WorldWideScience

Sample records for white dwarf g191-b2b

  1. Stellar laboratories. VI. New Mo IV - VII oscillator strengths and the molybdenum abundance in the hot white dwarfs G191-B2B and RE0503-289

    CERN Document Server

    Rauch, T; Hoyer, D; Werner, K; Demleitner, M; Kruk, J W

    2015-01-01

    For the spectral analysis of high-resolution and high-signal-to-noise (S/N) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. To identify molybdenum lines in the ultraviolet (UV) spectra of the DA-type white dwarf G191-B2B and the DO-type white dwarf RE0503-289 and to determine their photospheric Mo abundances, newly calculated Mo IV - VII oscillator strengths are used. We identified twelve Mo V and nine Mo VI lines in the UV spectrum of RE0503-289 and measured a photospheric Mo abundance of 1.2 - 3.0 x 10**-4 (mass fraction, 22500 - 56400 times the solar abundance). In addition, from the As V and Sn IV resonance lines, we measured mass fractions of arsenic (0.5 - 1.3 x 10**-5, about 300 - 1200 times solar) and tin (1.3 - 3.2 x 10**-4, about 14300 35200 times solar). For G191-B2B, upper limits were determined for the abundances of Mo (5.3 x 10*...

  2. Stellar Laboratories II. New Zn Iv and Zn v Oscillator Strengths and Their Validation in the Hot White Dwarfs G191-B2B and RE0503-289

    Science.gov (United States)

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.

    2014-01-01

    Context. For the spectral analysis of high-resolution and high-signal-to-noise (SN) spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. In a recent analysis of the ultraviolet (UV) spectrum of the DA-type white dwarf G191B2B,21 Zn iv lines were newly identified. Because of the lack of Zn iv data, transition probabilities of the isoelectronic Ge vi were adapted for a first, coarse determination of the photospheric Zn abundance.Aims. Reliable Zn iv and Zn v oscillator strengths are used to improve the Zn abundance determination and to identify more Zn lines in the spectra of G191B2B and the DO-type white dwarf RE 0503289. Methods. We performed new calculations of Zn iv and Zn v oscillator strengths to consider their radiative and collisional bound-bound transitions in detail in our NLTE stellar-atmosphere models for the analysis of the Zn iv v spectrum exhibited in high-resolution and high-SN UV observations of G191B2B and RE 0503289. Results. In the UV spectrum of G191B2B, we identify 31 Zn iv and 16 Zn v lines. Most of these are identified for the first time in any star. We can reproduce well almost all of them at log Zn 5.52 0.2 (mass fraction, about 1.7 times solar). In particular, the Zn iv Zn v ionization equilibrium, which is a very sensitive Teff indicator, is well reproduced with the previously determined Teff 60 000 2000 K and log g 7.60 0.05. In the spectrum of RE 0503289, we identified 128 Zn v lines for the first time and determined log Zn 3.57 0.2 (155 times solar). Conclusions. Reliable measurements and calculations of atomic data are a pre-requisite for stellar-atmosphere modeling. Observed Zn iv and Zn v line profiles in two white dwarf (G191B2B and RE 0503289) ultraviolet spectra were well reproduced with our newly calculated oscillator strengths. This allowed us to determine the photospheric Zn abundance of these two stars precisely.

  3. Stellar laboratories II. New Zn IV and Zn V oscillator strengths and their validation in the hot white dwarfs G191-B2B and RE0503-289

    OpenAIRE

    Rauch, T.; Werner, K.; Quinet, P.; Kruk, J. W.

    2014-01-01

    For the spectral analysis of high-resolution and high-signal-to-noise spectra of hot stars, state-of-the-art non-local thermodynamic equilibrium (NLTE) model-atmospheres are mandatory. These are strongly dependent on the reliability of the atomic data that is used for their calculation. In a recent analysis of the ultraviolet (UV) spectrum of the DA-type white dwarf G191-B2B, 21 Zn IV lines were newly identified. Because of the lack of Zn IV data, transition probabilities of...

  4. The virtual observatory service TheoSSA: Establishing a database of synthetic stellar flux standards. I. NLTE spectral analysis of the DA-type white dwarf G 191-B2B

    CERN Document Server

    Rauch, T; Kruk, J W; Werner, K

    2013-01-01

    H-rich, DA-type white dwarfs are particularly suited as primary standard stars for flux calibration. State-of-the-art NLTE models consider opacities of species up to trans-iron elements and provide reliable synthetic stellar-atmosphere spectra to compare with observation. We establish a database of theoretical spectra of stellar flux standards that are easily accessible via a web interface. In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered service TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In case of the DA white dwarf G 191-B2B, we demonstrate that the model reproduces not only its overall continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum. TheoSSA is in operation and contains presently a variety of SEDs for DA white dwarfs. It will be extended in the near future and can host SEDs of all primary and ...

  5. The Virtual Observatory Service TheoSSA: Establishing a Database of Synthetic Stellar Flux Standards I. NLTE Spectral Analysis of the DA-Type White Dwarf G191-B2B *,**,***,****

    Science.gov (United States)

    Rauch, T.; Werner, K.; Bohlin, R.; Kruk, J. W.

    2013-01-01

    Hydrogen-rich, DA-type white dwarfs are particularly suited as primary standard stars for flux calibration. State-of-the-art NLTE models consider opacities of species up to trans-iron elements and provide reliable synthetic stellar-atmosphere spectra to compare with observations. Aims. We will establish a database of theoretical spectra of stellar flux standards that are easily accessible via a web interface. Methods. In the framework of the Virtual Observatory, the German Astrophysical Virtual Observatory developed the registered service TheoSSA. It provides easy access to stellar spectral energy distributions (SEDs) and is intended to ingest SEDs calculated by any model-atmosphere code. In case of the DA white dwarf G191-B2B, we demonstrate that the model reproduces not only its overall continuum shape but also the numerous metal lines exhibited in its ultraviolet spectrum. Results. TheoSSA is in operation and contains presently a variety of SEDs for DA-type white dwarfs. It will be extended in the near future and can host SEDs of all primary and secondary flux standards. The spectral analysis of G191-B2B has shown that our hydrostatic models reproduce the observations best at Teff =60 000 +/- 2000K and log g=7.60 +/- 0.05.We newly identified Fe vi, Ni vi, and Zn iv lines. For the first time, we determined the photospheric zinc abundance with a logarithmic mass fraction of -4.89 (7.5 × solar). The abundances of He (upper limit), C, N, O, Al, Si, O, P, S, Fe, Ni, Ge, and Sn were precisely determined. Upper abundance limits of about 10% solar were derived for Ti, Cr, Mn, and Co. Conclusions. The TheoSSA database of theoretical SEDs of stellar flux standards guarantees that the flux calibration of all astronomical data and cross-calibration between different instruments can be based on the same models and SEDs calculated with different model-atmosphere codes and are easy to compare.

  6. Evidence for the stratification of Fe in the photosphere of G191-B2B

    CERN Document Server

    Barstow, M A; Holberg, J B

    1999-01-01

    The presence of heavy elements in the atmospheres of the hottest H-rich DA white dwarfs has been the subject of considerable interest. While theoretical calculations can demonstrate that radiative forces, counteracting the effects of gravitational settling, can explain the detections of individual species, the predicted abundances do not accord well with observation. However, accurate abundance measurements can only be based on a thorough understanding of the physical structure of the white dwarf photospheres, which has proved elusive. Recently, the availability of new non-LTE model atmospheres with improved atomic data has allowed self-consistent analysis of the EUV, far UV and optical spectra of the prototypical object G191$-$B2B. Even so, the predicted and observed stellar fluxes remain in serious disagreement at the shortest wavelengths (below $\\approx 190$Å), while the inferred abundances remain largely unaltered. We show here that the complete spectrum of G191$-$B2B can be explained by a model atmosphe...

  7. Towards a standardised line list for G191-B2B, and other DA type objects

    OpenAIRE

    Preval, Simon P.; Barstow, Martin A.; Holberg, Jay B.; Dickinson, N J.

    2012-01-01

    We present a comprehensive analysis of the far UV spectrum of G191-B2B over the range of 900-1700{\\AA} using co-added data from the FUSE and STIS archives. While previous identifications made by Holberg et al. (2003) are reaffirmed in this work, it is found that many previously unidentified lines can now be attributed to Fe, Ni, and a few lighter metals. Future work includes extending this detailed analysis to a wider range of DA objects, in the expectation that a more compl...

  8. Heavy element abundances in DA white dwarfs

    CERN Document Server

    Barstow, M A; Bannister, N P; Holberg, J B; Hubeny, I; Bruhweiler, F C; Napiwotzki, R

    2000-01-01

    We present a series of systematic abundance measurements for a group of hot DA white dwarfs in the temperature range 20,000-75,000K, based on far-UV spectroscopy with STIS on HST, IUE and FUSE. Using our latest heavy element blanketed non-LTE stellar atmosphere calculations we have addressed the heavy element abundance patterns for the hottest stars for the first time, showing that they are similar to objects like G191-B2B. The abundances observed in the cooler (<50,000K) white dwarfs are something of a mystery. Some of the patterns (e.g. REJ1032) can be explained by self-consistent levitation-diffusion calculations but there is then a serious difficulty in understanding the appearance of the apparently pure H atmospheres. We also report the detection of photospheric HeII in the atmosphere of WD2218+706.

  9. Limits on the dependence of the fine-structure constant on gravitational potential from white-dwarf spectra.

    Science.gov (United States)

    Berengut, J C; Flambaum, V V; Ong, A; Webb, J K; Barrow, John D; Barstow, M A; Preval, S P; Holberg, J B

    2013-07-01

    We propose a new probe of the dependence of the fine-structure constant ? on a strong gravitational field using metal lines in the spectra of white-dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white-dwarf star G191-B2B recorded by the Hubble Space Telescope Imaging Spectrograph gives limits of ??/?=(4.2±1.6)×10(-5) and (-6.1±5.8)×10(-5) from FeV and NiV spectra, respectively, at a dimensionless gravitational potential relative to Earth of ???5×10(-5). With better determinations of the laboratory wavelengths of the lines employed these results could be improved by up to 2 orders of magnitude. PMID:23862989

  10. Limits on variations of the fine-structure constant with gravitational potential from white-dwarf spectra

    CERN Document Server

    Berengut, J C; Ong, A; Webb, J K; Barrow, John D; Barstow, M A; Preval, S P; Holberg, J B

    2013-01-01

    We propose a new probe of the variation of the fine structure constant, alpha, in a strong gravitational field using metal lines in the spectra of white dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white dwarf star G191-B2B recorded by the Hubble Space Telescope Imaging Spectrograph gives limits on the fractional variation of alpha of (Delta alpha/alpha)=(4.2 +- 1.6)x10^(-5) and (-6.1 +- 5.8)x10^(-5) from Fe V and Ni V spectra, respectively, at a dimensionless gravitational potential relative to Earth of (Delta phi) ~ 5x10^(-5). With better determinations of the laboratory wavelengths of the lines employed these results could be improved by up to two orders of magnitude.

  11. The Ionization of the Local Interstellar Medium, as Revealed by FUSE Observations of N, O and Ar toward White Dwarf Stars

    CERN Document Server

    Jenkins, E B; Gry, C; Vallerga, J V; Sembach, K R; Shelton, R L; Ferlet, R; Vidal-Madjar, A; York, D G; Linsky, J L; Roth, K C; Dupree, A K; Edelstein, J D

    2000-01-01

    FUSE spectra of the white dwarf stars G191-B2B, GD 394, WD 2211-495 and WD 2331-475 cover the absorption features out of the ground electronic states of N I, N II, N III, O I and Ar I in the far ultraviolet, providing new insights on the origin of the partial ionization of the Local Interstellar Medium (LISM), and for the case of G191-B2B, the interstellar cloud that immediately surrounds the solar system. Toward these targets the interstellar abundances of Ar I, and sometimes N I, are significantly below their cosmic abundances relative to H I. In the diffuse interstellar medium, these elements are not likely to be depleted onto dust grains. Generally, we expect that Ar should be more strongly ionized than H (and also O and N whose ionizations are coupled to that of H via charge exchange reactions) because the cross section for the photoionization of Ar I is very high. Our finding that Ar I/H I is low may help to explain the surprisingly high ionization of He in the LISM found by other investigators. Our res...

  12. Measuring chemical evolution and gravitational dependence of \\alpha using ultraviolet Fe V and Ni V transitions in white-dwarf spectra

    CERN Document Server

    Ong, A; Flambaum, V V

    2013-01-01

    In this paper, we present the details of the ab initio high-precision configuration interaction and many-body perturbation theory calculations that were used in a previous work to place limits on the dependence of the fine-structure constant, alpha, on the gravitational field of the white-dwarf star G191-B2B. These calculations were combined with laboratory wavelengths and spectra from the Hubble Space Telescope Imaging Spectrograph to obtain limits on the gravitational alpha-dependence using Fe V and Ni V transitions. The uncertainty in these results are dominated by the uncertainty in the laboratory wavelengths. In this work we also present ab initio calculations of the isotopic shifts of the Fe V transitions. We show that improved laboratory spectra will enable determination of the relative isotope abundances in Fe V to an accuracy ~20%. Therefore this work provides a strong motivation for new laboratory measurements.

  13. White dwarfs - fossil stars

    International Nuclear Information System (INIS)

    The structure and properties of white dwarfs are analyzed. The physical structure of white dwarf interiors is balanced by a quantum-mechanical effect known as electron degeneracy pressure. Besides preventing gravitational collapse, the degenerate electrons also control the thermal structure of the stars. The transport of energy in the interior and near the surface of the stars is discussed. The surface composition of the white dwarfs is examined. It is observed that the surface of the stars contains only one element; 80 percent of the stars contain only H and the remaining stars contain He. It is determined that the intense gravity of the stars leads to a layering arrangement of material within the star. The origin and evolution of white dwarfs, in particular their crystal stage, are described

  14. Progenitors of white dwarfs

    International Nuclear Information System (INIS)

    Direct observational evidence is presented which indicates that the immediate progenitors of white dwarfs are the central stars of planetary nebulae (approximately 70%), other post-AGB objects (approximately 30%), and post-HB objects not massive enough to climb the AGB (approximately 0.3%). The combined birth rate for these objects is in satisfactory agreement with the death rate of main-sequence stars and the birth rate of white dwarfs

  15. White Dwarfs in Globular Clusters

    OpenAIRE

    Moehler, S.; Bono, G.

    2008-01-01

    We review empirical and theoretical findings concerning white dwarfs in Galactic globular clusters. Since their detection is a critical issue we describe in detail the various efforts to find white dwarfs in globular clusters. We then outline the advantages of using cluster white dwarfs to investigate the formation and evolution of white dwarfs and concentrate on evolutionary channels that appear to be unique to globular clusters. We also discuss the usefulness of globular c...

  16. Asteroseismology of White Dwarf Stars

    Science.gov (United States)

    Hansen, Carl J.

    1997-01-01

    The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.

  17. White Dwarf Stars (With 37 figures)

    Science.gov (United States)

    Kawaler, Steven D.

    Introduction White Dwarfs as Useful Stars Origins: the Clue of White Dwarf Masses The Main Channel Why Such a Narrow Mass Distribution? Observed Properties of White Dwarfs Discovery of White Dwarfs Finding White Dwarfs White Dwarf Colors and the White Dwarf Luminosity Function White Dwarf Optical Spectra Distribution of Spectral Types with Effective Temperatures Magnetic White Dwarfs Pulsating White Dwarfs Physics of White Dwarf Interiors Equation of State Heat Transport in Degenerate Matter Nonideal Effects Specific Heat White Dwarf Formation and Early Cooling Thermal Pulses on the AGB Departure from the AGB The PNN Phase Nuclear Shutdown and Neutrino Cooling Chemical Evolution of White Dwarfs Diffusive Processes Accretion of "Fresh" ISM vs. Mass Loss Convection Chemical Evolution Scenarios White Dwarf Cooling and the White Dwarf Luminosity Function A Simplified Cooling Model Complications: Neutrinos and Crystallization Realistic Cooling Calculations Construction of Theoretical Luminosity Functions The Age of the Galactic Disk Nonradial Oscillations of White Dwarfs: Theory Review of Observations Hydrodynamic Equations Local Analysis and the Dispersion Relation g-mode Period Spacings Mode Trapping Rotational and Magnetic Splitting The Seismological Toolbox Pulsating White Dwarfs The Whole Earth Telescope PG 1159 Stars and Pulsating PNNs GD 358: A Pulsating DB White Dwarf The ZZ Ceti Stars Astrophysical Applications of White Dwarfs Stellar Evolution as a Spectator Sport The White Dwarf Luminosity Function and Our Galaxy White Dwarfs and Cluster Ages The Planetary Nebula Luminosity Function and Galaxy Distances Driving and Damping of Pulsations and Convective Efficiency in - White Dwarfs Ceti Stars Final Thoughts References

  18. White dwarf planets

    Directory of Open Access Journals (Sweden)

    Bonsor Amy

    2013-04-01

    Full Text Available The recognition that planets may survive the late stages of stellar evolution, and the prospects for finding them around White Dwarfs, are growing. We discuss two aspects governing planetary survival through stellar evolution to the White Dwarf stage. First we discuss the case of a single planet, and its survival under the effects of stellar mass loss, radius expansion, and tidal orbital decay as the star evolves along the Asymptotic Giant Branch. We show that, for stars initially of 1 ? 5?M?, any planets within about 1 ? 5?AU will be engulfed, this distance depending on the stellar and planet masses and the planet's eccentricity. Planets engulfed by the star's envelope are unlikely to survive. Hence, planets surviving the Asymptotic Giant Branch phase will probably be found beyond ??2?AU for a 1??M? progenitor and ??10?AU for a 5?M? progenitor. We then discuss the evolution of two-planet systems around evolving stars. As stars lose mass, planet–planet interactions become stronger, and many systems stable on the Main Sequence become destabilised following evolution of the primary. The outcome of such instabilities is typically the ejection of one planet, with the survivor being left on an eccentric orbit. These eccentric planets could in turn be responsible for feeding planetesimals into the neighbourhood of White Dwarfs, causing observed pollution and circumstellar discs.

  19. White Dwarfs in GALEX Survey

    OpenAIRE

    Kawka, Adela; Vennes, Stephane

    2007-01-01

    We have cross-correlated the 2dF QSO Redshift Survey (2QZ) white dwarf catalog with the GALEX 2nd Data Release and the Sloan Digital Sky Survey (SDSS) data release 5 to obtain ultraviolet photometry (FUV, NUV) for approximately 700 objects and optical photometry (ugriz) for approximately 800 objects. We have compared the optical-ultraviolet colors to synthetic white dwarf colors to obtain temperature estimates for approximately 250 of these objects. These white dwarfs have e...

  20. Magnetized White Dwarfs

    CERN Document Server

    Terrero, D Alvear; Martínez, A Pérez

    2016-01-01

    The purpose of this thesis is to obtain more realistic equations of state to describe the matter forming magnetized white dwarfs, and use them to solve its structure equations. The equations of state are determined by considering the weak magnetic field approximation $Bwhite dwarfs. Also, we consider the energy and pressure correction due to the Coulomb interaction of the electron gas with the ions located in a crystal lattice. Moreover, spherically symmetric Tolman-Oppenheimer-Volkoff structure equations are solved independently for the perpendicular and parallel pressures, confirming the necessity of using axisymmetric structure equations, more adequate to describe the anisotropic system. Therefore, we study the solutions in cylindrical coordinates. In this case, the mass per longitude unit is obtained instead of the total mass of the whit...

  1. Evolution of White Dwarf Stars

    Directory of Open Access Journals (Sweden)

    L. G. Althaus

    2001-01-01

    Full Text Available This paper is aimed at presenting the main results we have obtained for the study of the evoution of white dwarf stars. The calculations are carried out by means of a detailed evolutionary code based on an updated physical description. In particular, we briefly discuss the results for the evolution of white dwarfs of different stellar masses and chemical composition, and the evolution of whit e dwarfs in the framework of a varying gravitational constant G scenario as well.

  2. White Dwarf Stars

    Science.gov (United States)

    1999-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe. Located in the globular cluster M4, these small, burned-out stars -- called white dwarfs -- are about 12 to 13 billion years old. By adding the one billion years it took the cluster to form after the Big Bang, astronomers found that the age of the white dwarfs agrees with previous estimates that the universe is 13 to 14 billion years old. The images, including some taken by Hubble's Wide Field and Planetary Camera 2, are available online at http://oposite.stsci.edu/pubinfo/pr/2002/10/ or http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's .9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles indicate the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to create the above images. Spectral data were also taken. M4 is 7,000 light-years away in the constellation Scorpius. The full press release on the latest findings is online at http://oposite.stsci.edu/pubinfo/pr/2002/10/pr.html . The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between the European Space Agency and NASA. The California Institute of Technology in Pasadena manages JPL for NASA.

  3. Equations of State for White Dwarfs

    OpenAIRE

    Heikkilä, Elena

    2009-01-01

    This thesis is about deriving a few equations of state for white dwarfs below the regime of neutron drip. White dwarfs - also called degenerate dwarfs, composed mostly of electron-degenerate matter - are luminous and the color of the light they are emitting is white, hence their name. Because of the relatively enormous density, the gravitational potential of a white dwarf causes a collapse. White dwarfs are classified as compact objects, meaning that their life begins wh...

  4. Asteroseismology of white dwarf stars

    CERN Document Server

    Córsico, A H

    2014-01-01

    Most of low- and intermediate-mass stars that populate the Universe will end their lives as white dwarf stars. These ancient stellar remnants have encrypted inside a precious record of the evolutionary history of the progenitor stars, providing a wealth of information about the evolution of stars, star formation, and the age of a variety of stellar populations, such as our Galaxy and open and globular clusters. While some information like surface chemical composition, temperature and gravity of white dwarfs can be inferred from spectroscopy, the internal structure of these compact stars can be unveiled only by means of asteroseismology, an approach based on the comparison between the observed pulsation periods of variable stars and the periods of appropriate theoretical models. In this communication, we first briefly describe the physical properties of white dwarf stars and the various families of pulsating white dwarfs known up to the present day, and then we present two recent analysis carried out by the La...

  5. White dwarf-red dwarf binaries in the Galaxy

    OpenAIRE

    Besselaar, E.J.M. van den

    2007-01-01

    This PhD thesis shows several studies on white dwarf - red dwarf binaries. White dwarfs are the end products of most stars and red dwarfs are normal hydrogen burning low-mass stars. White dwarf - red dwarf binaries are both blue (white dwarf) and red (red dwarf). Together with the fact that they are intrinsically equally bright, these binaries stand out in any colour-colour diagram. These studies have mainly used the largest astronomical database available at present, the Sloan Digital Sky Su...

  6. The halo white dwarf population

    OpenAIRE

    Isern, J.; Garcia-Berro, E.; Hernanz, M.; Mochkovitch, R.; Torres, S.

    1998-01-01

    Halo white dwarfs can provide important information about the properties and evolution of the galactic halo. In this paper we compute, assuming a standard IMF and updated models of white dwarf cooling, the expected luminosity function, both in luminosity and in visual magnitude, for different star formation rates. We show that a deep enough survey (limiting magnitude > 20) could provide important information about the halo age and the duration of the formation stage. We also...

  7. White Dwarf Planets from GAIA

    OpenAIRE

    Silvotti, Roberto; Sozzetti, Alessandro; Lattanzi, Mario

    2010-01-01

    We investigate the potential of high-precision astrometry with GAIA for detection of giant planetary companions to nearby white dwarfs. If one considers that, to date, no confirmed planets around single white dwarfs are known, the results from GAIA will be crucial to study the late-stage evolution of planetary systems and to verify the possibility that 2nd-generation planets are formed.

  8. Double white dwarfs and LISA

    International Nuclear Information System (INIS)

    Close pairs of white dwarfs are potential progenitors of type Ia supernovae and they are common, with the order of 100-300 million in the Galaxy. As such they will be significant, probably dominant, sources of the gravitational waves detectable by LISA. In the context of LISA's goals for fundamental physics, double white dwarfs are a source of noise, but from an astrophysical perspective, they are of considerable interest in their own right. In this paper I discuss our current knowledge of double white dwarfs and their close relatives (and possible descendants) the AM CVn stars. LISA will add to our knowledge of these systems by providing the following unique constraints: (i) an almost direct measurement of the galactic merger rate of DWDs from the detection of short period systems and their period evolution, (ii) an accurate and precise normalization of binary evolution models at shortest periods, (iii) a determination of the evolutionary pathways to the formation of AM CVn stars, (iv) measurements of the influence of tidal coupling in white dwarfs and its significance for stabilizing mass transfer, and (v) discovery of numerous examples of eclipsing white dwarfs with the potential for optical follow-up to test models of white dwarfs.

  9. Singing and dancing white dwarfs

    International Nuclear Information System (INIS)

    Accreting white dwarfs have recently been shown to exhibit non-radial pulsations similar to their non-interacting counterparts. This allows us to probe the interior of the accreting white dwarf using seismology, and may be the only way to determine masses for non-eclipsing cataclysmic variables. Improving our understanding of accreting white dwarfs will have implications for models of supernovae Type Ia. Pulsating white dwarfs in cataclysmic variables are also useful in establishing the effects of accretion on pulsations. A search for nonradial pulsations among suitable candidates has led to the discovery of twelve such systems known to date. With the goal of establishing an instability strip (or strips) for these pulsating accretors, we acquired HST ultra-violet time-series spectroscopy of six pulsating white dwarfs in cataclysmic variables in 2007 and 2008. This approach enables us to measure the effective temperature of the white dwarf using the co-added spectrum, and to simultaneously characterize the pulsations. We also intended to constrain the pulsation mode identification by comparing the ultra-violet amplitudes to those from near-simultaneous ground-based photometry. Our preliminary results indicate a broad instability strip in the temperature range of 10500-15400 K.

  10. Gaia photometry for white dwarfs

    CERN Document Server

    Carrasco, J M; Jordi, C; Tremblay, P E; Napiwotzki, R; Luri, X; Robin, A C; Kowalski, P M

    2014-01-01

    Context. White dwarfs can be used to study the structure and evolution of the Galaxy by analysing their luminosity function and initial mass function. Among them, the very cool white dwarfs provide the information for the early ages of each population. Because white dwarfs are intrinsically faint only the nearby (about 20 pc) sample is reasonably complete. The Gaia space mission will drastically increase the sample of known white dwarfs through its 5-6 years survey of the whole sky up to magnitude V = 20-25. Aims. We provide a characterisation of Gaia photometry for white dwarfs to better prepare for the analysis of the scientific output of the mission. Transformations between some of the most common photometric systems and Gaia passbands are derived. We also give estimates of the number of white dwarfs of the different galactic populations that will be observed. Methods. Using synthetic spectral energy distributions and the most recent Gaia transmission curves, we computed colours of three different types of...

  11. White Dwarf Pulsars

    Science.gov (United States)

    Patterson, Joseph

    1999-01-01

    This proposal was designed to study pulse and orbital modulations in candidate DQ Herculis stars. Data on 5 stars were obtained. The best results were obtained on YY Draconis, which exhibited a strongly pulsed hard X-ray flux, and even suggested a transition between one-pole and two-pole emission during the course of the observation. This result is being readied for inclusion in a comprehensive study of YY Draconis. A strong pulsation appeared to be present also in H0857-242, but with a period of about 50 minutes, confusion with the first harmonic of the satellite's orbital frequency is possible. So that result is uncertain. A negative result was obtained on 4UO608-49 (V347 Pup), suggesting either that the X-ray identification is incorrect, or that the source is very transient. Finally, data was obtained on V1432 Aql and WZ Sge, respectively the slowest and fastest of these stars. Combined with the Advanced Satellite for Cosmology and Astrophysics (ASCA) data, the high-energy data demonstrates the latter to contain a white dwarf rotating with P = 27.87 s. Optical photometry contemporaneous with the X-ray data was obtained of V1432 Aql, in order to study the variations in the eclipse waveform. As anticipated, the width and centroid of the eclipse appeared to vary with the 50-day "supercycle". A paper reporting this study is now in preparation.

  12. Magnetic White Dwarfs

    CERN Document Server

    Ferrario, Lilia; Gaensicke, Boris

    2015-01-01

    In this paper we review the current status of research on the observational and theoretical characteristics of isolated and binary magnetic white dwarfs (MWDs). Magnetic fields of isolated MWDs are observed to lie in the range 10^3-10^9G. While the upper limit cutoff appears to be real, the lower limit is more difficult to investigate. The incidence of magnetism below a few 10^3G still needs to be established by sensitive spectropolarimetric surveys conducted on 8m class telescopes. Highly magnetic WDs tend to exhibit a complex and non-dipolar field structure with some objects showing the presence of higher order multipoles. There is no evidence that fields of highly magnetic WDs decay over time, which is consistent with the estimated Ohmic decay times scales of ~10^11 yrs. MWDs, as a class, also appear to be more massive than their weakly or non-magnetic counterparts. MWDs are also found in binary systems where they accrete matter from a low-mass donor star. These binaries, called magnetic Cataclysmic Variab...

  13. White Dwarfs in GALEX Survey

    CERN Document Server

    Kawka, A; Kawka, Adela; Vennes, Stephane

    2007-01-01

    We have cross-correlated the 2dF QSO Redshift Survey (2QZ) white dwarf catalog with the GALEX 2nd Data Release and the Sloan Digital Sky Survey (SDSS) data release 5 to obtain ultraviolet photometry (FUV, NUV) for approximately 700 objects and optical photometry (ugriz) for approximately 800 objects. We have compared the optical-ultraviolet colors to synthetic white dwarf colors to obtain temperature estimates for approximately 250 of these objects. These white dwarfs have effective temperatures ranging from 10 000 K (cooling age of about 1Gyr) up to about 40 000 K (cooling age of about 3 Myrs), with a few that have even higher temperatures. We found that to distinguish white dwarfs from other stellar luminosity classes both optical and ultraviolet colors are necessary, in particular for the hotter objects where there is contamination from B and O main-sequence stars. Using this sample we build a luminosity function for the DA white dwarfs with M_V < 12 mag.

  14. Low Mass Companions to White Dwarfs

    OpenAIRE

    Farihi, J.; Zuckerman, B.; Becklin, E.E.

    2005-01-01

    This paper summarizes the results of over 17 years of work searching for low mass stellar and substellar companions to more than 370 nearby white dwarfs. Roughly 60 low mass, unevolved companions were found and studied all together, with over 20 discovered in the last few years, including the first unambiguous brown dwarf companion to a white dwarf, GD 1400B. The resulting spectral type distributions for companions to white dwarfs and nearby cool field dwarfs are compared, a...

  15. Comparison of White Dwarf Mass Determinations

    OpenAIRE

    Boudreault, S.; Bergeron, P.

    2005-01-01

    White dwarf masses can be determined in several ways. Here we compare masses obtained from Balmer line spectroscopy with those derived from trigonometric parallax measurements for an ensemble of cool hydrogen-atmosphere white dwarfs.

  16. Magnetic White Dwarfs

    Science.gov (United States)

    Ferrario, Lilia; de Martino, Domitilla; Gänsicke, Boris T.

    2015-05-01

    In this paper we review the current status of research on the observational and theoretical characteristics of isolated and binary magnetic white dwarfs (MWDs). Magnetic fields of isolated MWDs are observed to lie in the range 103-109 G. While the upper limit cutoff near 109 G appears to be real, the lower limit is more difficult to investigate. The incidence of magnetism below a few 103 G still needs to be established by sensitive spectropolarimetric surveys-conducted on 8 m class telescopes. Highly magnetic WDs tend to exhibit a complex and non-dipolar field structure with some objects showing the presence of higher order multipoles. There is no evidence that fields of highly magnetic WDs decay over time, which is consistent with the estimated Ohmic decay times scales of ˜1011 yrs. The slow rotation periods (˜100 yrs) inferred for a large number of isolated MWDs in comparison to those of non-magnetic WDs (a few days) suggest that strong magnetic fields augment the braking of the stellar core. MWDs, as a class, also appear to be more massive (0.784±0.047 M?) than their weakly or non-magnetic counterparts (0.663±0.136 M?). MWDs are also found in binary systems where they accrete matter from a low-mass donor star. These binaries, called magnetic Cataclysmic Variables (MCVs), comprise about 20-25 % of all known CVs. Zeeman and cyclotron spectroscopy of MCVs have revealed the presence of fields in the range ˜7-230 MG. Complex field geometries have been inferred in the high field MCVs (the polars) whilst magnetic field strength and structure in the lower field group (intermediate polars, IPs) are much harder to establish. The MCVs exhibit an orbital period distribution which is similar to that of non magnetic CVs. Polars dominate the distribution at orbital periods ?4 h and IPs at longer periods. It has been argued that IPs above the 2-3 hr CV period gap with magnetic moments ? 5×1033 G cm3 may eventually evolve into polars. It is vital to enlarge the still incomplete sample of MCVs to understand not only their accretion processes but also their evolution. The origin of fields in MWDs is still being debated. While the fossil field hypothesis remains an attractive possibility, field generation within the common envelope of a binary system has been gaining momentum, since it would explain the absence of MWDs paired with non-degenerate companions and also the lack of relatively wide pre-MCVs.

  17. The evolution of iron white dwarf stars

    Directory of Open Access Journals (Sweden)

    J. A. Panei

    2001-01-01

    Full Text Available Recent measurements by Hipparcos provide strong observational evidence supporting the existence of white dwarf stars with iron-rich core composition. Here we examine the evolution of iron-rich white dwarfs, for which the cooling is substancially accelerated as compared with the standard carbon-oxigen white dwarfs.

  18. The evolution of iron white dwarf stars

    OpenAIRE

    Panei, J. A.; Althaus, L. G.; Benvenuto, O. G.

    2001-01-01

    Recent measurements by Hipparcos provide strong observational evidence supporting the existence of white dwarf stars with iron-rich core composition. Here we examine the evolution of iron-rich white dwarfs, for which the cooling is substancially accelerated as compared with the standard carbon-oxigen white dwarfs.

  19. The Physics of White Dwarfs.

    Science.gov (United States)

    Van Horn, Hugh M.

    1979-01-01

    Describes the current understanding of the structure and evolution of the white dwarf stars that was gained as a result of the increasingly sensitive and detailed astronomical observations coupled with calculations of the properties of matter under extreme conditions. (Author/GA)

  20. Pulsating Helium Atmosphere White Dwarfs

    Science.gov (United States)

    Provencal, Judith; Montgomery, Michael H.; Bischoff-Kim, Agnes; Shipman, Harry; Nitta, Atsuko; Whole Earth Telescope Collaboration

    2015-08-01

    The overwhelming majority of all stars currently on the main sequence as well as those from earlier generations will or have ended their stellar lives as white dwarf stars. White dwarfs are rich forensic laboratories linking the history and future evolution of our Galaxy. Their structure and atmospheric composition provide evidence of how the progenitors lived, how they evolved, and how they died. This information reveals details of processes governing the behavior of contemporary main sequence stars. Combined with their distribution in luminosity/temperature, white dwarfs strongly constrain models of galactic and cosmological evolution.GD358 is among the brightest (mv =13.7) and best studied of the pulsating white dwarfs. This helium atmoshere pulsator (DBV) has an extensive photometric database spanning 30 years, including nine multisite Whole Earth Telescope campaigns. GD358 exhibits a range of behaviors, from drastic changes in excited pulsation modes to variable multiplet splittings. We use GD358 as a template for an examination of the DBV class, combining photometric results with recent COS spectroscopy. The results present new questions concerning DB formation and evolution.

  1. White dwarf research with Gaia

    OpenAIRE

    Jordan, Stefan

    2014-01-01

    The results of the Gaia mission will have tremendous influence on many topics in white dwarf research. In this paper the current status of the Gaia mission is described. At the end a short outlook on the release scenario and the expected accuracy of the Gaia data is provided.

  2. Branes constrictions with White Dwarfs

    Science.gov (United States)

    García-Aspeitia, Miguel A.

    2015-11-01

    We consider here a robust study of stellar dynamics for white dwarf stars with polytropic matter in the weak-field approximation using the Lane-Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze stability and compactness, in order to show whether it is possible to agree with the conventional wisdom of white dwarfs dynamics. Our results predict an average value of the brane tension of dwarf stars, being weaker than other astrophysical observations but remaining higher than cosmological results provided by nucleosynthesis among others.

  3. Branes constrictions with White Dwarfs

    CERN Document Server

    Garcia-Aspeitia, Miguel A

    2015-01-01

    We consider here a robust study of stellar dynamics for White Dwarf Stars with polytropic matter in the weak field approximation using the Lane-Emden equation from the brane-world scenario. We also derive an analytical solution to the nonlocal energy density and show the behavior and sensitivity of these stars to the presence of extra dimensions. Similarly, we analyze its stability and compactness, in order to show whether it is possible to be close to the conventional wisdom of white dwarfs dynamics. Our results predicts an average value of brane tension as: $\\langle\\lambda\\rangle\\gtrsim84.818\\;\\rm MeV^4$, with a standard deviation $\\sigma\\simeq82.021\\;\\rm MeV^4$ which comes from a sample of dwarf stars, being weaker than other astrophysical observations but remaining above of cosmological results provided by nucleosynthesis among others.

  4. SDSS DR7 White Dwarf Catalog

    OpenAIRE

    Kleinman, S.J.; Kepler, S.O.; D. Koester; Pelisoli, Ingrid; Peçanha, Viviane; Nitta, A.; Costa, J. E. S.; Krzesinski, J.; Dufour, P; Lachapelle, F. -R.; Bergeron, P.; Yip, Ching-Wa; Harris, Hugh C.; Eisenstein, Daniel J.; Althaus, L.

    2012-01-01

    We present a new catalog of spectroscopically-confirmed white dwarf stars from the Sloan Digital Sky Survey Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent a more than factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalog based ...

  5. White dwarfs - the once and future suns

    International Nuclear Information System (INIS)

    The history and properties of white dwarfs (Bessel's conclusion that Sirius and Procyon have invisible companions, Clark's discovery of Sirius B, Adams and Russell's study of white dwarf spectra, Chandrasekhar's explanation of white dwarf structure by equations incorporating quantum mechanics and relativity) are treated. Formation of white dwarfs, degeneracy, binary white dwarfs (and novae and supernovae) are explained. A mystery nearly 50 years old regarding the spectrum of the star Greenwich +70 degrees-8247 has been solved: it involves a stationary line phenomenon and a magnetic field of 300-500 million gauss. Processes being studied in white dwarfs and white dwarf models include gravitational settling, accretion, dredge-up, radiation pressure, and diffusive hydrogen burning

  6. White dwarfs in the WTS: Eclipsing binaries

    OpenAIRE

    Burleigh M.R.; Koppenhoefer J.; Saglia R.P.; Steele P.R.; Cappetta M.

    2013-01-01

    We have identified photometric white dwarf candidates in the WFCAM transit survey through a reduced proper motion versus colour approach. Box-fitting with parameters adjusted to detect the unique signature of a white dwarf + planet/brown dwarf transit/eclipse event was performed, as well as looking for variability due to the irradiation of the companions atmosphere by the white dwarf's high UV flux. We have also performed a simple sensitivity analysis in order to assess the ability of the sur...

  7. Hot white dwarfs and the UV delay in dwarf novae

    OpenAIRE

    Hameury, J.-M.; Lasota, J. -P.; Dubus, G.

    1998-01-01

    We calculate the effect of illumination of dwarf nova accretion discs by radiation from a hot, central, white dwarf. We show that only for very hot white dwarfs (Teff ~ 40 000$ K) the inner region of quiescent dwarf nova discs are partially depleted so that the delay between the rise to outburst of the optical and UV fluxes would be increased as suggested recently by King (1997). This depletion, however, must create several small outbursts between main outbursts, contrary to...

  8. DE CVn: A bright, eclipsing red dwarf - white dwarf binary

    OpenAIRE

    Besselaar, E.J.M. van den; Greimel, R.; Morales-Rueda, L.; Nelemans, G.; Thorstensen, J. R.; Marsh, T. R.; Dhillon, V.S.; Robb, R. M.; Balam, D. D.; Guenther, E. W.; Kemp, J.; Augusteijn, T.; De Groot, P. J.

    2007-01-01

    Close white dwarf - red dwarf binaries must have gone through a common-envelope phase during their evolution. DE CVn is a detached white dwarf - red dwarf binary with a relatively short (~8.7 hours) orbital period. Its brightness and the presence of eclipses makes this system ideal for a more detailed study. From a study of photometric and spectroscopic observations of DE CVn we derive the system parameters which we discuss in the frame work of common-envelope evolution. Pho...

  9. White dwarfs in the WTS: Eclipsing binaries

    Directory of Open Access Journals (Sweden)

    Burleigh M.R.

    2013-04-01

    Full Text Available We have identified photometric white dwarf candidates in the WFCAM transit survey through a reduced proper motion versus colour approach. Box-fitting with parameters adjusted to detect the unique signature of a white dwarf + planet/brown dwarf transit/eclipse event was performed, as well as looking for variability due to the irradiation of the companions atmosphere by the white dwarf's high UV flux. We have also performed a simple sensitivity analysis in order to assess the ability of the survey to detect companions to white dwarfs via the transit method.

  10. White Dwarf Rotation Observations and Theory

    CERN Document Server

    Kawaler, S D

    2003-01-01

    White dwarfs rotate. The angular momentum in single white dwarfs must originate early in the life of the star, but also must be modified (and perhaps severely modified) during the many stages of evolution between birth as a main--sequence star and final appearance as a white dwarf. Observational constraints on the rotation of single white dwarf stars come from traditional spectroscopy and from asteroseismology, with the latter providing hints of angular velocity with depth. Results of these observational determinations, that white dwarfs rotate with periods ranging from hours to days (or longer), tells us that the processes by which angular momentum is deposited and/or drained from the cores of AGB stars are complex. Still, one can place strong limits on these processes by considering relatively simple limiting cases for angular momentum evolution in prior stages, and on subsequent angular momentum evolution in the white dwarfs. These limiting-case constraints will be reviewed in the context of the available ...

  11. White Dwarf Sequences in Dense Star Clusters

    OpenAIRE

    Hurley, Jarrod R.; Michael M. Shara

    2003-01-01

    We use the results of realistic N-body simulations to investigate the appearance of the white dwarf population in dense star clusters. We show that the presence of a substantial binary population in a star cluster, and the interaction of this population with the cluster environment, has serious consequences for the morphology of the observed white dwarf sequence and the derived white dwarf cooling age of the cluster. We find that over time the dynamical evolution of the clus...

  12. White dwarf cooling sequences and cosmochronology

    OpenAIRE

    García-Berro E.; Artigas A.; Isern J.

    2013-01-01

    The evolution of white dwarfs is a simple gravothermal process. This means that their luminosity function, i.e. the number of white dwarfs per unit bolometric magnitude and unit volume as a function of bolometric magnitude, is a monotonically increasing function that decreases abruptly as a consequence of the finite age of the Galaxy. The precision and the accuracy of the white dwarf luminosity functions obtained with the recent large surveys together with the improved quali...

  13. The Physics of Pulsating White Dwarf Stars

    Science.gov (United States)

    Fontaine, G.; Brassard, P.; Charpinet, S.; Dufour, P.; Quirion, P.-O.; Randall, S. K.; Van Grootel, V.

    2012-09-01

    We present a summary of the properties of white dwarf stars, beginning with a brief reminder of their basic characteristics. We continue with a discussion of the spectral types, evolution, and other properties of cooling white dwarfs, with an emphasis on the internal physics. We then introduce the pulsating white dwarfs and provide an updated view of their status. We finally discuss the impact (real and potential) of asteroseismology on our knowledge of degenerate stars.

  14. Detonations in white dwarf dynamical interactions

    OpenAIRE

    Aznar Siguan, Gabriela; García-Berro Montilla, Enrique; Lorén Aguilar, Pablo; José Pont, Jordi; Isern Vilaboy, Jordi

    2013-01-01

    In old, dense stellar systems collisions of white dwarfs are a rather frequent phenomenon. Here we present the results of a comprehensive set of Smoothed Particle Hydrodynamics simulations of close encounters of white dwarfs aimed to explore the outcome of the interaction and the nature of the final remnants for different initial conditions. Depending on the initial conditions and the white dwarf masses, three different outcomes are possible. Specifically, the outcome of the...

  15. ASTRO-H White Paper - White Dwarf

    CERN Document Server

    Mukai, K; Harayama, A; Hayashi, T; Ishida, M; Long, K S; Terada, Y; Tsujimoto, M

    2014-01-01

    Interacting binaries in which a white dwarf accretes material from a companion --- cataclysmic variables (CVs) in which the mass loss is via Roche-lobe overflow, and symbiotic stars in which the white dwarf captures the wind of a late type giant --- are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffles observers and theorists alike. They are likely to be a significant contributor to the Galactic ridge X-ray emission, and the possibility that some CVs or symbiotic stars may be the progenitors of some of the Type Ia supernovae deserves serious consideration. Furthermore, these binaries serve as excellent laboratories in which to study physics of X-ray emission from high density plasma, accretion physics, reflection, and particle acceleration. ASTRO-H is well-matched to the study of X-ray emission from many of these objects. In particular, the excellent spectral resolution of the SXS will enable dynamical studies of the X-ray e...

  16. The galactic population of white dwarfs

    International Nuclear Information System (INIS)

    The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial- mass- function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lion's share of stellar mass in the Milky Way. Another important result is the substantial contribution of the - often neglected - population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.

  17. White dwarf cooling sequences and cosmochronology

    Directory of Open Access Journals (Sweden)

    García-Berro E.

    2013-03-01

    Full Text Available The evolution of white dwarfs is a simple gravothermal process. This means that their luminosity function, i.e. the number of white dwarfs per unit bolometric magnitude and unit volume as a function of bolometric magnitude, is a monotonically increasing function that decreases abruptly as a consequence of the finite age of the Galaxy. The precision and the accuracy of the white dwarf luminosity functions obtained with the recent large surveys together with the improved quality of the theoretical models of evolution of white dwarfs allow to feed the hope that in a near future it will be possible to reconstruct the history of the different Galactic populations.

  18. The galactic population of white dwarfs

    OpenAIRE

    Napiwotzki, Ralf

    2009-01-01

    The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial-mass-function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of...

  19. White Dwarf Critical Tests for Modified Gravity

    CERN Document Server

    Jain, Rajeev Kumar; Nielsen, Niklas Grønlund

    2015-01-01

    Scalar-tensor theories of gravity can lead to modifications of the gravitational force inside astrophysical objects. We exhibit that compact stars such as white dwarfs provide a unique set-up to test such deviations from Newtonian gravitational physics inside the stars. We obtain stringent and independent constraints on the parameter $\\Upsilon$ characterizing the deviations from gravity using the mass-radius relation, the Chandrasekhar mass limit and the maximal rotational frequency of white dwarfs. We find that white dwarfs impose stronger constraints on $\\Upsilon$ than the red and brown dwarfs.

  20. Old White Dwarfs as a Microlensing Population

    OpenAIRE

    Hansen, Brad M. S.

    2000-01-01

    A popular interpretation of recent microlensing studies of the line of sight towards the Large Magellanic Cloud invokes a population of old white dwarf stars in the Galactic halo. Below I review the basic properties of old white dwarf stars and the ongoing efforts to detect this population directly.

  1. White Dwarf Spectra and Atmosphere Models

    OpenAIRE

    Koester, Detlev

    2008-01-01

    We describe the spectral classification of white dwarfs and some of the physical processes important for their understanding. In the major part of this paper we discuss the input physics and computational methods for one of the most widely used stellar atmosphere codes for white dwarfs.

  2. A Spitzer White Dwarf Infrared Survey

    OpenAIRE

    Mullally, F.; Kilic, Mukremin; Reach, William T.; Kuchner, Marc J.; von Hippel, Ted; Burrows, Adam; Winget, D. E.

    2006-01-01

    We present mid-infrared photometry of 124 white dwarf stars with Spitzer Space Telescope. Objects were observed simultaneously at 4.5 and 8.0um with sensitivities better than 1 mJy. This data can be used to test models of white dwarf atmospheres in a new wavelength regime, as well as to search for planetary companions and debris disks.

  3. Decoding Convection with White Dwarf Light Curves

    Science.gov (United States)

    Provencal, J. L.; Montgomery, M.; WET Team

    2013-12-01

    Convection remains one of the largest sources of theoretical uncertainty in our understanding of stellar physics. Current studies of convective energy transport are based on the Mixing Length Theory (MLT). As an example for white dwarfs, Bergeron et al. (1995) show that basic parameters such as flux, line profiles, energy distribution, color indices, and equivalent widths are extremely sensitive to the assumed MLT parameterization. This is compelling, since we use our knowledge of white dwarf interiors to calibrate white dwarf cooling sequences, provide detailed estimates for the ages of individual white dwarfs, and calibrate the age of the Galactic disk. The Whole Earth Telescope (WET) is engaged in a long term project to empirically determine the physical properties of convection in the atmospheres of pulsating white dwarfs. Our technique uses information from nonlinear (non-sinusoidal) pulse shapes of the target star to empirically probe the physical properties of its convection zone. We present current results from WET targets in 2008 - 2012.

  4. White Dwarfs Cosmological and Galactic Probes

    CERN Document Server

    Sion, Edward M; Vennes, Stéphane

    2005-01-01

    The emphasis on white dwarf stars and cosmology arises from the most recent advances in cosmological and galactic structure research in which white dwarf stars are playing a very prominent role. Examples are Type Ia supernovae (i.e. white dwarf supernovae), the origin and evolution of the universe, the age of the galactic disk, cosmochronology using white dwarfs in globular clusters and galactic clusters, and the physics of accretion onto compact (very dense) stars. As an assisting guide to the reader, we have included, by invitation, comprehensive review articles in each of the four major areas of the book, white dwarf supernovae, cosmology, accretion physics and galactic structure. The reviews include introductory material that they build upon. The book is suitable and most useful to advanced undergraduates, graduate students and scientific professionals (e.g. astronomers, astrophysicists, cosmologists, physicists).

  5. White dwarf heating and the ultraviolet flux in dwarf novae

    Science.gov (United States)

    Pringle, J. E.

    1988-01-01

    The heating of the outer layers of the white dwarf which is likely to occur during a dwarf nova outburst is investigated. It is shown that the decline in IUE flux, observed during quiescent intervals in the dwarf novae VW Hydri and WX Hydri, may be due to the outer layers cooling off once the heat source is removed. The calculations here assume uniformity of the heat source over the white dwarf surface. This is unlikely to be realized from disk accretion, and discussion is made of what further calculations are required.

  6. What fraction of white dwarfs are members of binary systems?

    International Nuclear Information System (INIS)

    White dwarfs were originally discovered as the subordinate faint companions of bright nearby stars (i.e. Sirius B and 40 Eri B). Several general categories of binary systems involving white dwarfs are recognized: Sirius-like systems, where the white dwarf may be difficult to detect, binary systems containing white dwarfs and low mass stars, where the white dwarf is often readily discerned; and double degenerate systems. Different modes of white dwarf discovery influence our perception of both the overall binary fraction and the nature of these systems; proper motion surveys emphasize resolved systems, while photometric surveys emphasize unresolved systems containing relatively hot white dwarfs. Recent studies of the local white dwarf population offer some hope of achieving realistic estimates of the relative number of binary systems containing white dwarfs. A sample of 132 white dwarfs within 20 pc indicates that an individual white dwarf has a probability of 32 ± 8% of occurring within a binary or multiple star system.

  7. An overview of white dwarf stars

    Directory of Open Access Journals (Sweden)

    Charpinet S.

    2013-03-01

    Full Text Available We present a brief summary of what is currently known about white dwarf stars, with an emphasis on their evolutionary and internal properties. As is well known, white dwarfs represent the end products of stellar evolution for the vast majority of stars and, as such, bear the signatures of past events (such as mass loss, mixing phases, loss and redistribution of angular momentum, and thermonuclear burning that are of essential importance in the evolution of stars in general. In addition, white dwarf stars represent ideal testbeds for our understanding of matter under extreme conditions, and work on their constitutive physics (neutrino production rates, conductive and radiative opacities, interior liquid/solid equations of state, partially ionized and partially degenerate envelope equations of state, diffusion coefficients, line broadening mechanisms is still being actively pursued. Given a set of constitutive physics, cooling white dwarfs can be used advantageously as cosmochronometers. Moreover, the field has been blessed by the existence of four distinct families of pulsating white dwarfs, each mapping a different evolutionary phase, and this allows the application of the asteroseismological method to probe and test their internal structure and evolutionary state. We set the stage for the reviews that follow on cooling white dwarfs as cosmochronometers and physics laboratories, as well as on the properties of pulsating white dwarfs and the asteroseismological results that can be inferred.

  8. SDSS DR7 WHITE DWARF CATALOG

    International Nuclear Information System (INIS)

    We present a new catalog of spectroscopically confirmed white dwarf stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent more than a factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalogs based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log g if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for the DAs.

  9. Changing gravitational constant and white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Vila, S.C.

    1976-05-15

    If the gravitational constant decreases with time at a constant rate, there is a maximum possible age and a minimum possible luminosity for each white dwarf mass. White dwarfs older and fainter than these limits would, in the past, have exceeded the white dwarf mass limit and have become supernovae.The rate of change of the gravitational constant G/G= (-7.5 +- 2.7) x 10/sup -11/ year/sup -1/ recently reported by Van Flandern is compatible with the present values of these age and luminosity limits. (AIP)

  10. Changing gravitational constant and white dwarfs

    International Nuclear Information System (INIS)

    If the gravitational constant decreases with time at a constant rate, there is a maximum possible age and a minimum possible luminosity for each white dwarf mass. White dwarfs older and fainter than these limits would, in the past, have exceeded the white dwarf mass limit and have become supernovae.The rate of change of the gravitational constant G/G= (-7.5 +- 2.7) x 10-11 year-1 recently reported by Van Flandern is compatible with the present values of these age and luminosity limits

  11. Gravitational Radiation from Pulsating White Dwarfs

    OpenAIRE

    Benacquista, M.; Sedrakian, D.; Hairapetyan, M.; Shahabasyan, K.; Sadoyan, A.

    2003-01-01

    Rotating white dwarfs undergoing quasi-radial oscillations can emit gravitational radiation in a frequency range from 0.1 - 0.3 Hz. Assuming that the energy source for the gravitational radiation comes from the oblateness of the white dwarf induced by the rotation, the strain amplitude is found to be \\sim 10^{-27} for a white dwarf at \\sim 50 pc. The galactic population of these sources is estimated to be \\sim 10^7, and may produce a confusion limited foreground for proposed...

  12. Discovery of an Ultracool White Dwarf Companion

    OpenAIRE

    Farihi, J.

    2004-01-01

    The discovery of a low luminosity common proper motion companion to the white dwarf GD392 at a wide separation of $46''$ is reported. $BVRI$ photometry suggests a low temperature ($T_{\\rm eff}\\sim4000$ K) while $JHK$ data strongly indicate suppressed flux at all near infrared wavelengths. Thus, GD392B is one of the few white dwarfs to show significant collision induced absorption due to the presence of photospheric ${\\rm {H_2}}$ and the first ultracool white dwarf detected a...

  13. Understanding white dwarf binary evolution with white dwarf/main sequence binaries: first results from SEGUE

    OpenAIRE

    Schreiber, M. R.; Gomez-Moran, A. Nebot; Schwope, A. D.

    2006-01-01

    Close white dwarf binaries make up a wide variety of objects such as double white dwarf binaries, which are possible SN Ia progenitors, cataclysmic variables, super soft sources, or AM CVn stars. The evolution and formation of close white dwarf binaries crucially depends on the rate at which angular momentum is extracted from the binary orbit. The two most important sources of angular momentum loss are the common envelope phase and magnetic braking. Both processes are so far...

  14. On the origin of high-field magnetic white dwarfs

    OpenAIRE

    Garc??a-Berro Montilla, Enrique; Torres Gil, Santiago; Loren Aguilar, Pablo; Aznar Siguan, Gabriela; Camacho D??az, Judit; Kulebi, Baybar; Isern Vilaboy, Jordi; Althaus, Leandro Gabriel; Corsico, Alejandro H.

    2013-01-01

    Every two years, white dwarf researchers and enthusiasts meet to exchange their knowledge and discuss recent developments in white dwarf theory and observations. These proceedings are from the 18th European White Dwarf Workshop held at Pedagogical University of Cracow (Krakow, Poland) on 13th - 17th August, 2012. The scientific topics discussed in this Workshop included: pulsating white dwarfs; luminosity function, mass distribution, and populations; white dwarf structure and evolution;...

  15. The origin of low-mass white dwarfs

    International Nuclear Information System (INIS)

    We present white dwarf mass distributions of a large sample of post common-envelope binaries and wide white dwarf main sequence binaries and demonstrate that these distributions are statistically independent. While the former contains a much larger fraction of low-mass white dwarfs, the latter is similar to single white dwarf mass distributions. Taking into account observational biases we also show that the majority of low-mass white dwarfs are formed in close binaries.

  16. Measuring M dwarf Winds with DAZ White Dwarfs

    OpenAIRE

    Debes, J.H.

    2006-01-01

    Hydrogen atmosphere white dwarfs with metal lines, so-called DAZs, show evidence for ongoing accretion of material onto their surfaces. Some DAZs are known to have unresolved M dwarf companions, which could account for the observed accretion through a stellar wind. I combine observed Ca abundances of the DAZs with information on the orbital separation of their M dwarf companions to infer the mass loss rate of the M dwarfs. I find that for three of the six known DAZs with M d...

  17. Pulsating White Dwarf Stars and Precision Asteroseismology

    CERN Document Server

    Winget, D E

    2008-01-01

    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.

  18. White Dwarfs, Neutron Stars and Black Holes

    Science.gov (United States)

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  19. Merging white dwarfs and thermonuclear supernovae.

    Science.gov (United States)

    van Kerkwijk, M H

    2013-06-13

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and the suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar-mass remnants. I then turn to possible observational tests, in particular, those that test the absence or presence of electron captures during the burning. PMID:23630372

  20. Accretion Flows in Magnetic White Dwarf Systems

    Science.gov (United States)

    Imamura, James N.

    2005-01-01

    We received Type A and B funding under the NASA Astrophysics Data Program for the analysis and interpretation of hard x-ray data obtained by the Rossi X-ray Timing Explorer and other NASA sponsored missions for Intermediate Polars (IPS) and Polars. For some targets, optical data was available. We reduced and analyzed the X-ray spectra and the X-ray and optical (obtained at the Cerro Tololo Inter-American Observatory) timing data using detailed shock models (which we constructed) to place constraints on the properties of the accreting white dwarfs, the high energy emission mechanisms of white dwarfs, and the large-scale accretion flows of Polars and IPS. IPS and Polars are white dwarf mass-transfer binaries, members of the larger class of cata,clysmic variables. They differ from the bulk of the cataclysmic variables in that they contain strongly magnetic white dwarfs; the white dwarfs in Polars have B, = 7 to 230 MG and those in IPS have B, less than 10 MG. The IPS and Polars are both examples of funneled accretion flows in strong magnetic field systems. The IPS are similar to x-ray pulsars in that accretion disks form in the systems which are disrupted by the strong stellar magnetic fields of the white dwarfs near the stellar surface from where the plasma is funneled to the surface of the white dwarf. The localized hot spots formed at the footpoints of the funnels coupled with the rotation of the white dwarf leads to coherent pulsed x-ray emission. The Polars offer an example of a different accretion topology; the magnetic field of the white dwarf controls the accretion flow from near the inner Lagrangian point of the system directly to the stellar surface. Accretion disks do not form. The strong magnetic coupling generally leads to synchronous orbital/rotational motion in the Polars. The physical system in this sense resembles the Io/Jupiter system. In both IPS and Polars, pulsed emission from the infrared to x-rays is produced as the funneled flows merge onto the white dwarfs through the formation of strong radiating shock waves. A comparative study of the IPS and Polars can elucidate the primary effects of the magnetic fields on the dynamics and thermodynamics in accreting white dwarf systems.

  1. General Relativistic Calculations for White Dwarf Stars

    OpenAIRE

    Mathew, Arun; Nandy, Malay K.

    2014-01-01

    We restudy the properties of white dwarf stars composed of relativistic degenerate electron gas both in Newtonian and general relativity. Hence we investigate Mass-Radius relation for white dwarf stars by solving the Newtonian as well as Tolman-Oppenheimer-Volkoff equations for hydrostatic equilibrium considering the electron gas as non-interacting. We find that chandrasekhar's limiting mass of $1.452\\,M_\\odot$ for the Newtonian case is slightly modified to $1.397\\,M_\\odot$ ...

  2. NEW COOLING SEQUENCES FOR OLD WHITE DWARFS

    International Nuclear Information System (INIS)

    We present full evolutionary calculations appropriate for the study of hydrogen-rich DA white dwarfs. This is done by evolving white dwarf progenitors from the zero-age main sequence, through the core hydrogen-burning phase, the helium-burning phase, and the thermally pulsing asymptotic giant branch phase to the white dwarf stage. Complete evolutionary sequences are computed for a wide range of stellar masses and for two different metallicities, Z = 0.01, which is representative of the solar neighborhood, and Z = 0.001, which is appropriate for the study of old stellar systems, like globular clusters. During the white dwarf cooling stage, we self-consistently compute the phase in which nuclear reactions are still important, the diffusive evolution of the elements in the outer layers and, finally, we also take into account all the relevant energy sources in the deep interior of the white dwarf, such as the release of latent heat and the release of gravitational energy due to carbon-oxygen phase separation upon crystallization. We also provide colors and magnitudes for these sequences, based on a new set of improved non-gray white dwarf model atmospheres, which include the most up-to-date physical inputs like the Ly? quasi-molecular opacity. The calculations are extended down to an effective temperature of 2500 K. Our calculations provide a homogeneous set of evolutionary cooling tracks appropriate for mass and age determinations of old DA white dwarfs and for white dwarf cosmochronology of the different Galactic populations.

  3. Pulsations in white dwarfs: Selected topics

    Directory of Open Access Journals (Sweden)

    Saio H.

    2013-03-01

    Full Text Available This paper presents a very brief overview of the observed properties of g-mode pulsations in variable white dwarfs. We then discuss a few selected topics: Excitation mechanisms (kappa- and convection- mechanisms, and briefly the effect of a strong magnetic field (? 1 MG on g-modes as recently found in a hot DQ (carbon-rich atmosphere white dwarf. In the discussion of excitation mechanisms, a simple interpretation for the convection mechanism is given.

  4. Edmund Stoner and white dwarf stars

    OpenAIRE

    Thomas, Edwin

    2011-01-01

    Abstract The discovery of a limiting mass for white dwarf stars is today usually attributed to Subramanian Chandrasekhar. However it appears that an article by Edmund Stoner, which appeared in the Philosophical Magazine in 1930, was the first publication to give a convincing demonstration of the existence of a limiting mass for white dwarfs. We examine here why it is that the contributions of Stoner and others towards this discovery have been largely forgotten.

  5. NON EXPLOSIVE COLLAPSE OF A WHITE DWARF

    OpenAIRE

    Mochkovitch, R.

    1980-01-01

    Matter accretion on a white dwarf has been proposed to explain the novae and type I supernovae explosions. Accretion followed by a non explosive collapse, and leading to the formation of a neutron star is possible only if some constraints on the composition or the structure of the white dwarf, on the accretion rate, or on the energy production rate by nuclear reactions are respected. A detailed presentation of these constraints will be given.

  6. Neural Network identification of halo white dwarfs

    OpenAIRE

    Torres, Santiago; Garcia-Berro, Enrique; Isern, Jordi

    1998-01-01

    The white dwarf luminosity function has proven to be an excellent tool to study some properties of the galactic disk such as its age and the past history of the local star formation rate. The existence of an observational luminosity function for halo white dwarfs could provide valuable information about its age, the time that the star formation rate lasted, and could also constrain the shape of the allowed Initial Mass Functions (IMF). However, the main problem is the scarce...

  7. The white dwarf population of NGC 6397

    OpenAIRE

    Torres, S.; García-Berro, E.; Althaus, L. G.; Camisassa, M. E.

    2015-01-01

    NGC 6397 is one of the most interesting, well observed and theoretically studied globular clusters. The existing wealth of observations allows us to study the reliability of the theoretical white dwarf cooling sequences of low metallicity progenitors,to determine its age and the percentage of unresolved binaries, and to assess other important characteristics of the cluster, like the slope of the initial mass function, or the fraction of white dwarfs with hydrogen deficient a...

  8. Abundance analysis of DAZ white dwarfs

    CERN Document Server

    Kawka, Adela; Dinnbier, Frantisek; Cibulkova, Helena; Nemeth, Peter

    2010-01-01

    We present an abundance analysis of a sample of 33 hydrogen-rich (DA) white dwarfs. We have used archival high-resolution spectra to measure abundances of calcium, magnesium and iron in a set of 30 objects. In addition, we present preliminary calcium abundances in three new white dwarfs based on low-dispersion spectra. We investigate some abundance ratios (Mg/Ca, Fe/Ca) that may help uncover the composition of the accretion source.

  9. On The Evolution of Magnetic White Dwarfs

    OpenAIRE

    Tremblay, P. -E.; Fontaine, G.; Freytag, B.; Steiner, O.; Ludwig, H. -G; Steffen, M.; Wedemeyer, S.; Brassard, P.

    2015-01-01

    We present the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-beta parameter, the thermal to magnetic pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1-50 kG, which is much smaller than the typical 1-1000 MG field strengths observ...

  10. Comparison of theoretical white dwarf cooling timescales

    CERN Document Server

    Salaris, Maurizio; García-Berro, Enrique

    2013-01-01

    An accurate assessment of white dwarf cooling times is paramount to place white dwarf cosmochronology of Galactic populations on more solid grounds. This issue is particularly relevant in view of the enhanced observational capabilities provided by the next generation of Extremely Large Telescopes, that will offer more avenues to employ white dwarfs as probes of Galactic evolution and test-beds of fundamental physics. We estimate for the first time the consistency of results obtained from two independent and widely used evolutionary codes (BaSTI and LPCODE) for white dwarf models with fixed mass and chemical stratification, when the same input physics is employed in both codes. We considered 0.55Msun white dwarf models with both pure carbon and uniform carbon-oxygen (50/50 mass fractions) core. We have assessed for the first time the maximum possible accuracy in the current estimates of white dwarf cooling times, resulting only from the different implementations of the stellar evolution equations and homogeneo...

  11. Nonlinear Analysis of Pulsating White Dwarf Lightcurves

    Science.gov (United States)

    Provencal, J. L.; Montgomery, M. H.; Shipman, H.; WET TEam

    2015-06-01

    Convection remains one of the largest sources of theoretical uncertainty in our understanding of stellar physics. For example, Bergeron (1995) show that basic parameters such as flux, line profiles, energy distribution, color indices, and equivalent widths are extremely sensitive to the assumed convective parameterization. This is compelling, since we use our knowledge of these basic parameters to calibrate white dwarf cooling sequences, provide detailed estimates for the ages of individual white dwarfs, and determine the age of the Galactic disk. The Whole Earth Telescope (WET) is engaged in a long term project to empirically calibrate the physical properties of convection in pulsating white dwarfs by combining asteroseismology and analysis of nonlinear light curves. Nonsinusoidal distortions, in the form of narrow peaks and wider valleys, are observed in many pulsating white dwarf light curves. These are a reflection of the local depth of the convection zone, a value which varies during a pulsation cycle. Applying asteroseismology and convective light curve fitting to a wide sample of pulsating white dwarfs provides an empirical map of how the convective response time (the convection zone “depth”) varies as a function of effective temperature, and this can be compared with theoretical models, both MLT and hydrodynamic. This project has resulted in a large database of white dwarf lightcurves and pulsation frequencies. We present current results for DA and DB pulsators, and provide a few examples of interesting pulsation behavior seen along the way.

  12. On the Evolution of Magnetic White Dwarfs

    Science.gov (United States)

    Tremblay, P.-E.; Fontaine, G.; Freytag, B.; Steiner, O.; Ludwig, H.-G.; Steffen, M.; Wedemeyer, S.; Brassard, P.

    2015-10-01

    We present the first radiation magnetohydrodynamic simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-? parameter, the thermal-to-magnetic-pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1-50 kG, which is much smaller than the typical 1-1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B ? 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (Teff) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection due to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, the effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with Teff ? 10,000 K cool significantly slower than non-magnetic degenerates.

  13. Six detached white-dwarf close binaries

    OpenAIRE

    Morales-Rueda, L.; Marsh, T. R.; Maxted, P. F. L; Nelemans, G.; Karl, C.; Napiwotzki, R.; Moran, C. K. J.

    2005-01-01

    We determine the orbits of four double degenerate systems (DDs), composed of two white dwarfs, and of two white dwarf -- M dwarf binaries. The four DDs, WD1022+050, WD1428+373, WD1824+040, and WD2032+188, show orbital periods of 1.157155(5) d, 1.15674(2) d, 6.26602(6) d and 5.0846(3) d respectively. These periods combined with estimates for the masses of the brighter component, based on their effective temperatures, allow us to constrain the masses of the unseen companions. ...

  14. Possible new class of dense white dwarfs

    International Nuclear Information System (INIS)

    If the strange quark matter hypothesis is true, then a new class of white dwarfs can exist whose nuclear material in their deep interiors can have a density as high as the neutron drip density, a few hundred times the density in maximum-mass white dwarfs and 4x104 the density in dwarfs of mass, M?0.6 Mcircle-dot. Their masses fall in the approximate range 10-4 to 1 Mcircle-dot. They are stable against acoustical modes of vibration. A strange quark core stabilizes these stars, which otherwise would have central densities that would place them in the unstable region of the sequence between white dwarfs and neutron stars. copyright 1995 American Institute of Physics

  15. Possible new class of dense white dwarfs

    International Nuclear Information System (INIS)

    If the strange matter hypothesis of Bodmer and Witten is true, then a new class of white dwarfs can exist whose nuclear material in their deep interiors can have a density as high as the neutron drip density, a few hundred times the density in maximum-mass white dwarfs and 4x104 the density in dwarfs of typical mass, M?0.6Mcircle-dot. Their masses fall in the approximate range 10-4--1Mcircle-dot. They are stable against acoustical modes of vibration. A strange quark core stabilizes these stars, which otherwise would have central densities that would place them in the unstable region of the sequence between white dwarfs and neutron stars

  16. New cooling sequences for old white dwarfs

    CERN Document Server

    Renedo, Isabel; Bertolami, Marcelo M Miller; Romero, Alejandra D; Corsico, Alejandro H; Rohrmann, Rene D; Garcia-Berro, Enrique

    2010-01-01

    We present full evolutionary calculations appropriate for the study of hydrogen-rich DA white dwarfs. This is done by evolving white dwarf progenitors from the zero age main sequence, through the core hydrogen burning phase, the helium burning phase and the thermally pulsing asymptotic giant branch phase to the white dwarf stage. Complete evolutionary sequences are computed for a wide range of stellar masses and for two different metallicities: Z=0.01, which is representative of the solar neighborhood, and Z=0.001, which is appropriate for the study of old stellar systems, like globular clusters. During the white dwarf cooling stage we compute self-consistently the phase in which nuclear reactions are still important, the diffusive evolution of the elements in the outer layers and, finally, we also take into account all the relevant energy sources in the deep interior of the white dwarf, like the release of latent heat and the release of gravitational energy due to carbon-oxygen phase separation upon crystall...

  17. THE WHITE DWARF AGE OF NGC 2477

    International Nuclear Information System (INIS)

    We present deep photometric observations of the open cluster NGC 2477 using HST/WFPC2. By identifying seven cluster white dwarf candidates, we present an analysis of the white dwarf age of this cluster, using both the traditional method of fitting isochrones to the white dwarf cooling sequence, and by employing a new Bayesian statistical technique that has been developed by our group. This new method performs an objective, simultaneous model fit of the cluster and stellar parameters (namely, age, metallicity, distance, reddening, as well as individual stellar masses, mass ratios, and cluster membership) to the photometry. Based on this analysis, we measure a white dwarf age of 1.035 ± 0.054 ± 0.087 Gyr (uncertainties represent the goodness of model fits and discrepancy among models, respectively) in good agreement with the cluster's main-sequence turnoff age. This work is part of our ongoing work to calibrate main-sequence turnoff and white dwarf ages using open clusters, and to improve the precision of cluster ages to the ?5% level.

  18. White dwarfs, red dwarfs and halo dark matter

    International Nuclear Information System (INIS)

    The nature of the microlensing events observed by the MACHO team towards the LMC still remains controversial. Low-mass substellar objects and stars with masses larger than ? 1Mo-dot have been ruled out, while stars of ? 0.5 Mo-dot are the most probable candidates. This means that the microlenses should be either red or white dwarfs. Consequently, we assess jointly the relative contributions of both types of stars to the mass budget of the Galactic halo. We use a Monte Carlo code that incorporates up-to-date evolutionary sequences of both red dwarfs and white dwarfs as well as detailed descriptions of both our Galaxy and the LMC and we compare the synthetic populations obtained with our simulator with the results obtained by the MACHO and EROS experiments. We find that the contribution of the red dwarf population is not enough to explain the number of events measured by the MACHO team. Even though, the optical depth obtained in our simulations almost doubles that obtained when taking into account the white dwarf population alone. Finally, we also find that the contribution to the halo dark matter of the entire population under study is smaller than 10%, at the 95% confidence level.

  19. THE LINK BETWEEN PLANETARY SYSTEMS, DUSTY WHITE DWARFS, AND METAL-POLLUTED WHITE DWARFS

    International Nuclear Information System (INIS)

    It has long been suspected that metal-polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not yet been fully posited. In this paper, we demonstrate that mass loss from a central star during post-main-sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the solar system show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust-producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main-sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.

  20. Unlocking the secrets of white dwarf stars

    CERN Document Server

    Van Horn, Hugh M

    2015-01-01

    White dwarfs, each containing about as much mass as our Sun but packed into a volume about the size of Earth, are the endpoints of evolution for most stars. Thousands of these faint objects have now been discovered, though only a century ago only three were known. They are among the most common stars in the Milky Way Galaxy, and they have become important tools in understanding the universe. Yet a century ago only three white dwarfs were known.   The existence of these stars completely baffled the scientists of the day, and solving the mysteries of these strange objects required revolutionary advances in science and technology, including the development of quantum physics, the construction and utilization of large telescopes, the invention of the digital computer, and the ability to make astronomical observations from space.   This book tells the story of the growth in our understanding of white dwarf stars, set within the context of the relevant scientific and technological advances. Part popular science, ...

  1. Rotation and magnetism in white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.D.; Norsworthy, J.E. (Steward Observatory, Tucson, AZ (USA))

    1991-01-01

    New rotational ephemerides for four isolated magnetic white dwarfs are derived from more than a decade of polarimetric monitoring. The stars span the period range 99 min-17.9 days and effectively double the number of white dwarfs with measured rotation periods. In addition, five stars whose polarization is constant on time scales up to at least 10 years may have very long rotation periods (P greater than about 100 yr). The lack of very short period white dwarfs attests to the coupling of angular momentum into the giant envelope or interstellar medium during late stages of evolution, but thus far there is no evidence that this process involves magnetic braking. With few exceptions, the disk-averaged fields of magnetic degenerates are dominated by dipolar patterns (as opposed to higher order multipoles or spots), and cover a broad range of obliquity to the rotation axis. 30 refs.

  2. Rotation and magnetism in white dwarfs

    International Nuclear Information System (INIS)

    New rotational ephemerides for four isolated magnetic white dwarfs are derived from more than a decade of polarimetric monitoring. The stars span the period range 99 min-17.9 days and effectively double the number of white dwarfs with measured rotation periods. In addition, five stars whose polarization is constant on time scales up to at least 10 years may have very long rotation periods (P greater than about 100 yr). The lack of very short period white dwarfs attests to the coupling of angular momentum into the giant envelope or interstellar medium during late stages of evolution, but thus far there is no evidence that this process involves magnetic braking. With few exceptions, the disk-averaged fields of magnetic degenerates are dominated by dipolar patterns (as opposed to higher order multipoles or spots), and cover a broad range of obliquity to the rotation axis. 30 refs

  3. Recombination energy in double white dwarf formation

    CERN Document Server

    Nandez, Jose L A; Lombardi, James C

    2015-01-01

    In this Letter we investigate the role of recombination energy during a common envelope event. We confirm that taking this energy into account helps to avoid the formation of the circumbinary envelope commonly found in previous studies. For the first time, we can model a complete common envelope event, with a clean compact double white dwarf binary system formed at the end. The resulting binary orbit is almost perfectly circular. In addition to considering recombination energy, we also show that between 1/4 and 1/2 of the released orbital energy is taken away by the ejected material. We apply this new method to the case of the double-white dwarf system WD 1101+364, and we find that the progenitor system at the start of the common envelope event consisted of a $\\sim1.5M_\\odot$ red giant star in a $\\sim 30$ day orbit with a white dwarf companion.

  4. Recombination energy in double white dwarf formation

    Science.gov (United States)

    Nandez, J. L. A.; Ivanova, N.; Lombardi, J. C.

    2015-06-01

    In this Letter, we investigate the role of recombination energy during a common envelope event. We confirm that taking this energy into account helps to avoid the formation of the circumbinary envelope commonly found in previous studies. For the first time, we can model a complete common envelope event, with a clean compact double white dwarf binary system formed at the end. The resulting binary orbit is almost perfectly circular. In addition to considering recombination energy, we also show that between 1/4 and 1/2 of the released orbital energy is taken away by the ejected material. We apply this new method to the case of the double white dwarf system WD 1101+364, and we find that the progenitor system at the start of the common envelope event consisted of an ˜1.5 M? red giant star in an ˜30 d orbit with a white dwarf companion.

  5. White dwarfs: connection with masses of the parent stars

    Energy Technology Data Exchange (ETDEWEB)

    Amnuel' , P.R.; Guseinov, O.Kh.; Novruzova, Kh.I.; Rustamov, Yu.S.

    1988-01-01

    A relationship between the mass of a white dwarf and the mass of the parent star on the main sequence is established. The white dwarf birth-rate matches the birth-rate (death-rate) of main sequence stars.

  6. White dwarfs: connection with masses of the parent stars

    International Nuclear Information System (INIS)

    A relationship between the mass of a white dwarf and the mass of the parent star on the main sequence is established. The white dwarf birth-rate matches the birth-rate (death-rate) of main sequence stars

  7. White dwarfs: the connection with the parent's masses

    International Nuclear Information System (INIS)

    The dependence between the mass of white dwarfs and that of their main sequence parent stars is determined. The birth-rates of white dwarfs with different masses and the death-rate of the main sequence stars are interconsistent

  8. The angular momentum of isolated white dwarfs

    Directory of Open Access Journals (Sweden)

    Brassard P.

    2013-03-01

    Full Text Available This is a very brief report on an ongoing program aimed at mapping the internal rotation profiles of stars through asteroseismology. Three years ago, we developed and applied successfully a new technique to the pulsating GW Vir white dwarf PG 1159?035, and were able to infer that it rotates very slowly and rigidly over some 99% of its mass. We applied the same approach to the three other GW Vir pulsators with available rotational splitting data, and found similar results. We discuss the implications of these findings on the question of the angular momentum of white dwarfs resulting from single star evolution.

  9. Implications of White Dwarf Galactic Halos

    OpenAIRE

    Adams, Fred C.; Laughlin, Greg

    1996-01-01

    Motivated by recent measurements which suggest that roughly half the mass of the galactic halo may be in the form of white dwarfs, we study the implications of such a halo. We first use current limits on the infrared background light and the galactic metallicity to constrain the allowed initial mass function (IMF) of the stellar population that produced the white dwarfs. The IMF must be sharply peaked about a characteristic mass scale $M_C \\approx 2.3 M_\\odot$. Since only a ...

  10. Observations of hot DA white dwarfs

    Science.gov (United States)

    Holberg, J. B.

    1987-01-01

    Observations of the hottest white dwarfs offer the opportunity to study the earliest stages of degenerate evolution. For those white dwarfs having pure or nearly pure hydrogen photosphere it is now possible with the current generation of high gravity model atmospheres to achieve substantial refinements in the estimation of atmospheric parameters, such as effective temperature, gravity and trace elements abundance. Such improvements can in turm lead to a clearer picture of DA cooling have a significant impact on the interpretation of a growing number of soft X-ray observations of hot DAs, and contribute to the understanding of He and trace metal abundance patterns in hot DAs.

  11. White dwarf atmospheres and circumstellar environments

    CERN Document Server

    Hoard, Donald W

    2012-01-01

    Written by selected astronomers at the forefront of their fields, this timely and novel book compiles the latest results from research on white dwarf stars, complementing existing literature by focusing on fascinating new developments in our understanding of the atmospheric and circumstellar environments of these stellar remnants. Complete with a thorough refresher on the observational characteristics and physical basis for white dwarf classification, this is a must-have resource for researchers interested in the late stages of stellar evolution, circumstellar dust and nebulae, and the future

  12. FUSE observations of hot white dwarfs

    OpenAIRE

    Wolff, B; Kruk, J. W.; D. Koester; Allard, N. F.; Ferlet, R.; Vidal-Madjar, A.

    2001-01-01

    We have analyzed FUSE observations of six hot white dwarf stars: four DA white dwarfs with T_eff >= 45000K, the DAO Feige55 (T_eff = 55000K), and the DA CD -38 10980 (T_eff = 24000K). Photospheric lines from SiIV, PV, and SVI can be observed in the majority of the five hotter objects. Feige55 shows also several other heavier elements. The measured abundances agree only partly with the predictions of the radiative levitation theory. We attribute this to current limitations of...

  13. Discovery of a peculiar DQ white dwarf

    OpenAIRE

    Carollo, D.; Hodgkin, S. T.; Spagna, A.; Smart, R. L.; Lattanzi, M. G.; McLean, B. J.; Pinfield, D. J.

    2002-01-01

    We report the discovery of a new carbon rich white dwarf that was identified during a proper motion survey for cool white dwarfs based on photographic material used for the construction of the Guide Star Catalog II. Its large proper motion (0.48 arcsec/yr) and faint apparent magnitude (V = 18.7) suggest a nearby object of low luminosity. A low-resolution spectrum taken with the William Herschel Telescope clearly shows strong C2 Deslandres-d'Azambuja and Swan bands, which ide...

  14. A wide binary trigger for white dwarf pollution

    OpenAIRE

    Bonsor, Amy; Veras, Dimitri

    2015-01-01

    Metal pollution in white dwarf atmospheres is likely to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be p...

  15. Detached white dwarf main-sequence star binaries

    OpenAIRE

    Willems, B.; Kolb, U.

    2004-01-01

    We initiated a comprehensive state of the art binary population synthesis study of white dwarf main-sequence star (WDMS) binaries to serve as a foundation for subsequent studies on pre-cataclysmic variables, double white dwarfs, and white dwarf + B-star binaries. We considered seven distinct formation channels subdivided into three main groups according to the evolutionary process that gives rise to the formation of the white dwarf or its helium-star progenitor: dynamically stable Roche-lobe ...

  16. Uniform period spacings in white dwarf models

    Science.gov (United States)

    Kawaler, Steven D.

    1987-01-01

    Theoretical models of g-mode oscillations in white dwarfs are investigated analytically. Numerical results of period-spacing computations for DOV, DAV, and DBV models are presented in tables, and the relationships between period spacings and the composition and structure of the stellar atmospheres are discussed.

  17. On The Evolution of Magnetic White Dwarfs

    CERN Document Server

    Tremblay, P -E; Freytag, B; Steiner, O; Ludwig, H -G; Steffen, M; Wedemeyer, S; Brassard, P

    2015-01-01

    We present the first radiation magnetohydrodynamics simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-beta parameter, the thermal to magnetic pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1-50 kG, which is much smaller than the typical 1-1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have then employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B > 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (Teff) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection owing to the convective cou...

  18. Magnetic white dwarfs with debris discs

    CERN Document Server

    Külebi, Baybars; Lorén-Aguilar, Pablo; Isern, Jordi; García-Berro, Enrique

    2013-01-01

    It has long been accepted that a possible mechanism for explaining the existence of magnetic white dwarfs is the merger of a binary white dwarf system, as there are viable mechanisms for producing sustainable magnetic fields within the merger product. However, the lack of rapid rotators in the magnetic white dwarf population has been always considered a problematic issue of this scenario. Smoothed Particle Hydrodynamics simulations show that in mergers in which the two white dwarfs have different masses a disc around the central compact object is formed. If the central object is magnetized it can interact with the disc through its magnetosphere. The torque applied by the disc changes the spin of the star, whereas the transferred angular momentum from the star to the disc determines the properties of the disc. In this work we build a model for the disc evolution under the effect of magnetic accretion, and for the angular momentum evolution of the star, which can be compared with the observations. Our model pre...

  19. Thirteenth Marcel Grossmann Meeting, Summary of the session, White Dwarf Pulsars and Rotating White Dwarf Theory

    OpenAIRE

    Terada, Yukikatsu

    2013-01-01

    This is the summary of the parallel session entitled "White Dwarf Pulsars and Rotating White Dwarf Theory", chaired by Yukikatsu Terada in Thirteenth Marcel Grossmann Meeting. The origin of cosmic rays remains a mystery, even over 100 years since their discovery. Neutron stars (NSs) are considered textbook cases of particle acceleration sites in our Galaxy, but many unresolved numerical problems remain. Searches for new acceleration sites are crucial for astrophysics. The ma...

  20. Electron-cyclotron maser emission from white-dwarf pairs and white-dwarf planetary systems

    OpenAIRE

    Willes, Andrew J.; Wu, Kinwah

    2003-01-01

    By analogy to Jovian radio emissions powered by the electromagnetic interaction between Jupiter and its moons, we propose that close magnetic-nonmagnetic white-dwarf pairs and white-dwarf planetary systems are strong radio sources. A simple model is developed to predict the flux densities of radio emission generated by a loss-cone-driven electron-cyclotron maser. The radio emission from these systems has high brightness temperatures, is highly polarized, and varies on a peri...

  1. DETECTION OF A WHITE DWARF COMPANION TO THE WHITE DWARF SDSSJ125733.63+542850.5

    International Nuclear Information System (INIS)

    SDSSJ125733.63+542850.5 (hereafter SDSSJ1257+5428) is a compact white dwarf binary from the Sloan Digital Sky Survey that exhibits high-amplitude radial velocity variations on a period of 4.56 hr. While an initial analysis suggested the presence of a neutron star or black hole binary companion, a follow-up study concluded that the spectrum was better understood as a combination of two white dwarfs. Here we present optical spectroscopy and ultraviolet fluxes which directly reveal the presence of the second white dwarf in the system. SDSSJ1257+5428's spectrum is a composite, dominated by the narrow-lined spectrum from a cool, low-gravity white dwarf (Teff ? 6300 K, log g = 5-6.6) with broad wings from a hotter, high-mass white dwarf companion (11, 000-14, 000 K; ?1 Msun). The high-mass white dwarf has unusual line profiles which lack the narrow central core to H? that is usually seen in white dwarfs. This is consistent with rapid rotation with vsin i = 500-1750 km s-1, although other broadening mechanisms such as magnetic fields, pulsations, or a helium-rich atmosphere could also be contributory factors. The cool component is a puzzle since no evolutionary model matches its combination of low gravity and temperature. Within the constraints set by our data, SDSSJ1257+5428 could have a total mass greater than the Chandrasekhar limit and thus be a potential Type Ia supernova progenitor. However, SDSSJ1257+5428's unusually low-mass ratio q ? 0.2 suggests that it is more likely that it will evolve into an accreting double white dwarf (AM CVn star).

  2. White dwarf evolution - Cradle-to-grave constraints via pulsation

    Science.gov (United States)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  3. Low Frequency Gravitational Waves from White Dwarf MACHO Binaries

    OpenAIRE

    Hiscock, William A.; Larson, Shane L; Routzahn, Joshua R.; Kulick, Ben

    2000-01-01

    The possibility that Galactic halo MACHOs are white dwarfs has recently attracted much attention. Using the known properties of white dwarf binaries in the Galactic disk as a model, we estimate the possible contribution of halo white dwarf binaries to the low-frequency (10^{-5} Hz} < f < 10^{-1}Hz) gravitational wave background. Assuming the fraction of white dwarfs in binaries is the same in the halo as in the disk, we find the confusion background from halo white dwarf bin...

  4. FIRST DIRECT EVIDENCE THAT BARIUM DWARFS HAVE WHITE DWARF COMPANIONS

    International Nuclear Information System (INIS)

    Barium II (Ba) stars are chemically peculiar F-, G-, and K-type objects that show enhanced abundances of s-process elements. Since s-process nucleosynthesis is unlikely to take place in stars prior to the advanced asymptotic giant branch (AGB) stage, the prevailing hypothesis is that each present Ba star was contaminated by an AGB companion which is now a white dwarf (WD). Unless the initial mass ratio of such a binary was fairly close to unity, the receiving star is thus at least as likely to be a dwarf as a giant. So although most known Ba stars appear to be giants, the hypothesis requires that Ba dwarfs be comparably plentiful and moreover that they should all have WD companions. However, despite dedicated searches with the IUE satellite, no WD companions have been directly detected to date among the classical Ba dwarfs, even though some 90% of those stars are spectroscopic binaries, so the contamination hypothesis is therefore presently in some jeopardy. In this paper, we analyze recent deep, near-UV and far-UV Galaxy Evolution Explorer (GALEX) exposures of four of the brightest of the class (HD 2454, 15360, 26367, and 221531), together with archived GALEX data for two newly recognized Ba dwarfs: HD 34654 and HD 114520 (which also prove to be spectroscopic binaries). The GALEX observations of the Ba dwarfs as a group show a significant far-UV excess compared to a control sample of normal F-type dwarfs. We suggest that this ensemble far-UV excess constitutes the first direct evidence that Ba dwarfs have WD companions.

  5. Hot Accretion onto White Dwarfs in Quiescent Dwarf Novae

    CERN Document Server

    Medvedev, M V; Medvedev, Mikhail V.; Menou, Kristen

    2001-01-01

    We present dynamically consistent solutions for hot accretion onto unmagnetized, rotating white dwarfs (WDs) in five quiescent dwarf novae. The measured WD rotation rates (and other system parameters) in RX And, SS Cyg, U Gem, VW Hyi and WZ Sge imply spindown of the WD by an extended hot flow emitting most of its X-rays in the vicinity of the stellar surface. In general, energy advection is absent and the flow is stable to convection and hydrodynamical outflows. In rapidly rotating systems, the X-ray luminosity provides only an upper limit on the quiescent accretion rate because of substantial stellar spindown luminosity. We suggest that the presence of hot flows in quiescent dwarf novae may limit the long-term WD rotation rates to significantly sub-Keplerian values.

  6. A wide binary trigger for white dwarf pollution

    Science.gov (United States)

    Bonsor, Amy; Veras, Dimitri

    2015-11-01

    Metal pollution in white dwarf atmospheres is commonly assumed to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be perturbed by Galactic tides, approaching close to the primary star for the first time after billions of years of evolution on the white dwarf branch. We show that such a close approach perturbs a planetary system orbiting the white dwarf, scattering planetesimals on to star-grazing orbits, in a manner that could pollute the white dwarf's atmosphere. Our estimates find that this mechanism is likely to contribute to metal pollution, alongside other mechanisms, in up to a few per cent of an observed sample of white dwarfs with wide binary companions, independent of white dwarf age. This age independence is the key difference between this wide binary mechanism and others mechanisms suggested in the literature to explain white dwarf pollution. Current observational samples are not large enough to assess whether this mechanism makes a significant contribution to the population of polluted white dwarfs, for which better constraints on the wide binary population are required, such as those that will be obtained in the near future with Gaia.

  7. Double Degenerates among DA white dwarfs

    International Nuclear Information System (INIS)

    The results of a spectroscopic survey of catalog white dwarfs in search of radial velocity variations indicative of a binary motion are reported. In a sample of 54 DA white dwarfs, one Double Degenerate (DD) system with a period of 1.15 days (the shortest period DD system yet discovered) is found. Two other excellent and two good DD candidates, and two white dwarf + red dwarf pairs were also found. If all the candidates should be confirmed, this would indicate a frequency of about 13 percent of interacting binaries in an unbiased sample of evolved stars, with a DD frequency of about 10 percent. These results suggest fairly large values for the common-envelope parameter alpha, implying that a source of energy other than orbital may be required to eject the envelope during common-envelope events. Finally, in combination with previous evidence our result implies that DDs with WD components of the DA variety are unlikely to be the precursors of Type I supernovae, but DDs with non-DA components remain very attractive candidates. 20 refs

  8. Self-similar expansion of white dwarfs

    Science.gov (United States)

    Moslem, W. M.

    2012-12-01

    Properties of plasma expansion that propagates in an electron-positron-ion dense plasma are investigated. Suitable hydrodynamic equations for the ions and ultrarelativistic degenerate electrons and positrons are used. Using self-similar transformation, the basic set of nonlinear equations is solved numerically. Typical values of white dwarf stars are used to estimate the behavior of the ion number density and ion fluid velocity. The positive ions are found to initially slowly escape with high velocity when the ion-to-electron density ratio increases. For higher values of the electron number density, the self-similar solution validity domain decreases. The relevance of the results to white dwarf expansion and collapse is highlight.

  9. Lessons for Asteroseismology from White Dwarf Stars

    Indian Academy of Sciences (India)

    Travis S. Metcalfe

    2005-06-01

    The interpretation of pulsation data for sun-like stars is currently facing challenges quite similar to those faced by white dwarf modelers ten years ago. The observational requirements for uninterrupted long-term monitoring are beginning to be satisfied by successful multi-site campaigns and dedicated satellite missions. But exploration of the most important physical parameters in theoretical models has been fairly limited, making it difficult to establish a detailed best-fit model for a particular set of oscillation frequencies. I review the past development and the current state of white dwarf asteroseismology, with an emphasis on what this can tell us about the road to success for asteroseismology of other types of stars.

  10. FUSE observations of hot white dwarfs

    CERN Document Server

    Wolff, B; Köster, D; Allard, N F; Ferlet, R; Vidal-Madjar, A

    2001-01-01

    We have analyzed FUSE observations of six hot white dwarf stars: four DA white dwarfs with T_eff >= 45000K, the DAO Feige55 (T_eff = 55000K), and the DA CD -38 10980 (T_eff = 24000K). Photospheric lines from SiIV, PV, and SVI can be observed in the majority of the five hotter objects. Feige55 shows also several other heavier elements. The measured abundances agree only partly with the predictions of the radiative levitation theory. We attribute this to current limitations of the models and the probable presence of mass loss. In the spectrum of CD -38 10980, we have observed the quasi-molecular satellites of Lbeta. This confirms theoretical predictions about the visibility range for these features.

  11. Axion constraints from white dwarf cooling times

    International Nuclear Information System (INIS)

    Hypothetical, pseudoscalar particles would be abundantly emitted from the interior of white dwarfs through bremsstrahlung processes. These stars would then rapidly cool. From the observed number of hot degenerates we find a new bound on the Yukawa coupling to electrons of g-13. For 'invisible axions' this translates into a new bound on the Peccei-Quinn scale of v>1x109 GeV, corresponding to msub(a)-2 eV. (orig.)

  12. Black holes, white dwarfs and neutron stars

    International Nuclear Information System (INIS)

    Basic principles of the physics of compact objects - white dwarfs, neutron stars and black holes, are stated. State equations and models of superdnse objects are discussed with provision for effects of the general relativity theory. For compact objects physical properties in the ground state are analyzed. The structure of stars is studied, when analyzing effect of differnt disturbances on these objects: rotations, magnetic fields, thermal fluxes accretion etc

  13. The white dwarf population of NGC 6397

    Science.gov (United States)

    Torres, Santiago; García-Berro, Enrique; Althaus, Leandro G.; Camisassa, María E.

    2015-09-01

    Context. NGC 6397 is one of the most interesting, well-observed, and most thoroughly theoretically studied globular clusters. The existing wealth of observations allows us to study the reliability of the theoretical white dwarf cooling sequences of low-metallicity progenitors, to determine the age of NGC 6397 and the percentage of unresolved binaries. We also assess other important characteristics of the cluster, such as the slope of the initial mass function or the fraction of white dwarfs with hydrogen-deficient atmospheres. Aims: We present a population synthesis study of the white dwarf population of NGC 6397. In particular, we study the shape of the color-magnitude diagram and the corresponding magnitude and color distributions. Methods: To do this, we used an advanced Monte Carlo code that incorporates the most recent and reliable cooling sequences and an accurate modeling of the observational biases. Results: Our theoretical models and the observed data agree well. In particular, we find that this agreement is best for those cooling sequences that take into account residual hydrogen burning. This result has important consequences for the evolution of progenitor stars during the thermally pulsing asymptotic giant branch phase, since it implies that appreciable third dredge-up in low-mass, low-metallicity progenitors is not expected to occur. Using a standard burst duration of 1.0 Gyr, we obtain that the age of the cluster is 12.8+0.50-0.75 Gyr. Greater ages are also compatible with the observed data, but then unrealistic longer durations of the initial burst of star formation are needed to fit the luminosity function. Conclusions: We conclude that a correct modeling of the white dwarf population of globular clusters, used in combination with the number counts of main-sequence stars, provides a unique tool for modeling the properties of globular clusters.

  14. Recombination energy in double white dwarf formation

    OpenAIRE

    Nandez, Jose L. A.; Ivanova, Natalia; Lombardi Jr., James C.

    2015-01-01

    In this Letter we investigate the role of recombination energy during a common envelope event. We confirm that taking this energy into account helps to avoid the formation of the circumbinary envelope commonly found in previous studies. For the first time, we can model a complete common envelope event, with a clean compact double white dwarf binary system formed at the end. The resulting binary orbit is almost perfectly circular. In addition to considering recombination ener...

  15. Remnants of Binary White Dwarf Mergers

    OpenAIRE

    Raskin, Cody; Scannapieco, Evan; Fryer, Chris; Rockefeller, Gabriel; Timmes, F.X.

    2011-01-01

    We carry out a comprehensive smooth particle hydrodynamics simulation survey of double-degenerate white dwarf binary mergers of varying mass combinations in order to establish correspondence between initial conditions and remnant configurations. We find that all but one of our simulation remnants share general properties such as a cold, degenerate core surrounded by a hot disk, while our least massive pair of stars forms only a hot disk. We characterize our remnant configura...

  16. Thermonuclear detonations ensuing white dwarf mergers

    OpenAIRE

    Dan, Marius; Guillochon, James; Brüggen, Marcus; Ramirez-Ruiz, Enrico; Rosswog, Stephan

    2015-01-01

    The merger of two white dwarfs (WDs) has for many years not been considered as the favoured model for the progenitor system of type Ia supernovae (SNe Ia). But recent years have seen a change of opinion as a number of studies, both observational and theoretical, have concluded that they should contribute significantly to the observed type Ia supernova rate. In this paper, we study the ignition and propagation of detonation through post-merger remnants and we follow the resul...

  17. Abundance Analysis of DAZ White Dwarfs.

    Czech Academy of Sciences Publication Activity Database

    Kawka, Adela; Vennes, Stephane; Dinnbier, F.; Cibulková, H.; Németh, Péter

    Melville : American Institute of Physics, 2011 - (Schuh, S.), s. 238-245 ISBN 978-0-7354-0886-9. ISSN 1551-7616. - (AIP Conference proceedings. 1331). [Planetary systems beyond the main seyuence. Bamberg (DE), 11.08.2010-14.08.2010] Institutional research plan: CEZ:AV0Z10030501 Keywords : white dwarfs * accretion disks * photosphere * telescopes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  18. The white dwarf population of NGC 6397

    CERN Document Server

    Torres, S; Althaus, L G; Camisassa, M E

    2015-01-01

    NGC 6397 is one of the most interesting, well observed and theoretically studied globular clusters. The existing wealth of observations allows us to study the reliability of the theoretical white dwarf cooling sequences of low metallicity progenitors,to determine its age and the percentage of unresolved binaries, and to assess other important characteristics of the cluster, like the slope of the initial mass function, or the fraction of white dwarfs with hydrogen deficient atmospheres. We present a population synthesis study of the white dwarf population of NGC 6397. In particular, we study the shape of the color-magnitude diagram, and the corresponding magnitude and color distributions. We do this using an up-to-date Monte Carlo code that incorporates the most recent and reliable cooling sequences and an accurate modeling of the observational biases. We find a good agreement between our theoretical models and the observed data. In particular, we find that this agreement is best for those cooling sequences th...

  19. Axions and the white dwarf luminosity function

    International Nuclear Information System (INIS)

    The evolution of white dwarfs can be described as a simple cooling process. Recently, it has been possible to determine with an unprecedented precision their luminosity function, that is, the number of stars per unit volume and luminosity interval. Since the shape of the bright branch of this function is only sensitive to the average cooling rate, we use this property to check the possible existence of axions, a proposed but not yet detected weakly interacting particle. We show here that the inclusion of the axion emissivity in the evolutionary models of white dwarfs noticeably improves the agreement between the theoretical calculations and the observational white dwarf luminosity function, thus providing the first positive indication that axions could exist. Our results indicate that the best fit is obtained for macos2? ? 2-6 meV, where ma is the mass of the axion and cos2? is a free parameter, and that values larger than 10 meV are clearly excluded.

  20. White dwarf cosmochronology in the solar neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, P.-E.; Kalirai, J. S.; Soderblom, D. R.; Cignoni, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cummings, J., E-mail: tremblay@stsci.edu [Center for Astrophysical Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2014-08-20

    The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method that consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 ? M {sub initial}/M {sub ?} ? 8) and total ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ?10 Gyr for the oldest white dwarfs in the local sample is consistent with the early seminal studies that have determined the age of the Galactic disk from stellar remnants. The main shortcoming of our study is the small size of the local white dwarf sample. However, the presented technique can be applied to larger samples in the future.

  1. White dwarf cosmochronology in the solar neighborhood

    International Nuclear Information System (INIS)

    The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method that consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 ? M initial/M ? ? 8) and total ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ?10 Gyr for the oldest white dwarfs in the local sample is consistent with the early seminal studies that have determined the age of the Galactic disk from stellar remnants. The main shortcoming of our study is the small size of the local white dwarf sample. However, the presented technique can be applied to larger samples in the future.

  2. White Dwarf Convection Preceding Type Ia Supernovae

    Science.gov (United States)

    Zingale, Michael; Almgren, A. S.; Bell, J. B.; Malone, C. M.; Nonaka, A.; Woosley, S. E.

    2010-01-01

    In the single degenerate scenario for Type Ia supernovae, a Chandrasekhar mass white dwarf `simmers' for centuries preceding the ultimate explosion. During this period, reactions near the center drive convection throughout most of the interior of the white dwarf. The details of this convective flow determine how the first flames in the white dwarf ignite. Simulating this phase is difficult because the flows are highly subsonic. Using the low Mach number hydrodynamics code, MAESTRO, we present 3-d, full star models of the final hours of this convective phase, up to the point of ignition of a Type Ia supernova. We discuss the details of the convective velocity field and the locations of the initial hot spots. Finally, we show some preliminary results with rotation. Support for this work came from the DOE/Office of Nuclear Physics, grant No. DE-FG02-06ER41448 (Stony Brook), the SciDAC Program of the DOE Office of Mathematics, Information, and Computational Sciences under the DOE under contract No. DE-AC02-05CH11231 (LBNL), and the DOE SciDAC program, under grant No. DE-FC02-06ER41438 (UCSC). We made use of the jaguar machine via a DOE INCITE allocation at the Oak Ridge Leadership Computational Facility.

  3. Anderson and Stoner Published White Dwarf Mass Limits Before Chandrasekhar

    CERN Document Server

    Blackman, Eric G

    2011-01-01

    In their engaging recountals of Chandrasekhar's extraordinary career (Physics Today, vol 63, Issue 12, Dec 2010), neither Dyson nor Wali mention that Chandrasekhar was the third person not the first, to publish a white dwarf mass limit incorporating a relativistic treatment of degenerate electrons. As it has become a common misconception that Chandrasekhar was the first, a clarifying reminder on this historical point is warranted. In short, the white dwarf mass limit widely attributed to Chandrasekhar (1931) should be the specific white dwarf mass limit calculated for a polytrope. The insight that a relativistic treatment of degeneracy leads to the existence of a white dwarf mass limit first appeared in papers of W. Anderson (1929) and E.C. Stoner (1930) for a uniform density star. Accordingly, Chandrasekhar (1931) cites Stoner (1930) and points out that the polytrope white dwarf mass limit is less than Stoner's uniform density white dwarf mass limit by about 20%.

  4. Spectroscopic observations of high proper motion DA white dwarfs

    CERN Document Server

    Arazimova, E; Vennes, S

    2009-01-01

    We used the revised New Luyten Two-Tenths (rNLTT) catalog to select high proper motion white dwarf candidates. We studied the spectra of 70 hydrogen-rich (DA) white dwarfs, which were obtained at the Cerro Tololo Inter-American Observatory (CTIO) and extracted from the Sloan Digital Sky Survey (SDSS). We determined their effective temperature and surface gravity by fitting their Balmer line profiles to model white dwarf spectra. Using evolutionary mass-radius relations we determined their mass and cooling age. We also conducted a kinematical study of the white dwarf sample and found that most belong to the thin disk population. We have identified three magnetic white dwarfs and estimated their surface magnetic field. Finally, we have identified 6 white dwarfs that lie within 20 pc from the Sun.

  5. The WFCAM transit survey and cool white dwarfs

    Directory of Open Access Journals (Sweden)

    Pinfield D.

    2013-04-01

    Full Text Available We present results from our search for cool white dwarfs in the WTS (WFCAM Transit Survey. Repeat observations starting in 2007 allowed to produce deep stacked images in J and measure proper motions. We combine this with deep optical imaging to select cool white dwarf candidates (Teff < 5000?K. About 27 cool white dwarf candidates with proper motions above 0.10 arcsec/yr were identified in one of the fields representing 1/8th of the survey area. Follow-up spectroscopy with the 10.2?m GTC telescope at La Palma confirmed the white dwarf status for all observed candidates. On-going work is being carried out to increase the sample of cool white dwarfs that will allow a more comprehensive study of the thick disk/halo white dwarf population.

  6. Simulation of the white dwarf-white dwarf galactic background in the LISA data

    International Nuclear Information System (INIS)

    Laser Interferometer Space Antenna (LISA) is a proposed mission to detect and study gravitational radiation in the frequency range from 10-4 to 10-1 Hz. In the low part of its frequency band, the LISA data will contain a stochastic signal consisting of an incoherent superposition of hundreds of millions of gravitational wave signals radiated by inspiraling white-dwarf binaries present in our own galaxy. In order to estimate the LISA response to this background, we have simulated a population of white-dwarf binaries recently synthesized by one of us. Our approach relies on an analytic expressions of the LISA Time-Delay Interferometric responses to the gravitational radiation emitted by such systems, and it allows us to implement a computationally efficient and accurate simulation of the background in the LISA data. We find the amplitude of the galactic white-dwarf binary background in the LISA data to be modulated in time with a period of 1 year, reaching a minimum equal to about twice that of the LISA noise for a period of about 2 months around the time when the Sun-LISA direction is roughly oriented towards the Autumn equinox. This modulation means that the galactic white-dwarf background that will be observable by LISA is a cyclostationary random process with a period of 1 year. We summarize the theory of cyclostationary random processes and present the corresponding generalized spectral method needed to characterize such a process in the LISA data. We find that, by measuring the generalized spectral components of the white-dwarf background, LISA will be able to infer properties of the distribution of the white-dwarf binary systems present in our galaxy

  7. Stability properties of white dwarf radiative shocks

    International Nuclear Information System (INIS)

    We study the oscillatory instability of white dwarf radiative accretion shocks discovered by Langer, Chanmugam, and Shaviv. We extend previous works by studying the properties of (1) shocks with power-law cooling functions proportional to rhoT/sup ?/ rather than to rho2T/sup ?/; (2)= shocks dominated by bremsstrahlung and Compton cooling; and (3) shocks dominated by bremsstrahlung and Compton cooling when the effects of electron thermal conduction are not negligible. The results of our calculations allow us to delineate the stability regimes of white dwarf radiative shocks as a function of the dwarf mass, M/sub asterisk/, and the accretion rate, M. We parameterize M in terms of the optical depth to electron scattering through the preshock flow, tau/sub es/. In the Compton cooling and bremsstrahlung case, the shocks are unstable to low-order oscillation modes if M/sub asterisk/ < or approx. =(0.7 +- 0.1) M/sub sun/ for tau/sub es/ = 14, and if M/sub asterisk/ < or approx. =(0.9 +- 0.1)= M/sub X/ for tau/sub es/ = 1. When electron thermal conduction is added, low-order oscillation modes are unstable only if M/sub asterisk/ < or approx. =(0.3 +- 0.1) M/sub sun/. The unstable modes have approximate oscillation periods of 1.1tau/sub br/ and 0.63tau/sub br/, where tau/sub br/ is the bremsstrahlung cooling time scale of the postshock plasma. If an oscillatory instability is observed, constraints can be placed on the mass of the accreting white dwarf

  8. Detection of a white dwarf companion to the white dwarf SDSSJ125733.63+542850.5

    OpenAIRE

    Marsh, T. R.; Gaensicke, B. T; Steeghs, D.; Southworth, J; D. Koester; Harris, V; Merry, L.

    2010-01-01

    SDSSJ125733.63+542850.5 (hereafter SDSSJ1257+5428) is a compact white dwarf binary from the Sloan Digital Sky Survey that exhibits high-amplitude radial velocity variations on a period of 4.56 hours. While an initial analysis suggested the presence of a neutron star or black-hole binary companion, a follow-up study concluded that the spectrum was better understood as a combination of two white dwarfs. Here we present optical spectroscopy and ultraviolet fluxes which directly...

  9. White Dwarf based evaluation of the GALEX absolute calibration

    OpenAIRE

    Camarota, L; Holberg, J. B

    2013-01-01

    This paper describes a revised photometric calibration of the \\emph{Galaxy Evolution Explorer} magnitudes, based on measurements of DA white dwarfs. The photometric magnitudes of white dwarfs measured by \\emph{GALEX} are compared to predicted magnitudes based on independent spectroscopic data (108 stars) and alternately to \\emph{IUE} UV fluxes of the white dwarfs (218 stars). The results demonstrate a significant non-linear correlation and small offset between archived \\emph...

  10. Spectroscopic observations of high proper motion DA white dwarfs

    OpenAIRE

    Arazimova, E.; Kawka, A.; Vennes, S.

    2009-01-01

    We used the revised New Luyten Two-Tenths (rNLTT) catalog to select high proper motion white dwarf candidates. We studied the spectra of 70 hydrogen-rich (DA) white dwarfs, which were obtained at the Cerro Tololo Inter-American Observatory (CTIO) and extracted from the Sloan Digital Sky Survey (SDSS). We determined their effective temperature and surface gravity by fitting their Balmer line profiles to model white dwarf spectra. Using evolutionary mass-radius relations we de...

  11. Cool white dwarfs : cooling theory and Galactic implications

    OpenAIRE

    Chabrier, Gilles

    1997-01-01

    We summarize recent improvements in model atmosphere and internal structure of faint white dwarfs. We derive an analytical cooling theory which illustrates the effects of various physical processes on the energy budget and the cooling history of cool white dwarfs. We consider in particular the effect of chemical fractionation at crystallization. This process, although it liberates a small amount of energy, affects significantly the cooling time of white dwarfs at their low-l...

  12. Presupernova evolution of accreting white dwarfs with rotation

    OpenAIRE

    Yoon, S. -C.; Langer, N.

    2004-01-01

    We discuss the effects of rotation on the evolution of accreting carbon-oxygen white dwarfs, with the emphasis on possible consequences in Type Ia supernova (SN Ia) progenitors. Starting with a slowly rotating white dwarf, we simulate the accretion of matter and angular momentum from a quasi-Keplerian accretion disk. The role of the various rotationally induced hydrodynamic instabilities for the transport of angular momentum inside the white dwarf is investigated. We find th...

  13. Formation and appearance of pulsar-like white dwarfs

    OpenAIRE

    Ikhsanov, Nazar; Beskrovnaya, Nina

    2014-01-01

    Accretion-driven spin-up of a magnetized white dwarf in a close binary system is discussed. We address a situation in which the magnetic field of the white dwarf is screening during the accretion phase and re-generating due to the field diffusion through the accreted material after it. We find this scenario to be effective for a formation of massive pulsar-like white dwarfs.

  14. Evolutionary calculations of phase separation in crystallizing white dwarf stars

    OpenAIRE

    M. H. Montgomery; Klumpe, E. W.; Winget, D. E.; Wood, M.A.

    1999-01-01

    We present an exploration of the significance of Carbon/Oxygen phase separation in white dwarf stars in the context of self-consistent evolutionary calculations. Because phase separation can potentially increase the calculated ages of the oldest white dwarfs, it can affect the age of the Galactic disk as derived from the downturn in the white dwarf luminosity function. We find that the largest possible increase in ages due to phase separation is 1.5 Gyr, with a most likely v...

  15. Constraining white-dwarf kicks in globular clusters

    OpenAIRE

    Heyl, Jeremy S.

    2007-01-01

    The wind of an asymptotic-giant-branch stars is sufficiently strong that if it is slightly asymmetric, it can propel the star outside of the open cluster of its birth or significantly alter its trajectory through a globular cluster; therefore, if these stellar winds are asymmetric, one would expect a deficit of white dwarfs of all ages in open clusters and for young white dwarfs to be less radially concentrated than either their progenitors or older white dwarfs in globular ...

  16. SED Signatures of Jovian Planets Around White Dwarf Stars

    OpenAIRE

    Ignace, R.

    2001-01-01

    The problem of detecting Jovian-sized planets orbiting White Dwarf stars is considered. Significant IR excesses result from warm Jupiters orbiting a White Dwarf of $T_{\\rm eff}=10000$ K at a distance of $\\sim 10^3$ White Dwarf radii (corresponding to $\\sim 10^2$ Jupiter radii or a few tenths of an AU) with an orbital period of $\\sim 100$ days. Such a planet will have a 10 micron flux density at its Wien peak that is comparable to the emission of the White Dwarf at that wavel...

  17. White dwarfs and the ages of Open clusters

    International Nuclear Information System (INIS)

    Open clusters provide the ideal environment for the calibration of ages determined from main sequence evolutionary theory (via cluster isochrones) and ages determined from white dwarf cooling theory. In an effort to measure more precise cluster ages, our group has developed a new technique using Bayesian statistics. Here we will discuss new capabilities of the technique, as well as the first application to real data, using the Hyades as a test case. Because the faintest white dwarfs have likely evaporated from the Hyades, we also demonstrate the first successful application of the bright white dwarf technique for deriving ages from the bright cluster white dwarfs alone.

  18. Formation and properties of close binary white dwarfs

    International Nuclear Information System (INIS)

    Theoretical models explaining the formation and evolution of white-dwarf binaries are reviewed. The physical mechanisms involved, the effects of varying the key input parameters, and the observational implications are discussed in detail. Topics addressed include Roche lobes, mass transfer, and common envelopes; binary formation scenarios starting from pairs of massive white dwarfs or from pairs of low-mass white dwarfs; formation frequencies for pairs of different types; and close white-dwarf pairs as sources of gravitational-wave emission. 31 references

  19. Recent advances on the formation and evolution of white dwarfs

    International Nuclear Information System (INIS)

    Advances made in the past seven years in both the theory and observation of white dwarfs which have led to major progress in understanding white dwarf formation and evolution are reviewed. The roles of convective dredge-up, mixing and dilution, accretion, gravitational and thermal diffusion in dense plasmas, radiate forces and mass outflow, nuclear shell burning, diffusion-induced reactions, late thermonuclear shell flashes, rotation, and magnetic fields in white dwarf evolution are considered. Recent work on the properties of white dwarfs in cataclysmic variables is briefly addressed. 153 references

  20. Spectroscopic Identification of Cool White Dwarfs in the Solar Neighbourhood

    CERN Document Server

    Kawka, A; Kawka, Adela; Vennes, Stephane

    2006-01-01

    The New Luyten Two-Tenths catalog contains a large number of high-proper motion white dwarf candidates that remain to be spectroscopically confirmed. We present new spectroscopic observations as well as SDSS archival spectra of 49 white dwarf candidates which have been selected from the revised NLTT catalog of Salim & Gould 2003. Out of these, 34 are cool DA white dwarfs with temperatures ranging from approximately 5000 K up to 11690 K, and 11 are DC white dwarfs with temperatures ranging from 4300 K (NLTT 18555) up to 11000 K. Three of the DA white dwarfs also display abundances of heavy elements (NLTT 3915, NLTT 44986 and NLTT 43806) and one is a cool magnetic white dwarf (NLTT 44447) with an estimated magnetic field strength of 1.3 MG. We also present a new cool DQ white dwarf (NLTT 31347) with an estimated temperature of 6250 K. We supplement our sample with SDSS ugriz photometry for a fraction of the newly identified white dwarfs. A kinematical study of this sample of white dwarfs, characterized by p...

  1. Rate of formation of white dwarfs in clusters

    International Nuclear Information System (INIS)

    The white formation rate and the total number of white dwarfs in a cluster are related to the luminosity of the cluster. The uncertainties due to the uncertain helium abundance of the cluster are presented

  2. Pulsations in carbon-atmosphere white dwarfs: A new chapter in white dwarf asteroseismology

    International Nuclear Information System (INIS)

    We present some of the results of a survey aimed at exploring the asteroseismological potential of the newly-discovered carbon-atmosphere white dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere white dwarfs may drive low-order gravity modes. We demonstrate that our theoretical results are consistent with the recent exciting discovery of luminosity variations in SDSS J1426+5752 and some null results obtained by a team of scientists at McDonald Observatory. We also present follow-up photometric observations carried out by ourselves at the Mount Bigelow 1.6-m telescope using the new Mont4K camera. The results of follow-up spectroscopic observations at the MMT are also briefly reported, including the surprising discovery that SDSS J1426+5752 is not only a pulsating star but that it is also a magnetic white dwarf with a surface field near 1.2 MG. The discovery of g-mode pulsations in SDSS J1426+5752 is quite significant in itself as it opens a fourth asteroseismological 'window', after the GW Vir, V777 Her, and ZZ Ceti families, through which one may study white dwarfs.

  3. White dwarfs in common proper motion binaries.

    Czech Academy of Sciences Publication Activity Database

    Arazimová, Eva; Kawka, Adela; Vennes, Stephane

    San Francisco : Astronomical Society of the Pacific, 2010 - (Prša, A.), s. 147-148 ISBN 978-1-58381-750-6. - (ASP Conference Series. 435). [Binaries - Key to Comprehension of the Universe . Brno (CZ), 08.06.2009-12.06.2009] R&D Projects: GA ?R GD205/08/H005; GA AV ?R(CZ) IAA300030908; GA MŠk(CZ) LC06014 Grant ostatní: GA AV ?R(CZ) IAA301630901 Institutional research plan: CEZ:AV0Z10030501 Keywords : white dwarfs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  4. Simulating Gaia performances on white dwarfs

    OpenAIRE

    Torres, S.; Garcia-Berro, E.; Isern, J.; Figueras, F.

    2005-01-01

    One of the most promising space missions of ESA is the astrometric satellite Gaia, which will provide very precise astrometry and multicolour photometry, for all 1.3 billion objects to V~20, and radial velocities with accuracies of a few km/s for most stars brighter than V ~ 17. Consequently, full homogeneous six-dimensional phase-space information for a huge number of stars will become available. Our Monte Carlo simulator has been used to estimate the number of white dwarfs...

  5. Polarization observations of white dwarf stars

    International Nuclear Information System (INIS)

    A survey of linear polarization of 85 white dwarf stars and some subdwarfs emission in UBVOR bands is given. The observations were obtained at 2.6 m telescope in the Crimean astrophysical observatory in 1971-1979. Data on galactic coordinates, electron temperatures of the objects are given. An intrinsic polarization twice large than root mean square error of measurements is revealed at more than 50% of the objects. There is an evidence for the polarization variations in some objects (for example, GD 299, EG 191, Feige 110 and EG 159)

  6. Search for Higgs shifts in white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Onofrio, Roberto [Dipartimento di Fisica e Astronomia " Galileo Galilei," Università di Padova, Via Marzolo 8, I-35131 Padova (Italy); Wegner, Gary A., E-mail: onofrior@gmail.com, E-mail: gary.a.wegner@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2014-08-20

    We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from high-energy physics or table-top experiments.

  7. Future Observations of White Dwarfs from Space

    Science.gov (United States)

    Barstow, M. A.; Casewell, S. L.

    2015-06-01

    We outline two possible future space missions suitable for the study of white dwarfs. These lie at the extreme ends of the spectrum of such opportunities in terms of cost and timescale. The SIRIUS extreme ultraviolet spectrograph will be proposed for the ESA/Chinese Academy of Sciences small, ? 50M Euro, mission. If selected it will fly in 2021. ATLAST is planned to be a very large UVOIR space observatory to provide a true replacement for the capabilities of HST. If it goes ahead, it will be a several billion-dollar project and will not fly before 2030. The paper provides further details on the technical capabilities of these space telescopes.

  8. Tidal Interactions in Merging White Dwarf Binaries

    OpenAIRE

    Piro, Anthony L.

    2011-01-01

    The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q_1=7*10^{10} and Q_2=2*10^7, for the He and ...

  9. Watch This Space: Observing Merging White Dwarfs

    OpenAIRE

    Webbink, Ronald F.

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) will open the low-frequency (0.1-100 mHz) part of the gravitational wave spectrum to direct observation. Of order 3600 galactic close binary white dwarfs will be individually resolvable in its all-sky spectrum, of which a dozen systems are expected to be on the verge of merger, showing the effects of strong tidal heating and/or early onset of tidal mass transfer. Optical study of these systems would provide important insights int...

  10. A Possible Brown Dwarf Companion to the White Dwarf GD1400

    OpenAIRE

    Farihi, J.; Christopher, M.

    2004-01-01

    An unresolved, likely L dwarf companion to the DA white dwarf GD1400 is reported. This would be only the second such system known, discovered 17 years after the prototype L dwarf, GD165B, was determined to be a companion to a white dwarf. Photometric observations and model predicted stellar parameters of the well studied white dwarf primary indicate that GD1400B has $J-K\\ga2.0$ and $M_K=12.13$ mag. If correct, this would place GD1400B at spectral type L6, and it would be the...

  11. White-dwarf-white-dwarf galactic background in the LISA data

    International Nuclear Information System (INIS)

    LISA (Laser Interferometer Space Antenna) is a proposed space mission, which will use coherent laser beams exchanged between three remote spacecraft to detect and study low-frequency cosmic gravitational radiation. In the low part of its frequency band, the LISA strain sensitivity will be dominated by the incoherent superposition of hundreds of millions of gravitational wave signals radiated by inspiraling white-dwarf binaries present in our own Galaxy. In order to estimate the magnitude of the LISA response to this background, we have simulated a synthesized population that recently appeared in the literature. Our approach relies on entirely analytic expressions of the LISA time-delay interferometric responses to the gravitational radiation emitted by such systems, which allows us to implement a computationally efficient and accurate simulation of the background in the LISA data. We find the amplitude of the galactic white-dwarf binary background in the LISA data to be modulated in time, reaching a minimum equal to about twice that of the LISA noise for a period of about two months around the time when the Sun-LISA direction is roughly oriented towards the Autumn equinox. This suggests that, during this time period, LISA could search for other gravitational wave signals incoming from directions that are away from the galactic plane. Since the galactic white-dwarf background will be observed by LISA not as a stationary but rather as a cyclostationary random process with a period of 1 yr, we summarize the theory of cyclostationary random processes, present the corresponding generalized spectral method needed to characterize such process, and make a comparison between our analytic results and those obtained by applying our method to the simulated data. We find that, by measuring the generalized spectral components of the white-dwarf background, LISA will be able to infer properties of the distribution of the white-dwarf binary systems present in our Galaxy

  12. A magnetic white dwarf in a detached eclipsing binary

    OpenAIRE

    S. G. Parsons; Marsh, T. R.; Gansicke, B. T.; Schreiber, M. R.; M. C. P. Bours; Dhillon, V.S.; Littlefair, S. P.

    2013-01-01

    SDSS J030308.35+005444.1 is a close, detached, eclipsing white dwarf plus M dwarf binary which shows a large infrared excess which has been interpreted in terms of a circumbinary dust disk. In this paper we present optical and near-infrared photometric and spectroscopic data for this system. At optical wavelengths we observe heated pole caps from the white dwarf caused by accretion of wind material from the main-sequence star on to the white dwarf. At near-infrared wavelengt...

  13. The mass of the white dwarf in GW Libra

    OpenAIRE

    van Spaandonk, L.; Steeghs, D.; Marsh, T. R.; S. G. Parsons

    2010-01-01

    We report a mass and rotational broadening (vsini) for the pulsating white dwarf component of the WZ Sge type Dwarf Nova GW Lib based on high-resolution VLT spectroscopy that resolves the MgII 4481A absorption feature. Its gravitational redshift combined with white dwarf mass-radius models, provides us with a direct measurement of the white dwarf mass of M_1 = 0.84 pm 0.02 M_sun. The line is clearly resolved and if associated with rotational broadening gives vsini=87.0 pm 3....

  14. Pure hydrogen atmosphere for very cool white dwarfs

    CERN Document Server

    Saumon, D S

    1999-01-01

    Microlensing events observed in the line of sight toward the LMC indicate that a significant fraction of the mass of the dark halo of the Galaxy is probably composed of white dwarfs. In addition, white dwarf sequences have now be observed in the HR diagrams of several globular clusters. Because of the unavailability of white dwarf atmospheres for Teff < 4000K, cooling time scales for white dwarfs older than ~ 10 Gyr are very uncertain. Moreover, the identification of a MACHO white dwarf population by direct observation depends on a knowledge of the colors and bolometric corrections of very-cool white dwarfs. In this paper we present the first detailed model atmospheres and spectra of very cool hydrogen white dwarfs for Teff < 4000K. We include the latest description of the opacities of hydrogen and significantly, we introduce a non-ideal equation of state in the atmosphere calculation. We find that due to strong absorption from H_2 in the infrared, very old white dwarfs are brightest in the V, R, and I ...

  15. A wide binary trigger for white dwarf pollution

    CERN Document Server

    Bonsor, Amy

    2015-01-01

    Metal pollution in white dwarf atmospheres is likely to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be perturbed by Galactic tides, approaching close to the primary star for the first time after billions of years of evolution on the white dwarf branch. We show that such a close approach perturbs a planetary system orbiting the white dwarf, scattering planetesimals onto star-grazing orbits, in a manner that could pollute the white dwarf's atmosphere. Our estimates find that this mechanism is likely to contribute to metal pollution, alongside other mechanisms, in up to a few percent of an observed sample of white dwarfs with wide binary compan...

  16. Short-range effects in large white dwarfs

    International Nuclear Information System (INIS)

    Recent work of Membrado and Pacheco (1988) on the implication of Yukawa-like effects in small white dwarfs is extended to analyze the very massive case. Although the role of these impurities grows substantially as the radius of the star decreases, when reasonable supergravity parameters are used the predicted change in the white dwarf mass-radius relation is unobservably small. 8 references

  17. Accretion on to Magnetic White Dwarfs

    Directory of Open Access Journals (Sweden)

    Wickramasinghe Dayal

    2014-01-01

    The polars have no counterparts in neutron star systems and their study provides unique insights into the complex nature of the magnetospheric boundary. The observed properties of accretion shocks at the white dwarf surface such as the anomalous soft-X-ray excess and its time variability provide strong support for the hypothesis that under certain circumstances the field channelled funnel flow is “blobby”. This has been attributed to interchange instabilities such as the Magnetic Rayleigh-Taylor instability in the shocked gas at the stream-magnetosphere boundary where the stream fragments into discrete clumps of gas. As the clumps penetrate into the magnetosphere, they are shredded into smaller mass blobs via the Kelvin-Helmholtz instability that then couple on to field lines over an extended inner transition region in the orbital plane. The more massive blobs penetrate deep into the photosphere of the white dwarf releasing their energy as a reprocessed soft-X-ray black body component. Although similar instabilities are expected in the inner transition region in disced accretion albeit on a different scale there has been no direct observational evidence for blobby accretion in the generally lower field and disced IPs.

  18. VW Hyi - The white dwarf revealed

    Science.gov (United States)

    Mateo, M.; Szkody, P.

    1984-01-01

    Nonsimultaneous IUE, optical, and near-IR observations of VW Hyi at quiescence are presented. Using these and UV data from other investigations, a broad feature in the ultraviolet is identified with L-alpha absorption. The presence and width of the line imply that (1) the white dwarf in VW Hyi is directly visible in the UV and (2) the effective temperature of this star is approximately 18,000 + or - 2000 K for log g = 8. The continuum observations, combined with the J and K photometry of Sherrington et al., (1980), can be fit with a combination of this relatively cool white dwarf and a steady-state disk model with an accretion rate of 10 to the -11th solar masses/yr. Additional observations of the hump in the optical light curve can be reasonably fit by a 12,000-K blackbody. Such a source is consistent with the hump being a minor contribution to the system's overall continuum distribution shortward of 2000 A and longward of about 1 micron.

  19. Open Science Project in White Dwarf Research

    CERN Document Server

    Vornanen, Tommi

    2012-01-01

    I will propose a new way of advancing white dwarf research. Open science is a method of doing research that lets everyone who has something to say about the subject take part in the problem solving process. Already now, the amount of information we gather from observations, theory and modelling is too vast for any one individual to comprehend and turn into knowledge. And the amount of information just keeps growing in the future. A platform that promotes sharing of thoughts and ideas allows us to pool our collective knowledge of white dwarfs and get a clear picture of our research field. It will also make it possible for researchers in fields closely related to ours (AGB stars, planetary nebulae etc.) to join the scientific discourse. In the first stage this project would allow us to summarize what we know and what we don't, and what we should search for next. Later, it could grow into a large collaboration that would have the impact to, for example, suggest instrument requirements for future telescopes to sa...

  20. Fate of accreting white dwarfs: Type I supernovae vs collapse

    International Nuclear Information System (INIS)

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs

  1. Equilibrium structure of white dwarfs at finite temperatures

    CERN Document Server

    Boshkayev, Kuantay; Zhami, Bakytzhan; Kalymova, Zhanerke; Balgymbekov, Galymdin

    2015-01-01

    Recently, it has been shown by S.~M. de Carvalho et al. (2014) that the deviations between the degenerate case and observations were already evident for 0.7-0.8 M$_{\\odot}$ white dwarfs. Such deviations were related to the neglected effects of finite temperatures on the structure of a white dwarf. Therefore, in this work by employing the Chandrasekhar equation of state taking into account the effects of temperature we show how the total pressure of the white dwarf matter depends on the mass density at different temperatures. Afterwards we construct equilibrium configurations of white dwarfs at finite temperatures. We obtain the mass-radius relations of white dwarfs for different temperatures by solving the Tolman-Oppenheimer-Volkoff equation, and compare them with the estimated masses and radii inferred from the Sloan Digital Sky Survey Data Release 4.

  2. Theoretical Modeling of Pulsating Low-mass White Dwarfs

    Science.gov (United States)

    Córsico, Alejandro H.; Althaus, Leandro G.

    2015-06-01

    Photometric variations in some low-mass white-dwarf stars have been recently detected (Hermes et al. 2012). Such variability is though to be due to long-period nonradial pulsation g modes. Pulsating low-mass white dwarfs make up a new, separate class of pulsating white dwarfs with H rich atmospheres, low effective temperatures (Teff=7800-10000 K), and low gravities (log g= 6-6.8) (Hermes et al. 2013ab). Asteroseismology of these stars can provide valuable clues about their internal structure and evolutionary status, allowing us to place constraints on the binary evolutionary processes involved in their formation. We present here the main results of a detailed pulsational study applied to low-mass He-core white dwarfs, based on full evolutionary models representative of these objects. The main aim of this work is to provide a solid theoretical basis from which to interpret present and future observations of variable low-mass white dwarfs.

  3. Spectropolarimetric Survey of Hydrogen-rich White Dwarf Stars

    CERN Document Server

    Kawka, A; Schmidt, G D; Wickramasinghe, D T; Koch, R

    2006-01-01

    We have conducted a survey of 61 southern white dwarfs searching for magnetic fields using Zeeman spectropolarimetry. Our objective is to obtain a magnetic field distribution for these objects and, in particular, to find white dwarfs with weak fields. We found one possible candidate (WD 0310-688) that may have a weak magnetic field of -6.1+/-2.2 kG. Next, we determine the fraction and distribution of magnetic white dwarfs in the Solar neighborhood, and investigate the probability of finding more of these objects based on the current incidence of magnetism in white dwarfs within 20 pc of the Sun. We have also analyzed the spectra of the white dwarfs to obtain effective temperatures and surface gravities.

  4. The incidence of magnetic fields in cool DZ white dwarfs

    CERN Document Server

    Hollands, Mark; Koester, Detlev

    2015-01-01

    Little is known about the incidence of magnetic fields among the coolest white dwarfs. Their spectra usually do not exhibit any absorption lines as the bound-bound opacities of hydrogen and helium are vanishingly small. Probing these stars for the presence of magnetic fields is therefore extremely challenging. However, external pollution of a cool white dwarf by, e.g., planetary debris, leads to the appearance of metal lines in its spectral energy distribution. These lines provide a unique tool to identify and measure magnetism in the coolest and oldest white dwarfs in the Galaxy. We report the identification of 7 strongly metal polluted, cool (T_eff < 8000 K) white dwarfs with magnetic field strengths ranging from 1.9 to 9.6 MG. An analysis of our larger magnitude-limited sample of cool DZ yields a lower limit on the magnetic incidence of 13+/-4 percent, noticeably much higher than among hot DA white dwarfs.

  5. Cataclysmic variable evolution - Clues from the underlying white dwarf

    Science.gov (United States)

    Sion, Edward M.

    1991-01-01

    This paper presents an update of determinations of the CV white dwarf effective-temperature, T(eff), together with an initial exploration of the possible implications and constraints on the CV lifetimes and evolution based on the ensemble of white dwarf T(eff) values as a function of orbital period. The CV dwarf luminosities are derived by using the T(eff) data and adopting the masses of individual CV white dwarfs determined by Webbink (1990). The present ensemble of empirically determined white dwarf effective temperatures reveals a distribution centered near 16,000 K, implying a mean lower limit total cooling lifetime of 5 x 10 to the 8th yr for the majority of CV degenerates. The two coolest CV degenerates, VV Puppis and St LMi, were found among the strongly magnetic AM Her CVs.

  6. On the masses of the white dwarfs in cataclysmic variables

    International Nuclear Information System (INIS)

    The question of the masses of the white dwarfs in cataclysmic binaries is examined. It is shown that selection effects can explain an overabundance of massive white dwarfs in novae but not in dwarf novae. It is proposed that the spiralling-in process in the common envelope favours the formation of more massive white dwarfs A number of simplified spiralling-in calculations are performed. The calculations demonstrate that the probability of coalescence of the secondary with the primary core, or secondary dissipation, is higher in the case of a giant envelope than in the case of a super giant envelope. Consequently, binaries with primary core masses greater than approx. 0.7 Msolar masses (and thus massive white dwarf remnants), have a better chance of surviving common envelope evolution and are therefore better candidates for the formation of cataclysmic variables. (author)

  7. Binary white dwarfs in the halo of the Milky Way

    CERN Document Server

    van Oirschot, Pim; Toonen, Silvia; Pols, Onno; Brown, Anthony G A; Helmi, Amina; Zwart, Simon Portegies

    2014-01-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~ 3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference w...

  8. A SEARCH FOR ASTEROIDS, MOONS, AND RINGS ORBITING WHITE DWARFS

    International Nuclear Information System (INIS)

    Do white dwarfs host asteroid systems? Although several lines of argument suggest that white dwarfs may be orbited by large populations of asteroids, transits would provide the most direct evidence. We demonstrate that the Kepler mission has the capability to detect transits of white dwarfs by asteroids. Because white-dwarf asteroid systems, if they exist, are likely to contain many asteroids orbiting in a spatially extended distribution, discoveries of asteroid transits can be made by monitoring only a small number of white dwarfs, compatible with Kepler's primary mission, which is to monitor stars with potentially habitable planets. Possible future missions that survey 10 times as many stars with similar sensitivity and minute-cadence monitoring can establish the characteristics of asteroid systems around white dwarfs, such as the distribution of asteroid sizes and semimajor axes. Transits by planets would be more dramatic, but the probability that they will occur is lower. Ensembles of planetary moons and/or the presence of rings around planets can also produce transits detectable by Kepler. The presence of moons and rings can significantly increase the probability that Kepler will discover planets orbiting white dwarfs, even while monitoring only a small number of them.

  9. Optical spectroscopy of candidate Alpha Persei white dwarfs

    Science.gov (United States)

    Casewell, S. L.; Dobbie, P. D.; Geier, S.; Lodieu, N.; Hambly, N. C.

    2015-08-01

    As part of an investigation into the high-mass end of the initial mass-final mass relation we performed a search for new white dwarf members of the nearby (172.4 pc), young (80-90 Myr) ? Persei open star cluster. The photometric and astrometric search using the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey and SuperCOSMOS sky surveys discovered 14 new white dwarf candidates. We have obtained medium resolution optical spectra of the brightest 11 candidates using the William Herschel Telescope and confirmed that while 7 are DA white dwarfs, 3 are DB white dwarfs and 1 is an sdOB star, only three have cooling ages within the cluster age, and from their position on the initial mass-final mass relation, it is likely none are cluster members. This result is disappointing, as recent work on the cluster mass function suggests that there should be at least one white dwarf member, even at this young age. It may be that any white dwarf members of ? Per are hidden within binary systems, as is the case in the Hyades cluster, however the lack of high-mass stars within the cluster also makes this seem unlikely. One alternative is that a significant level of detection incompleteness in the legacy optical image survey data at this Galactic latitude has caused some white dwarf members to be overlooked. If this is the case, Gaia will find them.

  10. Collapse of carbon-oxygen white dwarfs

    International Nuclear Information System (INIS)

    Carbon-oxygen white dwarfs formed in close binary systems may become unstable by mass accretion. Recent results concerning carbon-oxygen separation at the freezing point during the phase of cooling may have very important consequences for the problem of neutron star formation. The central, high-density regions of the star are then made of pure oxygen, the carbon being rejected to lower-density layers. When the star is compressed, carbon ignition can only happen after neutronization of the central (oxygen) regions. We show that, in this case, the chances of collapse to a neutron star are independent from the rate of mass accretion, in contrast with previous studies. A likely mechanism for neutron star formation emerges from this picture

  11. REMNANTS OF BINARY WHITE DWARF MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Raskin, Cody; Scannapieco, Evan; Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Fryer, Chris; Rockefeller, Gabriel [Los Alamos National Laboratories, Los Alamos, NM 87545 (United States)

    2012-02-10

    We carry out a comprehensive smooth particle hydrodynamics simulation survey of double-degenerate white dwarf binary mergers of varying mass combinations in order to establish correspondence between initial conditions and remnant configurations. We find that all but one of our simulation remnants share general properties such as a cold, degenerate core surrounded by a hot disk, while our least massive pair of stars forms only a hot disk. We characterize our remnant configurations by the core mass, the rotational velocity of the core, and the half-mass radius of the disk. We also find that some of our simulations with very massive constituent stars exhibit helium detonations on the surface of the primary star before complete disruption of the secondary. However, these helium detonations are insufficiently energetic to ignite carbon, and so do not lead to prompt carbon detonations.

  12. REMNANTS OF BINARY WHITE DWARF MERGERS

    International Nuclear Information System (INIS)

    We carry out a comprehensive smooth particle hydrodynamics simulation survey of double-degenerate white dwarf binary mergers of varying mass combinations in order to establish correspondence between initial conditions and remnant configurations. We find that all but one of our simulation remnants share general properties such as a cold, degenerate core surrounded by a hot disk, while our least massive pair of stars forms only a hot disk. We characterize our remnant configurations by the core mass, the rotational velocity of the core, and the half-mass radius of the disk. We also find that some of our simulations with very massive constituent stars exhibit helium detonations on the surface of the primary star before complete disruption of the secondary. However, these helium detonations are insufficiently energetic to ignite carbon, and so do not lead to prompt carbon detonations.

  13. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    International Nuclear Information System (INIS)

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 105-106 years.

  14. WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, MV ?> 8.4 on the SN Ia in SNR 0509-67.5 and MV ?> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  15. The formation and detectability of Be + white dwarf systems

    International Nuclear Information System (INIS)

    The formation of Be+He star and Be+white swarf binaries is discussed using evolutionary calculations. A total number of 300-1000 rapidly rotating B star+He star binaries and 100-300 rapidly rotating B star+white dwarf binaries should exist within 1 kpc of the Sun. If the B star is a Be star, the Be+white dwarf systems produce X-rays due to accretion of wind material of the equatorial wind of the Be star onto the white dwarf. The estimated X-ray luminosities range between 1029 and 1033 erg/s. The late type Be stars?2 Cru and HR 48O4, that have X-ray luminosities of about 1032 erg/s, are likely to have acreting white dwarf companions. The Be stars with unseen companions are godd candidates for Be+He star binaries

  16. White Dwarf Stars as a Polytropic Gas Spheres

    CERN Document Server

    Nouh, M I; Elkhateeb, M M; Korany, B

    2014-01-01

    Due to the highly degeneracy of electrons in white dwarf stars, we expect that the relativistic effects play very important role in these stars. In the present article, we study the properties of the condensed matter in white dwarfs using Newtonian and relativistic polytropic fluid sphere. Two polytropic indices (namely n=3 and n=1.5) are proposed to investigate the physical characteristics of the models. We solve the Lane-Emden equations numerically.. The results show that the relativistic effect is small in white dwarf stars.

  17. Ages of White Dwarf-Red Subdwarf Systems

    OpenAIRE

    Hektor Monteiro; Wei-Chun Jao; Todd Henry; John Subasavage; Thom Beaulieu

    2005-01-01

    We provide the first age estimates for two recently discovered white dwarf-red subdwarf systems, LHS 193AB and LHS 300AB. These unusual systems provide a new opportunity for linking the reliable age estimates for the white dwarfs to the (measurable) metallicities of the red subdwarfs. We have obtained precise photometry in the $V_{J}R_{KC}I_{KC}JH$ bands and spectroscopy covering from 6000\\AA to 9000\\AA for the two new systems, as well as for a comparison white dwarf-main se...

  18. A double white dwarf with a paradoxical origin?

    OpenAIRE

    M. C. P. Bours; Marsh, T. R.; Gaensicke, B. T; Tauris, T. M.; Istrate, A. G.; Badenes, C.; Dhillon, V.S.; Gal-Yam, A.; Hermes, J. J.; Kengkriangkrai, S.; Kilic, M.; D. Koester; Mullally, F.; Prasert, N.; Steeghs, D.

    2015-01-01

    We present Hubble Space Telescope UV spectra of the 4.6 h period double white dwarf SDSS J125733.63+542850.5. Combined with Sloan Digital Sky Survey optical data, these reveal that the massive white dwarf (secondary) has an effective temperature T2 = 13030 +/- 70 +/- 150 K and a surface gravity log g2 = 8.73 +/- 0.05 +/- 0.05 (statistical and systematic uncertainties respectively), leading to a mass of M2 = 1.06 Msun. The temperature of the extremely low-mass white dwarf (pr...

  19. Kinematics and Velocity Ellipsoid of the Solar Neighborhood White Dwarfs

    Science.gov (United States)

    Elsanhoury, W. H.; Nouh, M. I.; Abdel-Rahman, H. I.

    2015-10-01

    To determine the velocity ellipsoid of the solar neighborhood white dwarfs, we use the space velocity components of stars. Two samples of white dwarfs are used, the 20 pc and 25 pc samples. Beside the two main samples, the solar velocity and velocity dispersions are calculated for four subsamples, namely DA, non - DA, hot and cool white dwarfs. A comparison between the results of the 20 pc sample and those of the 25 pc sample gives good agreement, while the comparison between the other subsamples gives poor agreement. The dependence of the velocity dispersions and solar velocity on the chemical composition and effective temperatures is discussed.

  20. The WFCAM transit survey and cool white dwarfs

    OpenAIRE

    Pinfield D.; Hornillos D. Cristobal; Hodgkin S.; Napiwotzki R.; Catalan S.

    2013-01-01

    We present results from our search for cool white dwarfs in the WTS (WFCAM Transit Survey). Repeat observations starting in 2007 allowed to produce deep stacked images in J and measure proper motions. We combine this with deep optical imaging to select cool white dwarf candidates (Teff < 5000?K). About 27 cool white dwarf candidates with proper motions above 0.10 arcsec/yr were identified in one of the fields representing 1/8th of the survey area. Follow-up spectroscopy with the 10.2?m GTC te...

  1. On the origin of the ultramassive white dwarf GD50

    OpenAIRE

    Dobbie, P. D.; Napiwotzki, R.; Lodieu, N.; Burleigh, M. R.; Barstow, M. A; Jameson, R. F.

    2006-01-01

    We argue on the basis of astrometric and spectroscopic data that the ultramassive white dwarf GD50 is associated with the star formation event that created the Pleiades and is possibly a former member of this cluster. Its cooling age (~60Myrs) is consistent with it having evolved essentially as a single star from a progenitor with a mass M>6Msun so we find no need to invoke a white dwarf-white dwarf binary merger scenario to account for its existence. This result may represe...

  2. White Dwarfs in NGC 6791: Avoiding the Helium Flash

    OpenAIRE

    Hansen, Brad

    2005-01-01

    We propose that the anomalously bright white dwarf luminosity function observed in NGC 6791 (Bedin et al 2005) is the consequence of the formation of 0.5 Msun white dwarfs with Helium cores instead of Carbon cores. This may happen if mass loss during the ascent of the Red Giant Branch is strong enough to prevent a star from reaching the Helium flash. Such a model can explain the slower white dwarf cooling (relative to standard models) and fits naturally with scenarios advanc...

  3. White dwarf stars and the Hubble Deep Field

    OpenAIRE

    Kawaler, Steven D.

    1998-01-01

    Although it a very narrow angle survey, the depth of the HDF results in its sampling a significant volume of the halo of our galaxy. Thus it is useful for the purposes of detecting (or placing upper limits on the distribution of) intrinsically faint stars, such as white dwarfs. White dwarfs could provide a significant fraction of the total mass of the halo of the Milky Way. Constraints on the population of halo white dwarfs from the HDF can directly address this possible par...

  4. RE 0044+09: A new K dwarf rapid rotator with a white dwarf companion

    Science.gov (United States)

    Kellett, Barry J.; Bromage, Gordon E.; Brown, Alexander; Jeffries, Robin D.; James, David J.; Kilkenny, David; Robb, Russell M.; Wonnacott, David; Lloyd, Christopher; Clayton, C.

    1995-01-01

    We report the discovery of a new K dwarf rapid rotator with a potential white dwarf companion. The white dwarf accounts for over 90% of the observed extreme ultraviolet flux detected from this system. Analysis of ROSAT Wide Field Camera (WFC) and IUE data both suggest a white dwarf temperature of approximately 28,700 K. Optical photometry and the IUE long wavelength prime (LWP) spectrum (with the white dwarf contribution removed) imply that the late-type star has a spectral type of K1-3 V, and a distance of 55 +/- 5 pc. Using this distance, the observed IUE SWP flux, and the best-fit temperature results in a white dwarf radius of 0.0088 solar radius. The estimated white dwarf mass is then approximately 0.91 solar mass; somewhat over-massive compared to field white dwarfs. Optical photometry of the K star reveals a 'spot' modulation period of approximately 10 hr (now observed over 3 yr). However, radial velocity observations have revealed no significant variations. Spectroscopic observations place a low limit on the lithium abundance, but do show rapid rotation with a v sin i of 90 +/- 10 km/s. The K star was detected as a radio source at 3.6 cm (on two occasions) and 6 cm by the Very Large Array (VLA). The most likely evolutionary scenario is that the K star and hot white dwarf from either a wide binary or common proper motion pair with an age of 0.1-0.1 Gyr-consistent with the evolutionary timescale of the white dwarf and the rapid rotation of the K star. However, from the proper motion of the K star, this system does not seem to be associated with any of the known young stellar groups.

  5. A Parameter-Space Study of Carbon-Oxygen White Dwarf Mergers

    OpenAIRE

    Zhu, Chenchong; Chang, Philip; van Kerkwijk, Marten; Wadsley, James

    2012-01-01

    The merger of two carbon-oxygen white dwarfs can lead either to a spectacular transient, stable nuclear burning or a massive, rapidly rotating white dwarf. Simulations of mergers have shown that the outcome strongly depends on whether the white dwarfs are similar or dissimilar in mass. In the similar-mass case, both white dwarfs merge fully and the remnant is hot throughout, while in the dissimilar case, the more massive, denser white dwarf remains cold and essentially intac...

  6. A low-temperature companion to a white dwarf star

    Science.gov (United States)

    Becklin, E. E.; Zuckerman, B.

    1988-01-01

    An infrared object located about 120 AU from the white dwarf GD165 has been discovered. With the exception of the possible brown dwarf companion to Giclas 29-38 reported last year, the companion to GD165 is the coolest (2100 K) dwarf star ever reported and, according to some theoretical models, it should be a substellar brown dwarf with a mass between 0.06 and 0.08 solar mass. These results, together with newly discovered low-mass stellar companions to white dwarfs, change the investigation of very low-mass stars from the study of a few chance objects to that of a statistical distribution. In particular, it appears that very low-mass stars and perhaps even brown dwarfs could be quite common in the Galaxy.

  7. Magnetic White Dwarfs: Observations, Theory, and Future Prospects

    CERN Document Server

    García-Berro, Enrique; Kepler, S O

    2015-01-01

    Isolated magnetic white dwarfs have field strengths ranging from kilogauss to gigagauss, and constitute an interesting class of objects. The origin of the magnetic field is still the subject of a hot debate. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of the progenitor of white dwarfs, or on the contrary, are the result of binary interactions or, finally, other physical mechanisms that could produce such large magnetic fields during the evolution of the white dwarf itself, remains to be elucidated. In this work we review the current status and paradigms of magnetic fields in white dwarfs, from both the theoretical and observational points of view.

  8. Testing the initial-final mass relationship of white dwarfs

    International Nuclear Information System (INIS)

    In this contribution we revisit the initial-final mass relationship of white dwarfs, which links the mass of a white dwarf with that of its progenitor in the main-sequence. Although this function is of paramount importance to several fields in modern astrophysics, it is still not well constrained either from the theoretical or the observational points of view. We present here a revision of the present semi-empirical initial-final mass relationship using all the available data and including our recent results obtained from studying white dwarfs in common proper motion pairs. We have also analyzed the results obtained so far to provide some clues on the dependence of this relationship on metallicity. Finally, we have also performed an indirect test of the initial-final mass relationship by studying its effect on the luminosity function and on the mass distribution of white dwarfs.

  9. A variational approach to understanding white dwarf evolution

    Science.gov (United States)

    Wood, M. A.; Winget, D. E.

    1989-01-01

    A variational approach is used to map out the effects that uncertainties in the theoretical model parameters have upon the derived ages near the observed cutoff in the white dwarf luminosity function. Two representative sequences are assessed, simulating a white dwarf with a 50/50 C/O mixture in the core and an outer helium layer and a white dwarf with a C/O convective overshooting profile. The differential effects that the variation of selected model input quantities has on the ages are reported, and it is concluded that internal theoretical uncertainties are small and getting smaller with time, and the results underscore the power of using the observed white dwarf luminosity function for studying the history of star formation in the Galaxy.

  10. General relativistic white dwarfs and their astrophysical implications

    Energy Technology Data Exchange (ETDEWEB)

    Boshkayev, Kuantay [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Rueda, Jorge A.; Ruffini, Remo [Sapienza University of Rome, Rome (Italy); Siutsou, Ivan [ICRANet, Square of Republic, Pescara (Italy)

    2014-09-15

    We consider applications of general relativistic uniformly-rotating white dwarfs to several astrophysical phenomena related to the spin-up and the spin-down epochs and to delayed type Ia supernova explosions of super-Chandrasekhar white dwarfs, where we estimate the 'spinning down' lifetime due to magnetic-dipole braking. In addition, we describe the physical properties of Soft Gamma Repeaters and Anomalous X-Ray Pulsars as massive rapidly-rotating highly-magnetized white dwarfs. Particularly we consider one of the so-called low-magnetic-field magnetars SGR 0418+5729 as a massive rapidly-rotating highly- magnetized white dwarf and give bounds for the mass, radius, moment of inertia, and magnetic field by requiring the general relativistic uniformly rotating configurations to be stable.

  11. Ages of white dwarf-red subdwarf systems

    Directory of Open Access Journals (Sweden)

    Hektor Monteiro

    2006-01-01

    Full Text Available We provide the first age estimates for two recently discovered white dwarf-red subdwarf systems, LHS 193AB and LHS 300AB. These systems provide a new opportunity for linking the reliable age estimates for the white dwarfs to the (measurable metallicities of the red subdwarfs. We have obtained precise photometry in the VJRKCIKCJH bands and spectroscopy covering from 6,000°A to 9,000°A (our spectral coveragefor the two new systems, as well as for a comparison white dwarfmain sequence red dwarf system, GJ 283 AB. Using model grids, we estimate the cooling age as well as temperature, surface gravity, mass, progenitor mass and total lifetimes of the white dwarfs. The results indicate that the two new systems are probably ancient thick disk objects with ages of at least 6-9 gigayears (Gyr.

  12. General relativistic white dwarfs and their astrophysical implications

    International Nuclear Information System (INIS)

    We consider applications of general relativistic uniformly-rotating white dwarfs to several astrophysical phenomena related to the spin-up and the spin-down epochs and to delayed type Ia supernova explosions of super-Chandrasekhar white dwarfs, where we estimate the 'spinning down' lifetime due to magnetic-dipole braking. In addition, we describe the physical properties of Soft Gamma Repeaters and Anomalous X-Ray Pulsars as massive rapidly-rotating highly-magnetized white dwarfs. Particularly we consider one of the so-called low-magnetic-field magnetars SGR 0418+5729 as a massive rapidly-rotating highly- magnetized white dwarf and give bounds for the mass, radius, moment of inertia, and magnetic field by requiring the general relativistic uniformly rotating configurations to be stable.

  13. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    International Nuclear Information System (INIS)

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 × faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R? (0.01 AU). The M-dwarfs have masses of approximately 0.35 M?, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M?. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R? (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%-0.05%+0.10% (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at relatively large orbital radii. Similar eclipsing binary systems can have arbitrarily small eclipse depths in red bands and generate plausible small-planet-transit light curves. As such, these systems are a source of false positives for M-dwarf transiting planet searches. We present several ways to rapidly distinguish these binaries from transiting planet systems.

  14. Time dependent white dwarf radiative shocks

    International Nuclear Information System (INIS)

    We study the oscillatory instability of white dwarf radiative accretion shocks discovered by Langer, Chanmugam, and Shaviv. We extend previous works by examining spherical shocks dominated by: (1) bremsstrahlung and Compton cooling; and (2) bremsstrahlung and Compton cooling when the effects of electron thermal conduction are not negligible. The results of our calculations allow us to delineate stability regimes as a function of the dwarf mass, M/sub d/, and the accretion rate, M0. We parameterize M0 in terms of the optical depth to electron scattering through the preshock flow, tau/sub es/. In the Compton cooling and bremsstrahlung case, the shocks are unstable to low order oscillation modes if M/sub d/ less than or equal to (0.7 +- 0.1) M/sub solar/ for tau/sub es/ = 14, and if M/sub d/ less than or equal to (0.9 +- 0.1) M/sub solar/ for tau/sub es/ = 1. When electron thermal conduction is added, low order oscillation modes are unstable only if M/sub d/ less than or equal to (0.3 +- 0.1) M/sub sun mass/. The unstable modes have approximate oscillation periods of 1.1 tau/sub br/ and 0.63 tau/sub br/, where tau/sub br/ is the bremsstrahlung cooling time scale of the postshock plasma. Our results can be scaled to magnetically funneled accretion flows as long as cyclotron emission contributes less than about 10% of the postshock cooling. 14 refs., 1 fig

  15. A disintegrating minor planet transiting a white dwarf.

    Science.gov (United States)

    Vanderburg, Andrew; Johnson, John Asher; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John Arban; Kipping, David; Brown, Warren R; Dufour, Patrick; Ciardi, David R; Angus, Ruth; Schaefer, Laura; Latham, David W; Charbonneau, David; Beichman, Charles; Eastman, Jason; McCrady, Nate; Wittenmyer, Robert A; Wright, Jason T

    2015-10-22

    Most stars become white dwarfs after they have exhausted their nuclear fuel (the Sun will be one such). Between one-quarter and one-half of white dwarfs have elements heavier than helium in their atmospheres, even though these elements ought to sink rapidly into the stellar interiors (unless they are occasionally replenished). The abundance ratios of heavy elements in the atmospheres of white dwarfs are similar to the ratios in rocky bodies in the Solar System. This fact, together with the existence of warm, dusty debris disks surrounding about four per cent of white dwarfs, suggests that rocky debris from the planetary systems of white-dwarf progenitors occasionally pollutes the atmospheres of the stars. The total accreted mass of this debris is sometimes comparable to the mass of large asteroids in the Solar System. However, rocky, disintegrating bodies around a white dwarf have not yet been observed. Here we report observations of a white dwarf--WD 1145+017--being transited by at least one, and probably several, disintegrating planetesimals, with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths (blocking up to 40 per cent of the star's brightness) and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star has a dusty debris disk, and the star's spectrum shows prominent lines from heavy elements such as magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets. PMID:26490620

  16. A disintegrating minor planet transiting a white dwarf

    Science.gov (United States)

    Vanderburg, Andrew; Johnson, John Asher; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John Arban; Kipping, David; Brown, Warren R.; Dufour, Patrick; Ciardi, David R.; Angus, Ruth; Schaefer, Laura; Latham, David W.; Charbonneau, David; Beichman, Charles; Eastman, Jason; McCrady, Nate; Wittenmyer, Robert A.; Wright, Jason T.

    2015-10-01

    Most stars become white dwarfs after they have exhausted their nuclear fuel (the Sun will be one such). Between one-quarter and one-half of white dwarfs have elements heavier than helium in their atmospheres, even though these elements ought to sink rapidly into the stellar interiors (unless they are occasionally replenished). The abundance ratios of heavy elements in the atmospheres of white dwarfs are similar to the ratios in rocky bodies in the Solar System. This fact, together with the existence of warm, dusty debris disks surrounding about four per cent of white dwarfs, suggests that rocky debris from the planetary systems of white-dwarf progenitors occasionally pollutes the atmospheres of the stars. The total accreted mass of this debris is sometimes comparable to the mass of large asteroids in the Solar System. However, rocky, disintegrating bodies around a white dwarf have not yet been observed. Here we report observations of a white dwarf--WD 1145+017--being transited by at least one, and probably several, disintegrating planetesimals, with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths (blocking up to 40 per cent of the star's brightness) and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star has a dusty debris disk, and the star's spectrum shows prominent lines from heavy elements such as magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets.

  17. QUIESCENT NUCLEAR BURNING IN LOW-METALLICITY WHITE DWARFS

    International Nuclear Information System (INIS)

    We discuss the impact of residual nuclear burning in the cooling sequences of hydrogen-rich (DA) white dwarfs with very low metallicity progenitors (Z = 0.0001). These cooling sequences are appropriate for the study of very old stellar populations. The results presented here are the product of self-consistent, fully evolutionary calculations. Specifically, we follow the evolution of white dwarf progenitors from the zero-age main sequence through all the evolutionary phases, namely the core hydrogen-burning phase, the helium-burning phase, and the thermally pulsing asymptotic giant branch phase to the white dwarf stage. This is done for the most relevant range of main-sequence masses, covering the most usual interval of white dwarf masses—from 0.53 M ? to 0.83 M ?. Due to the low metallicity of the progenitor stars, white dwarfs are born with thicker hydrogen envelopes, leading to more intense hydrogen burning shells as compared with their solar metallicity counterparts. We study the phase in which nuclear reactions are still important and find that nuclear energy sources play a key role during long periods of time, considerably increasing the cooling times from those predicted by standard white dwarf models. In particular, we find that for this metallicity and for white dwarf masses smaller than about 0.6 M ?, nuclear reactions are the main contributor to the stellar luminosity for luminosities as low as log (L/L ?) ? –3.2. This, in turn, should have a noticeable impact in the white dwarf luminosity function of low-metallicity stellar populations

  18. Anderson and Stoner Published White Dwarf Mass Limits Before Chandrasekhar

    OpenAIRE

    Blackman, Eric G

    2011-01-01

    In their engaging recountals of Chandrasekhar's extraordinary career (Physics Today, vol 63, Issue 12, Dec 2010), neither Dyson nor Wali mention that Chandrasekhar was the third person not the first, to publish a white dwarf mass limit incorporating a relativistic treatment of degenerate electrons. As it has become a common misconception that Chandrasekhar was the first, a clarifying reminder on this historical point is warranted. In short, the white dwarf mass limit widely ...

  19. Post nova white dwarf cooling in V1500 Cygni

    OpenAIRE

    Somers, M. W.; Naylor, T. (Timothy)

    1999-01-01

    We use the irradiated secondary star in the remnant of Nova Cyg 1975 as a probe of the cooling white dwarf. At superior conjunction the flux in the B band is dominated by the irradiated face of the secondary star. The heated face produces an orbital modulation which is dependent on the strength of the irradiating source. We demonstrate that the cooling rate of the white dwarf is consistent with the theoretical model of Prialnik (1986).

  20. New DA white dwarf evolutionary models and their pulsational properties

    OpenAIRE

    Córsico, Alejandro Hugo; Althaus, Leandro Gabriel; Benvenuto, Omar Gustavo; Serenelli, Aldo

    2001-01-01

    In this letter we investigate the pulsational properties of ZZ Ceti stars on the basis of new white dwarf evolutionary models calculated in a self-consistent way with the predictions of time dependent element diffusion and nuclear burning. In addition, full account is taken of the evolutionary stages prior to the white dwarf formation. Emphasis is placed on the trapping properties of such models. By means of adiabatic, non-radial pulsation calculations, we find, as a result ...

  1. Evolutionary and pulsational properties of white dwarf stars

    OpenAIRE

    Althaus, Leandro G.; Córsico, Alejandro H.; Isern, Jordi; a-Berro, Enrique Garcí

    2010-01-01

    Abridged. White dwarf stars are the final evolutionary stage of the vast majority of stars, including our Sun. The study of white dwarfs has potential applications to different fields of astrophysics. In particular, they can be used as independent reliable cosmic clocks, and can also provide valuable information about the fundamental parameters of a wide variety of stellar populations, like our Galaxy and open and globular clusters. In addition, the high densities and temper...

  2. The White Dwarf Cooling Sequence of NGC6397

    OpenAIRE

    Hansen, Brad M. S.; Anderson, Jay; Brewer, James; Dotter, Aaron; Fahlman, Greg G.; Hurley, Jarrod; Kalirai, Jason; King, Ivan; Reitzel, David; Richer, Harvey B.; Rich, R. Michael; Michael M. Shara; Stetson, Peter B

    2007-01-01

    We present the results of a deep Hubble Space Telescope (HST) exposure of the nearby globular cluster NGC6397, focussing attention on the cluster's white dwarf cooling sequence. This sequence is shown to extend over 5 magnitudes in depth, with an apparent cutoff at magnitude F814W=27.6. We demonstrate, using both artificial star tests and the detectability of background galaxies at fainter magnitudes, that the cutoff is real and represents the truncation of the white dwarf l...

  3. Testing common envelopes on double white dwarf binaries

    OpenAIRE

    Nandez, Jose L. A.; Ivanova, Natalia; Lombardi Jr., James C.

    2015-01-01

    The formation of a double white dwarf binary likely involves a common envelope (CE) event between a red giant and a white dwarf (WD) during the most recent episode of Roche lobe overflow mass transfer. We study the role of recombination energy with hydrodynamic simulations of such stellar interactions. We find that the recombination energy helps to expel the common envelope entirely, while if recombination energy is not taken into account, a significant fraction of the commo...

  4. On the formation of hot DQ white dwarfs

    OpenAIRE

    Althaus, L. G.; García-Berro, E.; Córsico, A. H.; Bertolami, M. M. Miller; Romero, A. D.

    2009-01-01

    We present the first full evolutionary calculations aimed at exploring the origin of hot DQ white dwarfs. These calculations consistently cover the whole evolution from the born-again stage to the white dwarf cooling track. Our calculations provide strong support to the diffusive/convective-mixing picture for the formation of hot DQs. We find that the hot DQ stage is a short-lived stage and that the range of effective temperatures where hot DQ stars are found can be accounte...

  5. Towards an Understanding of the Atmospheres of Cool White Dwarfs

    OpenAIRE

    Kowalski, Piotr M.; Saumon, Didier; Holberg, Jay; Leggett, Sandy

    2012-01-01

    Cool white dwarfs with Teff < 6000 K are the remnants of the oldest stars that existed in our Galaxy. Their atmospheres, when properly characterized, can provide valuable information on white dwarf evolution and ultimately star formation through the history of the Milky Way. Understanding the atmospheres of these stars requires joined observational effort and reliable atmosphere modeling. We discuss and analyze recent observations of the near-ultraviolet (UV) and near-infrar...

  6. Trace elements in the photospheres of hot white dwarf stars

    International Nuclear Information System (INIS)

    X-ray, ultraviolet, and optical observations of hot white dwarfs have demonstrated that a number of these objects contain observable quantities of trace elements. This paper reviews recent observational results and includes some discussion of the possible roles of pre-white dwarf evolution, levitation of trace elements by radiation pressure, and accretion in producing the peculiar patterns of trace element abundances in these stars. 30 references

  7. RX J2130.6+4710 - an eclipsing white dwarf - M-dwarf binary star

    OpenAIRE

    Maxted, P. F. L; Marsh, T. R.; Morales-Rueda, L.; Barstow, M. A; Dobbie, P. D.; Schreiber, M. R.; Dhillon, V.S.; Brinkworth, C. S.

    2004-01-01

    (Abridged) We report the detection of eclipses in the close white-dwarf - M-dwarf binary star RXJ2130.6+4710. We estimate that the spectral type of the M-dwarf is M3.5Ve or M4Ve. We estimate that the effective temperature of the white dwarf is Teff = 18000K +- 1000K. We have used the width of the primary eclipse and duration of totality measured precisely from Ultracam u' data combined with the amplitude of the ellipsoidal effect in the I band and the semi-amplitudes of the ...

  8. NLTT5306: The shortest Period Detached White Dwarf + Brown Dwarf Binary

    OpenAIRE

    Steele, P. R.; Saglia, R. P.; Burleigh, M. R.; Marsh, T. R.; Gänsicke, B. T.; Lawrie, K; Cappetta, M.; Girven, J.; Napiwotzki, R.

    2012-01-01

    We have spectroscopically confirmed a brown dwarf mass companion to the hydrogen atmosphere white dwarf NLTT5306. The white dwarf's atmospheric parameters were measured using Sloan Digital Sky Survey and X-Shooter spectroscopy as T_eff=7756+/-35K and log(g)=7.68+/-0.08, giving a mass for the primary of M_WD=0.44+/-0.04 M_sun, at a distance of 71+/-4 pc with a cooling age of 710+/-50 Myr. The existence of the brown dwarf secondary was confirmed through the near-infrared arm o...

  9. A disintegrating minor planet transiting a white dwarf

    CERN Document Server

    Vanderburg, Andrew; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John Arban; Kipping, David; Brown, Warren R; Dufour, Patrick; Ciardi, David R; Angus, Ruth; Schaefer, Laura; Latham, David W; Charbonneau, David; Beichman, Charles; Eastman, Jason; McCrady, Nate; Wittenmyer, Robert A; Wright, Jason T

    2015-01-01

    White dwarfs are the end state of most stars, including the Sun, after they exhaust their nuclear fuel. Between 1/4 and 1/2 of white dwarfs have elements heavier than helium in their atmospheres, even though these elements should rapidly settle into the stellar interiors unless they are occasionally replenished. The abundance ratios of heavy elements in white dwarf atmospheres are similar to rocky bodies in the Solar system. This and the existence of warm dusty debris disks around about 4% of white dwarfs suggest that rocky debris from white dwarf progenitors' planetary systems occasionally pollute the stars' atmospheres. The total accreted mass can be comparable to that of large asteroids in the solar system. However, the process of disrupting planetary material has not yet been observed. Here, we report observations of a white dwarf being transited by at least one and likely multiple disintegrating planetesimals with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 ...

  10. Constraints on white dwarfs structure and evolution from asteroseismology

    Science.gov (United States)

    Vauclair, G.

    2013-12-01

    In the last two decades, considerable efforts have been devoted to the study of white dwarfs pulsators. Owing to ground-based multi-sites observational campaigns, and more recently to the long time-based high-precision photometric observations with the Kepler satellite, a large number of pulsating white dwarfs have been studied through the asteroseismology method. I emphasize here the accuracy that this method achieves on the determination of the total mass, one of the fundamental stellar parameter that can be derived from asteroseismology, among others. Then I discuss the issue of the age determination, emphasizing the contribution of the neutrinos cooling and the importance of the outer layer mass fraction. I show that some observations throw some doubts on the assumption that the cooling is the only cause of the observed frequency variations. Finally I summarize the results demonstrating that the entire stellar angular momentum is lost during the evolutionary phases prior to the white dwarf stage. While the asteroseismology of white dwarf stars has given a rich harvest of results on their internal structure and evolution, there are still some challenges to face. Determining accurate mass of the outer layers, specifically for the DA white dwarfs, is one of them. An increasing number of white dwarf pulsators are now known to exhibit frequency and amplitude temporal variations. The physical mechanism producing such variabilities has to be identified.

  11. DA white dwarfs observed in LAMOST pilot survey

    CERN Document Server

    Zhang, Yue-Yang; Liu, Chao; Lépine, Sebastien; Newberg, Heidi Jo; Carlin, Jeffrey L; Carrell, Kenneth; Yang, Fan; Gao, Shuang; Xu, Yan; Li, Jing; Zhang, Hao-Tong; Zhao, Yong-Heng; Luo, A-Li; Bai, Zhong-Rui; Yuan, Hai-Long; Jin, Ge

    2013-01-01

    A total of $\\sim640,000$ objects from LAMOST pilot survey have been publicly released. In this work, we present a catalog of DA white dwarfs from the entire pilot survey. We outline a new algorithm for the selection of white dwarfs by fitting S\\'ersic profiles to the Balmer H$\\beta$, H$\\gamma$ and H$\\delta$ lines of the spectra, and calculating the equivalent width of the CaII K line. 2964 candidates are selected by constraining the fitting parameters and the equivalent width of CaII K line. All the spectra of candidates are visually inspected. We identify 230 (59 of them are already in Villanova and SDSS WD catalog) DA white dwarfs, 20 of which are DA white dwarfs with non-degenerate companions. In addition, 128 candidates are classified as DA white dwarf/subdwarfs, which means the classifications are ambiguous. The result is consistent with the expected DA white dwarf number estimated based on the LEGUE target selection algorithm.

  12. On the White Dwarf distances to Galactic Globular Clusters

    CERN Document Server

    Salaris, M; García-Berro, E; Isern, J; Torres, S

    2001-01-01

    We analyze in detail various possible sources of systematic errors on the distances of globular clusters derived by fitting a local template DA white dwarf sequence to the cluster counterpart (the so-called WD-fitting technique). We find that the unknown thickness of the hydrogen layer of white dwarfs in clusters plays a non negligible role. For reasonable assumptions - supported by the few sparse available observational constraints - about the unknown mass and thickness of the hydrogen layer for the cluster white dwarfs, a realistic estimate of the systematic error on the distance is within +-0.10 mag. However, particular combinations of white dwarf masses and envelope thicknesses - which at present cannot be excluded a priori - could produce larger errors. Contamination of the cluster DA sequence by non-DA white dwarfs introduces a very small systematic error of about -0.03 mag in the Mv/(V-I) plane, but in the Mv/(B-V) plane the systematic error amounts to ~ +0.20 mag. Contamination by white dwarfs with he...

  13. Optical spectroscopy of candidate Alpha Persei white dwarfs

    CERN Document Server

    Casewell, S L; Geier, S; Lodieu, N; Hambly, N C

    2015-01-01

    As part of an investigation into the high mass end of the initial mass-final mass relation we performed a search for new white dwarf members of the nearby (172.4 pc), young (80-90 Myr) $\\alpha$ Persei open star cluster. The photometric and astrometric search using the UKIRT Infrared Deep Sky Survey and SuperCOSMOS sky surveys discovered 14 new white dwarf candidates. We have obtained medium resolution optical spectra of the brightest 11 candidates using the William Herschel Telescope and confirmed that while 7 are DA white dwarfs, 3 are DB white dwarfs and one is an sdOB star, only three have cooling ages within the cluster age, and from their position on the initial mass-final mass relation, it is likely none are cluster members. This result is disappointing, as recent work on the cluster mass function suggests that there should be at least one white dwarf member, even at this young age. It may be that any white dwarf members of $\\alpha$ Per are hidden within binary systems, as is the case in the Hyades clus...

  14. Observational Constraints on the Fundamental Properties of White Dwarf Stars

    Science.gov (United States)

    Oswalt, Terry D.; Dhital, Saurav; Holberg, Jay

    2015-08-01

    We present preliminary determinations of gravitational redshifts for white dwarf stars that have distant, non-interacting main-sequence companions. With independent radius constraints obtained from parallaxes and surface gravity determinations obtained by fitting the Balmer series from our spectra, improved estimates of white dwarf masses and radii can be critically compared with the theoretical mass-radius relations specific to each star. We are attempting to resolve serious discrepancies between the theoretical and empirical measurements of the white dwarf mass-radius relation and to extend the range over which it has been tested to the high mass limit near 1.2 solar masses. Currently, the measured radius for only a single well-observed “classical” white dwarf matches its predicted value to within 5%. Using the spectra of their main sequence companions, we also estimate the systems’ primordial metallicity and examined how the initial-to-final-mass ratio for white dwarfs depends on metallicity. Our project is providing constraints on two fundamental relations that govern the physical properties of white dwarfs, and ultimately the cycling of matter in the interstellar medium: the mass-radius relation and the initial-to-final-mass relation.

  15. A double white dwarf with a paradoxical origin?

    CERN Document Server

    Bours, M C P; Gaensicke, B T; Tauris, T M; Istrate, A G; Badenes, C; Dhillon, V S; Gal-Yam, A; Hermes, J J; Kengkriangkrai, S; Kilic, M; Koester, D; Mullally, F; Prasert, N; Steeghs, D; Thompson, S E; Thorstensen, J R

    2015-01-01

    We present Hubble Space Telescope UV spectra of the 4.6 h period double white dwarf SDSS J125733.63+542850.5. Combined with Sloan Digital Sky Survey optical data, these reveal that the massive white dwarf (secondary) has an effective temperature T2 = 13030 +/- 70 +/- 150 K and a surface gravity log g2 = 8.73 +/- 0.05 +/- 0.05 (statistical and systematic uncertainties respectively), leading to a mass of M2 = 1.06 Msun. The temperature of the extremely low-mass white dwarf (primary) is substantially lower at T1 = 6400 +/- 37 +/- 50 K, while its surface gravity is poorly constrained by the data. The relative flux contribution of the two white dwarfs across the spectrum provides a radius ratio of R1/R2 = 4.2, which, together with evolutionary models, allows us to calculate the cooling ages. The secondary massive white dwarf has a cooling age of about 1 Gyr, while that of the primary low-mass white dwarf is likely to be much longer, possibly larger than 5 Gyrs, depending on its mass and the strength of chemical di...

  16. A Dark Spot on a Massive White Dwarf

    Science.gov (United States)

    Kilic, Mukremin; Gianninas, Alexandros; Bell, Keaton J.; Curd, Brandon; Brown, Warren R.; Hermes, J. J.; Dufour, Patrick; Wisniewski, John P.; Winget, D. E.; Winget, K. I.

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope. This work is based on observations obtained at the Gemini Observatory, McDonald Observatory, and the Apache Point Observatory 3.5-m telescope. The latter is owned and operated by the Astrophysical Research Consortium. Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  17. Simulating a white dwarf dominated Galactic halo

    Science.gov (United States)

    Brook, Chris B.; Kawata, Daisuke; Gibson, Brad K.

    2003-08-01

    Observational evidence has suggested the possibility of a Galactic halo dominated by white dwarfs (WDs). While debate continues concerning the interpretation of this evidence, it is clear that an initial mass function (IMF) biased heavily toward WD precursors (1IMFs lead to an unavoidable overproduction of carbon and nitrogen relative to oxygen (as measured against the abundance patterns in the oldest stars of the Milky Way). Using a three-dimensional Tree N-body smoothed particle hydrodynamics code, we study the dynamics and chemical evolution of a galaxy with different IMFs. Both invariant and metallicity-dependent IMFs are considered. Our variable IMF model invokes a WD-precursor-dominated IMF for metallicities less than 5 per cent solar (primarily the Galactic halo), and the canonical Salpeter IMF otherwise (primarily the disc). Halo WD density distributions and C,N/O abundance patterns are presented. While Galactic haloes composed of >~5 per cent (by mass) of WDs are not supported by our simulations, mass fractions of ~1-2 per cent cannot be ruled out. This conclusion is consistent with present-day observational constraints.

  18. The binary white dwarf LHS 3236

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L. [US Naval Observatory, 10391 West Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Dupuy, Trent J.; Liu, Michael C. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hartkopf, William I. [US Naval Observatory, 3450 Massachusetts Avenue, N.W., Washington, DC 20392-5420 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, New South Wales, NSW 2109 (Australia); Leggett, S. K., E-mail: hch@nofs.navy.mil [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States)

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ?}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ?}. In either case, the cooling ages of the stars are ?3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ?}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  19. Evolution of Close White Dwarf Binaries

    CERN Document Server

    Gokhale, V; Frank, J; Gokhale, Vayujeet; Peng, Xiao Meng; Frank, Juhan

    2006-01-01

    We describe the evolution of double degenerate binary systems, consisting of components obeying the zero temperature mass radius relationship for white dwarf stars, from the onset of mass transfer to one of several possible outcomes including merger, tidal disruption of the donor, or survival as a semi-detached AM CVn system. We use a combination of analytic solutions and numerical integrations of the standard orbit-averaged first-order evolution equations, including direct impact accretion and the evolution of the components due to mass exchange. We include also the effects of mass-loss during super-critical (super-Eddington) mass transfer and the tidal and advective exchanges of angular momentum between the binary components. We cover much the same ground as Marsh et al.(2004) with the additional effects of the advective or consequential angular momentum from the donor and its tidal coupling to the orbit which is expected to be stronger than that of the accretor. With the caveat that our formalism does not ...

  20. Orbital Evolution of Compact White Dwarf Binaries

    CERN Document Server

    Kaplan, David L; Steinfadt, Justin D R

    2012-01-01

    The new-found prevalence of extremely low mass (ELM, Mhe<0.2 Msun) helium white dwarfs (WDs) in tight binaries with more massive WDs has raised our interest in understanding the nature of their mass transfer. Possessing small (Menv~1e-3 Msun) but thick hydrogen envelopes, these objects have larger radii than cold WDs and so initiate mass transfer of H-rich material at orbital periods of 6-10 minutes. Building on the original work of D'Antona et al., we confirm the 1e6 yr period of continued inspiral with mass transfer of H-rich matter and highlight that the inspiraling direct-impact double WD binary HM Cancri likely has an ELM WD donor. The ELM WDs have less of a radius expansion under mass loss, thus enabling a larger range of donor masses that can stably transfer matter and become a He mass transferring AM CVn binary. Even once in the long-lived AM CVn mass transferring stage, these He WDs have larger radii due to their higher entropy from the prolonged H burning stage.

  1. Thermonuclear detonations ensuing white dwarf mergers

    CERN Document Server

    Dan, Marius; Brüggen, Marcus; Ramirez-Ruiz, Enrico; Rosswog, Stephan

    2015-01-01

    The merger of two white dwarfs (WDs) has for many years not been considered as the favoured model for the progenitor system of type Ia supernovae (SNe Ia). But recent years have seen a change of opinion as a number of studies, both observational and theoretical, have concluded that they should contribute significantly to the observed type Ia supernova rate. In this paper, we study the ignition and propagation of detonation through post-merger remnants and we follow the resulting nucleosynthesis up to the point where a homologous expansion is reached. In our study we cover the entire range of WD masses and compositions. For the emergence of a detonation we study several setups, guided by both merger remnants from our own simulations and by results taken from the literature. We carefully compare the nucleosynthetic yields of successful explosions with SN Ia observations. Only three of our models are consistent with all the imposed constraints and potentially lead to a standard type Ia event. The first one, a $0...

  2. Maximum mass of magnetic white dwarfs

    Science.gov (United States)

    Manreza Paret, Daryel; Horvath, Jorge Ernesto; Perez Martínez, Aurora

    2015-10-01

    We revisit the problem of the maximum masses of magnetized white dwarfs (WDs). The impact of a strong magnetic field on the structure equations is addressed. The pressures become anisotropic due to the presence of the magnetic field and split into parallel and perpendicular components. We first construct stable solutions of the Tolman-Oppenheimer-Volkoff equations for parallel pressures and find that physical solutions vanish for the perpendicular pressure when B ? 1013 G. This fact establishes an upper bound for a magnetic field and the stability of the configurations in the (quasi) spherical approximation. Our findings also indicate that it is not possible to obtain stable magnetized WDs with super-Chandrasekhar masses because the values of the magnetic field needed for them are higher than this bound. To proceed into the anisotropic regime, we can apply results for structure equations appropriate for a cylindrical metric with anisotropic pressures that were derived in our previous work. From the solutions of the structure equations in cylindrical symmetry we have confirmed the same bound for B ? 1013 G, since beyond this value no physical solutions are possible. Our tentative conclusion is that massive WDs with masses well beyond the Chandrasekhar limit do not constitute stable solutions and should not exist.

  3. White dwarf masses in cataclysmic variables

    CERN Document Server

    Wijnen, T P G; Schreiber, M R

    2015-01-01

    The white dwarf (WD) mass distribution of cataclysmic variables (CVs) has recently been found to dramatically disagree with the predictions of the standard CV formation model. The high mean WD mass among CVs is not imprinted in the currently observed sample of CV progenitors and cannot be attributed to selection effects. Two possibilities have been put forward: either the WD grows in mass during CV evolution, or in a significant fraction of cases, CV formation is preceded by a (short) phase of thermal time-scale mass transfer (TTMT) in which the WD gains a sufficient amount of mass. We investigate if either of these two scenarios can bring theoretical predictions and observations into agreement. We employed binary population synthesis models to simulate the present intrinsic CV population. We incorporated aspects specific to CV evolution such as an appropriate mass-radius relation of the donor star and a more detailed prescription for the critical mass ratio for dynamically unstable mass transfer. We also imp...

  4. White Dwarf Cosmochronology in the Solar Neighborhood

    CERN Document Server

    Tremblay, P -E; Soderblom, D R; Cignoni, M; Cummings, J

    2014-01-01

    The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method which consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 < M/Msun < 8) and total ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 <...

  5. Discovery of an ultramassive pulsating white dwarf

    CERN Document Server

    Hermes, J J; Castanheira, Barbara G; Gianninas, A; Winget, D E; Montgomery, M H; Brown, Warren R; Harrold, Samuel T

    2013-01-01

    We announce the discovery of the most massive pulsating hydrogen-atmosphere (DA) white dwarf (WD) ever discovered, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a 12,030 +/- 210 K WD with a log(g) = 9.08 +/- 0.06, which corresponds to a mass of 1.20 +/- 0.03 Msun. Stellar evolution models indicate that the progenitor of such a high-mass WD endured a stable carbon-burning phase, producing an oxygen-neon-core WD. The discovery of pulsations in GD 518 thus offers the first opportunity to probe the interior of a WD with a possible oxygen-neon core. Such a massive WD should also be significantly crystallized at this temperature. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425-595 s and amplitudes up to 0.7%, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, which exhibit non-radial g-mode pulsations driven by a hydrogen partial ionization zone. Successfully unraveling both the total mass and core ...

  6. On interstellar accretion and the rejuvenation of white dwarfs

    Science.gov (United States)

    Truran, J. W.; Wyatt, S. P.; Starrfield, S. G.; Strittmatter, P. A.; Sparks, W. M.

    1977-01-01

    The paper investigates physical conditions which can give rise to thermonuclear runaways in the hydrogen envelopes of low-luminosity white dwarfs. Specifically, calculations are performed for white dwarfs of 0.5, 0.75, 1, and 1.25 solar masses with envelope masses in the range from 0.00001 to 0.001 solar mass and initial luminosities of 0.00001 to 0.01 times the solar value. It is found that envelope masses as low as 0.0001 solar mass are sufficient to initiate thermonuclear runaways on more massive white dwarfs with luminosities as low as about 0.001 the solar value. The runaway time scales under these conditions, typically of the order of a billion years, are comparable to the time scales for cooling of white dwarfs to these low luminosities. Since time-averaged accretion rates as low as a few times 10 to the -14th power solar mass per year are sufficient to reconstitute such envelopes, also on a time scale of several billion years, it is suggested that the association of novalike events with binary systems may not be unique. Accretion of interstellar matter onto isolated white dwarfs may, under some circumstances, be sufficient to rekindle and perhaps rejuvenate the dwarf. Such evolutionary behavior might define a new and distinct class of objects.

  7. On interstellar accretion and the rejuvenation of white dwarfs

    International Nuclear Information System (INIS)

    We have investigated physical conditions which can give rise to thermonuclear runaways in the hydrogen envelopes of low-luminosity white dwarfs. Specifically, we have performed calculations for white dwarfs of masses 0.5, 0.75, 1, and 1.25 M/sub sun/, with envelope masses in the range 10-5 to 10-3M/sub sun/ and initial luminosities 10-5 to 10-2 L/sub sun/. We find that envelope masses as low as 10-4 M/sub sun/ are sufficient to initial thermonuclear runaways on more massive white dwarfs with luminosities as low as approx.10-4 L/sub sun/. The runaway time scales under these conditions, typically of the order of a billion years, are comparable to the time scales for cooling of white dwarfs to these low luminosities. Since time-averaged accretion rates as low as a few times 10-14 M/sub sun/ per year are sufficient to reconstitute such envelopes, also on a time scale of several billion years, we suggest that the association of nova-like events with binary systems may not be unique. Accreation of interstellar matter onto isolated white dwarfs may, under some circumstances, be sufficient to rekindle and perhaps rejuvenate the dwarf. Such evolutionary behavior might define a new and distinct class of objects

  8. A Dark Spot on a Massive White Dwarf

    CERN Document Server

    Kilic, Mukremin; Bell, Keaton J; Curd, Brandon; Brown, Warren R; Hermes, J J; Dufour, Patrick; Wisniewski, John P; Winget, D E; Winget, K I

    2015-01-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 min due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B<70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such ecli...

  9. New White Dwarf Stars in the Sloan Digital Sky Survey Data Release 10

    CERN Document Server

    Kepler, S O; Koester, Detlev; Ourique, Gustavo; Kleinman, Scot J; Romero, Alejandra Daniela; Nitta, Atsuko; Eisenstein, Daniel J; Costa, José Eduardo da Silveira; Külebi, Baybars; Jordan, Stefan; Dufour, Patrick; Giommi, Paolo; Rebassa-Mansergas, Alberto

    2014-01-01

    We report the discovery of 9 088 new spectroscopically confirmed white dwarfs and subdwarfs in the Sloan Digital Sky Survey Data Release 10. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), and estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon dominated spectra DQs. We found 1 central star of a planetary nebula, 2 new oxygen spectra on helium atmosphere white dwarfs, 71 DQs, 42 hot DO/PG1159s, 171 white dwarf+main sequence star binaries, 206 magnetic DAHs, 327 continuum dominated DCs, 397 metal polluted white dwarfs, 450 helium dominated white dwarfs, 647 subdwarfs and 6887 new hydrogen dominated white dwarf stars.

  10. Mid-Infrared Observations of the White Dwarf Brown Dwarf Binary GD 1400

    OpenAIRE

    Farihi, J.; Zuckerman, B.; Becklin, E.E.

    2005-01-01

    Fluxes are measured for the DA white dwarf plus brown dwarf pair GD 1400 with the Infrared Array Camera on the {\\em Spitzer Space Telescope}. GD 1400 displays an infrared excess over the entire $3-8\\mu$m region consistent with the presence of a mid- to late-type L dwarf companion. A discussion is given regarding current knowledge of this unique system.

  11. Pulsating White Dwarfs in Cataclysmic Variables: The Marriage of ZZ Cet and Dwarf Nova

    OpenAIRE

    Warner, Brian; Patrick A. Woudt

    2003-01-01

    There are now four dwarf novae known with white dwarf primaries that show large amplitude non-radial oscillations of the kind seen in ZZ Cet stars. We compare the properties of these stars and point out that by the end of the Sloan Digital Sky Survey more than 30 should be known.

  12. THE (DOUBLE) WHITE DWARF BINARY SDSS 1257+5428

    International Nuclear Information System (INIS)

    SDSS 1257+5428 is a white dwarf in a close orbit with a companion that has been suggested to be a neutron star. If so, it hosts the closest known neutron star, and its existence implies a great abundance of similar systems and a rate of white dwarf neutron-star mergers similar to that of the type Ia supernova rate. Here, we present high signal-to-noise spectra of SDSS 1257+5428, which confirm an independent finding that the system is in fact composed of two white dwarfs, one relatively cool and with low mass and the other hotter and more massive. With this, the demographics and merger rate are no longer puzzling (various factors combine to lower the latter by more than 2 orders of magnitude). We show that the spectra are fit well with a combination of two hydrogen model atmospheres, as long as the lines of the higher-gravity component are broadened significantly relative to what is expected from just pressure broadening. Interpreting this additional broadening as due to rotation, the inferred spin period is short, about 1 minute. Similarly rapid rotation is only seen in accreting white dwarfs that are magnetic; empirically, it appears that in non-magnetized white dwarfs, accreted angular momentum is lost by nova explosions before it can be transferred to the white dwarf. This suggests that the massive white dwarf in SDSS 1257+5428 is magnetic as well, with B ? 105 G. Alternatively, the broadening seen in the spectral lines could be due to a stronger magnetic field, of ?106 G. The two models can be distinguished by further observations.

  13. A COMPREHENSIVE SPECTROSCOPIC ANALYSIS OF DB WHITE DWARFS

    International Nuclear Information System (INIS)

    We present a detailed analysis of 108 helium-line (DB) white dwarfs based on model atmosphere fits to high signal-to-noise optical spectroscopy. We derive a mean mass of 0.67 Msun for our sample, with a dispersion of only 0.09 Msun. White dwarfs also showing hydrogen lines, the DBA stars, comprise 44% of our sample, and their mass distribution appears similar to that of DB stars. As in our previous investigation, we find no evidence for the existence of low-mass (M sun) DB white dwarfs. We derive a luminosity function based on a subset of DB white dwarfs identified in the Palomar-Green Survey. We show that 20% of all white dwarfs in the temperature range of interest are DB stars, although the fraction drops to half this value above Teff ? 20,000 K. We also show that the persistence of DB stars with no hydrogen features at low temperatures is difficult to reconcile with a scenario involving accretion from the interstellar medium, often invoked to account for the observed hydrogen abundances in DBA stars. We present evidence for the existence of two different evolutionary channels that produce DB white dwarfs: the standard model where DA stars are transformed into DB stars through the convective dilution of a thin hydrogen layer and a second channel where DB stars retain a helium atmosphere throughout their evolution. We finally demonstrate that the instability strip of pulsating V777 Her white dwarfs contains no non-variables, if the hydrogen content of these stars is properly accounted for.

  14. Thermonuclear detonations ensuing white dwarf mergers

    Science.gov (United States)

    Dan, M.; Guillochon, J.; Brüggen, M.; Ramirez-Ruiz, E.; Rosswog, S.

    2015-12-01

    The merger of two white dwarfs (WDs) has for many years not been considered as the favoured model for the progenitor system of Type Ia supernovae (SNe Ia). But recent years have seen a change of opinion as a number of studies, both observational and theoretical, have concluded that they should contribute significantly to the observed SN Ia rate. In this paper, we study the ignition and propagation of detonation through post-merger remnants and we follow the resulting nucleosynthesis up to the point where a homologous expansion is reached. In our study we cover the entire range of WD masses and compositions. For the emergence of a detonation we study three different setups. The first two are guided by the merger remnants from our earlier simulations, while for the third one the ignitions were set by placing hotspots with properties determined by spatially resolved calculations taken from the literature. There are some caveats to our approach which we investigate. We carefully compare the nucleosynthetic yields of successful explosions with SN Ia observations. Only three of our models are consistent with all the imposed constraints and potentially lead to a standard Type Ia event. The first one, a 0.45 M? helium (He) + 0.9 M? carbon-oxygen (CO) WD system produces a sub-luminous, SN 1991bg-like event while the other two, a 0.45 M? He+1.1 M? oxygen-neon WD system and a 1.05 + 1.05 M? system with two CO WDs, are good candidates for common SNe Ia.

  15. Spin and Magnetism of White Dwarfs

    Science.gov (United States)

    Kissin, Yevgeni; Thompson, Christopher

    2015-08-01

    The magnetism and rotation of white dwarf (WD) stars are investigated in relation to a hydromagnetic dynamo operating in the progenitor during shell burning phases. The downward pumping of angular momentum in the convective envelope, in combination with the absorption of a planet or tidal spin-up from a binary companion, can trigger strong dynamo action near the core-envelope boundary. Several arguments point to the outer core as the source for a magnetic field in the WD remnant: the outer third of a ˜ 0.55 {M}? WD is processed during the shell burning phase(s) of the progenitor; the escape of magnetic helicity through the envelope mediates the growth of (compensating) helicity in the core, as is needed to maintain a stable magnetic field in the remnant; and the intense radiation flux at the core boundary facilitates magnetic buoyancy within a relatively thick tachocline layer. The helicity flux into the growing core is driven by a dynamical imbalance with a latitude-dependent rotational stress. The magnetic field deposited in an isolated massive WD is concentrated in an outer shell of mass ? 0.1 {M}? and can reach ˜10 MG. A buried toroidal field experiences moderate ohmic decay above an age ˜0.3 Gyr, which may lead to growth or decay of the external magnetic field. The final WD spin period is related to a critical spin rate below which magnetic activity shuts off and core and envelope decouple; it generally sits in the range of hours to days. WD periods ranging up to a year are possible if the envelope re-expands following a late thermal pulse.

  16. Quiescent nuclear burning in low-metallicity white dwarfs

    CERN Document Server

    Bertolami, Marcelo M Miller; Garcia-Berro, Enrique

    2013-01-01

    We discuss the impact of residual nuclear burning in the cooling sequences of hydrogen-rich DA white dwarfs with very low metallicity progenitors ($Z=0.0001$). These cooling sequences are appropriate for the study of very old stellar populations. The results presented here are the product of self-consistent, fully evolutionary calculations. Specifically, we follow the evolution of white dwarf progenitors from the zero-age main sequence through all the evolutionary phases, namely the core hydrogen-burning phase, the helium-burning phase, and the thermally pulsing asymptotic giant branch phase to the white dwarf stage. This is done for the most relevant range of main sequence masses, covering the most usual interval of white dwarf masses --- from $0.53\\, M_{\\sun}$ to $0.83\\, M_{\\sun}$. Due to the low metallicity of the progenitor stars, white dwarfs are born with thicker hydrogen envelopes, leading to more intense hydrogen burning shells as compared with their solar metallicity counterparts. We study the phase ...

  17. A DEEPLY ECLIPSING DETACHED DOUBLE HELIUM WHITE DWARF BINARY

    International Nuclear Information System (INIS)

    Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the H? absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M1 = 0.283 ± 0.064 Msun and M2 = 0.274 ± 0.034 Msun, making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.

  18. Complete sample of white dwarfs, hot subdwarfs, and quasars

    International Nuclear Information System (INIS)

    An analysis is made of a complete sample of hot white dwarfs, identified spectroscopically from candidates selected for ultraviolet excess without regard to proper motion. The luminosity function and local space density of hot white dwarfs are derived, giving 1.43 +- .28 per 1000 cubic parsecs for M/sub v/ < 12.75. A model of the local rate of star formation is constructed, which, when combined with white dwarf cooling theory, satisfactorily reproduces the observed luminosity function. The predicted densities at fainter absolute magnitudes also agree with the observations although uncertainties in the data do not allow a determination of the change in star formation rate with time. The model predicts a range of scale heights for hot white dwarfs of 220 to 270 pc, and a total local density of degenerate stars of at least 20 per 1000 cubic parsecs. The assumption of a single population of DA white dwarfs with identical composition is not adequate to explain the observed color--color diagram

  19. The formation of massive white dwarfs in cataclysmic binaries

    International Nuclear Information System (INIS)

    In contrast to the mass spectrum of single white dwarfs which has a single narrow peak at approximately 0.6 solar mass, the observed mass spectrum of white dwarfs of cataclysmic binaries (CB's) shows a rather uniform distribution of the masses in the range approximately 0.3 solar mass to approximately 1.3 solar mass. The formation of CB's with white dwarfs of less than about 0.8 solar mass can be understood as the result of a binary evolution according to low mass Case B or Case C with a subsequent spiraling-in in a common envelope. On the other hand the formation of massive white dwarfs of M approximately > 1 solar mass can be explained as the result of a massive Case B mass transfer yielding a helium star which subsequently undergoes a second Case B mass transfer (so called Case BB evolution). The ultimate product of such an evolution is either a CO-white dwarf with a mass up to the Chandrasekhar limit or a neutron star. The formation of CB's via Case BB evolution requires the binary to undergo at least one, most probably two separate phases of spiraling-in in a common envelope. (Auth.)

  20. White Dwarfs in HETDEX: Preparation for the Survey

    Science.gov (United States)

    Castanheira, B. G.; Winget, D. E.

    2015-06-01

    In the past decade, large scale surveys have discovered a large number of white dwarf stars. Many new aspects have been revealed, including the discovery of the DQVs, close-in non-contact binary systems, and debris disks around many stars. Unfortunately, the population statistics of the newly discovered white dwarf stars are poorly constrained, because of the various methods used to assign objects to fibers for spectroscopic observations in the SDSS survey. A white dwarf sample that is magnitude limited, with well-constrained selection criteria, is needed. The HET Dark Energy Experiment (HETDEX) will use the 9.2 m HET at McDonald Observatory and a set of more than 100 spectrographs to map the three-dimensional positions of one million galaxies, to probe dark energy. In this unique magnitude limited survey, all objects that fall into the fibers will be observed. We expect to observe spectroscopically about 10,00 white dwarf stars. In this paper, we will present the specifications and current status of HETDEX, which will start taking data in Fall 2014. We will also show our first results from observations of white dwarf stars using an identical spectrograph with the 2.7m HJS Telescope and discuss some of the approaches we have been working on in preparation for this exciting survey.

  1. Cool white dwarf companions to four millisecond pulsars

    CERN Document Server

    Bassa, C G; Camilo, F; Cognard, I; Koester, D; Kramer, M; Ransom, S R; Stappers, B W

    2015-01-01

    We report on photometric and spectroscopic observations of white dwarf companions to four binary radio millisecond pulsars, leading to the discovery of companions to PSRs J0614-3329, J1231-1411 and J2017+0603. We place limits on the brightness of the companion to PSR J0613-0200. Optical spectroscopy of the companion to PSR J0614-3329 identifies it as a DA type white dwarf with a temperature of Teff=6460+-80 K, a surface gravity log g=7.0+-0.2 cgs and a mass of Mwd=0.24+-0.04 Msun. We find that the distance to PSR J0614-3329 is smaller than previously estimated, removing the need for the pulsar to have an unrealistically high gamma-ray efficiency. Comparing the photometry with predictions from white dwarf cooling models allows us to estimate temperatures and cooling ages of the companions to PSRs J0613-0200, J1231-1411 and J2017+0603. We find that the white dwarfs in these systems are cool Teff5 Gyr. Thin Hydrogen envelopes are required for these white dwarfs to cool to the observed temperatures, and we sugges...

  2. THE SPECTRAL EVOLUTION OF CONVECTIVE MIXING WHITE DWARFS, THE NON-DA GAP, AND WHITE DWARF COSMOCHRONOLOGY

    International Nuclear Information System (INIS)

    The spectral distribution of field white dwarfs shows a feature called the 'non-DA gap'. As defined by Bergeron et al., this is a temperature range (5100-6100 K) where relatively few non-DA stars are found, even though such stars are abundant on either side of the gap. It is usually viewed as an indication that a significant fraction of white dwarfs switch their atmospheric compositions back and forth between hydrogen-rich and helium-rich as they cool. In this Letter, we present a Monte Carlo model of the Galactic disk white dwarf population, based on the spectral evolution model of Chen and Hansen. We find that the non-DA gap emerges naturally, even though our model only allows white dwarf atmospheres to evolve monotonically from hydrogen-rich to helium-rich through convective mixing. We conclude by discussing the effects of convective mixing on the white dwarf luminosity function and the use thereof for Cosmochronology.

  3. GRMHD formulation of highly super-Chandrasekhar rotating magnetized white dwarfs: stable configurations of non-spherical white dwarfs

    Science.gov (United States)

    Subramanian, Sathyawageeswar; Mukhopadhyay, Banibrata

    2015-11-01

    Here we extend the exploration of significantly super-Chandrasekhar magnetized white dwarfs by numerically computing axisymmetric stationary equilibria of differentially rotating magnetized polytropic compact stars in general relativity (GR), within the ideal magnetohydrodynamic regime. We use a general relativistic magnetohydrodynamic (GRMHD) framework that describes rotating and magnetized axisymmetric white dwarfs, choosing appropriate rotation laws and magnetic field profiles (toroidal and poloidal). The numerical procedure for finding solutions in this framework uses the 3 + 1 formalism of numerical relativity, implemented in the open source XNS code. We construct equilibrium sequences by varying different physical quantities in turn, and highlight the plausible existence of super-Chandrasekhar white dwarfs, with masses in the range of 2-3 solar mass, with central (deep interior) magnetic fields of the order of 1014 G and differential rotation with surface time periods of about 1-10 s. We note that such white dwarfs are candidates for the progenitors of peculiar, overluminous Type Ia supernovae, to which observational evidence ascribes mass in the range 2.1-2.8 solar mass. We also present some interesting results related to the structure of such white dwarfs, especially the existence of polar hollows in special cases.

  4. On high proper motion white dwarfs from photographic surveys

    CERN Document Server

    Reylé, C; Creze, M; Reyle, Celine; Robin, Annie C.; Creze, Michel

    2001-01-01

    The interpretation of high proper motion white dwarfs detected by Oppenheimer et al (2001) was the start of a tough controversy. While the discoverers identify a large fraction of their findings as dark halo members, others interpret the same sample as essentially made of disc and/or thick disc stars. We use the comprehensive description of galactic stellar populations provided by the "Besancon" model to produce a realistic simulation of Oppenheimer et al. data, including all observational selections and calibration biases. The conclusion is unambiguous: Thick disc white dwarfs resulting from ordinary hypotheses on the local density and kinematics are sufficient to explain the observed objects, there is no need for halo white dwarfs. This conclusion is robust to reasonable changes in model ingredients. The main cause of the misinterpretation seems to be that the velocity distribution of a proper motion selected star sample is severely biased in favour of high velocities. This has been neglected in previous an...

  5. Detection of a white dwarf in a visual binary system

    Science.gov (United States)

    Boehm-Vitense, Erika

    1992-01-01

    The F6 giant HD 160365 was detected to have a white dwarf companion about 8 arcsec south of the star. The UV energy distribution observed with IUE shows that the white dwarf has an effective temperature of 23,000 +/- 2000 K. If log g = 8 the Lya profile indicates an effective temperature around 24,500 K. Using the theoretical models by Wesemael et al. (1980) one finds a visual magnitude of m(V) about 16.5. For T(eff) = 24,500 K one expects for a white dwarf a luminosity of log L/L(solar) about 1.3 and M(V) about 10.67. This gives a distance modulus for the system of m(V) - M(V) = 5.83 and an absolute magnitude M(V)= 0.3 for the giant.

  6. Asteroseismology of pulsating DA white dwarfs with fully evolutionary models

    Directory of Open Access Journals (Sweden)

    Althaus L.G.

    2013-03-01

    Full Text Available We present a new approach for asteroseismology of DA white dwarfs that consists in the employment of a large set of non-static, physically sound, fully evolutionary models representative of these stars. We already have applied this approach with success to pulsating PG1159 stars (GW Vir variables. Our white dwarf models, which cover a wide range of stellar masses, effective temperatures, and envelope thicknesses, are the result of fully evolutionary computations that take into account the complete history of the progenitor stars from the ZAMS. In particular, the models are characterized by self-consistent chemical structures from the centre to the surface, a crucial aspect of white dwarf asteroseismology. We apply this approach to an ensemble of 44 bright DAV (ZZ Ceti stars.

  7. The isolated massive DA white dwarf GD 50

    International Nuclear Information System (INIS)

    Analysis of accurate hydrogen line profiles from optical and ultraviolet spectrophotometry shows that the hot DA white dwarf GD 50 (WD 0346-011) has an exceptionally high surface gravity of log g = 9.0 + or - 0.15; the derived parameters imply a mass of 1.2 solar mass and a radius of 0.0057 solar mass, if an interior composed of carbon and oxygen is assumed. As such, it is the first well-studied, isolated DA white dwarf with a likely mass larger than that of Sirius B. Moreover, the derived mass is large enough to consider the possibility that the interior is composed of oxygen, neon, and magnesium. If GD 50 has evolved as a single object, it should be quite young. Alternatively, the star could have formed as the result of a merger of a close pair of white dwarfs. 48 refs

  8. The formation of DA white dwarfs with thin hydrogen envelopes

    CERN Document Server

    Althaus, L G; Corsico, A H; García-Berro, E; Gil-Pons, P

    2005-01-01

    We study the formation and evolution of DA white dwarfs, the progenitors of which have experienced a late thermal pulse (LTP) shortly after the departure from the thermally pulsing AGB. To this end, we compute the complete evolution of an initially 2.7 Mo star all the way from the zero-age main sequence to the white dwarf stage. We find that most of the original H-rich material of the post-AGB remnant is burnt during the post-LTP evolution, with the result that, at entering its white dwarf cooling track, the remaining H envelope becomes 10^-6 Mo in agreement with asteroseismological inferences for some ZZ Ceti stars.

  9. Detached white-dwarf close-binary stars -- CV's extended family

    OpenAIRE

    Marsh, T. R.

    1999-01-01

    I review detached binaries consisting of white dwarfs with either other white dwarfs or low mass main-sequence stars in tight orbits around them. Orbital periods have been measured for 15 white dwarf/white dwarf systems and 22 white dwarf/M dwarf systems. While small compared to the number of periods known for CVs (>300), I argue that each variety of detached system has a space density an order of magnitude higher that of CVs. While theory matches the observed distribution o...

  10. Revisiting the luminosity function of single halo white dwarfs

    Science.gov (United States)

    Cojocaru, Ruxandra; Torres, Santiago; Althaus, Leandro G.; Isern, Jordi; García-Berro, Enrique

    2015-09-01

    Context. White dwarfs are the fossils left by the evolution of low- and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. Aims: We present a population synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. Methods: We employ an up-to-date population synthesis code based on Monte Carlo techniques, which incorporates the most recent and reliable cooling sequences for metal-poor progenitors as well as an accurate modeling of the observational biases. Results: We find that because the observed sample of halo white dwarfs is restricted to the brightest stars, only the hot branch of the white dwarf luminosity function can be used for these purposes, and that its shape function is almost insensitive to the most relevant inputs, such as the adopted cooling sequences, the initial mass function, the density profile of the stellar spheroid, or the adopted fraction of unresolved binaries. Moreover, since the cutoff of the observed luminosity has not yet been determined only the lower limits to the age of the halo population can be placed. Conclusions: We conclude that the current observed sample of the halo white dwarf population is still too small to obtain definite conclusions about the properties of the stellar halo, and the recently computed white dwarf cooling sequences, which incorporate residual hydrogen burning, should be assessed using metal-poor globular clusters.

  11. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    International Nuclear Information System (INIS)

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (??) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of ?? ?< 10-11 ?B. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound

  12. White dwarf masses in cataclysmic variables

    Science.gov (United States)

    Wijnen, T. P. G.; Zorotovic, M.; Schreiber, M. R.

    2015-05-01

    Context. The white dwarf (WD) mass distribution of cataclysmic variables (CVs) has recently been found to dramatically disagree with the predictions of the standard CV formation model. The high mean WD mass among CVs is not imprinted in the currently observed sample of CV progenitors and cannot be attributed to selection effects. Two possibilities have been put forward to solve this issue: either the WD grows in mass during CV evolution, or in a significant fraction of cases, CV formation is preceded by a (short) phase of thermal time-scale mass transfer (TTMT) in which the WD gains a sufficient amount of mass. Aims: Here we investigate if and under which conditions a phase of TTMT before CV formation or mass growth in CVs can bring theoretical predictions and observations into agreement. Methods: We employed binary population synthesis models using the binary_c/nucsyn code to simulate the present intrinsic CV population. To that end we incorporated aspects specific to CV evolution such as an appropriate mass-radius relation of the donor star and a more detailed prescription for the critical mass ratio for dynamically unstable mass transfer. We have also implemented a previously suggested wind from the surface of the WD during TTMT and tested the idea of WD mass growth during the CV phase by arbitrarily changing the accretion efficiency. We compare the model predictions of the TTMT and the mass growth model with the characteristics of CVs derived from observed samples. Results: We find that mass growth of the WDs in CVs fails to reproduce the observed WD mass distribution. In the case of TTMT, we are able to produce a large number of massive WDs if we assume significant mass loss from the surface of the WD during the TTMT phase. However, the model still produces too many CVs with helium WDs. Moreover, the donor stars are evolved in many of these post-TTMT CVs, which contradicts the observations. Conclusions: We conclude that in our current framework of CV evolution neither TTMT nor WD mass growth can fully explain either the observed WD mass or the period distribution in CVs.

  13. Globular cluster interstellar media: ionized and ejected by white dwarfs

    Science.gov (United States)

    McDonald, I.; Zijlstra, A. A.

    2015-01-01

    Ultraviolet radiation from white dwarfs can efficiently clear Galactic globular clusters (GCs) of their intracluster medium (ICM). This solves the problem of the missing ICM in clusters, which is otherwise expected to build up to easily observable quantities. To show this, we recreate the ionizing flux in 47 Tuc, following randomly generated stars through their asymptotic giant branch (AGB), post-AGB and white dwarf evolution. Each white dwarf can ionize all the material injected into the cluster by stellar winds for ˜3 Myr of its evolution: ˜40 such white dwarfs exist at any point. Every GC's ICM should be ionized. The neutral cloud in M15 should be caused by a temporary overdensity. A pressure-supported ICM will expand over the cluster's tidal radius, where it will be truncated, allowing Jeans escape. The modelled Jeans mass-loss rate approximates the total stellar mass-loss rate, allowing efficient clearing of ICM. Any cluster's ICM mass should equal the mass injected by its stars over the sound travel time between the cluster core and tidal radius. We predict ˜11.3 M? of ICM within 47 Tuc, cleared over ˜4 Myr, compared to a dynamical time-scale of 4.3 Myr. We present a new mass hierarchy, discussing the transition between GCs dwarf galaxies.

  14. The White Dwarf in AE Aqr Brakes Harder

    OpenAIRE

    Mauche, Christopher W.

    2006-01-01

    Taking advantage of the very precise de Jager et al. optical white dwarf orbit and spin ephemerides; ASCA, XMMN, and Chandra X-ray observations spread over 10 yrs; and a cumulative 27 yr baseline, we have found that in recent years the white dwarf in AE Aqr is spinning down at a rate that is slightly faster than predicted by the de Jager et al. spin ephemeris. At the present time, the observed period evolution is consistent with either a cubic term in the spin ephemeris with...

  15. Do Some X-ray Stars Have White Dwarf Companions?

    Science.gov (United States)

    McCollum, Bruce

    1995-01-01

    Some Be stars which are intermittent C-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be+WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 1OOOA. Either the detection or the nondetection of Be+WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.

  16. Do some x-ray stars have white dwarf companions

    Science.gov (United States)

    Mccollum, Bruce

    1995-01-01

    Some Be stars which are intermittent X-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be + WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 100 A. Either the detection or the nondetection of Be + WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.

  17. Cool White Dwarfs in the Sloan Digital Sky Survey

    OpenAIRE

    Kilic, Mukremin; Munn, Jeffrey A.; Harris, Hugh C.; Liebert, James; von Hippel, Ted; Williams, Kurtis A.; Metcalfe, Travis S.; Winget, D. E.; Levine, Stephen E.

    2005-01-01

    A reduced proper motion diagram utilizing Sloan Digital Sky Survey (SDSS) photometry and astrometry and USNO-B plate astrometry is used to separate cool white dwarf candidates from metal-weak, high-velocity main sequence Population II stars (subdwarfs) in the SDSS Data Release 2 imaging area. Follow-up spectroscopy using the Hobby-Eberly Telescope, the MMT, and the McDonald 2.7m Telescope is used to demonstrate that the white dwarf and subdwarf loci separate cleanly in the r...

  18. Magnetic Field Evolution in an Accreting White Dwarf

    OpenAIRE

    Cumming, Andrew

    2002-01-01

    I discuss the evolution of the magnetic field of an accreting white dwarf. I show that the ohmic decay time is 7-12 billion years for the lowest order decay mode, almost independent of core temperature or mass. I then show that the magnetic field structure is substantially altered by accretion if the white dwarf mass increases at a rate more than 1-5 x 10^(-10) solar masses per year. I discuss the implications of this result for observed systems, including the possible evolu...

  19. The White Dwarf Companions of 56 Per and HR 3643

    OpenAIRE

    Landsman, Wayne; Simon, Theodore; Bergeron, Pierre

    1995-01-01

    We have obtained low-dispersion IUE spectra of the stars 56 Persei (F4 V) and HR 3643 (F7 II), as part of a survey of late-type stars with a 1565 A flux excess in the TD-1 ultraviolet sky survey. The IUE spectrum of each star reveals the presence of a hot white dwarf companion. We fit the Ly alpha profile and ultraviolet continuum using pure hydrogen models, but the distance of the primary star is also needed to uniquely constrain the white dwarf parameters. We derive Teff =...

  20. The formation of DA white dwarfs with thin hydrogen envelopes

    OpenAIRE

    Althaus, L. G.; Bertolami, M. M. Miller; Córsico, A. H.; García-Berro, E.; Gil-Pons, P.

    2005-01-01

    We study the formation and evolution of DA white dwarfs, the progenitors of which have experienced a late thermal pulse (LTP) shortly after the departure from the thermally pulsing AGB. To this end, we compute the complete evolution of an initially 2.7 Mo star all the way from the zero-age main sequence to the white dwarf stage. We find that most of the original H-rich material of the post-AGB remnant is burnt during the post-LTP evolution, with the result that, at entering ...

  1. Binary white dwarfs in the halo of the Milky Way

    OpenAIRE

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G A; Helmi, Amina; Zwart, Simon Portegies

    2014-01-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~ 3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the presen...

  2. The ELM Survey. IV. 24 White Dwarf Merger Systems

    OpenAIRE

    Kilic, Mukremin; Brown, Warren R.; Prieto, Carlos Allende; Kenyon, S J; Heinke, Craig O.; Agueros, M. A.; Kleinman, S.J.

    2012-01-01

    We present new radial velocity and X-ray observations of extremely low-mass (ELM, 0.2 Msol) white dwarf candidates in the Sloan Digital Sky Survey (SDSS) Data Release 7 area. We identify seven new binary systems with 1-18 h orbital periods. Five of the systems will merge due to gravitational wave radiation within 10 Gyr, bringing the total number of merger systems found in the ELM Survey to 24. The ELM Survey has now quintupled the known merger white dwarf population. It has...

  3. The formation of massive white dwarfs in cataclysmic binaries

    International Nuclear Information System (INIS)

    White dwarfs (WD's) in cataclysmic binaries (CB's) contrast with single white dwarfs in that, while the masses of most single WD's fall into a narrow range of --0.12 M/sub sub solar/, the masses of WD's in CB's are distributed quite uniformly over almost the entire permitted mass range. This makes the discussion of the formation of higher mass (?1 M/sub sub solar/) WD's of particular interest, and may shed some light on the evolution of CB's in general

  4. Astro-archaeology - The white dwarfs and hot subwarfs

    Science.gov (United States)

    Van Horn, Hugh M.

    1991-01-01

    By 'astroarcheology' is presently meant the effort to ascertain the Galaxy's past in light of what is found in its most ancient, white dwarf constituents. Attention is given to the controversial role of the hot subdwarfs and the theory of white dwarf spectral evolution, as well as to the concept of the 'Whole Earth Telescope', involving continuous photometric coverage of rapidly varying astronomical sources and thereby eliminating the otherwise troublesome diurnal gaps in data. Much higher resolution of the power spectra of these objects is attainable by these means than any current alternative.

  5. Evolutionary Models of White Dwarfs with Helium Cores

    OpenAIRE

    Driebe, T.; Schoenberner, D; Bloecker, T.; Herwig, F.

    1998-01-01

    We present seven evolutionary tracks for low-mass white dwarfs with helium cores, ranging in mass from 0.179 to 0.414 Msol. We generated the pre-white dwarf models from a 1 Msol sequence extending up to the tip of its red-giant branch by applying high mass-loss rates at appropriate positions, and we followed their evolution across the Hertzsprung-Russell diagram and down the cooling path. We discuss the internal structures and cooling properties of these new models and compa...

  6. Evolution and colors of helium-core white dwarf stars with high-metallicity progenitors

    OpenAIRE

    Althaus, L. G.; Panei, J. A.; Romero, A. D.; R. D. Rohrmann; Córsico, A. H.; García-Berro, E.; Bertolami, M. M. Miller

    2009-01-01

    Motivated by the recent detection of single and binary He-core white dwarfs in metal-rich clusters, we present a full set of evolutionary calculations and colors appropriate for the study of such white dwarfs. The paper is also aimed at investigating whether stable hydrogen burning may constitute a main source of energy for massive He-core white dwarfs resulting from high-metallicity progenitors. White dwarf sequences are derived by taking into account the evolutionary histo...

  7. Searching for white dwarfs candidates in Sloan Digital Sky Survey Data

    OpenAIRE

    Nale?yty, Miros?aw; Majczyna, Agnieszka; Ciechanowska, Anna; Madej, Jerzy

    2008-01-01

    Large amount of observational spectroscopic data are recently available from different observational projects, like Sloan Digital Sky Survey. It's become more urgent to identify white dwarfs stars based on data itself i.e. without modelling white dwarf atmospheres. In particular, existing methods of white dwarfs identification presented in Kleinman et al. (2004) and in Eisenstein et al. (2006) did not allow to find all the white dwarfs in examined data. We intend to test var...

  8. New white dwarf stars in the Sloan Digital Sky Survey Data Release 10

    OpenAIRE

    Kepler, S.O.; Pelisoli, Ingrid; Koester, Detlev; Ourique, Gustavo; Kleinman, Scot J.; Romero, Alejandra Daniela; Nitta, Atsuko; Eisenstein, Daniel J.; Costa, José Eduardo da Silveira; Külebi, Baybars; Jordan, Stefan; Dufour, Patrick; Giommi, Paolo; Rebassa-Mansergas, Alberto

    2014-01-01

    We report the discovery of 9 089 new spectroscopically confirmed white dwarfs and subdwarfs in the Sloan Digital Sky Survey Data Release 10. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), and estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon dominated spectra DQs. We found 1 central star of a planetary nebula, 2 new oxygen spect...

  9. High-speed Photometric Observations of ZZ Ceti White Dwarf Candidates

    OpenAIRE

    Green, E M; Limoges, M. -M.; Gianninas, A.; Bergeron, P.; Fontaine, G.; Dufour, P; O'Malley, C. J.; Guvenen, B.; Biddle, L. I.; Pearson, K.; Deyoe, T. W.; Bullivant, C. W.; Hermes, J. J.; Van Grootel, V.; Grosjean, M

    2015-01-01

    We present high-speed photometric observations of ZZ Ceti white dwarf candidates drawn from the spectroscopic survey of bright DA stars from the Villanova White Dwarf Catalog by Gianninas et al., and from the recent spectroscopic survey of white dwarfs within 40 parsecs of the Sun by Limoges et al. We report the discovery of six new ZZ Ceti pulsators from these surveys, and several photometrically constant DA white dwarfs, which we then use to refine the location of the ZZ C...

  10. Testing White Dwarf Crystallization Theory with Asteroseismology of the Massive Pulsating DA Star BPM 37093

    OpenAIRE

    Metcalfe, T. S.; M. H. Montgomery; Kanaan, A.

    2004-01-01

    It was predicted more than 40 years ago that the cores of the coolest white dwarf stars should eventually crystallize. This effect is one of the largest sources of uncertainty in white dwarf cooling models, which are now routinely used to estimate the ages of stellar populations in both the Galactic disk and the halo. We are attempting to minimize this source of uncertainty by calibrating the models, using observations of pulsating white dwarfs. In a typical mass white dwarf...

  11. HST Observations of the White Dwarf Cooling Sequence of M4

    OpenAIRE

    Hansen, Brad; Richer, Harvey; Fahlman, Greg; Stetson, Peter; Brewer, James; Currie, Thayne; Gibson, Brad; Ibata, Rodrigo; Rich, R. Michael; Shara, Michael

    2004-01-01

    We investigate in detail the white dwarf cooling sequence of the globular cluster Messier 4. In particular we study the influence of various systematic uncertainties, both observational and theoretical, on the determination of the cluster age from the white dwarf cooling sequence. These include uncertainties in the distance to the cluster and the extinction along the line of sight, as well as the white dwarf mass, envelope and core compositions and the white dwarf --main seq...

  12. Hot C-rich white dwarfs: testing the DB-DQ transition through pulsations

    OpenAIRE

    Córsico, A. H.; Romero, A. D.; Althaus, L. G.; García-Berro, E.

    2009-01-01

    Hot DQ white dwarfs constitute a new class of white dwarf stars, uncovered recently within the framework of the SDSS project. Recently, three hot DQ white dwarfs have been reported to exhibit photometric variability with periods compatible with pulsation g-modes. Here, we present a nonadiabatic pulsation analysis of the recently discovered carbon-rich hot DQ white dwarf stars. One of our main aims is to test the convective-mixing picture for the origin of hot DQs through the...

  13. Searching for benchmark systems containing ultra-cool dwarfs and white dwarfs

    Directory of Open Access Journals (Sweden)

    Pinfield D.J.

    2013-04-01

    Full Text Available We have used the 2MASS all-sky survey and WISE to look for ultracool dwarfs that are part of multiple systems containing main sequence stars. We cross-matched L dwarf candidates from the surveys with Hipparcos and Gliese stars, finding two new systems. We consider the binary fraction for L dwarfs and main sequence stars, and further assess possible unresolved multiplicity within the full companion sample. This analysis shows that some of the L dwarfs in this sample might actually be unresolved binaries themselves. We have also identified a sample of common proper motion systems in which a main sequence star has a white dwarf as wide companion. These systems can help explore key issues in star evolution theory, as the initial-final mass relationship of white dwarfs, or the chromospheric activity-age relationship for stars still in the main sequence. Spectroscopy for 50 white dwarf candidates, selected from the SuperCOSMOS Science Archive, was obtained. We have also observed 6 of the main sequence star companions, and have estimated their effective temperatures, rotational and microturbulent velocities and metallicities.

  14. GRMHD formulation of highly super-Chandrasekhar rotating magnetised white dwarfs: Stable configurations of non-spherical white dwarfs

    CERN Document Server

    Subramanian, Sathyawageeswar

    2015-01-01

    Here we extend the exploration of significantly super-Chandrasekhar magnetised white dwarfs by numerically computing axisymmetric stationary equilibria of differentially rotating magnetised polytropic compact stars in general relativity (GR), within the ideal magnetohydrodynamic regime. We use a general relativistic magnetohydrodynamic (GRMHD) framework that describes rotating and magnetised axisymmetric white dwarfs, choosing appropriate rotation laws and magnetic field profiles (toroidal and poloidal). The numerical procedure for finding solutions in this framework uses the 3+1 formalism of numerical relativity, implemented in the open source XNS code. We construct equilibrium sequences by varying different physical quantities in turn, and highlight the plausible existence of super-Chandrasekhar white dwarfs, with masses in the range of 2-3 solar mass, with central (deep interior) magnetic fields of the order of $10^{14}$ Gauss and differential rotation with surface time periods of about 1-10 seconds. We no...

  15. An independent test of the photometric selection of white dwarf candidates using LAMOST DR3

    Science.gov (United States)

    Gentile Fusillo, N. P.; Rebassa-Mansergas, A.; Gänsicke, B. T.; Liu, X.-W.; Ren, J. J.; Koester, D.; Zhan, Y.; Hou, Y.; Wang, Y.; Yang, M.

    2015-09-01

    In previous work by Gentile Fusillo et al., we developed a selection method for white dwarf candidates which makes use of photometry, colours and proper motions to calculate a probability of being a white dwarf (PWD). The application of our method to the Sloan Digital Sky Survey (SDSS) data release 10 resulted in ?66 000 photometrically selected objects with a derived PWD, approximately ?21 000 of which are high-confidence white dwarf candidates. Here, we present an independent test of our selection method based on a sample of spectroscopically confirmed white dwarfs from the Large Sky Area Multi-Fiber Spectroscopic Telescope (LAMOST) survey. We do this by cross-matching all our ?66 000 SDSS photometric white dwarf candidates with the over 4 million spectra available in the third data release of LAMOST. This results in 1673 white dwarf candidates with no previous SDSS spectroscopy, but with available LAMOST spectra. Among these objects, we identify 309 genuine white dwarfs. We find that our PWD can efficiently discriminate between confirmed LAMOST white dwarfs and contaminants. Our white dwarf candidate selection method can be applied to any multiband photometric survey and in this work we conclusively confirm its reliability in selecting white dwarfs without recourse to spectroscopy. We also discuss the spectroscopic completeness of white dwarfs in LAMOST, as well as deriving effective temperatures, surface gravities and masses for the hydrogen-rich atmosphere white dwarfs in the newly identified LAMOST sample.

  16. Hubble Space Telescope high resolution spectroscoy of the exposed white dwarf in the dwarf nova VW Hydri in quiescence: A rapidly rotating white dwarf

    Science.gov (United States)

    Sion, Edward M.; Huang, Min; Szkody, Paula; Cheng, Fu-Hua

    1995-01-01

    We obtained a far-ultraviolet spectrum of the dwarf nova VW Hyi in quiescence, with the Hubble Space Telescope Goddard High Resolution Spectrograph covering the region of the Si iv lambda(lambda)1393, 1402 resonance doublet. The broad, shallow Si iv doublet feature is fully resolved, has a total equivalent width of 2.8 A, and is the first metal absorption feature to be clearly detected in the exposed white dwarf. Our synthetic spectral analysis, using a model grid constructed with the code TLUSTY, resulted in a reasonable fit to a white dwarf photosphere with T(sub eff) = 22,000 +/- 2000 K, log g = 8.0 +/- 0.3, an approximately solar Si/H abundance, and a rotational velocity, v sin i approximately equal to 600 km/s. This rotation rate, while not definitive because it is based upon just one line transition, is 20% of the Keplerian (breakup) velocity of the white dwarf and hence does not account for the unexpectedly low boundary-layer luminosity inferred from the soft-X-ray/extreme ultra-violet bands where most of the boundary-layer luminosity should be radiated. The predicted boundary-layer luminosity for a 0.6 solar mass white dwarf accreting at the rate 10(exp -10) solar mass/yr and rotating at 600 km/s, corresponding to VW Hyi in quiescence, is 2 x 10(exp 32) ergs/s when proper account is taken of the rotational kinetic energy going into spinning up the white dwarf. If the boundary-layer area is equal to that of the white dwarf, then T(sub bl) = 24,000 K. This is essentially identical to the photspheric luminosity and temperature determined in far-ultraviolet photospheric analyses. If the boundary-layer area is 10(exp -3) of the white dwarf surface area, then T(sub bl) = 136,000 K.

  17. Keck Speckle Imaging of the White Dwarf G29-38: No Brown Dwarf Companion Detected

    OpenAIRE

    Kuchner, Marc J.; Koresko, Christopher D.; Brown, Michael E.

    2000-01-01

    The white dwarf Giclas 29-38 has attracted much attention due to its large infrared excess and the suggestion that excess might be due to a companion brown dwarf. We observed this object using speckle interferometry at the Keck telescope, obtaining diffraction-limited resolution (55 milliarcseconds) at K band, and found it unresolved. Assuming the entire K band excess is due to a single point-like companion, we place an upper limit on the binary separation of 30 milliarcseco...

  18. White Dwarf - Red Dwarf Systems Resolved with the Hubble Space Telescope: I. First Results

    OpenAIRE

    Farihi, J.; D. W. Hoard; Wachter, S.

    2006-01-01

    First results are presented for a Hubble Space Telescope Advanced Camera for Surveys snapshot study of white dwarfs with likely red dwarf companions. Of 48 targets observed and analyzed so far, 27 are totally or partially resolved into two or more components, while an additional 15 systems are almost certainly unresolved binaries. These results provide the first direct empirical evidence for a bimodal distribution of orbital separations among binary systems containing at lea...

  19. The Frequency of Debris Disks at White Dwarfs

    CERN Document Server

    Barber, Sara D; Kilic, Mukremin; Leggett, S K; Dufour, P; Bloom, J S; Starr, D L

    2012-01-01

    We present near- and mid-infrared photometry and spectroscopy from PAIRITEL, IRTF, and Spitzer of a metallicity-unbiased sample of 117 cool, hydrogen-atmosphere white dwarfs from the Palomar-Green survey and find five with excess radiation in the infrared, translating to a 4.3+2.7-1.2% frequency of debris disks. This is slightly higher than, but consistent with the results of previous surveys. Using an initial-final mass relation, we apply this result to the progenitor stars of our sample and conclude that 1-7Msol stars have at least a 4.3% chance of hosting planets; an indirect probe of the intermediate-mass regime eluding conventional exoplanetary detection methods. Alternatively, we interpret this result as a limit on accretion timescales as a fraction of white dwarf cooling ages; white dwarfs accrete debris from several generations of disks for ~10Myr. The average total mass accreted by these stars ranges from that of 200km asteroids to Ceres-sized objects, indicating that white dwarfs accrete moons and d...

  20. White Dwarf Stars in the HET Dark Energy Experiment

    Science.gov (United States)

    Castanheira, Barbara; Winget, D.; Gebhardt, K.; Allende Prieto, C.; Shetrone, M.; Odewahn, S.; Montgomery, M. H.

    2012-01-01

    In this poster, we present the project that will survey all white dwarf stars observed in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Visible Integral-field Replicable Unit Spectrograph (VIRUS) observations in parallel mode. The final product will be a unique magnitude-limited catalog of as many as 10,000 stars. Since we will use data from an Integral-field Units, our survey will be free of the selection biases that plagued preceding surveys, e.g. the Sloan Digital Sky Survey (SDSS). The critical advantages of our program are our ability to produce a white dwarf luminosity function five magnitudes fainter than the one derived from the Palomar-Green survey and with a similar number of faint stars as the one from SDSS. Our project will help to derive a more precise age of the Galactic disk, and will provide fundamental information about the white dwarf population and the star formation history of the Milky Way, impacting the white dwarf field and many other fields of astronomy.

  1. Revisiting the luminosity function of single halo white dwarfs

    CERN Document Server

    Cojocaru, R; Althaus, L G; Isern, J; García-Berro, E

    2015-01-01

    White dwarfs are the fossils left by the evolution of low-and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. We present a population synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. We employ an up-to-date population synthesis code based on Monte Carlo techniques, that incorporates the most recent and reliable cooling sequences for metal poor progenitors as well as an accurate modeling of the observational biases. We find that because the observed sample of halo white dwarfs is restricted to the brightest stars only the hot branch of the white dwarf luminosity function can be used for such purposes, and that its shape function is almost insensitive to the most relevant inputs, like the adopted cooling sequences, the initial mass function, the density profile of the stellar spher...

  2. The Mass Distribution of White Dwarfs: An Unwavering Obsession

    CERN Document Server

    Bergeron, P; Boudreault, S

    2006-01-01

    We discuss some of our current knowledge of the mass distribution of DA and non-DA stars using various methods for measuring white dwarf masses including spectroscopic, trigonometric parallax, and gravitational redshift measurements, with a particular emphasis on the problems encountered at the low end of the cooling sequence where energy transport by convection becomes important.

  3. The frequency of planetary debris around young white dwarfs

    CERN Document Server

    Koester, Detlev; Farihi, Jay

    2014-01-01

    (Abridged) We present the results of the first unbiased survey for metal pollution among H-atmosphere (DA) white dwarfs with cooling ages of 20-200 Myr and 17000K 0.8 Msun is found to be currently accreting, which suggests a large fraction are double-degenerate mergers, and the merger discs do not commonly reform large planetesimals or otherwise pollute the remnant. We reconfirm our previous finding that two white dwarf Hyads are currently accreting rocky debris. At least 27%, and possibly up to ~50%, of all white dwarfs with cooling ages 20-200 Myr are accreting planetary debris. At Teff > 23000K, the luminosity of white dwarfs is likely sufficient to vaporize circumstellar dust, and hence no stars with strong metal-pollution are found. However, planetesimal disruption events should occur in this cooling age and Teff range as well, and likely result in short phases of high mass transfer rates. It appears that the formation of rocky planetary material is common around 2-3 Msun late B- and A-type stars.

  4. Mass limits for non-degenerate white dwarfs

    International Nuclear Information System (INIS)

    We obtain the dependence of the upper mass limit of white dwarf stars on the specific entropy per electron. For non-degenerate stars significantly larger masses are found. Stellar collapse as an entropy-producing process can therefore have a self-stabilizing influence on the stellar evolution. (orig.)

  5. Electrons as quasi-bosons in magnetic white dwarfs

    CERN Document Server

    Dryzek, J; Muñoz, G; Singleton, D; Dryzek, Jerzy; Kato, Akira; Munoz, Gerardo; Singleton, Douglas

    2002-01-01

    A white dwarf star achieves its equilibrium from the balancing of the gravitational compression against the Fermi degeneracy pressure of the electron gas. In field theory there are examples (e.g. the monopole-charge system) where a strong magnetic field can transform a boson into a fermion or a fermion into a boson. In some condensed matter systems (e.g. fractional quantum Hall systems) a strong magnetic field can transform electrons into effective fermions, or effective anyons. Based on these examples we investigate the possibility that the strong magnetic fields of some white dwarfs may transform some fraction of the electrons into effective bosons. This could have consequences for the structure of highly magnetized white dwarfs. It would alter the mass-radius relationship, and in certain instances one could envision a scenario where a white dwarf below the Chandrasekhar limit could nevertheless collapse into a neutron star due to a weakening of the electron degeneracy pressure. In addition the transformati...

  6. Central stars of planetary nebulae: The white dwarf connection

    CERN Document Server

    Werner, K

    2011-01-01

    This paper is focused on the transition phase between central stars and white dwarfs, i.e. objects in the effective temperature range 100,000 - 200,000 K. We confine our review to hydrogen-deficient stars because the common H-rich objects are subject of the paper by Ziegler et al. in these proceedings. We address the claimed iron-deficiency in PG1159 stars and [WC] central stars. The discovery of new Ne VII and Ne VIII lines in PG1159 stars suggests that the identification of O VII and O VIII lines that are used for spectral classification of [WCE] stars is wrong. We then present evidence for two distinct post-AGB evolutionary sequences for H-deficient stars based on abundance analyses of the He-dominated O(He) stars and the hot DO white dwarf KPD0005+5106. Finally, we report on evidence for an H-deficient post-super AGB evolution sequence represented by the hottest known, carbon/oxygen-atmosphere white dwarf H1504+65 and the recently discovered carbon-atmosphere "hot DQ" white dwarfs.

  7. First Detection of Krypton and Xenon in a White Dwarf

    Science.gov (United States)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-01-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.

  8. Three eclipsing white dwarf plus main sequence binaries from SDSS

    International Nuclear Information System (INIS)

    We identify SDSS 0110+1326, SDSS 0303+0054 and SDSS 1435+3733 as three eclipsing white dwarf plus main sequence binaries from the Sloan Digital Sky Survey, and report on their follow-up observations. Orbital periods for the three systems are established through multi-season photometry. Time-resolved spectroscopic observations lead to the determination of the radial velocities of the secondary stars. A decomposition technique of the SDSS spectra is used to estimate the surface gravities and effective temperatures of the white dwarfs, as well as the spectral types of the secondaries. By combining the constraints from the spectral decomposition, the radial velocity data and the modeling of the systems' light curves, we determine the physical parameters of the stellar components. Two of the white dwarfs are of low mass (Mwd ? 0.4 Mo-dot), while the third white dwarf is unusually massive (MWD ? 0.8-0.9 Mo-dot) for a post-common envelope system.

  9. The evolutionary thermal response of a white dwarf to compressional heating by periodic dwarf nova accretion events

    Science.gov (United States)

    Sion, Edward M.

    1995-01-01

    The thermal response of the underlying white dwarf in a cataclysmic variable to the periodic deposition of mass by a dwarf nova accretion event is simulated with a quasi-static stellar evolution code incorporating time variable accretion. After accretion at rates typical of dwarf nova outbursts (approx. 10(exp -7) to 10(exp -8)/yr) for outburst durations of days to 2 weeks, the radial infall is shut off and the evolution of the white dwarf is followed during dwarf nova quiescence. The matter is assumed to accrete softly with the same entropy as the white dwarf outer layers. In some sequences accretion is resumed and shut off repeatedly at intervals of months to simulate the thermal evolution of the white dwarf in typical dwarf novae such as SS Cygni and U Geminorum, between successive dwarf nova outbursts. Thermal timescales for white dwarf cooling following a given dwarf nova outburst depend upon the accretion rate, outburst duration, and white dwarf mass; they are nominally in the range 0.2-0.8 years for parameters typical of dwarf novae (white dwarf masses in the range 1.2-0.6 solar mass, outburst accretion rates in the range 1 x 10(exp -7)-10(exp -8) solar mass/yr, outburst durations in the range 7-14, days and quiescent intervals of 30-300 days). If the e-folding timescale of the white dwarf cooling is shorter than the quiescent interval bewteen outbursts, then the effect of compressional heating is too small to be observationally detectable.

  10. White Dwarf/M Dwarf Binaries as Single Degenerate Progenitors of Type Ia Supernovae

    OpenAIRE

    Wheeler, J. Craig

    2012-01-01

    Limits on the companions of white dwarfs in the single degenerate scenario for the origin of Type Ia supernovae (SNIa) have gotten increasingly tight. The only type of non-degenerate stars that survive the limits on the companions of SNIa in SNR 0509-67.5 and SN1572 are M dwarfs. M dwarfs have special properties that have not been considered in most work on the progenitors of SNIa: they have small but finite magnetic fields, and they flare frequently. These properties are ex...

  11. Physical properties of IP Pegasi: an eclipsing dwarf nova with an unusually cool white dwarf

    CERN Document Server

    Copperwheat, C M; Dhillon, V S; Littlefair, S P; Hickman, R; Gänsicke, B T; Southworth, J

    2009-01-01

    We present high speed photometric observations of the eclipsing dwarf nova IP Peg taken with the triple-beam camera ULTRACAM mounted on the William Herschel Telescope. The primary eclipse in this system was observed twice in 2004, and then a further sixteen times over a three week period in 2005. Our observations were simultaneous in the Sloan u', g' and r' bands. By phase-folding and averaging our data we make the first significant detection of the white dwarf ingress in this system and find the phase width of the white dwarf eclipse to be 0.0935 +/- 0.0003, significantly higher than the previous best value of between 0.0863 and 0.0918. The mass ratio is found to be q = M2 /M1 = 0.48 +/- 0.01, consistent with previous measurements, but we find the inclination to be 83.8 +/- 0.5 deg, significantly higher than previously reported. We find the radius of the white dwarf to be 0.0063 +/- 0.0003 solar radii, implying a white dwarf mass of 1.16 +/- 0.02 solar masses. The donor mass is 0.55 +/- 0.02 solar masses. Th...

  12. Searching for white dwarfs candidates in Sloan Digital Sky Survey Data

    International Nuclear Information System (INIS)

    Large amount of observational spectroscopic data are recently available from different observational projects, like Sloan Digital Sky Survey. It's become more urgent to identify white dwarfs stars based on data itself i.e. without modelling white dwarf atmospheres. In particular, existing methods of white dwarfs identification presented in Kleinman et al. (2004) and in Eisenstein et al. (2006) did not allow to find all the white dwarfs in examined data. We intend to test various criteria of searching for white dwarf candidates, based on photometric and spectral features.

  13. Evolution of crystallizing pure 12C white dwarfs

    International Nuclear Information System (INIS)

    We describe the first results of a quantitative exploration of white dwarf evolution for models incorporating an accurate dense plasma equation of state and a full treatment of partial ionization and convection in the envelope. We discuss in detail the results for a 1 M/sub sun/, pure 12C star. The cooing curve and luminosity function deviate appreciably from the behavior predicted by Mestel's cooling theory above log (L/L/sub sun/) approx. =-0.5 due to neutrino energy losses and below log (L/L/sub sun/) approx. =-3.5 due to Debye cooling. Crystallization occurs at GAMMAapprox. =160, and the effects produced by the release of latent heat are evident. The combined effect of increased heat capacity due to Coulomb interactions and release of latent heat during crystallization increases the stellar lifetime by nearly a factor of 3 in the phases preceding Debye cooling, as expected. Deep convective cooling appears less important than previously thought. Agreement between the theoretical luminosity function and the observational functions derived by Weidemann from the data of Luyten and of Eggen and Greenstein is generally good, and white dwarf lifetimes determined from the cooling curve are consistent with the ages of white dwarfs in clusters. Resolution of differences between the theoretical discovery function and the number of known white dwarfs at very high and low luminosities may provide new information concerning the distribution and origin of the white dwarfs. The direct effects of crystallization are too small to permit observational detection at present. Debye cooling may offer an indirect test, however, because its effect is dramatic and roughly composition independent. For this, unfortunately, an accurate observational luminosity function down to at least log (L/L/sub sun/) approx. =-5 appears needed

  14. Properties of an eclipsing double white dwarf binary NLTT 11748

    International Nuclear Information System (INIS)

    We present high-quality ULTRACAM photometry of the eclipsing detached double white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely low mass (<0.2 M ?) helium-core white dwarf in a 5.6 hr orbit. To date, such extremely low-mass white dwarfs, which can have thin, stably burning outer layers, have been modeled via poorly constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass transfer begins. With precise (individual precision ?1%), high-cadence (?2 s), multicolor photometry of multiple primary and secondary eclipses spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (?13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses, we find that our primary mass (0.136-0.162 M ?) and surface gravity (log (g) = 6.32-6.38; radii are 0.0423-0.0433 R ?) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Rømer delay at 7? significance, providing an additional weak constraint on the masses and limiting the eccentricity to ecos ? = (– 4 ± 5) × 10–5. Finally, we use multicolor data to constrain the secondary's effective temperature (7600 ± 120 K) and cooling age (1.6-1.7 Gyr).

  15. Rate of formation of white dwarfs in stellar systems

    International Nuclear Information System (INIS)

    Energy conservation results in the rate of formation of white dwarfs being simply and accurately related to the luminosity, L, of a stellar system by the equation N/sub WD/=1.62 x 10-111> (L/L/sub sun/) yr-1. The parameter 1>=0.89 +- 0.05 for most stellar systems. For most systems the principal uncertainty in the determination of N/sub WD/ is due to that in L rather than to that in 1>. In the Galaxy one white dwarf is found to form every 3.9 years. The total number of planetary nebulae in the Galaxy is estimated to be 1600. The total accumulated number of white dwarfs in a stellar system is given by N/sub wD/=1.942>L/L/sub sun/. This is very much more uncertain for galaxies than is N/sub WD/ since the parameter 2> is very sensitive to the luminosity-averaged mass, M/sub T/, at the top of the main sequence for the various generations of stars in the galaxy. White dwarfs are found to compose about 1.3-3.5% of the mass of most galaxies. In globular clusters, where M/sub T/ is well defined, 2>=2.7. About one-fourth the mass of a typical globular cluster is composed of white dwarfs. The rate of formation and the accumulated numbers of neutron stars in stellar systems are also determined in this paper

  16. Nova explosion of mass-accreting white dwarfs

    International Nuclear Information System (INIS)

    The evolution of mass-accreting white dwarfs has been computed from the onset of accretion through nova explosion. Two cases have been considered: a carbon-oxygen white dwarf of 1.3 Msub(solar mass) with the accretion rate of 1.0 x 10-10 Msub(solar mass) yr-1 and a helium white dwarf of 0.4 Msub(solar mass) with 1.0 x 10-8 Msub(solar mass) yr-1. Because the thermal evolution during the accretion phase has been fully taken into consideration in computation, the mass of the accreted hydrogen-rich envelope and the corresponding temperature distribution in the envelope have been determined. When a certain amount of the hydrogen-rich envelope has been formed, a hydrogen shell flash commences. The flashing shell lies in the midway between the bottom of the envelope and the stellar surface. In the case of the 1.3 Msub(solar mass) white dwarf, the flash has been found to grow strong enough to lead to a nova-like explosion, even for the normal abundance of CNO elements. The main driving mechanism of this explosion was a rapid transition of the envelope from white dwarf to supergiant characteristics. In order to compute such non-linear effects accurately we need very fine mesh points for the shells just overlying the burning shell in particular. Its importance is shown both by analyzing the stellar structure equation and by comparing our results with those obtained by other authors. (author)

  17. Detached white-dwarf close-binary stars CV's extended family

    CERN Document Server

    Marsh, T R

    1999-01-01

    I review detached binaries consisting of white dwarfs with either other white dwarfs or low mass main-sequence stars in tight orbits around them. Orbital periods have been measured for 15 white dwarf/white dwarf systems and 22 white dwarf/M dwarf systems. While small compared to the number of periods known for CVs (>300), I argue that each variety of detached system has a space density an order of magnitude higher that of CVs. While theory matches the observed distribution of orbital periods of the white dwarf/white dwarf binaries, it predicts white dwarfs of much lower mass than observed. Amongst both types of binary are clear examples of helium core white dwarfs, as opposed to the usual CO composition; similar systems must exist amongst the CVs. White dwarf/M dwarf binaries suffer from selection effects which diminish the numbers seen at long and short periods. They are useful for the study of irradiation; I discuss evidence to suggest that Balmer emission is broadened by optical depth effects to an extent ...

  18. Effects of strong magnetic fields and rotation on white dwarf structure

    Science.gov (United States)

    Franzon, B.; Schramm, S.

    2015-10-01

    In this paper we compute models for relativistic white dwarfs in the presence of strong magnetic fields. These models possibly contribute to superluminous SNIa. With an assumed axisymmetric and poloidal magnetic field, we study the possibility of the existence of super-Chandrasekhar magnetized white dwarfs by solving numerically the Einstein-Maxwell equations, by means of a pseudospectral method. We obtain a self-consistent rotating and nonrotating magnetized white dwarf model. According to our results, a maximum mass for a static magnetized white dwarf is 2.13 M? in the Newtonian case, and 2.09 M? when taking into account general relativistic effects. Furthermore, we present results for rotating magnetized white dwarfs. The maximum magnetic field strength reached at the center of white dwarfs is of the order of 1015 G in the static case, whereas for magnetized white dwarfs, rotating with the Keplerian angular velocity, it is of the order of 1014 G .

  19. Chandra Observations of Magnetic White Dwarfs and their Theoretical Implications

    Science.gov (United States)

    Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.

    2003-01-01

    Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission, but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is some observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. It has been suggested that such fields can be generated by dynamo action, and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs. Another important implication of our negative Chandra observations is the possibility that the magnetic fields of LHS 1038 and GD 358 are fossil fields.

  20. A THIRD HOT WHITE DWARF COMPANION DETECTED BY KEPLER

    International Nuclear Information System (INIS)

    We have found a system listed in the Kepler Binary Catalog (Porb = 3.273 days) that we have determined is comprised of a low-mass, thermally bloated, hot white dwarf orbiting an A star of about 2.3 Msun. In this work, we designate the object, KIC 10657664, simply as 'KHWD3' (Kepler Hot White Dwarf 3). We use the transit depth of ?0.66%, the eclipse depth of ?1.9%, and regular smooth periodic variations at the orbital frequency and twice the orbital frequency to analyze the system parameters. The smooth periodic variations are identified with the classical ellipsoidal light variation (ELV) and illumination (ILL) effects, and the newly utilized Doppler boosting (DB) effect. Given the measured values of R/a and inclination angle of the binary, both the ELV and DB effects are mostly sensitive to the mass ratio, q = M2/M1, of the binary. The two effects yield values of q which are somewhat inconsistent-presumably due to unidentified systematic effects-but which nonetheless provide a quite useful set of possibilities for the mass of the white dwarf (either 0.26 ± 0.04 Msun or 0.37 ± 0.08 Msun). All of the other system parameters are determined fairly robustly. In particular, we show that the white dwarf has a radius of 0.15 ± 0.01 Rsun, which is extremely bloated over the radius it would have as a fully degenerate object, and an effective temperature Teff?14,500 K. Binary evolution scenarios and models for this system are discussed. We suggest that the progenitor binary was comprised of a primary of mass ?2.2 Msun (the progenitor of the current hot white dwarf) and a secondary of mass ?1.4 Msun (the progenitor of the current A star in the system). We compare this new system with three other white dwarfs in binaries that likely were formed via stable Roche-lobe overflow (KOI-74, KOI-81, and the inner Regulus binary).

  1. Black holes, white dwarfs and neutron stars

    International Nuclear Information System (INIS)

    Basic principles of the physics of compact physical object - white drafts, neutron stars and black holes, are stated. Modern representations on pulsars and compact X-ray sources are considerd. Investigation results on compact object accretion, gravitational radiation and collapse at usual and supermassive stars are discussed

  2. WHITE DWARF-RED DWARF SYSTEMS RESOLVED WITH THE HUBBLE SPACE TELESCOPE. II. FULL SNAPSHOT SURVEY RESULTS

    International Nuclear Information System (INIS)

    Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low-mass stellar and substellar companions. Of the 72 targets that remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. For 68 systems where a comparison is possible, 50% have significant photometric distance mismatches between their white dwarf and M dwarf components, suggesting that white dwarf parameters derived spectroscopically are often biased due to the cool companion. Interestingly, 9 of the 30 binaries known to have emission lines are found to be visual pairs and hence widely separated, indicating an intrinsically active cool star and not irradiation from the white dwarf. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low-mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of years. No intermediate projected separations of a few to several AU are found among these pairs. However, a few double M dwarfs (within triples) are spatially resolved in this range, empirically demonstrating that such separations were readily detectable among the binaries with white dwarfs. A straightforward and testable prediction emerges: all spatially unresolved, low-mass stellar and substellar companions to white dwarfs should be in short-period orbits. This result has implications for substellar companion and planetary orbital evolution during the post-main-sequence lifetime of their stellar hosts.

  3. New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12

    CERN Document Server

    Kepler, S O; Koester, Detlev; Ourique, Gustavo; Romero, Alejandra Daniela; Reindl, Nicole; Kleinman, Scot J; Eisenstein, Daniel J; Valois, A Dean M; Amaral, Larissa A

    2015-01-01

    We report the discovery of 6576 new spectroscopically confirmed white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. We obtain Teff, log g and mass for hydrogen atmosphere white dwarf stars (DAs) and helium atmosphere white dwarf stars (DBs), estimate the calcium/helium abundances for the white dwarf stars with metallic lines (DZs) and carbon/helium for carbon dominated spectra DQs. We found one central star of a planetary nebula, one ultra-compact helium binary (AM CVn), one oxygen line dominated white dwarf, 15 hot DO/PG1159s, 12 new cataclysmic variables, 36 magnetic white dwarf stars, 54 DQs, 115 helium dominated white dwarfs, 148 white dwarf+main sequence star binaries, 236 metal polluted white dwarfs, 300 continuum spectra DCs, 230 hot subdwarfs, 2936 new hydrogen dominated white dwarf stars, and 2675 cool hydrogen dominated subdwarf stars. We calculate the mass distribution of all 5883 DAs with S/N>15 in DR12, including the ones in DR7 and DR10, with an average S/N=26, correc...

  4. The atmospheres of cool white dwarfs of spectral type DA

    International Nuclear Information System (INIS)

    In order to interpret the Stroemgren uvby colors of the cool hydrogen-rich DA white dwarfs observed by Graham (1972), model atmospheres have been constructed in the range 7,000 <= Tsub(eff) <= 12,000 K and 7 <= log g <= 8.5. Metal abundances Esub(M) = Esub(M)(S) and Esub(M) = Esub(M)(S)/100 were assumed. The models include energy transport by convection and line-blanketing from Balmer and metal lines; all are corrected to constant energy flux. The theoretical colors derived are thoroughly discussed in view of the assumptions involved in the calculations. It is shown that the hydrogen-rich white dwarfs under consideration have gravities given by log g = 8.3, and that the metal abundances are reduced by at least a factor of 100 compared to the solar value. (orig.)

  5. On the origin of continuum polarization in white dwarfs

    International Nuclear Information System (INIS)

    We propose a model in which classical cyclotron emission from a hot corona can account for much of the continuum linear and circular polarization which has been observed at optical frequencies for several white dwarfs. Important features of our model are: (1) The degree of linear polarization (p) approx. = degree of circular polarization (q) for a variety of magnetic field configurations; (2) continuum polarization occurs in the optical only for surface magnetic field strengths B> or =108 gauss; (3) changes with wavelength in the handedness of circular polarization and in the position angle of the linear polarization occur naturally; and (4) the strong fields required imply severe shifting and smearing of sectral lines, for which there is evidence in some white dwarfs. Possible energy sources for and structures of such coronae are discussed. Observational tests of the model are suggested

  6. Thermogalvanomagnetic phenomena in neutron stars and white dwarf stars

    International Nuclear Information System (INIS)

    The electron thermal and electrical conductivities and thermoelectric coefficient are found and the induction and heat transfer equations are presented for the degenerate cores of white dwarfs and degenerate layers of the envelopes of neutron stars with the density rho11 g/cm3 in the presence of nonquantizing magnetic field. The scattering of electrons on ions and on phonons and impurities is taken into account. The thermogalvanomagnetic phenomena which can take place im neutron stars and white dwarfs are discussed: the drift of the magnetic field towards the surface or into the interior by the heat flow emerging from the star, various mechanisms of nonuniform heating connected with the magnetic field. It is pointed out that in degenerate stars some mechanisms of inhomogeneous heat release cause by magnetic field can take place

  7. How much hydrogen is there in a white dwarf?

    Science.gov (United States)

    Macdonald, James; Vennes, Stephane

    1991-01-01

    Stratified hydrogen/helium envelope models in diffusive equilibrium are calculated for a 0.6-solar-mass white dwarf for effective temperatures between 10,000 and 80,000 K in order to investigate the observational constraints placed on the total hydrogen mass. Convective mixing is included ab initio in the calculations, and synthetic spectra are used for comparing these models with observational materials. It is shown that evolutionary changes in the surface composition of white dwarfs cannot be explained by a model in which a small amount of hydrogen floats to the surface from initially being mixed in the outer parts of a helium envelope. It is pointed out that the shape of the hydrogen lines can be used for constraining theories of convective overshoot.

  8. The optical emission from oscillating white dwarf radiative shock waves

    Science.gov (United States)

    Imamura, James N.; Rashed, Hussain; Wolff, Michael T.

    1991-01-01

    The hypothesis that quasi-periodic oscillations (QPOs) are due to the oscillatory instability of radiative shock waves discovered by Langer et al. (1981, 1092) is examined. The time-dependent optical spectra of oscillating radiative shocks produced by flows onto magnetic white dwarfs are calculated. The results are compared with the observations of the AM Her QPO sources V834 Cen, AN UMa, EF Eri, and VV Pup. It is found that the shock oscillation model has difficulties with aspects of the observations for each of the sources. For VV Pup, AN UMa, and V834 Cen, the cyclotron luminosities for the observed magnetic fields of these systems, based on our calculations, are large. The strong cyclotron emission probably stabilizes the shock oscillations. For EF Eri, the mass of the white dwarf based on hard X-ray observations is greater than 0.6 solar mass.

  9. PG 1346+082 - An interacting binary white dwarf system

    Science.gov (United States)

    Wood, M. A.; Winget, D. E.; Nather, R. E.; Liebert, James; Wesemael, F.

    1987-01-01

    PG 1346+082 is both a photometric and a spectroscopic variable, spanning the B-magnitude range 13.6-17.2. High-speed photometric data reveal rapid flickering in the low-state light curve. The system also shows spectroscopic variations, displaying broad shallow He I absorption lines at maximum light and a weak emission feature at He I (4471 A) at minimum light. Hydrogen lines are conspicuous by their absence. Is is concluded that PG 1346+082 is an interacting binary white dwarf system. Furthermore, because continuum fits to IUE high-state data suggest temperatures consistent with membership in the DB white dwarf instability strip, it is suggested that some of the photometric variations may arise from pulsations.

  10. Asteroseismological bound on G/G from pulsating white dwarfs

    International Nuclear Information System (INIS)

    We study the secular variation of the period of nonradial pulsations of white dwarfs when a temporal dependence of the gravitational constant G is assumed. We consider models that reproduce accurately the main characteristics of the best studied DA (hydrogen-rich atmosphere) white dwarf G117-B15A. For this object it has been possible to measure the secular variation of the main observed period of 215.2 s (P=2.3±1.4x10-15 s-1) with unprecedented accuracy. Comparing our models with observations we obtain that for G-10 yr-1 0, the allowed values are 0 -11 yr-1 at the 2? confidence level, which are comparable to other bounds established by independent methods. We also show that in order to improve this bound significantly an improvement in the precision of the observed change in P which is too large to be reached in the foreseeable future is required

  11. Evolutionary models for pulsation studies of white dwarfs

    International Nuclear Information System (INIS)

    A large grid of equilibrium models suitable for adiabatic and nonadiabatic seismological investigations of pulsating white dwarfs of the DAV and DBV types is presented and discussed in detail. The basic structure of the models is that of a layered configuration consisting of an almost pure carbon core surrounded by an almost pure helium layer, itself surrounded by an almost pure hydrogen layer. Models are computed for three masses, and the helium layer mass is varied. The effects of varying the assumed convective efficiency are investigated. A special sequence is computed to explore the effects of changing the composition gradient scale height in transition regions. Models using two different sets of radiative opacities for the same compositions are obtained to test the sensitivity of the pulsation properties to this component of the constitutive physics. These experiments constitute by far the most extensive study that has been performed to provide suitable models for pulsating white dwarfs. 110 refs

  12. Mock LISA data challenge for the Galactic white dwarf binaries

    International Nuclear Information System (INIS)

    We present data analysis methods used in the detection and estimation of parameters of gravitational-wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus is on the analysis of challenge 3.1, where the gravitational-wave signals from more than 6x107 Galactic binaries were added to the simulated Gaussian instrumental noise. The majority of the signals at low frequencies are not resolved individually. The confusion between the signals is strongly reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood detection method. We filter the data through the template bank at the first step of the search, then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found and we repeat the procedure. We detect reliably and estimate parameters accurately of more than ten thousand signals from white dwarf binaries.

  13. The Properties of Matter in White Dwarfs and Neutron Stars

    CERN Document Server

    Balberg, S; Balberg, Shmuel; Shapiro, Stuart L.

    2000-01-01

    White dwarfs and neutron stars are stellar objects with masses comparable to that of our sun. However, as the endpoint stages of stellar evolution, these objects do not sustain any thermonuclear burning and therefore can no longer support the gravitational load of their own mass by generating thermal pressure. Rather, matter in their interiors is compressed to much higher densities than commonly found in normal stars, and pressure is created by degenerate fermion kinetic energy and particle interactions. As a result, white dwarfs and neutron stars offer unique cosmic laboratories for studying matter at very high densities. In this review we discuss the basic properties of condensed matter at extreme densities and summarize the extent to which these properties can be examined by observations of compact objects.

  14. Mock LISA Data Challenge for the galactic white dwarf binaries

    CERN Document Server

    B?aut, Arkadiusz; Królak, Andrzej

    2009-01-01

    We present data analysis methods used in detection and the estimation of parameters of gravitational wave signals from the white dwarf binaries in the Mock LISA Data Challenge. Our main focus is on the analysis of Challenge 3.1, where the gravitational wave signals from more than 50 mln. Galactic binaries were added to the simulated Gaussian instrumental noise. Majority of the signals at low frequencies are not resolved individually. The confusion between the signals is strongly reduced at frequencies above 5 mHz. Our basic data analysis procedure is the maximum likelihood detection method. We filter the data through the template bank at the first step of the search, then we refine parameters using the Nelder-Mead algorithm, we remove the strongest signal found and we repeat the procedure. We detect reliably and estimate parameters accurately of more than ten thousand signals from white dwarf binaries.

  15. Hot DQ White Dwarf Stars as Failed Type Ia Supernovae

    Science.gov (United States)

    Dunlap, Bart H.; Clemens, J. C.

    2015-06-01

    Of the two hundred or so white dwarf stars showing spectroscopic signatures of carbon (the DQs), the hottest dozen are unique in having atmospheres dominated by carbon and oxygen. At least a third of these hot DQs are photometrically variable, and roughly 70% are magnetic. We provide evidence that the hot DQs are the result of CO-core white dwarf mergers that were not tuned to explode as type Ia supernovae (SNe). In this scenario, the variable hot DQs are magnetic rotators whose magnetic fields, fast rotation rates, and atmospheric composition are all explained by the merger. Consequently, their masses and formation rates will constrain type Ia SNe progenitors, and their field strengths and spin periods will provide observational constraints for models of double-degenerate mergers and magnetic field generation.

  16. Testing Common Envelopes on Double White Dwarf Binaries

    Science.gov (United States)

    Nandez, Jose L. A.; Ivanova, Natalia; Lombardi, James C., Jr.

    2015-06-01

    The formation of a double white dwarf binary likely involves a common envelope (CE) event between a red giant and a white dwarf (WD) during the most recent episode of Roche lobe overflow mass transfer. We study the role of recombination energy with hydrodynamic simulations of such stellar interactions. We find that the recombination energy helps to expel the common envelope entirely, while if recombination energy is not taken into account, a significant fraction of the common envelope remains bound. We apply our numerical methods to constrain the progenitor system for WD 1101+364 - a double WD binary that has well-measured mass ratio of q=0.87±0.03 and an orbital period of 0.145 days. Our best-fit progenitor for the pre-common envelope donor is a 1.5 ? red giant.

  17. The white dwarf cooling sequence of 47 Tucanae

    CERN Document Server

    García-Berro, Enrique; Althaus, Leandro G; Bertolami, Marcelo M Miller

    2014-01-01

    47 Tucanae is one of the most interesting and well observed and theoretically studied globular clusters. This allows us to study the reliability of our understanding of white dwarf cooling sequences, to confront different methods to determine its age, and to assess other important characteristics, like its star formation history. Here we present a population synthesis study of the cooling sequence of the globular cluster 47 Tucanae. In particular, we study the distribution of effective temperatures, the shape of the color-magnitude diagram, and the corresponding magnitude and color distributions. We do so using an up-to-date population synthesis code based on Monte Carlo techniques, that incorporates the most recent and reliable cooling sequences and an accurate modeling of the observational biases. We find a good agreement between our theoretical models and the observed data. Thus, our study, rules out previous claims that there are still missing physics in the white dwarf cooling models at moderately high e...

  18. Testing common envelopes on double white dwarf binaries

    CERN Document Server

    Nandez, Jose L A; Lombardi, James C

    2015-01-01

    The formation of a double white dwarf binary likely involves a common envelope (CE) event between a red giant and a white dwarf (WD) during the most recent episode of Roche lobe overflow mass transfer. We study the role of recombination energy with hydrodynamic simulations of such stellar interactions. We find that the recombination energy helps to expel the common envelope entirely, while if recombination energy is not taken into account, a significant fraction of the common envelope remains bound. We apply our numerical methods to constrain the progenitor system for WD 1101+364 -- a double WD binary that has well-measured mass ratio of $q=0.87\\pm0.03$ and an orbital period of 0.145 days. Our best-fit progenitor for the pre-common envelope donor is a 1.5 $M_\\odot$ red giant.

  19. DA WHITE DWARFS OBSERVED IN THE LAMOST PILOT SURVEY

    International Nuclear Information System (INIS)

    A total of ?640, 000 objects from the LAMOST pilot survey have been publicly released. In this work, we present a catalog of DA white dwarfs (DAWDs) from the entire pilot survey. We outline a new algorithm for the selection of white dwarfs (WDs) by fitting Sérsic profiles to the Balmer H?, H?, and H? lines of the spectra, and calculating the equivalent width of the Ca II K line. Two thousand nine hundred sixty-four candidates are selected by constraining the fitting parameters and the equivalent width of the Ca II K line. All the spectra of candidates are visually inspected. We identify 230 DAWDs (59 of which are already included in the Villanova and SDSS WD catalogs), 20 of which are DAWDs with non-degenerate companions. In addition, 128 candidates are classified as DAWDs/subdwarfs, which means the classifications are ambiguous. The result is consistent with the expected DAWD number estimated based on the LEGUE target selection algorithm

  20. Quantum gases and white dwarfs with quantum gravity

    International Nuclear Information System (INIS)

    This paper addresses the effect of a generalized uncertainty principle produced by different approaches of quantum gravity within the Planck scale on statistical and thermodynamical properties of ideal fermion and boson gases. The partition function and some thermodynamical properties are investigated. The Bose–Einstein condensation and the ground state properties of fermion gases are also considered. The target approach is extended to a white dwarf as an application. The modified mass-radius relation is calculated. A decrease in the pressure of degenerate fermions due to the presence of quantum gravity leads to a contraction in the star radius. It is also found that the gravity background does not result in any change in white dwarf stability. (paper)

  1. A Detailed Spectroscopic and Photometric Analysis of DQ White Dwarfs

    CERN Document Server

    Dufour, P; Fontaine, G

    2005-01-01

    We present an analysis of spectroscopic and photometric observations of cool DQ white dwarfs based on improved model atmosphere calculations. In particular, we revise the atmospheric parameters of the trigonometric parallax sample of Bergeron, Leggett, & Ruiz, and discuss the astrophysical implications on the temperature scale and mean mass, as well as the chemical evolution of these stars. We also analyze 40 new DQ stars discovered in the first data release of the Sloan Digital Sky Survey. Our analysis confirms that effective temperatures derived from model atmospheres including carbon are significantly lower than the temperatures obtained from pure helium models. Similarly the mean mass of the trigonometric parallax sample, = 0.62 Mo, is significantly lower than that obtained from pure helium models, = 0.73 Mo, and more consistent with the spectroscopic mean mass of DB stars, = 0.59 Mo, the most likely progenitors of DQ white dwarfs. We find that DQ stars form a remarkably well defined sequence in a ...

  2. Search for Metal Pollution in 81 DA White Dwarfs

    Science.gov (United States)

    Koester, D.; Gänsicke, B.; Girven, J.; Farihi, J.

    2013-01-01

    A total of 82 DA white dwarfs have been observed with the Cosmic Origins Spectrograph on the Hubble Space Telescope in a snapshot program. The targets were selected to be in the Teff range from 17 000 - 25 000 K, where optical metal lines become weak and difficult to detect. Because of the strong Si, C, and O resonance lines in the UV, this survey has a sensitivity that is comparable to that of the Keck/VLT searches for CaII K in cooler white dwarfs. These objects also have no convection zone and thus very short diffusion timescales, assuring that accretion is currently ongoing. The spectra have high resolution and in most cases fairly good S/N. About 60% of them show photospheric metal pollution, predominantly of Si, but in some cases additional metals are present. We report the results of a preliminary analysis and discuss the sources of the accreted matter and the possible rôle of radiative levitation.

  3. Low heat conduction in white dwarf boundary layers?

    CERN Document Server

    Liu, F K; Meyer-Hofmeister, E; Burwitz, V

    2008-01-01

    X-ray spectra of dwarf novae in quiescence observed by Chandra and XMM-Newton provide new information on the boundary layers of their accreting white dwarfs. Comparison of observations and models allows us to extract estimates for the thermal conductivity in the accretion layer and reach conclusions on the relevant physical processes. We calculate the structure of the dense thermal boundary layer that forms under gravity and cooling at the white dwarf surface on accretion of gas from a hot tenuous ADAF-type coronal inflow. The distribution of density and temperature obtained allows us to calculate the strength and spectrum of the emitted X-ray radiation. They depend strongly on the values of thermal conductivity and mass accretion rate. We apply our model to the dwarf nova system VW Hyi and compare the spectra predicted for different values of the thermal conductivity with the observed spectrum. We find a significant deviation for all values of thermal conductivity that are a sizable fraction of the Spitzer c...

  4. Simulating a White Dwarf-dominated Galactic Halo

    OpenAIRE

    Brook, Chris B.; Kawata, Daisuke.; Gibson, Brad K.

    2003-01-01

    Observational evidence has suggested the possibility of a Galactic halo which is dominated by white dwarfs (WDs). While debate continues concerning the interpretation of this evidence, it is clear that an initial mass function (IMF) biased heavily toward WD precursors (1 < m/Msol < 8), at least in the early Universe, would be necessary in generating such a halo. Within the framework of homogeneous, closed-box models of Galaxy formation, such biased IMFs lead to an unavoidabl...

  5. S. Chandrasekhar: White Dwarfs, $H^-$ ion,.., Black holes

    CERN Document Server

    Gupta, Patrick Das

    2011-01-01

    This is a concise review, addressed to undergraduate students, of S. Chandrasekhar's oeuvre in astrophysics, ranging from his early studies on white dwarfs using relativistic quantum statistics to topics as diverse as dynamical friction, negative hydrogen ion, fluid dynamical instabilities, black holes and gravitational waves. The exposition is based on simple physical explanations in the context of observational astronomy. Black holes and their role as central engines of active, compact, high energy sources have been discussed.

  6. The cool magnetic DAZ white dwarf NLTT 10480.

    Czech Academy of Sciences Publication Activity Database

    Kawka, Adela; Vennes, Stephane

    2011-01-01

    Ro?. 532, August (2011), A7/1-A7/8. ISSN 0004-6361 R&D Projects: GA AV ?R(CZ) IAA300030908; GA AV ?R IAA301630901; GA ?R GAP209/10/0967; GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : white dwarfs * individual star NLTT 10480 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011

  7. Electrons as quasi-bosons in magnetic white dwarfs

    OpenAIRE

    Dryzek, Jerzy; Kato, Akira; Munoz, Gerardo; Singleton, Douglas(Department of Physics, California State University, Fresno, CA, 93740-8031, USA)

    2001-01-01

    A white dwarf star achieves its equilibrium from the balancing of the gravitational compression against the Fermi degeneracy pressure of the electron gas. In field theory there are examples (e.g. the monopole-charge system) where a strong magnetic field can transform a boson into a fermion or a fermion into a boson. In some condensed matter systems (e.g. fractional quantum Hall systems) a strong magnetic field can transform electrons into effective fermions, or effective any...

  8. The white dwarf luminosity function – I. Statistical errors and alternatives

    OpenAIRE

    Geijo, Enrique M.; Torres Gil, Santiago; Isern Vilaboy, Jordi; García-Berro Montilla, Enrique

    2005-01-01

    The white dwarf luminosity function is an important tool for the study of the solar neighbourhood, since it allows the determination of the age of the Galactic disc. Over the years, several methods have been proposed to compute galaxy luminosity functions, from the most simple ones – counting sample objects inside a given volume – to very sophisticated ones – like the C- method, the STY method or the Choloniewski method, among others. However, only the 1/Vmax method is usually employed in com...

  9. GD 154: White dwarf with multi- and monoperiodic pulsation

    Directory of Open Access Journals (Sweden)

    Bognár Zs.

    2013-03-01

    Full Text Available We present the white dwarf GD 154 as an example where either monoperiodic or multiperiodic pulsation were found at different epochs. The mono-multi-monoperiodic stage seems to alternate. Many questions have been raised. Is this behaviour connected to the evolution of DAV stars? How often does it happen? Is there any regularity in this change of the pulsational behaviour or is it irregular?

  10. Lithium production in the merging of white dwarf stars

    OpenAIRE

    Longland, Richard; Lorén-Aguilar, Pablo; José, Jordi; García-Berro, Enrique; Althaus, Leandro G.

    2012-01-01

    The origin of R Coronae Borealis stars has been elusive for over 200 years. Currently, two theories for their formation have been presented. These are the Final Flash scenario, in which a dying asymptotic giant branch (AGB) star throws off its atmosphere to reveal the hydrogen poor, heavily processed material underneath, and the double degenerate scenario, in which two white dwarfs merge to produce a new star with renewed vigour. Some theories predict that the temperatures r...

  11. The white dwarf cooling sequence of 47 Tucanae

    OpenAIRE

    García-Berro Montilla, Enrique; Torres Gil, Santiago; Althaus, Leandro G.; Miller Bartolami, Marcelo M.

    2014-01-01

    Context. 47 Tucanae is one of the most interesting, well-observed, and theoretically studied globular clusters. This allows us to determine the reliability of our understanding of white dwarf cooling sequences, to compare different methods of determining its age, and to assess other important characteristics, such as its star formation history. Aims. Here we present a population synthesis study of the cooling sequence of the globular cluster 47 Tucanae. In particular, we study the distributio...

  12. On the white dwarf cooling sequence with extremely large telescopes

    OpenAIRE

    Bono, G.; Salaris, M.; Gilmozzi, R.

    2012-01-01

    We present new diagnostics of white dwarf (WD) cooling sequences and luminosity functions (LFs) in the near-infrared (NIR) bands that will exploit the sensitivity and resolution of future extremely large telescopes. The collision-induced absorption (CIA) of molecular hydrogen causes a clearly defined blue turn-off along the WD (WDBTO) cooling sequences and a bright secondary maximum in the WD LFs. These features are independent of age over a broad age range and are minimally...

  13. Stellar archaeology with Gaia: the Galactic white dwarf population

    CERN Document Server

    Gaensicke, Boris; Barstow, Martin; Bono, Giuseppe; Burleigh, Matt; Casewell, Sarah; Dhillon, Vik; Farihi, Jay; Garcia-Berro, Enrique; Geier, Stephan; Gentile-Fusillo, Nicola; Hermes, JJ; Hollands, Mark; Istrate, Alina; Jordan, Stefan; Knigge, Christian; Manser, Christopher; Marsh, Tom; Nelemans, Gijs; Pala, Anna; Raddi, Roberto; Tauris, Thomas; Toloza, Odette; Veras, Dimitri; Werner, Klaus; Wilson, David

    2015-01-01

    Gaia will identify several 1e5 white dwarfs, most of which will be in the solar neighborhood at distances of a few hundred parsecs. Ground-based optical follow-up spectroscopy of this sample of stellar remnants is essential to unlock the enormous scientific potential it holds for our understanding of stellar evolution, and the Galactic formation history of both stars and planets.

  14. Mock LISA data challenge for the galactic white dwarf binaries

    OpenAIRE

    B?aut, Arkadiusz; Babak, Stanislav; Królak, Andrzej

    2009-01-01

    We present data analysis methods used in detection and the estimation of parameters of gravitational wave signals from the white dwarf binaries in the mock LISA data challenge. Our main focus is on the analysis of challenge 3.1, where the gravitational wave signals from more than 50 mln. Galactic binaries were added to the simulated Gaussian instrumental noise. Majority of the signals at low frequencies are not resolved individually. The confusion between the signals is stro...

  15. Tidal resonance locks in inspiraling white dwarf binaries

    OpenAIRE

    Burkart, Joshua; Quataert, Eliot; Arras, Phil; Weinberg, Nevin N.

    2012-01-01

    We calculate the tidal response of helium and carbon/oxygen (C/O) white dwarf (WD) binaries inspiraling due to gravitational wave emission. We show that resonance locks, previously considered in binaries with an early-type star, occur universally in WD binaries. In a resonance lock, the orbital and spin frequencies evolve in lockstep, so that the tidal forcing frequency is approximately constant and a particular normal mode remains resonant, producing efficient tidal dissipa...

  16. Dynamical Tides in Compact White Dwarf Binaries: Influence of Rotation

    OpenAIRE

    Fuller, Jim; Lai, Dong

    2014-01-01

    Tidal interactions play an important role in the evolution and ultimate fate of compact white dwarf (WD) binaries. Not only do tides affect the pre-merger state (such as temperature and rotation rate) of the WDs, but they may also determine which systems merge and which undergo stable mass transfer. In this paper, we attempt to quantify the effects of rotation on tidal angular momentum transport in binary stars, with specific calculations applied to WD stellar models. We inc...

  17. White dwarf spins from low mass stellar evolution models

    CERN Document Server

    Suijs, M P L; Poelarends, A -J; Yoon, S -C; Heger, A; Herwig, F

    2008-01-01

    The prediction of the spins of the compact remnants is a fundamental goal of the theory of stellar evolution. Here, we confront the predictions for white dwarf spins from evolutionary models including rotation with observational constraints. We perform stellar evolution calculations for stars in the mass range 1... 3$\\mso$, including the physics of rotation, from the zero age main sequence into the TP-AGB stage. We calculate two sets of model sequences, with and without inclusion of magnetic fields. From the final computed models of each sequence, we deduce the angular momenta and rotational velocities of the emerging white dwarfs. While models including magnetic torques predict white dwarf rotational velocities between 2 and 10 km s$^{-1}$, those from the non-magnetic sequences are found to be one to two orders of magnitude larger, well above empirical upper limits. We find the situation analogous to that in the neutron star progenitor mass range, and conclude that magnetic torques may be required in order t...

  18. Atmospheric parameters and carbon abundance for hot DB white dwarfs

    CERN Document Server

    Koester, Detlev; Gänsicke, Boris T

    2014-01-01

    Atmospheric parameters for hot DB (helium atmosphere) white dwarfs near effective temperatures of 25000K are extremely difficult to determine from optical spectroscopy. This is particularly unfortunate, because this is the range of variable DBV or V777 Her stars. Accurate atmospheric parameters are needed to help or confirm the asteroseismic analysis of these objects. Another important aspect is the new class of white dwarfs - the hot DQ - detected by Dufour et al. (2007), with spectra dominated by carbon lines. The analysis shows that their atmospheres are pure carbon. The origin of these stars is not yet understood, but they may have an evolutionary link with the hotter DBs as studied here. Our aim is to determine accurate atmospheric parameters and element abundances and study the implications for the evolution white dwarfs of spectral classes DB and hot DQ. High resolution UV spectra of five DBs are studied with model atmospheres. We determine stellar parameters and abundances or upper limits of C and Si....

  19. Tidal interaction and coalescence of close binary white dwarfs

    International Nuclear Information System (INIS)

    The physical processes which govern the interaction and final coalescence of close binary white dwarfs are examined. During the approach to mass transfer, the rate of accumulation of rotational energy by a white dwarf can exceed 10 to the 37th erg/s, raising the possibility that the initial phases of mass transfer are strongly influenced by tidal heating of the donor star. The potential energy released by accretion is incapable of removing more than a minor fraction of this material from the system, and numerical simulations show that the accreted envelope engulfs the donor star, leading to formation of common envelope binary before carbon can be ignited at the base of the accreted envelope. Unless shocks can lift the degeneracy of the donor core, a core mass exceeding the Chandrasekhar limit can be created, leading directly to core collapse and a supernova explosion, regardless of whether or not carbon is ignited in the nondegenerate envelope. It is plausible that most of the mass of the donor white dwarf is assimilated in a degenerate state by the accretor. 32 references

  20. THE SPECTRAL TYPES OF WHITE DWARFS IN MESSIER 4

    International Nuclear Information System (INIS)

    We present the spectra of 24 white dwarfs in the direction of the globular cluster Messier 4 obtained with the Keck/LRIS and Gemini/GMOS spectrographs. Determining the spectral types of the stars in this sample, we find 24 type DA and 0 type DB (i.e., atmospheres dominated by hydrogen and helium, respectively). Assuming the ratio of DA/DB observed in the field with effective temperature between 15,000-25,000 K, i.e., 4.2:1, holds for the cluster environment, the chance of finding no DBs in our sample simply due to statistical fluctuations is only 6 x 10-3. The spectral types of the ?100 white dwarfs previously identified in open clusters indicate that DB formation is strongly suppressed in that environment. Furthermore, all the ?10 white dwarfs previously identified in other globular clusters are exclusively type DA. In the context of these two facts, this finding suggests that DB formation is suppressed in the cluster environment in general. Though no satisfactory explanation for this phenomenon exists, we discuss several possibilities.

  1. ON THE FORMATION OF HOT DQ WHITE DWARFS

    International Nuclear Information System (INIS)

    We present the first full evolutionary calculations aimed at exploring the origin of hot DQ white dwarfs. These calculations consistently cover the whole evolution from the born-again stage to the white dwarf cooling track. Our calculations provide strong support for the diffusive/convective mixing picture for the formation of hot DQs. We find that the hot DQ stage is a short-lived stage and that the range of effective temperatures where hot DQ stars are found can be accounted for by different masses of residual helium and/or different initial stellar masses. In the frame of this scenario, a correlation between the effective temperature and the surface carbon abundance in DQs should be expected, with the largest carbon abundances expected in the hottest DQs. From our calculations, we suggest that most of the hot DQs could be the cooler descendants of some PG 1159 stars characterized by He-rich envelopes markedly smaller than those predicted by the standard theory of stellar evolution. At least for one hot DQ, the high-gravity white dwarf SDSS J142625.70+575218.4, an evolutionary link between this star and the massive PG 1159 star H1504+65, is plausible.

  2. Progenitors of the Accretion-Induced Collapse of White Dwarfs

    CERN Document Server

    Kwiatkowski, Damian

    2015-01-01

    Recent calculations of accretion-induced collapse of an oxygen-neon-magnesium white dwarf into a neutron star [Piro & Thompson 2014] allow for a potentially detectable transient electromagnetic signal. Motivated by these results, I present theoretical rates and physical properties of binary stars that can produce accretion-induced collapse. The rates are presented for various types of host galaxies (e.g. old ellipticals versus spirals) and are differentiated by the donor star type (e.g. large giant star versus compact helium-rich donor). Results presented in this thesis may help to guide near-future electromagnetic transient search campaigns to find likely candidates for accretion-induced collapse events. My predictions are based on binary evolution calculations that include the most recent updates on mass accretion and secular mass growth of white dwarfs. I find that the most likely systems that undergo accretion-induced collapse consist of an ONeMg white dwarf with a Hertzsprung gap star or a red giant ...

  3. The double-layered chemical structure in DB white dwarfs

    CERN Document Server

    Althaus, L G

    2004-01-01

    We study the structure and evolution of white dwarf stars with helium-rich atmospheres (DB) in a self-consistent way with the predictions of time-dependent element diffusion. Our treatment of diffusion includes gravitational settling and chemical and thermal diffusion. OPAL radiative opacities for arbitrary metallicity and carbon-and oxygen-rich compositions are employed. Emphasis is placed on the evolution of the diffusion-modeled double-layered chemical structure. This structure, which is characterized by a pure helium envelope atop an intermediate remnant shell rich in helium, carbon and oxygen, is expected for pulsating DB white dwarfs, assuming that they are descendants of hydrogen-deficient PG1159 post-AGB stars. We find that, depending on the stellar mass, if DB white dwarf progenitors are formed with a helium content smaller than \\approx 10^-3 M_*, a single-layered configuration is expected to emerge during the DB pulsation instability strip. We also explore the consequences of diffusively evolving ch...

  4. 56Ni PRODUCTION IN DOUBLE-DEGENERATE WHITE DWARF COLLISIONS

    International Nuclear Information System (INIS)

    We present a comprehensive study of white dwarf collisions as an avenue for creating type Ia supernovae. Using a smooth particle hydrodynamics code with a 13-isotope, ?-chain nuclear network, we examine the resulting 56Ni yield as a function of total mass, mass ratio, and impact parameter. We show that several combinations of white dwarf masses and impact parameters are able to produce sufficient quantities of 56Ni to be observable at cosmological distances. We find that the 56Ni production in double-degenerate white dwarf collisions ranges from sub-luminous to the super-luminous, depending on the parameters of the collision. For all mass pairs, collisions with small impact parameters have the highest likelihood of detonating, but 56Ni production is insensitive to this parameter in high-mass combinations, which significantly increases their likelihood of detection. We also find that the 56Ni dependence on total mass and mass ratio is not linear, with larger-mass primaries producing disproportionately more 56Ni than their lower-mass secondary counterparts, and symmetric pairs of masses producing more 56Ni than asymmetric pairs.

  5. Physical properties of IP Pegasi: an eclipsing dwarf nova with an unusually cool white dwarf

    OpenAIRE

    Copperwheat, C. M.; Marsh, T. R.; Dhillon, V.S.; Littlefair, S. P.; Hickman, R.; Gaensicke, B. T; Southworth, J

    2009-01-01

    We present high speed photometric observations of the eclipsing dwarf nova IP Peg taken with the triple-beam camera ULTRACAM mounted on the William Herschel Telescope. The primary eclipse in this system was observed twice in 2004, and then a further sixteen times over a three week period in 2005. Our observations were simultaneous in the Sloan u', g' and r' bands. By phase-folding and averaging our data we make the first significant detection of the white dwarf ingress in th...

  6. X-ray spectroscopy of hot white dwarfs

    Science.gov (United States)

    Adamczak, Jens

    2010-10-01

    X-ray spectra of two hot white dwarfs observed by the Chandra satellite have been analyzed. The first is a white dwarf of spectral class DA with an almost pure hydrogen atmosphere. Contrary to that, the atmosphere of the second object, a PG 1159 star, is basically hydrogen free. The reason for the different composition can be found in the differing evolution of these objects. Some DA white dwarfs show much smaller metallicities than predicted by the mechanism of radiative levitation. Many spectral lines of the heavy elements that are the key to the explanation to the unusual metal poorness are located in the X-ray wavelength range. Some PG 1159 stars are non-radial g-mode pulsators. The pulsations depend amongst others on the abundances of the elements in the atmosphere, log g, and T eff. The soft X-ray range is particularly temperature sensitive and allows to constrain the temperature of a non-pulsating PG 1159 star with respect to its pulsating spectroscopic twin. Detailed analysis of X-ray spectra of single white dwarfs do not yet exist. The aim of this thesis was to analyze spectra of the DA white dwarfs LB 1919 and GD 246 in different wavelength ranges in order to find out if the metals in the atmospheres of these objects are homogeneously mixed or chemically stratified. This helps to identify or exclude possible unexpected mechanisms that might disturb the equilibrium between gravitational and radiative forces in the atmosphere. For LB 1919 an additional aim was to identify photospheric features of several elements and determine their abundances for the first time. It was further intended to determine the temperature of the non-pulsating PG 1159 star PG 1520+525 precisely. The spectra of LB 1919 and GD 246 ranging from X-ray to optical wavelengths were analyzed with advanced homogeneous and stratified Non-LTE model atmospheres. The Chandra spectrum of the PG 1159 star PG 1520+525 was analyzed with homogeneous Non-LTE model atmospheres only since no stratification is expected. The results show that the atmospheres of LB 1919 and GD 246 can be better reproduced by stratified model atmospheres. This indicates that the equilibrium between radiative levitation and gravitational settling is in good order and that the cause for the metal poorness of LB 1919 has to be found in an earlier evolutionary stage. The temperature of PG 1520+525 can be constrained to T eff = 150 000 ± 5000 K, the log g is 7.5 ± 0.5.

  7. Origin of the DA and non-DA white dwarf stars

    Science.gov (United States)

    Shipman, Harry L.

    1989-01-01

    Various proposals for the bifurcation of the white dwarf cooling sequence are reviewed. 'Primordial' theories, in which the basic bifurcation of the white dwarf sequence is rooted in events predating the white dwarf stage of stellar evolution, are discussed, along with the competing 'mixing' theories in which processes occurring during the white dwarf stage are responsible for the existence of DA or non-DA stars. A new proposal is suggested, representing a two-channel scenario. In the DA channel, some process reduces the hydrogen layer mass to the value of less than 10 to the -7th. The non-DA channel is similar to that in the primordial scenario. These considerations suggest that some mechanism operates in both channels to reduce the thickness of the outermost layer of the white dwarf. It is also noted that accretion from the interstellar medium has little to do with whether a particular white dwarf becomes a DA or a non-DA star.

  8. The contribution of Oxygen-Neon white dwarfs to the MACHO content of the Galactic Halo

    OpenAIRE

    Camacho Díaz, Judit; Torres Gil, Santiago; Isern Vilaboy, Jordi; Althaus, Leandro Gabriel; García-Berro Montilla, Enrique

    2007-01-01

    Context. The interpretation of microlensing results towards the Large Magellanic Cloud (LMC) still remains controversial. White dwarfs have been proposed to explain these results and, hence, to contribute significantly to the mass budget of our Galaxy. However, several constraints on the role played by regular carbon-oxygen white dwarfs exist. Aims. Massive white dwarfs are thought to be made of a mixture of oxygen and neon. Correspondingly, their cooling rate is larger than those of...

  9. The fate of accreting white dwarfs: type I supernovae vs. collapse

    International Nuclear Information System (INIS)

    The fate of accreting white dwarfs is examined with respect to thermonuclear explosion or collapse. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy 1986. Effects of accretion and the fate of white dwarfs, models for type 1a and 1b supernovae, collapse induced by carbon deflagration at high density, and fate of double white dwarfs, are all discussed. (U.K.)

  10. Ejection of globular cluster interstellar media through ionization by white dwarfs

    OpenAIRE

    McDonald, Iain; Zijlstra, Albert

    2014-01-01

    UV radiation from white dwarfs can efficiently clear Galactic globular clusters (GCs) of their intra-cluster medium (ICM). This solves the problem of the missing ICM in clusters, which is otherwise expected to build up to easily observable quantities. To show this, we recreate the ionizing flux in 47 Tuc, following randomly generated stars through their AGB, post-AGB and white dwarf evolution. Each white dwarf can ionize all the material injected into the cluster by stellar ...

  11. An independent test of the photometric selection of white dwarf candidates using LAMOST DR3

    OpenAIRE

    Fusillo, N. P. Gentile; Rebassa-Mansergas, A.; Gänsicke, B. T.; Liu, X. -W.; Ren, J. J.; D. Koester; Zhan, Y.; Hou, Y.; Wang, Y; Yang, M

    2015-01-01

    In Gentile Fusillo et al. (2015) we developed a selection method for white dwarf candidates which makes use of photometry, colours and proper motions to calculate a probability of being a white dwarf (Pwd). The application of our method to the Sloan Digital Sky Survey (SDSS) data release 10 resulted in nearly 66,000 photometrically selected objects with a derived Pwd, approximately 21000 of which are high confidence white dwarf candidates. Here we present an independent test...

  12. Spectroscopic Identification of Faint White Dwarf Candidates in the Praesepe Open Star Cluster

    OpenAIRE

    Williams, Kurtis A.; Bolte, Michael; Liebert, James

    2004-01-01

    We present spectroscopic observations of the remaining four candidate white dwarfs in Praesepe. All four candidates are quasars with redshifts between 0.8 and 2.8. One quasar, LB 6072, is observed to have a strong metal-line absorption system blueward of the quasar redshift. The lack of additional white dwarfs in Praesepe leaves the total known white-dwarf population of the cluster at five, well below the number expected from commonly-assumed initial mass functions, though s...

  13. Gaseous Material Orbiting the Polluted, Dusty White Dwarf HE1349-2305

    OpenAIRE

    Melis, Carl; Dufour, P; Farihi, J.; Bochanski, J.; Burgasser, Adam J.; Parsons, S.; Gaensicke, B.; D. Koester; Swift, Brandon

    2012-01-01

    We present new spectroscopic observations of the polluted, dusty, helium-dominated atmosphere white dwarf star HE1349-2305. Optical spectroscopy reveals weak CaII infrared triplet emission indicating that metallic gas debris orbits and is accreted by the white dwarf. Atmospheric abundances are measured for magnesium and silicon while upper limits for iron and oxygen are derived from the available optical spectroscopy. HE1349-2305 is the first gas disk-hosting white dwarf sta...

  14. Finding rocky asteroids around white dwarfs by their periodic thermal emission

    OpenAIRE

    Lin, Henry; Loeb, Abraham

    2014-01-01

    Since white dwarfs are small, the contrast between the thermal emission of an orbiting object and a white dwarf is dramatically enhanced compared to a main sequence host. Furthermore, rocky objects much smaller than the moon have no atmospheres and are tidally locked to the white dwarf. We show that this leads to temperature contrasts between their day and night side of order unity that should lead to temporal variations in infrared flux over an orbital period of $\\sim 0.2$ ...

  15. An Independent Calibration of Stellar Ages: HST Observations of White Dwarfs at V=25

    OpenAIRE

    von Hippel, Ted; Gilmore, Gerard; Jones, D.H.P.

    1995-01-01

    The white dwarf luminosity function of a stellar cluster will have a sharp truncation at a luminosity which is determined by the time since formation of the first white dwarfs in that cluster. Calculation of the dependence of this limiting luminosity on age requires relatively well-understood physics and is independent of stellar evolutionary models. Thus, measurement of the termination of the white dwarf luminosity function provides an independent method to determine the ag...

  16. Finding the Instability Strip for Accreting Pulsating White Dwarfs from HST and Optical Observations

    OpenAIRE

    Szkody, Paula; Mukadam, Anjum; Gansicke, Boris T.; Henden, Arne; Templeton, Matthew; Holtzman, Jon; Montgomery, Michael H.; Howell, Steve B; Nitta, Atsuko; Sion, Edward M.; Schwartz, Richard D.; Dillon, William

    2009-01-01

    Time-resolved low resolution Hubble Space Telescope ultraviolet spectra together with ground-based optical photometry and spectra are used to constrain the temperatures and pulsation properties of six cataclysmic variables containing pulsating white dwarfs. Combining our temperature determinations for the five pulsating white dwarfs that are several years past outburst with past results on six other systems shows that the instability strip for accreting pulsating white dwarf...

  17. GASEOUS MATERIAL ORBITING THE POLLUTED, DUSTY WHITE DWARF HE 1349–2305

    International Nuclear Information System (INIS)

    We present new spectroscopic observations of the polluted, dusty, helium-dominated atmosphere white dwarf star HE 1349–2305. Optical spectroscopy reveals weak Ca II infrared triplet emission indicating that metallic gas debris orbits and is accreted by the white dwarf. Atmospheric abundances are measured for magnesium and silicon while upper limits for iron and oxygen are derived from the available optical spectroscopy. HE 1349–2305 is the first gas disk-hosting white dwarf star identified among previously known polluted white dwarfs. Further characterization of the parent body polluting this star will require ultraviolet spectroscopy.

  18. Gaseous Material Orbiting the Polluted, Dusty White Dwarf HE1349-2305

    CERN Document Server

    Melis, Carl; Farihi, J; Bochanski, J; Burgasser, Adam J; Parsons, S; Gaensicke, B; Koester, D; Swift, Brandon

    2012-01-01

    We present new spectroscopic observations of the polluted, dusty, helium-dominated atmosphere white dwarf star HE1349-2305. Optical spectroscopy reveals weak CaII infrared triplet emission indicating that metallic gas debris orbits and is accreted by the white dwarf. Atmospheric abundances are measured for magnesium and silicon while upper limits for iron and oxygen are derived from the available optical spectroscopy. HE1349-2305 is the first gas disk-hosting white dwarf star identified amongst previously known polluted white dwarfs. Further characterization of the parent body polluting this star will require ultraviolet spectroscopy.

  19. LIMITS ON UNRESOLVED PLANETARY COMPANIONS TO WHITE DWARF REMNANTS OF 14 INTERMEDIATE-MASS STARS

    International Nuclear Information System (INIS)

    We present Spitzer IRAC photometry of white dwarf remnants of 14 stars with M = 3-5 Msun. We do not detect mid-infrared excess around any of our targets. By demanding a 3? photometric excess at 4.5 ?m for unresolved companions, we rule out planetary mass companions down to 5, 7, or 10 M J for 13 of our targets based on the Burrows et al. substellar cooling models. Combined with previous IRAC observations of white dwarf remnants of intermediate-mass stars, we rule out ?10M J companions around 40 white dwarfs and ?5M J companions around 10 white dwarfs.

  20. HR2875: Spectroscopic discovery of the first B star + white dwarf binary

    OpenAIRE

    Burleigh, Matt; Barstow, Martin

    1998-01-01

    We report the discovery, in an Extreme Ultraviolet Explorer (EUVE) short wavelength spectrum, of an unresolved hot white dwarf companion to the 5th-magnitude B5Vp star HR2875. This is the first time that a non-interacting white dwarf$+$ B star binary has been discovered; previously, the the earliest type star known with a white dwarf companion was Sirius (A1V). Since the white dwarf must have evolved from a main sequence progenitor with a mass greater than that of a B5V star...

  1. HST Spectra of GW Librae: A Hot Pulsating White Dwarf in a Cataclysmic Variable

    OpenAIRE

    P. Szkody; Gansicke, B.; Howell, S.B.; E. Sion

    2002-01-01

    We have obtained Hubble Space Telescope UV spectra of the white dwarf in GW Lib, the only known non-radially pulsating white dwarf in a cataclysmic variable, and the first known DAZQ variable. The UV light curve reveals large amplitude (10%) pulsationsin the UV with the same periods (646, 376 and 237 s) as those seen at optical wavelengths, but the mean spectrum fits with an average white dwarf temperature (14,700K for a 0.6M_{odot} white dwarf) that is too hot to be in the ...

  2. RX J0648.0--4418: the fastest-spinning white dwarf

    OpenAIRE

    Mereghetti, Sandro

    2013-01-01

    RX J0648.0-4418 is a post common-envelope X-ray binary composed of a hot subdwarf and one of the most massive white dwarfs with a dynamical mass measurement (1.28+/-0.05 M_sun). This white dwarf, with a spin period of 13.2 s, rotates more than twice faster than the white dwarf in the cataclysmic variable AE Aqr. The current properties of these two binaries, as well as their future evolution, are quite different, despite both contain a fast-spinning white dwarf. RX J0648.0-44...

  3. Discovery of a Bright, Extremely Low-Mass White Dwarf in a Close Double Degenerate System

    OpenAIRE

    Vennes, S.; Thorstensen, J. R.; Kawka, A.; NEMETH, P; Skinner, J. N.; Pigulski, A.; Steslicki, M.; Kolaczkowski, Z.; Srodka, P.

    2011-01-01

    We report the discovery of a bright (V ~ 13.7), extremely low-mass white dwarf in a close double degenerate system. We originally selected GALEX J171708.5+675712 for spectroscopic follow-up among a group of white dwarf candidates in an ultraviolet-optical reduced proper-motion diagram. The new white dwarf has a mass of 0.18 M_solar and is the primary component of a close double degenerate system (P=0.246137 d, K_1 = 288 km/s) comprising a fainter white dwarf secondary with M...

  4. The binary Feige 24 - The mass, radius, and gravitational redshift of the DA white dwarf

    Science.gov (United States)

    Vennes, Stephane; Shipman, Harry L.; Thorstensen, John R.; Thejll, Peter

    1991-01-01

    Observations are reported which refine the binary ephemeris of the Feige 24 system, which contains a peculiar hot DA white dwarf and an M dwarf with an atmosphere illuminated by extreme ultraviolet radiation from the white dwarf. With the new ephemeris and a set of IUE high-dispersion spectra, showing phase-dependent redshifted C IV, N V, and Si IV resonance lines, the orbital velocity, and hence the mass (0.54 + or - 0.20 solar masses), and the gravitational redshift of the white dwarf (14.1 + or - 5.2 km/s) are determined independently. It is shown that the measured Einstein redshift is consistent with an estimated radius for the white dwarf obtained from a model atmosphere solid angle and a parallax measurement. This radius is twice the Hamada-Salpeter radius for the given mass and offers a prospect to investigate the presence of a massive hydrogen envelope in that white dwarf star.

  5. Enigmas from the Sloan Digital Sky Survey DR7 White Dwarf Catalog

    Science.gov (United States)

    Liebert, James; Smith, Paul S.; Ferrario, Lilia; Wickramasinghe, Dayal T.

    2015-06-01

    We report results from a continuation of our searches for magnetic white dwarfs paired in a detached binary with a non-degenerate companion, using the Data Release 7 (DR7) of the Sloan Digital Sky Survey. Some 19,712 spectroscopically-identified white dwarfs from the Kleinman et al. paper were examined, including 1,951 white dwarf - M dwarf pairs. The polar (AM Her) system ST LMi in a low state was found but later recognized not to be a detached pair. Our basic result is that the original situation reported 10 years ago is still the case with now very high statistical significance. Detached polar progenitors, apart from Low Accretion Rate Polars (LARPs), are not found. Magnetic white dwarfs likely form from mergers of (nonmagnetic) white dwarfs, while polars and intermediate polars emerge from common envelope evolution as close binaries - either Roche-lobe-filling mass transfer mode or LARPs.

  6. Feige 7: A hot, rotating magnetic white dwarf

    International Nuclear Information System (INIS)

    The blue white dwarf suspect Feige 7 (=L795-7=GR 267) has been found to be magnetic with a rich optical spectrum and variable circular polarization. The polarization observations show a variation that is sinusoidal with amplitude 0.3%, a mean of nearly zero, and a period of 2.2 hours; an ephemeris is provided. The mean longitudinal field at peak polarization is estimated to be 5 megagauss. Spectra obtained with the Lick Observatory scanner and the UCSD Digicon at Steward Observatory are presented. The detailed absorption spectrum is shown to fit Zeeman patterns of hydrogen and neutral helium in the presence of a mean homogeneous surface field varying slightly with the polarization period from 18 to 20 megagauss. The star in fact provides the first confirmation of the theoretical spectra of hydrogen and helium in such high fields, inaccessible to laboratory measurement. It is argued that the period must be due to rotation, and an oblique rotator model with the rotation axis in the plane of the sky and at approx.24degree tilt angle to the magnetic axis is compatible with the available observations. The proper motion from Luyten and the Lowell Observatory is large enough to very nearly constrain the star to be degenerate, rather than a hot subdwarf; the blue continuum indicates that it is the hottest of the known magnetic degenerate stars. The observed combination of neutral helium and hydrogen lines (and at comparable intensities) may be unique among white dwarf stars. The star must have a helium-dominated atmosphere, but the relative H/He abundances could vary over the surface due to the influence of the magnetic field. Since Feige 7 is a recently formed white dwarf, calculations show that any quadrupole and octopole magnetic moments originally present would not yet have decayed; since there is no evidence for appreciable higher moments in the observed surface field, it is argued that the field was essentially a dipole at the time of the white dwarf's formation

  7. White dwarf axions, PAMELA data, and flipped-SU(5)

    OpenAIRE

    Bae, Kyu Jung; Huh, Ji-Haeng; Kim, Jihn E.; Kyae, Bumseok(Department of Physics, Pusan National University, Busan, 609-735, Republic of Korea); Viollier, Raoul D.

    2008-01-01

    Recently, there are two hints arising from physics beyond the standard model. One is a possible energy loss mechanism due to emission of very weakly interacting light particles from white dwarf stars, with a coupling strength ~ 0.7x10^{-13}, and another is the high energy positrons observed by the PAMELA satellite experiment. We construct a supersymmetric flipped-SU(5) model, SU(5)xU(1)_X with appropriate additional symmetries, [U(1)_H]_{gauge}x[U(1)_RxU(1)_\\Gamma]_{global}x...

  8. SGRs and AXPs as rotation powered massive white dwarfs

    OpenAIRE

    Malheiro, Manuel; Rueda, Jorge A.; Ruffini, Remo

    2011-01-01

    SGR 0418+5729 is a "Rosetta Stone" for deciphering the energy source of Soft Gamma Ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs). We show a model based on canonical physics and astrophysics for SGRs and AXPs powered by massive highly magnetized rotating white dwarfs (WDs), in total analogy with pulsars powered by rotating neutron stars (NSs). We predict for SGR 0418+5729 a lower limit for its spin-down rate, $\\dot{P} \\geq L_X P^3/(4\\pi^2 I)=1.18\\times 10^{-16}$ whe...

  9. White dwarf masses derived from planetary nebulae modelling

    OpenAIRE

    Gesicki, K.; Zijlstra, A. A.

    2007-01-01

    We compare the mass distribution of central stars of planetary nebulae (CSPN) with those of their progeny, white dwarfs (WD). We use a dynamical method to measure masses with an uncertainty of 0.02 M$_\\odot$. The CSPN mass distribution is sharply peaked at $0.61 \\rm M_\\odot$. The WD distribution peaks at lower masses ($0.58 \\rm M_\\odot$) and shows a much broader range of masses. Some of the difference can be explained if the early post-AGB evolution is faster than predicted ...

  10. Calcium-Rich Gap Transients: Tidal Detonations of White Dwarfs?

    OpenAIRE

    Sell, P. H.; Maccarone, T. J.; Kotak, R.; Knigge, C; D. J. Sand

    2015-01-01

    We hypothesize that at least some of the recently discovered class of calcium-rich gap transients are tidal detonation events of white dwarfs (WDs) by black holes (BHs) or possibly neutron stars. We show that the properties of the calcium-rich gap transients agree well with the predictions of the tidal detonation model. Under the predictions of this model, we use a follow-up X-ray observation of one of these transients, SN 2012hn, to place weak upper limits on the detonator ...

  11. Thomson scattering in magnetic fields. [of white dwarf stars

    Science.gov (United States)

    Whitney, Barbara

    1989-01-01

    The equation of transfer in Thomson scattering atmospheres with magnetic fields is solved using Monte Carlo methods. Two cases, a plane parallel atmosphere with a magnetic field perpendicular to the atmosphere, and a dipole star, are investigated. The wavelength dependence of polarization from plane-parallel atmosphere is qualitatively similar to that observed in the magnetic white dwarf Grw+70 deg 8247, and the field strength determined by the calculation, 320 MG, is quantitatively similar to that determined from the line spectrum. The dipole model does not resemble the data as well as the single plane-parallel atmosphere.

  12. Diffusion processes in Ap stars and white dwarfs

    International Nuclear Information System (INIS)

    Diffusion processes in a fully ionized, multicomponent plasma are investigated in the report. Kinetic phenomena due both to ions and to electrons are considered. The kinetic coefficients are calculated in the two-polynomial approximation of the Chapman--Enskog method. The influence of the magnetic field on transport phenomena is consistently taken into account. The results obtained are compared in detail with the results of other authors. In conclusion, possible astrophysical applications of the theory (surface layers of Ap stars and white dwarfs) are briefly discussed

  13. THE BINARY FRACTION OF LOW-MASS WHITE DWARFS

    International Nuclear Information System (INIS)

    We describe spectroscopic observations of 21 low-mass (?0.45 Msun) white dwarfs (WDs) from the Palomar-Green survey obtained over four years. We use both radial velocities and infrared photometry to identify binary systems, and find that the fraction of single, low-mass WDs is ?30%. We discuss the potential formation channels for these single stars including binary mergers of lower-mass objects. However, binary mergers are not likely to explain the observed number of single low-mass WDs. Thus, additional formation channels, such as enhanced mass loss due to winds or interactions with substellar companions, are likely.

  14. Spectral Analysis of Mid-IR Excesses of White Dwarfs

    OpenAIRE

    Bilíkovà, J.; Chu, Y.-H.; Su, K.; Gruendl, R. A.; T. Rauch

    2011-01-01

    In our Spitzer 24 \\mu m survey of hot white dwarfs (WDs) and archival Spitzer study of pre-WDs, i.e., central stars of planetary nebulae (CSPNs), we found mid-IR excesses for -15 WDs/pre-WDs. These mid-IR excesses are indicative of the presence of circumstellar dust that could be produced by sub-planetary objects. To further assess the nature of these IR-excesses, we have obtained Spitzer IRS, Gemini NIRI and Michelle, and KPNO 4m echelle spectra of these objects. In this pa...

  15. Enigmas from the Sloan Digital Sky Survey DR7 Kleinman White Dwarf Catalog

    OpenAIRE

    Liebert, James; Ferrario, Lilia; Wickramasinghe, Dayal; Smith, Paul

    2015-01-01

    We report results from a continuation of our searches for high field magnetic white dwarfs paired in a detached binary with non degenerate companions. We made use of the Sloan Digital Sky Survey DR7 catalog of Kleinman et al. (2013) with 19,712 spectroscopically-identified white dwarfs. These include 1,735 white dwarf plus M dwarf detached pairs (almost 10\\% of the Kleinman at al.'s list). No new pairs were found, although we did recover the polar (AM~Herculis system) ST\\,LM...

  16. Formation of undermassive single white dwarfs and the influence of planets on late stellar evolution

    OpenAIRE

    Nelemans, G.A.; Tauris, Th.M.

    1998-01-01

    We propose a scenario to form low-mass, single, slow rotating white dwarfs from a solar-like star accompanied by a massive planet, or a brown dwarf, in a relatively close orbit (e.g. HD 89707). Such white dwarfs were recently found by Maxted & Marsh (1998). When the solar-like star ascends the giant branch it captures the planet and the subsequent spiral-in phase expels the envelope of the giant leaving a low-mass helium white dwarf remnant. In case the planet evaporizes, or...

  17. A Spitzer Search for Substellar Companions to Low Mass White Dwarfs

    OpenAIRE

    Kilic, Mukremin; Brown, Warren R.; Mcleod, B.

    2009-01-01

    The formation scenarios for single low-mass (M < 0.45 Msol) white dwarfs include enhanced mass loss from a metal-rich progenitor star or a common envelope phase of a solar-like star with a close-in massive planet or a brown dwarf. Both scenarios suggest that low-mass white dwarfs may have planets. Here, we present a Spitzer IRAC search for substellar and planetary mass companions to 14 low-mass white dwarfs. One of our targets, HS 1653+7753, displays near- and mid-infrared f...

  18. A SUBSTELLAR COMPANION TO THE WHITE DWARF-RED DWARF ECLIPSING BINARY NN Ser

    International Nuclear Information System (INIS)

    NN Ser is a short-period (P = 3.12 hr) close binary containing a very hot white dwarf primary with a mass of 0.535 Msun and a fully convective secondary with a mass of 0.111 Msun. The changes in the orbital period of the eclipsing binary were analyzed based on our five newly determined eclipse times together with those compiled from the literature. A small-amplitude (0fd00031) cyclic period variation with a period of 7.56 years was discovered to be superimposed on a possible long-term decrease. The periodic change was plausibly explained as the light-travel time effect via the presence of a tertiary companion. The mass of the tertiary companion is determined to be M3sin i' = 0.0107(±0.0017) Msun when a total mass of 0.646 Msun for NN Ser is adopted. For orbital inclinations i' ? 49.056, the mass of the tertiary component was calculated to be M 3 ? 0.014 Msun; thus it would be an extrasolar planet. The third body is orbiting the white dwarf-red dwarf eclipsing binary at a distance shorter than 3.29 AU. Since the observed decrease rate of the orbital period is about two orders larger than that caused by gravitational radiation, it can be plausibly interpreted by magnetic braking of the fully convective component, which is driving this binary to evolve into a normal cataclysmic variable.

  19. New Insights on Pulsating White Dwarfs from 3D Radiation-Hydrodynamical Simulations

    Science.gov (United States)

    Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter

    2015-08-01

    We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of 70 pure-hydrogen DA white dwarfs in the range 7.0 log g position where the pulsations are driven, and the region of the HR diagram where white dwarfs are expected to pulsate. Finally, we will present new results from non-adiabatic pulsation calculations.

  20. Stars with Unusual Compositions: Carbon and Oxygen in Cool White Dwarf Stars

    OpenAIRE

    Dufour, P

    2011-01-01

    I present a broad historical review on cool white dwarf stars with carbon and/or oxygen detected at the photosphere. This book chapter covers the observational signatures, physical properties, and evolution of DQ, DBQ and Hot DQ white dwarfs, and also present an overview of the main challenges that future investigations of these types of object should try to address.

  1. Suppression of cooling by strong magnetic fields in white dwarf stars.

    Science.gov (United States)

    Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A

    2014-11-01

    Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young. PMID:25327247

  2. THE INITIAL-FINAL MASS RELATION AMONG WHITE DWARFS IN WIDE BINARIES

    International Nuclear Information System (INIS)

    We present the initial-final mass relation derived from 10 white dwarfs in wide binaries that consist of a main-sequence star and a white dwarf. The temperature and gravity of each white dwarf were measured by fitting theoretical model atmospheres to the observed spectrum using a ?2 fitting algorithm. The cooling time and mass were obtained using theoretical cooling tracks. The total age of each binary was estimated from the chromospheric activity of its main-sequence component to an uncertainty of about 0.17 dex in log t. The difference between the total age and white dwarf cooling time is taken as the main-sequence lifetime of each white dwarf. The initial mass of each white dwarf was then determined using stellar evolution tracks with a corresponding metallicity derived from spectra of their main-sequence companions, thus yielding the initial-final mass relation. Most of the initial masses of the white dwarf components are between 1 and 2 M?. Our results suggest a correlation between the metallicity of a white dwarf's progenitor and the amount of post-main-sequence mass loss it experiences—at least among progenitors with masses in the range of 1-2 M?. A comparison of our observations to theoretical models suggests that low-mass stars preferentially lose mass on the red giant branch.

  3. New population synthesis model: Preliminary results for close double white dwarf populations

    OpenAIRE

    Toonen, Silvia; Nelemans, Gijs; Zwart, Simon Portegies

    2011-01-01

    An update is presented to the software package SeBa for simulating single star and binary evolution in which new stellar evolution tracks have been implemented. SeBa is applied to study the population of close double white dwarf and the delay time distribution of double white dwarf mergers that may lead to Supernovae Type Ia.

  4. Absolute Proper Motions to B~22.5: IV. Faint, Low Velocity White Dwarfs and the White Dwarf Population Density Law

    OpenAIRE

    Majewski, S R; Siegel, M. H.

    2001-01-01

    The reduced proper motion diagram (RPMD) for a complete sample of faint stars with high accuracy proper motions in the North Galactic Pole field SA57 is investigated. Eight stars with very large reduced proper motions are identified as faint white dwarf candidates. We discriminate these white dwarf candidates from the several times more numerous QSOs based on proper motion and variability. We discuss the implausibility that these stars could be any kind of survey contam...

  5. Atmospheric Parameters and Carbon Abundance for Hot DB White Dwarfs

    Science.gov (United States)

    Koester, Detlev; Provencal, Judi; Gänsicke, Boris T.

    2015-06-01

    Accurate atmospheric parameters for DB (helium atmosphere) white dwarfs near 25000 K are difficult to determine, but are needed to help or confirm the asteroseismic analysis of these objects. Another important aspect is the new class of white dwarfs - the hot DQ - whose spectra are dominated by carbon lines. The origin of these stars is not yet understood, but they may have an evolutionary link with the hotter DBs as studied here. We use absolutely calibrated high-resolution UV spectra of five DBs in addition to available optical spectroscopy. We find photospheric C and no other heavy elements - with extremely high limits on the C/Si ratio - in two of the five objects. We compare various explanations for this unusual composition that have been proposed in the literature: accretion of interstellar or circumstellar matter, radiative levitation, carbon dredge-up from the deeper interior below the helium layer, and a residual stellar wind. None of these explanations is completely satisfactory, and the problem of the origin of the hot DQ remains an open question.

  6. Minimal dielectric polarization stopping power in white dwarfs

    Science.gov (United States)

    Akbari-Moghanjoughi, M.

    2015-02-01

    In this paper, we investigate the energy loss of ions by arbitrarily degenerate electron fluid, in the framework of hydrodynamic model by incorporating the generalized relativistic degeneracy pressure, Wigner-Seitz cell Coulomb interactions, and electron spin-exchange pressures for a wide range of electron number-density regimes relevant to the solid density (SD), inertial confinement fusion (ICF), warm dense matter (WDM), and super-dense astrophysical objects, such as white dwarf (WD) stars. It is found that the use of non-relativistic degeneracy pressure for electron fluid, instead of the exact Chandrasekhar relativistic degeneracy pressure, for the ICF density regime and beyond can introduce significant relative error to the stopping power calculation. Therefore, current study may introduce a significant change to the ICF scheme of super-compressed fuel. It is further revealed that the relativistic degeneracy parameter, R 0, and the atomic number of constituent ions, Z, significantly affect the maximum stopping power velocity of ions. We also discover that the velocity-averaged energy loss function becomes minimal in electron number density typical of white dwarf stars, n 0?2×1030 cm-3. It is found that the characteristic density for the minimal ion beam energy loss does not depend on the value of other plasma parameters, such as the ion-electron collision rate and the ion temperature or its atomic number. The latter finding, in particular, may help in better understanding of fusion-burning waves in dense compact stars and their cooling mechanisms.

  7. Neutron stars and white dwarfs in galactic halos?

    International Nuclear Information System (INIS)

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration. 32 refs

  8. Neutron stars and white dwarfs in galactic halos

    Science.gov (United States)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1989-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  9. Evolved Planetary Systems around Very Cool and Old White Dwarfs

    Science.gov (United States)

    Hollands, Mark; Gänsicke, Boris; Koester, Detlev

    2015-06-01

    We have spectroscopically identified 61 very cool (below 9000 K) and old (1-7 Gyr) DZ white dwarfs from the Sloan Digital Sky Survey (SDSS). These stars have evaded prior detection as the extremely broad Ca H/K lines in the blue part of their spectra dramatically alter their colours, mixing them into the colour-space of intermediate redshift quasars. In most of these stars we detect photospheric Ca, Mg, Fe and Na. The coolest of these has Teff ? 5000 K corresponding to a cooling age of ˜ 7 Gyr. The only mechanism that can explain the large amounts of metal in the convection zones of these white dwarfs is accretion of planetary debris. Hence, these stars provide a lower limit on the onset of the formation of rocky material within the Milky Way, and, more generally, insight into the formation of early terrestrial planets. Additionally, we identify several of these DZ to have strong (0.6-10 MG) magnetic fields leading to an observed incidence of magnetism of 13 %.

  10. Neutron stars and white dwarfs in galactic halos?

    Science.gov (United States)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1990-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  11. Neutron stars and white dwarfs in galactic halos

    International Nuclear Information System (INIS)

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration

  12. DA WHITE DWARFS OBSERVED IN THE LAMOST PILOT SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yueyang; Deng Licai; Liu Chao; Carrell, Kenneth; Yang Fan; Gao Shuang; Xu Yan; Li Jing; Zhang Haotong; Zhao Yongheng; Luo Ali; Bai Zhongrui; Yuan Hailong [Key Lab for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Lepine, Sebastien [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY (United States); Newberg, Heidi Jo; Carlin, Jeffrey L. [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Jin Ge [University of Science and Technology of China, Hefei 230026 (China)

    2013-08-01

    A total of {approx}640, 000 objects from the LAMOST pilot survey have been publicly released. In this work, we present a catalog of DA white dwarfs (DAWDs) from the entire pilot survey. We outline a new algorithm for the selection of white dwarfs (WDs) by fitting Sersic profiles to the Balmer H{beta}, H{gamma}, and H{delta} lines of the spectra, and calculating the equivalent width of the Ca II K line. Two thousand nine hundred sixty-four candidates are selected by constraining the fitting parameters and the equivalent width of the Ca II K line. All the spectra of candidates are visually inspected. We identify 230 DAWDs (59 of which are already included in the Villanova and SDSS WD catalogs), 20 of which are DAWDs with non-degenerate companions. In addition, 128 candidates are classified as DAWDs/subdwarfs, which means the classifications are ambiguous. The result is consistent with the expected DAWD number estimated based on the LEGUE target selection algorithm.

  13. Simplified Hydrostatic Carbon Burning in White Dwarf Interiors

    CERN Document Server

    Förster, Francisco; Podsiadlowski, Philipp

    2010-01-01

    We introduce two simplified nuclear networks that can be used in hydrostatic carbon burning reactions occurring in white dwarf interiors. They model the relevant nuclear reactions in carbon-oxygen white dwarfs (COWDs) approaching ignition in Type Ia supernova (SN Ia) progenitors, including the effects of the main e-captures and \\beta-decays that drive the convective Urca process. They are based on studies of a detailed nuclear network compiled by the authors and are defined by approximate sets of differential equations whose derivations are included in the text. The first network, N1, provides a good first order estimation of the distribution of ashes and it also provides a simple picture of the main reactions occurring during this phase of evolution. The second network, N2, is a more refined version of N1 and can reproduce the evolution of the main physical properties of the full network to the 5% level. We compare the evolution of the mole fraction of the relevant nuclei, the neutron excess, the photon ener...

  14. Heavy element abundance patterns in hot DA white dwarfs

    CERN Document Server

    Barstow, M A; Holberg, J B; Hubeny, I; Bannister, N P; Bruhweiler, F C; Burleigh, M R; Napiwotzki, R

    2003-01-01

    We present a series of systematic abundance measurements for 25 hot DA white dwarfs in the temperature range ~20000-110000K, based on far-UV spectroscopy with STIS/GHRS on HST, IUE and FUSE. Using our latest heavy element blanketed non-LTE stellar atmosphere calculations we have addressed the heavy element abundance patterns making completely objective measurements of abundance values and upper limits using a 2 fitting technique to determine the uncertainties in the abundance measurements, which can be related to the formal upper limits in those stars where particular elements are not detected. We find that the presence or absence of heavy elements in the hot DA white dwarfs largely reflects what would be expected if radiative levitation is the supporting mechanism, although the measured abundances do not match the predicted values very well, as reported by other authors in the past. Almost all stars hotter than ~50000K contain heavy elements. For most of these the spread in element abundances is quite narrow...

  15. Search for Metal Pollution in 81 DA White Dwarfs

    CERN Document Server

    Koester, Detlev; Girven, Jonathan; Farihi, Jay

    2012-01-01

    A total of 81 DA white dwarfs have been observed with the Cosmic Origins Spectrograph on the Hubble Space Telescope in a snapshot program. The targets were selected to be in the $T_{\\rm eff}$ range from 17000 - 25000 K, where optical metal lines become weak and difficult to detect. Because of the strong Si, C, and O resonance lines in the UV, this survey has a sensitivity that is comparable to that of the Keck/VLT searches for CaII K in cooler white dwarfs. These objects also have no convection zone and thus very short diffusion timescales, assuring that accretion is currently ongoing. The spectra have high resolution and in most cases fairly good S/N. About 60% of them show photospheric metal pollution, predominantly of Si, but in some cases additional metals are present. We report the results of a preliminary analysis and discuss the sources of the accreted matter and the possible r\\^ole of radiative levitation.

  16. Post-common envelope binaries from SDSS-X: The origin of low-mass white dwarfs

    OpenAIRE

    Rebassa-Mansergas, Alberto; Gomez-Moran, Ada Nebot; Schreiber, Matthias; Girven, Jonathan; Gansicke, Boris

    2010-01-01

    We present the first white dwarf mass distributions of a large and homogeneous sample of post-common envelope binaries (PCEBs) and wide white dwarf-main sequence binaries (WDMS) directly obtained from observations. Both distributions are statistically independent, with PCEBs showing a clear concentration of systems towards the low-mass end of the distribution, and the white dwarf mass distribution of wide WDMS binaries being similar to those of single white dwarfs. Our resul...

  17. Connections between Tilted Accretion Disks around White Dwarfs and Substellar Companions

    OpenAIRE

    Montgomery, M. M.

    2011-01-01

    Accretion disks in white dwarf systems are believed to be tilted. In a recent publication, the lift force has been suggested to be a source to disk tilt, a source that is likely relevant to all accretion disk systems. Lift is generated by slightly different supersonic gas stream speeds flowing over and under the disk at the bright spot. In this conference proceeding, we focus on whether a brown dwarf donor star accreting onto a white dwarf primary has enough mass to contribu...

  18. SPITZER OBSERVATIONS OF WHITE DWARFS: THE MISSING PLANETARY DEBRIS AROUND DZ STARS

    International Nuclear Information System (INIS)

    We report a Spitzer/Infrared Array Camera search for infrared excesses around white dwarfs, including 14 newly observed targets and 16 unpublished archived stars. We find a substantial infrared excess around two warm white dwarfs—J220934.84+122336.5 and WD 0843+516, the latter apparently being the hottest white dwarf known to display a close-in dust disk. Extending previous studies, we find that the fraction of white dwarfs with dust disks increases as the star's temperature increases; for stars cooler than 10,000 K, even the most heavily polluted ones do not have ?1000 K dust. There is tentative evidence that the dust disk occurrence is correlated with the volatility of the accreted material. In the Appendix, we modify a previous analysis to clarify how Poynting-Robertson drag might play an important role in transferring materials from a dust disk into a white dwarf's atmosphere.

  19. Luminosity and cooling of highly magnetised white dwarfs: Suppression of luminosity by strong magnetic fields

    CERN Document Server

    Bhattacharya, Mukul; Mukerjee, Subroto

    2015-01-01

    We investigate the luminosity and cooling of highly magnetised white dwarfs. We consider white dwarfs with electron-degenerate core and nondegenerate surface layers where cooling occurs by diffusion of photons. We find the temperature and density profiles in the surface layers or envelope of white dwarfs for radially constant and varying magnetic fields by solving the magnetostatic equilibrium and photon diffusion equations in a Newtonian framework. We also obtain the properties of white dwarfs at the core-envelope interface, when the core is assumed to be practically isothermal due to large thermal conductivity. With the increase in magnetic field, the interface temperature and density are found to be increasing. While the interface radius also increases with the increase in magnetic field when the field is hypothesised to be constant throughout the star, the interface radius decreases for varying fields. However, for white dwarfs having fixed interface radius or interface temperature, we find that the lumin...

  20. Radius constraints from high-speed photometry of 20 low-mass white dwarf binaries

    International Nuclear Information System (INIS)

    We carry out high-speed photometry on 20 of the shortest-period, detached white dwarf binaries known and discover systems with eclipses, ellipsoidal variations (due to tidal deformations of the visible white dwarf), and Doppler beaming. All of the binaries contain low-mass white dwarfs with orbital periods of less than four hr. Our observations identify the first eight tidally distorted white dwarfs, four of which are reported for the first time here. We use these observations to place empirical constraints on the mass-radius relationship for extremely low-mass (?0.30 M ?) white dwarfs. We also detect Doppler beaming in several of these binaries, which confirms their high-amplitude radial-velocity variability. All of these systems are strong sources of gravitational radiation, and long-term monitoring of those that display ellipsoidal variations can be used to detect spin-up of the tidal bulge due to orbital decay.

  1. Spectroscopic analysis of DA white dwarfs from the McCook and Sion catalog

    International Nuclear Information System (INIS)

    For some years now, we have been gathering optical spectra of DA white dwarfs in an effort to study and define the empirical ZZ Ceti instability strip. However, we have recently expanded this survey to include all the DA white dwarfs in the McCook and Sion catalog down to a limiting visual magnitude of V = 17.5. We present here a spectroscopic analysis of over 1000 DA white dwarfs from this ongoing survey. We have several specific areas of interest most notably the hot DAO white dwarfs, the ZZ Ceti instability strip, and the DA+dM binary systems. Furthermore, we present a comparison of the ensemble properties of our sample with those of other large surveys of DA white dwarfs, paying particular attention to the distribution of mass as a function of effective temperature.

  2. SWIFT J1644+57: A WHITE DWARF TIDALLY DISRUPTED BY A 104 M? BLACK HOLE?

    International Nuclear Information System (INIS)

    We propose that the remarkable object Swift J1644+57, in which multiple recurring hard X-ray flares were seen over a span of several days, is a system in which a white dwarf was tidally disrupted by an intermediate-mass black hole. Disruption of a white dwarf rather than a main-sequence star offers a number of advantages in understanding the multiple, and short, timescales seen in the light curve of this system. In particular, the short internal dynamical timescale of a white dwarf offers a more natural way of understanding the short rise times (?100 s) observed. The relatively long intervals between flares (?5 × 104 s) may also be readily understood as the period between successive pericenter passages of the remnant white dwarf. In addition, the expected jet power is larger when a white dwarf is disrupted. If this model is correct, the black hole responsible must have a mass ?5 M?.

  3. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    CERN Document Server

    Hoard, D W; Wachter, Stefanie; Leisawitz, David T; Cohen, Martin

    2013-01-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks....

  4. HOT WHITE DWARF SHINES IN YOUNG STAR CLUSTER

    Science.gov (United States)

    2002-01-01

    A dazzling 'jewel-box' collection of over 20,000 stars can be seen in crystal clarity in this NASA Hubble Space Telescope image, taken with the Wide Field and Planetary Camera 2. The young (40 million year old) cluster, called NGC 1818, is 164,000 light-years away in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. The LMC, a site of vigorous current star formation, is an ideal nearby laboratory for studying stellar evolution. In the cluster, astronomers have found a young white dwarf star, which has only very recently formed following the burnout of a red giant. Based on this observation astronomers conclude that the red giant progenitor star was 7.6 times the mass of our Sun. Previously, astronomers have estimated that stars anywhere from 6 to 10 solar masses would not just quietly fade away as white dwarfs but abruptly self-destruct in torrential explosions. Hubble can easily resolve the star in the crowded cluster, and detect its intense blue-white glow from a sizzling surface temperature of 50,000 degrees Fahrenheit. IMAGE DATA Date taken: December 1995 Wavelength: natural color reconstruction from three filters (I,B,U) Field of view: 100 light-years, 2.2 arc minutes TARGET DATA Name: NGC 1818 Distance: 164,000 light-years Constellation: Dorado Age: 40 million years Class: Rich star cluster Apparent magnitude: 9.7 Apparent diameter: 7 arc minutes Credit: Rebecca Elson and Richard Sword, Cambridge UK, and NASA (Original WFPC2 image courtesy J. Westphal, Caltech) Image files are available electronically via the World Wide Web at: http://oposite.stsci.edu/pubinfo/1998/16 and via links in http://oposite.stsci.edu/pubinfo/latest.html or http://oposite.stsci.edu/pubinfo/pictures.html. GIF and JPEG images are available via anonymous ftp to oposite.stsci.edu in /pubinfo/GIF/9816.GIF and /pubinfo/JPEG/9816.jpg.

  5. A stellar prominence in the white dwarf/red dwarf binary QS Vir: evidence for a detached system

    CERN Document Server

    Parsons, S G; Gänsicke, B T; Tappert, C

    2010-01-01

    Using high resolution UVES spectra of the eclipsing Post Common Envelope Binary QS Vir we detect material along the line of sight to the white dwarf at orbital phase $\\phi=0.16$. We ascribe this to a stellar prominence originating from the M dwarf secondary star which passes in front of the white dwarf at this phase. This creates sharp absorption features in the hydrogen Balmer series and Ca II H and K lines. The small size of the white dwarf allows us to place tight constraints on the column density of hydrogen in the n=2 level of log_(10)(N_2) = 14.10 +/- 0.03 cm^(-2) and, assuming local thermodynamical equilibrium, the temperature of the prominence material of ~9000K. The prominence material is at least 1.5 stellar radii from the surface of the M dwarf. The location of the prominence is consistent with emission features previously interpreted as evidence for Roche lobe overflow in the system. We also detect Mg II 4481A absorption from the white dwarf. The width of the Mg II line indicates that the white dw...

  6. Three New Eclipsing White-dwarf - M-dwarf Binaries Discovered in a Search for Transiting Planets Around M-dwarfs

    CERN Document Server

    Law, Nicholas M; Street, Rachel; Fulton, Benjamin J; Hillenbrand, Lynne A; Shporer, Avi; Lister, Tim; Baranec, Christoph; Bloom, Joshua S; Bui, Khanh; Burse, Mahesh P; Cenko, S Bradley; Das, H K; Davis, Jack T C; Dekany, Richard G; Filippenko, Alexei V; Kasliwal, Mansi M; Kulkarni, S R; Nugent, Peter; Ofek, Eran O; Poznanski, Dovi; Quimby, Robert M; Ramaprakash, A N; Riddle, Reed; Silverman, Jeffrey M; Sivanandam, Suresh; Tendulkar, Shriharsh

    2011-01-01

    We present three new eclipsing white-dwarf / M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a Graphics Processing Unit (GPU)-based box-least-squares search for transits that runs approximately 8X faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 solar radi...

  7. Merging of Components in Close Binaries: Type Ia Supernovae, Massive White Dwarfs, and Ap stars

    OpenAIRE

    Bogomazov, A. I.; Tutukov, A. V.

    2009-01-01

    The "Scenario Machine" (a computer code designed for studies of the evolution of close binaries) was used to carry out a population synthesis for a wide range of merging astrophysical objects: main-sequence stars with main-sequence stars; white dwarfs with white dwarfs, neutron stars, and black holes; neutron stars with neutron stars and black holes; and black holes with black holes.We calculate the rates of such events, and plot the mass distributions for merging white dwar...

  8. EX-111 Thermal Emission from Hot White Dwarfs: The Suggested He Abundance-Temperature Correlation. EX-112: The Unique Emission Line White Dwarf Star GD 356

    Science.gov (United States)

    Shipman, H. L.

    1986-01-01

    Progress in the EXOSAT data analysis program is reported. EXOSAT observations for four white dwarfs (WD1031-115, WD0004+330, WD1615-154, and WD0109-264) were obtained. Counting rates were unexpectedly low, indicating that these objects have a substantial amount of x-ray absorbing matter in their photosheres. In addition, soft x-ray pulsations characterized by a 9.25 minute cycle were discovered in the DA white dwarf V471 Tauri. A residual x-ray flux from the K dwarf companion can be seen during the white dwarf eclipse at orbital phase 0.0. Pronounced dips in the soft x-ray light curve occur at orbital phases 0.15, 0.18, and 0.85. The dips may be correlated with the triangular Lagrangian points of the binary orbit. Smaller dips at phases near the eclipse may be associated with cool loops in the K star corona. Data for the white dwarf H1504+65 was also analyzed. This object is particularly unusual in that its photoshere is devoid of hydrogen and helium. Finally, existing data on the white dwarf Sirius B were analyzed to see what constraints from other data can be placed on the properties of this star. Interrelationships between radius, rotational velocity, and effective temperature were derived.

  9. THE KEPLER LIGHT CURVE OF THE UNIQUE DA WHITE DWARF BOKS 53856

    International Nuclear Information System (INIS)

    The faint (g = 16.9) hot white dwarf BOKS 53856 was observed by the Kepler Mission in short cadence mode during mid-2009. Analysis of these observations reveals a highly stable modulation with a period of 6.1375 hr and a 2.46% half-amplitude. The folded light curve has an unusual shape that is difficult to explain in terms of a binary system containing an unseen companion more luminous than an L0 brown dwarf. Optical spectra of BOKS 53856 show a Teff = 34,000 K, log g = 8.0 DA white dwarf. There are few, if any, known white dwarfs in this temperature range exhibiting photometric variations similar to those we describe. A magnetic spin-modulated white dwarf model can in principle explain the light curve, an interpretation supported by spectral observations of the H? line showing evidence of Zeeman splitting.

  10. On the incidence of weak magnetic fields in DA white dwarfs

    CERN Document Server

    Landstreet, J D; Valyavin, G G; Fossati, L; Jordan, S; Monin, D; Wade, G

    2012-01-01

    Context: About 10% of white dwarfs have magnetic fields with strength in the range between about 10^5 and 3x10^8 G. It is not known whether the remaining white dwarfs are not magnetic, or if they have a magnetic field too weak to be detected with the techniques adopted in the large surveys. Aims. We describe the results of the first survey specifically devised to clarify the detection frequency of kG-level magnetic fields in cool DA white dwarfs. Methods: Using the FORS1 instrument of the ESO VLT, we have obtained Balmer line circular spectropolarimetric measurements of a small sample of cool (DA6 - DA8) white dwarfs. Using FORS and UVES archive data, we have also revised numerous white dwarf field measurements previously published in the literature. Results: We have discovered an apparently constant longitudinal magnetic field of \\sim9.5 kG in the DA6 white dwarf WD2105-820. This star is the first weak-field white dwarf that has been observed sufficiently to roughly determine the characteristics of its field...

  11. An independent test of the photometric selection of white dwarf candidates using LAMOST DR3

    CERN Document Server

    Fusillo, N P Gentile; Gänsicke, B T; Liu, X -W; Ren, J J; Koester, D; Zhan, Y; Hou, Y; Wang, Y; Yang, M

    2015-01-01

    In Gentile Fusillo et al. (2015) we developed a selection method for white dwarf candidates which makes use of photometry, colours and proper motions to calculate a probability of being a white dwarf (Pwd). The application of our method to the Sloan Digital Sky Survey (SDSS) data release 10 resulted in nearly 66,000 photometrically selected objects with a derived Pwd, approximately 21000 of which are high confidence white dwarf candidates. Here we present an independent test of our selection method based on a sample of spectroscopically confirmed white dwarfs from the LAMOST (Large Sky Area Multi-Fiber Spectroscopic Telescope) survey. We do this by cross matching all our $\\sim$66,000 SDSS photometric white dwarf candidates with the over 4 million spectra available in the third data release of LAMOST. This results in 1673 white dwarf candidates with no previous SDSS spectroscopy, but with available LAMOST spectra. Among these objects we identify 309 genuine white dwarfs. We find that our Pwd can efficiently di...

  12. A Second Case of Outbursts in a Pulsating White Dwarf Observed by Kepler

    Science.gov (United States)

    Hermes, J. J.; Montgomery, M. H.; Bell, Keaton J.; Chote, P.; Gänsicke, B. T.; Kawaler, Steven D.; Clemens, J. C.; Dunlap, Bart H.; Winget, D. E.; Armstrong, D. J.

    2015-09-01

    We present observations of a new phenomenon in pulsating white dwarf stars: large-amplitude outbursts at timescales much longer than the pulsation periods. The cool ({T}{eff} = 11,060 K), hydrogen-atmosphere pulsating white dwarf PG 1149+057 was observed nearly continuously for more than 78.8 day by the extended Kepler mission in K2 Campaign 1. The target showed 10 outburst events, recurring roughly every 8 day and lasting roughly 15 hr, with maximum flux excursions up to 45% in the Kepler bandpass. We demonstrate that the outbursts affect the pulsations and therefore must come from the white dwarf. Additionally, we argue that these events are not magnetic reconnection flares, and are most likely connected to the stellar pulsations and the relatively deep surface convection zone. PG 1149+057 is now the second cool pulsating white dwarf to show this outburst phenomenon, after the first variable white dwarf observed in the Kepler mission, KIC 4552982. Both stars have the same effective temperature, within the uncertainties, and are among the coolest known pulsating white dwarfs of typical mass. These outbursts provide fresh observational insight into the red edge of the DAV instability strip and the eventual cessation of pulsations in cool white dwarfs.

  13. TRANSIT SURVEYS FOR EARTHS IN THE HABITABLE ZONES OF WHITE DWARFS

    International Nuclear Information System (INIS)

    To date the search for habitable Earth-like planets has primarily focused on nuclear burning stars. I propose that this search should be expanded to cool white dwarf stars that have expended their nuclear fuel. I define the continuously habitable zone of white dwarfs and show that it extends from ?0.005 to 0.02 AU for white dwarfs with masses from 0.4 to 0.9 Msun, temperatures less than ?104 K, and habitable durations of at least 3 Gyr. As they are similar in size to Earth, white dwarfs may be deeply eclipsed by terrestrial planets that orbit edge-on, which can easily be detected with ground-based telescopes. If planets can migrate inward or reform near white dwarfs, I show that a global robotic telescope network could carry out a transit survey of nearby white dwarfs placing interesting constraints on the presence of habitable Earths. If planets were detected, I show that the survey would favor detection of planets similar to Earth: similar size, temperature, and rotation period, and host star temperatures similar to the Sun. The Large Synoptic Survey Telescope could place even tighter constraints on the frequency of habitable Earths around white dwarfs. The confirmation and characterization of these planets might be carried out with large ground and space telescopes.

  14. The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    Science.gov (United States)

    Hoard, D.W.; Debes, John H.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin

    2013-01-01

    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks. It is possible that the current census of white dwarfs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The white dwarf dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.

  15. TOWARD A SPECTROSCOPIC CENSUS OF WHITE DWARFS WITHIN 40 pc OF THE SUN

    International Nuclear Information System (INIS)

    We present the preliminary results of a survey aimed at significantly increasing the range and completeness of the local census of spectroscopically confirmed white dwarfs. The current census of nearby white dwarfs is reasonably complete only to about 20 pc of the Sun, a volume that includes around 130 white dwarfs, a sample too small for detailed statistical analyses. This census is largely based on follow-up investigations of stars with very large proper motions. We describe here the basis of a method that will lead to a catalog of white dwarfs within 40 pc of the Sun and north of the celestial equator, thus increasing by a factor of eight the extent of the northern sky census. White dwarf candidates are identified from the SUPERBLINK proper motion database, allowing us to investigate stars down to a proper motion limit ? > 40 mas yr–1, while minimizing the kinematic bias for nearby objects. The selection criteria and distance estimates are based on a combination of color-magnitude and reduced proper motion diagrams. Our follow-up spectroscopic observation campaign has so far uncovered 193 new white dwarfs, among which we identify 127 DA (including 9 DA+dM and 4 magnetic), 1 DB, 56 DC, 3 DQ, and 6 DZ stars. We perform a spectroscopic analysis on a subsample of 84 DAs, and provide their atmospheric parameters. In particular, we identify 11 new white dwarfs with spectroscopic distances within 25 pc of the Sun, including five candidates to the D < 20 pc subset.

  16. Astrometric determination of white dwarf radial velocities with Gaia?

    CERN Document Server

    Jordan, Stefan

    2012-01-01

    Usually, the determination of radial velocities of stars relies on the shift of spectral lines by the Doppler effect. Russel & Atkinson (1931) and Oort (1932) already noted that due to the large proper motion and parallax of the white dwarf (WD) van Maanen 2, a determination of the perspective acceleration of the proper motion would provide a direct astrometric determination of the radial velocity which is independent of the gravitational redshift. If spectroscopic redshift measurements of Halpha and Hbeta NLTE cores exist, a purely astrometric determination would allow disentangling the gravitational redshift from the Doppler shift. The best instrument for measuring the tiny perspective acceleration is the Gaia satellite of the European Space Agency, aiming at absolute astrometric measurements of one billion stars down to 20th magnitude with unprecedented accuracy. At 15th magnitude, the predicted angular accuracy of Gaia is about 20 micro-arcseconds. In this article, we estimate whether it is possible t...

  17. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P ? 1 day) binaries. Our sample includes four objects with remarkable log g ? 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times 0.9 M? companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  18. Dynamical Tides in Compact White Dwarf Binaries: Influence of Rotation

    CERN Document Server

    Fuller, Jim

    2014-01-01

    Tidal interactions play an important role in the evolution and ultimate fate of compact white dwarf (WD) binaries. Not only do tides affect the pre-merger state (such as temperature and rotation rate) of the WDs, but they may also determine which systems merge and which undergo stable mass transfer. In this paper, we attempt to quantify the effects of rotation on tidal angular momentum transport in binary stars, with specific calculations applied to WD stellar models. We incorporate the effect of rotation using the traditional approximation, in which the dynamically excited gravity waves within the WDs are transformed into gravito-inertial Hough waves. The Coriolis force has only a minor effect on prograde gravity waves, and previous results predicting the tidal spin-up and heating of inspiraling WDs are not significantly modified. However, rotation strongly alters retrograde gravity waves and inertial waves, with important consequences for the tidal spin-down of accreting WDs. We identify new dynamical tidal...

  19. LOW MASS STELLAR AND SUBSTELLAR COMPANIONSHIP AMONG NEARBY WHITE DWARFS

    Directory of Open Access Journals (Sweden)

    M. Radiszcz

    2009-01-01

    Full Text Available This work is a systematic, deep search for stellar and substellar objects orbiting nearby white dwarfs (WDs. The scienti c interest spans testing speci c predictions of common envelope evolutionary phase models, as well as providing constraints to planetary system evolution in advanced stages of its parent star (Livio & Soker 1984; Willes & Wu 2005. Additionally, we seek to explore the hypothesis about the origin of metal lines in hydrogen WDs, produced by the accretion of tidal disturbed asteroidal or cometary material. This could be linked to the presence of a undetected substellar object that perturbed the orbits of these asteroids or comets (Debes & Sigurdsson 2002. Here, we show preliminary results of this project.

  20. On the possible observational signatures of white dwarf dynamical interactions

    CERN Document Server

    Aznar-Siguán, G; Magnien, M; Lorén-Aguilar, P

    2014-01-01

    We compute the possible observational signatures of white dwarf dynamical interactions in dense stellar environments. Specifically, we compute the emission of gravitational waves, and we compare it with the sensitivity curves of planned space-borne gravitational wave detectors. We also compute the light curves for those interactions in which a detonation occurs, and one of the stars is destroyed, as well as the corresponding neutrino luminosities. We find that for the three possible outcomes of these interactions - which are the formation of an eccentric binary system, a lateral collision in which several mass transfer episodes occur, and a direct one in which just a single mass transfer episode takes place - only those in which an eccentric binary are formed are likely to be detected by the planned gravitational wave mission eLISA, while more sensitive detectors would be able to detect the signals emitted in lateral collisions. On the other hand, the light curves (and the thermal neutrino emission) of these ...

  1. An X-ray-selected white dwarf of intermediate luminosity

    Science.gov (United States)

    Margon, Bruce; Bolte, Michael; Anderson, Scott F.

    1987-01-01

    Spectrophotometric observations of a previously uncataloged 17th magnitude hot DA white dwarf are reported. Simple models can reproduce the visible spectrum if the star has log g = 8.0 + or - 0.5 and T(eff) = 22,500 + or - 2000 K. The implied distance is about 200 pc. It is plausible that photospheric emission from this star is responsible for the observed X-ray source. Identification of this object with the X-ray source would imply a photosphere free of traces of helium inferred in other X-ray-emitting DAs, and would support previous suggestions that current DA model atmospheres are in need of revision at X-ray wavelengths.

  2. Tidal disruption of white dwarfs by intermediate mass black holes

    Directory of Open Access Journals (Sweden)

    Bode T.

    2012-12-01

    Full Text Available Modeling ultra-close encounters between a white dwarf and a spinning, intermediate mass black hole requires a full general relativistic treatment of gravity. This paper summarizes results from such a study. Our results show that the disruption process and prompt accretion of the debris strongly depend on the magnitude and orientation of the black hole spin. On the other hand, the late-time accretion onto the black hole follows the same decay, ? ? ?t?5/3, estimated from Newtonian gravity disruption studies. The spectrum of the fallback material peaks in the soft X-rays and sustains Eddington luminosity for 1–3?yrs after the disruption. The orientation of the black hole spin has also a profound effect on how the outflowing debris obscures the central region. The disruption produces a burst of gravitational radiation with characteristic frequencies of ?3.2?Hz and strain amplitudes of ?10?18 for galactic intermediate mass black holes.

  3. Pulsating white dwarfs as a tool for astroparticle physics

    International Nuclear Information System (INIS)

    Nonstandard theories of fundamental interactions typically predict the existence of new kinds of weakly interacting particles. These can escape freely from stellar interiors and act as additional source of cooling. Considerable agreement of a variety of astrophysical observations with standard physics can serve as a source of constraints on non-standard ideas. In this talk we consider G117-B15A pulsating white dwarf for which the secular rate, at which the period of its fundamental mode increases, has been accurately measured. This star has been claimed the most stable oscillator ever recorded in the optical band. Because an additional channel of energy loss would speed up the cooling rate, one is able to use this stability to derive a bound on exotic particles as well as a bound on temporal variability of gravitational constant. (author)

  4. Cosmological Fast Radio Bursts from Binary White Dwarf Mergers

    CERN Document Server

    Kashiyama, Kazumi; Mészáros, Peter

    2013-01-01

    Recently, Thornton et al. (2013) reported the detections of 4 fast radio bursts (FRB). The dispersion measures indicate that the sources are at cosmological distance. Given the large full sky event rate ~ 10^4 sky^-1 day^-1, the FRBs are a promising target of multi-messenger astronomy in the coming years. Here we propose double degenerate, binary white-dwarf (WD) mergers as the source of FRBs, which is produced by coherent emission from the polar region of a rapidly rotating, magnetized massive WD formed after the merger. The basic characteristics of the FRBs, such as the energetics, the emission duration and the event rate can be consistently explained in this scenario. As a result, we predict that some FRBs can accompany type Ia supernovae (SNIa). The simultaneous detection could test our scenario, may probe the progenitor of SNIa, and moreover would give a novel constraint on the cosmological parameters. We strongly encourage SN surveys following up FRBs.

  5. Neutron star formation by collapse of white dwarfs

    International Nuclear Information System (INIS)

    Mass-accreting carbon-oxygen white dwarfs become thermally and dynamically unstable when they reach high enough central densities. Carbon ignition at the star's center likely propagates subsonically and, in the case of an initially solid core, leads to collapse if the rate of increase of the core's mass is sufficiently fast. Recent results indicate, however, that solidification of the core induces carbon-oxygen separation. The central regions are then made of pure oxygen while carbon is rejected to lower-density layers. Carbon ignition happens only after neutronization of the central (oxygen) regions. Collapse to a neutron star is then independent from the rate of mass increase and the only possible restrictions are set by the behaviour of the outer, accreted layers. X-ray sources, pulsars and Type I supernovae are likely outcomes of this process. (orig.)

  6. SEISMOLOGY OF A MASSIVE PULSATING HYDROGEN ATMOSPHERE WHITE DWARF

    International Nuclear Information System (INIS)

    We report our observations of the new pulsating hydrogen atmosphere white dwarf SDSS J132350.28+010304.22. We discovered periodic photometric variations in frequency and amplitude that are commensurate with nonradial g-mode pulsations in ZZ Ceti stars. This, along with estimates for the star's temperature and gravity, establishes it as a massive ZZ Ceti star. We used time-series photometric observations with the 4.1 m SOAR Telescope, complemented by contemporary McDonald Observatory 2.1 m data, to discover the photometric variability. The light curve of SDSS J132350.28+010304.22 shows at least nine detectable frequencies. We used these frequencies to make an asteroseismic determination of the total mass and effective temperature of the star: M* = 0.88 ± 0.02 M? and Teff = 12, 100 ± 140 K. These values are consistent with those derived from the optical spectra and photometric colors.

  7. Detectability of substellar companions around white dwarfs with Gaia

    CERN Document Server

    Silvotti, Roberto; Lattanzi, Mario; Morbidelli, Roberto

    2014-01-01

    To date not a single-bona fide planet has been identified orbiting a single white dwarf. In fact we are ignorant about the final configuration of >95% of planetary systems. Theoretical models predict a gap in the final distribution of orbital periods, due to the opposite effects of stellar mass loss (planets pushed outwards) and tidal interactions (planets pushed inwards) during the RGB and the AGB stellar expansions. Over its five year primary mission, Gaia is expected to astrometrically detect the first (few tens of) WD massive planets/BDs giving first evidence that WD planets exist, at least those in wide orbits. In this article we present preliminary results of our simulations of what Gaia should be able to find in this field.

  8. Constraints on the gravitational constant from observations of white dwarfs

    International Nuclear Information System (INIS)

    Recently some authors have questioned whether Newton's law of gravitation is actually true on scales less than 1 km. The available constraints on the gravitational constant show that its laboratory value G0 may differ from the value at infinity Gsub(infinity) by approximately 40%. Long (1976) reported experimental evidence for departures from Newton's law. In this note it is shown that the difference between G0 and Gsub(infinity) modifies the mass-radius relation of degenerate stars. The observations of white dwarfs are consistent with the theory of stellar evolution only if G0 differs from Gsub(infinity) by not more than approximately 10%. This estimate may be improved by a higher accuracy of observations. (Auth.)

  9. White Dwarfs and Hot Subdwarfs as Seen from FUSE

    CERN Document Server

    Fontaine, G

    2004-01-01

    We present a small collection of FUSE spectra representative of the main spectral classes found in white dwarf stars. In addition, we also discuss another family of hot evolved stars, that of the hot subdwarfs. Both families belong to the chemically peculiar stars, and it is thought that a complex interplay of competing processes such as gravitational settling, ordinary diffusion, radiative levitation, weak stellar winds, and accretion is responsible for the rich variety of atmospheric compositions observed in those objects. FUSE is playing a key role in the current quest for establishing a coherent theory of the spectral evolution of these stars as it allows the determination of the patterns of heavy element abundances at a significantly higher level of accuracy than has been possible before on the basis of optical or UV observations. We also briefly present some fascinating FUV light curves of a handful of pulsating subdwarf B stars, thus illustrating the unique potential of FUSE for asteroseismological stu...

  10. Calcium-rich gap transients: tidal detonations of white dwarfs?

    Science.gov (United States)

    Sell, P. H.; Maccarone, T. J.; Kotak, R.; Knigge, C.; Sand, D. J.

    2015-07-01

    We hypothesize that at least some of the recently discovered class of calcium-rich gap transients are tidal detonation events of white dwarfs (WDs) by black holes (BHs) or possibly neutron stars. We show that the properties of the calcium-rich gap transients agree well with the predictions of the tidal detonation model. Under the predictions of this model, we use a follow-up X-ray observation of one of these transients, SN 2012hn, to place weak upper limits on the detonator mass of this system that include all intermediate-mass BHs (IMBHs). As these transients are preferentially in the stellar haloes of galaxies, we discuss the possibility that these transients are tidal detonations of WDs caused by random flyby encounters with IMBHs in dwarf galaxies or globular clusters. This possibility has been already suggested in the literature but without connection to the calcium-rich gap transients. In order for the random flyby cross-section to be high enough, these events would have to be occurring inside these dense stellar associations. However, there is a lack of evidence for IMBHs in these systems, and recent observations have ruled out all but the very faintest dwarf galaxies and globular clusters for a few of these transients. Another possibility is that these are tidal detonations caused by three-body interactions, where a WD is perturbed towards the detonator in isolated multiple star systems. We highlight a number of ways this could occur, even in lower mass systems with stellar-mass BHs or neutron stars. Finally, we outline several new observational tests of this scenario, which are feasible with current instrumentation.

  11. Type Ia Supernovae from Merging White Dwarfs I. Prompt Detonations

    CERN Document Server

    Moll, Rainer; Kasen, Daniel; Woosley, Stan

    2013-01-01

    Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). While it is not entirely clear if and when an explosion is triggered in such systems, numerical models suggest that a detonation might be initiated before the stars have coalesced to form a single compact object. Here we study such "peri-merger" detonations by means of numerical simulations, modeling the disruption and nucleosynthesis of the stars until the ejecta reach the coasting phase. Synthetic light curves and spectra are generated for comparison with observations. Three models are considered with primary masses 0.96 Msun, 1.06 Msun, and 1.20 Msun. Of these, the 0.96 Msun dwarf merging with an 0.81 Msun companion, with a Ni56 yield of 0.58 Msun, is the most promising candidate for reproducing common SNe Ia. The more massive mergers produce unusually luminous SNe Ia with peak luminosities approaching those attributed to "super-Chandrasekhar" mass SNe Ia. While the synthetic light curves and spectra of some of the models resemb...

  12. Calcium-Rich Gap Transients: Tidal Detonations of White Dwarfs?

    CERN Document Server

    Sell, P H; Kotak, R; Knigge, C; Sand, D J

    2015-01-01

    We hypothesize that at least some of the recently discovered class of calcium-rich gap transients are tidal detonation events of white dwarfs (WDs) by black holes (BHs) or possibly neutron stars. We show that the properties of the calcium-rich gap transients agree well with the predictions of the tidal detonation model. Under the predictions of this model, we use a follow-up X-ray observation of one of these transients, SN 2012hn, to place weak upper limits on the detonator mass of this system that include all intermediate-mass BHs (IMBHs). As these transients are preferentially in the stellar haloes of galaxies, we discuss the possibility that these transients are tidal detonations of WDs caused by random flyby encounters with IMBHs in dwarf galaxies or globular clusters. This possibility has been already suggested in the literature but without connection to the calcium-rich gap transients. In order for the random flyby cross-section to be high enough, these events would have to be occurring inside these den...

  13. Cooling of the white dwarf in U Geminorum between outbursts

    Science.gov (United States)

    Long, Knox S.; Sion, Edward M.; Huang, Min; Szkody, Paula

    1994-01-01

    We have obtained far-ultraviolet (1150-1610 A) spectra of U Gem with the Faint Object Spectrograph on the Hubble Space Telescope approximately 13 and 70 days after the end of a normal dwarf nova outburst of the system. Both spectra appear dominated by the White Dwarf (WD) in U Gem. At 1400 A, the flux from U Gem declined approximately 28% between the two observations. Detailed comparison of the spectra with solar abundance WD models suggest that average surface temperature of the WD surface cooled from approximately 39,400 K to approximately 32,100 K between the two observations. The main features which are not fitted well by WD models are absorption due to N V lambda lambda-1239, 1243 and emission at Lyman-alpha. These observations provide unambiguous confirmation that the WD in U Gem cools during quiescence, as was suggested by analyses of far-ultraviolet spectra obtained with International Ultraviolet Explorer (IUE) and Hopkins Ultraviolet Telescope (HUT).

  14. White Dwarfs in Globular Clusters HST Observations of M4

    CERN Document Server

    Richer, H B; Ibata, R A; Pryor, C E; Bell, R A; Bolte, M; Bond, H E; Harris, W E; Hesser, J E; Holland, S; Ivanans, N; Mandushev, G I; Stetson, P B; Wood, M A; Richer, Harvey B.; Fahlman, Gregory G.; Ibata, Rodrigo A.; Pryor, Carlton; Bell, Roger A.; Bolte, Michael; Bond, Howard E.; Harris, William E.; Hesser, James E.; Holland, Steve; Ivanans, Nicholas; Mandushev, Georgi; Stetson, Peter B.; Wood, Matt A.

    1997-01-01

    Using WFPC2 on the Hubble Space Telescope, we have isolated a sample of 258 white dwarfs (WDs) in the Galactic globular cluster M4. Fields at three radial distances from the cluster center were observed and sizeable WD populations were found in all three. The location of these WDs in the color-magnitude diagram, their mean mass of 0.51($ \\pm 0.03$)M$_{\\odot}$, and their luminosity function confirm basic tenets of stellar evolution theory and support the results from current WD cooling theory. The WDs are used to extend the cluster main-sequence mass function upward to stars that have already completed their nuclear evolution. The WD/red dwarf binary frequency in M4 is investigated and found to be at most a few percent of all the main-sequence stars. The most ancient WDs found are about 9 Gyr old, a level which is set solely by the photometric limits of our data. Even though this is less than the age of M4, we discuss how these cooling WDs can eventually be used to check the turnoff ages of globular clusters a...

  15. THE FREQUENCY OF DEBRIS DISKS AT WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Sara D.; Patterson, Adam J.; Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Leggett, S. K. [Gemini Observatory, 670 N. A' ohoku Place, Hilo, HI 96720 (United States); Dufour, P. [Departement de Physique, Universite de Montreal, C.P. 6128, Succursale Centre-Ville, Montreal, Quebec H3C 3J7 (Canada); Bloom, J. S.; Starr, D. L., E-mail: barber@nhn.ou.edu [Department of Astronomy, University of California, Berkeley, CA 94720 (United States)

    2012-11-20

    We present near- and mid-infrared photometry and spectroscopy from PAIRITEL, IRTF, and Spitzer of a metallicity-unbiased sample of 117 cool, hydrogen-atmosphere white dwarfs (WDs) from the Palomar-Green survey and find five with excess radiation in the infrared, translating to a 4.3{sup +2.7} {sub -1.2}% frequency of debris disks. This is slightly higher than, but consistent with the results of previous surveys. Using an initial-final mass relation, we apply this result to the progenitor stars of our sample and conclude that 1-7 M {sub Sun} stars have at least a 4.3% chance of hosting planets; an indirect probe of the intermediate-mass regime eluding conventional exoplanetary detection methods. Alternatively, we interpret this result as a limit on accretion timescales as a fraction of WD cooling ages; WDs accrete debris from several generations of disks for {approx}10 Myr. The average total mass accreted by these stars ranges from that of 200 km asteroids to Ceres-sized objects, indicating that WDs accrete moons and dwarf planets as well as solar system asteroid analogs.

  16. Halo white dwarfs and the hot intergalactic medium

    International Nuclear Information System (INIS)

    We present a schematic model for the formation of baryonic galactic halos and hot gas in the Local Group and the intergalactic medium. We follow the dynamics, chemical evolution, heat flow, and gas flows of a hierarchy of scales, including protogalactic clouds, galactic halos, and the Local Group itself. Within this hierarchy the Galaxy is built up via mergers of protogalactic fragments. Hot and cold gas components are distinguished, with star formation occurring in cold molecular cloud cores, while stellar winds, supernovae, and mergers convert cold gas into a hot intercloud medium. We find that early bursts of star formation lead to a large population of remnants (mostly white dwarfs) that would presently reside in the halo and contribute to the dark component observed in the microlensing experiments. The starbursts and mergers heat the gas and lead to powerful evaporation-driven winds. This outflow is crucial, as it drives gas out of the clouds and eventually into the intergalactic medium. The model thus suggests that most microlensing objects could be white dwarfs (m?0.5Mcircle-dot), which comprise a significant fraction of the halo mass. Furthermore, the Local Group could have a component of metal-rich hot gas similar to, although less than, that observed in larger clusters. We discuss the known constraints on such a scenario and show that all local observations can be satisfied with present data in this model. The most stringent constraint comes from the metallicity distribution in the halo. The best-fit model has a halo that is 40% baryonic, with an upper limit of 77%. Our model predicts that the hot intragroup gas has a total luminosity 1.5x1040ergs-1 and a temperature of 0.26 keV, just at the margin of detectability. Improved X-ray data could provide a key constraint on any remnant component in the halo. copyright 1997 The American Astronomical Society

  17. THE CONTRIBUTION OF HALO WHITE DWARF BINARIES TO THE LASER INTERFEROMETER SPACE ANTENNA SIGNAL

    International Nuclear Information System (INIS)

    Galactic double white dwarfs were postulated as a source of confusion limited noise for the Laser Interferometer Space Antenna (LISA), the future space-based gravitational wave observatory. Until very recently, the Galactic population consisted of a relatively well-studied disk population, a somewhat studied smaller bulge population and a mostly unknown, but potentially large halo population. It has been argued that the halo population may produce a signal that is much stronger (factor of ?5 in spectral amplitude) than the disk population. However, this surprising result was not based on an actual calculation of a halo white dwarf population, but was derived on (1) the assumption that one can extrapolate the halo population properties from those of the disk population and (2) the postulated (unrealistically) high number of white dwarfs in the halo. We perform the first calculation of a halo white dwarf population using population synthesis models. Our comparison with the signal arising from double white dwarfs in the Galactic disk+bulge clearly shows that it is impossible for the double white dwarf halo signal to exceed that of the rest of the Galaxy. Using microlensing results to give an upper limit on the content of white dwarfs in the halo (?30% baryonic mass in white dwarfs), our predicted halo signal is a factor of 10 lower than the disk+bulge signal. Even in the implausible case, where all of the baryonic halo mass is found in white dwarfs, the halo signal does not become comparable to that of the disk+bulge, and thus would still have a negligible effect on the detection of other LISA sources.

  18. ENERGY DISSIPATION THROUGH QUASI-STATIC TIDES IN WHITE DWARF BINARIES

    International Nuclear Information System (INIS)

    We present a formalism to study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides, in which the tidal forcing frequencies are small, compared to the inverse of the white dwarf's dynamical timescale. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy dissipation through convective damping. We determine rates of secular evolution of the orbital elements and white dwarf rotational angular velocity for a 0.3 Msun helium white dwarf in binaries with orbital frequencies in the Laser Interferometer Space Antenna (LISA) gravitational wave frequency band and companion masses ranging from 0.3 Msun to 105 Msun. The resulting tidal evolution timescales for the orbital semimajor axis are longer than a Hubble time, so that convective damping of quasi-static tides need not be considered in the construction of gravitational wave templates of white dwarf binaries in the LISA band. Spin-up of the white dwarf, on the other hand, can occur on timescales of less than 10 Myr, provided that the white dwarf is initially rotating with a frequency much smaller than the orbital frequency. For semi-detached white dwarf binaries spin-up can occur on timescales of less than 1 Myr. Nevertheless, the timescales remain longer than the orbital inspiral timescales due to gravitational radiation, so that the degree of asynchronism in these binaries increases. As a consequence, tidal forcing eventually occurs at forcing frequencies beyond the quasi-static tide approximation. For the shortest period binaries, energy dissipation is therefore expected to take place through dynamic tides and resonantly excited g-modes.

  19. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences: II. Nonadiabatic analysis

    OpenAIRE

    Córsico, Alejandro H.; Althaus, Leandro G.

    2015-01-01

    Low-mass ($M_{\\star}/M_{\\sun} \\lesssim 0.45$) white dwarfs, including the so called extremely low-mass white dwarfs (ELM, $M_{\\star}/M_{\\sun } \\lesssim 0.18-0.20$), are being currently discovered in the field of our Galaxy through dedicated photometric surveys. The fact that some of them pulsate opens the unparalleled chance for sounding their interiors. We present a detailed nonadiabatic pulsational analysis of such stars based on a new set of He-core white-dwarf models wit...

  20. Features of the mass transfer in magnetic cataclysmic variables with fast-rotating white dwarfs

    Directory of Open Access Journals (Sweden)

    Isakova Polina

    2014-01-01

    Full Text Available The flow structure in magnetic cataclysmic variables was investigated taking into account the effects of strong magnetic field and fast rotation of the white dwarf. We modeled the AE Aqr system as a unique object that has the rotation period of the white dwarf is about 1000 times shorter than the orbital period of the binary system. Observations show that in spite of fast rotation of the white dwarf some part of the stream from the inner Lagrange point comes into the Roche lobe region. We analyzed possible mechanisms preventing material to outflow from the system.

  1. Mass-radius relation of strongly magnetized white dwarfs: nearly independent of Landau quantization

    OpenAIRE

    Bera, Prasanta; Bhattacharya, Dipankar

    2014-01-01

    We compute static equilibria of white dwarf stars containing strong poloidal magnetic field, and present the modification of white dwarf mass-radius relation caused by the magnetic field. We find that a maximum white dwarf mass of about $1.9$~$M\\odot$ may be supported if the interior field is as strong as approximately $10^{10}$ T. This mass is over 30 per cent larger than the traditional Chandrasekhar Limit. The equation of state of electron degenerate matter can be strongl...

  2. Spectroscopic confirmation of a white dwarf companion to the B star 16 Dra

    OpenAIRE

    Burleigh, Matt; Barstow, Martin

    2000-01-01

    Using an Extreme Ultraviolet Explorer (EUVE) spectrum, we confirm the identification of a white dwarf companion to the B9.5V star 16 Dra (HD150100), and constrain its surface temperature to lie between 29,000K and 35,000K. This is the third B star + white dwarf non-interacting Sirius-type binary to be confirmed, after y Pup (HR2875, HD59635) and theta Hya (HR3665, HD79469). 16 Dra and its white dwarf companion are members of a larger resolved proper motion system including t...

  3. Theta Hya: Spectroscopic identification of a second B star + white dwarf binary

    OpenAIRE

    Burleigh, M. R.; Barstow, M. A

    1998-01-01

    We report the identification, in an Extreme Ultraviolet Explorer (EUVE) spectrum, of a hot white dwarf companion to the 3rd magnitude late-B star Theta Hya (HR3665, HD79469). This is the second B star + white dwarf binary to be conclusively identified; Vennes, Berghofer and Christian (1997), and Burleigh and Barstow (1998) had previously reported the spectroscopic discovery of a hot white dwarf companion to the B5V star y Pup (HR2875). Since these two degenerate stars must h...

  4. AE Aquarii: The first white dwarf in the family of spin-powered pulsars

    OpenAIRE

    Ikhsanov, N. R.; Beskrovnaya, N.G.

    2008-01-01

    Simulation of Doppler H-alpha tomogram of the nova-like star AE Aquarii suggests that the dipole magnetic moment of the white dwarf is close to 1.5E+34 G cm^3. This is consistent with the lower limit to the magnetic field strength of the white dwarf derived from observations of circularly polarized optical emission of the system. The rapid braking of the white dwarf and the nature of pulsing hard X-ray emission recently detected with SUZAKU space telescope under these condit...

  5. LP 400-22, A very low-mass and high-velocity white dwarf

    OpenAIRE

    Kawka, Adela; Vennes, Stephane; Oswalt, Terry D.; Smith, J. Allyn; Silvestri, Nicole M.

    2006-01-01

    We report the identification of LP 400-22 (WD 2234+222) as a very low-mass and high-velocity white dwarf. The ultraviolet GALEX and optical photometric colors and a spectral line analysis of LP 400-22 show this star to have an effective temperature of 11080+/-140 K and a surface gravity of log g = 6.32+/-0.08. Therefore, this is a helium core white dwarf with a mass of 0.17 M_solar. The tangential velocity of this white dwarf is 414+/-43 km/s, making it one of the fastest mo...

  6. A consistency test of white dwarf and main sequence ages: NGC 6791

    Directory of Open Access Journals (Sweden)

    Córsico A.H.

    2013-03-01

    Full Text Available NGC 6791 is an open cluster that it is so close to us that can be imaged down to very faint luminosities. The main sequence turn-off age (?8 Gyr and the age derived from the cut-off of the white dwarf luminosity function (?6 Gyr were found to be significantly different. Here we demonstrate that the origin of this age discrepancy lies in an incorrect evaluation of the white dwarf cooling ages, and we show that when the relevant physical separation processes are included in the calculation of white dwarf sequences both ages are coincident.

  7. The Future is Now: the Formation of Single Low Mass White Dwarfs in the Solar Neighborhood

    OpenAIRE

    Kilic, Mukremin; Stanek, K. Z.; & Pinsonneault, M. H.

    2007-01-01

    Low mass helium-core white dwarfs (M < 0.45 Msun) can be produced from interacting binary systems, and traditionally all of them have been attributed to this channel. However, a low mass white dwarf could also result from a single star that experiences severe mass loss on the first ascent giant branch. A large population of low mass He-core white dwarfs has been discovered in the old metal-rich cluster NGC 6791. There is therefore a mechanism in clusters to produce low mass ...

  8. PG 1258+593 and its common proper motion magnetic white dwarf counterpart

    OpenAIRE

    Girven, J.; Gänsicke, B. T.; Külebi, B.; Steeghs, D.; Jordan, S.; Marsh, T. R.; D. Koester

    2010-01-01

    We identify SDSS J130033.48+590407.0 as a common proper motion companion to the well-studied DA white dwarf PG 1258+593 (GD322). The system lies at a distance of 68 +/- 3 pc, where the angular separation of 16.1 +/- 0.1 arcsec corresponds to a minimum binary separation of 1091 +/- 7 AU. SDSS J1300+5904 is a cool (Teff = 6300 +/- 300K) magnetic white dwarf (B ~ 6 MG). PG 1258+593 is a hydrogen-rich (DA) white dwarf with Teff=14790 +/- 77 K and log(g) = 7.87 +/- 0.02. Using th...

  9. The Discovery of Binary White Dwarfs that will Merge within 500 Myr

    OpenAIRE

    Kilic, Mukremin; Brown, Warren R.; Prieto, Carlos Allende; Kenyon, S J; Panei, J. A.

    2009-01-01

    We present radial velocity observations of four extremely low-mass (0.2 Msol) white dwarfs. All four stars show peak-to-peak radial velocity variations of 540 - 710 km/s with 1.0 - 5.9 hr periods. The optical photometry rules out main-sequence companions. In addition, no milli-second pulsar companions are detected in radio observations. Thus the invisible companions are most likely white dwarfs. Two of the systems are the shortest period binary white dwarfs yet discovered. D...

  10. Population synthesis for double white dwarfs. II. Semi-detached systems: AM CVn stars

    OpenAIRE

    Nelemans, G.A.; Portegies Zwart, S. F.; Verbunt, F.; Yungelson, L.

    2001-01-01

    We study two models for AM CVn stars: white dwarfs accreting (i) from a helium white dwarf companion and (ii) from a helium-star donor. We show that in the first model possibly no accretion disk forms at the onset of mass transfer. The stability and the rate of mass transfer then depend on the tidal coupling between the accretor and the orbital motion. In the second model the formation of AM CVn stars may be prevented by detonation of the CO white dwarf accretor and the disr...

  11. Spectral Analyses of DO White Dwarfs and PG1159 Stars from the Sloan Digital Sky Survey

    OpenAIRE

    Huegelmeyer, S. D.; Dreizler, S; Werner, K.; Nitta, A.; Kleinman, S.J.; Krzesinski, J.

    2005-01-01

    We present a model atmosphere analysis of ten new DO white dwarfs and five new PG 1159 stars discovered in the Sloan Digital Sky Survey DR1, DR2 and DR3. This is a significant increase in the number of known DOs and PG 1159 stars. DO white dwarfs are situated on the white dwarf cooling sequence from the upper hot end Teff ~ 120 000 K down to the DB gap (Teff ~ 45 000 K). PG 1159 stars on the other hand feature effective temperatures which exceed Teff = 65 000 K with an upper...

  12. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Fossati, L.; Haswell, C. A.; Patel, M. R.; Busuttil, R. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Bagnulo, S. [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom); Kowalski, P. M. [GFZ German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam (Germany); Shulyak, D. V. [Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Sterzik, M. F., E-mail: l.fossati@open.ac.uk, E-mail: C.A.Haswell@open.ac.uk, E-mail: M.R.Patel@open.ac.uk, E-mail: r.busuttil@open.ac.uk, E-mail: sba@arm.ac.uk, E-mail: kowalski@gfz-potsdam.de, E-mail: denis.shulyak@gmail.com, E-mail: msterzik@eso.org [European Southern Observatory, Casilla 19001, Santiago 19 (Chile)

    2012-09-20

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for {approx}8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 10{sup 2} (10{sup 4}) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M{sub Sun} white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  13. THE HABITABILITY AND DETECTION OF EARTH-LIKE PLANETS ORBITING COOL WHITE DWARFS

    International Nuclear Information System (INIS)

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the continuous habitable zone (CHZ) for ?8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, and hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarization due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 102 (104) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow us to reveal the presence of a planet atmosphere, providing a first characterization. Planets in the CHZ of a 0.6 M? white dwarf will be distorted by Roche geometry, and a Kepler-11d analog would overfill its Roche lobe. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue.

  14. The habitability and detection of Earth-like planets orbiting cool white dwarfs

    CERN Document Server

    Fossati, L; Haswell, C A; Patel, M R; Busuttil, R; Kowalski, P M; Shulyak, D V; Sterzik, M F

    2012-01-01

    Since there are several ways planets can survive the giant phase of the host star, we examine the habitability and detection of planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU would remain in the Continuous Habitable Zone (CHZ) for ~8 Gyr. We show that photosynthetic processes can be sustained on such planets. The DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, hence non-magnetic white dwarfs are compatible with the persistence of complex life. Polarisation due to a terrestrial planet in the CHZ of a cool white dwarf is 10^2 (10^4) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a viable way to detect close-in rocky planets around white dwarfs. Multi-band polarimetry would also allow reveal the presence of a planet atmosphere, providing a first characterisation. Planets in the CHZ of a 0.6 M_sun white dwarf will be distorted by...

  15. WhiteDwarf.org - Establishing a permanent endowment for the Whole Earth Telescope

    CERN Document Server

    Metcalfe, T S

    2002-01-01

    White Dwarf Research Corporation is a 501(c)(3) non-profit organization dedicated to scientific research and public education on topics relevant to white dwarf stars. It was founded in 1999 in Austin, Texas to help fulfill the need for an alternative research center where scarce funding dollars could be used more efficiently, and to provide a direct link between astronomers who study white dwarf stars and the general public. Due to its administrative simplicity, WDRC can facilitate the funding of multi-institutional and international collaborations, provide seamless grant portability, minimize overhead rates, and actively seek non-governmental funding sources. I describe the motivation for, and current status of, one of the long-term goals of WDRC: to establish a permanent endowment for the operation of the Whole Earth Telescope. I pay particular attention to fund-raising efforts through the website at http://WhiteDwarf.org/donate/

  16. Spiral Disk Instability Can Drive Thermonuclear Explosions in Binary White Dwarf Mergers

    CERN Document Server

    Kashyap, Rahul; García-Berro, Enrique; Aznar-Siguán, Gabriela; Ji, Suoqing; Lorén-Aguilar, Pablo

    2015-01-01

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon-oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems which give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel, in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model which yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.

  17. SPIRAL INSTABILITY CAN DRIVE THERMONUCLEAR EXPLOSIONS IN BINARY WHITE DWARF MERGERS

    International Nuclear Information System (INIS)

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia

  18. Arecibo Measurements of Pulsar--White Dwarf Binaries: Evidence for Heavy Neutron Stars

    OpenAIRE

    Nice, David J.; Splaver, Eric M.; Stairs, Ingrid H.

    2004-01-01

    We summarize constraints on neutron star masses from ongoing timing observations of pulsar-white dwarf binaries at Arecibo. The trend is toward pulsar masses larger than the canonical value of 1.35 solar masses.

  19. LP 400-22, A Very Low Mass and High-Velocity White Dwarf

    Science.gov (United States)

    Kawka, Adela; Vennes, Stephane; Oswalt, Terry D.; Smith, J. Allyn; Silvestri, Nicole M.

    2006-01-01

    We report the identification of LP 400-22 (WD 2234+222) as a very low mass and high-velocity white dwarf. The ultraviolet GALEX and optical photometric colors and a spectral line analysis of LP 400-22 show this star to have an effective temperature of 11,080+/-140 K and a surface gravity of log g = 6.32 +/-0.08. Therefore, this is a helium-core white dwarf with a mass of 0.17 M,. The tangential velocity of this white dwarf is 414+/-43 km/s, making it one of the fastest moving white dwarfs known. We discuss probable evolutionary scenarios for this remarkable object.

  20. An upper limit to the secular variation of the gravitational constant from white dwarf stars

    International Nuclear Information System (INIS)

    A variation of the gravitational constant over cosmological ages modifies the main sequence lifetimes and white dwarf cooling ages. Using an state-of-the-art stellar evolutionary code we compute the effects of a secularly varying G on the main sequence ages and, employing white dwarf cooling ages computed taking into account the effects of a running G, we place constraints on the rate of variation of Newton's constant. This is done using the white dwarf luminosity function and the distance of the well studied open Galactic cluster NGC 6791. We derive an upper bound ?/G ? ?1.8 × 10?12 yr?1. This upper limit for the secular variation of the gravitational constant compares favorably with those obtained using other stellar evolutionary properties, and can be easily improved if deep images of the cluster allow to obtain an improved white dwarf luminosity function

  1. White dwarfs with unresolved substellar companions and debris disks in the UKIDSS Survey

    International Nuclear Information System (INIS)

    We present a near-infrared (NIR) photometric search for substellar companions and debris disks around white dwarfs in the UKIRT Infrared Deep Sky Survey (UKIDSS). We cross-correlate the SDSS DR4 and McCook and Sion catalogues of white dwarfs with the UKIDSS DR3 database producing 408 and 133 matches respectively. Models are then fitted to Sloan photometry to identify those with NIR photometric excesses consistent with an unresolved sub-stellar companion or a debris disk. We present follow up photometry from targets previously identified in UKIDSS DR2 and the first results from DR3. In total we identify 8 potential white dwarf + very low mass binary systems, 2 potential white dwarf + disk systems, and 2 systems which require further investigation to clarify the source of the excess.

  2. The polluted atmospheres of cool white dwarfs and the magnetic field connection

    CERN Document Server

    Kawka, A

    2014-01-01

    We present an analysis of X-Shooter spectra of the polluted hydrogen-rich white dwarfs (DAZ) NLTT 888 and NLTT 53908. The spectra of NLTT 53908 show strong, Zeeman-split calcium lines (CaII H&K and Ca I $\\lambda 4226$) and the star appears to be a close relative of the polluted magnetic white dwarf (DAZH) NLTT 10480, while the spectra of NLTT 888 show narrow lines of calcium and iron. A comparison of the DAZ NLTT 888 and the DAZH NLTT 53908 with other class members illustrates the diversity of environment and formation circumstances surrounding these objects. In particular, we find that the incidence of magnetism in old, polluted white dwarfs significantly exceeds that found in the general white dwarf population which suggests an hypothetical link between a crowded planetary system and magnetic field generation.

  3. A New Very Cool White Dwarf Discovered by the Sloan Digital Sky Survey

    CERN Document Server

    Harris, H C; Liebert, J; Vanden Berk, Daniel E; Anderson, S F; Knapp, G R; Fan, X; Margon, B; Munn, J A; Nichol, R C; Pier, J R; Schneider, D P; Smith, J A; Winget, D E; York, D G; Brinkmann, J; Burles, S M; Chen, B; Connolly, A J; Csabai, I; Frieman, Joshua A; Gunn, J E; Hennessy, G S; Hindsley, R B; Ivezic, Z; Kent, S; Lamb, D Q; Lupton, R H; Newberg, H J; Schlegel, D J; Smee, S; Strauss, M A; Thakar, A R; Uomoto, A; Yanny, B

    2001-01-01

    Early data taken during commissioning of the SDSS have resulted in the discovery of a very cool white dwarf. It appears to have stronger collision induced absorption from molecular hydrogen than any other known white dwarf, suggesting it has a cooler temperature than any other. While its distance is presently unknown, it has a surprisingly small proper motion, making it unlikely to be a halo star. An analysis of white dwarf cooling times suggests that this object may be a low-mass star with a helium core. The SDSS imaging and spectroscopy also recovered LHS 3250, the coolest previously known white dwarf, indicating that the SDSS will be an effective tool for identifying these extreme objects.

  4. LP 400-22, A very low-mass and high-velocity white dwarf

    CERN Document Server

    Kawka, A; Silvestri, N M; Smith, J A; Vennes, S; Kawka, Adela; Oswalt, Terry D.; Silvestri, Nicole M.; Vennes, Stephane

    2006-01-01

    We report the identification of LP 400-22 (WD 2234+222) as a very low-mass and high-velocity white dwarf. The ultraviolet GALEX and optical photometric colors and a spectral line analysis of LP 400-22 show this star to have an effective temperature of 11080+/-140 K and a surface gravity of log g = 6.32+/-0.08. Therefore, this is a helium core white dwarf with a mass of 0.17 M_solar. The tangential velocity of this white dwarf is 414+/-43 km/s, making it one of the fastest moving white dwarfs known. We discuss probable evolutionary scenarios for this remarkable object.

  5. AE Aquarii: The first white dwarf in the family of spin-powered pulsars

    CERN Document Server

    Ikhsanov, N R

    2008-01-01

    Simulation of Doppler H-alpha tomogram of the nova-like star AE Aquarii suggests that the dipole magnetic moment of the white dwarf is close to 1.5E+34 G cm^3. This is consistent with the lower limit to the magnetic field strength of the white dwarf derived from observations of circularly polarized optical emission of the system. The rapid braking of the white dwarf and the nature of pulsing hard X-ray emission recently detected with SUZAKU space telescope under these conditions can be explained in terms of spin-powered pulsar mechanism. A question about the origin of strongly magnetized white dwarf in the system remains, however, open. Possible evolutionary tracks of AE Aquarii are briefly discussed.

  6. SPIRAL INSTABILITY CAN DRIVE THERMONUCLEAR EXPLOSIONS IN BINARY WHITE DWARF MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Rahul; Fisher, Robert [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); García-Berro, Enrique; Aznar-Siguán, Gabriela [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades, 5, E-08860 Castelldefels (Spain); Ji, Suoqing [Department of Physics, Broida Hall, University of California Santa Barbara, Santa Barbara, CA 93106–9530 (United States); Lorén-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)

    2015-02-10

    Thermonuclear, or Type Ia supernovae (SNe Ia), originate from the explosion of carbon–oxygen white dwarfs, and serve as standardizable cosmological candles. However, despite their importance, the nature of the progenitor systems that give rise to SNe Ia has not been hitherto elucidated. Observational evidence favors the double-degenerate channel in which merging white dwarf binaries lead to SNe Ia. Furthermore, significant discrepancies exist between observations and theory, and to date, there has been no self-consistent merger model that yields a SNe Ia. Here we show that a spiral mode instability in the accretion disk formed during a binary white dwarf merger leads to a detonation on a dynamical timescale. This mechanism sheds light on how white dwarf mergers may frequently yield SNe Ia.

  7. Type Ia supernovae from merging white dwarfs. I. Prompt detonations

    Energy Technology Data Exchange (ETDEWEB)

    Moll, R.; Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Raskin, C.; Kasen, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-04-20

    Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). Numerical models suggest that a detonation might be initiated before the stars have coalesced to form a single compact object. Here we study such prompt detonations by means of numerical simulations, modeling the disruption and nucleosynthesis of the stars until the ejecta reach the coasting phase, and generating synthetic light curves and spectra. Three models are considered with primary masses 0.96 M {sub ?}, 1.06 M {sub ?}, and 1.20 M {sub ?}. Of these, the 0.96 M {sub ?} dwarf merging with a 0.81 M {sub ?} companion, with an {sup 56}Ni yield of 0.58 M {sub ?}, is the most promising candidate for reproducing common SNe Ia. The more massive mergers produce unusually luminous SNe Ia with peak luminosities approaching those attributed to 'super-Chandrasekhar' mass SNe Ia. While the synthetic light curves and spectra of some of the models resemble observed SNe Ia, the significant asymmetry of the ejecta leads to large orientation effects. The peak bolometric luminosity varies by more than a factor of two with the viewing angle, and the velocities of the spectral absorption features are lower when observed from angles where the light curve is brightest. The largest orientation effects are seen in the ultraviolet, where the flux varies by more than an order of magnitude. The set of three models roughly obeys a width-luminosity relation, with the brighter light curves declining more slowly in the B band. Spectral features due to unburned carbon from the secondary star are also seen in some cases.

  8. Type Ia supernovae from merging white dwarfs. I. Prompt detonations

    International Nuclear Information System (INIS)

    Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). Numerical models suggest that a detonation might be initiated before the stars have coalesced to form a single compact object. Here we study such prompt detonations by means of numerical simulations, modeling the disruption and nucleosynthesis of the stars until the ejecta reach the coasting phase, and generating synthetic light curves and spectra. Three models are considered with primary masses 0.96 M ?, 1.06 M ?, and 1.20 M ?. Of these, the 0.96 M ? dwarf merging with a 0.81 M ? companion, with an 56Ni yield of 0.58 M ?, is the most promising candidate for reproducing common SNe Ia. The more massive mergers produce unusually luminous SNe Ia with peak luminosities approaching those attributed to 'super-Chandrasekhar' mass SNe Ia. While the synthetic light curves and spectra of some of the models resemble observed SNe Ia, the significant asymmetry of the ejecta leads to large orientation effects. The peak bolometric luminosity varies by more than a factor of two with the viewing angle, and the velocities of the spectral absorption features are lower when observed from angles where the light curve is brightest. The largest orientation effects are seen in the ultraviolet, where the flux varies by more than an order of magnitude. The set of three models roughly obeys a width-luminosity relation, with the brighter light curves declining more slowly in the B band. Spectral features due to unburned carbon from the secondary star are also seen in some cases.

  9. New High-Proper Motion White Dwarfs in the NLTT Catalog and Sloan Digital Sky Survey.

    Czech Academy of Sciences Publication Activity Database

    Kawka, Adela; Vennes, S.

    San Francisco : Astronomical Society of the Pacific, 2005 - (Koester, D.; Moehler, D.), s. 101-106 - (ASP Conference Series. 334). [European Workshop on White Dwarfs /14./. Kiel (AT), 19.07.2004-23.07.2004] R&D Projects: GA ?R GA205/02/0445 Institutional research plan: CEZ:AV0Z1003909 Keywords : white dwarfs * Solar neighborhood * stellar atmospheres Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  10. A Survey for Cool White Dwarfs and the age of the Galactic Disc

    OpenAIRE

    Knox, R. A.; Hawkins, M.R.S.; Hambly, N. C.

    1999-01-01

    We describe a new multi-colour proper motion survey for cool white dwarfs (CWDs). The observational database consists of ~300 digitally scanned Schmidt plates in ESO/SERC field 287. The entire survey procedure, from the raw Schmidt plate data to final white dwarf luminosity function (WDLF) is described, with special emphasis on completeness concerns. We obtain a sample of 58 WDs, for which we have follow up CCD photometry and spectroscopy of a representative sub--sample. Eff...

  11. The Laminar Flame Speedup by Neon-22 Enrichment in White Dwarf Supernovae

    OpenAIRE

    Chamulak, David A.; Brown, Edward F; Timmes, Francis X.

    2006-01-01

    Carbon-oxygen white dwarfs contain neon-22 formed from alpha-captures onto nitrogen during core He burning in the progenitor star. In a white dwarf (type Ia) supernova, the neon-22 abundance determines, in part, the neutron-to-proton ratio and hence the abundance of radioactive nickel-56 that powers the lightcurve. The neon-22 abundance also changes the burning rate and hence the laminar flame speed. We tabulate the flame speedup for different initial carbon and neon-22 abun...

  12. Systematic quantum effects on screening of fusion rates in white dwarfs

    OpenAIRE

    Chitanvis, Shirish M.

    2006-01-01

    Electron degeneracy effects are dominant in ultra-dense plasmas (UDP), such as those found in white dwarfs. These effects can be treated systematically by obtaining an expansion of the screening length in inverse powers of $\\hbar^{2}$. The theory exhibits Thomas-Fermi-like screening in an appropriate regime. In general, our theory leads to an ${\\cal O}(1)$ effect on the enhancement of fusion rates in white dwarfs. Further, it is shown analytically for these stellar condition...

  13. Systematic relativistic quantum effects on screening of fusion rates in white dwarfs

    OpenAIRE

    Chitanvis, Shirish M.

    2006-01-01

    Relativistic electron degeneracy effects are dominant in ultra-dense plasmas (UDP), such as those found in white dwarfs. These effects can be treated systematically by obtaining an expansion of the screening length in inverse powers of $\\hbar^{2}$. In general, our theory leads to an ${\\cal O}(10)$ effect on the enhancement of fusion rates in white dwarfs. Further, it is shown analytically for these stellar conditions that Bose statistics of nuclei have a negligible effect on...

  14. The Future Evolution of White Dwarf Stars Through Baryon Decay and Time Varying Gravitational Constant

    OpenAIRE

    Ketchum, Jacob A.; Adams, Fred C.

    2008-01-01

    Motivated by the possibility that the fundamental ``constants'' of nature could vary with time, this paper considers the long term evolution of white dwarf stars under the combined action of proton decay and variations in the gravitational constant. White dwarfs are thus used as a theoretical laboratory to study the effects of possible time variations, especially their implications for the future history of the universe. More specifically, we consider the gravitational const...

  15. White dwarf mergers and the origin of R Coronae Borealis stars

    OpenAIRE

    Lorén-Aguilar, P.; R. Longland; José, J.; García-Berro, E.; Althaus, L. G.; Isern, J.

    2011-01-01

    We present a nucleosynthesis study of the merger of a 0.4 solar masses helium white dwarf with a 0.8 solar masses carbon-oxygen white dwarf, coupling the thermodynamic history of Smoothed Particle Hydrodynamics particles with a post-processing code. The resulting chemical abundance pattern, particularly for oxygen and fluorine, is in qualitative agreement with the observed abundances in R Coronae Borealis stars.

  16. One possible solution of peculiar type Ia supernovae explosions caused by a charged white dwarf

    OpenAIRE

    Liu, Helei; Zhang, Xiangdong; Wen, Dehua

    2014-01-01

    Recent astrophysics observation reveals the existence of some super luminous type Ia supernovae. One natural explanation of such a peculiar phenomenon is to require the progenitor of such a supernova to be a highly super-Chandrasekhar mass white dwarf. Along this line, in this paper, we propose a possible mechanism to explain this phenomenon based on a charged white dwarf. In particular, by choosing suitable new variables and a representative charge distribution, an analytic...

  17. Energy Dissipation through Quasi-Static Tides in White Dwarf Binaries

    OpenAIRE

    Willems, B.; C. J. Deloye; Kalogera, V

    2009-01-01

    We study tidal interactions in white dwarf binaries in the limiting case of quasi-static tides. The formalism is valid for arbitrary orbital eccentricities and therefore applicable to white dwarf binaries in the Galactic disk as well as globular clusters. In the quasi-static limit, the total perturbation of the gravitational potential shows a phase shift with respect to the position of the companion, the magnitude of which is determined primarily by the efficiency of energy ...

  18. The Solar Neighborhood. XX. Discovery and Characterization of 21 New Nearby White Dwarf Systems

    OpenAIRE

    Subasavage, John P.; Henry, Todd J.; Bergeron, P.; Dufour, P; Hambly, Nigel C.

    2008-01-01

    We present medium resolution spectroscopy and multi-epoch VRI photometry for 21 new nearby (< 50 pc) white dwarf systems brighter than V ~ 17. Of the new systems, ten are DA (including a wide double degenerate system with two DA components), eight are DC, two are DZ, and one is DB. In addition, we include multi-epoch VRI photometry for eleven known white dwarf systems that do not have trigonometric parallax determinations. Using model atmospheres relevant for various types o...

  19. Constraining Neutrino Cooling using the Hot White Dwarf Luminosity Function in the Globular Cluster 47 Tucanae

    OpenAIRE

    Hansen, Bradley; Richer, Harvey; Kalirai, Jason; Goldsbury, Ryan; Frewen, Shane; Heyl, Jeremy

    2015-01-01

    We present Hubble Space Telescope observations of the upper part (T_eff> 10 000 K) of the white dwarf cooling sequence in the globular cluster 47 Tucanae and measure a luminosity function of hot white dwarfs. Comparison with previous determinations from large scale field surveys indicates that the previously determined plateau at high effective temperatures is likely a selection effect, as no such feature is seen in this sample. Comparison with theoretical models suggests th...

  20. Ancient planetary systems are orbiting a large fraction of white dwarf stars

    OpenAIRE

    Zuckerman, B.; Melis, C.; Klein, B.; D. Koester; Jura, M.

    2010-01-01

    Infrared studies have revealed debris likely related to planet formation in orbit around ~30% of youthful, intermediate mass, main sequence stars. We present evidence, based on atmospheric pollution by various elements heavier than helium, that a comparable fraction of the white dwarf descendants of such main sequence stars are orbited by planetary systems. These systems have survived, at least in part, through all stages of stellar evolution that precede the white dwarf. Du...