WorldWideScience

Sample records for 1,2,3-propanetriol

  1. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated...

  2. 75 FR 8500 - 1,2,3-Propanetriol, Homopolymer Diisooctadecanoate; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-02-25

    ... of the FFDCA. IX. Other Considerations A. Endocrine Disruptors EPA is required under the Federal Food... that is similar to an effect produced by a naturally occurring estrogen, or other such endocrine effects as the Administrator may designate.'' Following recommendations of its Endocrine Disruptor...

  3. 40 CFR 180.950 - Tolerance exemptions for minimal risk active and inert ingredients.

    Science.gov (United States)

    2010-07-01

    .... Commonly consumed food commodities means foods that are commonly consumed for their nutrient properties... Glycerol (glycerin) (1,2,3-propanetriol) 56-81-5 Guar gum 9000-30-0 Humic acid 1413-93-6 Humic...

  4. Quality assurance of commercial beeswax II. Gas chromatography-electron impact ionization mass spectrometry of alcohols and acids.

    Science.gov (United States)

    Jiménez, J J; Bernal, J L; Aumente, S; Toribio, L; Bernal, J

    2003-07-25

    Gas chromatography with mass spectrometric detection was used to find the fraction of alcohols and acids present in pure beeswax from Apis mellifera. Some new compounds not described till now were found, such as a family of unsaturated linear fatty acids, several hydroxyacids and 1,2,3-propanetriol monoesters. The chromatographic profiles obtained from pure beeswax and bee-rejected foundation beeswax can be used to discriminate them; they mainly differ in the amount of some acids and alcohols.

  5. Sample preparation methods for beeswax characterization by gas chromatography with flame ionization detection.

    Science.gov (United States)

    Jiménez, J J; Bernal, J L; del Nozal, M A J; Martín, M A T; Bernal, J

    2006-10-06

    New and simpler methods of sample preparation to determine several families of compounds in beeswax by conventional and high temperature gas chromatography are proposed. To analyze hydrocarbons and palmitates, a dilution of sample is enough whereas for the total acid content, a hydrolysis and simultaneous methylation with BF3-methanol results more effective than the usual methods; for the total content of alcohols, a further acetylation with acetic anhydride is necessary. Free alcohols are directly acetylated in a sample dissolution but for free acids and monoesterified 1,2,3-propanetriols analysis, a previous extraction with acetonitrile is required. The concentrations of all the compounds studied are expressed in weight percentage referred only to one standard: octadecyl octadecanoate. The precision of the analytical methods has been evaluated showing its importance in the analysis of beeswaxes used in apiculture.

  6. Development of Eco-friendly Soy Protein Isolate Films with High Mechanical Properties through HNTs, PVA, and PTGE Synergism Effect

    Science.gov (United States)

    Liu, Xiaorong; Song, Ruyuan; Zhang, Wei; Qi, Chusheng; Zhang, Shifeng; Li, Jianzhang

    2017-03-01

    This study was to develop novel soy protein isolate-based films for packaging using halloysite nanotubes (HNTs), poly-vinyl alcohol (PVA), and 1,2,3-propanetriol-diglycidyl-ether (PTGE). The structural, crystallinity, opacity, micromorphology, and thermal stability of the resultant SPI/HNTs/PVA/PTGE film were analyzed by the Attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), UV-Vis spectrophotometry, scanning electron microscopy (SEM), and thermo-gravimetric analysis (TGA). The SPI/HNTs/PVA/PTGE film illustrated that HNTs were uniformly dispersed in the SPI matrix and the thermal stability of the film was enhanced. Furthermore, the tensile strength (TS) of the SPI/HNTs/PVA/PTGE film was increased by 329.3% and the elongation at the break (EB) remained unchanged. The water absorption (WA) and the moisture content (MC) were decreased by 5.1% and 10.4%, respectively, compared to the unmodified film. The results highlighted the synergistic effects of SPI, HNTs, PVA, and PTGE on the mechanical properties, water resistance, and thermal stability of SPI films, which showed excellent strength and flexibility. In short, SPI films prepared from HNTs, PVA, and PTGE showed considerable potential as packaging materials.

  7. Development of Eco-friendly Soy Protein Isolate Films with High Mechanical Properties through HNTs, PVA, and PTGE Synergism Effect

    Science.gov (United States)

    Liu, Xiaorong; Song, Ruyuan; Zhang, Wei; Qi, Chusheng; Zhang, Shifeng; Li, Jianzhang

    2017-01-01

    This study was to develop novel soy protein isolate-based films for packaging using halloysite nanotubes (HNTs), poly-vinyl alcohol (PVA), and 1,2,3-propanetriol-diglycidyl-ether (PTGE). The structural, crystallinity, opacity, micromorphology, and thermal stability of the resultant SPI/HNTs/PVA/PTGE film were analyzed by the Attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), UV-Vis spectrophotometry, scanning electron microscopy (SEM), and thermo-gravimetric analysis (TGA). The SPI/HNTs/PVA/PTGE film illustrated that HNTs were uniformly dispersed in the SPI matrix and the thermal stability of the film was enhanced. Furthermore, the tensile strength (TS) of the SPI/HNTs/PVA/PTGE film was increased by 329.3% and the elongation at the break (EB) remained unchanged. The water absorption (WA) and the moisture content (MC) were decreased by 5.1% and 10.4%, respectively, compared to the unmodified film. The results highlighted the synergistic effects of SPI, HNTs, PVA, and PTGE on the mechanical properties, water resistance, and thermal stability of SPI films, which showed excellent strength and flexibility. In short, SPI films prepared from HNTs, PVA, and PTGE showed considerable potential as packaging materials. PMID:28281634

  8. Effect of impregnating agent and relative humidity on surface characteristics of sorbents determined by inverse gas chromatography.

    Science.gov (United States)

    Kasperkowiak, M; Kołodziejek, J; Strzemiecka, B; Voelkel, A

    2013-05-03

    Sorbents that potentially can be used for separation of the products of biotechnological conversion of glycerol were examined. Properties of Zeolite 5A, resins: Amberlite, Diaion and their samples impregnated with an aqueous solutions of 1,2,3-propanetriol, 1,3-propanediol, 2,3-butanediol, acetic acid, succinic acid and model fermentation broth were investigated. Because surface properties will probably depend on the ambient humidity the IGC experiments were carried out under different conditions of relative humidity RH=0, 40 and 80%. Activity of the sorbents surface was expressed by the value of the dispersive component of the free surface energy. Inverse gas chromatography was also used to express acid-base properties of materials described by KA and KD parameters. The changes in the activity of investigated sorbents significantly varied depending on the type of impregnating agent. Moreover, the obtained results demonstrate that humidity can strongly influence, in some cases, the dispersive component of the free surface energy and the ability to specific interactions (KA and KD).

  9. Thermal Stabilization study of polyacrylonitrile fiber obtained by extrusion

    Directory of Open Access Journals (Sweden)

    Robson Fleming Ribeiro

    2015-12-01

    Full Text Available A low cost and environmental friendly extrusion process of the Polyacrylonitrile (PAN polymer was viabilized by using the 1,2,3-propanetriol (glycerol as a plasticizer. The characterization of the fibers obtained by this process was the object of study in the present work. The PAN fibers were heat treated in the range of 200 °C to 300 °C, which is the temperature range related to the stabilization/oxidation step. This is a limiting phase during the carbon fiber processing. The characterization of the fibers was made using infrared spectroscopy, thermal analysis and microscopy. TGA revealed that the degradation of the extruded PAN co-VA fibers between 250 °C and 350 °C, corresponded to a 9% weight loss to samples analyzed under oxidizing atmosphere and 18% when the samples were analyzed under inert atmosphere. DSC showed that the exothermic reactions on the extruded PAN co-VA fibers under oxidizing synthetic air was broader and the cyclization started at a lower temperature compared under inert atmosphere. Furthermore, FT-IR analysis correlated with thermal anlysis showed that the stabilization/oxidation process of the extruded PAN fiber were coherent with other works that used PAN fibers obtained by other spinning processes.

  10. Experiments and simulations of NOx formation in the combustion of hydroxylated fuels

    KAUST Repository

    Bohon, Myles

    2015-06-01

    This work investigates the influence of molecular structure in hydroxylated fuels (i.e. fuels with one or more hydroxyl groups), such as alcohols and polyols, on NOx formation. The fuels studied are three lower alcohols (methanol, ethanol, and n-propanol), two diols (1,2-ethanediol and 1,2-propanediol), and one triol (1,2,3-propanetriol); all of which are liquids at room temperature and span a wide range of thermophysical properties. Experimental stack emissions measurements of NO/NO2, CO, and CO2 and flame temperature profiles utilizing a rake of thermocouples were obtained in globally lean, swirling, liquid atomized spray flames inside a refractory-lined combustion chamber as a function of the atomizing air flow rate and swirl number. These experiments show significantly lower NOx formation with increasing fuel oxygen content despite similarities in the flame temperature profiles. By controlling the temperature profiles, the contribution to NOx formation through the thermal mechanism were matched, and variations in the contribution through non-thermal NOx formation pathways are observed. Simulations in a perfectly stirred reactor, at conditions representative of those measured within the combustion region, were conducted as a function of temperature and equivalence ratio. The simulations employed a detailed high temperature chemical kinetic model for NOx formation from hydroxylated fuels developed based on recent alcohol combustion models and extended to include polyol combustion chemistry. These simulations provide a qualitative comparison to the range of temperatures and equivalence ratios observed in complex swirling flows and provide insight into the influence of variations in the fuel decomposition pathways on NOx formation. It is observed that increasing the fuel bound oxygen concentration ultimately reduces the formation of NOx by increasing the proportion of fuel oxidized through formaldehyde, as opposed to acetylene or acetaldehyde

  11. Reactivity of polyfunctional alcohols towards atmospheric radicals in the aqueous solution

    Science.gov (United States)

    Hoffmann, D.; Herrmann, H.

    2009-04-01

    Alcohols such as ethylene glycol, propylene glycol and glycerol are widely used compounds in numerous applications. The oxidation of these compounds can influence the tropospheric oxidation budget as well as contribute significantly to the formation of low volatile organic particle constituents, such as mono- and dicarboxylic acids. Model simulations applying the multiphase chemistry mechanism CAPRAM 3.0i (Chemical Aqueous Phase Radical Mechanism) show that the aqueous phase oxidation of ethylene glycol contribute significantly to the formation of the known particle constituent oxalic acid under remote (up to 1.7%) and urban (up to 9.5%) conditions. Due to their high solubility oxidation processes of polyalcohols will take place mainly in the aqueous solution. Oxidation reactions of alcohols are triggered by reactions with atmospheric radicals such as OH, NO3 and SO4-. However, for the detailed implementation of the tropospheric degradation of alcohols in atmospheric chemistry mechanisms many kinetic data, in particular as a function of the temperature, are still needed. Therefore, the reactivity of 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1,2,3-propanetriol (glycerol), 1,2-butanediol, 1,4-butanediol and 1,5-pentanediol was systematically investigated towards OH, NO3 and SO4- radicals in the aqueous solution. All kinetic measurements were done as a function of the temperature. During these experiments the temperature of the measurement solution was varied between 278 ≤ T [K] ≤ 318. Experiments were carried out using laser flash photolysis technique at a wavelength of 248 nm. Rate constants were measured directly or using competition kinetics in case of OH. The kinetic data and activation parameters obtained will be summarized and discussed with available literature data. Furthermore, the data obtained will be discussed in terms of reactivity correlations and atmospheric relevance. A more detailed implementation of