Sample records for williston basin implications

  1. Lower Paleozoic oil relationships within Williston Basin, Canada

    Stephen L.Bend; Mauri C.Smith


    The Williston Basin is a significant petroleum province, containing oil production zones that include the Middle Cambrian to Lower Ordovician, Upper Ordovician, Middle Devonian, Upper Devonian and Mississippian and within the Jurassic and Cretaceous. The oils of the Williston Basin exhibit a wide range of geochemical characteristics defined as "oil families", although the geochemical signature of the Cambrian Deadwood Formation and Lower Ordovician Winnipeg reservoired oils does not match any "oil family". Despite their close stratigraphic proximity, it is evident that the oils of the Lower Palaeozoic within the Williston Basin are distinct. This suggests the presence of a new "oil family" within the Williston Basin. Diagnostic geochemical signatures occur in the gasoline range chromatograms, within saturate fraction gas chromatograms and biomarker fingerprints. However, some of the established criteria and cross-plots that are currently used to segregate oils into distinct genetic families within the basin do not always meet with success, particularly when applied to the Lower Palaeozoic oils of the Deadwood and Winnipeg Formation.

  2. Geology and natural gas occurrence, western Williston Basin

    McCrae, R.O.; Swenson, R.E.


    The W. Williston Basin has produced gas since a 1913 discovery at Cedar Creek anticline, but during the past decade nearly all the gas found has been in solution in oil. In a sedimentary rock section averaging 10,000 ft in thickness, about one-third of the material, in approx. the lower half of the section, consists of carbonate and evaporites. The rest of the beds are principally sandstone and shale of shallow-marine deposition. All commercial gas in Paleozoic rocks is in solution in oil. Small gas reserves have been found in fractured siltstones of the Cretaceous Colorado shale at Hardin, and in the Shannon sandstone at Pumpkin Creek. Most of the gas in the W. Williston Basin is in nonassociated accumulations in and adjacent to the Cretaceous Judith River and Eagle formations. The trapping is related partly to folding, but also is at the extreme seaward limits of sandstone tongues. Porosity of less than 10% and low permeability values are characteristic of the reservoirs and fracturing is regarded as important in improving overall permeability of the reservoirs. At Cedar Creek anticline, 6 million cu ft a day of 90% nitrogen gas was treated in a Cambrian sandstone.

  3. Thickness of the upper Fort Union aquifer in the Williston structural basin

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the upper Fort Union aquifer in the Williston structural basin. The data are presented as ASCII text files that can...

  4. Altitude of the top of the basal confining unit in the Williston structural basin

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the basal confining unit in the Williston structural basin. The...

  5. Thickness of the Upper Hell Creek hydrogeologic unit in the Williston structural basin

    U.S. Geological Survey, Department of the Interior — These data represent the thickness, in feet, of the Upper Hell Creek hydrogeologic unit in the Williston structural basin. The data are presented as ASCII text...

  6. Altitude of the top of the upper Fort Union aquifer in the Williston structural basin

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the upper Fort Union aquifer in the Williston structural basin....

  7. Altitude of the top of the Lower Hell Creek aquifer in the Williston structural basin

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the Lower Hell Creek aquifer in the Williston structural basin....

  8. Improved recovery demonstration for Williston Basin carbonates. Final report

    Sippel, M.A.


    The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technology and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.

  9. The geological storage of spent nuclear fuel and depleted uranium beneath the Williston Basin

    Brunskill, B. [Helix Geological Consultants, Regina, SK (Canada)


    In order to prevent or retard the leakage of buried nuclear material into the surrounding rocks, regulatory agencies in Canada and the United States are recommending that spent nuclear fuel eventually be stored in suitable geological repositories with highly-engineered barriers. This presentation discussed the development of a repository somewhere in the Precambrian Shield beneath the Williston Basin in Canada, as well as a repository that was under construction at Yucca Mountain, Nevada, in the United States. Potential storage sites in Canada were provided in an illustration and a figure of the proposed repository development was provided. Other illustrations included a light-water fuel rod and assembly as well as storage containers and drip shield. It was shown that in order to prevent potential migration, it would be highly beneficial if a repository were located where the groundwater surrounding the repository was not vertically mobile. A map of the Williston Basin boundary and a fluid-flow model and alternate model through the Williston Basin were also presented. The primary benefits of developing a deep geological repository were presented. These included a favourable hydrogeological regime which would likely isolate and contain the eventual release of any radioactive material. Other benefits that were discussed included minimal disturbance to the geological media during development; elimination of most underground-related mining construction; and, radiation safety issues. tabs., figs.

  10. Using a novel Mg isotope tracer to investigate the dolomitization of the Red River Formation in the Williston Basin

    Kimmig, S. R.; Holmden, C. E.; Qing, H.


    The Williston Basin is a sub-circular intracratonic basin spanning central North America with its center in NW North Dakota. The Late Ordovician Red River Formation is an economically viable unit in the Williston Basin containing large hydrocarbon reserves in Saskatchewan, North Dakota, Manitoba, and Montana. Red River dolomitization contributed to the reservoir-quality porosity and permeability observed today with three types of dolomite (burrow, matrix, and saddle) possibly representing three events. Dolomitization is widely believed to have resulted from downward percolating brines, due to the stratigraphically close association between dolomite deposits and overlying basin-scale evaporites. However, in contrast, Sr isotope evidence suggests an upward fluid migration in the basin. Spatial variation of Mg isotopes (δ26Mg) may serve as a direct tracer of dolomitizing fluid flow. Dolomite sequesters light isotopes of Mg from dolomitizing fluids, therefore, the fluid will evolve with time and distance to heavier δ26Mg values. Accordingly, the δ26Mg values of the Red River dolomite should increase in the direction of fluid flow. We test this hypothesis on Red River burrow dolomite from the Williston Basin; the first event most often attributed to downward infiltration of brines. Burrow δ26Mg values range between -1.89‰ and -1.31‰. Using contouring software, the data are shown to form a pattern of increasing δ26Mg values out from the center of the Williston Basin, indicating an up-dip migration of dolomitizing fluids through the burrow network, rather than down-dip as suggested by the brine reflux model. We conclude that dolomitization of the Red River carbonate is not tied to the spatial and temporal history of evaporite deposition in the Williston Basin, but rather to the thermal history of the basin, suggesting dolomitization likely occurred during a late Paleozoic heating event that drove Mg-rich connate waters ponded in the center of the basin upwards

  11. Examination of brine contamination risk to aquatic resources from petroleum development in the Williston Basin

    Gleason, Robert A.; Thamke, Joanna N.; Smith, Bruce D.; Tangen, Brian A.; Chesley-Preston, Tara; Preston, Todd M.


    U.S. Geological Survey scientists and cooperating partners are examining the potential risk to aquatic resources (for example, wetlands, streams) by contamination from saline waters (brine) produced by petroleum development in the Williston Basin of Montana, North Dakota, and South Dakota. The primary goals of this study are to provide a science-based approach to assess potential risk of brine contamination to aquatic systems and to help focus limited monitoring and mitigation resources on the areas of greatest need. These goals will be accomplished through field investigations that quantify brine movement and risk assessments using remotely-sensed and other spatial datasets.

  12. Assessment of Undiscovered Oil and Gas Resources of the Williston Basin Province of North Dakota, Montana, and South Dakota, 2008

    Anna, Lawrence O.; Pollastro, Richard M.; Gaswirth, Stephanie B.; Lewan, Michael D.; Lillis, Paul G.; Roberts, Laura N.R.; Schenk, Christopher J.; Charpentier, Ronald R.; Cook, Troy A.; Klett, Timothy R.


    Using a geology-based assessment method, the U.S. Geological Survey estimated mean undiscovered volumes of 3.8 billion barrels of undiscovered oil, 3.7 trillion cubic feet of associated/dissolved natural gas, and 0.2 billion barrels of undiscovered natural gas liquids in the Williston Basin Province, North Dakota, Montana, and South Dakota.

  13. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA.

    Preston, Todd M; Kim, Kevin


    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000-2015) development, the area and previous land cover of all well pads (pads) constructed during this time were determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121ha has likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and-gas wells (i.e. stratigraphic test wells, water wells, and injection wells), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin. PMID:27318516

  14. Improved recovery demonstration for Williston Basin carbonates. Annual report, June 10, 1995--June 9, 1996

    Carrell, L.A.; Sippel, M.A.


    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

  15. Paleohydrogeology of the Cretaceous sediments of the Williston Basin using stable isotopes of water

    Hendry, M. Jim; Barbour, S. L.; Novakowski, K.; Wassenaar, L. I.


    Hydraulic and isotopic data collected from aquifers are routinely used to characterize hydrogeological conditions within sedimentary basins, but similar data from confining units are generally not collected despite their ability to provide insights on important water/solute transport controls. We characterized paleogroundwater flow and solute transport mechanisms across 384 m of Cretaceous shale (aquitard) in the Williston Basin, Canada, using high-resolution depth profiles of water isotopes (δ18O, δ2H). Water samples were also collected from wells installed in the underlying regional sandy aquifer (Mannville Fm; 93 m thick) and from seepage inflows into potash mine shafts (to 825 m below ground). The 1-D numerical transport modeling of δ18O profiles provided insight into large-scale/long-term solute transport in both Cretaceous sediments and the basin. Despite the potential for significant advective migration during glaciations, molecular diffusion appears to be the dominant solute transport mechanism through the aquitard. Simulations suggest average vertical groundwater velocities of <0.05 m/10 ka and an average excess hydraulic head of <10 m; these values are much less than anticipated by successive glaciations. The dominant paleoevent reflected in present-day profiles is introduction during the Pleistocene of glaciogenic meteoric water to the aquifer underlying the shale, likely along an aquifer outcrop area east of the site or through local vertical conduits. Simulations suggest these recharge events occurred during one or more glacial periods. The isotopic profile over the upper 25 m of Pleistocene till and shale is consistent with glacial deposition and transport processes within these units over the Holocene (past 10 ka).

  16. Palaeo-hydrogeology of the Cretaceous Sediments of the Williston Basin using Stable Isotopes of Water

    Hendry, Michael J.; Barbour, S. Lee; Novakowski, Kent; Wassenaar, Len I.


    Hydraulic and isotopic data collected from aquifers are typically used to characterize hydrogeological conditions within sedimentary basins. Similar data from confining units are generally not collected despite their ability to provide insights into important water/solute transport controls. In this study, we characterized palaeo-groundwater flow and solute transport mechanisms across 384 m of a Cretaceous shale aquitard in the Williston Basin, Canada, using high-resolution depth profiles of water isotopes (δ18O and δ2H). Water samples were also collected from wells installed in the underlying regional aquifer (Mannville Fm; 93 m thick) and from seepage inflows into potash mine shafts (to 825 m below ground). 1-D numerical transport modeling of isotopic profiles yielded insight into large-scale/long-term solute transport in both Cretaceous sediments and the Basin. Molecular diffusion was determined to be the dominant solute transport mechanism through the aquitard. Transport model simulations suggest average vertical groundwater velocities of <0.05 m/10 ka and an average excess hydraulic head of <10 m. These values are less than anticipated by successive glaciations. The dominant palaeo-event reflected in present-day profiles is introduction during the Pleistocene of glaciogenic meteoric water to the aquifer underlying the aquitard, likely along an aquifer outcrop area east of the site or through local vertical conduits in the aquitard. Simulations suggest these recharge events occurred during one or more glacial periods. The isotopic profile over the upper 25 m of Pleistocene till and shale is consistent with glacial deposition and transport processes within these units during the Holocene (past 10 ka).

  17. Altitude of the top of the middle Fort Union hydrogeologic unit in the Williston structural basin

    U.S. Geological Survey, Department of the Interior — These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the middle Fort Union hydrogeologic unit in the Williston...

  18. Reservoir characterization of the Mississippian Ratcliffe, Richland County, Montana, Williston Basin. Topical report, September 1997

    Sippel, M.; Luff, K.D.; Hendricks, M.L.


    This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout the cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.

  19. Long-term solute transport through thick Cretaceous shale in the Williston Basin Canada using naturally-occurring tracer profiles

    Document available in abstract form only. The hydrogeologic evolution of sedimentary basins is generally determined from hydraulic and chemical data collected from aquifers. Hydraulic and chemical data from aquitards, which constitute a much greater volume of basins than aquifers and provide important controls on water and solute transport in the basins, are generally not collected nor studied. In this study we characterized the paleo-groundwater flow and solute transport controls through a vertical section of Cretaceous sediments in the Williston Basin, Canada located near Esterhazy, Saskatchewan. It consists of 384 m of thick argillaceous sediment (aquitard) overlying 93 m of heterogeneous calcareous silt, shale and sandstone (Mannville Fm.; aquifer). Paleo-hydrologic conditions were determined by interpreting high-resolution depth profiles of natural tracers of water isotopes (δ18O and (δ2H) and Cl- measured on (1) continuous core samples through the aquitard, upper aquifer, and thin Quaternary sediments, (2) water samples collected from monitoring wells installed in the aquifer and the Quaternary sediments, and (3) water samples collected from mine shaft inflows to 900 m below ground. 1D numerical transport modeling reproduced the measured profiles and yielded valuable information on the large-scale and long-term transport behavior in both the Cretaceous aquitard and the Basin. In the modeling, the shapes of the tracer profiles was explained by diffusion with paleo-events identified from the modeling including the introduction of fresher water into the aquifer possibly from the onset of glaciation (activation of the lower boundary) about 1 Ma ago and the impact of the most recent deglaciation about 10 ka ago (activation of the upper boundary). These findings show that the hydrogeologic conditions in deep, extensive basins, such as the Williston Basin, cannot be assumed to be static over geologic time. (authors)

  20. Geochemical analysis and familial association of Red River and Winnipeg reservoired oils of the Williston Basin, Canada

    Smith, M.; Bend, S. [Regina Univ., Saskatchewan (Canada). Dept. of Geology


    Light oils reservoired in the Lower Ordovician Winnipeg Formation, Williston Basin, have a unique geochemical signature separating them from previously recognized oil families, most importantly they are geochemically distinct from the stratigraphically adjacent Upper Ordovician Red River Formation oils. Winnipeg oils are characterized in the gasoline fraction by very high paraffin indices (4-16) and variations in C{sub 7} parameters. The saturate fraction is distinguished by a high abundance of C{sub 20+} n-alkanes, low carbon preference index and low amounts of pristane and phytane. Sterane biomarkers show a predominance of C{sub 27}>C{sub 28}{approx}C{sub 29} suggesting an algal source different from that contributing to Red River oils. In addition, the terpane biomarkers of Winnipeg oils show a high abundance of rearranged hopanes including an unknown C{sub 30} compound labelled UC30 and 17{alpha} (H) C{sub 30}-diahopanes (C*{sub 30}), Moreover, these oils have unambiguous amounts of 18{alpha} (H)-30-norneohopanes (C{sub 29}Ts) which are in low abundance in Red River Formation oils. Geochemical analysis of Lower Ordovician Winnipeg Formation reservoired oils from the Williston Basin suggests that an additional hydrocarbon source, not yet defined, may exist. (Author)

  1. Assessment of Undiscovered Technically Recoverable Oil and Gas Resources of the Bakken Formation, Williston Basin, Montana and North Dakota, 2008

    Pollastro, R.M.; Roberts, L.N.R.; Cook, T.A.; Lewan, M.D.


    The U.S. Geological Survey (USGS) has completed an assessment of the undiscovered oil and associated gas resources of the Upper Devonian to Lower Mississippian Bakken Formation in the U.S. portion of the Williston Basin of Montana and North Dakota and within the Williston Basin Province. The assessment is based on geologic elements of a total petroleum system (TPS), which include (1) source-rock distribution, thickness, organic richness, maturation, petroleum generation, and migration; (2) reservoir-rock type (conventional or continuous), distribution, and quality; and (3) character of traps and time of formation with respect to petroleum generation and migration. Framework studies in stratigraphy and structural geology and modeling of petroleum geochemistry, combined with historical exploration and production analyses, were used to estimate the undiscovered, technically recoverable oil resource of the Bakken Formation. Using this framework, the USGS defined a Bakken-Lodgepole TPS and seven assessment units (AU) within the system. For the Bakken Formation, the undiscovered oil and associated gas resources were quantitatively estimated for six of these AUs.

  2. Presence and abundance of non-native plant species associated with recent energy development in the Williston Basin

    Preston, Todd M.


    The Williston Basin, located in the Northern Great Plains, is experiencing rapid energy development with North Dakota and Montana being the epicenter of current and projected development in the USA. The average single-bore well pad is 5 acres with an estimated 58,485 wells in North Dakota alone. This landscape-level disturbance may provide a pathway for the establishment of non-native plants. To evaluate potential influences of energy development on the presence and abundance of non-native species, vegetation surveys were conducted at 30 oil well sites (14 ten-year-old and 16 five-year-old wells) and 14 control sites in native prairie environments across the Williston Basin. Non-native species richness and cover were recorded in four quadrats, located at equal distances, along four transects for a total of 16 quadrats per site. Non-natives were recorded at all 44 sites and ranged from 5 to 13 species, 7 to 15 species, and 2 to 8 species at the 10-year, 5-year, and control sites, respectively. Respective non-native cover ranged from 1 to 69, 16 to 76, and 2 to 82 %. Total, forb, and graminoid non-native species richness and non-native forb cover were significantly greater at oil well sites compared to control sites. At oil well sites, non-native species richness and forb cover were significantly greater adjacent to the well pads and decreased with distance to values similar to control sites. Finally, non-native species whose presence and/or abundance were significantly greater at oil well sites relative to control sites were identified to aid management efforts.


    Hamling, John; Klapperich, Ryan; Stepan, Daniel; Sorensen, James; Pekot, Lawrence; Peck, Wesley; Jacobson, Lonny; Bosshart, Nicholas; Hurley, John; Wilson, William; Kurz, Marc; Burnison, Shaughn; Salako, Olarinre; Musich, Mark; Botnen, Barry; Kalenze, Nicholas; Ayash, Scott; Ge, Jun; Jiang, Tao; Dalkhaa, Chantsalmaa; Oster, Benjamin; Peterson, Kyle; Feole, Ian; Gorecki, Charles; Steadman, Edward


    The Energy & Environmental Research Center (EERC) successfully completed all technical work of Phase I, including development of a field implementation plan (FIP) for a brine extraction and storage test (BEST) in the North Dakota portion of the Williston Basin. This implementation plan was commissioned by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) as a proxy for managing formation pressure plumes and measuring/monitoring the movement of differential pressure and CO2 plumes in the subsurface for future saline CO2 storage projects. BEST comprises the demonstration and validation of active reservoir management (ARM) strategies and extracted brine treatment technologies. Two prospective commercial brine injection sites were evaluated for BEST to satisfy DOE’s goals. Ultimately, an active saltwater disposal (SWD) site, Johnsons Corner, was selected because it possesses an ideal combination of key factors making it uniquely suited to host BEST. This site is located in western North Dakota and operated by Nuverra Environmental Solutions (Nuverra), a national leader in brine handling, treatment, and injection. An integrated management approach was used to incorporate local and regional geologic characterization activities with geologic and simulation models, inform a monitoring, verification, and accounting (MVA) plan, and to conduct a risk assessment. This approach was used to design a FIP for an ARM schema and an extracted brine treatment technology test bed facility. The FIP leverages an existing pressure plume generated by two commercial SWD wells. These wells, in conjunction with a new brine extraction well, will be used to conduct the ARM schema. Results of these tests will be quantified based on their impact on the performance of the existing SWD wells and the surrounding reservoir system. Extracted brine will be injected into an underlying deep saline formation through a new injection well. The locations of proposed

  4. Comparing vertical profiles of natural tracers in the Williston Basin to estimate the onset of deep aquifer activation

    Hendry, M. Jim; Harrington, Glenn A.


    Comparing high-resolution depth profiles of different naturally occurring environmental tracers in aquitards should yield consistent and perhaps complementary information about solute transport mechanisms and the timing of major hydrogeological and climatological events. This study evaluated whether deep, continuous profiles of aquitard pore water chloride concentration could provide further insight into the paleohydrology of the Williston Basin, Canada, than possible using high-resolution depth profiles of stable H/O isotopes of water (δ18O, δ2H). Pore water samples were obtained from extracts of cores taken over 392 m of the thick Cretaceous shale aquitard. Water samples were also collected from wells installed in the underlying regional sandy aquifer (Mannville Group; 93 m thick) and from seepage inflows into potash mine shafts (to 825 m below ground). Numerical modeling of the 1-D vertical Cl- profile supported diffusion dominated solute transport in the shales. The modeling also showed a similar time frame for development of the Cl- profile prior to activation of the aquifer as determined from the δ18O profile (20-25 Ma); however, it provided a significantly longer and potentially better-constrained time frame for evolution of the profile during the activation phase of the aquifer (0.5-1 Ma). The dominant paleoevent reflected in present-day profiles of both tracers is the introduction of glaciogenic meteoric water to the Mannville aquifer underlying the shale during the Pleistocene. The source area of this water remains to be determined.

  5. Reservoir characterization of the Ordovician Red River Formation in southwest Williston Basin Bowman County, ND and Harding County, SD

    Sippel, M.A.; Luff, K.D.; Hendricks, M.L.; Eby, D.E.


    This topical report is a compilation of characterizations by different disciplines of the Red River Formation in the southwest portion of the Williston Basin and the oil reservoirs which it contains in an area which straddles the state line between North Dakota and South Dakota. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity, and methods for improved recovery. The report is divided by discipline into five major sections: (1) geology, (2) petrography-petrophysical, (3) engineering, (4) case studies and (5) geophysical. Interwoven in these sections are results from demonstration wells which were drilled or selected for special testing to evaluate important concepts for field development and enhanced recovery. The Red River study area has been successfully explored with two-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) and has been investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Targeted drilling from predictions using 3D seismic for porosity development were successful in developing significant reserves at close distances to old wells. Short-lateral and horizontal drilling technologies were tested for improved completion efficiency. Lateral completions should improve economics for both primary and secondary recovery where low permeability is a problem and higher density drilling is limited by drilling cost. Low water injectivity and widely spaced wells have restricted the application of waterflooding in the past. Water injection tests were performed in both a vertical and a horizontal well. Data from these tests were used to predict long-term injection and oil recovery.

  6. Input-form data for the U.S. Geological Survey assessment of the Devonian and Mississippian Bakken and Devonian Three Forks Formations of the U.S. Williston Basin Province, 2013

    U.S. Geological Survey Bakken-Three Forks Assessment Team; Gaswirth, Stephanie B.; Marra, Kristen R.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Higley, Debra K.; Klett, Timothy R.; Lewan, Michael D.; Lillis, Paul G.; Schenk, Christopher J.; Tennyson, Marilyn E.; Whidden, Katherine J.


    In 2013, the U.S. Geological Survey assessed the technically recoverable oil and gas resources of the Bakken and Three Forks Formations of the U.S. portion of the Williston Basin. The Bakken and Three Forks Formations were assessed as continuous and hypothetical conventional oil accumulations using a methodology similar to that used in the assessment of other continuous- and conventional-type assessment units throughout the United States. The purpose of this report is to provide supplemental documentation and information used in the Bakken-Three Forks assessment.

  7. Magnetostratigraphy of the Lowermost Paleocene Fort Union Formation in the Williston Basin of North Dakota: Base of a Terrestrial Reference Section for Early Cenozoic Global Change

    Peppe, D. J.; Evans, D. D.


    Within the North Dakota Little Missouri Badlands, a continuous succession of Cretaceous through lowermost Eocene age sediments exposes a nearly complete terrestrial Paleocene record. Using the K-T boundary as the basal datum, a ca.180 meter composite section of the lowermost Fort Union Formation has been constructed. Paleomagnetic samples that have been analyzed from this section demonstrate a series of geomagnetic reversals that can be correlated from C29r through C28n of the Geomagnetic Polarity Time Scale. Based on these paleomagnetic data, the mean sedimentation rates during the interval from the K-T boundary to the top of 28r are estimated to be ca. 100 m/Myr. These data have allowed us to calibrate the two tongues of the marine Cannonball Member to within C29n and C28r respectively, and identify a major change in the composition and dominant taxa in the megafloral record near the end of C28r. One potential implication of this result, pending further data analysis and correlations to fossil-bearing sections, is the temporal restriction of the Puercan-Torrejonian 1 North American Land Mammal "Ages" (NALMAs) by nearly a factor of two relative to previous estimates (i.e. from ca. 2 Myr to ca. 1 Myr). This would in turn suggest that post-extinction mammal speciation occurred twice as fast as previously supposed. The ultimate aim of this research is to develop a high-precision chronostratigraphic reference section for the Paleocene of the Rocky Mountain Region of North America using lithostratigraphy, magnetostratigraphy, pollen and megafloral biostratigraphy, chemostratigraphy, and chronostratigraphy, that can be used to determine the temporal extent of floral and faunal radiation after the Cretaceous-Paleogene extinctions, and to assess patterns of floral and faunal diversity and composition in response to numerous climatic changes. Furthermore, we hope to use this chronostratigraphic section for comparisons with contemporaneous sections worldwide, which will

  8. Geologic framework for the national assessment of carbon dioxide storage resources: Williston Basin, Central Montana Basins, and Montana Thrust Belt study areas: Chapter J in Geologic framework for the national assessment of carbon dioxide storage resources

    Buursink, Marc L.; Merrill, Matthew D.; Craddock, William H.; Roberts-Ashby, Tina L.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.


    The 2007 Energy Independence and Security Act directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows that of previous USGS work. This methodology is non-economic and is intended to be used at regional to sub-basinal scales.

  9. Avalonian crustal controls on basin evolution: implications for the Mesozoic basins of the southern North Sea

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd


    Little is known of the Southern North Sea Basin's (SNSB) Pre-Permian basement due to a lack of outcrop and cores. The nature and structure of the East Avalonian crust and lithosphere remain even less constrained in the absence of deep seismic (refraction) lines. However, various studies have hinted at the importance of the Reactivation of the Early Carboniferous fault network during each consecutive Mesozoic and Cenozoic tectonic phase, demonstrating the key role of weak zones from the Early Carboniferous structural grain in partitioning of structural deformation and vertical basin motions at various scales. Although the older basin history and the basement attract increasing attention, the Pre-Permian tectonics of the SNSB remains little studied with most attention focused on the Permian and younger history. The strong dispersal of existing constraints requires a comprehensive study from Denmark to the UK, i.e. the East Avalonian microplate, bordered by the Variscan Rheïc suture, the Atlantic and Baltica. Based on an extensive literature study and the reinterpretation of publicly available data, linking constraints from the crust and mantle to stratigraphic-sedimentological information, we complement the map of Early Carboniferous rifting of East Avalonia and propose a new tectonic scenario. From the reinterpretation of the boundary between Avalonia and Baltica we propose a new outline for the Avalonian microplate with implications for the tectonics of the North German Basin. Furthermore, we highlight the nature and extent of the major crustal/lithospheric domains with contrasting structural behaviour and the major boundaries that separate them. Results shed light on the effects of long lived differences in crustal fabric that are responsible for spatial heterogeneity in stress and strain magnitudes and zonations of fracturing, burial history and temperature history. The geomechanical control of large crustal-scale fault structures will provide the constraints

  10. Implication of drainage basin parameters of a tropical river basin of South India

    Babu, K. J.; Sreekumar, S.; Aslam, Arish


    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  11. Provenance and sediment dispersal of the Triassic Yanchang Formation, southwest Ordos Basin, China, and its implications

    Xie, Xiangyang


    The Ordos Basin in north central China records a transition from marine to non-marine deposition during the late Paleozoic to early Mesozoic. As a result, the northern and southern regions of the Ordos Basin show different tectonic histories and very distinctive sedimentation styles. Two deformation belts, the Qinling orogenic belt to the south and the Liupanshan thrust and fold belt to the west, controlled the structural evolution of the southern Ordos Basin during the early Mesozoic. Paleocurrent analysis, net-sand ratio maps, sandstone modal analysis, and U-Pb detrital zircon geochronology were used to document sediment sources and dispersal patterns of the Triassic Yanchang Formation in the southwest Ordos Basin. Paleocurrent measurements suggest that the sediments were mainly derived from the Liupanshan and the Qinling orogenic belts. Net-sand ratio maps show that several fan delta systems controlled sediment delivery in the south Ordos Basin. Both sandstone modal analysis and U-Pb detrital zircon geochronology suggest that the Yanchang Formation is locally sourced from both of the basin marginal deformation belts; the lower and middle sections are recycled Paleozoic sedimentary rocks mainly derived from the north Qinling orogenic belt, whereas for the upper section, the Qilian-Qaidam terranes and possibly the west Qinling orogenic belt began to shed sediments into the southwest Ordos Basin. Results have important implications for basin marginal tectonics and its controls on sedimentation of intracratonic basins in China and similar settings.

  12. New aerogeophysical study of the Eurasia Basin and Lomonosov Ridge: Implications for basin development

    Brozena, J.M.; Childers, V.A.; Lawver, L.A.;


    In 1998 and 1999, new aerogeophysical surveys of the Arctic Ocean's Eurasia Basin produced the first collocated gravity and magnetic measurements over the western half of the basin. These data increase the density and extend the coverage of the U.S. Navy acromagnetic data from the 1970s. The new...... Norwegian-Greenland Sea. With the opening of the Labrador Sea, Greenland began similar to200 km of northward movement relative to North America and eventually collided with Svalbard, Ellesmere Island, and the nascent Eurasia ocean basin. Both gravity and magnetic data sets reconstructed to times prior to...


    Each year about 1.6 million metric tons of nitrogen, mostly from agriculture, is discharged from the lower Mississippi/Atchafalaya River Basin into the Gulf of Mexico, and each spring this excess nitrogen fuels the formation of a huge hypoxic zone in the Gulf. In the Mississippi...

  14. Stratigraphy of the Caloris Basin, Mercury: Implications for Volcanic History and Basin Impact Melt

    Ernst, Carolyn M.; Denevi, Brett W.; Barnouin, Olivier S.; Klimczak, Christian; Chabot, Nancy L.; Head, James W.; Murchie, Scott L.; Neumann, Gregory A.; Prockter, Louis M.; Robinson, Mark S.; Solomon, Sean C.; Watters, Thomas R.


    Caloris basin, Mercury's youngest large impact basin, is filled by volcanic plains that are spectrally distinct from surrounding material. Post-plains impact craters of a variety of sizes populate the basin interior, and the spectra of the material they have excavated enable the thickness of the volcanic fill to be estimated and reveal the nature of the subsurface. The thickness of the interior volcanic plains is consistently at least 2.5 km, reaching 3.5 km in places, with thinner fill toward the edge of the basin. No systematic variations in fill thickness are observed with long-wavelength topography or azimuth. The lack of correlation between plains thickness and variations in elevation at large horizontal scales within the basin indicates that plains emplacement must have predated most, if not all, of the changes in long-wavelength topography that affected the basin. There are no embayed or unambiguously buried (ghost) craters with diameters greater than 10 km in the Caloris interior plains. The absence of such ghost craters indicates that one or more of the following scenarios must hold: the plains are sufficiently thick to have buried all evidence of craters that formed between the Caloris impact event and the emplacement of the plains; the plains were emplaced soon after basin formation; or the complex tectonic deformation of the basin interior has disguised wrinkle-ridge rings localized by buried craters. That low-reflectance material (LRM) was exposed by every impact that penetrated through the surface volcanic plains provides a means to explore near-surface stratigraphy. If all occurrences of LRM are derived from a single layer, the subsurface LRM deposit is at least 7.5-8.5 km thick and its top likely once made up the Caloris basin floor. The Caloris-forming impact would have generated a layer of impact melt 3-15 km thick; such a layer could account for the entire thickness of LRM. This material would have been derived from a combination of lower crust

  15. Geochemical characterization of Parana Basin volcanic rocks: petrogenetic implications

    A detailed study of the geochemical characteristics of Parana Basin volcanic rocks is presented. The results are based on the analyses of major and trace elements of 158 samples. Ninety three of these volcanic samples belong to 8 flow sequences from Rio Grande do Sul and Santa Catarina States. The remaining sixty five samples are distributed over the entire basin. In order to study the influence of crustal contamination processes in changing chemical characteristics of the volcanic rocks, 47 samples representative of the crystalline basement of the southern and southeastern Parana Basin were also analysed. Several petrogenetic models were tested to explain the compocional variability of the volcanic rocks, in particular those of southern region. The results obtained sugest an assimilation-fractional crystallization process as viable to explain the differences of both the chemical characteristics and Sr isotope initial ratios observed in basic and intermediate rocks. A model involving melting processes of basic material, trapped at the base of the crust, with composition similar to low and high TiO2 basalts appears to be a possibility to originate the Palmas and Chapeco acid melts, respectively. The study of ''uncontaminated'' or poorly contaminated low TiO2 basic rocks from the southern, central and northern regions shows the existence of significant differences in the geochemical charactetistics according to their geographical occurrence. A similar geochemical diversity is also observed in high TiO2 basalts and Chapeco volcanics. Differences in incompatible element ratios between low and high TiO2 ''uncontaminated'' or poorly contaminated basalts suggest that they could have been produced by different degrees of melting in a garnet peridotite source. Geochemical and isotopic (Sr and Nd) data also support the view that basalts from northern and southern regions of Parana Basin originated from mantle source with different composition. (author)

  16. Meso-Cenozoic thermal-rheological evolution in Jiyang sub-basin, Bohai Bay Basin and its implication for basin extension revealed by numerical modelling

    Li, Lu; Qiu, Nansheng; Xu, Wei


    Jiyang sub-basin is an oil-rich depression located in the southeast of Bohai Bay Basin, which is one of the most important hydrocarbon area in east of China. The thermal-rheological structure of the lithosphere can explain the dynamics evolution processes of basins, continental margins and orogenic belts, which directly reflects the characteristics of the lithosphere geodynamics. Nevertheless it is poorly to understand the evolution of lithospheric thermal-rheological structure in Jiyang sub-basin and its implication for basin extension. In this study, two dimensional numerical modelling is applied to calculate the paleo-temperature field and the thermo-lithospheric structure, which are used to estimate the evolution of lithospheric thermal-rheological structure. The results of study show that in Mesozoic the lithosphere was of relative rigidity and stable, as featured by large thickness and strength whereas after late Cretaceous the lithospheric strength decreased rapidly. The analysis of thermal-rheological properties shows that the lithospheric thermo-lithospheric structure is sandwiched-like with two ductile layers and two brittle layers. The upper crust is usually brittle. The brittle layers appear at outer 20km of the crust, below 20km ductile deformation predominates. There is also a 10km brittle layer on the top of the upper mantle. The integrated lithospheric yield strength is about 1.3-4.5×1012N/m, showing a weak lithosphere which may support the idea that the extension achieved by the ductile flow below the brittle layers. Keywords: lithospheric thermal-rheological structure; Jiyang sub-basin; Numerical modeling

  17. Structural investigations of Great Basin geothermal fields: Applications and implications

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)


    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  18. Williston Reservoir: Site preparation and post-flood cleanup

    Williston Reservoir is the second largest in Canada and ranks ninth on the world scale. It was formed by the construction of the W.A.C. Bennet Dam and is the most important hydroelectric storage reservoir and largest body of fresh water in British Columbia. Site preparation for the reservoir began in 1962, with pre-flood clearing involving salvage of merchantable timber, handfalling, machine downing, burning of slash and burial. Post-flood cleanup included timber salvage, bailing and burning debris, tractor piling and burning, crane piling in shallows, underwater cutting, and hand cutting during low drawdown. Various types of floating debris have presented problems for recreational use, log booming and transport, waterways and aviation. Protection of the spillway is accomplished with a floating boom upstream of the channel. Administration, funding, forest clearance, salvage methods, clearing standards, wood volumes, project costs, environmental concerns, and future priorities are discussed. 5 figs., 2 tabs

  19. Compaction of siliceous sediments : Implications for basin modeling and seismic interpretation


    This thesis entitled “Compaction of siliceous sediments – Implications for basin modeling and seismic interpretation” has been submitted to the Department of Geosciences at the University of Oslo in agreement with the requirements for the degree of Philosophiae Doctor (Ph.D.) The work presented in this study was completed as part of a large research project funded by The Research Council of Norway within the PETROMAKS program (Program for Optimal Management of Petroleum Resources) entitled “P...

  20. Irrigation efficiency and water-policy implications for river-basin resilience

    C. A. Scott


    Full Text Available Rising demand for food, fiber, and biofuels drives expanding irrigation withdrawals from surface- and groundwater. Irrigation efficiency and water savings have become watchwords in response to climate-induced hydrological variability, increasing freshwater demand for other uses including ecosystem water needs, and low economic productivity of irrigation compared to most other uses. We identify three classes of unintended consequences, presented here as paradoxes. Ever-tighter cycling of water has been shown to increase resource use, an example of the efficiency paradox. In the absence of effective policy to constrain irrigated-area expansion using "saved water", efficiency can aggravate scarcity, deteriorate resource quality, and impair river-basin resilience through loss of flexibility and redundancy. Water scarcity and salinity effects in the lower reaches of basins (symptomatic of the scale paradox may partly be offset over the short-term through groundwater pumping or increasing surface water storage capacity. However, declining ecological flows and increasing salinity have important implications for riparian and estuarine ecosystems and for non-irrigation human uses of water including urban supply and energy generation, examples of the sectoral paradox. This paper briefly examines policy frameworks in three regional contexts with broadly similar climatic and water-resource conditions – central Chile, southwestern US, and south-central Spain – where irrigation efficiency directly influences basin resilience. The comparison leads to more generic insights on water policy in relation to irrigation efficiency and emerging or overdue needs for environmental protection.

  1. The Jianchuan Basin, Yunnan: Implications on the Evolution of SE Tibet During the Eocene

    Gourbet, L.; Mahéo, G.; Leloup, P. H.; Jean-Louis, P.; Sorrel, P.; Eymard, I.; Antoine, P. O.; Sterb, M.; Wang, G.; Cao, K.; Chevalier, M. L.; Lu, H.


    The Jianchuan basin, Yunnan Province, China, is the widest continental Cenozoic sedimentary basin in the southeastern Tibetan plateau. It is located ~10 km east of the Red River fault zone. Climatic simulations and palaeoenvironment studies suggest that SE Asia has experienced a variable intensity monsoon system for 40 Ma. Because sediments can record deformation, climate and environment changes, the Jianchuan basin provides the opportunity to assess the relative role of climate and tectonics on the Tibetan plateau formation. Sediments consist of floodplain siltites, massive fluvial sandstone, few carbonate levels, coal and volcanosedimentary deposits. U/Pb dating of zircons from dykes, volcanodetrital deposits and lava flows respectively cutting and interbedded within the sediments was performed by in-situ LA-ICPMS. All ages range from 38 to 35 Ma. Such absolute dating is confirmed by palaeontological evidence. Dental remains of Zaisanamynodonwere found in coal deposits. This giant Rhino lived in Asia during the Ergilian (late Eocene). Our data allow us to propose a revised stratigraphy for the Jianchuan basin: contrary to what was suggested by previous studies, i.e. a continuous sedimentation from the Paleocene to the Miocene, nearly no sedimentation occurred after 34 Ma. Combined with a sedimentological analysis, the data indicate that during the late Eocene, the Jianchuan area was covered by a large (>15 km) braided river system that coexisted with local transient lakes, in a moderate-slope and semi-arid environment. This major sedimentation event was followed by a period of more humid conditions that may be related to an intensification of the monsoon. The end of the sedimentation seems to be contemporaneous with the Ailao Shan-Red River fault activation. The new stratigraphy has also implications for regional studies that need robust age constraints, for example for reconstructing palaeoelevation or provenance of sediments.

  2. Finding the boundary between evolutionary basins of attraction, and implications for Wright's fitness landscape analogy

    In 1932 Wright introduced the notion of the fitness landscape. By analogy with a physical landscape, whose gradient predicts a rolling marble's spatial trajectory, the contours of the fitness landscape are meant to predict an evolving population's genetic trajectory. Wright's chief interest was in the possibility that mutational interactions might frustrate natural selection, giving rise to multiple maxima on the fitness landscape. Here we study a dynamical system over the state space defined by allele frequencies and linkage disequilibria between alleles. We first analytically locate the saddle between basins of attraction in infinite-sized populations evolving under the influence of selection and recombination for the simplest two-locus case. We further show numerically that the boundary between basins is approximately linear with respect to linkage disequilibrium, though not allele frequency. We also employ this framework to develop novel perspectives on two venerable results for single-peaked fitness landscapes. Finally we sought the potential function whose contours would predict evolutionary trajectories through this state space. Importantly not every dynamical system can be described by a potential function, and the present problem is provably one such case. Thus in the parlance of Wright's analogy, in locating the floor of the fitness valley we have lost the landscape, and this conclusion is not limited to our choice of parameterization, nor of problem. This result motivates us to carefully review the formal implications and requirements of this widely used analogy

  3. Topography of Beethoven and Tolstoj Basins, Mercury: Implications for Lithospheric Flexure

    Andre, S. L.; Watters, T. R.


    Interior structures of two mercurian basins, Beethoven and Tolstoj, are characterized using topography derived from Mariner 10 stereo images. The topography of the two mercurian basins is similar to that of lunar mare-filled basins, such as Serenitatis. In addition to topography, the tectonic features within Beethoven and Tolstoj basins are compared to those of lunar basins. Beethoven and Tolstoj basins exhibit little evidence of deformation compared to Caloris basin and their lunar counterparts. Well-developed basin-concentric wrinkle ridges and arcuate graben are characteristic of many lunar basins and are thought to result from lithospheric flexure in response to the superisostatic load from the mare basalts. The presence of wrinkle ridges in the floor of Caloris basin suggests that the basin interior has undergone compression, possibly the result of subsidence of the interior fill. Because both Beethoven and Tolstoj lack basin-concentric wrinkle ridges and arcuate graben, we suggest that either Mercury's elastic lithosphere was too strong for significant lithospheric flexure and subsidence to occur, or the basin fill material provides little density contrast and thus exerts little net load on the mercurian lithosphere. Compositional evidence from color-derived parameter images of Tolstoj basin indicates that the basin fill has an FeO abundance comparable to that of average mercurian crust. This suggests that the basin fill has a similar density to the surrounding crustal material and that the load may be insufficient to induce flexure.

  4. Peace/Williston fish and wildlife compensation program: 1992-1993 public compensation report

    The Peace/Williston Fish and Wildlife Compensation Program is a joint initiative by British Columbia Hydro and the provincial environment ministry to enhance and protect fish and wildlife resources and their habitat in the Williston watershed affected by the construction of the WAC Bennett and Peace Canyon dams on the Peace River. The interest from a fund of $11 million, established by BC Hydro in 1988, is used to maintain the compensation programs. Public input to the ongoing fish and wildlife programs is provided by a public consultation program. To date, the Peace/Williston compensation program has undertaken 93 projects to either conserve or enhance fish and wildlife through habitat improvement and protection. A summary is presented of the activities undertaken by the public consultation program in 1992/93 and public attitudes toward the consultation program. Activities undertaken in the fish and wildlife enhancement program are summarized in appendices. Fisheries programs included stocking, stream fertilization, small lake surveys, preparation of a side channel in Carbon Creek for multi-species spawning, and creation of an artificial spring at Windy Point for spawning purposes. Wildlife programs included channel clearance and vegetation supply improvements to enhance muskrat and beaver habitat; radio monitoring of sheep and elk; studying the feasibility of transplanting elk herds; and purchase of critical ungulate winter habitat lands. 13 figs., 4 tabs

  5. Climate, Biofuels and Water: Projections and Sustainability Implications for the Upper Mississippi River Basin

    Deb, D.; Tuppad, P.; Daggupati, P.; Srinivasan, R.; Varma, D.


    Impact of climate change on the water resources of the United States exposes the vulnerability of feedstock-specific mandated fuel targets to extreme weather conditions that could become more frequent and intensify in the future. Consequently, a sustainable biofuel policy should consider a) how climate change would alter both water supply and demand and, b) in turn, how related changes in water availability will impact the production of biofuel crops and c) the environmental implications of large scale biofuel productions. Since, understanding the role of biofuels in the water cycle is key to understanding many of the environmental impacts of biofuels, the focus of this study is on modeling the rarely explored interactions between land use, climate change, water resources and the environment in future biofuel production systems to explore the impacts of the US biofuel policy and climate change on water and agricultural resources. More specifically, this research will address changes in the water demand and availability, soil erosion and water quality driven by both climate change and biomass feedstock production in the Upper Mississippi River Basin. We used the SWAT (Soil and Water Assessment Tool) hydrologic model to analyze the water quantity and quality consequences of land use and land management related changes in cropping conditions (e.g. more use of marginal lands, greater residue harvest, increased yields), plus management practices due to biofuel crops to meet the RFS target on water quality and quantity. Results show that even if the Upper Mississippi River Basin is a region of low water stress, it contributes to high nutrient load in Gulf of Mexico through seasonal shifts in streamflow, changes in extreme high and low flow events, changes in loadings and transport of sediments and nutrients due to changes in precipitation patterns and intensity, changes in frequency of occurrence of floods and drought, early melting of snow and ice, increasing

  6. Basin and Crater Ejecta Contributions to the South Pole-Aitken Basin (SPA) Regolith; Positive Implications for Robotic Surface Samples

    Petro, Noah E.; Jolliff, B. L.


    The ability of impacts of all sizes to laterally transport ejected material across the lunar surface is well-documented both in lunar samples [1-4] and in remote sensing data [5-7]. The need to quantify the amount of lateral transport has lead to several models to estimate the scale of this effect. Such models have been used to assess the origin of components at the Apollo sites [8-10] or to predict what might be sampled by robotic landers [11-13]. Here we continue to examine the regolith inside the South Pole-Aitken Basin (SPA) and specifically assess the contribution to the SPA regolith by smaller craters within the basin. Specifically we asses the effects of four larger craters within SPA, Bose, Bhabha, Stoney, and Bellinsgauzen all located within the mafic enhancement in the center of SPA (Figure 1). The region around these craters is of interest as it is a possible landing and sample return site for the proposed Moon-Rise mission [14-17]. Additionally, understanding the provenance of components in the SPA regolith is important for interpreting remotely sensed data of the basin interior [18-20].

  7. Stratigraphic thermohistory and its implications for regional geoevolution in the Tarim Basin,NW China


    Fourteen vitrinite reflectance profiles from the Tarim Basin,NW China,show that the vitrinite reflectance profiles of individual wells follow a faulted and dislocated dual-stage pattern in the eastern section of the Tazhong Uplift and in the Tabei Uplift.Vitrinite reflectance values in these profiles change sharply at the unconformity beneath the Lower Carboniferous Bachu or Upper Devonian Donghetang Formations,where the overlying Triassic to Carboniferous strata are still in a mature phase within the "liquid oil window".However,the underlying Lower Paleozoic reached the overmature phase beyond the "liquid oil window" towards the end of the Silurian,or in the Early Devonian at the latest.Whereas the vitrinite reflectance profiles are attributed to a continuous,single-stage pattern in the western section of the Tazhong Uplift,in which the Lower Paleozoic is also in an overmature phase,their overmaturity would have been achieved relatively late in geological time.The stratigraphic thermohistory has the following implications to regional geoevolution:(1) The overmature Lower Ordovician to Cambrian strata in the eastern section of the Tazhong Uplift and in the Tabei Uplift,as well as in the Manjiaer Depression,could not have acted as the source kitchen for normal oil(so-called black oil);(2) The dissimilarity in vitrinite reflectance profiles between the eastern and western sections of the Tazhong Uplift reveals Early Paleozoic paleotectonic features,i.e.,lower at the east and higher at the west,whereas recent tectonic features formed since the Late Paleozoic are in reverse,i.e.,higher in the east and lower at the west;(3) Reconstruction of the denuded thickness of sediments overlying the Lower Ordovician strata suggests reconsideration on the paleotectonic features in the Tarim Basin;(4) Based on the sustained duration of the "liquid oil window" for overmature source beds,it is predicted that the Suntuoguole Lower Uplift between the Awati and Manjiaer Depressions is a

  8. Anatomy of a 2nd-order unconformity: stratigraphy and facies of the Bakken formation during basin realignment

    Skinner, Orion; Canter, Lyn; Sonnenfeld, Mark; Williams, Mark [Whiting Oil and Gas Corp., Denver, CO (United States)


    Because classic Laramide compressional structures are relatively rare, the Williston Basin is often considered as structurally simple, but because of the presence of numerous sub-basins, simplistic lithofacies generalization is impossible, and detailed facies mapping is necessary to unravel Middle Bakken paleogeography. The unconformity above the Devonian Three Forks is explained by the infilling and destruction of the Devonian Elk Point basin, prepares the Bakken system, and introduces a Mississippian Williston Basin with a very different configuration. Black shales are too often considered as deposits that can only be found in deep water, but to a very different conclusion must be drawn after a review of stratigraphic geometry and facies successions. The whole Bakken is a 2nd-order lowstand to transgressive systems tract lying below the basal Lodgepole, which represents an interval of maximal flooding. This lowstand to transgressive stratigraphic context explains why the sedimentary process and provenance shows high aerial variability.

  9. Tectonosedimentary evolution of the Crotone basin, Italy: Implications for Calabrian Arc geodynamics

    Smale, J.L. (Univ. of South Carolina, Columbia (USA)); Rio, D. (Univ. of Padova (Italy)); Thunell, R.C. (Univ. of South Carolina, Columbia (USA))


    Analysis of outcrop, well, and offshore seismic data has allowed the Neogene tectonosedimentary evolution of an Ionian Sea satellite basin to be outlined. The Crotone basin contains a series of postorogenic sediments deposited since Serravallian time atop a complex nappe system emplaced in the early Miocene. The basin's evolution can be considered predominantly one of distension in a fore-arc setting punctuated by compressional events. The earliest sediments (middle-late Miocene) consist of conglomerates, marls, and evaporites infilling a rapidly subsiding basin. A basin-wide Messinian unconformity and associated intraformational folding mark the close of this sedimentary cycle. Reestablishment of marine conditions in the early Pliocene is documented by sediments which show a distinct color banding and apparent rhythmicity, which may represent the basin margin to lowermost Pliocene marl/limestone rhythmic couplets present in southern Calabria. A bounding unconformity surface of middle Pliocene age (3.0 Ma), which corresponds to a major northwest-southeast compressional event, closes this depositional sequence. The basin depocenter shifted markedly toward the southeast, and both chaotic and strong subparallel reflector seismic facies of wide-ranging thicknesses fill the depositional topography created during this tectonic episode. Basin subsidence decreases dramatically in the late Pliocene and cessates in response to basin margin uplift in the early Pleistocene. The chronostratigraphic hierarchy of these depositional sequences allows them to constrain the deformational history of the basin. In addition, similar depositional hierarchies in adjacent basins (i.e., Paola, Cefalu, and Tyrrhenian Sea) allow them to tie the stratigraphy and evolution of the Crotone basin to the geodynamic evolution of the Calabrian arc system.

  10. Interpretations from resistivity and lithologic logs in selected wells in the Williston basin

    U.S. Geological Survey, Department of the Interior — These data represent the interpretations from borehole electric (resistivity) logs from oil and gas wells and lithologic logs from nearby water wells. These...

  11. National Assessment of Oil and Gas Project - Williston Basin Province (031) Total Petroleum System

    U.S. Geological Survey, Department of the Interior — The Total Petroleum System is used in the National Assessment Project and incorporates the Assessment Unit, which is the fundamental geologic unit used for the...

  12. National Assessment of Oil and Gas Project - Williston Basin Province (031) Boundary

    U.S. Geological Survey, Department of the Interior — The USGS Central Region Energy Team assesses oil and gas resources of the United States. The onshore and State water areas of the United States comprise 71...

  13. National Assessment of Oil and Gas Project - Williston Basin Province (031) Assessment Units

    U.S. Geological Survey, Department of the Interior — The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is...

  14. Silviculture of eucaliptus plantations in the Paraiba do Sul basin, Brazil, and its potential implication on the basin ecohydrology.

    Carriello, Felix; Andres Rodriguez, Daniel; Marques Neves, Otto; Vicens, Raul


    Silviculture of eucaliptus plantations is an important driver of the Mata Atlântica biome conversion into another land use in the Paraíba do Sul basin, in the southeastern of Brazil. This region is located in one of the most developed areas in Brazil, between Rio de Janeiro and São Paulo, the most important cities in Brazil, linked by Presidente Dutra highway. Between both cities there are another cities that produce a variety of goods - from meat to planes, cars and mobile phones. This area is, at the same time, one the most important hot spot for the Mata Atlântica biome. Here we have a large Mata Atlântica fragment protected by law and others fragments being conversed to pasture, agriculture, silviculture and urban areas. Paraiba do Sul river drains the region and runs into Rio de Janeiro State. The basin is highly anthropized, with multiple approaches of its waters resources. Its waters also serve Rio de Janeiro metropolitan area. Because land use and land cover changes impact the water yield in a basin, the study of its dynamic its of great importance for water resources management. We study the land use and land cover change in the region between 1986 and 2010, focusing in the development of silviculture of eucaliptus plantations. We used the HAND (Height Above Nearest Drainage) approach that uses the height above the nearest water body, acquired from SRTM Data and transformed into a Terrain Numeric Mode, to classify the landscape into three different ecohydrological environments: floodplain, mountain top and hillslope. This classes were intersected with 1986 and 2010 land use and cover change classification obtained from Landsat imagery. Results show that silviculture has increased in the region from 1986 to 2010. In both years, silviculture areas are mainly located at the hillslope (47%), while floodplain and mountain top share 28 % and 23 % respectively. Available census data from the Brazilian Institute of Geography and Statistics, IBGE, for 1995 and

  15. Implications of Climate Change for Water Resources Development in the Ganges Basin

    Jeuland, Marc; Harshadeep, Nagaraja; Escurra, Jorge; Blackmore, Don; Sadoff, Claudia


    This paper presents the first basin-wide assessment of the potential impact of climate change on the hydrology and production of the Ganges system, undertaken as part of the World Bank’s Ganges Strategic Basin Assessment. A series of modeling efforts, downscaling of climate projections, water balance calculations, hydrological simulation and economic optimization, inform the assessment. Th...

  16. Magnitude, frequency and timing of floods in the Tarim River basin, China: Changes, causes and implications

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Sun, Peng; Chen, Xiaohong; Kong, Dongdong


    The flood magnitude, frequency and timing were analyzed using daily flow data for a period of 1950-2007 from 8 stations in the Tarim River basin, a typical arid inland river basin in China. The causes for flood occurrences were investigated using daily meteorological data. Results indicated that precipitation and temperature were increasing persistently since the 1980s and significant increases in precipitation and temperature were observed after the 1990s. As a result, floods amplified at annual and seasonal time scales in most tributary basins after the 1980s. The floods in the basin are mainly attributed to rainstorms and melting of glaciers and snowpack, and rainstorm-induced floods and temperature-induced floods were dominant in the basin. Extreme floods, such as the three largest recorded floods and floods with return periods > 10 years occurred mainly after the 1990s, with significant increase in flood-induced crop and livestock losses. It was found that heavy floods in many tributary basins often occurred about the same time. The Tarim River basin is a typical arid inland river basin in a high altitude zone and amplifying floods in recent decades, particularly after 1990s, is arousing considerable concern for mitigation of flood hazards. Results of this study shed light on hydrological response of arid regions to warming climate at higher latitudes in the northern hemisphere.

  17. New insights into the structure of Om Ali-Thelepte basin, central Tunisia, inferred from gravity data: Hydrogeological implications

    Harchi, Mongi; Gabtni, Hakim; El Mejri, Hatem; Dassi, Lassaad; Mammou, Abdallah Ben


    This work presents new results from gravity data analyses and interpretation within the Om Ali-Thelepte (OAT) basin, central Tunisia. It focuses on the hydrogeological implication, using several qualitative and quantitative techniques such as horizontal gradient, upward continuation and Euler deconvolution on boreholes log data, seismic reflection data and electrical conductivity measurements. The structures highlighted using the filtering techniques suggest that the Miocene aquifer of OAT basin is cut by four major fault systems that trend E-W, NE-SW, NW-SE and NNE-SSW. In addition, a NW-SE gravity model established shows the geometry of the Miocene sandstone reservoir and the Upper Cretaceous limestone rocks. Moreover, the superimposition of the electrical conductivity and the structural maps indicates that the low conductivity values of sampled water from boreholes are located around main faults.

  18. Peace/Williston fish and wildlife compensation program: 1991-1992 Public compensation report

    The Peace/Williston Fish and Wildlife Compensation Program is a joint initiative by British Columbia Hydro and the provincial environment ministry to enhance and protect fish and wildlife resources and their habitat in the Williston watershed affected by the construction of the WAC Bennett and Peace Canyon dams on the Peace River. The interest from a fund of $11 million, established by BC Hydro in 1988, is used to maintain the compensation programs. Public input to the ongoing fish and wildlife programs is provided by a public consultation program. A summary is presented of the activities undertaken by the public consultation program in 1991/92 and public attitudes toward the consultation program. Activities undertaken in the fish and wildlife enhancement program are summarized in appendices. Fisheries programs included stocking, stream fertilization, small lake surveys, preparation of a side channel in Carbon Creek for multi-species spawning, and creation of an artificial spring at Windy Point for spawning purposes. Wildlife programs included channel clearance and vegetation supply improvements to enhance muskrat and beaver habitat; radio monitoring of sheep and elk; studying the feasibility of transplanting elk herds; and purchase of critical ungulate winter habitat lands. 1 fig., 12 tabs

  19. Implications of post-disturbance studies on the grain size of the sediments from the Central Indian Basin

    Valsangkar, A.B.

    COMMUNICATIONS CURRENT SCIEN CE, VOL. 81, NO. 10, 25 NOVEMBER 2001 1365 e - mail: Implications of post - disturbance stu d ies on the grain size of the sediments from the Central Indian Basin Anil B. Valsangkar National... (2 to 4, 8 to 10 cm) of silty clay out of nine at BC - 13. South RESEARCH COMMUNICATIONS CURRENT SCIENCE, VOL. 81, NO. 10, 25 NOVEMBER 2001 Figure 1. a , Selected sample locations in INDEX area for comparative studies. ?, Box...

  20. Morphometry Governs the Dynamics of a Drainage Basin: Analysis and Implications

    Atrayee Biswas


    Full Text Available Mountainous rivers are the most significant source of water supply in the Himalayan provinces of India. The drainage basin dynamics of these rivers are controlled by the tectonomorphic parameters, which include both surface and subsurface characteristics of a basin. To understand the drainage basin dynamics and their usefulness in watershed prioritisation and management in terms of soil erosion studies and groundwater potential assessment and flood hazard risk reduction in mountainous rivers, morphometric analysis of a Himalayan River (Supin River basin has been taken as a case study. The entire Supin River basin has been subdivided into 27 subwatersheds and 36 morphometric parameters have been calculated under four broad categories: drainage network, basin geometry, drainage texture, and relief characteristics, each of which is further grouped into five different clusters having similar morphometric properties. The various morphometric parameters have been correlated with each other to understand their underlying relationship and control over the basin hydrogeomorphology. The result thus generated provides adequate knowledge base required for decision making during strategic planning and delineation of prioritised hazard management zones in mountainous terrains.

  1. Present-day stress-field in the Cooper basin of Australia: implications for petroleum exploration

    Backé, G.; King, R.


    The Cooper Basin is located in centre part of the Australian continent, 5000km away from the nearest plate boundary. This Late Carboniferous to Middle Triassic basin is the largest onshore sedimentary basin producing oil and gas in Australia - mostly by fraccing tight reservoirs. Thus, an extensive database is available for studying the in-situ stress field in the basin. Previous studies have shown a significant variability if the stress field across the basin. However, the development of the mostly tight prospects require a good understanding of the structure of the reservoirs, mechanical properties of the stratigraphy, fracture geometry and density, in-situ stress field and fracture stimulation strategies in order to maximise the production This study provides new in-situ stress data from borehole breakouts and drilling-induced tensile fractures, along with a description of the fractures present along the well trajectory. The geometry of the natural fault and fracture network is interpreted from 3D seismic data, and compared to the well data. Finally, we performed a series of numeric simulation to test the fault and fracture stability in the present-day stress field. These data and our interpretation are used to evaluate the geomechanical properties of the Cooper Basin. This method is reproducible to other oil-bearing basins around the world, but is also applicable to the development of engineered geothermal reservoir or evaluation of carbon dioxide storage site.

  2. Tectono-thermal History of the Southern Nenana Basin, Interior Alaska: Implications for Conventional and Unconventional Hydrocarbon Exploration

    Dixit, N. C.; Hanks, C. L.


    The Tertiary Nenana basin of Interior Alaska is currently the focus of both new oil exploration and coalbed methane exploitation and is being evaluated as a potential CO2sequestration site. The basin first formed as a Late Paleocene extensional rift with the deposition of oil and gas-prone, coal-bearing non-marine sediments with excellent source potential. Basin inversion during the Early Eocene-Early Oligocene times resulted in folding and erosion of higher stratigraphic levels, forming excellent structural and stratigraphic traps. Initiation of active faulting on its eastern margin in the middle Oligocene caused slow tectonic subsidence that resulted in the deposition of reservoir and seal rocks of the Usibelli Group. Onset of rapid tectonic subsidence in Pliocene that continues to the present-day has provided significant pressure and temperature gradient for the source rocks. Apatite fission-track and vitrinite reflectance data reveals two major paleo-thermal episodes: Late Paleocene to Early Eocene (60 Ma to 54.8 Ma) and Late Miocene to present-day (7 Ma to present). These episodes of maximum paleotemperatures have implications for the evolution of source rock maturity within the basin. In this study, we are also investigating the potential for coalbed methane production from the Late Paleocene coals via injection of CO2. Our preliminary analyses demonstrate that 150 MMSCF of methane could be produced while 33000 tonnes of CO2 per injection well (base case of ~9 years) can be sequestered in the vicinity of existing infrastructure. However, these volumes of sequestered CO2and coal bed methane recovery are estimates and are sensitive to the reservoir's geomechanical and flow properties. Keywords: extensional rift, seismic, subsidence, thermal history, fission track, vitrinite reflectance, coal bed methane, Nenana basin, CO2 sequestration

  3. Australasian microtektites from the Central Indian Basin: Implications for ejecta distribution patterns

    ShyamPrasad, M.; Sudhakar, M.

    Microtektites belonging to the Australasian tektite strewn field have been recovered in one (SK-16/176) out of three cores examined from the Central Indian Basin. The microtektites have been identified based on their physical appearance...

  4. Sand provenance and implications for paleodrainage in a rifted basin: the Tera Group (N. Spain)

    González-Acebrón, L.; Arribas, J; Mas, R.


    [EN] Fluvial-fan and fluvial siliciclastic strata, developed during the rifting that generated the Cameros Basin (North Spain), record important provenance changes that reveal source areas compositions and locations, paleodrainage evolution and rift patterns. The Tera Group represents the first rifting stage in the Cameros Basin, containing fluvial-fan sediments at the lower part of the sedimentary fill that evolve to fluvial and lacustrine systems in the upper part of the record. Ou...

  5. Sand provenance and implications for paleodrainage in a rifted basin: the Tera Group (N. Spain)

    González Acebrón, Laura; Arribas Mocoroa, José; Mas Mayoral, José Ramón


    Fluvial-fan and fluvial siliciclastic strata, developed during the rifting that generated the Cameros Basin (North Spain), record important provenance changes that reveal source areas compositions and locations, paleodrainage evolution and rift patterns. The Tera Group represents the first rifting stage in the Cameros Basin, containing fluvial-fan sediments at the lower part of the sedimentary fill that evolve to fluvial and lacustrine systems in the upper part of the record. Our qua...

  6. Managing the Murray Darling Basin: some implications for climate change policy

    John Quiggin


    Among the many environmental problems facing Australia, the problems of managing the Murray-Darling Basin and of responding to climate change are notable for their complexity, intractability and for the wide range of people and regions affected. Consideration of policy successes and failures in the management of the Murray-Darling Basin may help in the design of a more effective, and cost-effective, response to the problem of climate change

  7. Implications of Texture and Erodibility for Sediment Retention in Receiving Basins of Coastal Louisiana Diversions

    Kehui Xu


    Full Text Available Although the Mississippi River deltaic plain has been the subject of abundant research over recent decades, there is a paucity of data concerning field measurement of sediment erodibility in Louisiana estuaries. Two contrasting receiving basins for active diversions were studied: West Bay on the western part of Mississippi River Delta and Big Mar, which is the receiving basin for the Caernarvon freshwater diversion. Push cores and water samples were collected at six stations in West Bay and six stations in Big Mar. The average erodibility of Big Mar sediment was similar to that of Louisiana shelf sediment, but was higher than that of West Bay. Critical shear stress to suspend sediment in both West Bay and Big Mar receiving basins was around 0.2 Pa. A synthesis of 1191 laser grain size data from surficial and down-core sediment reveals that silt (4–63 μm is the largest fraction of retained sediment in receiving basins, larger than the total of sand (>63 μm and clay (<4 μm. It is suggested that preferential delivery of fine grained sediment to more landward and protected receiving basins would enhance mud retention. In addition, small fetch sizes and fragmentation of large receiving basins are favorable for sediment retention.

  8. What are the gendered implications of neoliberal land grabs? A case study of Rufiji River Basin in Rufiji district, coast region in Tanzania

    Mbezi, Rose George


    Abstract This thesis explores the gendered implications of the neoliberal land grab in Rufiji River basin in Tanzania. I set out to deconstruct the taken for granted assumptions concerning the state/legal approaches in the implementation of the neoliberal land grab, especially as how the grabs relate to the Warufiji gendered land relations as well as the multiple meanings of land in the basin. In the thesis I argue that most of the taken for granted Tanzanian government oriented neoliberal...

  9. Dissolved Gas Composition of Groundwater in Taipei Basin and its implications

    Cheung, Nga-Chi; Yang, Tsanyao Frank; Chen, Ai-Ti; Chen, Wen-Fu; Wang, Yun-Shuen


    This study is the first comprehensive analysis for dissolved gases of groundwater in Taipei Basin, northern Taiwan. In addition to conventional water chemistry, the dissolved-gas compositions of groundwater from 34 observation wells have been systematically analyzed. The relationship between dissolved gases and geological environment, and probable sources of the gases are discussed in this study. According to the water chemistry data of Piper plot, most of the groundwater samples in this study can be classified as Ca(HCO3)2 and NaHCO3 types. Several samples exhibit NaCl type characteristic which reveals the mix with seawater. Isotopic compositions of hydrogen and oxygen for groundwater, surface water and meteoric water in Taipei Basin are aligned with Local Meteoric Water Line (LMWL), which indicates that they are influenced by meteoric water. Composition of groundwater in the southern part of the basin has similar characteristics with surface water. However, stratifications occurred in the observation wells from northern part of the basin. It reveals different recharge sources for groundwater samples in northern basin with the southern basin. Based on the major dissolved gases compositions, three major components are identified which are CH4, N2 and CO2. The d13C of dissolved inorganic carbon (DIC) indicates microbial activities are dominant in the studied area. Dissolved radon concentrations are in the range of 200 - 20,667 Bq/m3 in the studied area and the deeper well usually exhibits a higher radon value than the shallow one from the same site. Several sites with high radon values are correlated with the locations of fault zones, which may provide the conduit for deeper gas migrate to shallower aquifers. The groundwater samples from northern part of the basin exhibit unexpectedly high helium isotopic ratios (RA >2, where RA is the 3He/4He ratio of air). Samples from five observation wells have RA values more than 3 RA and the highest one is 4.2 RA, which

  10. 40Ar/39Ar ages of seamount trachytes from the South China Sea and implications for the evolution of the northwestern sub-basin

    Xiaohu Li; Jiabiao Li; Xing Yu; Chunsheng Wang; Fred Jourdan


    A chronological study of seamount rocks in the South China Sea basin provides a great opportunity to understand the expansion and evolution history of the sea basin. In this paper, we analyzed the 40Ar/39Ar age of trachytic samples collected from the Shuangfeng seamounts in the northwestern sub-basin of the South China Sea. The two samples yielded plateau ages of 23.80 ? 0.18 and 23.29 ? 0.22 Ma, respectively, which indicate magmatic activity in late Oligocene which helpful constraints the expansion time of the northwest sub-basin. Previous studies suggested that the northwestern sub-basin and southwestern sub-basin have experienced a relatively consistent expansion in the NWeSE direction followed by a late expansion of the eastern sub-basin. We concluded that the expansion of the northwestern sub-basin began prior to ca. 24 Ma, which also implicated magmatic events of a late or stop expansion of the northwestern sub-basin combined with our results of 40Ar/39Ar age data and previous geophysical data.

  11. The Bajo Segura Basin (SE Spain): implications for the Messinian salinity crisis in the Mediterranean margins

    Soria, J. M.; Departamento Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apdo. 99, San Vicente del Raspeig, 03080 Alicante; Caracuel, J. E.; Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apdo. Correos 99, 03080 Alicante, Spain; Corbí, H.; Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apdo. Correos 99, 03080 Alicante, Spain; Dinarès-Turell, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Lancis, C.; Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apdo. Correos 99, 03080 Alicante, Spain; Tent-Manclús, J. E.; Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apdo. Correos 99, 03080 Alicante, Spain; Yébenes, A.; Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apto. 99, 03080 San Vicente del Raspeig, Alicante, Spain


    The analysis of the Messinian and Pliocene stratigraphy of the Bajo Segura Basin (a marginal basin of the western Mediterranean) has revealed three synthems deposited in a high sea-level context: T-MI (late Tortonian-Messinian), MII (Messinian), and P (early Pliocene), bounded by two lowstand erosional surfaces (intra-Messinian and end-Messinian unconformities). With respect to the salinity crisis, we propose the following series of events: 1) pre-evaporitic or pre-crisis phase (T-MI synthem)...

  12. Recognition of relict Mesozoic Dongsha Basin in the northern margin, South China Sea and its implication

    Yan, Pin; Wang, Yanlin


    The Pearl River Mouth Basin (PRMB) is dominated by NE-trending rift architecture produced mainly during Cenozoic Era. It comprises a series of grabens built up with thick Paleogene and thick Neogene sediments, up to 12000 m, and dividing basement highs composing Yanshanian granitic rocks. Though previously considered as one constituent part of PRMB in the southeast, Dongsha Basin displays major differences in sedimentary architecture and tectonic framework. Firstly, Dongsha Basin is characterized by a prominent angular unconformity, interpreted as a spectacular planation or rough erosion surface which separates the sediment column into two distinct parts. It is interpreted with accumulating seismic and drill data that the underlying strata comprise Early Cretaceous terrestrial, Jurassic marine and possibly Triassic sedimentary rocks totaling to 4~9 km thick, whereas the overlying strata are very thin (usually 0.5~1 km in whole) composing mainly Neogene sediments. The major sedimentary hiatus between them corresponds to the Late Cretaceous to mid-Miocene Epoch, well during the rifting to spreading process when the PRMB developed. Secondly, unlike the PRMB, the Dongsha Basin has suffered considerably less extension except its boundary areas, and actually remained as a relatively stable block though Cenozoic Era. Moreover, there are a few compressive open fold structures within the buried Mesozoic strata over the central Dongsha Basin. These folds trend in NNE and are characterized mostly by few minor growing upthrust faults with offsets in the order of few tens to hundreds meter. The upthrust faults dipped mostly southeastward against the northwestward subduction of paleo-Pacific plate as postulated in other previous study. The blind folds featured more like back-thrust growth tectonics, formed a broad NNE-SSW trending belt, obviously oblique to the trend of northern margin of the South China Sea and the PRMB as well. In a few recent models, the most prominent

  13. Diversity of Manota Williston (Diptera, Mycetophilidae in Ulu Temburong National Park, Brunei

    Jan Ševčík


    Full Text Available A total of 15 species of Manota Williston, 1896 are recorded from Brunei, based on the investigations in 2013-2014. Thirteen species are recorded from Ulu Temburong National Park and three species from the Universiti Brunei Darussalam Campus in Tungku. Six species are described as new to science: Manota belalongensis sp. n., M. kaspraki sp. n., M. macrothrix sp. n., M. megachaeta sp. n. and M. pileata sp.n. from Ulu Temburong, and M. ricina sp. n. from Tungku. New records of the following species are given: Manota bifida Hippa & Papp, M. bruneiensis Hippa & Ševčík, M. hyboloma Hippa & Ševčík, M. oligochaeta Hippa, M. pappi Hippa, M. perangulata Hippa & Ševčík, M. pollex Hippa, M. procera Hippa and M. simplex Hippa.

  14. Detrital provenance of Early Mesozoic basins in the Jiangnan domain, South China: Paleogeographic and geodynamic implications

    Xu, Xianbing; Tang, Shuai; Lin, Shoufa


    Detrital provenance analysis is an effective way to understand paleogeographic change and geodynamics. In this paper, we present petrological, whole-rock geochemical and detrital zircon U-Pb geochronological analysis of Early and Middle Jurassic terrestrial clastic rocks in the Jingdezhen Basin and the Huangshan Basin in the Jiangnan domain, South China. Petrology and whole-rock geochemistry show that the source rocks are dominated by intermediate to acid component. The Chemical Index of Alteration ranges from 69 to 86, suggesting a moderate weathering history for the source rocks. The Early-Middle Jurassic sediments in the Jingdezhen and Huangshan basins were mostly sourced from magmatogenic greywackes and felsic magmatic rocks, respectively. Detrital zircons have seven age peaks at ~ 240 Ma, ~ 430 Ma, ~ 1390 Ma, ~ 1880 Ma, ~ 2500 Ma, -3200 Ma and 788-999 Ma (a wide peak). Provenance analysis indicates that the source rocks are in the Jiangnan domain, the Northwest Zhejiang Basin and the Wuyishan domain. Combining these with previous results and paleocurrent directions, we infer that the NE-trending Wuyishan and Xuefengshan domains and the nearly E-W-Jiangnan domain and Nanling tectonic belt were orogenic uplifts and watersheds during the Late Triassic to Middle Jurassic. The Early Mesozoic geodynamics in the South China Block was related to the westward subduction of the Paleo-Pacific Plate and the northward continent-continent collision following the closure of the Paleo-Tethys Ocean.

  15. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia

    Carrapa, Barbara; DeCelles, Peter G.; Wang, Xin; Clementz, Mark T.; Mancin, Nicoletta; Stoica, Marius; Kraatz, Brian; Meng, Jin; Abdulov, Sherzod; Chen, Fahu


    Plate tectonics and eustatic sea-level changes have fundamental effects on paleoenvironmental conditions and bio-ecological changes. The Paratethys Sea was a large marine seaway that connected the Mediterranean Neotethys Ocean with Central Asia during early Cenozoic time. Withdrawal of the Paratethys from central Asia impacted the distribution and composition of terrestrial faunas in the region and has been largely associated with changes in global sea level and climate such as cooling associated with the Eocene/Oligocene transition (EOT). Whereas the regression has been dated in the Tarim basin (China), the pattern and timing of regression in the Tajik basin, 400 km to the west, remain unresolved, precluding a test of current paleogeographic models. Here we date the Paratethys regression in Tajikistan at ca. 39 million years ago (Ma), which is several million years older than the EOT (at ca. 34 Ma) marking the greenhouse to icehouse climate transition of the Cenozoic. Our data also show a restricted, evaporitic marine environment since the middle-late Eocene and establishment of desert like environments after ca. 39 Ma. The overall stratigraphic record from the Tajik basin and southern Tien Shan points to deposition in a foreland basin setting by ca. 40 Ma in response to active tectonic growth of the Pamir-Tibet Mountains at the same time. Combined with the northwestward younging trend of the regression in the region, the Tajik basin record is consistent with northward growth of the Pamir and suggests significant tectonic control on Paratethys regression and paleoenvironmental changes in Central Asia.

  16. Tertiary basin development and tectonic implications, Whipple detachment system, Colorado River extensional corridor, California and Arizona

    Nielson, J. E.; Beratan, K. K.


    This paper reports on geologic mapping, stratigraphic and structural observations, and radiometric dating of Miocene deposits of the Whipple detachment system, Colorado River extensional corridor of California and Arizona. From these data, four regions are distinguished in the study area that correspond to four Miocene depositional basins. It is shown that these basins developed in about the same positions, relative to each other and to volcanic sources, as they occupy at present. They formed in the early Miocene from a segmentation of the upper crust into blocks bounded by high-angle faults that trended both parallel and perpendicular to the direction of extension and which were terminated at middle crustal depths by a low-angle detachment fault.

  17. Characteristics of helium isotopes in natural gas and its tectonic implication in Bohai Bay Basin

    DING Weiwei; DAI Jinxin; YANG Shufeng; CHEN Hanlin


    Analysis on helium isotopes in natural gas in Bohai Bay Basin showed their mantle-origin indicated by high 3He/4He ratio. The span of 3He/4He ratio increased from west to east. This pattern implied a close relationship to the local tectonic setting. Bohai Bay Basin experienced intensive neo-tectonic activities in the Cenozoic. Widespread faulted-depressions and strong volcanic eruptions manifested its extensional tectonics. Abiogenic natural gas could be released from magmas and migrate upward through deep faults during the extension. Tectonic conditions in the area would favor upward invasion and reservation of mantle-originated helium. Furthermore, with decrease of convergence rate between the Pacific and the Eurasia Plate, the subduction slab of the Pacific Plate rolled back and became steeper, resulting in mantle flow and other tectonic activities migrating from west to east in nature, and caused the variation in isotopic helium ratios.

  18. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications

    Archer, D.R.; Fowler, H J


    Most of the flow in the River Indus from its upper mountain basin is derived from melting snow and glaciers. Climatic variability and change of both precipitation and energy inputs will, therefore, affect rural livelihoods at both a local and a regional scale through effects on summer runoff in the River Indus. Spatial variation in precipitation has been investigated by correlation and regression analysis of long-period records. Ther...

  19. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications

    Archer, D.R.; Fowler, H J


    Most of the flow in the River Indus from its upper mountain basin is derived from melting snow and glaciers. Climatic variability and change of both precipitation and energy inputs will, therefore, affect rural livelihoods at both a local and a regional scale through effects on summer runoff in the River Indus. Spatial variation in precipitation has been investigated by correlation and regression analysis of long-period records. There is a strong positive correlation between winter ...

  20. Upper Jurassic coral communities within siliciclastic settings (Lusitanian Basin, Portugal): implications for symbiotic and nutrient strategies

    Nose, Martin; Leinfelder, Reinhold


    Upper Jurassic coral communities of Portugal (Lusitanian Basin) grew despite high siliciclastic influx. Small, reef-rimmed carbonate platforms existed on basement uplifts over an extended period of time. Other reefs grew whenever episodes of tectonic quiescence and/or rising sea level reduced siliciclastic influx. Reefs grew within a coarse siliciclastic fan delta and on a fine-grained, siliciclastic slope system. The latter is developed as a distally steepened mixed carbonate-siliciclastic r...

  1. Water and Climate Data in the Ganges Basin: Assessing Access to Information Regimes and Implications for Cooperation on Transboundary Rivers

    Sagar Prasai


    Full Text Available Public access to government-maintained water and climate data in the three major co-riparian countries of the Ganges Basin – Nepal, India and Bangladesh – has been either inadequately granted or formally restricted. This paper examines the effects of newly enacted Right to Information (RTI laws in these three countries to assess changes in the information access regimes as they relate to hydrological data. We find that neither the RTI laws nor the internal and external demand for increased transparency in governments have affected access to information regimes on water at a fundamental level. In India, the RTI laws have not eased public access to data on its transboundary rivers including in the Ganges Basin and in Nepal and Bangladesh, while data can be legally accessed using RTI laws, the administrative procedures for such an access are not developed enough to make a tangible difference on the ground. We then discuss the implications of our findings on the continuing impasse on regional collaboration on water in South Asia and point to rapid advancements in technology as an emerging pathway to greater data democracy.

  2. Assessing regional hydrology and water quality implications of large-scale biofuel feedstock production in the Upper Mississippi River Basin.

    Demissie, Yonas; Yan, Eugene; Wu, May


    A recent U.S. Department of Energy study estimated that more than one billion tons of biofuel feedstock could be produced by 2030 in the United States from increased corn yield, and changes in agricultural and forest residue management and land uses. To understand the implications of such increased production on water resources and stream quality at regional and local scales, we have applied a watershed model for the Upper Mississippi River Basin, where most of the current and future crop/residue-based biofuel production is expected. The model simulates changes in water quality (soil erosion, nitrogen and phosphorus loadings in streams) and resources (soil-water content, evapotranspiration, and runoff) under projected biofuel production versus the 2006 baseline year and a business-as-usual scenario. The basin average results suggest that the projected feedstock production could change the rate of evapotranspiration in the UMRB by approximately +2%, soil-water content by about -2%, and discharge to streams by -5% from the baseline scenario. However, unlike the impacts on regional water availability, the projected feedstock production has a mixed effect on water quality, resulting in 12% and 45% increases in annual suspended sediment and total phosphorus loadings, respectively, but a 3% decrease in total nitrogen loading. These differences in water quantity and quality are statistically significant (p sustainable biofuel productions. PMID:22827327

  3. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications

    D.R. Archer


    Full Text Available Most of the flow in the River Indus from its upper mountain basin is derived from melting snow and glaciers. Climatic variability and change of both precipitation and energy inputs will, therefore, affect rural livelihoods at both a local and a regional scale through effects on summer runoff in the River Indus. Spatial variation in precipitation has been investigated by correlation and regression analysis of long-period records. There is a strong positive correlation between winter precipitation at stations over the entire region, so that, for practical forecasting of summer runoff in some basins, a single valley-floor precipitation station can be used In contrast, spatial relationships in seasonal precipitation are weaker in summer and sometimes significantly negative between stations north and south of the Himalayan divide. Although analysis of long datasets of precipitation from 1895 shows no significant trend, from 1961–1999 there are statistically significant increases in winter, in summer and in the annual precipitation at several stations. Preliminary analysis has identified a significant positive correlation between the winter North Atlantic Oscillation (NAO and winter precipitation in the Karakoram and a negative correlation between NAO and summer rainfall at some stations. Keywords: upper Indus basin, climate change, time series analysis, spatial correlation, teleconnections

  4. Deep seismic reflection study over the Vindhyans of Rajasthan: Implications for geophysical setting of the basin

    B Rajendra Prasad; V Vijaya Rao


    This paper presents results of high-resolution deep seismic reflection profiling of the Proterozoic Vindhyan basin of the Rajasthan area along the Chandli –Bundi –Kota –Kunjer pro file.Seismic images have been used to estimate the thickness of Vindhyan strata as well as to understand the tectonic framework of the basin.The results are constrained by gravity,magnetic and magne-totelluric data.The study reveals gentle SE-dipping reflection bands representing the Vindhyan strata.The seismic sections depict gradual thickening of the Vindhyan succession towards south-east from Bundi.The velocities of the upper and lower Vindhyans are identified as 4.6 –4.8 km/s and 5.1 –5.3 km/s.The NW limit of the Vindhyan basin is demarcated by the Great Boundary Fault (GBF)that manifests as a 30 km wide NW dipping thrust fault extending to a depth of 30 km.

  5. Pore pressure patterns in Tertiary succession and hydrodynamic implications, Beaufort-Mackenzie Basin, Canada

    Chen, Z.; Issler, D.R.; Osadetz, K.G.; Grasby, S.E. [Natural Resources Canada, Calgary, AB (Canada). Geological Survey of Canada


    The fluid pressure regime of the Beaufort-Mackenzie Basin was investigated using mud weight and pore pressure data from 250 exploration wells. Each of the four recognized patterns of pore pressure variation with depth are associated with a specific tectono-stratigraphic domain and indicate the relationship between compaction and tectonics, or other geological factors causing or redistributing the overpressure. In the southwest Beaufort Sea, overpressure likely results from compaction combined with northeast-southwest contractional tectonics. In the north, shale diapirism may produce fracture systems on top of anticlines, causing overpressured fluid to migrate to a shallower depth. Listric faulting prevails in the centre of the Mackenzie Delta, and compaction is the main controlling factor, while lithology and rate of deposition determine the depth of overpressure. Overpressure is mainly confined to Tertiary sedimentary successions, but it may be found in pre-Tertiary strata along the southeast basin margin, possibly in association with Cretaceous gas-generating source rocks. The spatial variation of pore pressure indicates that the upward expulsion of overpressured fluids is the primary driver of basin-scale flow. The pore pressure patterns suggest that regional fault zones can be both a barrier and a preferred flow path network to deep fluid fluxes. Fault zones tend to be regional barrier to lateral flow in an aquifer, but they represent the preferred flow arrangement for episodic vertical fluid migration. 47 ref., 8 figs.

  6. Basin-Scale Hydrologic Impacts of CO2 Storage: Regulatory and Capacity Implications

    Birkholzer, J.T.; Zhou, Q.


    Industrial-scale injection of CO{sub 2} into saline sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration reservoirs. In this paper, we discuss how such basin-scale hydrologic impacts can (1) affect regulation of CO{sub 2} storage projects and (2) may reduce current storage capacity estimates. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO{sub 2} storage projects in a core injection area suitable for long-term storage. Each project is assumed to inject five million tonnes of CO{sub 2} per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO{sub 2}-brine flow processes and the large-scale groundwater flow patterns in response to CO{sub 2} storage. The far-field pressure buildup predicted for this selected sequestration scenario suggests that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrologic response may be affected by interference between individual sites. Our results also support recent studies in that environmental concerns related to near-field and far-field pressure buildup may be a limiting factor on CO{sub 2} storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO{sub 2}, may have to be revised based on assessments of pressure perturbations and their potential impact on caprock integrity and groundwater resources, respectively. We finally discuss some of the challenges in making reliable predictions of large-scale hydrologic impacts related to CO{sub 2

  7. Regional facies variations in the Vempalle formation of Cuddapah Basin: implications on uranium exploration

    Strata-bound large tonnage uranium deposit hosted by the Grey-impure-dolostone of Vempalle Formation of Cuddapah Basin is known in Tummalapalle-Rachakuntapalle sector. Deposition of rocks of Cuddapah Basin commenced with Papaghni Group, which comprises Clastic - Gulcheru Formation and Chemogenic - Vempalle Formation. The Vempalle Formation is developed over 280 km stretch from south to north along the western margin of Cuddapah Basin with maximum thickness of about 2.1 km. Recent studies helped in classifying the Vempalle Formation into five major lithofacies viz. Massive Dolostone, Conglomerate, Grey-impure-dolostone (host rock for uranium mineralization), Purple shale and Cherty Dolostone. The lithofacies studies along selected traverses from Tummalapalle in south to Dhone in north revealed the development of all five facies upto Narpala near Chitravati River whereas towards its north, the Grey-impure-dolostone and Cherty Dolostone dominate. The study also revealed over lapping nature of Cherty Dolostone in North of Nossam-Peddapaya lineament; where it directly rests above the Gulcheru Formation. Environment of deposition for these facies of Vempalle Formation place this in a Shallowing-upward carbonate depositional system with characteristic tidal flat environment. The Grey-impure-dolostone facies hosting uranium is interpreted to be developed in Supratidal environment with a narrow pH range of 7.0 - 7.5 in a reducing environment along with precipitation of phosphate. Since the tidal flats have later extension over several kilometers, favorable environment of Grey-impure-dolostone may exist over wide area in northern part also. The search for Grey-impure-dolostone hosted uranium, therefore has a bearing an understanding the regional facies variations in Vempalle Formation. The paper presents the studies carried out in this direction and results thereof. (author)

  8. Hydrologic implications of GRACE satellite data in the Colorado River Basin

    Scanlon, Bridget R.; Zhang, Zizhan; Reedy, Robert C.; Pool, Donald R.; Save, Himanshu; Long, Di; Chen, Jianli; Wolock, David M.; Conway, Brian D.; Winester, Daniel


    Use of GRACE (Gravity Recovery and Climate Experiment) satellites for assessing global water resources is rapidly expanding. Here we advance application of GRACE satellites by reconstructing long-term total water storage (TWS) changes from ground-based monitoring and modeling data. We applied the approach to the Colorado River Basin which has experienced multiyear intense droughts at decadal intervals. Estimated TWS declined by 94 km3 during 1986-1990 and by 102 km3 during 1998-2004, similar to the TWS depletion recorded by GRACE (47 km3) during 2010-2013. Our analysis indicates that TWS depletion is dominated by reductions in surface reservoir and soil moisture storage in the upper Colorado basin with additional reductions in groundwater storage in the lower basin. Groundwater storage changes are controlled mostly by natural responses to wet and dry cycles and irrigation pumping outside of Colorado River delivery zones based on ground-based water level and gravity data. Water storage changes are controlled primarily by variable water inputs in response to wet and dry cycles rather than increasing water use. Surface reservoir storage buffers supply variability with current reservoir storage representing ˜2.5 years of available water use. This study can be used as a template showing how to extend short-term GRACE TWS records and using all available data on storage components of TWS to interpret GRACE data, especially within the context of droughts. This article was corrected on 12 JAN 2016. See the end of the full text for details.

  9. Hydrogeology of an ancient arid closed basin: Implications for tabular sandstone-hosted uranium deposits

    Hydrogeologic modeling shows that tabular-type uranium deposits in the grants uranium region of the San Juan basin, New Mexico, formed in zones of ascending and discharging regional ground-water flow. The association of either lacustrine mudstone or actively subsiding structures and uranium deposits can best be explained by the occurrence of lakes at topographic depressions where ground water having different sources and compositions is likely to converge, mix, and discharge. Ascending and discharging flow also explains the association of uranium deposits with underlying evaporites and suggests a brine interface. The simulations contradict previous suggestions that ground water moved downward in the mudflat

  10. Lahars in and around the Taipei basin: Implications for the activity of the Shanchiao fault

    Song, Sheng-Rong; Chen, Tsu-Mo; Tsao, Shuhjong; Chen, Huei-Fen; Liu, Huan-Chi


    In the last decade, more than 21 deep geological cores have been drilled in the Taipei basin to obtain a firmer grasp of its basic geology and engineering properties prior to the construction of new infrastructure. Thirteen of those cores contain lahar deposits, with the number of layers varying from one to three and the thickness of each layer varying from several to over 100 m. Based on their occurrence, petrology and geochemistry, it has been determined that the deposits originated from the southern slope of the Tatun Volcano Group (TVG). K-Ar age dating has shown that the lower layer of lahars was deposited less than 0.4 Ma, and this is clearly correlated to outcrops in the Kauntu, Chengtzeliao and Shihtzutao areas. These findings may well suggest that the Taipei basin has been formed in last 0.4 Ma and that the Shanchiao normal fault commenced its activity within this period. The surface trace and the activity of the Shanchiao normal fault have also been inferred and subsequently defined from stratigraphic data derived from these cores.

  11. Geochemical indicators of hydrogeologically isolated structures in the Danube Basin; implications for potential gas storage objects

    Tomáš Lánczos


    Full Text Available One of the key conditions for underground gas storage (UGS objects establishment is the presence of hydrogeologically isolated structures. These are mainly exhausted hydrocarbon deposits and aquifers in the Cenozoic fill and the basement of the Danube Basin. The geochemical indicators used to determine the aquifer isolation level of potential underground gas storage objects are based on the ratio of stagnant and dynamic water components. The most widely used indicator is the rHCO3/rCl molar ratio, assuming that the HCO3 - concentration represents the dynamic origin of dissolved rock material by meteoric water and that the Cl- concentration is the stagnant marine component. To distinguish these two components of the water in the aquifers the rHCO3/rCl indicator was combined with other parameters, such as rCl/rSO4 and rCl/rBr molar ratios. As for more aquifers of the Danube Basin contain higher amounts of carbon-dioxide we attempted to quantify the influence of the carbon dioxide on the water chemistry. The numerical model simulating rock-marine water interactions under different PCO2 temperature and ion-exchange conditions proved the rHCO3/rCl molar ratio increase caused higher carbon dioxide partial pressure for this purpose. Consequently under the conditions of higher partial carbon dioxide pressure the rHCO3/rCl ratio is indicating a lower isolation level of the structure. Taking in account signs of the higher carbon dioxide pressure based on the numerical model combined with the abovementioned geochemical indicators the most convenient aquifers for UGS establishment were identified within the Slovak part of the Danube Basin. These are located within Badenian sediments in the Trakovice and Sereď areas, due to the presence of hydrogeologically isolated structures buried at depth intervals of 800 to 1150 m below ground level. Other potential convertible aquifers are present in the Lower and Middle Badenian sediments in the Komjatice and

  12. Gas-and water-saturated conditions in the Piceance Basin, Western Colorado: Implications for fractured reservoir detection in a gas-centered coal basin

    Hoak, T.E.; Decker, A.D.


    Mesaverde Group reservoirs in the Piceance Basin, Western Colorado contain a large reservoir base. Attempts to exploit this resource base are stymied by low permeability reservoir conditions. The presence of abundant natural fracture systems throughout this basin, however, does permit economic production. Substantial production is associated with fractured reservoirs in Divide Creek, Piceance Creek, Wolf Creek, White River Dome, Plateau, Shire Gulch, Grand Valley, Parachute and Rulison fields. Successful Piceance Basin gas production requires detailed information about fracture networks and subsurface gas and water distribution in an overall gas-centered basin geometry. Assessment of these three parameters requires an integrated basin analysis incorporating conventional subsurface geology, seismic data, remote sensing imagery analysis, and an analysis of regional tectonics. To delineate the gas-centered basin geometry in the Piceance Basin, a regional cross-section spanning the basin was constructed using hydrocarbon and gamma radiation logs. The resultant hybrid logs were used for stratigraphic correlations in addition to outlining the trans-basin gas-saturated conditions. The magnitude of both pressure gradients (paludal and marine intervals) is greater than can be generated by a hydrodynamic model. To investigate the relationships between structure and production, detailed mapping of the basin (top of the Iles Formation) was used to define subtle subsurface structures that control fractured reservoir development. The most productive fields in the basin possess fractured reservoirs. Detailed studies in the Grand Valley-Parachute-Rulison and Shire Gulch-Plateau fields indicate that zones of maximum structural flexure on kilometer-scale structural features are directly related to areas of enhanced production.

  13. Climate Change Implications for the Operation of Called Upon Flood Control in the Columbia River Basin

    Yuan, Jingyao


    Negotiated over 60 years ago and ratified in 1964, the Columbia River Treaty (CRT or "the Treaty"), is often looked to as the standard for cross-jurisdictional water management. A crucial aspect of the Treaty is the governance of water flows to minimize downstream flooding. Climate change directly impacts the hydrology of the Columbia River, which has implications for activities such as power generation and flood control management. The Treaty needs to be modernized to incorporate the effe...

  14. Electrical Conductance Map for the Kachchh Rift Basin: Constraint on Tectonic Evolution and Seismotectonic Implications

    Subba Rao, P. B. V.; Arora, B. R.; Singh, A. K.


    Geomagnetic field variations recorded by an array of magnetometers spread across the Kachchh Rift basin are reduced to a set of induction arrows as a diagnostic of lateral electrical conductivity variations. A non-uniform thin-sheet electrical conductance model is developed to account for the salient induction patterns. It indicates that the imaged conductivity anomalies can be related to the sediment-filled structural lows in between the fault bounded uplifts. It is suggested that sagging structural lows preserved the marine sediments deposited during the Mesozoic sea transgression and later developed into first order embayment basins for the deposition of sediments in association with Late Eocene transgression. Depth integrated electrical conductance helped in mapping two depo-centres: along the ENE-WSW trending Banni half-Graben bounded by the Kachchh Main fault on the south and, second, along the Vinjan depression formed in response to the subsidence between the Vigodi fault and westward extension of the Katrol Hill fault together with the westward bending of the Median High. Presence of metamorphosed graphite schist clasts in shale dominated Mesozoic sequence and/or thin films of carbon resulting from the thermal influence of Deccan activity on Carbonate-rich formations can account for the high electrical conductivity anomalies seen in the depo-centres of thick Mesozoic and Tertiary sediments. Additionally two high conductivity zones are imaged encompassing a block defined by the 2001 Bhuj earthquake and its aftershocks. In agreement with gravity, magnetic and seismic velocity signatures, aqueous fluids released by recrystallizing magmatic bodies intruded in association with Deccan trap activity account for mapped high conductivity zones. High fluid pressure in such a fractured domain, surrounding the intruded magmatic plugs, perturb the regional stress concentrations to produce frequent and low magnitude aftershocks in the shallow section of the epicentral

  15. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.


    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability

  16. Modeling Nutrient Release in the Tai Lake Basin of China: Source Identification and Policy Implications

    Liu, Beibei; Liu, Heng; Zhang, Bing; Bi, Jun


    Because nutrient enrichment has become increasingly severe in the Tai Lake Basin of China, identifying sources and loads is crucial for watershed nutrient management. This paper develops an empirical framework to estimate nutrient release from five major sectors, which requires fewer input parameters and produces acceptable accuracy. Sectors included are industrial manufacturing, livestock breeding (industrial and family scale), crop agriculture, household consumption (urban and rural), and atmospheric deposition. Results show that in the basin (only the five sectors above), total nutrient loads of nitrogen (N) and phosphorus (P) into aquatic systems in 2008 were 33043.2 tons N a-1 and 5254.4 tons P a-1, and annual area-specific nutrient loads were 1.94 tons N km-2 and 0.31 tons P km-2. Household consumption was the major sector having the greatest impact (46 % in N load, 47 % in P load), whereas atmospheric deposition (18 %) and crop agriculture (15 %) sectors represented other significant proportions of N load. The load estimates also indicate that 32 % of total P came from the livestock breeding sector, making it the second largest phosphorus contributor. According to the nutrient pollution sectors, six best management practices are selected for cost-effectiveness analysis, and feasible options are recommended. Overall, biogas digester construction on industrial-scale farms is proven the most cost-effective, whereas the building of rural decentralized facilities is the best alternative under extreme financial constraint. However, the reduction potential, average monetary cost, and other factors such as risk tolerance of policy makers should all be considered in the actual decision-making process.

  17. Study of the Ouarzazate basin structure by seismic reflection: hydrogeological implications

    Jaffal, M.


    Full Text Available A large number of seismic reflection lines have been carried out in the Ouarzazate basin by the oil industry. The present study is concerned with the interpretation of a part of these data in order to characterize the structure of the Eocene aquifer system. The reflector corresponding to the base of this system, made up of sandstone and limestone, was first identified then digitized on each time-migrated seismic section. An isochrone map of this reflector was realized. The analysis of this map shows that the area under study is subdivided into two structurally contrasted domains. The first, the northern one, is intensively deformed; while the second, the southern one, is slightly folded. The results of this study provide a better understanding of the deep geological structure of the Ouarzazate basin. This allows us to better comprehend the functioning of the Eocene aquifer system, and to rationalize the future potential underground water exploration in the Ouarzazate basin.

    Les campagnes d’exploration pétrolière menées dans le bassin d’Ouarzazate ont permis l’acquisition d’une importante base de données de sismique réflexion. La présente étude concerne l’interprétation d’une partie de ces données dans l’objectif de caractériser la tectonique de l’Eocène et la structure de son système aquifère. Dans un premier temps, le réflecteur correspondant à la base de cet étage, représenté de grès et de calcaires, a été identifié, puis numérisé sur les différentes sections sismiques migrées-temps; ce qui nous a permis d’en établir une carte d’isochrones. Celle-ci montre que le secteur étudié est subdivisé en deux domaines très contrastés d’un point de vue structural. Le premier, septentrional, est affecté par une structuration intense de direction atlasique, tandis que le second, méridional, est faiblement plissé. Les résultats de la présente étude permettent une meilleure connaissance de la

  18. A new look at Northwind Ridge: implications for the history of the Canada Basin

    Hutchinson, D. R.; Mosher, D. C.; Shimeld, J.; Jackson, R.; Chian, D.; Edwards, B. D.; Hart, P. E.; Mayer, L. A.


    Researchers from the US and Canada are conducting collaborative seismic, multibeam, and sampling studies in the mostly ice-covered regions of the Canada Basin (CB) of the Arctic Ocean. Recently acquired data sets, together with older acoustic and coring data, yield new details about the stratigraphic and structural history of CB, particularly regarding its boundary with Northwind Ridge (NR). As previously interpreted, NR represents the eastern edge of a rifted, submerged continental block known as Chukchi Borderland. Gradients along the remarkably linear slope are generally between 10o and 30o, but can be locally as high as ~70o. Water depths across the ridge vary from ~1000 m to ~3800 m. The new data reveal perched half grabens within the escarpment, and numerous complex reflection packages, including at least one possible talus deposit. These deeper reflection packages continue east for ~ 100 km (off northern NR) to ~200 km (off central NR) beneath the oldest on-lapping deposits of CB. This continuity suggests that the shallow basement extending east of NR consists of rocks that may be similar to those on NR, but more highly stretched and therefore more deeply subsided. A low-amplitude positive gravity anomaly coincides with this inferred continental-basement remnant. The profound unconformity at the top of these oldest reflection packages is generally highly reflective, gently sloping, and low relief. This reflection character of basement changes abruptly to high-relief and minimally reflective adjacent to and beneath a distinctive curvilinear gravity low that extends most of the length of CB, previously interpreted as a possible seafloor spreading center. The transition in basement reflection character can be mapped on multiple seismic lines and may represent the basement expression of the final breakup position of the continent (west) to ocean (east) boundary. Two consequences of this possible buried and subsided continental-basement fragment are that (1

  19. Thickness of Proximal Ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) Data: Implications for Multi-Ring Basin Formation

    Fassett, Caleb I.a; Head, James W.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.


    Quantifying the ejecta distribution around large lunar basins is important to understanding the origin of basin rings, the volume of the transient cavity, the depth of sampling, and the nature of the basin formation processes. We have used newly obtained altimetry data of the Moon from the Lunar Orbiter Laser Altimeter (LOLA) instrument to estimate the thickness of ejecta in the region surrounding the Orientale impact basin, the youngest and best preserved large basin on the Moon. Our measurements yield ejecta thicknesses of approx.2900 m near the Cordillera Mountains, the topographic rim of Orientale, decaying to approx.1 km in thickness at a range of 215 km. These measurements imply a volume of ejecta in the region from the Cordillera ring to a radial range of one basin diameter of approx.2.9 x 10(exp 6)cu km and permit the derivation of an ejecta-thickness decay model, which can be compared with estimates for the volume of excavation and the size of the transient cavity. These data are consistent with the Outer Rook Mountains as the approximate location of the transient cavity s rim crest and suggest a volume of approx.4.8 x 10(exp 6)cu km for the total amount of basin ejecta exterior to this location.

  20. Globalization and the Spatial Economy: Implications for the Amazon Basin in the 21st Century

    Arima, E.; Walker, R.; Richards, P.


    Global demand for food and energy will increase in the next decades as world population grows, incomes in developing countries rise, and new energy sources from biofuels are sought. Despite gains in productivity, much of the future demand for those agricultural products will be met by bringing new lands into production. Tropical forests, and in particular the Brazilian Amazon, the focus of our article, are already facing pressures from expanding production of soy, beef, cotton, and biofuels as deforestation advances the agricultural frontier. This article begins by reviewing the recent literature and provides evidences of indirect land cover change in the Amazon driven by the tandem soy - cattle, whereby mechanized agriculture encroaches on existing pastures, displacing them to the Amazonian frontier. We then consider conditions in the spatial economy that potentially inhibit ongoing forest loss. In particular, we address the prospect of forest transition in the Amazon basin. This necessitates a review of the so-called Borlaug hypothesis, and the circumstances under which land sparing occurs. Land sparing, a sufficient if not necessary condition for forest transition, represents a potential solution to environmental problems associated with land change, one that promotes sustainability by furthering rural development with improved technologies. The paper concludes by contrasting the current Brazilian agricultural and environmental policies with the conditions set in the previous section.

  1. Delineation of Piceance Basin basement structures using multiple source data: Implications for fractured reservoir exploration

    Hoak, T.E.; Klawitter, A.L.


    Fractured production trends in Piceance Basin Cretaceous-age Mesaverde Group gas reservoirs are controlled by subsurface structures. Because many of the subsurface structures are controlled by basement fault trends, a new interpretation of basement structure was performed using an integrated interpretation of Landsat Thematic Mapper (TM), side-looking airborne radar (SLAR), high altitude, false color aerial photography, gas and water production data, high-resolution aeromagnetic data, subsurface geologic information, and surficial fracture maps. This new interpretation demonstrates the importance of basement structures on the nucleation and development of overlying structures and associated natural fractures in the hydrocarbon-bearing section. Grand Valley, Parachute, Rulison, Plateau, Shire Gulch, White River Dome, Divide Creek and Wolf Creek fields all produce gas from fractured tight gas sand and coal reservoirs within the Mesaverde Group. Tectonic fracturing involving basement structures is responsible for development of permeability allowing economic production from the reservoirs. In this context, the significance of detecting natural fractures using the intergrated fracture detection technique is critical to developing tight gas resources. Integration of data from widely-available, relatively inexpensive sources such as high-resolution aeromagnetics, remote sensing imagery analysis and regional geologic syntheses provide diagnostic data sets to incorporate into an overall methodology for targeting fractured reservoirs. The ultimate application of this methodology is the development and calibration of a potent exploration tool to predict subsurface fractured reservoirs, and target areas for exploration drilling, and infill and step-out development programs.

  2. Isotopic composition of rainfall and runoff in a small arid basin with implications for deep percolation

    The aim of this work was to characterize the isotopic composition of potential recharge in an arid rocky watershed. Unique field observations were obtained from an arid watershed in the Negev Highlands, Israel, through utilization of the dynamic variations in the isotopic composition of rainfall and runoff. The hydrological system's inputs are rainfall and its isotopic composition. Rainfall and runoff were sampled in eight storms. High variability in the isotopic composition of rainfall was observed during any single rainstorm. The isotopic distribution in the runoff at the outlet of the basin appeared often not to be correlated to the isotopic patterns of the associated rain storm. A new mathematical model was developed to describe these physical processes. The model called A Double-Component Kinematic Wave Flow and Transport Approach, was designated to assess the dynamic isotopic distribution in arid rain storms and runoff. This model simulates the transport of rainfall into overland flow and runoff in an arid rocky watershed with uniformly distributed shallow depression storage. A numerical solution for the problem was developed, to estimate the depression storage parameters. The model also reflects the isotopic memory effect due to the depression storage between sequential rain showers. A good agreement between the observed and computed hydrograph and the change of the δ18O values in runoff in time confirms the validity of the model. (author) 138 figs., 125 refs

  3. Spatial variation of the aftershock activity across the Kachchh Rift Basin and its seismotectonic implications

    A P Singh; O P Mishra; Dinesh Kumar; Santosh Kumar; R B S Yadav


    We analyzed 3365 relocated aftershocks with magnitude of completeness () ≥ 1.7 that occurred in the Kachchh Rift Basin (KRB) between August 2006 and December 2010. The analysis of the new aftershock catalogue has led to improved understanding of the subsurface structure and of the aftershock behaviour. We characterized aftershock behaviour in terms of -value, -value, spatial fractal dimension (s), and slip ratio (ratio of the slip that occurred on the primary fault and that of the total slip). The estimated -value is 1.05, which indicates that the earthquake occurred due to active tectonics in the region. The three dimensional -value mapping shows that a high -value region is sandwiched around the 2001 Bhuj mainshock hypocenter at depths of 20–25 km between two low -value zones above and below this depth range. The s-value was estimated from the double-logarithmic plot of the correlation integral and distance between hypocenters, and is found to be 2.64 ± 0.01, which indicates random spatial distribution beneath the source zone in a two-dimensional plane associated with fluid-filled fractures. A slip ratio of about 0.23 reveals that more slip occurred on secondary fault systems in and around the 2001 Bhuj earhquake (Mw 7.6) source zone in KRB.

  4. Parascolymia (Scleractinia: Lobophylliidae) in the Central Paratethys Sea (Vienna Basin, Austria) and its possible biogeographic implications.

    Reuter, Markus; Wiedl, Thomas; Piller, Werner E


    Palaeobiogeographical and palaeodiversity patterns of scleractinian reef corals are generally biased due to uncertain taxonomy and a loss of taxonomic characters through dissolution and recrystallization of the skeletal aragonite in shallow marine limestones. Herein, we describe a fossil lobophylliid coral in mouldic preservation from the early middle Miocene Leitha Limestone of the Central Paratethys Sea (Vienna Basin, Austria). By using grey-scale image inversion and silicone rubber casts for the visualization of the original skeletal anatomy and the detection of distinct micromorphological characters (i.e. shape of septal teeth, granulation of septocostae) Parascolymia bracherti has been identified as a new species in spite of the dissolved skeleton. In the recent era, Parascolymia like all Lobophylliidae is restricted to the Indo-Pacific region, where it is represented by a single species. The new species proves the genus also in the Miocene Mediterranean reef coral province. A review of the spatio-temporal relationships of fossil corals related to Parascolymia indicates that the genus was probably rooted in the Eastern Atlantic‒Western Tethys region during the Paleocene to Eocene and reached the Indo-Pacific region not before the Oligocene. The revealed palaeobiogeographical pattern shows an obvious congruence with that of Acropora and tridacnine bivalves reflecting a gradual equatorwards retreat of the marine biodiversity center parallel to the Cenozoic climate deterioration. PMID:26201071

  5. Regional medicine use in the Rhine basin and its implication on water quality

    Hut, R. W.; Houtman, C. J.; van de Giesen, N. C.; de Jong, S. A. P.


    Do Germans use more painkillers than the French? Pharmaceuticals used in our Western society form an important group of contaminants found in the river Rhine. As this river is the drinking water source for millions of Europeans, methods to investigate relations between drug use and their penetration in the watercycle are of great importance. An analysis is presented relating medicine residue in the river Rhine to the number of people living in its watershed. An extensive measuring campaign was carried out, sampling river Rhine at 42 locations from its source to the start of its delta (Dutch-German border). The samples were analyzed for 40 common pharmaceuticals. Using discharge data, digital elevation models and demographic data from Eurostat, the relation between total load of drug residue and population was analyzed. Results show regional differences in drug use as well as implications for (down)stream water quality concerning contamination with pharmaceuticals.

  6. Risk of water scarcity and water policy implications for crop production in the Ebro Basin in Spain

    S. Quiroga


    Full Text Available The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro River Basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  7. Evaluating Land Subsidence Rates and Their Implications for Land Loss in the Lower Mississippi River Basin

    Lei Zou


    Full Text Available High subsidence rates, along with eustatic sea-level change, sediment accumulation and shoreline erosion have led to widespread land loss and the deterioration of ecosystem health around the Lower Mississippi River Basin (LMRB. A proper evaluation of the spatial pattern of subsidence rates in the LMRB is the key to understanding the mechanisms of the submergence, estimating its potential impacts on land loss and the long-term sustainability of the region. Based on the subsidence rate data derived from benchmark surveys from 1922 to 1995, this paper constructed a subsidence rate surface for the region through the empirical Bayesian kriging (EBK interpolation method. The results show that the subsidence rates in the region ranged from 1.7 to 29 mm/year, with an average rate of 9.4 mm/year. Subsidence rates increased from north to south as the outcome of both regional geophysical conditions and anthropogenic activities. Four areas of high subsidence rates were found, and they are located in Orleans, Jefferson, Terrebonne and Plaquemines parishes. A projection of future landscape loss using the interpolated subsidence rates reveals that areas below zero elevation in the LMRB will increase from 3.86% in 2004 to 19.79% in 2030 and 30.88% in 2050. This translates to a growing increase of areas that are vulnerable to land loss from 44.3 km2/year to 240.7 km2/year from 2011 to 2050. Under the same scenario, Lafourche, Plaquemines and Terrebonne parishes will experience serious loss of wetlands, whereas Orleans and Jefferson parishes will lose significant developed land, and Lafourche parish will endure severe loss of agriculture land.

  8. Crustal structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: Implications for tectonic origins

    Hansen, Samantha E.; Kenyon, Lindsey M.; Graw, Jordan H.; Park, Yongcheol; Nyblade, Andrew A.


    The Transantarctic Mountains (TAMs) are the largest noncollisional mountain range on Earth. Their origin, as well as the origin of the Wilkes Subglacial Basin (WSB) along the inland side of the TAMs, has been widely debated, and a key constraint to distinguish between competing models is the underlying crustal structure. Previous investigations have examined this structure but have primarily focused on a small region of the central TAMs near Ross Island, providing little along-strike constraint. In this study, we use data from the new Transantarctic Mountains Northern Network and from five stations operated by the Korea Polar Research Institute to investigate the crustal structure beneath a previously unexplored portion of the TAMs. Using S wave receiver functions and Rayleigh wave phase velocities, crustal thickness and average crustal shear velocity (V>¯s) are resolved within ±4 km and ±0.1 km/s, respectively. The crust thickens from ~20 km near the Ross Sea coast to ~46 km beneath the northern TAMs, which is somewhat thicker than that imaged in previous studies beneath the central TAMs. The crust thins to ~41 km beneath the WSB. V>¯s ranges from ~3.1-3.9 km/s, with slower velocities near the coast. Our findings are consistent with a flexural origin for the TAMs and WSB, where these features result from broad flexure of the East Antarctic lithosphere and uplift along its western edge due to thermal conduction from hotter mantle beneath West Antarctica. Locally, thicker crust may explain the ~1 km of additional topography in the northern TAMs compared to the central TAMs.

  9. Current status of arsenic exposure and social implication in the Mekong River basin of Cambodia.

    Phan, Kongkea; Kim, Kyoung-Woong; Huoy, Laingshun; Phan, Samrach; Se, Soknim; Capon, Anthony Guy; Hashim, Jamal Hisham


    To evaluate the current status of arsenic exposure in the Mekong River basin of Cambodia, field interview along with urine sample collection was conducted in the arsenic-affected area of Kandal Province, Cambodia. Urine samples were analyzed for total arsenic concentrations by inductively coupled plasma mass spectrometry. As a result, arsenicosis patients (n = 127) had As in urine (UAs) ranging from 3.76 to 373 µg L(-1) (mean = 78.7 ± 69.8 µg L(-1); median = 60.2 µg L(-1)). Asymptomatic villagers (n = 108) had UAs ranging from 5.93 to 312 µg L(-1) (mean = 73.0 ± 52.2 µg L(-1); median = 60.5 µg L(-1)). About 24.7 % of all participants had UAs greater than 100 µg L(-1) which indicated a recent arsenic exposure. A survey found that females and adults were more likely to be diagnosed with skin sign of arsenicosis than males and children, respectively. Education level, age, gender, groundwater drinking period, residence time in the village and amount of water drunk per day may influence the incidence of skin signs of arsenicosis. This study suggests that residents in Kandal study area are currently at risk of arsenic although some mitigation has been implemented. More commitment should be made to address this public health concern in rural Cambodia. PMID:26298061

  10. Arsenic in glacial drift aquifers and the implication for drinking water--lower Illinois River Basin.

    Warner, K L


    The lower Illinois River Basin (LIRB) covers 47,000 km2 of central and western Illinois. In the LIRB, 90% of the ground water supplies are from the deep and shallow glacial drift aquifers. The deep glacial drift aquifer (DGDA) is below 152 m altitude, a sand and gravel deposit that fills the Mahomet Buried Bedrock Valley, and overlain by more than 30.5 m of clayey till. The LIRB is part of the USGS National Water Quality Assessment program, which has an objective to describe the status and trends of surface and ground water quality. In the DGDA, 55% of the wells used for public drinking-water supply and 43% of the wells used for domestic drinking water supply have arsenic concentrations above 10 micrograms/L (a new U.S. EPA drinking water standard). Arsenic concentrations greater than 25 micrograms/L in ground water are mostly in the form of arsenite (AsIII). The proportion of arsenate (AsV) to arsenite does not change along the flowpath of the DGDA. Because of the limited number of arsenic species analyses, no clear relations between species and other trace elements, major ions, or physical parameters could be established. Arsenic and barium concentrations increase from east to west in the DGDA and are positively correlated. Chloride and arsenic are positively correlated and provide evidence that arsenic may be derived locally from underlying bedrock. Solid phase geochemical analysis of the till, sand and gravel, and bedrock show the highest presence of arsenic in the underlying organic-rich carbonate bedrock. The black shale or coal within the organic-rich carbonate bedrock is a potential source of arsenic. Most high arsenic concentrations found in the DGDA are west and downgradient of the bedrock structural features. Geologic structures in the bedrock are potential pathways for recharge to the DGDA from surrounding bedrock. PMID:11341009

  11. New seismo-stratigraphic data of the Volturno Basin (northern Campania, Tyrrhenian margin, southern Italy: implications for tectono-stratigraphy of the Campania and Latium sedimentary basins

    Ennio Marsella


    Full Text Available A geological section of the Volturno Basin (northern Campania, continental margin, Italy has been constructed based on new multi-channel seismic data, to show the stratigraphic relationships between the filling in the Quaternary basin and the Meso-Cenozoic acoustic basement. The new seismic sections presented here outline the underlying structures of the basin and their relationships to the filling in the Quaternary basin. Deep exploration wells in Campania and Latium on the Tyrrhenian margin have gathered litho-stratigraphic and commercial multi-channel seismic data that can be used for better integration of the geological data for the area under study. The trending of the seismic units is controlled by the Massico Structural High, which forms the boundary of the Volturno Basin towards the north-west. This produces a geometry that is characteristic of a fan complex, with NE-SW trending. This qualitative calibration of the seismic sequences that fill the sedimentary basin was carried out through the litho-stratigraphic data of the «Castelvolturno 2» well, which highlights the pyroclastic layers and conglomeratic strata of the lagoon and delta environments as they evolve upwards towards marine sediments. Seismo-stratigraphic analysis shows the complex depositional geometries of the filling in the Volturno Basin, which overlie the Meso-Cenozoic carbonatic basement and the related flysch deposits. Coupled with regional geological evidence, the data interpretation here suggests that the Volturno Basin represents a half-graben structure that is characterized by down-thrown blocks along normal faults.

  12. Analysis of Marine Gravity Anomalies in the Ulleung Basin (East Sea/Sea of Japan) and Its Implications for the Architecture of Rift-Dominated Backarc Basin

    Lee, Sang-Mook; Kim, Yoon-Mi


    Marginal basins locate between the continent and arc islands often exhibit diverse style of opening, from regions that appear to have formed by well-defined and localized spreading center (manifested by the presence of distinct seafloor magnetic anomaly patterns) to those with less obvious zones of extension and a broad magmatic emplacement most likely in the lower crust. Such difference in the style of back-arc basin formation may lead to marked difference in crustal structure in terms of its overall thickness and spatial variations. The Ulleung Basin, one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental rifting end-member of back-arc opening. Although a great deal of work has been conducted on the sedimentary sections in the last several decades, the deep crustal sections have not been systematically investigated for long time, and thus the structure and characteristics of the crust remain poorly understood. This study examines the marine gravity anomalies of the Ulleung Basin in order to understand the crustal structure using crucial sediment-thickness information. Our analysis shows that the Moho depth in general varies from 16 km at the basin center to 22 km at the margins. However, within the basin center, the inferred thickness of the crust is more or less the same (10-12 km), thus by varying only about 10-20% of the total thickness, contrary to the previous impression. The almost-uniformly-thick crust that is thicker than a normal oceanic crust (~ 7 km) is consistent with previous observations using ocean bottom seismometers and recent deep seismic results from the nearby Yamato Basin. Another important finding is that small residual mantle gravity anomaly highs exist in the northern part of the basin. These highs are aligned in the NNE-SSW direction which correspond to the orientation of the major tectonic structures on the Korean Peninsula, raising the possibility that, though by a small degree, they are a

  13. Trends in the Annual Frequency of Atlantic Basin Intense Hurricanes: Implications for the Near-Term

    Wilson, Robert M.


    During the interval of 1944-1997, 120 intense hurricanes (category 3, 4, or 5 on the Saffir-Simpson hurricane scale) have been observed in the Atlantic basin. These intense hurricanes have had an observed annual frequency of 0-7 events per year (having a mean, mode, and median equal to about 2 events per year), being preferentially lower during El Ninio years and higher during non-El Ninio years. Also, it has recently been established that a long-term downward trend in the annual frequency of intense hurricanes, spanning about five decades, has taken place, although this trend can, alternatively, be explained as a shift from a more active state prior to the mid 1960's to a less active state thereafter (rather than as a simple linear decline). In this paper, on the basis of 10-yr moving averages, the long4erm trend of the frequency of intense hurricanes is compared against one for the annual mean temperature at Armagh Observatory, Northern Ireland (which serves as a proxy for climatic change). Interestingly, the two sets of 10-yr moving averages correlate extremely well, especially, when incorporating a slight 6-yr lag between them (with temperature leading; r = 0.90). This suggests that the current leading trend of temperature, which had been downward, but now is upward, may portend a return to the more active state for intense hurricanes. Thus, the 1998 season (presuming the abatement of El Ninio prior to the start of the hurricane season), and for several years thereafter (at least, into the early years of the next millennium), may have an annual frequency of intense hurricanes that is commensurate with the previously observed active state that was seen prior to the mid 1960's. If true, then, the shift to the more active state, probably, occurred in the mid-to-late 1980's, apparently, having gone undetected because of the masking, or modulating, effect of El Ninio, which has been rampant since the mid-to-late 1980's.

  14. Bouguer gravity anomaly of the Moon from CE-1 topography data: Implications for the impact basin evolution

    LIANG Qing; CHEN Chao; HUANG Qian; CHEN Bo; PING JinSong


    In this study, the terrain correction for lunar free-air gravity anomaly (FAGA) is calculated in spherical coordinates based on the global topography data detected by the laser altimeter on Chang'E-1 (CE-1).The obtained lunar Bouguer gravity anomaly (BGA) reveals density irregularities of the interior mass.BGA is important in characterizing the mascon basins. According to the BGA of the Moon, the South Pole-Aitken (SPA) basin is considered the largest mascon basin on the Moon, and the feature of BGA in the basin implies the impacting direction. Further, the mascon basins seem to be classified into two types, Type Highland and Type Plain. For the mascon basins of Type Highland the dense materials mainly come from the shallow crust, which are associated with the basalt deposits. The other type, Type Plain, includes mascon basins whose major dense materials may be located deep at the lithosphere, corresponding to the uplifted mantle.

  15. The Fate of Failed Bank Material and Implications for Lateral Retreat: Lake Tahoe Basin

    Simon, A.; Thomas, R. E.


    The ability to deterministically predict the critical conditions for streambank failure in alluvial materials has improved markedly in recent years. Analytic tools such as the Bank-Stability and Toe-Erosion Model (BSTEM) account for a broad range of controlling processes and factors including hydraulic erosion of the bank toe, positive and negative pore-water pressures, layers of varying geotechnical resistance and root reinforcement. When failure is predicted, the failed mass is assumed to be transported away from the section by the flow, either as a single mass or as dispersed aggregates. Field observations indicate, however, that in cases where cohesive strength is high, either due to the effective cohesion of the soil skeleton or due to dense mats of fine roots, the failed block comes to rest in the vicinity of the bank toe. In this case, the resistance of the bank-toe region to hydraulic scour may be increased markedly and resistance to geotechnical failure may also be increased by buttressing. Conversely, deposition of blocks at bank toes may cause flow acceleration and scour landward of the block, resulting in further undercutting of the bank mass. Failure to account for these processes can lead to errors in predicting of rates of failure frequency, lateral retreat and streambank loadings.Once deposited at the bank toe, failed blocks can be eroded by hydraulic forces either as a mass and/or by erosion of aggregates comprising the block. Field research on the nature of hydraulic resistance and block erosion has been conducted along selected reaches of the Upper Truckee River (UTR) and Trout Creek, Lake Tahoe Basin, California. Block materials are generally characterized by lower apparent cohesive strength than their in situ counterparts due to the lower values of matric suction owing to their proximity to the water surface. Still, submerged jet-test device conducted in root-permeated blocks show critical shear stresses one to two orders of magnitude greater

  16. Evolution of chlorite composition in the Paleogene prototype basin of Jiyang Depression, Shandong, China, and its implication for paleogeothermal gradient

    ZHAO; Ming; CHEN; XiaoMing; JI; JunFeng; ZHANG; Zhe; ZHANG; Yun


    The Dongying Basin,Huimin Basin,and Zhanhua Basin constitute the Jiyang Depression in Shandong Province.They are major oil and gas exploring districts within the depression.Through reconstructions of the paleotemperature of the three basins facilitated with the chlorite geothermometry,the thermal history of the Paleogene prototype basin in Jiyang Depression and its geologic significance were explored.This study reveals that the Si4+ component in chlorites reduces gradually as its buried depth increases,while the AlIV component increases accordingly.The chlorite type changes from silicon-rich diabantite to silicon-poor ferroamesite and prochlorite.The prochlorite in this district only appears in the deep buried depth,high temperature,and relatively old stratigraphies; while the diabantite appears in the shallower buried,low temperature,and newly formed strata; the ferroamesite exists in the conditions between prochlorite and diabantite formation.The diagenetic temperatures of the chlorites in these Paleogene basins are 171―238℃ for the Dongying Basin,160―202℃ for the Huimin Basin,and 135―180℃ for the Zhanhua Basin.The differences of the chlorite diagenetic temperatures in the three basins were controlled by the duration time of the structural depressing processes.Higher temperature indicates longer depression time.The relationship between the chlorite diagenetic temperature and its buried depth indicates that the average paleogeothermal gradient is about 38.3℃/km in the Paleogene prototype basin of Jiyang Depression.It was higher than the present geothermal gradient (29―30℃/km).This phenomenon was attributed to the evolution of the structural dynamics in the depression basin.

  17. Integrated Analysis on Gravity and Magnetic Fields of the Hailar Basin, NE China: Implications for Basement Structure and Deep Tectonics

    Sun, B.; Wang, L.; Dong, P.; Scientific Team Of Applied Geophysics


    The Hailar Basin is one of the most representative basins among the Northeast China Basin Group, which is situated in the east of East Asia Orogene between the Siberia Plate and the North China Plate. Based on the detailed analysis of the Bouguer gravity anomaly, aeromagnetic anomaly as well as petrophysical data, we studied the features of gravity-magnetic fields in the basin and its neighboring areas. A combined approach of Wavelet Multi-scale Decomposition and Power Spectrum Analysis was adopted to quantitatively grade the gravity and magnetic anomalies into four levels. Accordingly, the apparent depths of the source fields can be assessed. The results reveal the crustal density and magnetic structures of the Hailar Basin. Low-order wavelet details of gravity-magnetic anomalies were carried out on studying basin basement structure. Seven major basement faults of the basin were identified, and the basement lithology was discussed and predicted. Three major uplifts and 14 depressions were delineated according to basement depth inversion by the Park method. High-order wavelet approximations of gravity-magnetic anomalies were carried out on studying deep tectonics of the basin. The average Moho depth of the study area is about 40 km, with a mantle uplift located in the northeast of the basin. The average depth of the Curie interface is about 19 km, while the uplift of the Curie interface is in the basin center and its east and west sides are depressions. Finally, inversion of Bouguer gravity anomalies was conducted on an across-basin GGT profile using the Wavelet Multi-scale Decomposition. The inversion results are consistent with those of GGT seismic inversion, suggesting that the Wavelet Multi-scale Decomposition can be applied to distinguish major crustal density interfaces.

  18. Stratigraphy, Sequence, and Crater Populations of Lunar Impact Basins from Lunar Orbiter Laser Altimeter (LOLA) Data: Implications for the Late Heavy Bombardment

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.


    New measurements of the topography of the Moon from the Lunar Orbiter Laser Altimeter (LOLA)[1] provide an excellent base-map for analyzing the large crater population (D.20 km)of the lunar surface [2, 3]. We have recently used this data to calculate crater size-frequency distributions (CSFD) for 30 lunar impact basins, which have implications for their stratigraphy and sequence. These data provide an avenue for assessing the timing of the transitions between distinct crater populations characteristic of ancient and young lunar terrains, which has been linked to the late heavy bombardment (LHB). We also use LOLA data to re-examine relative stratigraphic relationships between key lunar basins.

  19. Estimates of primary ejecta and local material for the Orientale basin: Implications for the formation and ballistic sedimentation of multi-ring basins

    Xie, Minggang; Zhu, Meng-Hua


    A clear understanding of thickness distributions of primary ejecta and local material is critical to interpreting the process of ballistic sedimentation, provenances of lunar samples, the evolution of the lunar surface, and the origin of multi-ring basins. The youngest lunar multi-ring basin, Orientale, provides the best preserved structure for determining the thicknesses of primary ejecta and local material. In general, the primary ejecta thickness was often estimated using crater morphometry. However, previous methods ignored either crater erosion, the crater interior geometry, or both. In addition, ejecta deposits were taken as mostly primary ejecta. And, as far as we know, the local material thickness had not been determined for the Orientale. In this work, we proposed a model based on matching measurements of partially filled pre-Orientale craters (PFPOCs) with the simulations of crater erosion to determine their thicknesses. We provided estimates of primary ejecta thickness distribution with the thickness of 0.85 km at Cordillera ring and a decay power law exponent of b = 2.8, the transient crater radius of 200 km, excavation volume of 2.3 ×106 km3, primary ejecta volume of 2.8 ×106 km3. These results suggest that previous works (e.g., Fassett et al., 2011; Moore et al., 1974) might overestimate the primary ejecta thicknesses of Orientale, and the primary ejecta thickness model of Pike (1974a) for multi-ring basins may give better estimates than the widely cited model of McGetchin et al. (1973) and the scaling law for impacts into Ottawa Sand (Housen et al., 1983). Structural uplift decays slower than previously thought, and rim relief is mostly rim uplift for Orientale. The main reason for rim uplift may be the fracturing and squeezing upward of the surrounding rocks. The proportion of local material to ejecta deposits increases with increasing radial distance from basin center, and the thickness of local material is larger than that of primary ejecta at

  20. The structural evolution of the Ghadames and Illizi basins during the Paleozoic, Mesozoic and Cenozoic: Petroleum implications

    Gauthier, F.J. [Anadarko Petroleum Corp., Houston, TX (United States); Boudjema, A. [Somatrach, Algiers (Algeria); Lounis, R. [Anadarko Algeria Corp., Houston, TX (United States)


    The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over large distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.

  1. Eocene to Miocene back-arc basin basalts and associated island arc tholeiites from northern Sulawesi (Indonesia): Implications for the geodynamic evolution of the Celebes basin

    Eocene BABB basalts intruded by tholeiitic and calk-alkalic island arc magmatic rocks are reported from the north arm of Sulawesi (Indonesia). Age and geochemical similarities between these basalts and those drilled in the Celebes Sea indicate this North Sulawesi volcanic arc was built on the same oceanic crust. The 25 deg late Neogene clockwise rotation of the north arm of Sulawesi following its collision with fragments of Australia (Sula, Buton) is not sufficient to explain the asymmetrical magnetic anomalies in the Celebes basin. The North Sulawesi island arc could be interpreted as having progressively retreated northward on its own Celebes sea back arc basin, during an episode of Palaeogene-early Neogene tectonic erosion along the trench. (authors)

  2. Hydrocarbon Potentials, Thermal and Burial History in Herwa-1 Well from the Nigerian Sector of the Chad Basin: An Implication of 1-D Basin Modeling Study

    Abubakar Mijinyawa


    Full Text Available This research study attempt to evaluate the hydrocarbon potentials, thermal and burial history and the timing of hydrocarbon generation in Herwa-1 well within the Nigerian Sector of the Chad basin. Organic geochemical study of some ditch cuttings samples from Herwa-1 well and a One-dimensional basin modeling study was carried out. The result of the geochemical analysis revealed a moderate to good TOC greater than 0.5wt% in Fika and Gongila formation, the Hydrogen Index (HI ranges from 150-300 (mgHC/g and the Tmax values falls within the range of greater than or equal to 430°C. The hydrocarbon potentials in Herwa-1 well was further supported with the values of S1+S2 which is greater than or equal to 2 mg/g of rock in almost all the samples, suggesting a good hydrocarbon potentials. The 1-D basin model was constructed for Herwa-1 well in order to assess the burial history and thermal maturity of the potential source rocks in the Nigerian sector of the Chad basin. The modeling results indicate that maximum burial occurred in the late Miocene and suggesting erosion might have been the cause of the thinning of the Tertiary sediments in the present time. The calibration of Vitrinite reflectance against Temperature revealed the present day heat flow to be at 60 mW/m2 and Paleo heat flow falls within the range of 68 mW/m2. However, it is also revealed that Oil Window begins at (0.60-1.30% VRr at the depth of (2000-3000 m in the middle Cretaceous and the Gas Window start during the late Cretaceous to Tertiary with a value of (1.3-2.5% VRr at a depth greater than (3500 m.

  3. Basin-scale distribution of sill intrusions in the Tunguska Basin, East Siberia, and the implications for the end-Permian environmental crisis

    Svensen, Henrik H.; Frolov, Sergei; Akhmanov, Grigorii G.; Polozov, Alexander G.; Planke, Sverre


    The emplacement of the Siberian Traps Large igneous province through the Tunguska Basin is regarded as the main processes behind the end-Permian environmental crisis. Still, the lack of data from the Tunguska Basin represents one of the main uncertainties in understanding this link. Degassing from contact metamorphic aureoles in evaporites is suggested as key to the continental mass extinction, but very little is known about the actual distribution of sills within these lithologies. We present results from a unique borehole database with more than 700 boreholes, where 293 boreholes are studied in detail and presented here. The boreholes cover large parts of the basin, from Norilsk in the north (N69) to Bratsk in the south (N55), with a bias towards petroleum-bearing regions. In total, 93.5% of the selected boreholes contain sill intrusions. The sill thicknesses vary considerably from kilometer-scale intrusive complexes to individual thin sills of a few tens of meters. Locally, thick sills (up to 900 meters in thickness) occur in the upper part of the sedimentary succession, affecting the coal-rich Tunguska Series sediments. However, on average, the thickest sills in the basin are emplaced within the vast Cambrian salt formations, with average thicknesses in the 115-130 meter range. Accompanying petrographic investigations of metamorphic sediments demonstrate that widespread high temperature devolatilization took place. Degassing to the atmosphere took place via explosive pipe degassing and seepage. We show that depending on the specific location within the province and the emplacement depth, the potential for degassing of both greenhouse gases (CH4, CO2), aerosols (SO2), and ozone destructive gases (CH3Cl, CH3Br) was substantial and can explain the end-Permian mass extinction.

  4. Bouguer gravity anomaly of the Moon from CE-1 topography data:Implications for the impact basin evolution


    In this study,the terrain correction for lunar free-air gravity anomaly (FAGA) is calculated in spherical coordinates based on the global topography data detected by the laser altimeter on Chang’E-1 (CE-1). The obtained lunar Bouguer gravity anomaly (BGA) reveals density irregularities of the interior mass. BGA is important in characterizing the mascon basins. According to the BGA of the Moon,the South Pole-Aitken (SPA) basin is considered the largest mascon basin on the Moon,and the feature of BGA in the basin implies the impacting direction. Further,the mascon basins seem to be classified into two types,Type Highland and Type Plain. For the mascon basins of Type Highland the dense materials mainly come from the shallow crust,which are associated with the basalt deposits. The other type,Type Plain,includes mascon basins whose major dense materials may be located deep at the litho-sphere,corresponding to the uplifted mantle.

  5. Hydrological Controls of Riverine Ecosystems of the Napo River (Amazon Basin): Implications for the Management and Conservation of Biodiversity

    Celi, J. E.; Hamilton, S. K.


    Scientific understanding of neotropical floodplains comes mainly from work on large rivers with predictable seasonal flooding regimes. Less studied rivers and floodplains on the Andean-Amazon interface are distinct in their hydrology, with more erratic flow regimes, and thus ecological roles of floodplain inundation differ in those ecosystems. Multiple and unpredictable flooding events control inundation of floodplains, with important implications for fish and wildlife, plant communities, and human activities. Wetlands along the river corridor exist across a continuum from strong river control to influence only by local waters, with the latter often lying on floodplain paleoterraces. The goal of this study was to understand the hydrological interactions and habitat diversity of the Napo River, a major Amazon tributary that originates in the Andes and drains exceptionally biodiverse Andean foreland plains. This river system is envisioned by developers as an industrial waterway that would require hydrological alterations and affect floodplain ecosystems. Water level regimes of the Napo River and its associated environments were assessed using networks of data loggers that recorded time under water across transects extending inland from the river across more than 100 sites and for up to 5 years. These networks also included rising stage samplers that collected flood water samples for determination of their origin (i.e., Andean rivers vs. local waters) based on hydrochemical composition. In addition, this work entails a classification of aquatic environments of the Napo Basin using an object-oriented remote sensing approach to simultaneously analyze optical and radar satellite imagery and digital elevation models to better assess the extent and diversity of flooded environments. We found out a continuum of hydrological regimes and aquatic habitats along the Napo River floodplains that are linked to the river hydrology in different degrees. Overall, environments that

  6. Procedure for calculating estimated ultimate recoveries of Bakken and Three Forks Formations horizontal wells in the Williston Basin

    Cook, Troy A.


    Estimated ultimate recoveries (EURs) are a key component in determining productivity of wells in continuous-type oil and gas reservoirs. EURs form the foundation of a well-performance-based assessment methodology initially developed by the U.S. Geological Survey (USGS; Schmoker, 1999). This methodology was formally reviewed by the American Association of Petroleum Geologists Committee on Resource Evaluation (Curtis and others, 2001). The EUR estimation methodology described in this paper was used in the 2013 USGS assessment of continuous oil resources in the Bakken and Three Forks Formations and incorporates uncertainties that would not normally be included in a basic decline-curve calculation. These uncertainties relate to (1) the mean time before failure of the entire well-production system (excluding economics), (2) the uncertainty of when (and if) a stable hyperbolic-decline profile is revealed in the production data, (3) the particular formation involved, (4) relations between initial production rates and a stable hyperbolic-decline profile, and (5) the final behavior of the decline extrapolation as production becomes more dependent on matrix storage.

  7. Lateral Drilling and Completion Technologies for Shallow-Shelf Carbonates of the Red River and Ratcliffe Formations, Williston Basin

    David Gibbons; Larry A. Carrell; Richard D. George


    Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil- well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius laterals in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2590 to 2890 m (8500 to 9500 ft) in Richland Co., MT; Bowman Co., ND; and Harding Co., SD.

  8. Stratigraphic architecture of a fluvial-lacustrine basin-fill succession at Desolation Canyon, Uinta Basin, Utah: Reference to Walthers’ Law and implications for the petroleum industry

    Ford, Grace L.; David R. Pyles; Dechesne, Marieke


    A continuous window into the fluvial-lacustrine basin-fill succession of the Uinta Basin is exposed along a 48-mile (77-kilometer) transect up the modern Green River from Three Fords to Sand Wash in Desolation Canyon, Utah. In ascending order the stratigraphic units are: 1) Flagstaff Limestone, 2) lower Wasatch member of the Wasatch Formation, 3) middle Wasatch member of the Wasatch Formation, 4) upper Wasatch member of the Wasatch Formation, 5) Uteland Butte member of the lower Green River Formation, 6) lower Green River Formation, 7) Renegade Tongue of the lower Green River Formation, 8) middle Green River Formation, and 9) the Mahogany oil shale zone marking the boundary between the middle and upper Green River Formations. This article uses regional field mapping, geologic maps, photographs, and descriptions of the stratigraphic unit including: 1) bounding surfaces, 2) key upward stratigraphic characteristics within the unit, and 3) longitudinal changes along the river transect. This information is used to create a north-south cross section through the basin-fill succession and a detailed geologic map of Desolation Canyon. The cross section documents stratigraphic relationships previously unreported and contrasts with earlier interpretations in two ways: 1) abrupt upward shifts in the stratigraphy documented herein, contrast with the gradual interfingering relationships proposed by Ryder et al., (1976) and Fouch et al., (1994), 2) we document fluvial deposits of the lower and middle Wasatch to be distinct and more widespread than previously recognized. In addition, we document that the Uteland Butte member of the lower Green River Formation was deposited in a lacustrine environment in Desolation Canyon.

  9. Implications of Spatial Variability in Heat Flow for Geothermal Resource Evaluation in Large Foreland Basins: The Case of the Western Canada Sedimentary Basin

    Simon Weides


    Full Text Available Heat flow and geothermal gradient of the sedimentary succession of the Western Canada Sedimentary Basin (WCSB are mapped based on a large thermal database. Heat flow in the deep part of the basin varies from 30 mW/m2 in the south to high 100 mW/m2 in the north. As permeable strata are required for a successful geothermal application, the most important aquifers are discussed and evaluated. Regional temperature distribution within different aquifers is mapped for the first time, enabling a delineation of the most promising areas based on thermal field and aquifer properties. Results of previous regional studies on the geothermal potential of the WCSB are newly evaluated and discussed. In parts of the WCSB temperatures as high as 100–210 °C exist at depths of 3–5 km. Fluids from deep aquifers in these “hot” regions of the WCSB could be used in geothermal power plants to produce electricity. The geothermal resources of the shallower parts of the WCSB (>2 km could be used for warm water provision (>50 °C or district heating (>70 °C in urban areas.

  10. Provenance of Miocene submarine fans in the Shikoku Basin: Results from NanTroSEIZE and implications for stratigraphic correlation of subduction inputs

    Pickering, K. T.; Underwood, M.; Moore, G. F.


    Seismo-stratigraphy, coring and LWD during IODP Expeditions 319, 322, and 333 (Sites C0011 / C0012) show three Miocene submarine fans in the NE Shikoku Basin, with broadly coeval deposits at ODP Site 1177 and DSDP Site 297, NW Shikoku Basin. Pickering et al. (2013) have shown that the sediment dispersal patterns for these fans have major implications for paleogeographies at that time. The oldest, Middle Miocene Kyushu Fan is the finest grained, has a sheet-like geometry, and was fed by quartz-rich sediment gravity-flows derived mostly from an ancestral landmass in the East China Sea. This likely sediment provenance is further supported by U-Pb zircon and fission track analysis of both zircons and apatites from sediments taken from the forearc and trench of the Nankai Trough, together with rivers from southwest Japan, that point to the influence of the Yangtze River in supplying into the Shikoku Basin prior to rifting of the Okinawa Trough at 10 to 6 Ma (Clift et al. 2013). During prolonged hemipelagic mud deposition at C0011-C0012 (12.2 to 9.1 Ma), sand supply continued at Sites 1177 and 297. Sand delivery to much of the Shikoku Basin, however, probably halted during a phase of sinistral strike-slip and oblique plate motion, after which the Daiichi Zenisu Fan (9.1 to 8.0 Ma) was fed by submarine channels. The youngest fan (Daini Zenisu; 8.0 to 7.6 Ma) has sheet-like geometry with thick-bedded, coarse-grained pumiceous sandstones. The pumice fragments were fed from a mixed provenance that included the collision zone of the Izu-Bonin and Honshu arcs. The shift from channelized to sheet-like flows was probably favored by renewal of relatively rapid northward subduction, which accentuated the trench as a bathymetric depression. Understanding the stratigraphic position and 3-D geometry of the sandbodies has important implications for stratigraphic correlation throughout the northern Shikoku Basin, together with subduction-related processes, including the potential for

  11. Some postulates on the tecto magmatism, tectonostratigraphy and economic potential of kirana - malani basin: implications for occurrence of petroleum

    The so called shield elements exposed to the west of the Aravalli Orogen and exposed in Kirana, Nagar Parkar, Jodhpur, Malani, Tosham, Mount Abu and Erinpura are nether a part of Aravalli Orogen nor do they belong to the Vindhyan Basin. These volcano plutonic and sedimentary rocks represent a distinct cratonic rift assemblage. They were deposited in extensional basin formed as a result of rising of the mantle plume around 1000 ma. This basin is named by us as Malani-Kirana Basin. The stratigraphy of Kirana area has been revised and correlated with the Indian counterpart areas west of the Aravalli range. The Hachi volcanics are correlated with Tosham volcanics. The later are a part of an extensive volcano plutonic igneous province with other centres in Rajasthan and Nagar Parkar. The overlying sedimentary package of Kirana area is designated by us as Machh Super Group and it includes Tuguwali formation, Asian wala quartzites. Hadda quartzites and Sharaban conglomerates. The Machh Super Group is correlated with the lower part of the Marwar Supergroup. The equivalents of the upper Marwar Super group must occur in Pakistan to the south and south west of Kirana adjoining Bikaner - Nagaur Basin of India. Metamorphism in the Machh Super Group sediments must decrease in this direction, therefore hydrocarbon prospects may occur in Pakistani region adjoining hydrocarbon bearing Bikaner - Nagaur Basin of India. Volcanic hosted massive oxide-sulfide deposits have recently been discovered in the subsurface in Hachi volcanics near Chiniot. Such deposits must exist throughout Kirana-Malani Basin west of the Aravalli Orogen. (author)

  12. Chronological dating and tectonic implications of late Cenozoic volcanic rocks and lacustrine sequence in Oiyug Basin of southern Tibet


    Reconstruction of uplift history of the Tibetan Plateau is crucial for understanding its environmental impacts. The Oiyug Basin in southern Tibet contains multiple periods of sedimentary sequences and volcanic rocks that span much of the Cenozoic and has great potential for further studying this issue. However, these strata were poorly dated. This paper presents a chronological study of the 145 m thick and horizontally-distributed lacustrine sequence using paleomagnetic method as well as a K-Ar dating of the underlying volcanic rocks. Based on these dating results, a chronostratigraphic framework and the basin-developmental history have been established for the past 15 Ma, during which three tectonic stages are identified. The period of 15-8.1 Ma is characterized by intense volcanic activities involving at least three major eruptions. Subsequently, the basin came into a tectonically quiescent period and a lacustrine sedimentary sequence was developed. Around 2.5 Ma, an N-S fault occurred across the southern margin of the basin, leading to the disappearance of the lake environment and the development of the Oiyug River. The Gyirong basin on northern slope of the Himalayas shows a similar basin developmental history and thus there is a good agreement in tectonic activities between the Himalayan and Gangdise orogenic belts. Therefore, the tectonic evolution stages experienced by the Oiyug Basin during the past 15 Ma could have a regional significance for southern Tibet. The chronological data obtained from this study may provide some constraints for further studies with regard to the tectonic processes and environmental changes in southern Tibetan Plateau.

  13. Late stage thermal history of the Songliao Basin and its tectonic implications: Evidence from apatite fission track (AFT) analyses


    Apatite Fission Track (AFT) data from the Songliao Basin indicates that the late stage tectonic movements in the Songliao Basin have zoning in space and episodes in time. The late stage tectonic movements started from the east part of the basin and migrated westward. AFT ages in the east part of the basin are older than those in the west part of the basin, suggesting that the uplift occurred earlier in the east than in the west. The denudation thickness in the east part of the basin is significantly greater than that in the centre and west. The thermal history evolved two episodes of rapid cooling and subsequent slow cooling processes. Age-depth relationship derived from the AFT data indicates a four-episode denudation history. Further Monte Carlo random simulation of the AFT data reveals the four changing points of the thermal evolution at 65 Ma, 43.5 Ma, 28 Ma and 15 Ma, respectively. The uplifting and denudation rates from different episodes of evolution are proportional to the plate convergence rate. Based on the above analyses and the regional geologic background, it is concluded that the late stage thermal events in the Songliao Basin are the far field response to the subduction of the Pacific Plate under the Eurasian Plate. The first episode of the rapid cooling probably started at the end of the Nenjiang Formation, climaxed at the end of the Cretaceous and ceased at the Late Eocene. The subsequent slow cooling lasts another 15 Ma. The first episode of the evolution is the far field response to the major episode of the Yanshan Movement and subsequent series of the tectonic reorganization, especially the directional change of the Pacific Movement and also the subduction of the Indian Plate underneath the Eurasian Plate. While the second episode of the evolution is the far field response to the extension and closure of the Sea of Japan. Extension led to the migration and converging of the mantle heat flow to the Sea of Japan and resulted in the rapid cooling

  14. Tectonic evolution of Tarim basin in Cambrian-Ordovician and its implication for reservoir development, NW China

    Bingsong, Yu; Zhuang, Ruan; Cong, Zhang; Yinglu, Pan; Changsong, Lin; Lidong, Wang


    In order to find the impact of regional tectonic evolution of Tarim basin on the inside distribution of sedimentary facies and reservoir development, this paper, based on the research of plate-tectonic evolution of Tarim basin, conducts an in-depth analysis on the basin's inside sedimentary response to the Eopaleozoic regional geodynamic reversion from extension to convergence around Tarim plate, and concludes that the regional geodynamic environment of surrounding areas closely contributes to the formation and evolution of paleo-uplifts, differentiation of sedimentary facies in platform, distribution of high-energy reef and bank facies belts, conversion of sedimentary base level from fall to rise, obvious change of lithology from dolomite to limestone, and formation of several unconformity surfaces in Ordovician system in the basin. A series of sedimentary responses in the basin are controlled by regional dynamic setting, which not only controls the distribution of reservoirs in reef and bank facies but also restricts the development and distribution of karst reservoirs controlled by the unconformity surfaces. This offers the macro geological evidences for us to further analyze and evaluate the distribution of favorable reservoirs.

  15. Hybrid Analysis of Blue Water Consumption and Water Scarcity Implications at the Global, National, and Basin Levels in an Increasingly Globalized World.

    Wang, Ranran; Zimmerman, Julie


    As the fifth global water footprint assessment, this study enhanced previous estimates of national blue water consumption (including fresh surface and groundwater) and main economic activities with (1) improved spatial and sectoral resolution and (2) quantified the impacts of virtual water trade on water use and water stress at both the national and basin level. In 2007, 1194 Gm(3) of blue water was consumed globally for human purposes. The consuming (producing) of primary and manufactured goods and services from the sectors of "Primary Crops and Livestock", "Primary Energy and Minerals", "Processed Food and Beverages", "Non-food Manufactured Products", "Electricity", "Commercial and Public Services", and "Households" accounted for 33% (91%), ∼ 0% (1%), 37% (water consumption, respectively. The considerable differences in sectoral water consumption accounted for by the two perspectives (consumption- vs production-based) highlight the significance of the water consumed indirectly, upstream in the supply chain (i.e., > 70% of total blue water consumption) while offering additional insights into the water implications of critical interconnected economic activities, such as the water-energy nexus. With 145 Gm(3) (12%) of the blue water consumption embedded in the goods and services traded internationally, 89 countries analyzed were net blue water importers at the national level. On the basin level, the impacts of virtual water trade on water stress were statistically significant for basins across the world and within 104 countries; virtual water trade mitigated water stress for the basins within 85 of the 104 countries, including all of those where there are moderate and greater water stress countrywide (except Italy). PMID:27101068

  16. Elemental and Sr Nd Pb isotopic geochemistry of Late Paleozoic volcanic rocks beneath the Junggar basin, NW China: Implications for the formation and evolution of the basin basement

    Zheng, Jianping; Sun, Min; Zhao, Guochun; Robinson, Paul T.; Wang, Fangzheng


    The basement beneath the Junggar basin has been interpreted either as a micro-continent of Precambrian age or as a fragment of Paleozoic oceanic crust. Elemental and Sr-Nd-Pb isotopic compositions and zircon Pb-Pb ages of volcanic rocks from drill cores through the paleo-weathered crust show that the basement is composed mainly of late Paleozoic volcanic rock with minor shale and tuff. The volcanic rocks are mostly subalkaline with some minor low-K rocks in the western Kexia area. Some alkaline lavas occur in the central Luliang uplift and northeastern Wulungu depression. The lavas range in composition from basalts to rhyolites and fractional crystallization played an important role in magma evolution. Except for a few samples from Kexia, the basalts have low La/Nb (<1.4), typical for oceanic crust derived from asthenospheric melts. Zircon Pb-Pb ages indicate that the Kexia andesite, with a volcanic arc affinity, formed in the early Carboniferous (345 Ma), whereas the Luliang rhyolite and the Wucaiwan dacite, with syn-collisional to within-plate affinities, formed in the early Devonian (395 and 405 Ma, respectively). Positive ɛNd( t) values (up to +7.4) and low initial 87Sr/ 86Sr isotopic ratios of the intermediate-silicic rocks suggest that the entire Junggar terrain may be underlain by oceanic crust, an interpretation consistent with the juvenile isotopic signatures of many granitoid plutons in other parts of the Central Asia Orogenic Belt. Variation in zircon ages for the silicic rocks, different Ba, P, Ti, Nb or Th anomalies in the mafic rocks, and variable Nb/Y and La/Nb ratios across the basin, suggest that the basement is compositionally heterogeneous. The heterogeneity is believed to reflect amalgamation of different oceanic blocks representing either different evolution stages within a single terrane or possibly derivation from different terranes.

  17. Cenozoic stratigraphic development in the north Chilean forearc: Implications for basin development and uplift history of the Central Andean margin

    Hartley, Adrian J.; Evenstar, Laura


    Analysis of the Cenozoic stratigraphic development of the forearc of northern Chile between 18°S and 23°30'S, allows constraints to be placed on the timing and nature of basin formation and the uplift history of the Central Andes. Chronostratigraphic charts have been constructed from 20 lithostratigraphic sections distributed throughout the forearc. Sections were taken from the Longitudinal Valley, Central Depression, Calama Basin, Salar de Atacama, Precordillera and the western flank of the Western Cordillera. Correlation and timing of events is largely based on the presence of dated volcanic horizons in all the studied sections. Three chronostratigraphic units are defined based upon the presence of regional unconformities. Deposition of the Late Eocene to Early Miocene chronostratigraphic unit (38-19 Ma) commenced across an irregular unconformity surface between ˜ 38 and 30 Ma with alluvial fan and fluvial sediments derived from the east interbedded with rhyolitic ignimbrites. Aggradation after 25 Ma resulted in development of a large broad basin over much of northern Chile that expanded eastwards through onlap onto basement. Deposition terminated around 19 Ma with the development of an angular unconformity over much, but not all of the study area. During deposition of the Early to Late Miocene chronostratigraphic unit (18-10 Ma) emergent volcanic source areas to the east provided catchments for large fluvial systems that drained westwards into endorheic ephemeral lacustrine basins. Fold growth affected sedimentation restricting accommodation space to small intra-thrust basins in the Precordillera and localised disruption and unconformity development in the Longitudinal Valley. The Late Miocene to present day chronostratigraphic unit (10-0 Ma) followed the development of a regional angular unconformity at 10 Ma. Sedimentation was restricted to a series of thrust-bounded endorheic basins in both the Central Depression and the Precordillera sourced from the east

  18. Miocene woods from the Qaidam Basin on northern Qinghai-Tibet Plateau with implications for paleoenvironmental change

    Cheng, Ye-Ming; Yang, Xiao-Nan


    The Qaidam Basin with the most complete Cenozoic sedimentary preservation in northern Qinghai-Tibet Plateau is a key area for studying uplift and environmental change of the plateau. Three types of woods, Ulmus (Ulmaceae), Leguminosae (?) (angiosperm) and Cupressaceae (gymnosperm) were recognized from the large-scale preservation of fossil woods in late Miocene Shang Youshashan Formation in northern Qaidam Basin on the Qinghai-Tibet Plateau. Both investigations of their Nearest Living Relatives (NLRs) and previous grassland mammal evidences suggest that there have been temperate deciduous broad-leaved forest and needle-leaved forest with grass in northern Qaidam Basin during the late Miocene in contrast to the desert vegetation found there nowadays. The presence of the ancient forest steppe further implies that the southern part of the plateau used to be adequately low, so that the Indian and East Asian monsoons could approach the northern area and to accommodate the vegetation in late Miocene.

  19. Rhinocerotidae from the Upper Miocene deposits of the Western Pannonian Basin (Hungary): implications for migration routes and biogeography

    Pandolfi, Luca; Gasparik, Mihály; Magyar, Imre


    Although the rhinoceros remains have high biochronological significance, they are poorly known or scarcely documented in the uppermost Miocene deposits of Europe. Several specimens collected from the Upper Miocene (around 7.0 Ma, Turolian) deposits of Kávás (Pannonian Basin, Western Hungary), previously determined as Rhinoceros sp., are revised and described in this paper. The postcranial remains of these specimens belong to "Dihoplus" megarhinus (de Christol) on the basis of the morphological and morphometric characters of humerus, radii, metacarpal and metatarsal elements. An overview of rhinoceros remains from several uppermost Miocene localities and the revision of the rhinoceros material from the Pannonian Basin suggest that "D." megarhinus spread during the latest Miocene from the Pannonian Basin towards Italy. The occurrences of this species in Western Hungary and Italy during the latest Miocene further imply that Rhinocerotini species were biogeographically segregated between Western, Southern and Central Europe.

  20. Multi-Model CIMP5 projected impacts of increased greenhouse gases on the Niger basin and implications for hydropower production

    Oyerinde, Ganiyu; Wisser, Dominik


    Climate change could potentially have large impacts on water availability in West Africa and the predictions are accrued with high uncertainties in this region. Countries in the Niger River basin (West Africa) plan the investment of 200 million in the installation of an additional 400MW of hydropower in the nearest future, adding to the existing 685MW. With the impacts of climate change in the basin already occurring, there is a need for comprehending the influence of future hydro-climatic changes on water resources and hydro-power generation in the basin. This study uses a hydrological model to simulate river flow under present and future conditions and evaluates the impacts of potential changes on electricity production of the largest hydroelectric dam (Kainji) in the Niger Basin. The Kainji reservoir produces 25 per cent of the current energy needs of Nigeria and was subject to large fluctuations in energy production as a result of variable inflow and operational reasons. Inflow into the reservoir was simulated using hydroclimatic data from a set of 7 regional climate models (RCM) with two emission scenarios from the CORDEX-Africa regional downscaling experiment, driven with CMIP5 data. Based on observations of inflow, water level in the reservoir, and energy production we developed a simple hydroelectricity production model to simulate future energy production for the reservoir. Results suggest increases in river flow for the majority of RCM data as a result of increases in precipitation in the headwaters of the basin around 2050 and slightly decreasing trends for low emission scenarios by the end of the century. Despite this consistent increase, shifts in timing of river flow can challenge the reliable production of energy. This analysis could help assess the planning of hydropower schemes in the basin for a sustainable production of hydroelectricity in the future.

  1. High levels of mercury contamination in multiple media of the Carson River drainage basin of Nevada: implications for risk assessment.

    M. S. Gustin; Taylor, G. E.; Leonard, T L


    Approximately 5.5 x 109 g (4.0 x 105) of mercury was discharged into the Carson River Drainage Basin of west-central Nevada during processing of the gold- and silver-rich Comstock ore in the late 1800s. For the past 13 decades, mercury has been redistributed throughout 500 km2 of the basin, and concentrations are some of the highest reported values in North America. This article documents the concentrations of mercury in the air, water, and substrate at both contaminated and noncontaminated s...

  2. Seismic constraints on a large mafic intrusion with implications for the subsidence mechanism of the Danish Basin

    Sandrin, Alessandro; Thybo, Hans


    Seismic refraction data from the ESTRID-1 profile are used for seismic velocity modeling along the strike of a large mafic intrusion in the Norwegian-Danish Basin, central Denmark. The P wave velocity structure identifies a ~8 km thick sedimentary succession with velocities between 1.8 and 5.7 km...... mGal) positive gravity anomaly known as Silkeborg Gravity High. The intrusion has a minimum volume of 40,000 km3, which implies that the magma influx and the consequent cooling of the lithosphere from high temperature could have had profound effects on the subsidence of the Danish Basin, in...

  3. Tectonic evolution of Tarim basin in Cambrian–Ordovician and its implication for reservoir development, NW China

    Yu Bingsong; Ruan Zhuang; Zhang Cong; Pan Yinglu; Lin Changsong; Wang Lidong


    In order to find the impact of regional tectonic evolution of Tarim basin on the inside distribution of sedimentary facies and reservoir development, this paper, based on the research of plate-tectonic evolution of Tarim basin, conducts an in-depth analysis on the basin’s inside sedimentary response to the Eopaleozoicregional geodynamic reversion from extension to convergence around Tarim plate, and concludes that the regional geodynamic environment of surrounding areas closely contributes to the formation and evolution of paleo-uplifts, differentiation of sedimentary facies in platform, distribution of high-energyreef and bank facies belts, conversion of sedimentary base level from fall to rise, obvious change of lithology from dolomite to limestone, and formation of several unconformity surfaces in Ordovician system in the basin. A series of sedimentary responses in the basin are controlled by regional dynamic setting, which not only controls the distribution of reservoirs in reef and bank facies but also restricts the development and distribution of karst reservoirs controlled by the unconformity surfaces. This offers the macro geological evidences for us to further analyze and evaluate the distribution of favorable reservoirs.

  4. Late Neogene evolution of the Taza-Guercif Basin (Rifian Corridor, Morocco) and implications for the Messinian salinity crisis

    Krijgsman, W.; Langereis, C.G.; Zachariasse, W.J.; Boccaletti, M.; Moratti, G.; Gelati, R.; Iaccarino, S.; Papani, G.; Villa, G.


    Magnetostratigraphic and biostratigraphic results are presented from Neogene deposits in the Taza-Guercif Basin, located at the southern margin of the Rifian Corridor in Morocco. This corridor was the main marine passageway which connected the Mediterranean with the Atlantic during Messinian times.

  5. Magnetostratigraphic dating of the Xiashagou Fauna and implication for sequencing the mammalian faunas in the Nihewan Basin, North China

    Liu, Ping; Deng, Chenglong; Li, Shihu; Cai, Shuhui; Cheng, Hongjiang; Wei, Qi; Zhu, Rixiang


    The Nihewan Basin sedimentary sequences in northern China are rich in mammalian fossil and Paleolithic sites, thus providing insights into our understanding of Quaternary land mammal biochronology and early human settlements in East Asia. Here we present high-resolution magnetostratigraphic results

  6. Estimation of subsurface formation temperature in the Tarim Basin, northwest China: implications for hydrocarbon generation and preservation

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan


    Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the

  7. Estimation of subsurface formation temperature in the Tarim Basin, northwest China: implications for hydrocarbon generation and preservation

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan


    Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the

  8. Diet and environment of a mid-Pliocene fauna in the Zanda Basin (western Himalaya): Paleo-elevation implications

    Wang, Y.; Xu, Y.; Khawaja, S. N.; Wang, X.; Passey, B. H.; Zhang, C.; Li, Q.; Tseng, Z. J.; Takeuchi, G.; Deng, T.; Xie, G.


    A mid-Pliocene fauna (3.1-4.0 Ma) was recently discovered in the Zanda Basin in western Himalaya, at an elevation of about 4200 m above sea level. These fossil materials provide a unique window for examining the linkage among tectonic, climatic and biotic changes. Here we report the initial results from isotopic analyses of this fauna and of modern herbivores in the Zanda Basin. The δ13C values of enamel samples from modern wild Tibetan ass, horse, cow and goat from the Zanda Basin are -9.1±2.1%, which indicate a diet comprising predominantly of C3 plants and are consistent with the current dominance of C3 vegetation in the area. The enamel-δ13C values of the fossil horse, rhino, deer, and bovid are -9.6±0.8%, indicating that these ancient mammals, like modern herbivores in the area, fed primarily on C3 vegetation and lived in an environment dominated by C3 plants. The enamel-δ18O values of mid-Pliocene obligate drinkers (i.e., horse and rhino) are lower than those of their modern counterpart, most likely indicating a shift in climate to much drier conditions after ~3-4 Ma. Preliminary paleo-temperature estimates derived from a fossil-based temperature proxy as well as the "clumped isotope" thermometer for the mid-Pliocene Zanda Basin, although somewhat equivocal, are close to the present-day mean annual temperature in the area, suggesting that the paleo-elevation of the Zanda Basin in the mid-Pliocene was similar to its present-day elevation.

  9. Franciscan olistoliths in Upper Cretaceous conglomerate deposits, Western Transverse Ranges, California: Implications for basin morphology and tectonic history

    Reed, W.E.; Campbell, M.D. (Univ. of California, Los Angeles, CA (United States). Dept. of Earth and Space Sciences)


    Compositional analyses reveal that Upper Cretaceous sediments exposed in the Western Transverse Ranges of CA were deposited in submarine fan systems in a forearc basin. Point count data suggest a magmatic arc/recycled orogen as the dominant provenance for these sediments. Paleocurrent measurements from conglomerates in these sediments yield a northerly transport direction. Removal of ca. 90[degree] of clockwise rotation and 70 km of right-lateral slip restore this section to a position west of the San Diego area. The forearc basin would have had a N-S orientation, with the bulk of sediments supplied by the Peninsular Ranges to the east. Evidence of the erosion of the accretionary wedge is provided by the presence of large, internally stratified olistoliths of Franciscan material interbedded with and surrounded by upper Cretaceous conglomerate. Petrographic, quantitative SEM, and microprobe analyses indicate the presence of diagnostic Franciscan mineralogy, including glaucophane, riebeckite, lawsonite, and serpentine. Olistoclasts of chert, jadeitic graywacke, serpentine, and blueschist are found intermixed with the conglomerates in close association with the olistoliths. This association provides strong field evidence that recirculation of melange material within the subduction zone was active and well-established by late Cretaceous time. Inferences regarding the forearc system morphology can be drawn from these observations. The occurrence of coarse, easterly-derived conglomerates surrounded by large, stratified, but sheared, westerly-derived Franciscan debris, suggests a narrow, relatively steep-sided basin. Paleocurrent measurements gave no indication of axial transport within the basin. This morphology suggests that, in late Cretaceous time, the forearc basin was youthful, with a narrow arc-trench gap. Thus, relative convergence rates between the North American and Pacific plates were possibly slower than Tertiary convergence rates.

  10. Oceanic response to Pliensbachian and Toarcian magmatic events: Implications from an organic-rich basinal succession in the NW Tethys

    Neumeister, S.; Gratzer, R.; Algeo, T. J.; Bechtel, A.; Gawlick, H.-J.; Newton, R. J.; Sachsenhofer, R. F.


    The Bächental bituminous marls (Bächentaler Bitumenmergel) belonging to the Sachrang Member of the Lower Jurassic Middle Allgäu Formation were investigated using a multidisciplinary approach to determine environmental controls on the formation of organic-rich deposits in a semi-restricted basin of the NW Tethys during the Early Jurassic. The marls are subdivided into three units on the basis of mineralogical composition, source-rock parameters, redox conditions, salinity variations, and diagenetic processes. Redox proxies (e.g., pristane/phytane ratio; aryl isoprenoids; bioturbation; ternary plot of iron, total organic carbon, and sulphur) indicate varying suboxic to euxinic conditions during deposition of the Bächental section. Redox variations were mainly controlled by sea-level fluctuations with the tectonically complex bathymetry of the Bächental basin determining watermass exchange with the Tethys Ocean. Accordingly, strongest anoxia and highest total organic carbon content (up to 13%) occur in the middle part of the profile (upper tenuicostatum and lower falciferum zones), coincident with an increase in surface-water productivity during a period of relative sea-level lowstand that induced salinity stratification in a stagnant basin setting. This level corresponds to the time interval of the lower Toarcian oceanic anoxic event (T-OAE). However, the absence of the widely observed lower Toarcian negative carbon isotope excursion in the study section questions its unrestricted use as a global chemostratigraphic marker. Stratigraphic correlation of the thermally immature Bächental bituminous marls with the Posidonia Shale of SW Germany on the basis of C27/C29 sterane ratio profiles and ammonite data suggests that deposition of organic matter-rich sediments in isolated basins in the Alpine realm commenced earlier (late Pliensbachian margaritatus Zone) than in regionally proximal epicontinental seas (early Toarcian tenuicostatum Zone). The late Pliensbachian

  11. Porosity and Permeability of Jurassic-Triassic Formations of the South Georgia Rift Basin: Potential Implications for CO2 Storage

    Akintunde, O. M.; Knapp, C. C.; Knapp, J. H.; Prasad, M.; Olsen, P. E.


    Porosity and permeability are critical for evaluating reservoir injectivity and seal integrity for subsurface CO2 storage. Both properties are needed to determine the effective CO2 storage capacity. In addition, the ability to model and understand the physical interactions of the CO2 reservoir systems under in situ conditions is dependent on the reservoir porosity. We present results of rock physics evaluation of the porosity and permeability of the buried Jurassic-Triassic formations of the South Georgia Rift (SGR) basin using existing well and new experimental data. The SGR basin covers parts of South Carolina, Georgia, Alabama, and Florida and is buried beneath Cretaceous and younger Coastal Plain sediments. We focused our study on the South Carolina portion of the basin that has been identified in the Carbon Sequestration Atlas of United States and Canada as containing saline formations suitable for subsurface CO2 storage. Results of our rock physics analysis confirm the presence of porous reservoir units capped by low-porosity diabase sills. These potential reservoirs appear to have the capacity (pore volume and porosity) to store significant quantities of supercritical CO2. Our analysis further suggests that the SGR basin may contain distinct porosity-permeability regimes (geo-hydrologic systems) that are influenced by depositional environments. These regimes are: (1) high-porosity, low/medium permeability, as observed in the Norris Lightsey well with Triassic formation porosity of 20 - 32.5 percent and core-derived permeability of 1.5 - 8.9 mD, and (2) low-porosity, low-permeability, based on the average total porosity of 6.3 percent and permeability of 6.6 (E-5) - 1.6 (E-2) mD reported in the literature for the Dunbarton Triassic sediments. The Norris Lightsey sedimentary rocks are primarily lacustrine deposits and consist of fine-grained Triassic sandstone with interbedded layers of siltstone and mudstone, while the Dunbarton basin is dominated by fluvial

  12. Basin Testing of Wave Energy Converters in Trondheim: Investigation of Mooring Loads and Implications for Wider Research

    Vladimir Krivtsov; Brian Linfoot


    This paper describes the physical model testing of an array of wave energy devices undertaken in the NTNU (Norwegian University of Science and Technology) Trondheim basin between 8 and 20 October 2008 funded under the EU Hydralabs III initiative, and provides an analysis of the extreme mooring loads. Tests were completed at 1/20 scale on a single oscillating water column device and on close-packed arrays of three and five devices following calibration of instrumentation and the wave and curre...

  13. Stable Isotopes In Fossil Mammals, Fish and Shells From Kunlun Pass Basin, Tibetan Plateau: Paleoclimatic and paleoelevation implications

    Wang, Y.; Wang, X.; Xu, Y.; Zhang, C.; Li, Q.; Tseng, Z.; Takeuchi, G.; Deng, T.


    Stable carbon and oxygen isotope analyses of both terrestrial and aquatic fossils reveal a drastic change in habitat and hydrological regime in the Kunlun Pass Basin on the northern Tibetan Plateau since the late Pliocene. The δ13C values of both serial and bulk enamel samples from fossil herbivore teeth suggest that C4 grasses (i.e., warm climate grasses) were likely present in local ecosystems at the end of the Pliocene, around 2.0-2.5 Ma. The carbon isotopic variations among different species indicate mix habitats, including grasslands and wooded grasslands, occupied and partitioned by different species, consistent with palynological evidence. The anti-correlation between δ13C and δ18O values observed in the fossil teeth suggests that summer monsoons were a major source of moisture for the area in the late Pliocene. The more negative enamel-δ18O values of large herbivores in the late Pliocene suggest that paleo-meteoric water then was more depleted in 18O compared to the present-day meteoric water in the basin. The most likely cause for this δ18O shift in tooth enamel or water after the late Pliocene is a drastic change in the regional hydrological cycle (e.g., change in source and rainout history of atmospheric moisture or atmospheric circulation pattern, increasing aridity, and etc.) possibly due to tectonic and climate change. Our carbon and oxygen isotope data, in conjunction with geological/fossil evidence, suggest that the Kunlun Pass Basin had a much warmer and wetter climate in the late Pliocene, quite different from today's rock desert and cold steppe environments. The paleo-temperature estimates based on the δ18O values of fossil bones and paleo- meteoric water, if valid, would imply that the present-day high elevation of the basin was established after 2-3 Ma.

  14. Mesozoic basin-fill records in south foot of the Dabie Mountains: Implication for Dabie Orogenic attributes

    李忠; 李任伟; 孙枢; 张雯华


    Five evolutional phases are found from Mesozoic basin-fill sequences in the northern Jianghan basin, the south foot of the Dabie Mountains: (i) Early Triassic to the early period of Late Triassic showing continental shelf marine and paralic deposits; (ii) the middle-late period of Late Triassic indicating the uplift and erosion in compressional tectonic setting; (iii) the late period of Late Triassic to Early-Middle Jurassic showing peneplain terrestrial and fluvial clastic deposits interlayered with coal-seams; (iv) Late-Jurassic to Early-Cretaceous characterized by cycle fills of acidic volcanic rocks interstratified with pyroclastic rocks in intracontinental extension tectonic regime; (v) a lot of coarse clastic deposits similar to molasses occur in Late-Cretaceous mainly. Based on the compositions of detrital sandstones and conglomerates, combined with the analysis of sedimentary facies, it is indicated that most clasts sourced from the Yangtze continent from phase one to phase three, whose provenances are attributed to "recycled orogenic belt" types. On the other hand, detrital assemblages of the fifth phase deposits are mainly related with pre- Mesozoic metamorphic rocks of the Dabie Mountains, subjected to "arc orogenic belt" provenance types. In the Mesozoic basins of the south foot of the Dabie Mountains, it is proved that there are no direct depositional records corresponding to "Late Triassic syn-collisional orogenesis". Molasse depositional records of Upper Cretaceous distinctly reflect post-collisional orogenesis of the Dabie Mountains (intracontinental orogenesis) and intensive exhumation in extensional tectonic regime. This paper further discusses the inconsistent relations existing between basin-fill records at the south and north feet of the Dabie Mountains and the uplift models of the Dabie Mountains published, and indicates their key problems.

  15. Investigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco


    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quanti...

  16. Long Bone Histology of Sauropterygia from the Lower Muschelkalk of the Germanic Basin Provides Unexpected Implications for Phylogeny

    Klein, Nicole


    Background Sauropterygia is an abundant and successful group of Triassic marine reptiles. Phylogenetic relationships of Triassic Sauropterygia have always been unstable and recently questioned. Although specimens occur in high numbers, the main problems are rareness of diagnostic material from the Germanic Basin and uniformity of postcranial morphology of eosauropterygians. In the current paper, morphotypes of humeri along with their corresponding bone histologies for Lower to Middle Muschelk...

  17. Latest Permian to Middle Triassic cyclo-magnetostratigraphy from the Central European Basin, Germany: Implications for the geomagnetic polarity timescale

    Michael Szurlies


    In Central Germany, the about 1 km thick mainly clastic Germanic Lower Triassic (Buntsandstein) consists of about 60 sedimentary cycles, which are considered to reflect variability in precipitation within the epicontinental Central European Basin, most probably due to solar-induced short eccentricity cycles. They provide a high-resolution cyclostratigraphic framework that constitutes the base for creating a composite geomagnetic polarity record, in which this paper presents a Middle Buntsands...

  18. Messinian stratigraphy and biomagnetostratigraphy in the Garruchal section (Bajo Segura Basin). Implications for the Mediterranean salinity crisis

    Soria, Jesús M.; Caracuel, Jesús Esteban; Corbí, Hugo; Dinarès Turell, Jaume; Lancis, Carlos; Tent Manclús, José Enrique; Yébenes, Alfonso


    The Messinian and Pliocene stratigraphic record in the Garruchal section (Bajo Segura Basin) has been divided into three allostratigraphic units, whose timing were established through combined calcareous nannoplankton biostratigraphy and magnetostratigraphy. The T-MI Unit (late Tortonian – Messinian) recorded the pre-evaporitic marine sedimentation (pre-Messinian salinity crisis deposits). This Unit is limited at the top by the intra-Messinian unconformity, representing a subaeria...

  19. Late Neogene evolution of the Taza-Guercif Basin (Rifian Corridor, Morocco) and implications for the Messinian salinity crisis

    Krijgsman, W.; C. G. Langereis; Zachariasse, W.J.; Boccaletti, M.; Moratti, G.; Gelati, R.; Iaccarino, S.; Papani, G.; Villa, G


    Magnetostratigraphic and biostratigraphic results are presented from Neogene deposits in the Taza-Guercif Basin, located at the southern margin of the Rifian Corridor in Morocco. This corridor was the main marine passageway which connected the Mediterranean with the Atlantic during Messinian times. Correlation of the biostratigraphy and polarity sequence of the Taza-Guercif composite section to the astronomical time scale, allows an accurate dating of three subsequent events in the Rifian Cor...

  20. Detrital zircon provenance and paleogeography implications for Furnas Formation in the northwest of Paraná Basin

    Thais Borba Santos


    Full Text Available In the northwest of the Paraná Basin, between the states of Mato Grosso and Goiás, there are exposures of the Furnas Formation, where the Transbrasiliano Lineament is also recognized. From the analysis of magnetic maps, the geological and geophysical framework of the study area was defined, with six main domains separated by 5 lineaments. The contact between Paraguay Belt and the Goiás Magmatic Arc is marked by the main direction of the Transbrasiliano Lineament in the study area. Other lineaments that occur associated with the deformation direction of the Paraguay Belt have been identified as a minor component of Transbrasiliano Lineament. The description of outcrops along the northwest border of the Paraná Basin allowed the recognition of units I, II and III of the Furnas Formation. The U-Pb data from detrital zircon from the Furnas Formation showed predominance of grain with Neoproterozoic ages (560 - 800 Ma, with a minimum age of 526 Ma, and the occurrence of grain with Paleoproterozoic (≈1750/2100 Ma and Archean (≈2700/2800/3100 Ma ages. The study of detrital zircons provenance of the Furnas Formation using U-Pb age determination, associated with the structural framework of the foundation of the basin, and the comparison with paleoenvironmental data were the basis for assessing the paleogeography of the northwestern portion of the Paraná Basin during the aggradation of the Furnas Formation. Ages indicate an important Neoproterozoic contribution similar to the ages of the rocks found in the Goias Magmatic Arc, which associated with data of paleocurrents towards northwest allow us to infer that the arc rocks constituted high terrain, oriented in the NE-SW direction.

  1. Modified Gulf of California model for South Georgia,north Scotia Ridge, and implications for the Rocas Verdes back-arc basin, southern Andes

    Alabaster, T.; Storey, B. C.


    New field mapping and an integrated trace element and Nd isotopic study have been undertaken on the Jurassic-Cretaceous Larsen Harbour Complex on the island of South Georgia, recognized as a displaced part of the southern Andes ensialic, autochthonous Rocas Verdes marginal basin. Five basalt groups (Groups I-V) are identified from trace element data; initial Nd isotopic compositions suggest that they are derived from only two sources. Magmas produced during early stages of continental lithospheric attenuation (Groups I-III) were derived by varying degrees of partial melting and fractional crystallization from a large ion lithophile element (LILE)-enriched, low-ɛNd mantle source relative to normal (N)-type mid-ocean ridge basalt (MORB). Magmas produced during later stages of rifting (Groups IV and V) were, however, derived from a high-ɛNd asthenospheric mantle source similar to N-type MORB, unaffected by earlier LILE enrichment. Our data do not concur with previous suggestions that the Larsen Harbour Complex and, by implication, the Rocas Verdes formed in a supra-subduction-zone setting. On the basis of geologic and geochemical evidence, we favor basin formation along an oblique-slip margin akin to that of the Gulf of California.

  2. Information from geology: Implications for soil formation and rehabilitation in the post coal mining environment, Bowen Basin, Australia

    The coal mining industry is likely to disturb as much as 60,000 ha of the Bowen Basin up to the year 2000. While comprising only a small proportion of the approximately 32,000 km2 of the Bowen Basin, this considerable area will eventually need to be rehabilitated by creating appropriate land forms with a stabilizing and self-sustaining cover of vegetation. The job of restoring the disturbed area will fall to the practitioners of rehabilitation science. This paper briefly outlines the actual and potential significance of geological information to rehabilitation practice in the open-cut coal mining industry of the Bowen Basin. It focuses particularly on the problems of soil formation and the consequent limitations to ecosystem development due to the nature of the overburden materials and the environment. Lastly, it describes some of the distinctive features of the mine-soils of the area. Geological information can assist in the identification, classification, description and behaviour of post-mining materials. Potential inputs are not restricted to these and there is scope for wider inputs to management of the mining environment although the interface with biology requires further development. (author). 4 figs., 31 refs

  3. Luminescence ages for three 'Middle Palaeolithic' sites in the Nihewan Basin, northern China, and their archaeological and palaeoenvironmental implications

    Guo, Yu-Jie; Li, Bo; Zhang, Jia-Fu; Yuan, Bao-Yin; Xie, Fei; Roberts, Richard Graham


    The Nihewan Basin is a key region for studying the Palaeolithic archaeology of East Asia. However, because of the lack of suitable dating methods and representative lithic technologies in this region, the 'Middle Palaeolithic' sites in this basin have been designated based mainly on stratigraphic correlation, which may be unreliable. In this study, three Palaeolithic sites, Motianling, Queergou and Banjingzi, which have been assigned previously to the 'Middle Palaeolithic', are dated based on luminescence dating of K-feldspar grains. Our results show that the cultural layers at Motianling, Queergou and Banjingzi have ages of 315 ± 13, 268 ± 13 and 86 ± 4 ka (corresponding to Marine Isotope Stages 9, 8 and 5), respectively, suggesting that Motianling and Queergou should be assigned to the Lower Palaeolithic, while the age of Banjingzi is consistent with a Middle Palaeolithic attribution. Our results suggest that reassessing the age of 'Middle Palaeolithic' sites in the Nihewan Basin, and elsewhere in North China, is crucial for understanding the presence or absence of the Middle Palaeolithic phase in China. Our dating results also indicate that the Sanggan River developed sometime between about 270 and 86 ka ago.

  4. Geologic implications of large-scale trends in well-log response, northern Green River Basin, Wyoming

    Well-log response in lower Tertiary and Upper Cretaceous rocks in the northern Green River basin, Wyoming, is examined. Digitally recorded well-log data for selected wells located throughout the basin were processed by computer and displayed as highly compressed depth-scale plots for examining large-scale geologic trends. Stratigraphic units, formed under similar depositional conditions, are distinguishable by differing patterns on these plots. In particular, a strong lithologic contrast between Tertiary and underlying Upper Cretaceous non-marine clastic rocks is revealed and correlated through the study area. Laboratory analysis combined with gamma-ray spectrometry log data show that potassium feldspars in the arkosic Tertiary sandstones cause the contrast. The nature and extent of overpressuring has been examined. Data shift on shale conductivity and shale acoustic transit-time plots, previously ascribed to changes in pore pressure, correspond to stratigraphic changes and not necessarily with changes in pore pressure as indicated by drilling-mud weights. Gulf Coast well-log techniques for detecting overpressuring are unreliable and ineffectual in this basin, which has experienced significantly different geologic depositional and tectonic conditions

  5. 3D seismic analysis of the Collyhurst Sandstone: implications for CO2 sequestration in the East Irish Sea Basin

    Gamboa, Davide; Williams, John; Kirk, Karen; Gent, Christopher; Bentham, Michelle; Fellgett, Mark; Schofield, David


    Carbon Capture and Storage (CCS) is a vital technology towards low-carbon energy resources and the mitigation of global warming trends induced by rising CO2 levels in the atmosphere. The East Irish Sea Basin (EISB) is a key area for CCS in the western UK, having high CO2 storage potentials in explored hydrocarbon fields and in saline aquifers within the Permo-Triassic Sherwood Sandstone Formation. However, the theoretical storage potential of the EISB could be poorly estimated as the reservoir-prone Lower Permian formations are not considered in detail by current estimations. This work aims to fill this gap, focusing on the characterisation of the Lower Permian Collyhurst Sandstone Formation as a viable storage unit. The potential for CO2 storage is estimated as the total volume/area of suitable closures that are isolated by structural traps, occurring at depths suitable for CO2 injection and containment (>800m). Detailed structural and stratigraphic interpretations were made using 3D seismic data to assess the storage potential of the Collyhurst Sandstone Formation in the southern EISB. The basin strata is compartmentalised by numerous N-S trending faults. A higher degree of compartmentalisation occurs within regional anticlines where elongated tilted blocks are observed, bound by predominantly west-dipping faults that induce a variable offset of the Collyhurst Sandstone strata. Contrastingly, higher lateral continuity of this formation is observed within graben basins were faults are less frequent and with minor offset, thus potentially creating larger storage closures. Fault dip orientation in the grabens is variable, with west and east dipping faults occurring as a function of large east-dipping listric faults. This study was complemented by the stress modelling of the interpreted faults in order to assess the risk of CO2 leakage. Analysis of borehole breakouts observed in four approximately vertical wells in the EISB suggest a maximum horizontal stress

  6. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications

    Qiang, Mingrui; Jin, Yanxiang; Liu, Xingxing; Song, Lei; Li, Hao; Li, Fengshan; Chen, Fahu


    Although stratigraphic sequences of aeolian deposits in dryland areas have long been recognized as providing information about past environments, the exact nature of the environmental processes they reflect remains unclear. Here, we report the results of a detailed investigation of eight outcrop sections in the Gonghe Basin, northeastern Qinghai-Tibetan Plateau. Measurements of sediment grain-size and chemical composition indicate that the deposits are primarily of aeolian origin, consisting of interbedded, well-sorted sand, silty sand, loess and/or palaeosol; however, their occurrence varies from site to site. Fossil dune sands mainly occur in or close to the currently stabilized or semi-stabilized dune fields, whereas loess is distributed along the downwind marginal areas. This pattern of basin-scale differentiation was controlled mainly by spatial variability of sediment supply due to the antecedent sedimentary patterns within the basin. Together with previously-published optically stimulated luminescence (OSL) ages, 24 new OSL dates are used to elucidate the history of aeolian activity and its relationship to climatic changes. There is no apparent relationship between past dune activity and downwind loess deposits. Deposition of silty sand probably occurred during past phases of windy, dry and cold climate in the Late Pleistocene. However, climatic factors alone cannot explain the occurrence of silty sand deposition. This is because the deposition of silty sand was always preceded by episodes of fluvial deposition prior to river incision, thereby indicating the importance of an 'activated' sediment supply associated with fluvial processes. Deposition of well-sorted sand occurred episodically, not only during the Late Pleistocene, but also during the early- to mid-Holocene. Vegetation conditions, controlled either by the occurrence of intervals of moisture deficit during the Late Pleistocene or by changes in the balance between precipitation and

  7. Towards a palaeoecological model of the Mesoproterozoic Taoudeni Basin, Mauritania, Northwestern Africa: implications for early eukaryote evolution

    Beghin, Jérémie; Guilbaud, Romain; Poulton, Simon W.; Gueneli, Nur; Brocks, Jochen J.; Storme, Jean-Yves; Blanpied, Christian; Javaux, Emmanuelle J.


    The mid-Proterozoic rock record preserves a relatively moderate diversity of early eukaryotes, despite the early evolution of fundamental features of the eukaryotic cell. Common hypotheses involve the redox state of stratified oceans with oxic shallow waters, euxinic mid-depth waters, and anoxic and ferruginous deep waters during this time period. Mid-Proterozoic eukaryotes would have found suitable ecological niches in estuarine, fluvio-deltaic and coastal shallow marine environments near nutrient sources, while N2-fixing photoautotrophs bacteria would have been better competitors than eukaryotic algae in nutrient-poor niches. Here, we present the first palaeoecological model of the late Mesoproterozoic Taoudeni Basin, Mauritania, Northwestern Africa. Previous palaeontological studies in the basin reported stromatolites, a low diversity of microfossils - including one species of presumed eukaryotes: verrucae-bearing acritarch - and biomarkers of anoxygenic phototrophic purple and green sulfur bacteria, cyanobacteria and microaerophilic methanotrophs. However, no biomarkers diagnostic for crown group eukaryotes were reported so far. In addition to exceptionally well preserved microbial mats showing chain-like aggregates of pyrite grains, we observed a total of sixty-two morphotaxa including nine presumed prokaryotes, thirty-five possible prokaryotes or eukaryotes, fifteen unambiguous species of eukaryotes - ornamented and process-bearing acritarchs, multicellular morphotaxon, putative VSMs, large budding vesicles, and vesicles with a sophisticated excystment structure: the pylome - and three remains of structured kerogen. Here, we combined the geological context (sedimentological features and lithofacies), iron speciation (n = 156) - with the aim of reconstructing palaeoredox environmental conditions -, and microfossils quantitative analysis (n = 61). Sediments were deposited under shallow waters in pericratonic (western basin) and epicratonic (eastern basin

  8. Thermal-rheological structure of lithosphere beneath the northern flank of Tarim Basin, western China:Implications for geodynamics

    LIU; Shaowen; WANG; Liangshu; LI; Cheng; LI; Hua; HAN; Yong


    Based on the data of geo-temperature and thermophysical parameters of rocks in the Kuqa Depression and the Tabei Uplift, northern flank of the Tarim Basin, in terms of the analytical solution of 1-D heat transfer equation, the thermal structure of the lithosphere under this region is determined. Our results show that the average surface heat flow of the northern flank of the Tarim Basin is 45 mW/m2, and the mantle heat flow is between 20 and 23 mW/m2; the temperature at crust-mantle boundary (Moho) ranges from 514℃ to 603℃ and the thermal lithosphere where the heat conduction dominates is 138-182 km thick. Furthermore, in combination with the P wave velocity structure resulting from the deep seismic sounding profile across this region and rheological modeling, we have studied the local composition of the lithosphere and its rheological profile, as well as the strength distribution. We find that the rheological stratification of the lithosphere in this region is apparent. The lowermost of the lower crust is ductile; however,the uppermost of the mantle and the upper and middle parts of the crust are both brittle layers,which is typically the so-called sandwich-like structure. Lithospheric strength is also characterized by the lateral variation, and the uplift region is stronger than the depression region. The lithospheric strength of the northem flank of the Tarim Basin decreases gradually from south to north; the Kuqa Depression has the lowest strength and the south of the Tabei Uplift is strongest.The total lithospheric strength of this region is 4.77× 1012-5.03 × 1013 N/m under extension, and 6.5 × 1012-9.4× 1013 N/m under compression. The lithospheric brittle-ductile transition depth is between 20 km and 33 km. In conclusion, the lithosphere of the northern flank of the Tarim Basin is relatively cold with higher strength, so it behaves rigidly and deforms as a whole, which is also supported by the seismic activity in this region. This rigidity of the

  9. Microfossils and molecular records in oil shales of the Songliao Basin and implications for paleo-depositional environment


    Several oil shale beds, over 10 m thick, occur at the base of the first member of the Upper Cretaceous Qingshankou Formation (K2qn1) in the Songliao Basin. They act both as excellent source rocks for conventional oil and as potential oil deposit for shale oil production. Here we combine micropaleon-tology with organic geochemistry to investigate the paleo-depositional environment and organic source characteristics of the oil shales and black shales. Our results indicate that algal remains are dominant microfossils in K2qn1 oil shales, and their relatively high abundance suggests a major algal thriving event during the oil shale deposition. The presence of fresh water and brackish water species, Sentusidinium, Vesperopsis and Nyktericysta, and marine or brackish water deltaic and lagoonal species such as Kiokansium and Dinogymniopsis demonstrate that this paleo-continental lake was influenced by marine transgressions at the time of K2qn1 oil shale formation. The extremely low pristine/phytane ratios, relatively high abundance of gammacerane and 4-methyl steranes, and low δ 13C values of C14-C37 n-alkanes in the oil shale organic extracts indicate the deposition of oil shales in anoxic and highly stratified water columns and the significant contribution of lacustrine algae to sedimentary organic matter. High molecular-weight paraffinic hydrocarbons with unusually high abundance of nC43, nC45, and nC47 may be related to special algal species associated with marine transgression events. The giant water body of Songliao paleo-lake and the change in the organic and chemical environment (such as nutrition source and water column salinity) associated with seawater transgression into the lake are among the most important reasons for oil shales in the Songliao Basin being different from mudstone and oil shale in other rifted basins.

  10. Evidence of lacustrine sedimentation in the Upper Permian Bijori Formation, Satpura Gondwana basin: Palaeogeographic and tectonic implications

    Tapan Chakraborty; Soumen Sarkar


    The Upper Permian Bijori Formation of the Satpura Gondwana basin comprising fine- to coarsegrained sandstone, carbonaceous shale/mudstone and thin coal bands was previously interpreted as the deposits of meandering rivers. The present study documents abundance of wave ripples, hummocky and swaley cross-stratification and combined flow bedforms in the Bijori Formation, suggesting that a significant part of the formation was deposited in a wave-agitated environment. Evidence of near-emergent depositional conditions provided by repeated occurrence of rootlet beds and hydromorphic paleosols, local flooding surfaces denoting rapid fluctuation of water level, occurrences of temnospondyl vertebrate fossils, and absence of tidal signatures and marine fossils suggest a lacustrine rather than marine depositional regime. Five facies associations recognised within the Bijori Formation are inferred to represent fluvial channels and associated floodplains (FA1), lake shorelines (FA2), subaqueous distributary channels and associated levees (FA3), wave- and storm-affected delta front (FA4), and open lacustrine/lower shoreface (FA5) deposits. The planoconcave fluvial channel-fill sandbodies with unidirectional cross-beds are clearly distinguishable from the delta front bars that show a convexo-plan or bi-convex sandbody geometry and dominance of wave and combined flow bedforms. Some of the distributary channels record interaction of fluvial and wave-dominated basinal processes. Major distributary sandbodies show a north to northwest flow direction while wave-affected delta front sandbodies show very complex flow patterns reflecting interaction between fluvial discharge and wave processes. Wave ripple crest trends show that the lake shoreline had an overall east–northeast to west–southwest orientation. The lack of documented contemporaneous lacustrine or marine sediments in the Satpura Gondwana basin posed a major problem of basin-scale palaeogeographic reconstruction. The

  11. B.C. Hydro Williston to Kelly Lake 500 kV transmission line public consultation report

    A public consultation program was developed and implemented for a proposed third 500-kV transmission line from Williston Substation, east of Prince George in British Columbia, to Kelly Lake Substation near Clinton, British Columbia. The implemented program took place from July 1989 to January 1990 and involved discussions with about 14 local and regional governments and community associations, and 30 special interest groups. Eight public meetings were held as well as three meetings with native groups. A total of 73 public information requests were logged. The public consultation program was sufficiently comprehensive and objective to identify the public's concerns with respect to the proposed line. The overall goal of the program was to improve the project by incorporating public ideas and concerns into the planning process. It is believed that some important examples of how this has occurred on this project include a closer working relationship between British Columbia Hydro and property owners along the transmission line corridor, improved right-of-way clearing and maintenance standards, identification of ways to improve the economic benefits of the project to local contractors, improved public awareness about electric and magnetic fields, and an enhanced awareness of the utility's commitment to public consultation. 2 figs

  12. Terrorism Financing. The Socio-Economic and Political Implications of Boko Haram Insurgency in Lake Chad Basin

    Akepe Linus Enobi


    Full Text Available Various Scholars account for the actual date of the evolution of Boko Haram terrorist group. However, the sect came to prominence in 2009 following the death of its leader, Mohammed Yusuf in police custody. Aside from the police act and Mohammed Yusuf’s death, poverty, unemployment, lack of development, high level of illiterates, unkept electoral promises are identified as other reasons for the rise of Boko Haram insurgency. This study involves determination of socio-political and economic impact of Boko Haram insurgency on Lake Chad basin. To achieve this, mixed research method was employed in the study because both primary and secondary data are used. Many factors can be adduced as driving force that motivates Boko Haram activities in the region such as poverty, unemployment, illiteracy, under-development/education defiance region and neglects by government. Finding in the study shows that lack of government support for armed forces and low moral; lack of government political will to fight the insurgency; political interest all contribute in recent time to the rise of terrorist activities in Lake Chad.Finding revealed that the increase in Boko Haram activities in recent time in the region have negatively impact on the socio political/economic activities and these is due partly to increase in terrorist financing. The study suggests therefore that government ability in Lake Chad basin to cut the sources of terrorist finance will significantly affect Boko Haram activities and attacks.

  13. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco


    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917

  14. Paleocene deep-water sediments and radiolarian faunas:Implications for evolution of Yarlung-Zangbo foreland basin, southern Tibet



    This is the first report on the Paleocene deep-water sequences and radiolarian faunas, which are distributed along the southern side of the Yarlung-Zangbo suture zone. The Zheba group is coined to indicate these Paleocene sequences which are subsequently divided into two lithostratigraphic units based on the lithology observed in the field. The lower unit characterized by the rhythmic cherts and siliceous shales is named the Sangdanlin formation, and the upper one composed mainly of flysches is termed the Zheya formation. The radiolarian faunas from the Zheba group are assigned to the RP1-RP6 zones of the Paleocene age. The Early Paleocene ra-diolarian assemblages have the potential to be established into the low latitude radiolarian zones and to fill in the gap between the Late Cretaceous and the Late Paleocene radiolarian zonations. The radiolarian dating provides a valuable tool for the regional correlation and reconstruction of the sedimentary environment of the Neo-Tethyan Ocean. The preliminary work shows that the Paleo-cene sequences accumulated in a foreland basin resulted from the southern Asian margin loading onto the northern Indian passive continental margin. The Yarlung-Zangbo foreland basin se-quences deposited on the Indian passive continental margin also resulted in many good source- reservoir-covering assemblages for oil and gas resources.

  15. BARGEN continuous GPS data across the eastern Basin and Range province, and implications for fault system dynamics

    Niemi, Nathan A.; Wernicke, Brian P.; Friedrich, Anke M.; Simons, Mark; Bennett, Richard A.; Davis, James L.


    We collected data from a transect of continuous Global Positioning System (GPS) sites across the eastern Basin and Range province at latitude 39°N from 1997-2000. Intersite velocities define a region ~350 km wide of broadly distributed strain accumulation at ~10 nstr yr-1. On the western margin of the region, site EGAN, ~10 km north of Ely, Nevada, moved at a rate of 3.9 +/- 0.2 mm yr-1 to the west relative to site CAST, which is on the Colorado Plateau. Velocities of most sites to the west of Ely moved at an average rate of ~3 mm yr-1 relative to CAST, defining an area across central Nevada that does not appear to be extending significantly. The late Quaternary geological velocity field, derived using seismic reflection and neotectonic data, indicates a maximum velocity of EGAN with respect to the Colorado Plateau of ~4 mm yr-1, also distributed relatively evenly across the region. The geodetic and late Quaternary geological velocity fields, therefore, are consistent, but strain release on the Sevier Desert detachment and the Wasatch fault appears to have been anomalously high in the Holocene. Previous models suggesting horizontal displacement rates in the eastern Basin and Range near 3 mm yr-1, which focused mainly along the Wasatch zone and Intermountain seismic belt, may overestimate the Holocene Wasatch rate by at least 50 per cent and the Quaternary rate by nearly an order of magnitude, while ignoring potentially major seismogenic faults further to the west.

  16. Impacts of Climate Change on Vector Borne Diseases in the Mediterranean BasinImplications for Preparedness and Adaptation Policy

    Maya Negev


    Full Text Available The Mediterranean region is vulnerable to climatic changes. A warming trend exists in the basin with changes in rainfall patterns. It is expected that vector-borne diseases (VBD in the region will be influenced by climate change since weather conditions influence their emergence. For some diseases (i.e., West Nile virus the linkage between emergence andclimate change was recently proved; for others (such as dengue the risk for local transmission is real. Consequently, adaptation and preparation for changing patterns of VBD distribution is crucial in the Mediterranean basin. We analyzed six representative Mediterranean countries and found that they have started to prepare for this threat, but the preparation levels among them differ, and policy mechanisms are limited and basic. Furthermore, cross-border cooperation is not stable and depends on international frameworks. The Mediterranean countries should improve their adaptation plans, and develop more cross-sectoral, multidisciplinary and participatory approaches. In addition, based on experience from existing local networks in advancing national legislation and trans-border cooperation, we outline recommendations for a regional cooperation framework. We suggest that a stable and neutral framework is required, and that it should address the characteristics and needs of African, Asian and European countries around the Mediterranean in order to ensure participation. Such a regional framework is essential to reduce the risk of VBD transmission, since the vectors of infectious diseases know no political borders.

  17. A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation

    R. P. M. Topper


    Full Text Available High concentrations of organic matter accumulated in marine sediments during Oceanic Anoxic Events (OAEs in the Cretaceous. Model studies examining these events invariably make use of global ocean circulation models. In this study, a regional model for the North Atlantic Basin during OAE2 at the Cenomanian-Turonian boundary has been developed. A first order check of the results has been performed by comparison with the results of a recent global Cenomanian CCSM3 run, from which boundary and initial conditions were obtained. The regional model is able to maintain tracer patterns and to produce velocity patterns similar to the global model. The sensitivity of the basin tracer and circulation patterns to changes in the geometry of the connections with the global ocean is examined with three experiments with different bathymetries near the sponges. Different geometries turn out to have little effect on tracer distribution, but do affect circulation and upwelling patterns. The regional model is also used to test the hypothesis that ocean circulation may have been behind the deposition of black shales during OAEs. Three scenarios are tested which are thought to represent pre-OAE, OAE and post-OAE situations. Model results confirm that Pacific intermediate inflow together with coastal upwelling could have enhanced primary production during OAE2. A low sea level in the pre-OAE scenario could have inhibited large scale black shale formation, as could have the opening of the Equatorial Atlantic Seaway in the post-OAE scenario.

  18. Coal metamorphism by igneous intrusion in the Raton Basin, CO and NM: Implications for generation of volatiles

    Cooper, Jennifer R.; Whittington, Alan G. [Department of Geological Sciences, University of Missouri-Columbia, Columbia MO 65211 (United States); Crelling, John C. [Department of Geology, Southern Illinois University, Carbondale, IL 62901 (United States); Rimmer, Susan M. [Department of Geological Sciences. University of Kentucky, Lexington, KY 40506 (United States)


    The Raton Basin contains a series of Tertiary mafic dikes and sills that have altered millions of tons of coal to natural coke and may have played a minor role in generating some of the large coalbed methane resources currently being exploited in this region. Four outcrops within the Raton Basin were selected to investigate local coal rank elevation and volatile generation due to intrusive activity. Coal and organic shale samples were collected on traverses across meter-scale dikes and sills, and were analyzed for vitrinite reflectance, total organic carbon, bulk carbon isotopic ratios, and coke petrography. Reflectance patterns in the contact aureoles of the dikes display very consistent concave-up patterns, with reflectance values returning to background within one intrusion width from the contact. Bulk coal samples collected across dikes display an increase in {delta}{sup 13}C of approximately 1 permille approaching all contacts. Reflectance patterns within the contact aureoles of sills do not decrease significantly until one half of an intrusion width away from the contact, but then drop steeply to background values by one intrusion width away. Bulk coal samples display complex isotopic patterns approaching sills, with an initial increase in {delta}{sup 13}C followed by a steep decrease of approximately 1.5 permille approaching the top contacts. The distinct isotopic and reflectance patterns for dikes and sills may indicate that the coal in the contact aureoles of the sills experienced a longer heating duration than the coal near the dike contacts. This longer heating duration was due to the low thermal conductivity of coal, which acts as a thermal insulator to the sills that intrude coal beds. This style of intrusion is commonly observed throughout the central portions of the Raton Basin. By contrast, dikes intrude a variety of country rock types, and are not insulated by coal. Heat may escape the contact zone through nearby sandstones or shales. Based on

  19. Evidence of clastic evaporites in the canyons of the Levant basin (Israel): implications for the Messinian salinity crisis

    Lugli, Stefano; Schreiber, B. Charlotte; Gvirtzman, Zohar; Manzi, Vinicio; Roveri, Marco


    The recognition of widespread and thick evaporite deposits below the floor of the Mediterranean Sea has boosted a long standing controversy concerning their depositional setting (shallow versus deep) and their correlation with the onshore sequences. Until a new scientific campaign might be launched to cross those deposits, the discussion is still open to speculation. Many Messinian evaporitic deposits have been interpreted as primary precipitates in very shallow-water or coastal environments, thus favouring the idea of a desiccated Mediterranean basin (Hsu et al., 1973). Recent studies have questioned this interpretation (Hardie and Lowenstein, 2004) and widespread, thick, clastic evaporite facies have been identified in the Mediterranean (Manzi et al., 2005). These clastic deposits are not compatible with a desiccation model as they were clearly emplaced by fully subaqueous, deep-water processes, ranging from submarine slides, to high- and low-density gravity flows. One of the most relevant areas for the understanding of the salinity crisis is the Levant basin where the Messinian evaporites partially fill some of the erosional features (canyons) considered to have formed as a consequence of significant drawdown related to the desiccation of the Mediterranean Sea (up to - 850 m, Druckman et al., 1995). Our complete revisitation of the available cores from onshore Israel cutting through the sedimentary filling of the Messinian canyons (Afiq 1, Ashdod 2, Be'eri Sh1, Be'eri Sh4, Jaffa 1 and Talme-Yaffe 3) revealed exclusively clastic sulfate facies. This is the first direct evidence that the Lower Evaporite Unit offshore Israel may actually consist of deep-water resedimented evaporites that were originally deposited on the margin of the Levant Basin. References Druckman Y., Buchbinder B., Martinotti G.M., Tov R.S., Aharon P., 1995. The buried Afiq Canyon (eastern Mediterranean, Israel): a case study of a Tertiary submarine canyon exposed in Late Messinian times

  20. Chronostatigraphic basin framework for Palaeoproterozoic rocks (1730-1575 Ma) in northern Australia and implications of base-metal mineralisation

    The new chronostratigraphic subdivision for Palaeoproterozoic rocks of northern Australia provides an improved framework for future resource exploration. The nine supersequence boundaries identified in the ca 1730-1575Ma Calvert and Isa Superbasins enable the timing of major tectonic events and their stratigraphic response to be better understood. Third- and 4th-order sequence boundaries facilitate the determination of stratigraphic architecture, ultimately providing the necessary information for constraining the flow of fluids in these basins. SHRIMP zircon ages are essential for determining the magnitude of depositional hiatuses at supersequence and some sequence boundaries, and together with palaeomagnetic data provide independent age constraints for the sequence interpretations. Pb/Pb model ages for the world class Broken Hill, Mt Isa, McArthur River and Century Zn Pb Ag deposits coincide with tectonic events recorded at the Gun, Loretta, River Supersequence boundaries and the superbasin boundary formed during closure of the Isa Superbasin during D2 at Mt Isa. The coincidence of a Pb/Pb model age for Broken Hill with an apparent polar wander path inflection at the Gun Supersequence boundary indicates that the regional chronostratigraphic basin framework developed for northern Australia is applicable to rocks of similar age elsewhere in Australia. Furthermore, if the ultimate cause of these inflections is interplate stress, the basin framework should be globally applicable. Hand-held spectrometers provide an efficient and cost-effective method for collecting gamma-ray data from outcrops. The resulting gamma-ray curves permit more accurate correlation with subsurface stratigraphies and together with facies information facilitate the identification of stratigraphic sequences and their bounding stratal surfaces, the essential building blocks of regional chronostratigraphic correlations. Contrary to general belief most of the sections measured in this study preserve

  1. South Pole-Aitken Basin (SPA) Units Delineated by Measures of Surface Roughness: Implications for the History and Evolution of the Basin as Seen by Data from the Lunar Reconnaissance Orbiter (LRO)

    Petro, N. E.; Jolliff, B. L.; Cahill, J. T.; Whelley, P.


    The interior of SPA contains a range of morphologic units, from smooth plains and mare basalts to rough, ancient, terrains. Recent data, particularly from LRO provide unique measures of SPA surface properties. With each new dataset, the differences between the interior of SPA and its surroundings become more, or in some cases less, clearly defined. Here we explore recent datasets that offer insight into surface roughness at a variety of scales and assess implications for the origins of units across SPA. Identifying the origin of units in SPA is critical for identifying future sampling sites that address the science goal of determining the age of SPA. The unique interior of SPA relative to the rest of the Moon is demonstrated by Mini-RF and LOLA derived products. Mini-RF data shows that the interior of SPA has a slightly higher average Circular Polarization Ratio than nearly any other terrain on the Moon, with the exception of the interior of the Orientale Basin. Cahill et al. [2014,Icarus] note that the average interior CPR value of SPA is similar but slightly higher than the mid-latitude farside highlands, suggesting that both are enhanced in blocks at the surface and near subsurface (to depths CPR, and other high resolution measures of surface roughness within SPA will be used to infer, delineate morphologic terrains, and distinguish volcanic and impact-generated units.

  2. Assessing Potential Implications of Climate Change for Long-Term Water Resources Planning in the Colorado River Basin, Texas

    Munevar, A.; Butler, S.; Anderson, R.; Rippole, J.


    While much of the focus on climate change impacts to water resources in the western United States has been related to snow-dominated watersheds, lower elevation basins such as the Colorado River Basin in Texas are dependent on rainfall as the predominant form of precipitation and source of supply. Water management in these basins has evolved to adapt to extreme climatic and hydrologic variability, but the impact of climate change is potentially more acute due to rapid runoff response and subsequent greater soil moisture depletion during the dry seasons. The Lower Colorado River Authority (LCRA) - San Antonio Water System (SAWS) Water Project is being studied to conserve water, develop conjunctive groundwater supplies, and capture excess and unused river flows to meet future water needs for two neighboring regions in Texas. Agricultural and other rural water needs would be met on a more reliable basis in the lower Colorado River Basin through water conservation, surface water development and limited groundwater production. Surface water would be transferred to the San Antonio area to meet municipal needs in quantities still being evaluated. Detailed studies are addressing environmental, agricultural, socioeconomic, and engineering aspects of the project. Key planning activities include evaluating instream flow criteria, water quality, bay freshwater inflow criteria, surface water availability and operating approaches, agricultural conservation measures, groundwater availability, and economics. Models used to estimate future water availability and environmental flow requirements have been developed largely based on historical observed hydrologic data. This is a common approach used by water planners as well as by many regulatory agencies for permit review. In view of the project's 80-yr planning horizon, contractual obligations, comments from the Science Review Panel, and increased public and regulatory awareness of climate change issues, the project team is

  3. Paleomagnetic and paleoenvironmental implications of magnetofossil occurrences in late Miocene marine sediments from the Guadalquivir Basin, SW Spain

    Juan Cruz Larrasoaña


    Full Text Available Although recent studies have revealed more widespread occurrences of magnetofossils in pre-Quaternary sediments than has been previously reported, their significance for paleomagetic and paleoenvironmental studies is not fully understood. We present a paleo- and rock-magnetic study of late Miocene marine sediments recovered from the Guadalquivir Basin (SW Spain. Well-defined paleomagnetic directions provide a robust magnetostratigraphic chronology for the two studied sediment cores. Rock magnetic results indicate the dominance of intact magnetosome chains throughout the studied sediments. These results provide a link between the highest-quality paleomagnetic directions and higher magnetofossil abundances. We interpret that bacterial magnetite formed in the surface sediment mixed layer and that these magnetic particles gave rise to a paleomagnetic signal in the same way as detrital grains. They, therefore, carry a magnetization that is essentially identical to a post-depositional remanent magnetization and that we term a bio-depositional remanent magnetization (BDRM. Some studied polarity reversals record paleomagnetic directions that appear to be delayed by 60-70 kyr. Magnetofossils in these cases are interpreted to carry a biogeochemical remanent magnetization (BGRM that is locked in at greater depth in the sediment column. A sharp decrease in magnetofossil abundance toward the middle of the studied boreholes broadly coincides with a major rise in sediment accumulation rates near the onset of the Messinian salinity crisis (MSC, an event caused by interruption of the connection between the Mediterranean Sea and the Atlantic Ocean. This correlation appears to have resulted from dilution of magnetofossils by enhanced terrigenous inputs that were driven, in turn, by sedimentary changes triggered in the basin at the onset of the MSC. Our study highlights the importance of magnetofossils as carriers of high-quality paleomagnetic and

  4. Paleomagnetic and paleoenvironmental implications of magnetofossil occurrences in late Miocene marine sediments from the Guadalquivir Basin, SW Spain.

    Larrasoaña, Juan C; Liu, Qingsong; Hu, Pengxiang; Roberts, Andrew P; Mata, Pilar; Civis, Jorge; Sierro, Francisco J; Pérez-Asensio, José N


    Although recent studies have revealed more widespread occurrences of magnetofossils in pre-Quaternary sediments than have been previously reported, their significance for paleomagnetic and paleoenvironmental studies is not fully understood. We present a paleo- and rock-magnetic study of late Miocene marine sediments recovered from the Guadalquivir Basin (SW Spain). Well-defined paleomagnetic directions provide a robust magnetostratigraphic chronology for the two studied sediment cores. Rock magnetic results indicate the dominance of intact magnetosome chains throughout the studied sediments. These results provide a link between the highest-quality paleomagnetic directions and higher magnetofossil abundances. We interpret that bacterial magnetite formed in the surface sediment mixed layer and that these magnetic particles gave rise to a paleomagnetic signal in the same way as detrital grains. They, therefore, carry a magnetization that is essentially identical to a post-depositional remanent magnetization, which we term a bio-depositional remanent magnetization. Some studied polarity reversals record paleomagnetic directions with an apparent 60-70 kyr recording delay. Magnetofossils in these cases are interpreted to carry a biogeochemical remanent magnetization that is locked in at greater depth in the sediment column. A sharp decrease in magnetofossil abundance toward the middle of the studied boreholes coincides broadly with a major rise in sediment accumulation rates near the onset of the Messinian salinity crisis (MSC), an event caused by interruption of the connection between the Mediterranean Sea and the Atlantic Ocean. This correlation appears to have resulted from dilution of magnetofossils by enhanced terrigenous inputs that were driven, in turn, by sedimentary changes triggered in the basin at the onset of the MSC. Our results highlight the importance of magnetofossils as carriers of high-quality paleomagnetic and paleoenvironmental signals even in

  5. New paleomagnetic evidences of paleogene tectonic rotation of the Qaidam Basin and adjacent region: mechanism and its tectonic implication

    Weimin Li; Yongjiang Liu; Zhiming Sun; Xiaohong Ge; Shoumai Ren; Junling Pei; Sihua Yuang; Xinzhuan Guo


    In order to better understand the tectonic evolution of the Qaidam Basin. The authors carried out a paleomagnetic study on 39 samples of 7 sites from Hongsanhan section, northwest Qaidam Basin. Stepwise thermo-demagnetization isolated a high-temperature component (HTC), which passes the fold and reversal tests at 95% confidence level. It suggests that the HTC should be primary. Unblocking temperature (about 685℃) and the experiment of isothermal remanence indicate that hematite is the mainly carrier of the remanence. A tilt-corrected mean direction is: Ds=7.1°, Is=38.5°, α95=7.4°. Corresponding to a palaeopole at, φ=250.1°E, λ=72.0°N, A95=6.8°, Compared with the reference APWP of Eurasia, the sampling area occurred a non-significant rotation (3.4°±5.5°) relative to Eurasia since Eocene due to the affect of left-lateral Altyn fault, Based on the paleomagnetic results of early Cretaceous and Teritary within the Qaidam block, we can obtained the mean clockwise rotations from the samples deposited from 160 Ma to 45 Ma is 24.5°±9.0°, and from 38 Ma to present is -0.5°±7.5° relative to present geomagnetism respectively. During the Mid Eocene (45~38 Ma) rotation phase, there should existing an important early tectonic event in northern part of the present-day Tibetan Plateau, which probably represents one of large-scale strike-slip events of the Altyn strike-slip fault.

  6. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions

    Widodo, Sri [Department of Mining Engineering, Moslem University of Indonesia, Jln. Urip Sumoharjo, Makassar (Indonesia); Oschmann, Wolfgang [Institute of Geosciece, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany); Bechtel, Achim; Sachsenhofer, Reinhard F. [Department of Applied Geoscience and Geophysics, University of Leoben, Peter-Tunner-Str.5, A-8700 Leoben (Austria); Anggayana, Komang [Department of Mining Engineering, Bandung Institute of Technology, Jln. Ganesa 10, I-40132 Bandung (Indonesia); Puettmann, Wilhelm [Institute of Atmospheric and Environmental Sciences, Dapartment of Analytical Enviromental Chemistry, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany)


    Thirteen Miocene coal samples from three active open pit and underground coal mines in the Kutai Basin (East Kalimantan, Indonesia) were collected. According to our microscopical and geochemical investigations, coal samples from Sebulu and Centra Busang coal mines yield high sulfur and pyrite contents as compared to the Embalut coal mine. The latter being characterized by very low sulfur (< 1%) and pyrite contents. The ash, mineral, total sulfur, iron (Fe) and pyrite contents of most of the coal samples from the Sebulu and Centra Busang coal mines are high and positively related in these samples. Low contents of ash, mineral, total sulfur, iron (Fe) and pyrite have been found only in sample TNT-32 from Centra Busang coal mine. Pyrite was the only sulfur form that we could recognize under reflected light microscope (oil immersion). Pyrite occurred in the coal as framboidal, euhedral, massive, anhedral and epigenetic pyrite in cleats/fractures. High concentration of pyrite argues for the availability of iron (Fe) in the coal samples. Most coal samples from the Embalut coal mine show lower sulfur (< 1 wt.%) and pyrite contents as found within Centra Busang and Sebulu coals. One exception is the coal sample KTD-38 from Embalut mine with total sulfur content of 1.41 wt.%. The rich ash, mineral, sulfur and pyrite contents of coals in the Kutai Basin (especially Centra Busang and Sebulu coals) can be related to the volcanic activity (Nyaan volcanic) during Tertiary whereby aeolian material was transported to the mire during or after the peatification process. Moreover, the adjacent early Tertiary deep marine sediment, mafic igneous rocks and melange in the center of Kalimantan Island might have provided mineral to the coal by uplift and erosion. The inorganic matter in the mire might also originate from the ground and surface water from the highland of central Kalimantan. (author)

  7. Late Mesozoic bimodal volcanic rocks in the Jinniu basin, Middle-Lower Yangtze River Belt (YRB), East China: Age, petrogenesis and tectonic implications

    Xie, Guiqing; Mao, Jingwen; Xiongwei, Li; Duan, Chao; Yao, Lei


    Late Mesozoic intrusive and volcanic rocks are widespread in the southeast Hubei Province, Middle-Lower Yangtze River Belt (YRB), East China. Detailed in situ zircon U-Pb and Hf isotope, elemental and Sr-Nd-Pb isotopic data are presented in this paper for Late Mesozoic volcanic rocks from the Jinniu Basin, YRB, aiming to constrain their age, petrogenesis, and tectonic implications. The Jinniu volcanic rocks show a bimodal distribution in composition, with dominant rhyolite and dacite, and subordinate basalt and basaltic andesite. New SHRIMP and LA-ICPMS zircon U-Pb ages indicate that the volcanic rocks of three Formations in the Jinniu basin were erupted at quite a short age range of about 5 Ma during the Early Cretaceous (130-125 Ma). The mafic rocks are moderately enriched in large-ion-lithophile-elements (LILE) (e.g., Ba, Th, U, and Pb) and light rare-earth-elements (LREE), and are characterized by negative Nb, Ta, and Ti anomalies, and relatively high TiO2 (0.72-2.06%) and Nb (9.20-26.5 ppm) contents. These analyses indicate that the geochemical characteristics of the mafic rocks in the Jinniu basin are similar to worldwide Phanerozoic Nb-enriched basalt and andesites (NEBA). New in situ zircon U-Pb ages and field geological relationships demonstrate that NEBA in the southeast Hubei Province are not spatially or temporally associated with high-silica adakitic rocks, but were most likely derived from an enriched lithospheric mantle with assimilation of minor crustal materials, and then fractional crystallization during the evolution of the magma. Overall, the felsic rocks in the Jinniu basin have geochemical characteristics, and Sr-Nd-Pb signatures, and in situ zircon Hf isotopic compositions similar to those of the mafic rocks. Compared with the mafic rocks, the felsic rocks are characterized by enriched and variable concentrations of LILE and REE (e.g., Ba = 33.3-1372 ppm, Y = 11.4-33.6 ppm, YbC = 5.07-18.7), and negative Eu anomalies (δEu = 0.22-0.98), as

  8. Implications for Ecosystem Services of Watershed Processes that affect the Transport and Transformations of Mercury in an Adirondack Stream Basin

    Burns, D. A.; Riva-Murray, K.; Bradley, P. M.


    Mercury (Hg) is a potent neurotoxin that can affect the health of humans and wildlife through the ingestion of methyl Hg. Mercury contamination of ecosystems originates from human activities such as mining, coal burning and other industrial emissions, and the use of Hg-containing products. Natural sources such as volcanic and geothermal emissions and the weathering of Hg-bearing minerals also contribute to Hg contamination, but are believed to be minor sources in most ecosystems. Various ecosystem disturbances including fires, forest harvesting, and the submergence of land by impoundment may also contribute to Hg ecosystem contamination by mobilizing stores that have previously originated from the sources described above. Mercury from a mix of regional and global emissions sources is transported in the atmosphere to remote landscapes that are distant from local emissions sources. The Adirondacks of New York State is a forested, mountainous region characterized by abundant lakes and streams, and is distant from local emissions sources. Recreational fishing, wildlife viewing, hiking, and hunting are valued ecosystem services in this region. Here, we report on the relevance to ecosystem services of findings based on five years of Hg data collection of stream water, groundwater, invertebrates, and fish in the upper Hudson River basin in the central part of the Adirondack region. The New York State Dept. of Health has issued fish consumption advisories for the entire Adirondacks based on elevated levels previously measured in lakes and rivers of this region. Our work seeks improved understanding and models of the landscape sources and watershed processes that control the transformation of Hg to its methyl form (MeHg), the transport of MeHg to streams, and bioaccumulation of MeHg in aquatic food webs. Mean annual atmospheric Hg deposition was 6.3 μg/m2/yr during 2007-09, compared to mean annual filtered total Hg stream yields of 1.66 μg/m2/yr and filtered MeHg stream

  9. Biostratigraphic and palaeoenvironmental implications of an Early Cretaceous miospore assemblage from the Muling Formation, Jixi Basin, northeast China

    Yang, X.J.; Li, W.B.; Batten, D.J. [Chinese Academy of Sciences, Nanjing (China)


    In the Jixi Basin, eastern Heilongjiang Province, China, the lower part of the Lower Cretaceous succession consists of coal-bearing strata including the Muling Formation, which, in addition to plant megafossils, yields abundant spores and pollen grains and a few dinoflagellate cysts. The spore-pollen assemblage consists of more than 42 species belonging to 34 genera. Most of these are derived from pteridophytes and gymnosperms. The association of Aequitriradites echinatus, Cicatricosisporites australiensis, C. imbricatus, C. mediostriatus, C. undosus, Contignisporites glebulentus, Crybelosporites punctatus, Foranminisporis asymmetricus, Gleicheniidites laetus, Impardecispora purverulenta, Kuylisporites lunaris, Pilosisporites trichopapillosus and Triporoletes singularis suggests that the formation is unlikely to be older than late Hauterivian and younger than Aptian, with emphasis placed on the Barremian-early Aptian. The composition of the dinoflagellate cyst and plant megafossil assemblages is consistent with this determination. Based on palynofloral content, a comparison between the miospores recovered and the spores and pollen produced by extant plant taxa, the associated plant megafossils, and the sedimentary facies that characterize the Muling Formation, it is concluded that the source vegetation was dominated by ferns and that the climate was wet subtropical but seasonally dry.

  10. A new azhdarchid pterosaur from the Late Cretaceous of the Transylvanian Basin, Romania: implications for azhdarchid diversity and distribution.

    Mátyás Vremir

    Full Text Available We describe a new taxon of medium-sized (wing span ca. 3 m azhdarchid pterosaur from the Upper Cretaceous Transylvanian Basin (Sebeş Formation of Romania. This specimen is the most complete European azhdarchid yet reported, comprising a partially articulated series of vertebrae and associated forelimb bones. The new taxon is most similar to the Central Asian Azhdarcho lancicollis Nessov but possesses a suite of autapomorphies in its vertebrae that include the relative proportions of cervicals three and four and the presence of elongated prezygapophyseal pedicles. The new taxon is interesting in that it lived contemporaneously with gigantic forms, comparable in size to the famous Romanian Hatzegopteryx thambema. The presence of two distinct azhdarchid size classes in a continental depositional environment further strengthens suggestions that these pterosaurs were strongly linked to terrestrial floodplain and wooded environments. To support this discussion, we outline the geological context and taphonomy of our new specimen and place it in context with other known records for this widespread and important Late Cretaceous pterosaurian lineage.

  11. Organic geochemistry of the Lower Suban coal seam, South Sumatra Basin, Indonesia: Palaeoecological and thermal metamorphism implications

    Amijaya, H.; Schwarzbauer, J.; Littke, R. [University of Aachen, Aachen (Germany)


    Hydrocarbons extracted from the Tertiary age coals from the Lower Suban seam, South Sumatra Basin, Indonesia have been investigated using gas chromatography (GC) and combined gas chromatography/mass spectrometry (GC/MS). Low rank (vitrinite-huminite reflectance about to 0.41-0.45%) coals from the Tambang Air Laya mine represent different maceral assemblages of an ideal succession of ombrogenous palaeo-peat development in a vertical section. High rank coals (vitrinite reflectance about to 1.42-5.18%) from the Suban mine have been thermally metamorphosed by an andesitic intrusion. Variations in the distributions of n-alkanes, isoprenoids and saturated and aromatic biomarkers in the low rank coals reflect variations in local source input and palaeomire conditions. Terpenoid biomarkers, such as cadinane- and eudesmane-type sesquiterpenoids and oleanane- and ursane-type triterpenoids, indicate the predominance of angiosperm plants in the palaeomire, particularly Dipterocarpaceae. The distribution of hopanoids is affected by the organic facies of the coal and their maturity, and correlates with the palaeomire evolution as derived from petrological studies. Close to the igneous intrusion, rapid thermal stress has destroyed most of the biomarkers, but variations in n-alkane distributions, attributable to palaeomire conditions, remain. Reversals in the trends for molecular parameters based on aliphatic hydrocarbons (n-alkane distribution and pristane/phytane ratio) and aromatic hydrocarbons (methyl phenanthrenes) with coal rank are observed.

  12. Latest Permian to Middle Triassic cyclo-magnetostratigraphy from the Central European Basin, Germany: Implications for the geomagnetic polarity timescale

    Szurlies, Michael


    In Central Germany, the about 1 km thick mainly clastic Germanic Lower Triassic (Buntsandstein) consists of about 60 sedimentary cycles, which are considered to reflect variability in precipitation within the epicontinental Central European Basin, most probably due to solar-induced short eccentricity cycles. They provide a high-resolution cyclostratigraphic framework that constitutes the base for creating a composite geomagnetic polarity record, in which this paper presents a Middle Buntsandstein to lowermost Muschelkalk magnetostratigraphy obtained from 6 outcrops and 2 wells where a total of 471 samples was collected. Combined with recently established records, a well-documented magnetostratigraphy for the upper Zechstein to lowermost Muschelkalk (latest Permian to Middle Triassic) of Central Germany has been constructed, encompassing an overall stratigraphic thickness of about 1.3 km and 22 magnetozones derived from about 2050 paleomagnetic samples. Along with available biostratigraphy, this multi-disciplinary study facilitates detailed links to the marine realm, in order to directly refer biostratigraphically calibrated Triassic stage boundaries as well as radioisotopic ages to the Buntsandstein cyclostratigraphy and, conversely, to contribute to calibrating the geologic timescale.

  13. Present-day kinematics of the eastern Tibetan Plateau and Sichuan Basin: Implications for lower crustal rheology

    Rui, X.; Stamps, D. S.


    The Sichuan Province comprises the cratonic Sichuan Basin and the eastern Tibetan Plateau separated by the recently activated Longmen Shan fault zone, thus providing a natural laboratory to study interseismic and postseismic processes. In this work we compute a new regional geodetic velocity solution from most of the continuous Global Navigation Satellite Systems (GNSS)/GPS data available in the Sichuan Province that we assess for transient postseismic deformation. For 11 continuous sites in close proximity to the Wenchuan 2008 event epicenter that were operational during the Wenchuan event we find an average short-term relaxation time of 11 days with maximum amplitude of 6.6 mm for the postseismic transient and no resolvable long-term transient. Using tests for block rigidity guided by previous kinematic studies we elucidate a longer-term transient in GNSS/GPS observations collected after the Wenchuan event that spans an extensive region of the eastern Tibetan Plateau. We correct for transients, produce an updated secular velocity field, and revise the kinematics of the region using elastic block modeling. Our results indicate that predicted slip rates are in good agreement with both geological and GNSS/GPS velocity profile-derived results, and we resolve two independent blocks with the expanded GNSS/GPS data set. Our constraints on the spatial extent of long-term postseismic deformation support models of ductile lower crust in the eastern margin of the Tibetan Plateau.

  14. Significant mineral variations in the Lower Karoo deposits of the Mid-Zambezi Basin, Zimbabwe, and their palaeoenvironmental implications

    Mineralogical composition of Lower Karoo deposits from the Mid-Zimbabwe Basin, Zimbabwe, have been established by means of X-ray diffractometry to evaluate mineralogical variables as possible palaeoenvironment indicators. Mineral variations are stratigraphically controlled. Dwyka tillites are composed of quartz, K-feldspar and plagioclase. Varvites contain additional calcite. The clay fraction is dominated by kaolinite in the northwestern part of the study area while in the southwest only subordinate proportions of kaolinite occur associated with approximately equal amounts of mica, chlorite, smectite, and interstratifications. The overlying Ecca sediments are characterized by a high kaolinite content, traces of K-feldspar, mica and occasional pyrite. In mudstones of the uppermost Ecca, the kaolonite proportion decreases in favour of mica and chlorite. The mineral composition of Beaufort mudstones differs significantly with considerable amounts of plagioclase and a more than sporadic presence of analcime which is restricted to this stratigraphic unit. The clay fraction is dominated by either kaolinite, mica, or smectite. Within the geotectonical setting discussed by this paper the kaolinite dominance in Ecca sediments corresponds well with freshwater depositional conditions deduced from sedimentological and palaeontological evidence. However, the abundance of 2:1 phyllosilicates and especially analcime prevalence in the Beaufort section indicates an alkaline palaeoenvironment. 10 figs., 29 refs

  15. Structural pattern of the Saïss basin and Tabular Middle Atlas in northern Morocco: Hydrological implications

    Dauteuil, O.; Moreau, F.; Qarqori, K.


    The plain of Saïss is a fertile area of great agricultural production with major economic interests. Therefore, the improved knowledge about the water supply is imperative within a context of recurrent droughts and overexploitation of the groundwater. This plain is located in the Meknes-Fes basin and between two deformed domains: the Rif and Middle Atlas. The aquifers are fed by water coming from the Tabular Middle Atlas, for which the pathways are poorly constrained. This study provides new data to determine the water pathways based on a structural map produced from a novel analysis of SPOT images and a digital elevation model. This structural map reveals two fracture sets trending NE-SW and NW-SE. The first set is well known and corresponds to a main trend that controlled the tectonic and stratigraphic evolution of the study area. On the other hand, the NW-SE set was poorly described until now: it is both diffuse and widespread on the Tabular Middle Atlas. A comparison between the regional water flow trend, drainage pattern and structural map shows that the NW-SE fractures control the water flow from the Tabular Middle Atlas to the Saïss plain. A hydrological model is discussed where the water flow is confined onto Liassic carbonates and driven by NW-SE fractures. This study explains how a detailed structural mapping shows hydrology constraints.

  16. Chronology of the late Turolian deposits of the Fortuna basin (SE Spain): implications for the Messinian evolution of the eastern Betics

    Garcés, Miguel; Krijgsman, W.; Agustí, Jorge


    The magnetostratigraphy of the mammal-bearing alluvial fan-fan delta sequences of the Fortuna basin (SE Spain) has yielded an accurate chronology for the late Turolian (Messinian) basin infill. From early to late Messinian (at least between 6.8 and 5.7 Ma), the Fortuna basin records the sedimentation of alluvial-palustrine deposits over a confined shallow basin. Changing environmental conditions in the latest Messinian are illustrated by the retreat of palustrine facies. A rapid progradation ...

  17. Chronology of the late Turolian deposits of the Fortuna basin (SE Spain): implications for the Messinian evolution of the eastern Betics

    Garcés, Miguel; Krijgsman, W.; Agustí, Jorge


    The magnetostratigraphy of the mammal-bearing alluvial fan-fan delta sequences of the Fortuna basin (SE Spain) has yielded an accurate chronology for the late Turolian (Messinian) basin infill. From early to late Messinian (at least between 6.8 and 5.7 Ma), the Fortuna basin records the sedimentatio

  18. Long bone histology of sauropterygia from the lower Muschelkalk of the Germanic basin provides unexpected implications for phylogeny.

    Nicole Klein

    Full Text Available BACKGROUND: Sauropterygia is an abundant and successful group of Triassic marine reptiles. Phylogenetic relationships of Triassic Sauropterygia have always been unstable and recently questioned. Although specimens occur in high numbers, the main problems are rareness of diagnostic material from the Germanic Basin and uniformity of postcranial morphology of eosauropterygians. In the current paper, morphotypes of humeri along with their corresponding bone histologies for Lower to Middle Muschelkalk sauropterygians are described and interpreted for the first time in a phylogenetic context. METHODOLOGY/PRINCIPAL FINDINGS: Nothosaurus shows a typical plesiomorphic lamellar-zonal bone type, but varying growth patterns and the occurrence of a new humerus morphotype point to a higher taxonomic diversity than was known. In contrast to the enormous morphological variability of eosauropterygian humeri not assigned to Nothosaurus, their long bone histology is relatively uniform and can be divided into two histotypes. Unexpectedly, both of these histotypes reveal abundant fibrolamellar bone throughout the cortex. This pushes the origin of fibrolamellar bone in Sauropterygia back from the Cretaceous to the early Middle Triassic (early Anisian. Histotype A is assigned to Cymatosaurus, a basal member of the Pistosauroidea, which includes the plesiosaurs as derived members. Histotype B is related to the pachypleurosaur Anarosaurus. Contrary to these new finds, the stratigraphically younger pachypleurosaur Neusticosaurus shows the plesiomorphic lamellar-zonal bone type and an incomplete endochondral ossification, like Nothosaurus. CONCLUSIONS/SIGNIFICANCE: Histological results hypothetically discussed in a phylogenetical context have a large impact on the current phylogenetic hypothesis of Sauropterygia, leaving the pachypleurosaurs polyphyletic. On the basis of histological data, Neusticosaurus would be related to Nothosaurus, whereas Anarosaurus would follow

  19. Climate change and stream temperature projections in the Columbia River Basin: biological implications of spatial variation in hydrologic drivers

    D. L. Ficklin


    Full Text Available Water temperature is a primary physical factor regulating the persistence and distribution of aquatic taxa. Considering projected increases in temperature and changes in precipitation in the coming century, accurate assessment of suitable thermal habitat in freshwater systems is critical for predicting aquatic species responses to changes in climate and for guiding adaptation strategies. We use a hydrologic model coupled with a stream temperature model and downscaled General Circulation Model outputs to explore the spatially and temporally varying changes in stream temperature at the subbasin and ecological province scale for the Columbia River Basin. On average, stream temperatures are projected to increase 3.5 °C for the spring, 5.2 °C for the summer, 2.7 °C for the fall, and 1.6 °C for the winter. While results indicate changes in stream temperature are correlated with changes in air temperature, our results also capture the important, and often ignored, influence of hydrological processes on changes in stream temperature. Decreases in future snowcover will result in increased thermal sensitivity within regions that were previously buffered by the cooling effect of flow originating as snowmelt. Other hydrological components, such as precipitation, surface runoff, lateral soil flow, and groundwater, are negatively correlated to increases in stream temperature depending on the season and ecological province. At the ecological province scale, the largest increase in annual stream temperature was within the Mountain Snake ecological province, which is characterized by non-migratory coldwater fish species. Stream temperature changes varied seasonally with the largest projected stream temperature increases occurring during the spring and summer for all ecological provinces. Our results indicate that stream temperatures are driven by local processes and ultimately require a physically-explicit modeling approach to accurately characterize the

  20. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia

    Arsenic concentrations in shallow groundwaters from the Hetao Basin of Inner Mongolia range between 0.6 and 572 μg/L. High As groundwaters generally occur in the shallow alluvial-lacustrine aquifers, which are mainly composed of black (or dark grey) fine sands in a reducing environment. They are characterized by high concentrations of dissolved Fe, Mn, HCO3-, P and S2-, and low concentrations of NO3- and SO42-. Low SO42- coupled with high S2- suggests that SO42- reduction has been an active process. In the reducing groundwaters, inorganic As(III) accounts for around 75% of total dissolved As. Total As contents in the sediments from three representative boreholes are observed to be 7.3-73.3 mg/kg (average of 18.9 mg/kg). The total As is mildly-strongly correlated with total Fe and total Mn, while a quite weak correlation exists between total As and total S, suggesting that the As is associated with Fe-Mn oxides, rather than sulfides in the sediments. It is found in the sequential extraction that chemically active As is mainly bound to Fe-Mn oxides, up to 3500 μg/kg. The mobilization of As under reducing conditions is believed to include reductive dissolution of Fe-Mn oxides and reduction of adsorbed As. Although exchangeable As is labile and very vulnerable to hydrogeochemical condition, the contribution is relatively limited due to the low concentrations. The competition between As and other anions (such as HPO42-) for binding sites on Fe-Mn oxides may also give rise to the release of As into groundwater. Slow groundwater movement helps accumulation of the released As in the groundwaters

  1. Basin Testing of Wave Energy Converters in Trondheim: Investigation of Mooring Loads and Implications for Wider Research

    Vladimir Krivtsov


    Full Text Available This paper describes the physical model testing of an array of wave energy devices undertaken in the NTNU (Norwegian University of Science and Technology Trondheim basin between 8 and 20 October 2008 funded under the EU Hydralabs III initiative, and provides an analysis of the extreme mooring loads. Tests were completed at 1/20 scale on a single oscillating water column device and on close-packed arrays of three and five devices following calibration of instrumentation and the wave and current test environment. One wave energy converter (WEC was fully instrumented with mooring line load cells, optical motion tracker and accelerometers and tested in regular waves, short- and long-crested irregular waves and current. The wave and current test regimes were measured by six wave probes and a current meter. Arrays of three and five similar WECs, with identical mooring systems, were tested under similar environmental loading with partial monitoring of mooring forces and motions. The majority of loads on the mooring lines appeared to be broadly consistent with both logistic and normal distribution; whilst the right tail appeared to conform to the extreme value distribution. Comparison of the loads at different configurations of WEC arrays suggests that the results are broadly consistent with the hypothesis that the mooring loads should differ. In particular; the results from the tests in short crested seas conditions give an indication that peak loads in a multi WEC array may be considerably higher than in 1-WEC configuration. The test campaign has contributed essential data to the development of Simulink™ and Orcaflex™ models of devices, which include mooring system interactions, and data have also been obtained for inter-tank comparisons, studies of scale effects and validation of mooring system numerical models. It is hoped that this paper will help to draw the attention of a wider scientific community to the dataset freely available from the

  2. Mid- Atlantic Gas Hydrate, Heat Flow, and Basin Analysis: Implications to Hydrocarbon Production in the Carolina Trough

    Phrampus, B. J.


    The new Mid- and South Atlantic Planning Areas for oil and gas leasing is proposed to open in 2021. This region lacks in contemporary geologic and geophysical petroleum data and has no conventional wells drilled within the proposed leasing area. As such, addressing the hydrocarbon potential of this region is particularly difficult. Here, we use new and legacy multi-channel seismic data with heat flow observations, ocean temperature measurements, and new seismic interpretations of gas hydrate deposits to determine basin-wide heat flow along the Mid- Atlantic. These data reveal a conductive heat flow regime along the continental margin with a lack of fluid flow that is consistent with sea floor spreading rates and cooling oceanic crust. We then use these observations in combination with basal heat flow models and sedimentation records to determine the thermal history of a cross section of the Carolina Trough. These models reveal varying depth of potential hydrocarbon production that begin at ~ 2000 mbsf and extend down to depths greater than 7000 mbsf across the Carolina Trough. These potentially productive depths correspond to varying stratal ages, but all models contain the Late Jurassic, which is a potential analog to the U.S. Gulf Coast's Smackover Formation. Additionally, the timing of hydrocarbon generation reveal that Early through Middle Jurassic evaporite deposits and Late Jurassic tight limestones should have been in place before the Early Jurassic source rocks reached a depth of burial sufficiently deep for the production of hydrocarbons. These potential seals may trap significant quantities of hydrocarbons with in the Jurassic layers, resulting in significant hydrocarbon potential within the Carolina Trough.

  3. Geochronology and geochemistry of Eocene potassic felsic intrusions in the Nangqian basin, eastern Tibet: Tectonic and metallogenic implications

    Xu, Yue; Bi, Xian-Wu; Hu, Rui-Zhong; Chen, You-wei; Liu, He-qing; Xu, Lei-luo


    The Jinshajiang-Ailaoshan copper belt is the most significant porphyry copper belt in eastern Tibet. In the northern segment of this belt within the Nangqian basin, which occurs 100 km east of the Yulong porphyry copper deposit, several felsic intrusions have been recently discovered. The Yulong porphyry copper deposit is one of the largest porphyry copper deposits in China, and it is associated with peraluminous adakitic rocks formed in a post-collisional setting. The Nangqian felsic intrusions vary from syenite porphyry to monzonite porphyry in rock types. No significant Cu-Au mineralization has been found in the Nangqian felsic intrusions despite extensive exploration in recent years. LA-ICP-MS zircon U-Pb dating reveals that the Nangqian syenite porphyry and monzonite porphyry were emplaced at ~ 35.6±0.3 Ma and from 39.5±0.3 to 37.4±0.3 Ma, respectively, similar to the age of the Yulong porphyry copper deposit. The Nangqian felsic intrusions are characterized by metaluminous compositions (A/CNK = 0.82-1.01), and they share some common features with shoshonites such as high K2O contents (4.58-5.58 wt.%), high K2O/Na2O ratios (0.92-1.28), LREE-LILE enrichments and negative Nb-Ta-Ti-P anomalies, as well as with adakites derived from an eclogite-facies source with high Al2O3 (14.98-15.74 wt.%), Sr (954-2190 ppm), Sr/Y (68-132) and La/Yb (53-85), and low Y and Yb contents. The Nangqian felsic intrusions have high initial 87Sr/86Sr (0.7050-0.7055), variable εNd(t) (- 0.31-1.43) and small variations in (206Pb/204Pb)i (18.68-18.74), (207Pb/204Pb)i (15.53-15.62) and (208Pb/204Pb)i (38.51-38.80). Zircon crystals from both syenite and monzonite porphyries are characterized by positive εHf(t) from 5.2 to 8.5. The results suggest that the syenite and monzonite magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and minor feldspar. The parent magmas originated from a lithospheric mantle metasomatized by slab

  4. Miocene Bahean stratigraphy in the Longzhong Basin,northern central China and its implications in environmental change

    LI; Jijun; ZHANG; Jun; SONG; Chunhui; ZHAO; Zhijun; ZHANG; Yong; WANG; Xiuxi; ZHANG; Jianming; CUI; Qiaoyu


    Fossil mammal-riched Neogene strata are widely distributed in the southeast corner of the huge Longzhong Basin at Tianshui,Gansu Province,northern central China.Hipparion weihoense,a typical member of late Middle Miocene Bahean stage,was recently excavated at Yaodian along a well-exposed outcrop.Owing to the importance of the Bahean stage in the mammalian evolution and its potential for environmental change,we suggested a name of Yaodian Formation for the stratigraphy,which is correlated to the Bahe Formation at Lantian,Shaanxi.High resolution paleomagnetic dating of the section shows that the Yaodian Formation covers the period between 11.67 Ma and 7.43 Ma,with the site bearing Hipparion weihoense being estimated at about 10.54-10.30 Ma,providing first magnetostratigraphic chronology for the Bahean Stage.The Yaodian Formation consists of fluvial channel deposits (11.67-10.40 Ma) at the bottom,floodplain deposits in the middle (10.40-9.23 Ma) and shallow lake sediments at the top (9.23-7.43 Ma).This upward fining sequence suggests that the relief in nearby mountain ranges such as West Qinling to the south and Huajia Ling to the north was greatly reduced after long-term denudation,fluvial transport capacity was low,and finally the drainage system was disintegrated,replaced with broad-shallow lakes in which only fine sediments like mud and marlite were deposited,indicating an old stage of development of a planation surface.A remarkable shift in ecology and climatic environment was found at 7.4-7.7 Ma when paleoclimate changed from early warm humid to late dry as indicated by sedimentary facies changed from early shallow lake sequence to late eolian red clays and a former coniferous-deciduous mixed forest was replaced by grassland,leading to great growth of Hipparion Fauna of Baodean stage in the region.Therefore,it is estimated that the present high relief of Qinling and drainage pattern did not come into being until Late Pliocene in response to intensive

  5. Paleoclimatic implications (Late Cretaceous-Paleogene) from micromorphology of calcretes, palustrine limestones and silcretes, southern Paraná Basin, Uruguay

    Tófalo, Ofelia R.; Pazos, Pablo J.


    Sedimentologic and petrographic analyses of outcroping and subsurface calcretes, palustrine carbonates, and silcretes were carried out in the southern Paraná Basin (Uruguay). The aim of this work is to describe the microfabric and interpret the genesis of these rocks through detailed analyses, since they contain significant paleoenvironmental and paleoclimatic evolution information. The main calcrete and silcrete host rock (Mercedes Formation) is represented by a fluvial thinning upward succession of conglomerate and sandstone deposits, with isolated pelitic intervals and paleosoils. Most of the studied calcretes are macroscopically massive with micromorphological features of alpha fabric, originated by displacive growth of calcite in the host clastic material due to evaporation, evapotranspiration and degassing. Micromorphologically, calcretes indicate an origin in the vadose and phreatic diagenetic environments. Micrite is the principal component, and speaks of rapid precipitation in the vadose zone from supersaturated solutions. The abundance of microsparite and secondary sparite is regarded as the result of dissolution and reprecipitation processes. Although present, brecciated calcretes are less common. They are frequent in vadose diagenetic environments, where the alternation between cementation and non-tectonic fracturing conditions take place. These processes generated episodes of fragmentation, brecciation and cementation. Fissures are filled with clear primary sparitic calcite, formed by precipitation of extremely supersaturated solutions in a phreatic diagenetic environment. The micromorphological characteristics indicate that calcretes resulted from carbonate precipitation in the upper part of the groundwater table and the vadose zone, continuously nourished by lateral migration of groundwater. The scarcity of biogenic structures suggests that they were either formed in zones of little biological activity or that the overimposed processes related to

  6. Organic geochemistry of deep ground waters from the Palo Duro Basin, Texas: implications for radionuclide complexation, ground-water origin, and petroleum exploration

    This report describes the organic geochemistry of 11 ground-water samples from the Palo Duro Basin, Texas and discusses the implications of their organic geochemical compositions in terms of radionuclide complexation, ground-water origin, and the petroleum potential of two candidate repository sites in Deaf Smith and Swisher Counties. Short-chain aliphatic acid anions are the principal organic constituents present. Stability constant data and simple chemical equilibria calculations suggest that short-chain aliphatic acids are relatively weak complexing agents. The extent of complexation of a typical actinide by selected inorganic ligands present in these brines is expected to far outweigh actinide complexation by the aliphatic acid anions. Various lines of evidence suggest that some portion of the bromide concentrations in the brines is derived from the same source as the short-chain aliphatic acid anions. When the postulated organic components are subtracted from total bromide concentrations, the origins of the Palo Duro brines, based on chloride versus bromide relationships, appear largely consistent with origins based on isotopic evidence. The short-chain aliphatic acid anion content of the Palo Duro brines is postulated to have been much greater in the geologic past. Aliphatic acid anions are but one of numerous petroleum proximity indicators, which consistently suggest a greater petroleum exploration potential for the area surrounding the Swisher County site than the region encompassing the candidate site in Deaf Smith County. Short-chain aliphatic acid anions appear to provide a useful petroleum exploration tool as long as the complex reactions that may dimish their concentrations in ground water are recognized. 71 refs., 10 figs., 10 tabs

  7. Seismic interpretation of dinantian carbonate platforms in the Netherlands; implications for the palaeogeographical and structural development of the Northwest European Carboniferous Basin

    Kombrink, H.; Lochem, H. van; Zwan, K.J. van der


    The Northwest European Carboniferous Basin is characterized by a series of carbonate platforms and intervening shale-dominated troughs during the Dinantian Sub-period. These structures have been mainly found along the margins of the basin. Here we present the results of an investigation of high-qual

  8. Early evolution of the southern margin of the Neuquén Basin, Argentina: Tectono-stratigraphic implications for rift evolution and exploration of hydrocarbon plays

    D'Elia, Leandro; Bilmes, Andrés; Franzese, Juan R.; Veiga, Gonzalo D.; Hernández, Mariano; Muravchik, Martín


    Long-lived rift basins are characterized by a complex structural and tectonic evolution. They present significant lateral and vertical stratigraphic variations that determine diverse basin-patterns at different timing, scale and location. These issues cause difficulties to establish facies models, correlations and stratal stacking patterns of the fault-related stratigraphy, specially when exploration of hydrocarbon plays proceeds on the subsurface of a basin. The present case study corresponds to the rift-successions of the Neuquén Basin. This basin formed in response to continental extension that took place at the western margin of Gondwana during the Late Triassic-Early Jurassic. A tectono-stratigraphic analysis of the initial successions of the southern part of the Neuquén Basin was carried out. Three syn-rift sequences were determined. These syn-rift sequences were located in different extensional depocentres during the rifting phases. The specific periods of rifting show distinctly different structural and stratigraphic styles: from non-volcanic to volcanic successions and/or from continental to marine sedimentation. The results were compared with surface and subsurface interpretations performed for other depocentres of the basin, devising an integrated rifting scheme for the whole basin. The more accepted tectono-stratigraphic scheme that assumes the deposits of the first marine transgression (Cuyo Cycle) as indicative of the onset of a post-rift phase is reconsidered. In the southern part of the basin, the marine deposits (lower Cuyo Cycle) were integrated into the syn-rift phase, implying the existence of different tectonic signatures for Cuyo Cycle along the basin. The rift climax becomes younger from north to south along the basin. The post-rift initiation followed the diachronic ending of the main syn-rift phase throughout the Neuquén Basin. Thus, initiation of the post-rift stage started in the north and proceeded towards the south, constituting a

  9. Sedimentology and paleogeographic evolution of the intermontane Kathmandu basin, Nepal, during the Pliocene and Quaternary. Implications for formation of deposits of economic interest

    Dill, H. G.; Kharel, B. D.; Singh, V. K.; Piya, B.; Busch, K.; Geyh, M.


    The Kathmandu Valley is an intermontane basin in the center of a large syncline of the Lesser Himalayas. The sedimentary basin fill comprises three units of Plio-Pleistocene to Holocene age. The study aimed at modeling the paleogeographic evolution of the basin, with emphasis on sedimentary series of fossil fuels and non-metallic deposits. The lithological setting of the basin and the tectonic framework were instrumental to basin subsidence. Alluvial through lacustrine sedimentation during incipient stages is a direct response to uplift in the hinge zone of the synclinorium. Axial parallel sediment dispersal gave way to fluviodeltaic sedimentation mainly from the limbs of the synclinorium. Ongoing compression and renewed uplift in the core zone of the synclinorium drove the uplift of a NW-SE running divide and a subdivision of the mono-lake into two basins. This ridge blocked the flow of transverse rivers and the northern subbasin became gradually choked. Ongoing uplift of the entire basin during the recent geological history caused a reorganization of the drainage pattern and triggered linear erosion in the southern mountain range. Step-by-step the remaining lacustrine basins disappeared. Fan aggradation coincide with cold dry or warm seasons, fluvial dissection and discharge increased during warmer and more humid periods. High lake levels exist during phases of increased humidity. The results of this basin analysis may be used predictively in the exploration for coal, natural gas, diatomaceous earths and quarrying for sand or clay. The gas potential is at its maximum in the lacustrine facies, sand and clay for construction purposes may be quarried economically from various fluvial and deltaic deposits. Diatomaceous earths predominantly accumulated in marginal parts of the lake and some landslide-dammed ponds. Lignitic brown coal can be mined together with combustible shales from poorly drained swamps.

  10. Recent Advances in Modeling Phosphorus and Nitrogen Delivery to the Gulf of Mexico and Implications for Managing Nutrients n the Mississippi River Basin

    Alexander, R. B.; Smith, R. A.; Schwarz, G. E.; Boyer, E. W.; Nolan, J. V.; Brakebill, J. W.


    Although the increased availability of reactive nutrients in past decades has benefited society via food and energy production, the corresponding rise in nutrient loadings to aquatic ecosystems is of particular concern, especially in many estuaries globally where increased nutrient loads have contributed to eutrophic conditions. In the United States, elevated riverine nutrients have contributed to stressed trophic conditions in a majority of estuaries, including the shallow coastal waters of the Louisiana shelf in the northern Gulf of Mexico, where both nitrogen and phosphorus loadings are recognized as contributing to seasonal hypoxic conditions. Advances in geospatial modeling of nitrogen and phosphorus sources and transport in the Mississippi and Atchafalaya River Basins (MARB), as reported in a recent U.S. Geological Survey (USGS) study, provide important information to support improved assessments and management of nutrient loadings to the northern Gulf of Mexico. We summarize the findings of this study and discuss the implications for managing nutrient sources in the MARB. The study reveals important differences in the sources and aquatic transport of nitrogen and phosphorus that affect delivery to the Gulf. Although agricultural sources contribute a majority of the delivered nutrients to the Gulf, corn and soybean cultivation is the largest contributor of nitrogen whereas phosphorus originates primarily from animal manure on pasture and rangelands. Atmospheric deposition is the second leading source of nitrogen, with urban sources contributing relatively small quantities of both nutrients. Furthermore, we find that both nitrogen and phosphorus delivery to the Gulf is controlled by hydrological and biogeochemical processes (e.g., water travel time, denitrification, storage) that scale with stream size, although phosphorus also displays large local- and regional-scale differences in delivery caused by reservoir trapping. The importance of these processes

  11. Chemical data for 7 streams in Salmon River Basin - Importance of biotic and abiotic features of salmon habitat implications for juvenile Chinook and steelhead growth and survival

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a large-scale, long-term comparative study that includes many streams (20+ streams in the Salmon River Basin, Idaho, including a few non-salmon streams for...

  12. Seismic reflection-based evidence of a transfer zone between the Wagner and Consag basins: implications for defining the structural geometry of the northern Gulf of California

    González-Escobar, Mario; Suárez-Vidal, Francisco; Hernández-Pérez, José Antonio; Martín-Barajas, Arturo


    This study examines the structural characteristics of the northern Gulf of California by processing and interpreting ca. 415 km of two-dimensional multi-channel seismic reflection lines (data property of Petróleos Mexicanos PEMEX) collected in the vicinity of the border between the Wagner and Consag basins. The two basins appear to be a link between the Delfín Superior Basin to the south, and the Cerro Prieto Basin to the north in the Mexicali-Imperial Valley along the Pacific-North America plate boundary. The seismic data are consistent with existing knowledge of four main structures (master faults) in the region, i.e., the Percebo, Santa María, Consag Sur, and Wagner Sur faults. The Wagner and Consag basins are delimited to the east by the Wagner Sur Fault, and to the west by the Consag Sur Fault. The Percebo Fault borders the western margin of the modern Wagner Basin depocenter, and is oriented N10°W, dipping (on average) ˜40° to the northeast. The trace of the Santa María Fault located in the Wagner Basin strikes N19°W, dipping ˜40° to the west. The Consag Sur Fault is oriented N14°W, and dips ˜42° to the east over a distance of 21 km. To the east of the study area, the Wagner Sur Fault almost parallels the Consag Sur Fault over a distance of ˜86 km, and is oriented N10°W with an average dip of 59° to the east. Moreover, the data provide new evidence that the Wagner Fault is discontinuous between the two basins, and that its structure is more complex than previously reported. A structural high separates the northern Consag Basin from the southern Wagner Basin, comprising several secondary faults oriented NE oblique to the main faults of N-S direction. These could represent a zone of accommodation, or transfer zone, where extension could be transferred from the Wagner to the Consag Basin, or vice versa. This area shows no acoustic basement and/or intrusive body, which is consistent with existing gravimetric and magnetic data for the region.

  13. Role of sea-level change in deep water deposition along a carbonate shelf margin, Early and Middle Permian, Delaware Basin: implications for reservoir characterization

    Li, Shunli; Yu, Xinghe; Li, Shengli; Giles, Katherine A.


    The architecture and sedimentary characteristics of deep water deposition can reflect influences of sea-level change on depositional processes on the shelf edge, slope, and basin floor. Outcrops of the northern slope and basin floor of the Delaware Basin in west Texas are progressively exposed due to canyon incision and road cutting. The outcrops in the Delaware Basin were measured to characterize gravity flow deposits in deep water of the basin. Subsurface data from the East Ford and Red Tank fields in the central and northeastern Delaware Basin were used to study reservoir architectures and properties. Depositional models of deep water gravity flows at different stages of sea-level change were constructed on the basis of outcrop and subsurface data. In the falling-stage system tracts, sandy debris with collapses of reef carbonates are deposited on the slope, and high-density turbidites on the slope toe and basin floor. In the low-stand system tracts, deep water fans that consist of mixed sand/mud facies on the basin floor are comprised of high- to low-density turbidites. In the transgression and high-stand system tracts, channel-levee systems and elongate lobes of mud-rich calciturbidite deposits formed as a result of sea level rise and scarcity of sandy sediment supply. For the reservoir architecture, the fan-like debris and high-density turbidites show high net-to-gross ratio of 62 %, which indicates the sandiest reservoirs for hydrocarbon accumulation. Lobe-like deep water fans with net-to-gross ratio of 57 % facilitate the formation of high quality sandy reservoirs. The channel-levee systems with muddy calciturbidites have low net-to-gross ratio of 30 %.

  14. The Messinian–early Pliocene stratigraphic record in the southern Bajo Segura Basin (Betic Cordillera, Spain): Implications for the Mediterranean salinity crisis

    Soria, J. M.; Departamento Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apdo. 99, San Vicente del Raspeig, 03080 Alicante; Caracuel, J. E.; Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apdo. Correos 99, 03080 Alicante, Spain; Corbí, H.; Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apdo. Correos 99, 03080 Alicante, Spain; Dinarès-Turell, J.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Lancis, C.; Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apdo. Correos 99, 03080 Alicante, Spain; Tent-Manclús, J. E.; Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apdo. Correos 99, 03080 Alicante, Spain; Viseras, C.; Departamento de Estratigrafía y Paleontología, Universidad de Granada, Campus de Fuente Nueva s/n, 18071 Granada, Spain; Yébenes, A.; Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apto. 99, 03080 San Vicente del Raspeig, Alicante, Spain


    The analysis of the Messinian and Pliocene stratigraphy of the southern Bajo Segura Basin (Betic Cordillera, Spain) has revealed three highstand sedimentary phases (Messinian I, Messinian II, and Pliocene) bounded by two lowstand erosional surfaces (intra-Messinian and end-Messinian unconformities). The Messinian I highstand phase is characterized by the progradation of coastal and shallow marine sandstones (La Virgen Fm) over slope and pelagic-basin marls (Torremendo Fm). After this first ph...

  15. SILURIAN – DEVONIAN OF THE ORIENTAL ALGERIAN SAHARA: implication of new field data from Tassili n'Ajjer outcrops and Berkine Basin (SE, Algeria) for shale gas exploration.

    Djouder, Hocine; Boulvain, Frédéric; Da Silva, Anne-Christine; Musial, Geoffray; Murat, Bruno; Lüning, Sebastian


    The Silurian – Devonian succession have been deposited in wide sags and sub-basins in a cratonic setting, along the northwestern passive margin of the Gondwana during the opening of the proto-Tethyan ocean. During this Siluro-Devonian Period, a high subsidence occurs stacked sediment bodies and organic-rich shales were deposited in many places that respectively form important hydrocarbon reservoirs and source rocks throughout North Africa basins and Arabia (Boot et al., 1998 ; Lüning et al...

  16. Late Aptian-Albian of the Vocontian Basin (SE-France) and Albian of NE-Texas: Biostratigraphic and paleoceanographic implications by planktic foraminifera faunas

    Reichelt, Kerstin


    Planktic foraminifera fauna and carbon isotopes of the bulk rock have been investigated to compile a high resolution biostratigraphy for the Late Aptian to Late Albian in the Vocontian Basin (SE-France) and for the Middle and Late Albian in NE-Texas. A high resolution carbon isotope stratigraphy (CIS) has been established for the Albian of the Vocontian Basin, and partially correlated with sections in the eastern (ODP 547, Mazagan Plateau) and western (ODP 1052; Blake Nose Plateau) Atlantic a...

  17. Formation of the Permian basalts and implications of geochemical tracing for paleo-tectonic setting and regional tectonic background in the Turpan-Hami and Santanghu basins, Xinjiang

    ZHOU Dingwu; LIU Yiqun; XING Xiujuan; HAO Jianrong; DONG Yunpeng; OUYANG Zhengjian


    The Turpan-Hami and Santanghu basins are the late Paleozoic-Mesozoic-Cenozoic reworked intracontinental basins that superposed on the folded basement of the Paleozoic orogenic belt. 40Ar/39Ar geochronological study of the basalts developed in the basins reveals that the formation period is Permain (293-266 Ma). From geochemical comparison of the basalts, the Santanghu basalts exhibit a strong depletion in Nb and Ta, and a selective enrichment in HFSE, reflecting that the source region is influenced by the subducted components related to subduction of the ancient oceanic crust and characterized with "lagged arc volcanic rocks". In contrast, the Turpan-Hami basalts show a slight depletion in Nb and Ta, high Th/Ta ratio, similar to the basalts formed in an intracontinental extensional zone or in an initial rift. Combined with the formation period of the ophiolite and ophiolite mélange zones and regional magmatic activities occurring on the post-orogenic extensional background in northern Xinjiang, it can be inferred from these geochemical characteristics that the tectonic background for forming the Turpan-Hami and Santanghu basins is closely related to the regional extension after the continent-continent collisional orogeny. The basalts of the two basins came from different sources on the post-orogenic extensional background of the similar basin-forming dynamics. Although the settings are all intracontinental rift, the source for the Santanghu basalts is obviously subjected to the metasomatism of the subducted components, implying the existence of the previous subduction.

  18. Structural characteristics of the Lake Van Basin, eastern Turkey, from high-resolution seismic reflection profiles and multibeam echosounder data: geologic and tectonic implications

    Cukur, Deniz; Krastel, Sebastian; Tomonaga, Yama; Schmincke, Hans-Ulrich; Sumita, Mari; Meydan, Ayşegül Feray; Çağatay, M. Namık; Toker, Mustafa; Kim, Seong-Pil; Kong, Gee-Soo; Horozal, Senay


    The structural evolution of Lake Van Basin, eastern Turkey, was reconstructed based on seismic reflection profiles through the sedimentary fill as well as from newly acquired multibeam echosounder data. The major sub-basins (Tatvan Basin and Northern Basin) of Lake Van, bound by NE-trending faults with normal components, formed during the past ~600 ka probably due to extensional tectonics resulting from lithospheric thinning and mantle upwelling related to the westward escape of Anatolia. Rapid extension and subsidence during early lake formation led to the opening of the two sub-basins. Two major, still active volcanoes (Nemrut and Süphan) grew close to the lake basins approximately synchronously, their explosive deposits making up >20 % of the drilled upper 220 m of the ca. 550-m-thick sedimentary fill. During basin development, extension and subsidence alternated with compressional periods, particularly between ~340 and 290 ka and sometime before ~14 ka, when normal fault movements reversed and gentle anticlines formed as a result of inversion. The ~14 ka event was accompanied by widespread uplift and erosion along the northeastern margin of the lake, and substantial erosion took place on the crests of the folds. A series of closely spaced eruptions of Süphan volcano occurred synchronously suggesting a causal relationship. Compression is still prevalent inside and around Lake Van as evidenced by recent faults offsetting the lake floor and by recent devastating earthquakes along their onshore continuations. New, high-resolution bathymetry data from Lake Van reveal the morphology of the Northern Ridge and provide strong evidence for ongoing transpression on a dextral strike-slip fault as documented by the occurrence of several pop-up structures along the ridge.

  19. New determination of the shape of the Seattle basin, Washington from gravity and magnetic data: Implications for seismic ground motion and crustal faults

    Anderson, M. L.; Waters, K.; Dragovich, J. D.; Blakely, R. J.; Wells, R. E.


    The greater Seattle urban area overlies a large basin subject to amplification of seismic waves during earthquakes. The depth and shape of the Seattle basin was last determined via inversion of regional gravity data in 2001; since that time, we have collected over 2000 new gravity data points across the basin. Two dimensional modeling of these gravity data with existing aeromagnetic data reveal a boundary between the two major basement rock types, the basaltic Crescent Formation (a part of Siletzia) to the west and the metamorphic western mélange belt to the east, passing beneath the middle of the basin. Our most surprising results include a westward dip for this boundary across the Seattle uplift, as opposed to an eastward dip across the Kingston arch, and steeply-dipping, deeply-rooted slices of non-magnetic Crescent included within Siletzia under the Puget lowland. We explain these results with one tectonic story: amalgamation of Siletzia with North America during the Eocene involved subduction-related duplication in a fold and thrust belt style within the Crescent and its likely obduction over the western mélange belt near the Seattle uplift. The new data also show local gravity gradients that correlate with steeply-dipping, neotectonic faults that traverse the eastern end of the Seattle basin. Prominent examples include the northwest-striking, right-lateral Rattlesnake and Whidbey Island fault systems, as well as a possible new fault striking northwest through the Lake Sammamish/Bellevue area. A simple assessment of gravity anomalies for the depth of the basin suggest it is deeper and wider to the east of Seattle than to the west. However, including the basement boundary in the gravity inversion and utilizing measured rock densities which show the western mélange belt is less dense than the Crescent Formation, we find a basement/sediment contact that is a consistent depth at a large scale across much of the basin and even shallows to the east in some areas

  20. Coupled heat and fluid flow modeling of the Carboniferous Kuna Basin, Alaska: Implications for the genesis of the Red Dog Pb-Zn-Ag-Ba ore district

    Garven, G.; Raffensperger, J.P.; Dumoulin, J.A.; Bradley, D.A.; Young, L.E.; Kelley, K.D.; Leach, D.L.


    The Red Dog deposit is a giant 175 Mton (16% Zn, 5% Pb), shale-hosted Pb-Zn-Ag-Ba ore district situated in the Carboniferous Kuna Basin, Western Brooks Range, Alaska. These SEDEX-type ores are thought to have formed in calcareous turbidites and black mudstone at elevated sub-seafloor temperatures (120-150??C) within a hydrogeologic framework of submarine convection that was structurally organized by large normal faults. The theory for modeling brine migration and heat transport in the Kuna Basin is discussed with application to evaluating flow patterns and heat transport in faulted rift basins and the effects of buoyancy-driven free convection on reactive flow and ore genesis. Finite element simulations show that hydrothermal fluid was discharged into the Red Dog subbasin during a period of basin-wide crustal heat flow of 150-160 mW/m2. Basinal brines circulated to depths as great as 1-3 km along multiple normal faults flowed laterally through thick clastic aquifers acquiring metals and heat, and then rapidly ascended a single discharge fault zone at rates ??? 5 m/year to mix with seafloor sulfur and precipitate massive sulfide ores. ?? 2003 Elsevier Science B.V. All rights reserved.

  1. U.S. Geological Survey 2013 assessment of undiscovered resources in the Bakken and Three Forks Formations of the U.S. Williston Basin Province

    Gaswirth, Stephanie B.; Marra, Kristen R.


    The Upper Devonian Three Forks and Upper Devonian to Lower Mississippian Bakken Formations comprise a major United States continuous oil resource. Current exploitation of oil is from horizontal drilling and hydraulic fracturing of the Middle Member of the Bakken and upper Three Forks, with ongoing exploration of the lower Three Forks, and the Upper, Lower, and Pronghorn Members of the Bakken Formation. In 2008, the U.S. Geological Survey (USGS) estimated a mean of 3.65 billion bbl of undiscovered, technically recoverable oil resource within the Bakken Formation. The USGS recently reassessed the Bakken Formation, which included an assessment of the underlying Three Forks Formation. The Pronghorn Member of the Bakken Formation, where present, was included as part of the Three Forks assessment due to probable fluid communication between reservoirs. For the Bakken Formation, five continuous and one conventional assessment units (AUs) were defined. These AUs are modified from the 2008 AU boundaries to incorporate expanded geologic and production information. The Three Forks Formation was defined with one continuous and one conventional AU. Within the continuous AUs, optimal regions of hydrocarbon recovery, or “sweet spots,” were delineated and estimated ultimate recoveries were calculated for each continuous AU. Resulting undiscovered, technically recoverable resource estimates were 3.65 billion bbl for the five Bakken continuous oil AUs and 3.73 billion bbl for the Three Forks Continuous Oil AU, generating a total mean resource estimate of 7.38 billion bbl. The two conventional AUs are hypothetical and represent a negligible component of the total estimated resource (8 million barrels of oil).

  2. Lateral drilling and completion technologies for shallow-shelf carbonates of the Red River and Ratcliffe Formations, Williston Basin. Topical report, July 1997

    Carrell, L.A.; George, R.D.; Gibbons, D.


    Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil-well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius lateral in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2,590 to 2,890 m in Richland County, MT; Bowman County, ND; and Harding County, SD. In theory, all of the horizontal drilling techniques explored in this project have merit for application fitting specific criteria. From a realistic point of view, the only relatively trouble-free, adequately-proven technology employed was the medium-radius steered motor/MWD technology. The slim-tool steered motor/MWD re-entry technology has been used extensively but appears to still be significantly in developmental stages. This technology will probably always be more troublesome than the technology used to drill new wells because the smaller diameter required for the tools contributes to both design and operational complexities. Although limited mechanical success has been achieved with some of the lateral jetting technologies and the Amoco tools, their predictability and reliability is unproven. Additionally, they appear to be limited to shallow depths and certain rock types. The Amoco technology probably has the most potential to be successfully developed for routinely reliable, field applications. A comparison of the various horizontal drilling technologies investigated is presented.

  3. Provenance of the Lower Triassic Bunter Sandstone Formation: implications for distribution and architecture of aeolian vs. fluvial reservoirs in the North German Basin

    Olivarius, Mette; Weibel, Rikke; Friis, Henrik; Boldreel, Lars Ole; Keulen, Nynke; Thomsen, Tonny B.


    Zircon U–Pb geochronometry, heavy mineral analyses and conventional seismic reflection data were used to interpret the provenance of the Lower Triassic Bunter Sandstone Formation. The succession was sampled in five Danish wells in the northern part of the North German Basin. The zircon ages found...... analysis is an invaluable tool of correlation and subdivision of the Bunter Sandstone in this marginal basin setting. This is because the succession includes many hiatuses so the cyclo-, magneto-, and bio-stratigraphic frameworks established elsewhere in the basin cannot readily be applied here. Zircon......-grade metamorphism, whereas a secondary age population with a peak at 300 Ma matches the timing of volcanism and magmatism at the Carboniferous/Permian boundary in the northern Variscan belt. The Ringkøbing-Fyn High also supplied some sediment tothe Volpriehausen Member. The zircon ages obtained from the Solling...

  4. Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: Implications for the tectonic evolution of the Central Andes

    Mpodozis, Constantino; Arriagada, César; Basso, Matilde; Roperch, Pierrick; Cobbold, Peter; Reich, Martin


    The Salar de Atacama basin, the largest "pre-Andean" basin in Northern Chile, was formed in the early Late Cretaceous as a consequence of the tectonic closure and inversion of the Jurassic-Early Cretaceous Tarapacá back arc basin. Inversion led to uplift of the Cordillera de Domeyko (CD), a thick-skinned basement range bounded by a system of reverse faults and blind thrusts with alternating vergence along strike. The almost 6000-m-thick, upper Cretaceous to lower Paleocene sequences (Purilactis Group) infilling the Salar de Atacama basin reflects rapid local subsidence to the east of the CD. Its oldest outcropping unit (Tonel Formation) comprises more than 1000 m of continental red sandstones and evaporites, which began to accumulate as syntectonic growth strata during the initial stages of CD uplift. Tonel strata are capped by almost 3000 m of sandstones and conglomerates of western provenance, representing the sedimentary response to renewed pulses of tectonic shortening, which were deposited in alluvial fan, fluvial and eolian settings together with minor lacustrine mudstone (Purilactis Formation). These are covered by 500 m of coarse, proximal alluvial fan conglomerates (Barros Arana Formation). The top of the Purilactis Group consists of Maastrichtian-Danian alkaline lava and minor welded tuffs and red beds (Cerro Totola Formation: 70-64 Ma K/Ar) deposited during an interval of tectonic quiescence when the El Molino-Yacoraite Late Cretaceous sea covered large tracts of the nearby Altiplano-Puna domain. Limestones interbedded with the Totola volcanics indicate that this marine incursion advanced westwards to reach the eastern CD slope. CD shortening in the Late Cretaceous was accompanied by volcanism and continental sedimentation in fault bounded basins associated to strike slip along the north Chilean magmatic arc to the west of the CD domain, indicating that oblique plate convergence prevailed during the Late Cretaceous. Oblique convergence seems to have

  5. Grain size, magnetic susceptibility and geochemical characteristics of the loess in the Chaohu lake basin: Implications for the origin, palaeoclimatic change and provenance

    Guan, Houchun; Zhu, Cheng; Zhu, Tongxin; Wu, Li; Li, Yunhuai


    Rare studies on the aeolian deposit located in north bank of the Yantgze River are documented. Recently, it is found in the field investigations and in bore sections that the loess in the Chaohu lake basin has the largest thickness of over 40 m. In this study, the probability cumulative curves, frequency distribution, the grain size distributions and the discriminant function of the grain size suggest that the loess in the Chaohu lake basin is of eolian origin. The magnetic susceptibility curves of the loess in the basin coincide perfectly with those of the loess in the northern China and the marine isotope stages (MIS), and show that paleoclimatic cycles and sub-cycles were documented since L3 during middle-late Pleistocene in the basin. The MS curve of Paleosol S1, Paleosol S2 and loess L3 in the basin coincide perfectly with MIS5, MIS-7 and MIS-8, respectively. The good correspondence indicates that the loess in the basin has given a sensitive response to the globe paleoclimatic change since L3. On the other hand, the climate changes in some stages recorded by the loess has regional characteristics obviously, which might be the result of the dual effect of globe climate changes and East-Asia monsoon climate changes. The result of geochemical characteristics suggests that the loess in the basin has undergone moderate to strong chemical weathering. Most elements are mobilized during chemical weathering; Na and Ca of the loess are markedly lost and the removal of K is also evident, and chemical weathering doesn't evidently turn into the Si removal stage. The chemical weathering of the loess is more intensive than that of the loess deposits in northwestern China and the upper reaches of the Yantgze River. The intensive chemical weathering has been documented by the loess might be related to strong monsoon climate in Chaohu lake basin. The provenance of the loess also differs from that in northern China, and is discussed firstly with the lithofacies palaeogeography

  6. Evidence for spreading in the lower Kam Group of the Yellowknife greenstone belt: Implications for Archaean basin evolution in the Slave Province

    Helmstaedt, H.; Padgham, W. A.

    The Yellowknife greenstone belt is the western margin of an Archean turbidite-filled basin bordered on the east by the Cameron River and Beaulieu River volcanic belts (Henderson, 1981; Lambert, 1982). This model implies that rifting was entirely ensialic and did not proceed beyond the graben stage. Volcanism is assumed to have been restricted to the boundary faults, and the basin was floored by a downfaulted granitic basement. On the other hand, the enormous thickness of submarine volcanic rocks and the presence of a spreading complex at the base of the Kam Group suggest that volcanic rocks were much more widespread than indicated by their present distribution. Rather than resembling volcanic sequences in intracratonic graben structures, the Kam Group and its tectonic setting within the Yellowknife greenstone belt have greater affinities to the Rocas Verdes of southern Chile, Mesozoic ophiolites, that were formed in an arc-related marginal basin setting. The similarities of these ophiolites with some Archean volcanic sequences was previously recognized, and served as basis for their marginal-basin model of greenstone belts. The discovery of a multiple and sheeted dike complex in the Kam Group confirms that features typical of Phanerozoic ophiolites are indeed preserved in some greenstone belts and provides further field evidence in support of such a model.

  7. A high-resolution carbon-isotope record of the Turonian stage correlated to a siliciclastic basin fill: Implications for mid-Cretaceous sea-level change

    Uličný, David; Jarvis, I.; Gröcke, D. R.; Čech, S.; Laurin, Jiří; Olde, K.; Trabucho-Alexandre, J.; Švábenická, L.; Pedentchouk, N.


    Roč. 405, July (2014), s. 42-58. ISSN 0031-0182 R&D Projects: GA ČR GAP210/10/1991; GA MŠk LA08036 Institutional support: RVO:67985530 Keywords : eustasy * carbon isotopes * Bohemian Cretaceous Basin * Turonian * greenhouse climate * sequence stratigraphy Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.339, year: 2014

  8. From source to sink in the sediment cascade of the Hei-River Basin: Implications for late Quaternary landscape dynamics in the Gobi Desert, NW China

    Schimpf, Stefan; Nottebaum, Veit; Diekmann, Bernhard; Hartmann, Kai; Lehmkuhl, Frank; Wünnemann, Bernd; Zhang, Chi


    The Hei River Basin with a catchment size of ~130,000 km² is host to one of the largest continental alluvial fans in the world. The basin comprises: (1) its high-elevated river sources in the glacier and the permafrost zone of the Qilian Mountains, (2) the semi-arid foreland of the Hexi Corridor in the middle reaches and (3) the endorheic Ejina Basin (Gaxun Nur Basin) as its recent sink. The river basin is characterized by small subcatchments of hyper-arid mountain ranges of the Gobi-Tienshan and Beishan as well as of smooth and fuzzy water divides of the Hexi-Corridor and the Badain Jaran Sand Sea. Up to 300 m of Quaternary sediments establish the large Ejina Basin, with a size of 28,000 km², as an excellent archive for environmental reconstructions located at the recent intersection of westerly and monsoonal air masses. Three sediment cores (up to 230 m long) provide evidence of sedimentation dynamics over the last 250,000 years, and cover at least two terminations since OIS 6. The sediments have to be regarded as a result of the interplay between tectonic activity and climate dynamics, accompanied by a related eolian and hydrological response of the catchment. Thus, it is crucial to understand and reconstruct the sedimentary processes along the huge sediment cascades, and to identify the most important sediment sources. Here we present a provenance analysis from mineralogical fingerprints of modern sediments that have been deposited along recent pathways from the sources to the Ejina Basin. The methodical approach combines the analysis of clay minerals, bulk mineralogy, and bulk geochemistry. Furthermore, we use heavy mineral data obtained from automated particle-analysis via a computer-controlled scanning electron microscope (CCSEM) and XRD measurements. We analyzed ~200 surface samples from the whole catchment as reference material, as well as the upper 19 m of cored sediments, to gain insight into temporal changes of depositional processes and provenance

  9. Paleostress inversion of fault-slip data from the Jurassic to Cretaceous Huangshan Basin and implications for the tectonic evolution of southeastern China

    Xu, Xianbing; Tang, Shuai; Lin, Shoufa


    Eight paleostress stages are established in the Jurassic-Cretaceous Huangshan Basin based on fault-slip analysis and age estimation. The first six stages correspond to the subduction of the Paleo-Pacific Plate or the northward motion of the Philippine Block along the southeastern active margin of the South China Block: (1) the 169-162 Ma strike-slip regime was caused by westward low-angle subduction of the Paleo-Pacific Plate, which resulted in NNE-striking folds and top-to-the west thrusting along the southeastern margin of the Huangshan Basin; (2) the 156-125 Ma NW-SE extensional regime was triggered by slab break-off of the Paleo-Pacific Plate. This extension led to Early Cretaceous magmatism, deposition of Early Cretaceous sediments and development of normal faults along the northern boundary of the Huangshan Basin; (3) the 125-107 Ma strike-slip regime was induced by the N-S collision between the Philippine and South China blocks. This tectonic event caused the angular unconformity between the Upper and Lower Cretaceous and the inversion of the Early Cretaceous extensional basin; (4) the 105-86 Ma WNW-ESE extensional regime resulted from an off-shore arc jump of the subducted Paleo-Pacific Plate. This extension triggered the deposition of the Late Cretaceous Qiyunshan Formation; (5) the 86-80 Ma strike-slip regime was induced by high-angle subduction of the Pacific Plate after the off-shore arc jump. This event led to regional uplift and an unconformity at the base of the Late Cretaceous Xiaoyan Formation; (6) the 80-36 Ma N-S extensional regime was caused by the extension following the collision between the Philippine and South China blocks, corresponding to the deposition of the Late Cretaceous Xiaoyan Formation. The last two paleostress stages were the consequences of the far-field effect of the India-Asia continent-continent collision to the southwest of the South China Block: (7) the 36-30 Ma strike-slip regime was caused by the India-Asia collision. It

  10. Palynology of Lower Palaeogene (Thanetian-Ypresian) coastal deposits from the Barmer Basin (Akli Formation, Western Rajasthan, India): palaeoenvironmental and palaeoclimatic implications

    Tripathi, S.K.M.; Kumar, M.; Srivastava, D. [Birbal Sahni Instititue of Paleobotany, Lucknow (India)


    The 32-m thick sedimentary succession of the Paleocene-Eocene Akli Formation (Barmer basin, Rajasthan, India), which is exposed in an open-cast lignite mine, interbed several lignite seams that alternate with fossiliferous carbonaceous clays, green clays and widespread siderite bands and chert nodules. The palynofloral assemblages consist of spore, pollen and marine dinoflagellate cysts that indicate a Thanetian to Ypresian age. The assemblage is dominated by angiospermic pollen and specimens showing affinity with the mangrove Palm Nypa are also very abundant. The Nypa-like pollen specimens exhibit a wide range of morphological variation, some of the recorded morphotypes being restricted to this Indian basin. Preponderance of these pollen taxa indicates that the sediments were deposited in a coastal swamp surrounded by thick, Nypa-dominated mangrove vegetation. The dispersed organic matter separated from macerated residues indicates the dominance of anoxic conditions throughout the succession, although a gradual transition to oxic conditions is recorded in the upper part.

  11. Seismic stratigraphic analysis of the Cenozoic sediments in the NW Faroe Shetland BasinImplications for inherited structural control of sediment distribution

    Ólavsdóttir, Jana; Andersen, Morten Sparre; Boldreel, Lars Ole


    the basin, and local uplift of sediment source areas. Reactivation of older, Paleozoic and Mesozoic, structural elements seem to control the sediment path way and restrict the depositional areas. Various structural elements being re-activated at different times caused considerable structural...... complexity. Understanding the older, structural elements and their control on sedimentation is a potential tool for understanding deviations from “normal” thermal subsidence and for predicting the prospectivity in the post-basalt succession in the Faroe-Shetland Basin.......The post-basalt strata in the Faroese area have been investigated based on interpretation of 2D and 3D reflection seismic data. The post-basalt package is divided into 5 units which have led to the constructions of 6 structural maps and 5 thickness maps. Within the 5 units 12 prograding sediment...

  12. Reconstructing multiple arc-basin systems in the Altai-Junggar area (NW China): Implications for the architecture and evolution of the western Central Asian Orogenic Belt

    Li, Di; He, Dengfa; Tang, Yong


    The Altai-Junggar area in northwestern China is a critical region to gain insights on the tectonic framework and geological evolution of the western Central Asian Orogenic Belt (CAOB). In this study, we report results from integrated geological, geochemical and geophysical investigations on the Wulungu Depression of the Junggar Basin to determine the basement nature of the basin and understand its amalgamation history with the Chinese Altai, within the broad tectonic evolution of the Altai-Junggar area. Based on borehole and seismic data, the Wulungu Depression is subdivided into two NW-trending tectonic units (Suosuoquan Sag and Hongyan High) by southward-vergent thrust faults. The Suosuoquan Sag consists of the Middle-Late Devonian basaltic andesite, andesite, dacite, tuff, tuffaceous sandstone and tuffite, and the overlying Early Carboniferous volcano-sedimentary sequence with lava flows and shallow marine sediments from a proximal juvenile provenance (zircon εHf(t) = 6.0-14.9), compared to the Late Carboniferous andesite and rhyolite in the Hongyan High. Zircon SIMS U-Pb ages for dacites and andesites indicate that these volcanics in the Suosuoquan Sag and Hongyan High erupted at 376.3 Ma and 313.4 Ma, respectively. The Middle-Late Devonian basaltic andesites from well LC1 are calc-alkaline and exhibit primitive magma-like MgO contents (7.9-8.6%) and Mg# values (66-68), with low initial 87Sr/86Sr (0.703269-0.704808) and positive εNd(t) values (6.6-7.6), and relatively high Zr abundance (98.2-116.0 ppm) and Zr/Y ratios (5.1-5.4), enrichment in LREEs and LILEs (e.g., Th and U) and depletion in Nb, Ta and Ti, suggesting that they were probably derived from a metasomatized depleted mantle in a retro-arc extensional setting. The well LC1 andesitic tuffs, well L8 dacites, well WL1 dacitic tuffs and well L5 andesites belong to calc-alkaline and metaluminous to peraluminous (A/CNK = 0.8-1.7) series, and display low Mg# values (35-46) and variably positive εNd(t) (4

  13. Application of integrated vitrinite reflectance and FAMM analyses for thermal maturity assessment of the northeastern Malay Basin, offshore Vietnam: Implications for petroleum prospectivity evaluation

    Petersen, H. I.; Sherwood, N.; Mathiesen, A.;


    Several exploration wells have intersected a Cenozoic coal-bearing, fluvial-deltaic mudstone and sandstone succession in the northeastern Vietnamese part of the Malay Basin, and have successfully tested seismically identified direct hydrocarbon indicators (DHIs). The oil and gas/condensate discov......Several exploration wells have intersected a Cenozoic coal-bearing, fluvial-deltaic mudstone and sandstone succession in the northeastern Vietnamese part of the Malay Basin, and have successfully tested seismically identified direct hydrocarbon indicators (DHIs). The oil and gas...... the uppermost Oligocene source rocks between 2Ma and present-day, which post-dates trap formation. Seismic facies patterns suggest that lacustrine oil-prone units are in he oil window in the same graben complex a few km NW of the investigated well, and these rocks are likely to be the source of the...

  14. Sedimentology and petrography of mass-emplaced limestone (Orahiri Limestone) on a late Oligocene shelf, western North Island, and tectonic implications for eastern margin development of Taranaki Basin

    The Te Kuiti Group in North Wanganui Basin, North Island, New Zealand, of Oligocene - earliest Miocene (Whaingaroan-Waitakian) age, is dominated by calcareous siltstone, calcareous sandstone, and skeletal limestone. Exposures in the southwestern corner of the basin at Awakino Tunnel are distinctive because, compared with elsewhere, the group is generally thicker (>300 m), has strong dips (25-45 degrees E), exhibits an up-section decrease in the amount of dip, and the capping Orahiri Limestone includes several thick (up to 3 m) mass-emplaced units containing a variety of 1-10 cm sized calcareous lithoclasts of older Te Kuiti Group rocks. Petrographic and δ18O and δ13C data suggest that the source deposits of these lithoclasts were cemented at relatively shallow subsurface burial depths (100-500 m) before their uplift and erosion. The lithoclasts so produced were rounded by abrasion in shoal water, often bored profusely by pholad bivalves, and sometimes encrusted by coralline algae, before being periodically mass-emplaced from west to east onto a shelf accumulating coeval Orahiri Limestone lithofacies now in the vicinity of Awakino Tunnel. Pressure-dissolution during subsequent burial provided the main source of calcite cement in the host Orahiri Limestone, mainly at moderate burial depths of 500-1000 m, according to δ18O data. The source region for the lithoclasts probably lay west of Awakino Tunnel and corresponds to the southern part of the basement Herangi High, which otherwise separates North Wanganui Basin from Taranaki Basin, but must have been submarine and accumulating Te Kuiti Group-equivalent calcareous facies during the early Oligocene (Early Whaingaroan, 36-32 Ma). Uplift of this depocentre was accompanied by synsedimentary eastward tilting of the Te Kuiti Group strata already deposited immediately east of Herangi High, contributing to the dips now measured at Awakino Tunnel. Inversion and tilting of the high began in the Late Whaingaroan, after 32 Ma

  15. The optical properties of river and floodplain waters in the Amazon River Basin : implications for satellite-based measurements of suspended particulate matter

    Martinez, Jean-Michel; Espinoza-Villar, R.; Armijos, E.; Moreira, L.S.


    Satellite images can now be used to assess river sediment discharge, and systematic studies over rivers and lakes are required to support such applications and document the variability of inland water optical properties at the watershed scale. The optical properties of the Amazon Basin waters were analyzed from in situ measurements of the remote sensing reflectance (R-rs) at 279 stations and downwelling diffuse attenuation coefficients (K-d) at 133 stations. Measurements of the apparent optic...

  16. Sequence Stratigraphy and Sedimentary Facies of Lower Oligocene Yacheng Formation in Deepwater Area of Qiongdongnan Basin, Northern South China Sea:Implications for Coal-Bearing Source Rocks

    Jinfeng Ren; Hua Wang; Ming Sun; Huajun Gan; Guangzeng Song; Zhipeng Sun


    For unveiling coal-bearing source rocks in terrestrial-marine transitional sequences, the sequence stratigraphic framework and sedimentary facies of Lower Oligocene Yacheng Formation of Qiongdongnan Basin were investigated using seismic profiles, complemented by well bores and cores. Three third-order sequences are identified on the basis of unconformities on basin margins and cor-relative conformities in the basin center, namely SQYC3, SQYC2 and SQYC1 from bottom to top. Coal measure in Yacheng Formation of Qiongdongnan Basin were deposited within a range of facies asso-ciations from delta plain/tidal zone to neritic sea, and three types of favourable sedimentary facies as-sociations for coal measure were established within the sequence stratigraphic framework, including braided delta plain and alluvial fan, lagoon and tidal flat, and fan delta and coastal plain facies associa-tions. Results shown that, in the third-order sequences, coal accumulation in landward areas (such as delta plain) of the study area predominantly correlates with the early transgressive systems tract (TST) to middle highstand systems tract (HST), while in seaward areas (such as tidal flat-lagoon) it correlates with the early TST and middle HST. The most potential coal-bearing source rocks formed where the accommodation creation rate (Ra) and the peat-accumulation rate (Rp) could reach a state of balance, which varied among different sedimentary settings. Furthermore, intense tectonic subsidence and fre-quent alternative marine-continental changes of Yacheng Formation during the middle rift stage were the main reasons why the coal beds shown the characteristics of multi-beds, thin single-bed, and rapidly lateral changes. The proposed sedimentary facies associations may aid in predicting distribution of coal-bearing source rocks. This study also demonstrates that controlling factors analysis using sequence stratigraphy and sedimentology may serve as an effective approach for coal

  17. A high-resolution time series of oxygen isotopes from the Kolyma River: Implications for the seasonal dynamics of discharge and basin-scale water use

    Welp, L. R.; J. T. Randerson; Finlay, J. C.; Davydov, S.P.; Zimova, G. M; Davydova, A. I; Zimov, S. A


    ntensification of the Arctic hydrologic cycle and permafrost melt is expected as concentrations of atmospheric greenhouse gases increase. Quantifying hydrologic cycle change is difficult in remote northern regions; however, monitoring the stable isotopic composition of water runoff from Arctic rivers provides a means to investigate integrated basin-scale changes. We measured river water and precipitation δ18O and δD to partition the river flow into snow and rain components in the Kolyma River...

  18. Provenance analysis of the Guaritas Group (RS conglomeratic sandstones: implications for the paleoclimate and paleogeography of the Eocambrian Central Camaquã sub-basin

    Antonio Romalino Santos Fragoso-Cesar


    Full Text Available The Camaquã Supergroup, located in the central-south region of Rio Grande do Sul, Brazil, constitutes a rift-type post-orogenicsedimentary basin, whose deposition occurred in a continental environment between the Ediacaran and the Eocambrian.The upper succession of the Camaquã Supergroup is represented by the Guaritas Group, a unit formed by fluvial, eolian andalluvial fan deposits that keeps important records of the sedimentation right after the end of the neoproterozoic orogenesis thatgave rise to the Gondwana supercontinent. The objective of the present work was to apply sedimentary provenance analysis inconglomeratic arenites and conglomerates of the Guaritas Group, in order to explore the climatic and tectonic evolution historyof this unit. Based on the pebble compositional data, two main source areas were recognized for the deposits of this unit,a more distal one located to the north, related with a trunk river system parallel to the basin main axis, and a more proximalone located to the east, related to transversal fluvial systems and alluvial fans at the border of the basin. The comparison of theprovenance data with previous studies on facies and paleocurrents suggests that, during the entire evolution of the east borderof the basin, there was a same transversal fluvial system, whose catchment area suffered significative reductions due to thereactivation of the east border fault during the deposition of the Varzinha and Pedra Pintada Formations. The Serra do ApertadoFormation, the upper unit of Guaritas Group, shows a high correlation between the variation of quartzose and non quartzosepebbles composition, and it was attributed to a variation between more humid and more arid climatic conditions.

  19. Middle to late Cenozoic basin evolution in the western Alborz Mountains: Implications for the onset of collisional deformation in northern Iran

    Guest, Bernard; Horton, Brian K.; Axen, Gary J.; Hassanzadeh, Jamshid; MCINTOSH, William C.


    Oligocene-Miocene strata preserved in synclinal outcrop belts of the western Alborz Mountains record the onset of Arabia-Eurasia collision-related deformation in northern Iran. Two stratigraphic intervals, informally named the Gand Ab and Narijan units, represent a former basin system that existed in the Alborz. The Gand Ab unit is composed of marine lagoonal mudstones, fluvial and alluvial-fan clastic rocks, fossiliferous Rupelian to Burdigalian marine carbonates, and basalt flows yielding ^...

  20. Sills, evaporites, and contact metamorphic gas generation in the Tunguska Basin, East Siberia: Implications for the end-Permian environmental crisis

    Svensen, Henrik H.; Frolov, Sergei; Akhmanov, Grigorii G.; Polozov, Alexander G.; Planke, Sverre


    The emplacement of the Siberian Traps Large igneous province (LIP) through the Tunguska Basin is regarded as the main process triggering the end-Permian environmental crisis. Still, the lack of data from the Tunguska Basin represents one of the main challenges in understanding the link between the LIP formation and the crisis. Degassing from contact metamorphic aureoles in evaporites is suggested as a key factor to the continental mass extinction, but little is known about the actual distribution of sills and aureoles within these lithologies. Here, we present results from a borehole database with more than 700 wells in the Tunguska Basin, where 293 borehole sare studied in detail and presented. The boreholes cover large parts of the basin, from Norilsk in the north (N69) to Bratsk in the south (N55), with a bias towards petroleum-bearing regions. In total, 93.5% of the studied boreholes contain sill intrusions. The sill thicknesses vary considerably from kilometer-scale intrusive complexes to individual thin sills of a few tens of meters. Thick sills are emplaced within the vast Cambrian salt formations, with average thicknesses in the 115-130 meter range. Petrographic investigations of metamorphic sediments, and thermal modelling of sediment heating, demonstrate high temperature devolatilization. Degassing to the atmosphere took place via explosive pipe degassing and gas seepage. We show that depending on the specific location within the province and the emplacement depth, the potential for degassing of both greenhouse gases (CH4, CO2), aerosols (SO2), and ozone destructive gases (CH3Cl, CH3Br) was substantial and can explain the end-Permian mass extinction.

  1. Middle-Upper Ordovician (Darriwilian-Early Katian) Positive Carbon Isotope Excursions in the Northern Tarim Basin, Northwest China:Implications for Stratigraphic Correlation and Paleoclimate

    Cunge Liu; Guorong Li; Dawei Wang; Yongli Liu; Mingxia Luo; Xiaoming Shao


    ABSTRACT:Three positive carbon isotope excursions are reported from Middle–Upper Ordovician in Tahe oil-gas field, northern Tarim Basin. Based on conodont biostratigraphy, the Middle Darriwilian Isotope Carbon Excursion (MDICE) and the Guttenberg Carbon Isotope Excursion (GICE) are identified from Darriwilian to Early Katian by the aid of whole-rock carbon isotope data from two well cores. Positive excursion within conodont Pygodus anserinus zone is developed in Early Sandbian, and the fluctuation range is no less than MDICE. Because the range of this excursion in the generalized global carbon isotope curve is short, previous studies paid little attention to it, and named Early Sandbian Isotope Carbon Excursion (ESICE) in this paper. Furthermore, these positive excursions are not directly related to sea level fluctuations and the MDICE and GICE identified in northern Tarim can be globally correlated to that in southern China, North America, South America, and Europe. The Saergan Fm. source rocks of Middle-Upper Ordovician in Kalpin Dawangou outcrop are in accord with the geologic time of MDICE and ESICE, and GICE have strong ties to the source rock of Lianglitag Fm. in basin. Abundant organic carbon burial is an important factor in genesis of positive isotope carbon excursions. Positive oxygen isotope excursion, conodont fauna turnover, decreased conodont total diversity, and the change of sedimentary facies indicated that dramatic changes of paleoceanographic environment of Early-Middle Ordovician in Tarim Basin started from the end of Darriwillian, and an obvious icehouse climate of Late Ordovician occurred in ESICE.

  2. Contrasting isotopic mantle sources for proterozoic lamproites and kimberlites from the Cuddapah basin and eastern Dharwar craton: implication for proterozoic mantle heterogeneity beneath southern India

    Kimberlites intruding the Precambrian basement towards the western margin of the Cuddapah basin near Anantapur (1090 Ma) and Mahbubnagar (1360 Ma) in Andhra Pradesh have initial 87Sr/86Sr between 0.70205 to 0.70734 and σNd between +0.5 to +4.68. Mesoproterozoic lamproites (1380 Ma) from the Cuddapah basin (Chelima and Zangamarajupalle) and its NE margin (Ramannapeta) have initial 87Sr/86Sr between 0.70520 and 0.7390 and εNd from -6.43 to -8.29. Combined Sr- and Nd- isotopic ratios suggest that lamproites were derived from enriched sources which have time-averaged higher Rb/Sr and lower Sm/Nd ratios than the Bulk Earth whereas kimberlites were derived from depleted source with lower Rb/Sr and higher Sm/Nd ratios. Calculated TDM model ages suggest that the lamproite source enrichment (∼2 Ga) preceded that of kimberlites (∼1.37 Ga). Our work demonstrates the existence of isotopically contrasting upper mantle sources for southern Indian kimberlites and lamproites and provides evidence for a lateral, isotopically heterogeneous mantle beneath the Cuddapah basin and eastern Dharwar craton. The significance of our results in the context of diamond exploration is also highlighted. (author)

  3. The earliest well-dated archeological site in the hyper-arid Tarim Basin and its implications for prehistoric human migration and climatic change

    Han, WenXia; Yu, LuPeng; Lai, ZhongPing; Madsen, David; Yang, Shengli


    The routes and timing of human occupation of the Tibetan Plateau (TP) are crucial for understanding the evolution of Tibetan populations and associated paleoclimatic conditions. Many archeological sites have been found in/around the Tarim Basin, on the northern margin of the Tibetan Plateau. Unfortunately, most of these sites are surface sites and cannot be directly dated. Their ages can only be estimated based on imprecise artifact comparisons. We recently found and dated an archeological site on a terrace along the Keriya River. Our ages indicate that the site was occupied at ~ 7.0-7.6 ka, making it the earliest well-dated archeological site yet identified in the Tarim Basin. This suggests that early human foragers migrated into this region prior to ~ 7.0-7.6 ka during the early to mid-Holocene climatic optimum, which may have provided the impetus for populating the region. We hypothesize that the Keriya River, together with the other rivers originating from the TP, may have served as access routes onto the TP for early human foragers. These rivers may also have served as stepping stones for migration further west into the now hyper-arid regions of the Tarim Basin, leading ultimately to the development of the Silk Road.

  4. The chronostratigraphic framework of the South-Pyrenean Maastrichtian succession reappraised: Implications for basin development and end-Cretaceous dinosaur faunal turnover

    Fondevilla, Víctor; Dinarès-Turell, Jaume; Oms, Oriol


    The evolution of the end-Cretaceous terrestrial ecosystems and faunas outside of North America is largely restricted to the European Archipelago. The information scattered in this last area can only be integrated in a chronostratigraphic framework on the basis of robust age constraints and stratigraphy. Therefore, we have revisited the puzzling age calibration of the sedimentary infilling from the Isona sector in the Tremp syncline (South-Central Pyrenees), an area renowned for its rich Maastrichtian dinosaur fossil record. Aiming to shed light to existing controversial age determinations, we carried out a new magnetostratigraphic study along the ~ 420 m long Orcau and Nerets sections of that area. Our results reveal that most of the succession correlates to the early Maastrichtian (mostly chron C31r) in accordance to ages proposed by recent planktonic foraminifera biostratigraphy. The resulting chronostratigraphic framework of the entire Maastrichtian basin recorded in the Tremp syncline shows that a significant sedimentary hiatus of about 3 My characterizes most of the late Maastrichtian in the study area. This hiatus, related to an abrupt migration of the basin depocenter, is temporally close to similar hiatuses, decreases in sedimentary rates and facies shifts recorded in other southwestern European areas. The present chronologic framework sets the basis for a thorough assessment of end-Cretaceous terrestrial faunal turnover and extinction patterns, and the establishment of a more rigorous Pyrenean basin evolution analysis.

  5. Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: Paleo-climatic and paleo-elevation implications

    Wang, Yang; Wang, Xiaoming; Xu, Yingfeng; Zhang, Chunfu; Li, Qiang; Tseng, Zhijie Jack; Takeuchi, Gary; Deng, Tao


    We report the results of a stable isotope study of a late Pliocene fauna recently discovered in the Kunlun Mountain Pass area (˜ 4700 m above sea level) on the northern Tibetan Plateau. The δ13C values of enamel samples from modern herbivores from the Kunlun Pass Basin range from - 14.8 to - 10.6‰, with a mean of - 12.0 ± 0.7‰, indicating pure C3 diets consistent with the current dominance of C3 vegetation in the area. In contrast, enamel samples from fossil herbivores yielded δ13C values of - 5.4‰ to - 10.2‰ (with a mean of - 7.9 ± 1.3‰), significantly higher than those of modern herbivores in the area. The higher δ13C values indicate that these ancient herbivores, unlike their modern counterparts, had a variety of diets ranging from pure C3 to mixed C3/C4 vegetation. The local ecosystems in the Kunlun Pass area in the late Pliocene likely included grasslands that had small amounts of C4 grasses. The δ18O values of enamel from large herbivores shifted to higher values after the late Pliocene, indicating a significant change in the δ18O of local meteoric water. We estimate that there has been approximately 3.2‰ increase in annual δ18O values of meteoric water since ˜ 2-3 Ma, most likely driven by changes in the regional hydrological cycle possibly as a result of tectonic and climate change. The δ18O values of fossil fish teeth/bones and gastropod shells, along with abundance of aquatic plants and other invertebrate fossils, clearly indicate that the Kunlun Pass Basin once had plenty of water and was occupied by a freshwater lake in the late Pliocene. Our isotope data from both terrestrial and aquatic fossils suggest that the Kunlun Pass Basin was a hospitable place with a much warmer and wetter climate in the late Pliocene, very different from today's rock desert and cold steppe environments. The mean annual temperature in the late Pliocene estimated from the δ18O of fossil bone carbonate and paleo-water was about 10 ± 8 °C, much higher

  6. Geochemical and isotopic characterization of the Bodélé Depression dust source and implications for transatlantic dust transport to the Amazon Basin

    Abouchami, Wafa; Näthe, Kerstin; Kumar, Ashwini; Galer, Stephen J. G.; Jochum, Klaus Peter; Williams, Earle; Horbe, Adriana M. C.; Rosa, João W. C.; Balsam, William; Adams, David; Mezger, Klaus; Andreae, Meinrat O.


    The Bodélé Depression (Chad) in the central Sahara/Sahel region of Northern Africa is the most important source of mineral dust to the atmosphere globally. The Bodélé Depression is purportedly the largest source of Saharan dust reaching the Amazon Basin by transatlantic transport. Here, we have undertaken a comprehensive study of surface sediments from the Bodélé Depression and dust deposits (Chad, Niger) in order to characterize geochemically and isotopically (Sr, Nd and Pb isotopes) this dust source, and evaluate its importance in present and past African dust records. We similarly analyzed sedimentary deposits from the Amazonian lowlands in order to assess postulated accumulation of African mineral dust in the Amazon Basin, as well as its possible impact in fertilizing the Amazon rainforest. Our results identify distinct sources of different ages and provenance in the Bodélé Depression versus the Amazon Basin, effectively ruling out an origin for the Amazonian deposits, such as the Belterra Clay Layer, by long-term deposition of Bodélé Depression material. Similarly, no evidence for contributions from other potential source areas is provided by existing isotope data (Sr, Nd) on Saharan dusts. Instead, the composition of these Amazonian deposits is entirely consistent with derivation from in-situ weathering and erosion of the Precambrian Amazonian craton, with little, if any, Andean contribution. In the Amazon Basin, the mass accumulation rate of eolian dust is only around one-third of the vertical erosion rate in shield areas, suggesting that Saharan dust is "consumed" by tropical weathering, contributing nutrients and stimulating plant growth, but never accumulates as such in the Amazon Basin. The chemical and isotope compositions found in the Bodélé Depression are varied at the local scale, and have contrasting signatures in the "silica-rich" dry lake-bed sediments and in the "calcium-rich" mixed diatomites and surrounding sand material. This

  7. Fluid inclusions and biomarkers in the Upper Mississippi Valley zinc-lead district; implications for the fluid-flow and thermal history of the Illinois Basin

    Rowan, E. Lanier; Goldhaber, Martin B.


    The Upper Mississippi Valley zinc-lead district is hosted by Ordovician carbonate rocks at the northern margin of the Illinois Basin. Fluid inclusion temperature measurements on Early Permian sphalerite ore from the district are predominantly between 90?C and I50?C. These temperatures are greater than can be explained by their reconstructed burial depth, which was a maximum of approximately 1 km at the time of mineralization. In contrast to the temperatures of mineral formation derived from fluid inclusions, biomarker maturities in the Upper Mississippi Valley district give an estimate of total thermal exposure integrated over time. Temperatures from fluid inclusions trapped during ore genesis with biomarker maturities were combined to construct an estimate of the district's overall thermal history and, by inference, the late Paleozoic thermal and hydrologic history of the Illinois Basin. Circulation of groundwater through regional aquifers, given sufficient flow rates, can redistribute heat from deep in a sedimentary basin to its shallower margins. Evidence for regional-scale circulation of fluids is provided by paleomagnetic studies, regionally correlated zoned dolomite, fluid inclusions, and thermal maturity of organic matter. Evidence for igneous acti vity contemporaneous with mineralization in the vicinity of the Upper Mississippi Valley district is absent. Regional fluid and heat circulation is the most likely explanation for the elevated fluid inclusion temperatures (relative to maximum estimated burial depth) in the Upper Mississippi Valley district. One plausible driving mechanism and flow path for the ore-forming fluids is groundwater recharge in the late Paleozoic Appalachian-Ouachita mountain belt and northward flow through the Reelfoot rift and the proto- Illinois Basin to the Upper Mississippi Valley district. Warm fluid flowing laterally through Cambrian and Ordovician aquifers would then move vertically upward through the fractures that control

  8. Zircon U-Pb geochronology of the volcanic rocks from Fanchang-Ningwu volcanic basins in the Lower Yangtze region and its geological implications

    YAN Jun; LIU HaiQuan; SONG ChuanZhong; XU XiSheng; AN YaJun; LIU Jia; DAI LiQun


    The latest eruptions in two important Mesozoic volcanic basins of Fanchang and Ningwu located in the middle-lower reaches of the Yangtze River formed the bimodal volcanic rocks of the Kedoushan Formation and ultrapotassic volcanic rocks of the Niangniangshan Formation,respectively.The representative volcanic rocks of the two Formations were selected for LA-ICPMS zircon U-Pb dating.The results indicate that there exist a large amount of magmatic zircons as indicated by high Th/U ratios in these volcanic rocks.The weighted mean age of 21 analyses is 130.7±1.1 Ma for the Kedoushan Formation,and that of 20 analyses is 130.6±1.1 Ma for the Niangniangshan Formation.These U-Pb ages are interpreted to represent the formation times of the volcanic rocks.In combination with other known geochronological data for Mesozoic volcanic rocks from the Lower Yangtze region,it is proposed that the latest volcanic activations in the Jinniu,Luzong,Fanchang and Ningwu volcanic basins probably came to end prior to ca.128 Me.There is no significant time interval between the early and later volcanic activities in the Luzong and Ningwu basins,suggesting e short duration of volcanic activities and thus implying the onset of an extensional tectonic setting at about 130 Ma in the Lower Yangtze region.Integrated studies reveal that the Early Cretaceous magmatic activities and their geochronological framework in the Lower Yangtze region are a response to progressively dynamic deep processes that started with the transformation of tectonic setting from compression to extension,followed by delaminating of the lower part of the thickened lithosphere,lithospheric thinning,asthenosphere upwelling,and crust-mantle interaction.

  9. Identification and numerical modelling of hydrocarbon leakage in the Lower Congo Basin: Implications on the genesis of km-wide seafloor mounded structures

    Anka, Zahie; Ondrak, Robert; Kowitz, Astrid; Schødt, Niels


    We present a combined approach of interpretation of 2D seismic-reflection data and numerical modelling of hydrocarbon generation and migration across the southern slope of the Lower Congo Basin, in order to investigate the factors controlling timing and distribution of hydrocarbon leakage in this area. We identified three main families of past and present-day leakage features: (1) Mid-Upper Miocene seismic chimneys concentrated basinwards and ending up on buried pockmarks, (2) Plio-Pleistocene chimneys, rather clustered to the east of the study area and ending up in seafloor pockmarks, and (3) fewer scattered chimneys identified within the Miocene sequences ending up in shallow enhanced reflectors ("Flat spots"). Stratigraphic and structural elements seem to control the distribution of these features. At least two major events of leakage occurred during the Middle-Late Miocene and intermittently during the Pliocene-Present. External factors as sediment supply are associated to the Miocene leakage event, whilst internal structural elements probably triggered the Pliocene to present-day leakage. A major seabed morphological feature, represented by a margin-paralleled belt of more than 1-km-wide mounds, was identified above growth faults to the east of the study area. Data-constrained 2D HC generation and migration modelling suggests a genetic link between these structures and vertical migration/leakage of thermogenic methane sourced from either currently mature Oligo-Miocene source rocks or secondary cracking and further expulsion from over-mature Upper-Cretaceous source rocks. Hence, the mounds are likely to represent a lineation of methane-derived carbonate build-ups. Despite the natural limitations of a 2D migration model, when combined and calibrated with observations from seismic data, it can be used as a valid tool to assess petroleum migration routes in sedimentary basins. To the best of our knowledge, this is the first integrated approach combining both

  10. Miocene fossil plants from Bukpyeong Formation of Bukpyeong Basin in Donghae City, Gangwon-do Province, Korea and their palaeoenvironmental implications

    Jeong, Eun Kyoung; Kim, Hyun Joo; Uemura, Kazuhiko; Kim, Kyungsik


    The Tertiary sedimentary basins are distributed along the eastern coast of Korean Peninsula. The northernmost Bukpyeong Basin is located in Donghae City, Gangwon-do Province, Korea. The Bukpyeong Basin consists of Bukpyeong Formation and Dogyeongri Conglomerate in ascending order. The geologic age of Bukpyeong Formation has been suggested as from Early Miocene to Pliocene, In particular, Lee & Jacobs (2010) suggested the age of the Bukpyeong Formation as late Early Miocene to early Middle Miocene based on the fossils of rodent teeth. Sedimentary environment has been thought as mainly fresh water lake and/or swamp partly influenced by marine water. Lately, new outcrops of Bukpyeong Formation were exposed during the road construction and abundant fossil plants were yielded from the newly exposed outcrops. As a result of palaeobotanical studies 47 genera of 23 families have been found. This fossil plant assemblage is composed of gymnosperms and dicotyledons. Gymnosperms were Pinaceae (e.g., Pinus, Tsuga), Sciadopityaceae (e.g., Sciadopitys) and Cupressaceae with well-preserved Metasequoia cones. Dicotyledons were deciduous trees such as Betulaceae (e.g., Alnus, Carpinus) and Sapindaceae (e.g., Acer, Aesculus, Sapindus), and evergreen trees such as evergreen Fagaceae (e.g., Castanopsis, Cyclobalanopsis, Pasania) and Lauraceae (e.g., Cinnamomum, Machilus). In addition, fresh water plants such as Hemitrapa (Lytraceae) and Ceratophyllum (Ceratophyllaceae) were also found. The fossil plant assemblage of the Bukpyeong Formation supported the freshwater environment implied by previous studies. It can be suggested that the palaeoflora of Bukpyeong Formation was oak-laurel forest with broad-leaved evergreen and deciduous trees accompanying commonly by conifers of Pinaceae and Cupressaceae under warm-temperate climate.