WorldWideScience.org: Bringing Light to Grey

Brian A. Hitson and Lorrie A. Johnson
Office of Scientific and Technical Information
U.S. Department of Energy

Abstract

WorldWideScience.org and its governance structure, the WorldWideScience Alliance, are putting a brighter spotlight on grey literature. Through this new tool, grey literature is getting broader exposure to audiences all over the world. Improved access to and sharing of research information is the key to accelerating progress and breakthroughs in any field, especially science.

WorldWideScience.org has revolutionized access to “deep” web scientific databases. These nationally- and internationally-sponsored databases are comprised of both grey and conventional literature. Consequently, because grey literature is naturally less familiar (and, hence, less accessible) than conventional literature, it receives a disproportionate benefit in terms of usage through its exposure in WorldWideScience.org.

Before expanding on the mechanics and contents of WorldWideScience vis-à-vis grey literature, it is helpful to characterize what is meant by “grey literature.” The term “Grey Literature” can be defined in several ways. Wikipedia, for example, describes grey literature as “…a body of materials that cannot be found easily through conventional channels such as publishers…” The National Library of Australia provides a slight variation: “…information that is not searchable or accessible through conventional search engines or subject directories and is not generally produced by commercial publishing organizations.” This description goes further to describe electronic grey literature as constituting the “hidden” or “deep” web. Most laypeople, those outside the professional information community, would think of the color “grey” and may be puzzled as to why a color is used to describe literature. To them, the word “grey” likely brings to mind the Webster definition, “an achromatic color between the extremes of black and white.”

Traditionally, “white” has been equated with conventional, published literature, but perhaps to better illustrate the point, it could be useful to reverse the “achromatic” color spectrum in this case. The extreme of “black,” for example, could be thought of as traditional black ink printed on paper. It consists of words that are very clear and easily accessible to everyone, and makes up the conventional literature such as journals, books, and published proceedings. “White,” on the other hand, conveys just the meaning of a blank sheet with no words – simply unrecorded ideas, concepts, and thought. So, then, “grey” is between these two extremes. It includes the kinds of literature that information professionals typically associate with “grey,” such as preprints, technical reports, theses and dissertations. More recently, grey literature also includes emerging forms of
information such as numeric data, multimedia, recorded academic lectures, and Web 2.0-generated information.

Looking back at the National Library of Australia’s definition for a moment, though, it also implies that grey literature comprises the “hidden” or “deep” web. “Grey” is synonymous with “deep” when it comes to the Internet; grey literature, more than any other type, is a body of information that resides in the “deep web” and is not easily found.

To put this concept in context, there is a distinction between the “surface web” and the “deep web.” Generally, major search engines such as Google\(^6\) and Yahoo!\(^7\) are searching web pages on the surface web. These are static web pages that are crawled by Google’s automatic crawler, where every word on a page is stored in Google’s massive index, and the power and sophistication of Google’s systems allows it to return millions of hits in milliseconds.

However, the surface web is not where most scientific literature resides. Instead, it resides in databases that typically have their own search interface, and because the contents of those databases do not sit on a static web page, they are not typically indexed by Google. There are ways for databases to expose their contents for Google’s crawlers, but by and large, most database owners do not do so. Therefore, this information is firmly planted in the “deep web,” only accessible through the database’s own search engine. Most experts estimate that the deep web is hundreds of times larger in terms of content than the surface web. Clearly, this situation calls for a solution, which is offered by WorldWideScience.org.

Unfortunately, the perception among a large percentage of internet users is that if it can not be found by one of the big search engines, it must not exist. So, the first challenge of the deep web is a variation on an old cliché, “what you don’t know can hurt you, or at least it could help you.” For example, if a person with cancer is only searching the surface web to learn about latest clinical trials, she would be missing substantive and possibly helpful information that may reside in key deep web databases. If a scientist wants to explore the latest developments in photovoltaics, he will be missing the most in-depth information if he limits his searches to the surface web. The key challenge here is that most people are unaware of all the rich resources in the deep web.

Making the unrealistic assumption, however, that the world is replete with people who already know about the multitude of deep web databases relevant to their particular field, there is a second key challenge. This challenge is that searching all of these databases individually, one by one, is not physically possible, or at least it will consume precious time needed for actual research and experimentation. Thus, progress will be thwarted.

These challenges can be overcome through the use of federated search technology – essentially becoming a Google or a Yahoo! for the deep web. In a federated search, a single portal is connected to multiple deep web database search engines. A person enters a search query into a single Google-like search box. The query is then sent simultaneously to the many databases that have been previously identified as relevant to
the specialty of the federated search engine. These individual search engines receive the query, perform their own searches, and return results to the federated search engine. The combined results are then ranked using a relevance algorithm (just as Google does) with parameters such as where the query terms appear in the title, how often they appear, and other variables.

A search in a federated search engine is not as fast as Google because live searches of the databases are occurring, but results are generally produced within 30 seconds. Working with other federal science agencies in the United States, the Office of Scientific and Technical Information (OSTI)\(^8\), first introduced federated searching with Science.gov\(^9\), which searches practically all federal science databases.

Building on the successful model of Science.gov, OSTI then used this technology to develop other federated search tools for more niche communities. ScienceAccelerator.gov\(^10\) federates searches of all of OSTI’s web systems. The E-Print Network\(^11\) specializes in federated searches of e-print databases in the U.S. and several other countries. Science Conference Proceedings\(^12\) federates the search of several professional societies’ conference databases. Lastly, the Federal R&D Project Summaries\(^13\) does the same for databases describing ongoing research projects sponsored by the U.S. government.

Science.gov was a major success as a friendlier way to make government-sponsored science information available to the public, and it won significant praise as a “government-to-citizen” model under the President’s e-government agenda. The logical extension of Science.gov as a national federated searching model is that there could be a “Science.world” for a global federated search tool. Nations interested in promoting science globally could allow their individual science databases to be searched by a single portal – something that is not possible with major commercial search engines.

Following the success of Science.gov, Dr. Walter Warnick, OSTI’s Director, introduced the concept of a Science.world before the public conference of the International Council for Scientific and Technical Information (ICSTI)\(^14\) in June 2006. Dr. Warnick invited other national libraries to help OSTI implement the concept. The British Library\(^15\), much to its credit and vision, quickly offered a hand of partnership in this effort. In January 2007, the British Library Chief Executive, Dame Lynne Brindley, and the U.S. Under Secretary for Science in the Department of Energy, Dr. Raymond Orbach, signed a statement of intent to partner in the effort, which also invited other nations to join in this partnership.

Between January and June 2007, several other countries participated in offering their databases to demonstrate that federated search could work on an international level. Recognizing that “dot world” was used to simply draw the analogy to Science.gov, a more descriptive and operable web address was needed, and WorldWideScience.org was chose, with the tag line, “The Global Science Gateway.” The first prototype of WorldWideScience.org was demonstrated at the ICSTI public conference in Nancy, France. At that time, twelve databases from ten counties were represented in the searches.
of WorldWideScience.org. The successful demonstration of the prototype clearly had the desired effect, as it garnered significant press coverage. In a follow-up ICSTI meeting, it was agreed that ICSTI would play a significant role in helping to form a governance structure for WorldWideScience.org. The formation of the WorldWideScience Alliance was formalized in June 2008 at ICSTI’s conference in Seoul. Thirty-eight countries were represented in signing a declaration committing their support to the effort. Completing an international cooperative in a year’s time, including terms of reference and governance language, is a reflection of the goodwill and support that this concept received around the world. The Alliance Executive Board is led by Richard Boulderstone of the British Library, who was elected as the Alliance’s first Chairperson. A diverse mix of officers from North America, Europe, Asia, and Africa make up the remainder of the Board. The leadership of ICSTI was invaluable in providing a platform to promote this concept to national scientific and technical information officials around the world.

Since the first prototype of twelve databases in ten countries, WorldWideScience.org has now grown to 49 databases in 54 countries (as of December 2008). The scientific content represented in these searches comes from countries accounting for over three-fourths of the world’s population. It is estimated, using rough calculations, that these searches cover 375 million pages of science, much of which is obviously grey literature.

Figure 1 WorldWideScience.org

A map of the world (Figure 1) is used to show which countries have databases represented in WorldWideScience.org. At this stage, these are all databases which have some element of national or international sponsorship rather than commercial databases,
such as publisher databases. As indicated by the map, sources are covered from practically all of North and South America, Australia, a significant portion of Europe, and major segments of Asia and Africa. Some countries have multiple sources. Japan, for example, has four major databases from the Japan Science and Technology Agency; India also has four sources. The U.S. source is Science.gov, which is itself a federated search portal of over 30 major databases. In this case, where one federated search engine spawns a search of another federated search engine, it is called nested searching, and it works quite efficiently.

Figure 2 WorldWideScience.org Databases/Portals
To illustrate with some examples, Figure 3 shows a typical first page of search results from WorldWideScience.org. A search on “wind turbines” has been conducted. All 49 sources were successfully searched, and all together, the sources had over 51,000 records matching this exact phrase. WorldWideScience provides, in this case, the top 695 ranked results. There is a trade-off between showing more results versus the speed of the search; so, typically, the search limits any given source to the top 100 results. A user, if interested in seeing all results, can go to the link “summary of all results” and see which sources have more than 100 results. The user could then go directly to that source for a more in-depth search. Relevance is reflected through the stars (1 through 4) that appear beside each result. Two new enhancements were recently added. On the left side, the user is offered clustering to allow for narrowing results into more refined sets. On the right side, a Wikipedia definition, if one exists, is given for the search term. This is particularly useful for users who simply want to become more familiar with a particular field of science.

Figure 3 WorldWideScience.org Search Results
Once the user selects a specific record to view, WorldWideScience.org then takes the user directly to that record within the original database/portal. For example, this record (Figure 4) comes from the Energy Technology Data Exchange (ETDE). ETDEWEB is an international database on energy technology governed by an agreement under the auspices of the International Energy Agency. The agreement is comprised of sixteen member countries, who, along with other partners have built a database of 4 million records. As evident by the record, this is clearly a “grey literature” report emanating from Risoe National Laboratory in Denmark. A link to the full text document in PDF format is provided.

Figure 4 ETDEWEB Record
WorldWideScience.org also searches OpenSIGLE18, the system for information on grey literature in Europe. This record (Figure 5) shows how the user could order the full text document from INIST19, the Alliance member from France.

Figure 5 OpenSIGLE Record

Other examples of records include the sub-element of the Norwegian Open Research Archive20, the Bergen University open research archive (Figure 6). The government of South Africa, through its Council for Scientific and Industrial Research21, was one of the earliest supporters of WorldWideScience.org. Its record (Figure 7) also provides the ability to view full text. Working closely with the Alliance member, the International Network for the Availability of Scientific Publications (INASP)22, a number of on-line journal collections from developing countries are available through WorldWideScience.org. These countries include 24 African nations, Bangladesh, Nepal, Philippines, and Viet Nam. A record from Nepal, again providing a link to the full text, is shown in Figure 8. Finally, the last example (Figure 9) shows a record from the Australian open access ARROW23 system, which covers the repository of over half of all universities in Australia. Again, a thesis is a good example of grey literature, and a link to the full text is provided in this case as well.
Figure 6 NORA Record

Figure 7 CSIR Record
Figure 8 Nepal Journals Online Record

Pesticide residues as environmental contaminants in foods in Nepal
Premal Khadka, Jamdar B. Khadka, Jyoteshwar Malla

Abstract
This paper reviews the occurrence of pesticides in foods in Nepal during 1995-2004. A total of one thousand and thirty four samples of different food commodities were analyzed for detection of organophosphates (OP), BHC and organonitrophenoxide (nitrophenol, para-nitrophenol) pesticides. Among all samples analyzed 11% samples were detected with the residues of pesticides which included Rohoton (3.8%), BHC (3.3%), Methoxychlor (0.8%) and Parathion (0.1%). Commodity-wise detection of pesticide residues through the highest level of contamination in root vegetables (21.8%) followed by leaf vegetables (14.9%). Thereafter, there is a threat of pesticide residues in foods and may endanger to public health. Government efforts to control misuse of pesticides is not sufficient, therefore, the concerned stakeholders have the shared responsibilities to achieve it. There is a good scope of working with appropriate intervention measures in this area for NGOs, INSOCs, academic institution to prevent the pesticide pollution in food.

The Journal of Agriculture and Environment Vol. 8, 2007, pp. 95-100

Figure 9 ARROW Record

Australian Digital Theses Program

Thesis Details
• Title Food for thought: consumer perspectives of the environmental impacts of food choices
• Author Kirrile, Lynda
• Institution University of Wollongong
• Date 2004
• Abstract There is a paucity of information on how consumers perceive environmental risk as impacting on food supply and the relationship of food choices to this risk. Twenty six participants were recruited in the Illawarra region of New South Wales to be involved in this study, which was conducted over a period of eighteen months. A methodology drawing on critical social science theory was used to explore the participants’ understanding of the food system and to document the influence of critical reflection over time on participants’ food choices. This approach differs from surveys of consumer opinions in that, after setting the initial agenda, it allows for the participants’ concerns to become the focus. For health professionals this provides a rich source of information on people’s concerns about the food system and also the priority of these for the individual. Such information is invaluable for the development of collaborative projects that aim to address environmental health risks within the food system from the consumer perspective.
• Thesis 01Front.pdf 62.9 Kb
02Whole.pdf 668.4 Kb
WorldWideScience.org is continuing to grow consistently both in terms of content and usage. On the content front, the most notable recent addition is an English-language journal source from China. The symbolic significance of opening this access to Chinese science cannot be overstated, and the cooperation of the staff at the Institute of Scientific and Technical Information of China was much appreciated.

No one really knows ultimately how many sources exist that would make WorldWideScience.org the most comprehensive gateway to nationally- and internationally-sponsored science research, but at around 100 sources, the speed and efficiency of the search engine may start to degrade. A vast amount of computing is involved in processing so many results from so many sources. One of the challenges WorldWideScience.org faces in the future will be overcoming this scalability issue. Strategies have been defined for overcoming this challenge. At a simpler level, one planned enhancement is to offer an alerts service. A user will be able to create a profile and be alerted when any of the WorldWideScience.org sources has added new materials matching that profile.

Another challenge WorldWideScience.org hopes to address in the future is providing access to non-English sources. A few of the Alliance members have experience in this area, particularly INIST in France. The WorldWideScience.org team will begin exploring modules that will open access to sources that only exist in a native language, such as the Chinese record in Figure 10.

Figure 10 Chinese Language Record
There are also challenges, not just for WorldWideScience.org, but for all in the grey literature community, with emerging formats such as YouTube videos, podcasts, and other audio and visual sources. There has been a proliferation recently of sites offering access to these types of files. For example, there is a small database of video files of academic lectures from the Fermi National Laboratory in the United States (Figure 11), but files such as this are truly in the deep web and are not accessible beyond this interface.

Figure 11 Fermi National Laboratory Video Archive
Beyond sound and video files, there are some fascinating image databases (photographs, drawings, illustrations) that need to be more accessible. This highly-detailed medical illustration (Figure 12) resides in a National Library of Medicine images database, but the terms on the drawing would not be indexed by a major search engine, leaving this significant resource potentially under-utilized by the public and medical communities.

With the prominence of computational sciences, simulation, and the use of measurements in so many fields, numeric data sets are also critical to advancing science. Yet they are hardly integrated at all into traditional textual search engines, let alone in any meaningful federated way across data sets. This, too, is a rich opportunity for expanding and improving access to valuable information.

ICSTI, who provided invaluable leadership for WorldWideScience.org, is sponsoring a number of technical projects that address some of these challenges. In the area of numeric data, TIB-Hannover in Germany is leading a multinational project to demonstrate the integration of access to numeric data sets from within grey literature textual reports.

On the multimedia front, ICSTI is leading a project to demonstrate how indexing of spoken words in audio and video files can result in profoundly improved search precision. Another ICSTI project is exploring how Web 2.0 technology can be used to improve scientific communication.
Conclusion

Through the demonstration of WorldWideScience.org, it is clear that grey is global, and it has benefited from a global solution. Second, grey is growing, both in traditional formats and media but also in emerging forms, which need to be offered the same level and ease of access as textual literature. Finally, grey is good, and must be treated as an essential commodity for progress in all fields, especially science, medicine, and technology.

References

5. http://www.websters-online-dictionary.org/definition/grey
15. http://www.bl.uk/
17. http://etde.org/