对最优序列进行组分控制,结果表明组分控制可很好地应对进料流量和组分组成波动。%Divided-wall column (DWC) has many advantages over conventional columns, such as energy saving potential and low investment cost. A new DWC sequence for separating benzene, toluene,o-xylene and 1,3,5-trimethylbenzene quaternary mixture was proposed and simulated in this study. Rigorous distillation column models in Aspen Plus were employed in all simulations. Under the same targets of purity and yield, the energy consumed by DWC can be reduced by 18.9% and the total annual cost can be saved by 13.0% compared to that of conventional direct separation (DS) sequence. The reason for the energy saving is that DWC could prevent the remixing of intermediate compounds, which often happens in DS sequence. Using Aspen Dynamic, composition controlled structure for DWC is proposed, which controls the new DWC separation sequence and minimizes the energy consumption in DWC. The dynamic simulation shows that the composition controlled structure provides effective control of product purity for fluctuations of feed flow rate and composition.

  9. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    Science.gov (United States)

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and (1)H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  10. Evaluated kinetics of terminal and non-terminal addition of hydrogen atoms to 1-alkenes: a shock tube study of H + 1-butene.

    Science.gov (United States)

    Manion, Jeffrey A; Awan, Iftikhar A

    2015-01-22

    Single-pulse shock tube methods have been used to thermally generate hydrogen atoms and investigate the kinetics of their addition reactions with 1-butene at temperatures of 880 to 1120 K and pressures of 145 to 245 kPa. Rate parameters for the unimolecular decomposition of 1-butene are also reported. Addition of H atoms to the π bond of 1-butene results in displacement of either methyl or ethyl depending on whether addition occurs at the terminal or nonterminal position. Postshock monitoring of the initial alkene products has been used to determine the relative and absolute reaction rates. Absolute rate constants have been derived relative to the reference reaction of displacement of methyl from 1,3,5-trimethylbenzene (135TMB). With k(H + 135TMB → m-xylene + CH3) = 6.7 × 10(13) exp(-3255/T) cm(3) mol(-1) s(-1), we find the following: k(H + 1-butene → propene + CH3) = k10 = 3.93 × 10(13) exp(-1152 K/T) cm(3) mol(-1) s(-1), [880-1120 K; 145-245 kPa]; k(H + 1-butene → ethene + C2H5) = k11 = 3.44 × 10(13) exp(-1971 K/T) cm(3) mol(-1) s(-1), [971-1120 K; 145-245 kPa]; k10/k11 = 10((0.058±0.059)) exp [(818 ± 141) K/T), 971-1120 K. Uncertainties (2σ) in the absolute rate constants are about a factor of 1.5, while the relative rate constants should be accurate to within ±15%. The displacement rate constants are shown to be very close to the high pressure limiting rate constants for addition of H, and the present measurements are the first direct determination of the branching ratio for 1-olefins at high temperatures. At 1000 K, addition to the terminal site is favored over the nonterminal position by a factor of 2.59 ± 0.39, where the uncertainty is 2σ and includes possible systematic errors. Combining the present results with evaluated data from the literature pertaining to temperatures of <440 K leads us to recommend the following: k∞(H + 1-butene → 2-butyl) = 1.05 × 10(9)T(1.40) exp(-366/T) cm(3) mol(-1) s(-1), [220-2000 K]; k∞(H + 1-butene → 1

  11. Predicting the Strength of Anion-π Interactions of Substituted Benzenes: the Development of Anion-π Binding Substituent Constants.

    Science.gov (United States)

    Bagwill, Christina; Anderson, Christa; Sullivan, Elizabeth; Manohara, Varun; Murthy, Prithvi; Kirkpatrick, Charles C; Stalcup, Apryll; Lewis, Michael

    2016-11-23

    by the SAPT2+ calculated electrostatic component energies (Eele). The Eele values for the Cl(-)-substituted benzene anion-π complexes are all more binding than the Eele value for the Cl(-)-benzene complex, with the exception of chloride-1,3,5-trimethylbenzene. Again, this is a similar trend to what has been reported for parallel face-to-face substituted benzene-benzene binding. A discussion on this surprising result is presented. In addition, an improved approach to predicting the relative anion-π binding strength of substituted benzene is developed using the results of the SAPT2+ calculations.

  12. Assessment of groundwater, soil-gas, and soil contamination at the Vietnam Armor Training Facility, Fort Gordon, Georgia, 2009-2011

    Science.gov (United States)

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2012-01-01

    detected above their respective method detection levels were naphthalene, 2-methyl-naphthalene, tridecane, 1,2,4-trimethylbenzene, and perchloroethylene. After the results of the 71 soil-gas samplers were received, 31 additional passive soil-gas samplers were deployed on July 14, 2011, and retrieved on July 18, 2011. These 31 samplers were deployed on a larger areal scale to better define the extent of the contamination. Total petroleum hydrocarbons were detected above their method detection level at all 31 samplers, whereas BTEX was detected above its method detection level at 17 of the 31 samplers. Other organic compounds detected above their method detection levels were naphthalene, 2-methyl-naphthalene, octane, undecane, tridecane, pentadecane, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, chloroform, and perchloroethylene. Subsequent to the 2010 soil-gas survey, four areas determined to have elevated contaminant mass were selected and sampled for explosives and chemical agents. No detections of explosives or chemical agents above their respective method detection levels were found at any of the sampling locations. The same four locations that were sampled for explosives and chemical agents were selected for the collection of soil samples. A fifth location also was selected on the basis of the elevated contaminant mass of the soil-gas survey. No metals that exceeded the Regional Screening Levels for Industrial Soils, as classified by the U.S. Environmental Protection Agency, were detected at any of the five VATF locations. The soil samples also were compared to values from the ambient, uncontaminated (background) levels for soils in South Carolina, as classified by the South Carolina Department of Health and Environmental Control. Because South Carolina is adjacent to Georgia and the soils in the Coastal Plain are similar, these comparisons are valid. No similar values are available for Georgia to use for comparison purposes. The metals that were detected above the