WorldWideScience

Sample records for 1,2-diphenylethylene

  1. Synthesis and Characterization of Sulfonated Poly(Phenylene Containing a Non-Planar Structure and Dibenzoyl Groups

    Directory of Open Access Journals (Sweden)

    Hohyoun Jang

    2016-02-01

    Full Text Available Polymers for application as sulfonated polyphenylene membranes were prepared by nickel-catalyzed carbon-carbon coupling reaction of bis(4-chlorophenyl-1,2-diphenylethylene (BCD and 1,4-dichloro-2,5-dibenzoylbenzene (DCBP. Conjugated cis/trans isomer (BCD had a non-planar conformation containing four peripheral aromatic rings that facilitate the formation of π–π interactions. 1,4-Dichloro-2,5-dibenzoylbenzene was synthesized from the oxidation reaction of 2,5-dichloro-p-xylene, followed by Friedel-Crafts reaction with benzene. DCBP monomer had good reactivity in polymerization affecting the activity of benzophenone as an electron-withdrawing group. The polyphenylene was sulfonated using concentrated sulfuric acid. These polymers without any ether linkages on the polymer backbone were protected from nucleophilic attack by hydrogen peroxide, hydroxide anion, and radicals generated by polymer electrolyte membrane fuel cell (PEMFC operation systems. The mole fraction of the sulfonic acid groups was controlled by varying the mole ratio of bis(4-chlorophenyl-1,2-diphenylethylene in the copolymer. In comparison with Nafion 211® membrane, these SBCDCBP membranes showed ion exchange capacity (IEC ranging from 1.04 to 2.07 meq./g, water uptake from 36.5% to 69.4%, proton conductivity from 58.7 to 101.9 mS/cm, and high thermal stability.

  2. Biological actions and molecular effects of resveratrol, pterostilbene, and 3′-hydroxypterostilbene

    Directory of Open Access Journals (Sweden)

    Hui-Yun Tsai

    2017-01-01

    Full Text Available Stilbenes are a class of polyphenolic compounds, naturally found in a wide variety of dietary sources such as grapes, berries, peanuts, red wine, and some medicinal plants. There are several well-known stilbenes including trans-resveratrol, pterostilbene, and 3′-hydroxypterostilbene. The core chemical structure of stilbene compounds is 1,2-diphenylethylene. Recently, stilbenes have attracted extensive attention and interest due to their wide range of health-beneficial effects such as anti-inflammation, -carcinogenic, -diabetes, and -dyslipidemia activities. Moreover, accumulating in vitro and in vivo studies have reported that stilbene compounds act as inducers of multiple cell-death pathways such as apoptosis, cell cycle arrest, and autophagy for chemopreventive and chemotherapeutic agents in several types of cancer cells. The aim of this review is to highlight recent molecular findings and biological actions of trans-resveratrol, pterostilbene, and 3′-hydroxypterostilbene.

  3. Role of Natural Stilbenes in the Prevention of Cancer

    Directory of Open Access Journals (Sweden)

    J. Antoni Sirerol

    2016-01-01

    Full Text Available Natural stilbenes are an important group of nonflavonoid phytochemicals of polyphenolic structure characterized by the presence of a 1,2-diphenylethylene nucleus. Stilbenes have an extraordinary potential for the prevention and treatment of different diseases, including cancer, due to their antioxidant, cell death activation, and anti-inflammatory properties which associate with low toxicity under in vivo conditions. This review aims to discuss various approaches related to their mechanisms of action, pharmacological activities in animal models and humans, and potential chemoprevention in clinical studies. The biological activity of natural stilbenes is still incompletely understood. Furthermore, after administration to animals or humans, these molecules are rapidly metabolized. Thus pharmacokinetics and/or activities of the natural structures and their metabolites may be very different. Novel drug formulations have been postulated in order to improve stability and bioavailability, to minimize side effects, and to facilitate interaction with their domains in target proteins. These pharmacological improvements should lead stilbenes to become effective candidates as anticancer drugs.