WorldWideScience

Sample records for week in-situ enhancement

  1. Chemically enhanced in situ recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sale, T. [CH2M Hill, Denver, CO (United States); Pitts, M.; Wyatt, K. [Surtek, Inc., Golden, CO (United States)] [and others

    1996-08-01

    Chemically enhanced recovery is a promising alternative to current technologies for management of subsurface releases of organic liquids. Through the inclusion of surfactants, solvents, polymers, and/or alkaline agents to a waterflood, the transport of targeted organic compounds can be increased and rates of recovery enhanced. By far, the vast majority of work done in the field of chemically enhanced recovery has been at a laboratory scale. The following text focuses on chemically enhanced recovery from a field application perspective with emphasis given to chlorinated solvents in a low permeability setting. While chlorinated solvents are emphasized, issues discussed are also relevant to organic liquids less dense than water such as petroleum products. Topics reviewed include: (1) Description of technology; (2) General technology considerations; (3) Low permeability media considerations; (4) Cost and reliability considerations; (5) Commercial availability; and (6) Case histories. Through this paper an appreciation is developed of both the potential and limitations of chemically enhanced recovery. Excluded from the scope of this paper is the in situ destruction of organic compounds through processes such as chemical or biological oxidation, chemically enhanced recovery of inorganic compounds, and ex situ soil treatment processes. 11 refs., 2 figs., 1 tab.

  2. Enhanced in situ aerobic bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Sharfe, K. [CleanEARTH Solutions Ltd., Concord, ON (Canada)

    2007-07-01

    An enhanced in situ aerobic bioremediation process was described. The process used microbe supporting emulsifications to enhance bioavailability as well as to attenuate microbe competition and boost microbial production. Microbes were added prior to application and rapidly initiated bioremediation once applied to impacted areas. The microbe supporting emulsifiers were metabolically active. The study showed that exposed surface areas increased as hydrocarbon masses were divided, which in turn increased the water/substrate interface where microbial action occurred. Nutrients were used to ensure that crowding and waste accumulation were attenuated in order to ensure that the speed of growth and reproduction progressed exponentially. Water-carrying bacteria, enzymes and nutrients were adsorbed to the soil's particle surface and then diffused between particles. The sequestered hydrocarbons were then emulsified and removed in order to be bioremediated. It was concluded that biological catalysts were used to increase microbial activity and to trigger anabolic responses in microbes. Details of a biocatalyst laboratory solution analysis were also included. tabs., figs.

  3. Enhancing in situ bioremediation with pneumatic fracturing

    International Nuclear Information System (INIS)

    A major technical obstacle affecting the application of in situ bioremediation is the effective distribution of nutrients to the subsurface media. Pneumatic fracturing can increase the permeability of subsurface formations through the injection of high pressure air to create horizontal fracture planes, thus enhancing macro-scale mass-transfer processes. Pneumatic fracturing technology was demonstrated at two field sites at Tinker Air Force Base, Oklahoma City, Oklahoma. Tests were performed to increase the permeability for more effective bioventing, and evaluated the potential to increase permeability and recovery of free product in low permeability soils consisting of fine grain silts, clays, and sedimentary rock. Pneumatic fracturing significantly improved formation permeability by enhancing secondary permeability and by promoting removal of excess soil moisture from the unsaturated zone. Postfracture airflows were 500% to 1,700% higher than prefracture airflows for specific fractured intervals in the formation. This corresponds to an average prefracturing permeability of 0.017 Darcy, increasing to an average of 0.32 Darcy after fracturing. Pneumatic fracturing also increased free-product recovery rates of number 2 fuel from an average of 587 L (155 gal) per month before fracturing to 1,647 L (435 gal) per month after fracturing

  4. In situ upgrading : coupled enhanced oil recovery with in situ upgrading : ultra dispersed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Almao, P.P. [Calgary Univ., AB (Canada). Schulich School of Engineering]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2007-07-01

    This paper presented a research program that demonstrates the use of ultra dispersed (UD) catalysts as a means of improving the economics of oil sands processing. An outline of current processing techniques was provided. In situ upgrading options included the use of solvents, thermal methods, radiation methods, bio-upgrading, and thermo-catalytic methods. Enhanced oil recovery (EOR) is often combined with in situ upgrading to increase the efficiency of energy use in reservoirs where thermal methods are used. The use of diluents often reduces water usage as well as problems related to contamination and emissions. Recent studies have suggested that vis-breaking (VB) is the lowest investment residual conversion process currently available for in situ processing. UD catalyst formulations can be commercially prepared using nano-particle techniques, and can be used in portable configurations. UD catalysts are known to outperform conventional fixed bed types for both hydrogenation, hydrotreating, and hydrocracking. Research is currently being conducted at the Alberta Ingenuity Centre for In Situ Energy to examine issues related to particles recycling, deactivation and losses. Permeability studies are also being conducted to examine permeability rates of emulsions and nanoparticles through oil sands porous media. The short term financial rewards of various in situ upgrading technologies were also considered. refs., tabs, figs.

  5. Enhancement of in situ Remediation of Hydrocarbon Contaminated Soil

    Energy Technology Data Exchange (ETDEWEB)

    Palmroth, M.

    2006-07-01

    Approximately 750 000 sites of contaminated land exist across Europe. The harmful chemicals found in Finnish soils include heavy metals, oil products, polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorophenols, and pesticides. Petroleum and petroleum products enter soil from ruptured oil pipelines, land disposal of refinery products, leaking storage tanks and through accidents. PAH contamination is caused by the spills of coal tar and creosote from coal gasification and wood treatment sites in addition to oil spills. Cleanup of soil by bioremediation is cheaper than by chemical and physical processes. However, the cleaning capacity of natural attenuation and in situ bioremediation is limited. The purpose of this thesis was to find feasible options to enhance in situ remediation of hydrocarbon contaminants. The aims were to increase the bioavailability of the contaminants and microbial activity at the subsurface in order to achieve higher contaminant removal efficiency than by intrinsic biodegradation alone. Enhancement of microbial activity and decrease of soil toxicity during remediation were estimated by using several biological assays. The performance of these assays was compared in order to find suitable indicators to follow the progress of remediation. Phytoremediation and chemical oxidation are promising in situ techniques to increase the degradation of hydrocarbons in soil. Phytoremediation is plant-enhanced decontamination of soil and water. Degradation of hydrocarbons is enhanced in the root zone by increased microbial activity and through the detoxifying enzymes of plants themselves. Chemical oxidation of contaminants by Fenton's reaction can produce degradation products which are more biodegradable than the parent compounds. Fenton's reaction and its modifications apply solutions of hydrogen peroxide and iron for the oxidation of organic chemicals. The cost of oxidation can be reduced by aiming at partial instead of full oxidation of contaminants and by integrating the process to biological treatment, in which the formed degradation products can be biodegraded. Phytoremediation was used to remove fresh and aged petroleum hydrocarbons from soil, and modified FentonAEs reaction combined with biodegradation was used to remove aged creosote oil from soil. The effects of hydrocarbon aging, different plant species and soil amendments on the removal efficiency were studied in phytoremediation experiments. Lab-scale experiments were made with fresh diesel fuel, and a field study was made with aged hydrocarbons deriving from diesel fuel and lubricants. The used plant species were pine, poplar, a grass mixture and a legume mixture. The experiments with modified Fenton's treatment were carried out in soil columns, to which concentrated H{sub 2}O{sub 2} was added simulating in situ injection. Iron was not added since the soil was rich in iron. After FentonAEs treatment, the soil was incubated in serum bottles to determine the effects on bioavailability of PAHs by modified FentonAEs oxidation and to simulate the potential of intrinsic remediation. In addition to hydrocarbon analyses, the effects of both methods on soil microbial activities and toxicity were determined. In the presence of white clover and green pea, pine or poplar, 89 to 98 % of diesel fuel was removed, whereas the presence of grasses did not increase diesel fuel removal compared to treatment without plants, where up to 86 % of diesel fuel was removed. When diesel was applied to the trees for a second time, reduction in one month was 9 to 25 % higher than what was achieved after first month of first application. During the four growing season study with soil contaminated with aged hydrocarbon contaminants, the presence of vegetation did not increase hydrocarbon removal in unfertilised soil. Vegetation cover was denser in amended soil than in unfertilised soil. The addition of compost or NPK fertiliser enhanced hydrocarbon removal. However, the toxicity of aged hydrocarbon contaminated soil to Vibrio fischeri (a luminesc

  6. In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors

    KAUST Repository

    Shakir, Imran

    2014-01-01

    In situ hydrogenation of orthorhombic molybdenum trioxide (α-MoO 3) nanowires has been achieved on a large scale by introducing alcohol during the hydrothermal synthesis for electrochemical energy storage supercapacitor devices. The hydrogenated molybdenum trioxide (H xMoO3) nanowires yield a specific capacitance of 168 F g-1 at 0.5 A g-1 and maintain 108 F g-1 at 10 A g-1, which is 36-fold higher than the capacitance obtained from pristine MoO3 nanowires at the same conditions. The electrochemical devices made with HxMoO3 nanowires exhibit excellent cycling stability by retaining 97% of their capacitance after 3000 cycles due to an enhanced electronic conductivity and increased density of hydroxyl groups on the surface of the MoO3 nanowires. This journal is © The Royal Society of Chemistry.

  7. Depth enhancement techniques for the in situ vitrification process

    International Nuclear Information System (INIS)

    In-situ vitrification (ISV) is a process by which electrical energy is supplied to a soil/waste matrix. The resulting Joule heat raises the temperature of the soil/waste matrix, producing a pool of molten soil. Since its inception, there have been many successful applications of the technology to both staged and actual waste sites. However, there has been some difficulty in extending the attainable treatment melt depth to levels greater than 5 m. Results obtained from application of two novel approaches for extending the ultimate treatment depth attainable with in-situ vitrification (ISV) are presented. In the first, the electrode design is modified to concentrate the Joule heat energy delivered to the soil/waste matrix in the lower region of the target melt zone. This electrode design has been dubbed the hot-tip electrode. Results obtained from both computational and experimental investigations of this design concept indicate that some benefit toward ISV depth enhancement was realized with these hot-tip electrodes. A second, alternative approach to extending process depth with ISV involves initiating the melt at depth and propagating it in either vertical direction (e.g., downward, upward, or both) to treat the target waste zone. A series of engineering-scale experiments have been conducted to assess the benefits of this approach. The results from these tests indicate that ISV may be effectively initiated and sustained using this subsurface start-up technique. A survey of these experiments and the associated results are presented herein, together with brief discussion of some considerations regarding setup and implementation of this subsurface start-up technique

  8. In situ enhanced soil mixing. Innovative technology summary report

    International Nuclear Information System (INIS)

    In Situ Enhanced Soil Mixing (ISESM) is a treatment technology that has been demonstrated and deployed to remediate soils contaminated with volatile organic compounds (VOCs). The technology has been developed by industry and has been demonstrated with the assistance of the U.S. Department of Energy's Office of Science and Technology and the Office of Environmental Restoration. The technology is particularly suited to shallow applications, above the water table, but can be used at greater depths. ISESM technologies demonstrated for this project include: (1) Soil mixing with vapor extraction combined with ambient air injection. [Contaminated soil is mixed with ambient air to vaporize volatile organic compounds (VOCs). The mixing auger is moved up and down to assist in removal of contaminated vapors. The vapors are collected in a shroud covering the treatment area and run through a treatment unit containing a carbon filter or a catalytic oxidation unit with a wet scrubber system and a high efficiency particulate air (HEPA) filter.] (2) soil mixing with vapor extraction combined with hot air injection [This process is the same as the ambient air injection except that hot air or steam is injected.] (3) soil mixing with hydrogen peroxide injection [Contaminated soil is mixed with ambient air that contains a mist of diluted hydrogen peroxide (H2O2) solution. The H2O2 solution chemically oxidizes the VOCs to carbon dioxide (CO2) and water.] (4) soil mixing with grout injection for solidification/stabilization [Contaminated soil is mixed as a cement grout is injected under pressure to solidify and immobilize the contaminated soil in a concrete-like form.] The soils are mixed with a single-blade auger or with a combination of augers ranging in diameter from 3 to 12 feet

  9. IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC. - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This Innovative Technology Evaluation report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration...

  10. [Effects on phenol removal in the process of enhanced coagulation by manganese dioxide formed in situ].

    Science.gov (United States)

    Zhang, Li-Zhu; Chen, Xiao-Dong; Ma, Jun; Yu, Min; Li, Xin

    2011-10-01

    Phenol was selected as a model compound. Factors, such as Ca2+, tannic acid, dose of kaolinite, dose of manganese dioxide formed in situ and pH, were invested on phenol removal in the process of enhanced coagulation by manganese dioxide formed in situ. Results showed that the addition of Ca2+ is beneficial for phenol removal. In the range of Ca2+ varied from 0 to 1.0 mmol x L(-1), the efficiency of phenol removal was enhanced more than 10%. Tannic acid can enhance phenol removal significantly when they are coexisted in water. As tannic acid was added to 10 mg x L(-1), phenol removal can be increased about 30% and 50% in the process of coagulation by AlCl3 and enhanced coagulation by manganese dioxide formed in situ, respectively. The dose of coagulant can be reduced in the process of enhanced coagulation with the addition of manganese dioxide formed in situ. The point of 1 mg x L(-1) manganese dioxide formed in situ linked with 30 mg x L(-1) AlCl3 can have the same phenol removal efficiency as the addition of 50 mg x L(-1) AlCl3. In the range of pH varied from 5 to 9, phenol can be removed with the high efficiency in the process of enhanced coagulation by manganese dioxide formed in situ. While under the strong acid condition and strong basic condition, phenol has lower removal efficiency. PMID:22279903

  11. Enhanced biodegradation of hydrocarbons in situ by soil venting

    International Nuclear Information System (INIS)

    Soil venting has been used for many years as a cost-effective method for in-situ treatment of volatile hydrocarbons such as gasoline. The process of soil venting involves flushing contaminated soils with air to remove volatile hydrocarbons. The rate of treatment depends on the rate that the hydrocarbon contaminants partition into the mobile air phase and the volume of air that can be effectively moved through the soils. More recently, the amount of microbial hydrocarbon removal that occurs during conventional soil venting has been extensively studied (Miller 1991, Dupont 1991). Often, over one-half of the hydrocarbon removal achieved by soil venting is due to natural biodegradation stimulated by the venting process. With proper design and operation, biological removal can account for 85 percent or more of the total hydrocarbons (Miller 1991). State and local regulations often require permitting, monitoring, and treatment of soil venting off gases that discharge to the atmosphere. The cost of these control measures typically constitutes at least 50% of the soil venting remediation costs (Miller 1991). By modification of the soil venting process, hydrocarbon contaminants can be biologically removed in situ to reduce or eliminate air emissions. The 'bioventing' process can also biodegrade less-volatile hydrocarbons and allows treatment of less permeable soils since reduced air flows can be used for treatment

  12. Cost studies of thermally enhanced in situ soil remediation technologies

    International Nuclear Information System (INIS)

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate ampersand Treat (E ampersand T), and Pump ampersand Treat (P ampersand T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios

  13. Passive in-situ cometabolic biotreatment of gasoline and diesel in soil and groundwater: An electrokinetic enhanced bioremediation case history

    International Nuclear Information System (INIS)

    This paper presents the results of passive in-situ biotreatment of gasoline and diesel conducted at the subject facility in Hayward, California. Past spills of petroleum hydrocarbon fuels from an underground storage tank farm caused soil and shallow groundwater contamination in the clayey Bay Mud. The soil contamination was limited to a depth of about 10 feet with total petroleum hydrocarbons (TPH) concentration of 100 to 3,900 ppm. Due to the low permeability of the clayey Bay Mud, a passive in-situ biotreatment (PISB) system was designed and implemented for both soil and groundwater plumes. The PISB consisted of a system of electrokinetic, oxygen, nutrient and moisture enhancement units covering the soil and groundwater plumes. The electrokinetic system was installed to promote rapid migration of nutrient oxidant between electrodes to enhance the in-situ biodegradation processes. The gasoline and diesel in soil was remediated to less than 100 ppm of TPH. The TPH in groundwater was remediated to less than 10 ppm of TPH. The TPH in groundwater was remediated to less than 10 ppm. The groundwater remediation is in progress and the target cleanup levels were to be less than 10 ppm TPH and BTEX to less than 0.005, 1.0, 0.7 and 10.0 ppm respectively which are all below the MCL under the EPA primary drinking water standard. The total duration of this PISB was completed in less than 4 weeks

  14. In situ microbial systems for the enhancement of oil recovery

    International Nuclear Information System (INIS)

    Microbial Enhancement of Oil Recovery (MEOR) offers important new opportunities in the quest for increased oil production. It refers not to a single technique but rather to a collection of methodologies, analogous to parallel non-microbiological methods. MEOR has relevance for many type of production and reservoir problems detailed protocols: may be tailored specifically to a range of individual reservoir conditions. Microorganisms downhole can generate a wide variety of chemical products from inexpensive feed stocks: where these are more cost-effective than oil field chemicals injected from the surface, microbial methods may win widespread acceptance. MEOR methods must be defined precisely; in any particular reservoir procedure their proposed mechanism of action must be clearly understood and criteria established for evaluating their success. The most important applications for MEOR are 1) the production f insoluble or highly viscous polymer to control coning or to plug selectively high permeability thief zones and fractures, 2) the continuous generation of the active agents for polymer-and/or surfactant floods, 3) matrix acidisation and acid fracturing in carbonate rocks stimulate flows into production wells. All these approaches are currently actively been explored; several programmes for field-testing microbial EOR methods already exist, or are being readied, and rapid progress is likely within the next few years. (author)

  15. DEMONSTRATION BULLETIN: IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC.

    Science.gov (United States)

    The Steam Enhanced Recovery Process (SERP) is designed to remove volatile compounds such as halogenated solvents and petroleum hydrocarbons, and semi-volatile compounds from contaminated soils in situ. The vapor pressures of most contaminants will increase by the addition of ste...

  16. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process

    International Nuclear Information System (INIS)

    Groundwater contamination due to releases of petroleum products is a major environmental concern in many urban districts and industrial zones. Over the past years, a few studies were undertaken to address in situ bioremediation processes coupled with contaminant transport in two- or three-dimensional domains. However, they were concentrated on natural attenuation processes for petroleum contaminants or enhanced in situ bioremediation processes in laboratory columns. In this study, an integrated numerical and physical modeling system is developed for simulating an enhanced in situ biodegradation (EISB) process coupled with three-dimensional multiphase multicomponent flow and transport simulation in a multi-dimensional pilot-scale physical model. The designed pilot-scale physical model is effective in tackling natural attenuation and EISB processes for site remediation. The simulation results demonstrate that the developed system is effective in modeling the EISB process, and can thus be used for investigating the effects of various uncertainties. - An integrated modeling system was developed to enhance in situ bioremediation processes

  17. Application Research of Enhanced in-situ micro-ecological Remediation for Oil Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    2013-12-01

    Full Text Available The reduction of the oil content in soil contaminated by the exploitation of oil field in Zhongyuan District that was then recovered for use has been realized in this paper, through the enhanced in-situ micro-ecological remediation method that is micro-ecological remediation technique, by which the cultivation of alfalfa is combined with the regulation of soil environmental factors by means of the enhanced in-situ microbial communities companied with physical and chemical means. The experimental results showed that the oil contents in the contaminated soil with the average 2898.25 mg/kg can be reduced to about 99.37% after the in-situ micro-ecological remediation after the above mentioned recovery for 99 days, which demonstrated the effectiveness of the in-situ micro-ecological remediation methods for oil contaminated soil in this district, meanwhile, the practical and feasible application of these methods have been explored in this paper.

  18. Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry.

    Science.gov (United States)

    Baghdady, Yehia Z; Schug, Kevin A

    2016-01-01

    Accurate and specific analysis of target molecules in complex biological matrices remains a significant challenge, especially when ultra-trace detection limits are required. Liquid chromatography with mass spectrometry is often the method of choice for bioanalysis. Conventional sample preparation and clean-up methods prior to the analysis of biological fluids such as liquid-liquid extraction, solid-phase extraction, or protein precipitation are time-consuming, tedious, and can negatively affect target recovery and detection sensitivity. An alternative or complementary strategy is the use of an off-line or on-line in situ derivatization technique. In situ derivatization can be incorporated to directly derivatize target analytes in their native biological matrices, without any prior sample clean-up methods, to substitute or even enhance the extraction and preconcentration efficiency of these traditional sample preparation methods. Designed appropriately, it can reduce the number of sample preparation steps necessary prior to analysis. Moreover, in situ derivatization can be used to enhance the performance of the developed liquid chromatography with mass spectrometry-based bioanalysis methods regarding stability, chromatographic separation, selectivity, and ionization efficiency. This review presents an overview of the commonly used in situ derivatization techniques coupled to liquid chromatography with mass spectrometry-based bioanalysis to guide and to stimulate future research. PMID:26496130

  19. Enhancement of biosensing performance in a droplet-based bioreactor by in situ microstreaming.

    Science.gov (United States)

    Ducloux, Olivier; Galopin, Elisabeth; Zoueshtiagh, Farzam; Merlen, Alain; Thomy, Vincent

    2010-01-01

    A droplet-based micro-total-analysis system involving biosensor performance enhancement by integrated surface-acoustic-wave (SAW) microstreaming is shown. The bioreactor consists of an encapsulated droplet with a biosensor on its periphery, with in situ streaming induced by SAW. This paper highlights the characterization by particle image tracking of the speed distribution inside the droplet. The analyte-biosensor interaction is then evaluated by finite element simulation with different streaming conditions. Calculation of the biosensing enhancement shows an optimum in the biosensor response. These results confirm that the evaluation of the Damkhler and Peclet numbers is of primary importance when designing biosensors enhanced by streaming. PMID:20644661

  20. Enhancement of biosensing performance in a droplet-based bioreactor by in situ microstreaming

    OpenAIRE

    Ducloux, Olivier; Galopin, Elisabeth; Zoueshtiagh, Farzam; Merlen, Alain; Thomy, Vincent

    2010-01-01

    A droplet-based micro-total-analysis system involving biosensor performance enhancement by integrated surface-acoustic-wave (SAW) microstreaming is shown. The bioreactor consists of an encapsulated droplet with a biosensor on its periphery, with in situ streaming induced by SAW. This paper highlights the characterization by particle image tracking of the speed distribution inside the droplet. The analyte-biosensor interaction is then evaluated by finite element simulation with different strea...

  1. Transparent Raman-enhancing substrates for microbiological monitoring and in situ pollutant detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huai-Hsien; Wang, Yuh-Lin [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Cheng, Tian-You [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Sharma, Pradeep; Chiang, Fang-Yi; Chiu, Shirley Wen-Yu; Wang, Juen-Kai, E-mail: jkwang@ccms.ntu.edu.tw, E-mail: ylwang@pub.iams.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China)

    2011-09-23

    Opaque Raman-enhancing substrates made of Ag nanoparticles on incompletely oxidized aluminum templates have been rendered transparent by an ion-drift process to complete the oxidation. The result shows that the transparent substrates exhibit high/uniform surface-enhanced Raman scattering (SERS) capability and good optical transmissivity, allowing for concurrent SERS characterization and high contrast transmission-mode optical imaging of S. aureus bacteria. We also demonstrate that the transparent substrates can used in conjunction with optical fibers as SERS sensors for in situ detection of malachite green down to 10{sup -9} M.

  2. Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling

    International Nuclear Information System (INIS)

    This paper addresses the need for systematic control of field-scale performance in the emplacement and operation of in situ chemical treatment barriers; in particular, it addresses the issue of how the local coupling of reaction kinetics and material heterogeneities at the laboratory or bench scale can be accurately upscaled to the field. The authors have recently developed modeling analysis tools that can explicitly account for all relevant chemical reactions that accompany the transport of reagents and contaminants through a chemically and physically heterogeneous subsurface rock or soil matrix. These tools are incorporated into an enhanced design methodology for in situ chemical treatment technologies, and the new methodology is demonstrated in the ongoing design of a field experiment for the In Situ Redox Manipulation (ISRM) project at the U.S. Department of Energy (DOE) Hanford Site. The ISRM design approach, which systematically integrates bench-scale and site characterization information, provides an ideal test for the new reactive transport techniques. The need for the enhanced chemistry capability is demonstrated by an example that shows how intra-aqueous redox kinetics can affect the transport of reactive solutes. Simulations are carried out on massively parallel computer architectures to resolve the influence of multiscale heterogeneities on multicomponent, multidimensional reactive transport. The technology will soon be available to design larger-scale remediation schemes

  3. IPCS: An integrated process control system for enhanced in-situ bioremediation

    International Nuclear Information System (INIS)

    To date, there has been little or no research related to process control of subsurface remediation systems. In this study, a framework to develop an integrated process control system for improving remediation efficiencies and reducing operating costs was proposed based on physical and numerical models, stepwise cluster analysis, non-linear optimization and artificial neural networks. Process control for enhanced in-situ bioremediation was accomplished through incorporating the developed forecasters and optimizers with methods of genetic algorithm and neural networks modeling. Application of the proposed approach to a bioremediation process in a pilot-scale system indicated that it was effective in dynamic optimization and real-time process control of the sophisticated bioremediation systems. - A framework of process control system was developed to improve in-situ bioremediation efficiencies and reducing operating costs

  4. Enhanced magnetic moment of ultrathin Co films measured by in situ electrodeposition in a SQUID

    Science.gov (United States)

    Topolovec, Stefan; Krenn, Heinz; Wrschum, Roland

    2016-01-01

    A special electrochemical cell enabling in situ electrodeposition in a SQUID magnetometer is applied to study the magnetic moment of ultrathin Co films during growth on an Au(111) substrate. The in situ electrodeposition approach allows a total elimination of the magnetic background signal of the substrate, thus the magnetic moment which arises exclusively from the deposited Co film could be measured with monolayer sensitivity. The average thickness of the deposited Co films dav as determined from the transferred charge can be adjusted easily by varying the parameters of the electrodeposition. Hence, the magnetic moment of Co thin films could be determined in absolute terms as a function of the film thickness dav. For the first few atomic layers an enhancement of the magnetic moment per Co atom compared to the bulk could be observed, which increases steadily with lowering dav, reaching up to 40%.

  5. One-week postoperative patency of lower extremity in situ bypass graft comparing epidural and general anesthesia

    DEFF Research Database (Denmark)

    Wiis, Julie Therese; Jensen-Gadegaard, Peter; Altintas, mit; Seidelin, Claus; Martusevicius, Robertas; Mantoni, Teit

    2014-01-01

    BACKGROUND: The purpose of this study was to determine whether anesthesia affects graft patency after lower extremity arterial in situ bypass surgery. METHODS: This investigation was a retrospective study using a national database on vascular surgical patients at a single medical institution. We...... under epidural (n = 386) or general (n = 499) anesthesia. Thirty-day mortality (3.4% for epidural anesthesia versus 4.4% general anesthesia; P = 0.414) and comorbidity were comparable in the 2 groups. Graft occlusion within 7 days after surgery was reported in 93 patients, with a similar incidence in...... the epidural (10.1%) and general (10.8%) anesthesia groups (P = 0.730). When examining a subgroup of patients (n = 242) exposed to surgery on smaller vessels (femorodistal in situ bypass procedures, n = 253), the incidence of graft occlusion was also similar in the 2 groups at 14.0% and 9...

  6. System for enhanced longevity of in situ microbial filter used for bioremediation

    Science.gov (United States)

    Carman, M. Leslie (San Ramon, CA); Taylor, Robert T. (Roseville, CA)

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  7. Method for enhanced longevity of in situ microbial filter used for bioremediation

    Science.gov (United States)

    Carman, M. Leslie (San Ramon, CA); Taylor, Robert T. (Roseville, CA)

    1999-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  8. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis.

    Science.gov (United States)

    Canver, Matthew C; Smith, Elenoe C; Sher, Falak; Pinello, Luca; Sanjana, Neville E; Shalem, Ophir; Chen, Diane D; Schupp, Patrick G; Vinjamur, Divya S; Garcia, Sara P; Luc, Sidinh; Kurita, Ryo; Nakamura, Yukio; Fujiwara, Yuko; Maeda, Takahiro; Yuan, Guo-Cheng; Zhang, Feng; Orkin, Stuart H; Bauer, Daniel E

    2015-11-12

    Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements. PMID:26375006

  9. Enhancement of in situ biodegradation of organic compounds in groundwater by targeted pump and treat intervention

    International Nuclear Information System (INIS)

    Highlights: Pumping reduces contaminant toxicity below levels which stimulate in situ biodegradation. Pumping increases the mixing of background oxidants into the plume for anaerobic respiration. Bacterial sulphate reduction is very sensitive to contaminant concentrations. Stable isotope analysis confirms the contribution of different biodegradation processes. Targeted pump and treatment can enhance the natural attenuation of complex plumes. - Abstract: This study demonstrates the value of targeted pump and treatment (PAT) to enhance the in situ biodegradation of organic contaminants in groundwater for improved restoration. The approach is illustrated for a plume of phenolic compounds in a sandstone aquifer, where PAT is used for hydraulic containment and removal of dissolved phase contaminants from specific depth intervals. Time-series analysis of the plume hydrochemistry and stable isotope composition of dissolved species (?34S-SO4, ?13C-CH4, ?13C-TDIC (TDIC = Total Dissolved Inorganic Carbon)) in groundwater samples from high-resolution multilevel samplers were used to deduce changes in the relative significance of biodegradation processes and microbial activity in the plume, induced by the PAT system over 3 years. The PAT system has reduced the maximum contaminant concentrations (up to 6800 mg L?1 total phenols) in the plume by 50% to ?70% at different locations. This intervention has (i) stimulated in situ biodegradation in general, with an approximate doubling of contaminant turnover based on TDIC concentration, which has increased from <200 mg L?1 to >350 mg L?1, (ii) enhanced the activity of SO4-reducing microorganisms (marked by a declining SO4 concentration with corresponding increase in SO4-?34S to values >714V-CDT relative to background values of 1.96.5V-CDT), and (iii) where the TDIC increase is greatest, has changed TDIC-?13C from values of ?10 to ?15V-PDB to ??20V-PDB. This indicates an increase in the relative importance of respiration processes (including denitrification and anaerobic methane oxidation, AMO) that yield 13C-depleted TDIC over fermentation and acetoclastic methanogenesis that yield 13C-enriched TDIC in the plume, leading to higher contaminant turnover. The plume fringe was found to be a zone of enhanced biodegradation by SO4-reduction and methanogenesis. Isotopically heavy methane compositions (up to ?47.8V-PDB) and trends between ?13C-TDIC and ?13C-CH4 suggest that AMO occurs at the plume fringe where the contaminant concentrations have been reduced by the PAT system. Mass and isotope balances for inorganic carbon in the plume confirm the shift in spatial dominance of different biodegradation processes and significant increase in contribution of anaerobic respiration for contaminant biodegradation in zones targeted by the PAT system. The enhanced in situ biodegradation results from a reduction in organic contaminant concentrations in the plume to levels below those that formerly suppressed microbial activity, combined with increased supply of soluble electron acceptors (e.g. nitrate) into the plume by dispersion. An interruption of the PAT system and recovery of the dissolved organic contaminant concentrations towards former values highlights the dynamic nature of this enhancement on restoration and relatively rapid response of the aquifer microorganisms to changing conditions induced by the PAT system. In situ restoration using this combined engineered and passive approach has the potential to manage plumes of biodegradable contaminants over shorter timescales than would be possible using these methods independently. The application of PAT in this way strongly depends on the ability to ensure an adequate flux of dissolved electron acceptors into the plume by advection and dispersion, particularly in heterogeneous aquifers

  10. A Nanoplasmonic Strategy for Precision in-situ Measurements of Tip-enhanced Raman and Fluorescence Spectroscopy

    Science.gov (United States)

    Meng, Lingyan; Sun, Mengtao; Chen, Jianing; Yang, Zhilin

    2016-01-01

    We theoretically investigate an optimized tip-film system that supports in-situ measurement of tip-enhanced Raman spectroscopy (TERS) and tip-enhanced fluorescence (TEF) of dye molecules. A scanning tunneling microscope (STM) is proposed to precisely control the tip-film distance, and thus in-situ measurement of TERS and TEF can be realized utilizing the specific surface plasmon resonance (SPR) properties of the tip-film system. Our calculations show that the optimized tip-film distance of 2?nm suggests a possibility of efficient acquisition of TERS and TEF in-situ. The calculated spatial resolution of TERS and spectral resolution of TEF can be down to 6.5?nm and 10?nm, respectively. Our theoretical results may find promising application in developing multiple functional nano-spectroscopy through which Raman and fluorescence can be measured in-situ at the nanoscale level.

  11. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    International Nuclear Information System (INIS)

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants

  12. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation

    Science.gov (United States)

    Sirivisoot, Sirinrath; Webster, Thomas J.

    2008-07-01

    Multiwalled carbon nanotubes (MWCNTs) enhance osteoblast (bone-forming cell) calcium deposition compared to currently implanted materials (such as titanium). In this study, MWCNTs were grown out of nanopores anodized on titanium (MWCNT-Ti). The electrochemical responses of MWCNT-Ti were investigated in an attempt to ascertain if MWCNT-Ti can serve as novel in situ sensors of bone formation. For this purpose, MWCNT-Ti was subjected to a ferri/ferrocyanide redox couple and its electrochemical behavior measured. Cyclic voltammograms (CVs) showed an enhanced redox potential for the MWCNT-Ti. These redox signals were superior to that obtained with bare unmodified Ti, which did not sense either oxidation or reduction peaks in the CVs. A further objective of this study was to investigate the redox reactions of MWCNT-Ti in a solution of extracellular components secreted by osteoblasts in vitro. It was found that MWCNT-Ti exhibited well-defined and persistent CVs, similar to the ferri/ferrocyanide redox reaction. The higher electrodic performance and electrocatalytic activity of the MWCNT-Ti compared to the bare titanium observed in this study were likely due to the fact that MWCNTs enhanced direct electron transfer and facilitated double-layer effects, leading to a strong redox signal. Thus these results encourage the further study and modification of MWCNT-Ti to sense new bone growth in situ next to orthopedic implants and perhaps monitor other events (such as infection and/or harmful scar tissue formation) to improve the current clinical diagnosis of orthopedic implants.

  13. Observations of in-situ generated gravity waves during a stratospheric temperature enhancement (STE event

    Directory of Open Access Journals (Sweden)

    A. J. Gerrard

    2011-05-01

    Full Text Available Observations of in-situ generated atmospheric gravity waves associated with a stratospheric temperature enhancement (STE are presented. Two sets of gravity waves are observed by molecular-aerosol lidar in conjunction with the early December 2000 STE event above Sondrestrom, Greenland. The first set of gravity waves shows downward phase progression with a vertical wavelength of ~8 km while the second set shows upward phase progression with a vertical wavelength of ~9 km. With estimates of the background wind fields from synoptic analyses, the various intrinsic gravity wave parameters of these two wave structures are found. The observed waves compare well to numerical modeling predictions, though the potential observation of a downward propagating wave would be unexpected.

  14. In situ thermally enhanced biodegradation of petroleum fuel hydrocarbons and halogenated organic solvents

    International Nuclear Information System (INIS)

    An in situ thermally enhanced microbial remediation strategy and a method for the biodegradation of toxic petroleum fuel hydrocarbon and halogenated organic solvent contaminants are described. The method utilizes nonpathogenic, thermophilic bacteria for the thermal biodegradation of toxic and carcinogenic contaminants, such as benzene, toluene, ethylbenzene and xylenes, from fuel leaks and the chlorinated ethenes, such as trichloroethylene, chlorinated ethanes, such as 1,1,1-trichloroethane, and chlorinated methanes, such as chloroform, from past solvent cleaning practices. The method relies on and takes advantage of the pre-existing heated conditions and the array of delivery/recovery wells that are created and in place following primary subsurface contaminant volatilization efforts via thermal approaches, such as dynamic underground steam-electrical heating. 21 figs

  15. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation

    Energy Technology Data Exchange (ETDEWEB)

    Matter, J.; Chandran, K.

    2013-05-31

    Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is produced and used. Various carbon capture and storage (CCS) technologies are currently being developed, but unfortunately little is known regarding the fundamental characteristics of CO{sub 2}-mineral reactions to allow a viable in-situ carbon mineralization that would provide the most permanent and safe storage of geologically-injected CO{sub 2}. The ultimate goal of this research project was to develop a microbial and chemical enhancement scheme for in-situ carbon mineralization in geologic formations in order to achieve long-term stability of injected CO{sub 2}. Thermodynamic and kinetic studies of CO{sub 2}-mineral-brine systems were systematically performed to develop the in-situ mineral carbonation process that utilizes organic acids produced by a microbial reactor. The major participants in the project are three faculty members and their graduate and undergraduate students at the School of Engineering and Applied Science and at the Lamont-Doherty Earth Observatory at Columbia University: Alissa Park in Earth and Environmental Engineering & Chemical Engineering (PI), Juerg Matter in Earth and Environmental Science (Co-PI), and Kartik Chandran in Earth and Environmental Engineering (Co-PI). Two graduate students, Huangjing Zhao and Edris Taher, were trained as a part of this project as well as a number of graduate students and undergraduate students who participated part-time. Edris Taher received his MS degree in 2012 and Huangjing Zhao will defend his PhD on Jan. 15th, 2014. The interdisciplinary training provided by this project was valuable to those students who are entering into the workforce in the United States. Furthermore, the findings from this study were and will be published in referred journals to disseminate the results. The list of the papers is given at the end of the report for reference.

  16. Broadband Cavity Enhanced Absorption Spectroscopy: an in-situ DOAS for Atmospheric Measurements

    Science.gov (United States)

    Langridge, J. M.; Le Crne, J.; Ball, S. M.; Jones, R. L.

    2007-12-01

    From the processing of natural and anthropogenic emissions to the nucleation of new aerosol particles, tropospheric chemistry is driven by species present at trace concentrations. Field based observations provide the means to study complex trace gas processes in-situ, and advancements in understanding are often driven by developments in instrumentation that push forward the limits of sensitivity, target selectivity and deployment flexibility. In this work we present an ultra-sensitive optical instrument for quantification of a wide range of atmospheric trace gas components. The instrument is based upon a broadband variant of cavity enhanced absorption spectroscopy (BBCEAS) using high intensity light emitting diode sources, a short (1.1 m) high finesse optical cavity and wavelength resolved CCD detection. The BBCEAS approach enables measurements akin to those of traditional DOAS to be made in-situ and at high temporal resolution. This is important for the study of short lived species which show high spatial and temporal variability. In addition, the instrument offers deployment flexibility for field studies, being well suited for use on a range of platforms including aircraft, ships and vehicles. In this paper the instrument design and principles of operation will be described in detail, with particular attention being given to description of the calibration system. The performance of the instrument will be presented using results from a number of recent field and laboratory based studies. Most notably these include ppt level measurements of NO3 and N2O5 in coastal environments, ppt level detection of IO formed in reactor experiments from the oxidation of molecular iodine emitted from marine algae and lab based experiments showing sub ppb level detection of nitrous acid.

  17. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-12-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  18. Enhanced sulfate formation by nitrogen dioxide: Implications from in situ observations at the SORPES station

    Science.gov (United States)

    Xie, Yuning; Ding, Aijun; Nie, Wei; Mao, Huiting; Qi, Ximeng; Huang, Xin; Xu, Zheng; Kerminen, Veli-Matti; Petäjä, Tuukka; Chi, Xuguang; Virkkula, Aki; Boy, Michael; Xue, Likun; Guo, Jia; Sun, Jianning; Yang, Xiuqun; Kulmala, Markku; Fu, Congbin

    2015-12-01

    Investigating sulfate formation processes is important not only for air pollution control but also for understanding the climate system. Although the mechanisms of secondary sulfate production have been widely studied, in situ observational evidence implicating an important role of NO2 in SO2 oxidation in the real atmosphere has been rare. In this study, we report two unique cases, from an intensive campaign conducted at the Station for Observing Regional Processes of the Earth System (SORPES) in East China, showing distinctly different mechanisms of sulfate formation by NO2 and related nitrogen chemistry. The first case occurred in an episode of mineral dust mixed with anthropogenic pollutants and especially high concentrations of NOx. It reveals that NO2 played an important role, not only in surface catalytic reactions of SO2 but also in dust-induced photochemical heterogeneous reactions of NO2, which produced additional sources of OH radicals to promote new particle formation and growth. The second case was caused by aqueous oxidation of S(IV) by NO2 under foggy/cloudy conditions with high NH3 concentration. As a by-product, the formed nitrite enhanced HONO formation and further promoted the gas-phase formation of sulfate in the downwind area. This study highlights the effect of NOx in enhancing the atmospheric oxidizing capacity and indicates a potentially very important impact of increasing NOx on particulate pollution formation and regional climate change in East Asia.

  19. Emerging Technologies for Enhanced In Situ Biodenitrification of Nitrate Contaminated Ground Water

    Science.gov (United States)

    Faris, B.; Faris, B.

    2001-05-01

    One of the most pervasive ground water contaminants in the U.S. is nitrate. Traditional technologies for the remediation of nitrate-contaminated ground water are generally costly, lengthy, and often only partly effective. Enhanced in situ biodenitrification (EISBD) is a developing technology for remediating nitrate contaminated ground water and protecting public and domestic supply wells through in situ reduction. Natural denitrification processes have been well understood for some time. However, managing these processes to effectively remediated contaminated ground water in a timely fashion is innovative. EISBD is a remediation technology through which a carbon source (electron donor) is introduced to a nitrate-contaminated aquifer. Since many aquifers are aerobic, indigenous aerobic bacteria utilize the introduced carbon as a food source and oxygen serves as an electron acceptor. Oxygen in the aquifer becomes depleted, forming an anaerobic aquifer. When this occurs and an abundant carbon source is present, indigenous denitrifying bacteria proliferate and reduce nitrate to nitrogen gas through anaerobic respiration. EISBD technology deployments are currently underway for either remediation of sizable nitrate plumes in ground water systems or the reduction of nitrate contaminated ground water around public and/or domestic well fields dedicated to the production of drinking water. Regulatory enforcement of nitrate plumes has been limited. Pollution prevention programs are in place to limit further nitrate contamination, however, once a site becomes contaminated with nitrates above standards, the deployment of remediation technologies is lacking. With the development and further deployment of EISBD technologies, a cost-effective short-term tool is available for nitrate remediation. A multi-disciplinary team of the Interstate Technology Regulatory Cooperation published a Technology Overview guidance document on the emerging technology of EISBD. ITRC is a state-led, national coalition of personnel from the regulatory and technology programs from 40 states and the District of Columbia; federal agencies; and tribal, public, and industry stakeholders. ITRC is devoted to reducing barriers and speeding interstate deployment of better, more cost-effective, innovative environmental technologies.

  20. Field test for treatment verification of an in-situ enhanced bioremediation study

    International Nuclear Information System (INIS)

    Due to a leakage from a 12-inch pressurized diesel steel pipe four years ago, an area of approximately 30,000 square meters was contaminated. A pilot study applying the technology of in-situ enhanced bioremediation was conducted. In the study, a field test kit and on-site monitoring equipment were applied for site characterization and treatment verification. Physically, the enhanced bioremediation study consisted of an air extraction and air supply system, and a nutrition supply network. Certain consistent sampling methodology was employed. Progress was verified by daily monitoring and monthly verification. The objective of this study was to evaluate the capabilities of indigenous microorganisms to biodegrade the petroleum hydrocarbons with provision of oxygen and nutrients. Nine extraction wells and eight air sparging wells were installed. The air sparging wells injected the air into geoformation and the extraction wells provided the underground air circulation. The soil samples were obtained monthly for treatment verification by a Minuteman drilling machine with 2.5-foot-long hollow-stem augers. The samples were analyzed on site for TPH-diesel concentration by a field test kit manufactured by HNU-Hanby, Houston, Texas. The analytical results from the field test kit were compared with the results from an environmental laboratory. The TVPH concentrations of the air extracted from the vadose zone by a vacuum blower and the extraction wells were routinely monitored by a Foxboro FID and Cosmos XP-311A combustible air detector. The daily monitoring of TVPH concentrations provided the reliable data for assessing the remedial progress

  1. In-situ growth of zinc tungstate nanorods on graphene for enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Lei [College of Mechanical and Electronic Engineering, Hohai University, Changzhou, Jiangsu 213022 (China); Xu, Junling [College of Mechanical and Electronic Engineering, Hohai University, Changzhou, Jiangsu 213022 (China); Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098 (China); Ao, Yanhui, E-mail: andyao@hhu.edu.cn [College of Mechanical and Electronic Engineering, Hohai University, Changzhou, Jiangsu 213022 (China); Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098 (China); Wang, Peifang [College of Mechanical and Electronic Engineering, Hohai University, Changzhou, Jiangsu 213022 (China); Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098 (China)

    2014-09-15

    Graphical abstract: Graphene/ZnWO{sub 4} (GZnWO{sub 4}) nanorod composite photocatalysts were prepared by a simple one-step method. Namely, the reduction of graphene oxide and the growth of ZnWO{sub 4} nanorod occurred simultaneously in one single process. An enhancement in the photocatalytic activities were observed in GZnWO{sub 4} composites compared with pure ZnWO{sub 4} under UV light irradiation. - Highlights: GrapheneZnWO{sub 4} composite photocatalyst was prepared for the first time. The as-prepared composite photocatalysts show high activity for dye degradation. Effect of graphene amount on the photocatalytic activity was investigated. - Abstract: Graphenezinc tungstate (GZnWO{sub 4}) hybrid photocatalysts were prepared by an in-situ growth method in which the reduction of graphene oxide (GO) and the growth of ZnWO{sub 4} crystals occurred simultaneously. The materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UVvis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The photocatalytic activity was investigated by the degradation of dye methylene blue (MB). An enhancement in the photocatalytic activity was observed for GZnWO{sub 4} hybrids compared with pure ZnWO{sub 4} under UV light. This improvement was attributed to the following two reasons: increased migration efficiency of photo-induced electrons and increased adsorption activity for dye molecules. The effect of the amount of graphene on the photocatalytic activity was also investigated. Results showed that there was an optimum amount of 2%.

  2. In-situ growth of zinc tungstate nanorods on graphene for enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Graphical abstract: Graphene/ZnWO4 (GZnWO4) nanorod composite photocatalysts were prepared by a simple one-step method. Namely, the reduction of graphene oxide and the growth of ZnWO4 nanorod occurred simultaneously in one single process. An enhancement in the photocatalytic activities were observed in GZnWO4 composites compared with pure ZnWO4 under UV light irradiation. - Highlights: GrapheneZnWO4 composite photocatalyst was prepared for the first time. The as-prepared composite photocatalysts show high activity for dye degradation. Effect of graphene amount on the photocatalytic activity was investigated. - Abstract: Graphenezinc tungstate (GZnWO4) hybrid photocatalysts were prepared by an in-situ growth method in which the reduction of graphene oxide (GO) and the growth of ZnWO4 crystals occurred simultaneously. The materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UVvis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The photocatalytic activity was investigated by the degradation of dye methylene blue (MB). An enhancement in the photocatalytic activity was observed for GZnWO4 hybrids compared with pure ZnWO4 under UV light. This improvement was attributed to the following two reasons: increased migration efficiency of photo-induced electrons and increased adsorption activity for dye molecules. The effect of the amount of graphene on the photocatalytic activity was also investigated. Results showed that there was an optimum amount of 2%

  3. Enhanced spectroscopic gas sensors using in-situ grown carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, A.; Cole, M. T.; Milne, W. I. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Hopper, R. H.; Boual, S.; Ali, S. Z. [Cambridge CMOS Sensors Ltd., Deanland House, 160 Cowley Road, Cambridge CB4 0DL (United Kingdom); Warner, J. H.; Robertson, A. R. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Udrea, F. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Cambridge CMOS Sensors Ltd., Deanland House, 160 Cowley Road, Cambridge CB4 0DL (United Kingdom); Gardner, J. W. [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-05-11

    In this letter, we present a fully complementary-metal-oxide-semiconductor (CMOS) compatible microelectromechanical system thermopile infrared (IR) detector employing vertically aligned multi-walled carbon nanotubes (CNT) as an advanced nano-engineered radiation absorbing material. The detector was fabricated using a commercial silicon-on-insulator (SOI) process with tungsten metallization, comprising a silicon thermopile and a tungsten resistive micro-heater, both embedded within a dielectric membrane formed by a deep-reactive ion etch following CMOS processing. In-situ CNT growth on the device was achieved by direct thermal chemical vapour deposition using the integrated micro-heater as a micro-reactor. The growth of the CNT absorption layer was verified through scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The functional effects of the nanostructured ad-layer were assessed by comparing CNT-coated thermopiles to uncoated thermopiles. Fourier transform IR spectroscopy showed that the radiation absorbing properties of the CNT adlayer significantly enhanced the absorptivity, compared with the uncoated thermopile, across the IR spectrum (3??m15.5??m). This led to a four-fold amplification of the detected infrared signal (4.26??m) in a CO{sub 2} non-dispersive-IR gas sensor system. The presence of the CNT layer was shown not to degrade the robustness of the uncoated devices, whilst the 50% modulation depth of the detector was only marginally reduced by 1.5?Hz. Moreover, we find that the 50% normalized absorption angular profile is subsequently more collimated by 8. Our results demonstrate the viability of a CNT-based SOI CMOS IR sensor for low cost air quality monitoring.

  4. Enhanced spectroscopic gas sensors using in-situ grown carbon nanotubes

    International Nuclear Information System (INIS)

    In this letter, we present a fully complementary-metal-oxide-semiconductor (CMOS) compatible microelectromechanical system thermopile infrared (IR) detector employing vertically aligned multi-walled carbon nanotubes (CNT) as an advanced nano-engineered radiation absorbing material. The detector was fabricated using a commercial silicon-on-insulator (SOI) process with tungsten metallization, comprising a silicon thermopile and a tungsten resistive micro-heater, both embedded within a dielectric membrane formed by a deep-reactive ion etch following CMOS processing. In-situ CNT growth on the device was achieved by direct thermal chemical vapour deposition using the integrated micro-heater as a micro-reactor. The growth of the CNT absorption layer was verified through scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The functional effects of the nanostructured ad-layer were assessed by comparing CNT-coated thermopiles to uncoated thermopiles. Fourier transform IR spectroscopy showed that the radiation absorbing properties of the CNT adlayer significantly enhanced the absorptivity, compared with the uncoated thermopile, across the IR spectrum (3??m15.5??m). This led to a four-fold amplification of the detected infrared signal (4.26??m) in a CO2 non-dispersive-IR gas sensor system. The presence of the CNT layer was shown not to degrade the robustness of the uncoated devices, whilst the 50% modulation depth of the detector was only marginally reduced by 1.5?Hz. Moreover, we find that the 50% normalized absorption angular profile is subsequently more collimated by 8. Our results demonstrate the viability of a CNT-based SOI CMOS IR sensor for low cost air quality monitoring

  5. Enhanced spectroscopic gas sensors using in-situ grown carbon nanotubes

    Science.gov (United States)

    De Luca, A.; Cole, M. T.; Hopper, R. H.; Boual, S.; Warner, J. H.; Robertson, A. R.; Ali, S. Z.; Udrea, F.; Gardner, J. W.; Milne, W. I.

    2015-05-01

    In this letter, we present a fully complementary-metal-oxide-semiconductor (CMOS) compatible microelectromechanical system thermopile infrared (IR) detector employing vertically aligned multi-walled carbon nanotubes (CNT) as an advanced nano-engineered radiation absorbing material. The detector was fabricated using a commercial silicon-on-insulator (SOI) process with tungsten metallization, comprising a silicon thermopile and a tungsten resistive micro-heater, both embedded within a dielectric membrane formed by a deep-reactive ion etch following CMOS processing. In-situ CNT growth on the device was achieved by direct thermal chemical vapour deposition using the integrated micro-heater as a micro-reactor. The growth of the CNT absorption layer was verified through scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The functional effects of the nanostructured ad-layer were assessed by comparing CNT-coated thermopiles to uncoated thermopiles. Fourier transform IR spectroscopy showed that the radiation absorbing properties of the CNT adlayer significantly enhanced the absorptivity, compared with the uncoated thermopile, across the IR spectrum (3 μm-15.5 μm). This led to a four-fold amplification of the detected infrared signal (4.26 μm) in a CO2 non-dispersive-IR gas sensor system. The presence of the CNT layer was shown not to degrade the robustness of the uncoated devices, whilst the 50% modulation depth of the detector was only marginally reduced by 1.5 Hz. Moreover, we find that the 50% normalized absorption angular profile is subsequently more collimated by 8°. Our results demonstrate the viability of a CNT-based SOI CMOS IR sensor for low cost air quality monitoring.

  6. In-situ monitoring of potential enhanced DNA related processes using electrochemical quartz crystal microbalance with dissipation (EQCM-D)

    DEFF Research Database (Denmark)

    Quan, Xueling; Heiskanen, Arto

    2014-01-01

    The effect of applied potential pulses on DNA functionalization (thiolated single stranded DNA) and hybridization processes has been monitored in-situ on gold surfaces using electrochemical quartz crystal microbalance with dissipation (EQCM-D). The applied potentials were chosen with respect to the potential of zero charge (Epzc) of the gold surfaces: a positive potential to attract the negatively charged DNA molecules and a negative potential to enhance the vertical alignment due to electrostatic repulsion. The obtained results clearly show that both DNA modification and hybridization are strongly enhanced by applying potential pulses. Based on the EQCM-D results, we present a model to explain the influence of the potential pulsing. Aside fromthe effect of applied potentials on DNA related processes, this work also demonstrates the versatility of the combination of electrochemistry and quartz crystal microbalance with dissipation in facilitating real-time in situ monitoring of such processes.

  7. In-situ monitoring of potential enhanced DNA related processes using electrochemical quartz crystal microbalance with dissipation (EQCM-D)

    DEFF Research Database (Denmark)

    Quan, Xueling; Heiskanen, Arto; Tenje, Maria; Boisen, Anja

    2014-01-01

    The effect of applied potential pulses on DNA functionalization (thiolated single stranded DNA) and hybridization processes has been monitored in-situ on gold surfaces using electrochemical quartz crystal microbalance with dissipation (EQCM-D). The applied potentials were chosen with respect to the potential of zero charge (Epzc) of the gold surfaces: a positive potential to attract the negatively charged DNA molecules and a negative potential to enhance the vertical alignment due to electrostat...

  8. Silver-enhanced in situ hybridization for detection of polyomavirus DNA in patients with BK virus nephropathy

    OpenAIRE

    Fritzsche, F R; Pianca, S; Gaspert, A; Varga, Z; WANG, L; Farrell, M P; Chen, X. B.; Hirsch, H. H.; Springer, E; Fehr, T; Myles, J; Tubbs, R; Moch, H

    2011-01-01

    BK virus nephropathy is not an infrequent complication of renal transplantation associated with high rates of graft loss. Although antibodies against SV40 antigen detect different viruses of the polyomavirus family, immunohistochemistry is widely used to confirm the diagnosis of BK virus nephropathy in renal biopsies. Here we aimed to validate the novel silver-enhanced in situ hybridization (SISH) technique for the automated detection of BK virus in renal transplant biopsies. Two different pa...

  9. Microwave assisted in situ synthesis of AgNaCMC films and their reproducible surface-enhanced Raman scattering signals

    International Nuclear Information System (INIS)

    Graphical abstract: Two kinds of AgNaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by the scanning electron microscopy images. After the simulation of the E-field intensity distribution around the silver NPs in NaCMC film, the Raman scattering enhancement factors (EFs) of these films were then investigated with 4-mercaptobenzoic acid molecule as a SERS reporter. Improved reproducibility of SERS signal was obtained in the microwave assisted synthesized AgNaCMC film, although it maintained an EF as only 1.11 108. The reproducible SERS signal of the AgNaCMC film is particularly attractive and this microwave assisted in situ reduction method is suitable for the production of excellent substrate for biosensor application. - Highlights: The synthesis of AgNaCMC films was successfully fulfilled by a low-cost microwave method. More uniform silver nanoparticles were observed in AgNaCMC film synthesized by microwave. Improved reproducibility of SERS signal was obtained in microwave synthesized AgNaCMC film. - Abstract: Two kinds of AgNaCMC films for surface-enhanced Raman scattering (SERS) were prepared by conventional heating and microwave assisted in situ reduction methods without any additional capping or reducing agents. A relatively narrow and symmetric surface plasmon resonance band was observed in the absorption spectra of the films fabricated by the microwave assisted in situ reduction method. More uniform silver nanoparticles (NPs) implied by the symmetric absorption spectrum were further confirmed by the scanning electron microscopy images. After the simulation of the E-field intensity distribution around the silver NPs in NaCMC film, the Raman scattering enhancement factors (EFs) of these films were then investigated with 4-mercaptobenzoic acid molecule as a SERS reporter. Improved reproducibility of SERS signal was obtained in the microwave assisted synthesized AgNaCMC film, although it maintained an EF as only 1.11 108. The reproducible SERS signal of the AgNaCMC film is particularly attractive and this microwave assisted in situ reduction method is suitable for the production of excellent substrate for biosensor application

  10. Prospects for Enhancing In Situ CO2 Mineralization in the Peridotite Aquifer of the Samail Ophiolite

    Science.gov (United States)

    Paukert, A. N.; Matter, J. M.; Kelemen, P. B.; Shock, E.; Havig, J. R.

    2011-12-01

    The mantle peridotite section of the Samail Ophiolite in the Sultanate of Oman is a site of exceptionally well-developed, naturally occurring in situ CO2 mineralization and serves as a natural analog to an enhanced process. The evolution of groundwater along the CO2 mineralization pathway in ultramafic rocks is generally thought to follow a progression from surface water to shallow Mg-HCO3 groundwater to deep, alkaline Ca-OH groundwater [e.g., 1-3], but the timescale for this evolution is not known. In order to assess the prospects for an enhanced CO2 mineralization process, we must first have a better understanding of the time necessary to attain natural CO2 mineralization, as well as the rate-limiting factors for the natural process. To that end, a reactive transport model was developed to simulate water-rock interaction during the natural CO2 mineralization process in the peridotite of the Samail Ophiolite aquifer. The model was created using the geochemical code EQ3/6 v.8.0 4, and it tracks a two stage process in which surface water first interacts with peridotite in a shallow aquifer open to atmosphere, and then progresses to a closed system in which the water interacts with peridotite isolated from the atmosphere. The incorporation of dissolution kinetics for the primary minerals in peridotite allowed for an estimate of the time required for water to evolve to the extent seen in the field. Model results suggest that it may take less than 50 years to develop the shallow Mg-HCO3 water, but up to 5,600 years to form the deeper, alkaline Ca-OH water. Rock and water chemistry collected from the Samail Ophiolite and its aquifer were used to calibrate the model. The modeled water chemistry is in agreement with that seen in the field, suggesting that the model offers a fair representation of the natural CO2 mineralization process. The natural system model indicates that CO2 availability is the limiting factor for mineralization in the subsurface, so the model was expanded to include CO2 injection scenarios to determine if increasing the supply could enhance the rate of CO2 mineralization. Model results show that CO2 injection at 100 bar pCO2 and ambient temperature (30oC) would result in a 40x increase in CO2 mineralization over a 30 year period, while injection at 90oC would result in a 3,600x increase in mineralization. Thus far, these model results do not include hydrogeological parameters for the system. Porosity and permeability, and their change with secondary mineralization, may affect the injectivity of CO2 into the aquifer, so they should be included when modeling CO2 injection. However, permeability and porosity in fractured rock aquifers are notoriously complex and remain poorly constrained for the peridotite of the Samail Ophiolite; these parameters warrant further study prior to their inclusion in a model. Results from permeability tests on peridotite cores from the Samail Ophiolite will be presented, with emphasis on how these measurements contribute to our understanding of the potential for enhanced CO2 mineralization in the peridotite of the Samail Ophiolite aquifer. 1Barnes and O'Neil, 1969; 2Stanger, 1986; 3Bruni et al., 2002; 4Wolery and Jarek, 2003

  11. Enhanced catalytic performance of carbon supported palladium nanoparticles by in-situ synthesis for formic acid electrooxidation

    Science.gov (United States)

    Yao, Shikui; Li, Guoqiang; Liu, Changpeng; Xing, Wei

    2015-06-01

    The development of facile, surfactant-free strategy for the scale-up production of catalysts with superior performance for energy science is an interesting challenge. Pd/C is synthesized using an in-situ method from PdO/C for formic acid electrooxidation based on the reducibility of formic acid. The morphology, composition and electrocatalytic properties are investigated using transmission electronmicroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, linear scan voltammograms (LSV) and chronoamperometry. The in-situ synthesized Pd nanoparticles show better distribution and smaller average particle size than the normally synthesized Pd/C, which indicates that the well-known Ostwald ripening is most limited in the synthesis process. The electrochemical measurements show that the Pd/C catalyst exhibits enhanced performance towards formic acid electrooxidation. For example, the peak current of the Pd/C catalyst is approximately three times that of the homemade Pd/C catalyst and twice as high as that of the commercial Pd/C catalyst in the LSV test. The in-situ synthesized Pd/C catalyst has potential application for direct formic acid fuel cells, and the in-situ route should be an effective strategy to synthesize high performance catalysts.

  12. IN-SITU CHEMICAL STABILIZATION OF METALS AND RADIONUCLIDES THROUGH ENHANCED ANAEROBIC REDUCTIVE PRECIPITATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher C. Lutes; Angela Frizzell, PG; Todd A. Thornton; James M. Harrington

    2003-08-01

    The objective of this NETL sponsored bench-scale study was to demonstrate the efficacy of enhanced anaerobic reductive precipitation (EARP) technology for precipitating uranium using samples from contaminated groundwater at the Fernald Closure Project (FCP) in Cincinnati, Ohio. EARP enhances the natural biological reactions in the groundwater through addition of food grade substrates (typically molasses) to drive the oxidative-reductive potential of the groundwater to a lower, more reduced state, thereby precipitating uranium from solution. In order for this in-situ technology to be successful in the long term, the precipitated uranium must not be re-dissolved at an unacceptable rate once groundwater geochemical conditions return to their pretreatment, aerobic state. The approach for this study is based on the premise that redissolution of precipitated uranium will be slowed by several mechanisms including the presence of iron sulfide precipitates and coatings, and sorption onto fresh iron oxides. A bench-scale study of the technology was performed using columns packed with site soil and subjected to a continuous flow of uranium-contaminated site groundwater (476 {micro}g/L). The ''treated'' column received a steady stream of dilute food grade molasses injected into the contaminated influent. Upon attainment of a consistently reducing environment and demonstrated removal of uranium, an iron sulfate amendment was added along with the molasses in the influent solution. After a month long period of iron addition, the treatments were halted, and uncontaminated, aerobic, unamended water was introduced to the treated column to assess rebound of uranium concentrations. In the first two months of treatment, the uranium concentration in the treated column decreased to the clean-up level (30 {micro}g/L) or below, and remained there for the remainder of the treatment period. A brief period of resolubilization of uranium was observed as the treated column returned to aerobic conditions, but the concentration later returned to below the clean-up level. Speciation analysis was conducted on soil collected from the treated column after rebound testing. The experimental results show that: (a) The mass of uranium resolubilized in more than four months of column testing was much lower than the amount precipitated. (b) The majority of the uranium was precipitated in the first few inches of the treated column. The majority of the uranium precipitated was associated with iron oxides or in other immobile/sequestered phases. It is important to contrast this result with the results reported by Bryan (2003) who shows that most of the uranium associated with contaminated aquifer solids at Fernald under the existing natural attenuation/pump and treat with reinjection conditions is carbonate bound. Carbonate bound forms are traditionally seen as fairly mobile, but may not be under a calcite/dolomite saturated condition. Fernald is currently conducting further studies to investigate the mobility of the carbonate bound forms. (c) Though reoxidation concentrations from the bench-scale column exceeded 30 {micro}g/L for a time, they later returned to below this value. Effluent concentrations from the treated column are expected to over predict full-scale concentrations for reasons discussed in depth in the text. Finally, these results must be viewed in light of the site's ongoing pump-and-treat with reinjection system. There is reason to believe that although the pump-and-treat technology is currently effectively controlling the uranium plume and reducing the groundwater concentration, it may not be able to reach the treatment standard of 30 {micro}g/L within an economical operating lifetime and then maintain that concentration without rebound. This study suggests that Enhanced Anaerobic Reductive Precipitation can change the speciation and thus reduce the mobility of uranium at the site and expedite closure.

  13. In situ growth rate measurements during plasma-enhanced chemical vapour deposition of vertically aligned multiwall carbon nanotube films

    International Nuclear Information System (INIS)

    In situ laser reflectivity measurements are used to monitor the growth of multiwalled carbon nanotube (MWCNT) films grown by DC plasma-enhanced chemical vapour deposition (PECVD) from an iron catalyst film deposited on a silicon wafer. In contrast to thermal CVD growth, there is no initial increase in the growth rate; instead, the initial growth rate is high (as much as 10 ?m min-1) and then drops off rapidly to reach a steady level (2 ?m min-1) for times beyond 1 min. We show that a limiting factor for growing thick films of multiwalled nanotubes (MWNTs) using PECVD can be the formation of an amorphous carbon layer at the top of the growing nanotubes. In situ reflectivity measurements provide a convenient technique for detecting the onset of the growth of this layer

  14. Intermediates in the cation reactions in solution probed by an in situ surface enhanced Raman scattering method

    Science.gov (United States)

    Tan, Chih-Shan; Chen, Hung-Ying; Chen, Hsueh-Szu; Gwo, Shangjr; Chen, Lih-Juann

    2015-09-01

    For chemical reactions in liquid state, such as catalysis, understanding of dynamical changes is conducive to practical applications. Solvation of copper salts in aqueous solution has implications for life, the environment, and industry. In an ongoing research, the question arises that why the color of aqueous CuCl2 solution changes with solution concentration? In this work, we have developed a convenient and efficient in situ surface enhanced Raman scattering technique to probe the presence of many intermediates, some of them are responsible for color change, in crystallization of aqueous copper chloride solution. The versatility of the novel technique was confirmed in the identification of five intermediates states in the transition from CdS to MoS2 nanowires in solution. The facile in situ method is expected to be widely applicable in probing intermediate states in a variety of chemical reactions in solution.

  15. In situ nitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chundong; Zhou, Yungang; He, Lifang; Ng, Tsz-Wai; Hong, Guo; Wu, Qi-Hui; Gao, Fei; Lee, Chun-Sing; Zhang, Wenjun

    2013-01-21

    Due to its unique electronic properties and wide spectrum of promising applications, graphene has attracted much attention from scientists in various fields. Control and engineering of graphenes semiconducting properties is considered to be the key of its applications in electronic devices. Here, we report a novel method to prepare in situ nitrogen-doped graphene by microwave plasma assisted chemical vapor deposition (CVD) using PDMS (Polydimethylsiloxane) as a solid carbon source. Based on this approach, the concentration of nitrogen-doping can be easily controlled via the flow rate of nitrogen during the CVD process. X-ray photoelectron spectroscopy results indicated that the nitrogen atoms doped into graphene lattice were mainly in the forms of pyridinic and pyrrolic structures. Moreover, first-principles calculations show that the incorporated nitrogen atoms can lead to p-type doping of graphene. This in situ approach provides a promising strategy to prepare graphene with controlled electronic properties.

  16. Label-free in-situ monitoring of protein tyrosine nitration in blood by surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Li, Yuan-Ting; Li, Da-Wei; Cao, Yue; Long, Yi-Tao

    2015-07-15

    A novel label-free method for the in-situ monitoring of protein tyrosine nitration (PTN) was explored based on surface-enhanced Raman spectroscopy (SERS). Benefiting from the relative weak binding ability of sulfate to silver surface, the Raman signals of nitrated peptides were boosted well with sulfate-aggregated silver nanoparticles (Ag NPs). The distinction of the SERS spectra between non-nitrated peptides and nitrated peptides was obtained by directly comparing SERS bands at 330-400cm(-1), allowing the rapid identification of PTN. Furthermore, without any pretreatments, the established method was successfully applied in the rapid in-situ dynamic monitoring of the mimic hemin-catalyzed PTN process in synthetic peptide, bovine serum albumin (BSA), and original human blood serum samples. The results indicated that the proposed approach could be a promising in-situ label-free tool for observing PTN process, which may be quite helpful to deeply understand the mechanism of post-translation modification. PMID:25703723

  17. A capillary-based probe for in situ detection of enhanced fluorescence signals

    International Nuclear Information System (INIS)

    A simple, compact, and high sensitivity capillary-based probe for the in situ detection of fluorescence signals with high sensitivity is demonstrated. A home-made singlemulti-mode fiber coupler that is coaxially aligned with the capillary-based probe provides for the transmission of excitation light and the collection and transmission of fluorescence. We propose a conceptually straightforward theoretical model to optimize the factors affecting the fluorescence-capture capability of the capillary-based probe. The fluorescence signal detected by fiber-optic spectroscopy non-linearly increases with the length of the capillary-based probe. In addition, the thicker the capillary tube wall is, the less the fluorescence signals determined are. The performance of the proposed probe is evaluated experimentally by measuring the fluorescence spectra of Cy5.5 dye and blue-green algae. The experimental results show that the proposed probe provides more than a ten-fold increase in fluorescence signal compared with direct measurements by a flat-tipped multi-mode fiber probe. The advantages of the capillary-based probe, which include its simple and compact structure, excellent light collection efficiency, requirement of small sample volume, and recoverability of samples, allow its wide application to in situ detection in the medical, forensic, biological, geological, and environmental fields with high sensitivity. (letter)

  18. A capillary-based probe for in situ detection of enhanced fluorescence signals

    Science.gov (United States)

    Long, F.; Xiao, R.; Zhu, A. N.; Shi, H. C.; Wang, S. Q.

    2013-07-01

    A simple, compact, and high sensitivity capillary-based probe for the in situ detection of fluorescence signals with high sensitivity is demonstrated. A home-made single-multi-mode fiber coupler that is coaxially aligned with the capillary-based probe provides for the transmission of excitation light and the collection and transmission of fluorescence. We propose a conceptually straightforward theoretical model to optimize the factors affecting the fluorescence-capture capability of the capillary-based probe. The fluorescence signal detected by fiber-optic spectroscopy non-linearly increases with the length of the capillary-based probe. In addition, the thicker the capillary tube wall is, the less the fluorescence signals determined are. The performance of the proposed probe is evaluated experimentally by measuring the fluorescence spectra of Cy5.5 dye and blue-green algae. The experimental results show that the proposed probe provides more than a ten-fold increase in fluorescence signal compared with direct measurements by a flat-tipped multi-mode fiber probe. The advantages of the capillary-based probe, which include its simple and compact structure, excellent light collection efficiency, requirement of small sample volume, and recoverability of samples, allow its wide application to in situ detection in the medical, forensic, biological, geological, and environmental fields with high sensitivity.

  19. Enhanced visible-light induced degradation of benzene on Mg-ferrite/hematite/PANI nanospheres: In situ FTIR investigation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yu [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Zhao, Qidong [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia); Yuan, Deling; Hou, Yang [Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Liu, Shaomin, E-mail: shaomin.liu@curtin.edu.au [Department of Chemical Engineering, Curtin University, Perth, WA 6845 (Australia)

    2012-11-30

    Graphical abstract: The dramatic enhanced visible-light photocatalytic activity of Mg-ferrite/hematite nanospheres photocatalyst on benzene were obtained after hybridized by polyaniline (PANI) using the chemisorption method. The enhancement of photocatalytic degradation of benzene under visible-light irradiation was mainly ascribed to the high efficiency of charge separation induced by the hybrid effect of PANI and Mg-ferrite/hematite. By using the in situ FTIR technique, ethyl acetate, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO{sub 2} is produced as the final product during the reaction process. Highlights: Black-Right-Pointing-Pointer Mg-ferrite/hematite/PANI photocatalysts showed enhanced photocatalytic activity. Black-Right-Pointing-Pointer Ethyl acetate, carboxylic acid and aldehyde were the intermediate products. Black-Right-Pointing-Pointer CO{sub 2} was produced as the final product during the reaction process. Black-Right-Pointing-Pointer The high efficiency of charge separation was mainly ascribed to the hybrid effect. - Abstract: The dramatic enhanced visible-light photocatalytic activity of Mg-ferrite/hematite nanospheres photocatalysts on benzene were obtained after hybridized by polyaniline (PANI) using the chemisorption method. The samples were characterized by scanning electron microscope, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectra and UV-Vis diffuse reflectance spectroscopy. The enhancement of photocatalytic degradation of benzene under visible-light irradiation was mainly ascribed to the high efficiency of charge separation induced by the hybrid effect of PANI and Mg-ferrite/hematite. By using the in situ FTIR technique, ethyl acetate, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO{sub 2} is determined as the final product during the reaction process.

  20. Enhanced visible-light induced degradation of benzene on Mg-ferrite/hematite/PANI nanospheres: In situ FTIR investigation

    International Nuclear Information System (INIS)

    Graphical abstract: The dramatic enhanced visible-light photocatalytic activity of Mg-ferrite/hematite nanospheres photocatalyst on benzene were obtained after hybridized by polyaniline (PANI) using the chemisorption method. The enhancement of photocatalytic degradation of benzene under visible-light irradiation was mainly ascribed to the high efficiency of charge separation induced by the hybrid effect of PANI and Mg-ferrite/hematite. By using the in situ FTIR technique, ethyl acetate, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO2 is produced as the final product during the reaction process. Highlights: ? Mg-ferrite/hematite/PANI photocatalysts showed enhanced photocatalytic activity. ? Ethyl acetate, carboxylic acid and aldehyde were the intermediate products. ? CO2 was produced as the final product during the reaction process. ? The high efficiency of charge separation was mainly ascribed to the hybrid effect. - Abstract: The dramatic enhanced visible-light photocatalytic activity of Mg-ferrite/hematite nanospheres photocatalysts on benzene were obtained after hybridized by polyaniline (PANI) using the chemisorption method. The samples were characterized by scanning electron microscope, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectra and UVVis diffuse reflectance spectroscopy. The enhancement of photocatalytic degradation of benzene under visible-light irradiation was mainly ascribed to the high efficiency of charge separation induced by the hybrid effect of PANI and Mg-ferrite/hematite. By using the in situ FTIR technique, ethyl acetate, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO2 is determined as the final product during the reaction process.

  1. Enhanced visible-light photocatalytic activities of Ag3PO4/MWCNT nanocomposites fabricated by facile in situ precipitation method

    International Nuclear Information System (INIS)

    Highlights: Ag3PO4/MWCNT composites were facilely fabricated via in situ precipitation method. Ag3PO4/MWCNT composites exhibited enhanced visible-light photocatalytic activity. Ag3PO4/MWCNT composites showed good photostability compared with Ag3PO4 particles. Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: The Ag3PO4/MWCNT nanocomposites were facilely fabricated via in situ precipitation method by adding (NH4)2HPO4 into the mixture of multi-walled carbon nanotube (MWCNT) and AgNO3 solution under stirring. The as-prepared Ag3PO4/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the BrunauerEmmettTeller surface area (BET) and UVvis diffuse reflectance spectroscopy. The TEM results showed that the Ag3PO4 nanoparticles were distributed on the surface of MWCNT uniformly with an average diameter of 70 nm, indicating excellent loading result. The photocatalytic activities of Ag3PO4/MWCNT nanocomposites were investigated by degrading methylene blue (MB) and malachite green (MG) under visible-light irradiation. It was found that the Ag3PO4/MWCNT nanocomposite exhibited excellent photocatalytic performance with enhanced photocatalytic efficiency and good photostability compared with bare Ag3PO4. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed

  2. In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine

    International Nuclear Information System (INIS)

    Gold nanoparticles were in-situ decorated on top of a polyaniline film (GNPs-PANI) via the direct electroreduction of the adsorbed AuCl4- ions on a glassy carbon electrode that previously was coated with PANI by electropolymerization. The GNPs-PANI composite and the performance of the resultant sensors were investigated in some detail. The sensor was applied to the oxidation of dopamine (DA) with improved catalytic activity. Its catalytic current showed wide linear response toward dopamine ranging from 3 to 115 ?M, with a low detection limit of 0. 8 ?M (S/N=3). In addition, the sensor exhibits easy-operation, fast response to dopamine, as well as excellent reproducibility and stability. (author)

  3. In-Situ resonance-enhanced multiphoton ionization (REMPI) measurements using an optical fiber probe

    International Nuclear Information System (INIS)

    Two fiber-optic REMPI probes have been developed to determine the feasibility of using fiber-optics for in-situ determination of volatile organic compounds. In both designs, an optical fiber transmits a high-powered laser pulse to the sample, causing it to ionize, and the subsequent electrons are collected by a platinum electrode. One probe contains focusing optics while the other contains no focusing optics other than the fiber. Excitation using a 2+2 scheme was used for all measurements because visible excitation has optimal transmission of light through fiber-optics. The nonlensed probe was tested by measuring toluene and benzene and the response was compared to that using the lensed probe

  4. Nitrogen removal characteristics of enhanced in situ indigenous aerobic denitrification bacteria for micro-polluted reservoir source water.

    Science.gov (United States)

    Zhou, Shilei; Huang, Tinglin; Zhang, Haihan; Zeng, Mingzheng; Liu, Fei; Bai, Shiyuan; Shi, Jianchao; Qiu, Xiaopeng; Yang, Xiao

    2016-02-01

    Indigenous oligotrophic aerobic denitrifiers nitrogen removal characteristics, community metabolic activity and functional genes were analyzed in a micro-polluted reservoir. The results showed that the nitrate in the enhanced system decreased from 1.710.01 to 0.800.06mg/L, while the control system did little to remove and there was no nitrite accumulation. The total nitrogen (TN) removal rate of the enhanced system reached 38.331.50% and the TN removal rate of surface sediment in the enhanced system reached 23.852.52%. TN removal in the control system experienced an 85.482.37% increase. The densities of aerobic denitrifiers in the enhanced system ranged from 2.2410(5) to 8.1310(7)cfu/mL. The abundance of nirS and nirK genes in the enhanced system were higher than those of in the control system. These results suggest that the enhanced in situ indigenous aerobic denitrifiers have potential applications for the bioremediation of micro-polluted reservoir system. PMID:26649898

  5. In-situ rf plasma treatment of multi-wall carbon nanotubes with various reactive gases for enhanced field emission

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kyoung Soo; Kim, Ji Hoon; Lee, Kyoung Nam; Lee, Chang Hyo; Kim, Chae Ok; Hong, Jin Pyo [Hanyang University, Seoul (Korea, Republic of); Jeon, Yu Jin; Cheong, Hyeon Sik [Sogang Unversity, Seoul (Korea, Republic of)

    2004-07-15

    Well-aligned multi-wall carbon nanotubes (MWNTs) were fabricated at a low temperature of 400 .deg. C by utilizing a radio-frequency plasma-enhanced chemical vapor deposition (rf-PECVD) system. The MWNTs were in-situ treated with external rf plasma sources, such as hydrogen (H{sub 2}) and ammonia (NH{sub 3}), in order to enhance the structural and electrical properties of the MWNTs. Structural properties of carbon nanotubes were investigated by using scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive spectrometry and transmission electron microscopy. Finally, the emission properties of the MWNTs treated with various gases were also measured, for application in field emission displays in the near future.

  6. One-week postoperative patency of lower extremity in situ bypass graft comparing epidural and general anesthesia : retrospective study of 822 patients

    DEFF Research Database (Denmark)

    Wiis, Julie Therese; Jensen-Gadegaard, Peter

    2014-01-01

    BACKGROUND: The purpose of this study was to determine whether anesthesia affects graft patency after lower extremity arterial in situ bypass surgery. METHODS: This investigation was a retrospective study using a national database on vascular surgical patients at a single medical institution. We assessed a total of 822 patients exposed to infrainguinal in situ bypass vascular surgery over the period of January 2000 to September 2010. RESULTS: All patients included in the study (age [mean SD] 70.8 9.7 years) underwent infrainguinal in situ bypass (n = 885) for lower extremity revascularization under epidural (n = 386) or general (n = 499) anesthesia. Thirty-day mortality (3.4% for epidural anesthesia versus 4.4% general anesthesia; P = 0.414) and comorbidity were comparable in the 2 groups. Graft occlusion within 7 days after surgery was reported in 93 patients, with a similar incidence in the epidural (10.1%) and general (10.8%) anesthesia groups (P = 0.730). When examining a subgroup of patients (n = 242) exposed to surgery on smaller vessels (femorodistal in situ bypass procedures, n = 253), the incidence of graft occlusion was also similar in the 2 groups at 14.0% and 9.4%, respectively (P = 0.262). CONCLUSION: This retrospective study has shown that when graft patency is evaluated 7 days after surgery, anesthetic choice (epidural or general anesthesia) does not influence outcome.

  7. Enhancing RHIC luminosity capabilities with in-situ beam piple coating

    Energy Technology Data Exchange (ETDEWEB)

    Herschcovitch,A.; Blaskiewicz, M.; Fischer, W.; Poole, H. J.

    2009-05-04

    Electron clouds have been observed in many accelerators, including the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL). They can limit the machine performance through pressure degradation, beam instabilities or incoherent emittance growth. The formation of electron clouds can be suppressed with beam pipe surfaces that have low secondary electron yield. At the same time, high wall resistivity in accelerators can result in levels of ohmic heating unacceptably high for superconducting magnets. This is a concern for the RHIC machine, as its vacuum chamber in the superconducting dipoles is made from relatively high resistivity 316LN stainless steel. The high resistivity can be addressed with a copper (Cu) coating; a reduction in the secondary electron yield can be achieved with a titanium nitride (TiN) or amorphous carbon (a-C) coating. Applying such coatings in an already constructed machine is rather challenging. We started developing a robotic plasma deposition technique for in-situ coating of long, small diameter tubes. The technique entails fabricating a device comprised of staged magnetrons and/or cathodic arcs mounted on a mobile mole for deposition of about 5 {micro}m (a few skin depths) of Cu followed by about 0.1 {micro}m of TiN (or a-C).

  8. In situ purity enhancement/surface modification of single-walled carbon nanotubes synthesized by induction thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shahverdi, Ali; Kim, Keun Su; Alinejad, Yasaman; Soucy, Gervais, E-mail: Gervais.Soucy@Usherbrooke.ca [Universite de Sherbrooke, Department of Chemical and Biotechnological Engineering (Canada)

    2012-02-15

    A simple, cost-effective and energy-efficient approach was developed for in situ purity enhancement and surface modification of single-walled carbon nanotubes (SWCNTs) produced using an induction thermal plasma process. In this process, SWCNT-containing materials are thermally treated with oxygen flow inside a filtration chamber, while they are assembled into the sheets during the synthesis process. Owing to selective thermal oxidation, the amount of amorphous carbon was significantly reduced in the final product resulting in higher purity SWCNT-containing materials. Parametric study indicated that the amorphous carbon content was noticeably diminished in the product at an oxygen volume concentration of 10% in the synthesis system. Raman analysis indicated a decrease in the population of the SWCNTs with diameters smaller than 1.3 nm after in situ exposure to 10 vol.% of oxygen. In addition to the successful reduction of amorphous carbon content, the oxygen-functionalized SWCNTs were also observed in the final product using this process.

  9. In situ purity enhancement/surface modification of single-walled carbon nanotubes synthesized by induction thermal plasma

    International Nuclear Information System (INIS)

    A simple, cost-effective and energy-efficient approach was developed for in situ purity enhancement and surface modification of single-walled carbon nanotubes (SWCNTs) produced using an induction thermal plasma process. In this process, SWCNT-containing materials are thermally treated with oxygen flow inside a filtration chamber, while they are assembled into the sheets during the synthesis process. Owing to selective thermal oxidation, the amount of amorphous carbon was significantly reduced in the final product resulting in higher purity SWCNT-containing materials. Parametric study indicated that the amorphous carbon content was noticeably diminished in the product at an oxygen volume concentration of 10% in the synthesis system. Raman analysis indicated a decrease in the population of the SWCNTs with diameters smaller than 1.3 nm after in situ exposure to 10 vol.% of oxygen. In addition to the successful reduction of amorphous carbon content, the oxygen-functionalized SWCNTs were also observed in the final product using this process.

  10. In-situ gasification, enhanced methane recovery and CO{sub 2} storage in deep coal seams

    Energy Technology Data Exchange (ETDEWEB)

    James Hetherington; Kelly Thambimuthu [University of Sydney, Sydney, NSW (Australia)

    2003-07-01

    This paper examines the feasibility of combining a process known as in-situ or underground gasification with enhanced methane recovery to increase the permeability of coal seams, to extract energy and ultimately to store CO{sub 2} in seams that are too deep to mine. Permeability issues that affect gasification can be addressed through the use of a number of linking techniques that also have the potential to be applied to enhanced gas recovery. It is shown that the order in which gasification and enhanced gas recovery occur is important to the success of process combinations, as any carbon dioxide stored within the seam will dissociate from the coal matrix when exposed to the temperatures necessary for gasification. A highly concentrated environment of carbon dioxide would also have significant impact on gasification, requiring greater thermal or pure oxidant input. It is evident that whilst the combination of both techniques hold considerable potential, greater research into this field is needed as many of the mechanisms involved, especially in enhanced gas recovery, are not well understood. 27 refs.

  11. Remote plasma enhanced chemical vapor deposition of GaP with in situ generation of phosphine precursors

    Science.gov (United States)

    Choi, S. W.; Lucovsky, G.; Bachmann, Klaus J.

    1993-01-01

    Thin homoepitaxial films of gallium phosphide (GaP) were grown by remote plasma enhanced chemical vapor deposition utilizing in situ generated phosphine precursors. The GaP forming reaction is kinetically controlled with an activation energy of 0.65 eV. The increase of the growth rate with increasing radio frequency (rf) power between 20 and 100 W is due to the combined effects of increasingly complete excitation and the spatial extension of the glow discharge toward the substrate, however, the saturation of the growth rate at even higher rf power indicates the saturation of the generation rate of phosphine precursors at this condition. Slight interdiffusion of P into Si and Si into GaP is indicated from GaP/Si heterostructures grown under similar conditions as the GaP homojunctions.

  12. One-step in situ synthesis of graphene–TiO2 nanorod hybrid composites with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Chemically bonded graphene/TiO2 nanorod hybrid composites with superior dispersity were synthesized by a one-step in situ hydrothermal method using graphene oxide (GO) and TiO2 (P25) as the starting materials. The as-prepared samples were characterized by XRD, XPS, TEM, FE-SEM, EDX, Raman, N2 adsorption, and UV–vis DRS techniques. Enhanced light absorption and a red shift of absorption edge were observed for the composites in the ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). Their effective photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light irradiation. An enhancement of photocatalytic performance was observed over graphene/TiO2 nanorod hybrid composite photocatalysts, as 3.7 times larger than that of pristine TiO2 nanorods. This work demonstrated that the synthesis of TiO2 nanorods and simultaneous conversion of GO to graphene “without using reducing agents” had shown to be a rapid, direct and clean approach to fabricate chemically bonded graphene/TiO2 nanorod hybrid composites with enhanced photocatalytic performance

  13. One-step in situ synthesis of graphene–TiO{sub 2} nanorod hybrid composites with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mingxuan, E-mail: mingxuansun@sues.edu.cn; Li, Weibin; Sun, Shanfu; He, Jia; Zhang, Qiang; Shi, Yuying

    2015-01-15

    Chemically bonded graphene/TiO{sub 2} nanorod hybrid composites with superior dispersity were synthesized by a one-step in situ hydrothermal method using graphene oxide (GO) and TiO{sub 2} (P25) as the starting materials. The as-prepared samples were characterized by XRD, XPS, TEM, FE-SEM, EDX, Raman, N{sub 2} adsorption, and UV–vis DRS techniques. Enhanced light absorption and a red shift of absorption edge were observed for the composites in the ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). Their effective photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light irradiation. An enhancement of photocatalytic performance was observed over graphene/TiO{sub 2} nanorod hybrid composite photocatalysts, as 3.7 times larger than that of pristine TiO{sub 2} nanorods. This work demonstrated that the synthesis of TiO{sub 2} nanorods and simultaneous conversion of GO to graphene “without using reducing agents” had shown to be a rapid, direct and clean approach to fabricate chemically bonded graphene/TiO{sub 2} nanorod hybrid composites with enhanced photocatalytic performance.

  14. Modeling Enhanced In Situ CO2 Mineralization in the Samail Ophiolite Aquifer

    Science.gov (United States)

    Paukert, A. N.; Matter, J. M.; Kelemen, P. B.; Shock, E.; Streit, E.

    2010-12-01

    The Samail Ophiolite aquifer in the Sultanate of Oman is a site of exceptionally well-developed naturally occurring in situ CO2 mineralization, and serves as a natural analog for an engineered CO2 sequestration process. Natural processes within the aquifer can be described by the following reactions [e.g.1,2]: near the surface, infiltrating rainwater dissolves peridotite, increasing dissolved Mg, Ca, and Si; interaction with soil CO2 and carbonate rocks and dust further increases Ca and dissolved C. At deeper levels, groundwater is cut off from the atmosphere-and hence its CO2 source- but continues to dissolve peridotite, and precipitates serpentine, magnesite, and dolomite. The resulting water has a high Ca-OH concentration, essentially no Mg or dissolved C, and ultrabasic pH. When this alkaline water reaches the shallow subsurface or surface, it mixes with CO2-saturated shallow groundwater or absorbs CO2 directly from the atmosphere. Dissolved C reacts with Ca to precipitate calcite on the surface, lowering the pH to basic. This process forms abundant carbonate minerals, both in the subsurface and in surficial travertine terraces. Water chemistry data can be used to determine the amount of CO2 sequestered. The quantity of CO2 mineralized at the surface as CaCO3 can be calculated from the removal of Ca from alkaline water once it discharges at springs, assuming CaCO3 precipitation is the only surficial Ca sink. Water samples from 22 alkaline spring outlets and 16 surface water bodies were used to calculate the average decrease in Ca and increase in TIC as alkaline spring water discharges and flows along the surface, losing its high pH and converting to basic surface water; the values are 1.26 mmol/L Ca and 3.13 mmol/L TIC, respectively. The increase in TIC can be attributed to absorption of atmospheric CO2. In regions with known flow rates, it is possible to determine the total amount of CO2 mineralized annually. For example, near Masibt where the flow rate of a single spring is 3x107 L/yr, the annual loss of Ca is 3.8x104 moles/yr and the amount of CO2 mineralized as CaCO3 by that spring is 0.85 kg/yr. Over 70 alkaline springs have been mapped throughout the Samail Ophiolite3, and doubtless many more exist. At the surface, Ca availability limits carbonate mineral formation; however, in the subsurface, dissolved CO2 must be the limiting species. TIC decreases from 3.24 mmol/L in shallow groundwater to 0.27 mmol/L in alkaline springs. The loss of 2.96 mmol/L TIC likely occurs by magnesite precipitation, meaning that this amount of CO2 is mineralized in the subsurface. If the availability of dissolved CO2 is the limiting factor in mineralization by the Samail Ophiolite aquifer, it may be possible to engineer the system to increase the rate of sequestration by injecting CO2 into the aquifer. To simulate the outcome of such an engineered system, data from the natural system have been incorporated into a reactive transport model. Results of this simulation will be presented. 1Barnes and ONeil, 1969; 2Bruni et al., 2002; 3Stanger, 1986

  15. Evaluation of Immunohistochemistry and Silver-Enhanced In Situ Hybridization Results for HER2/neu Manually and with Image Analysis System in Human Breast Cancer

    Directory of Open Access Journals (Sweden)

    Do?u? ZDEM?R

    2010-09-01

    Full Text Available Objective: HER2/neu (ErbB2 gene status is one of the important information while planing terapy in breast carcinoma. For HER2/ neu testing there is not standart assay that has been agreed on. Silver enhanced in situ hybridization is a cantitative and highly reproducible assay. Immunohistochemistry is a cheap and easy assay that has disadvantage of being less reproducible. Recently developed pathologist assisted computerized image analysis systems decrease the ratio of subjectivity due to manual evaluation, enable tele-consultation and make it easy to evaluate tumor morphology and markers. Our aim is to investigate the consistency of manual and computerized interpretation of the results of immunohistochemistry and silver enhanced in situ hybridization.Material and Method: Immunohistochemisty and silver enhanced in situ hybridization of 73 invasive breast carcinoma results were evaluated manually to determine HER2/neu status. Later, silver enhanced in situ hybridization and immunohistochemistry results were reevaluated with Ventana Image Analysis System. Afterwards correlation of both methods with image analysis system and manuel interpretation were calculated.Result: All cases were score 2 with immunohistochemistry. With image analysis system, 5 cases were score 1, 56 cases were score 2 and 12 cases were score 3. When in situ hybridization results were reevaluated with image analysis system, 6 cases were discordant compared with manual interpretation.Conclusion: The correlation rate of immunohistochemistry interpretation results between manuel method and image analysis system was %76; but silver enhanced in situ hybridization interpretation results between manuel method and image analysis system were %91 concordant and it was statistically significant (k= 0.832 and p<0.001.

  16. Innovative Protocols for in SITU MTBE Degradation by Using Molecular Probes-An Enhanced Chemical-Bio Oxidation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-20

    In situ chemical oxidation (ISCO) is a common technology to cleanup petroleum hydrocarbon-contaminated soils and groundwater. Sodium percarbonate (SPC) is an oxidant which is activated by iron (Fe) to produce Fenton-like reactions. Western Research Institute, in conjunction with Regenesis and the U.S. Department of Energy, conducted a study that investigated the performance of a 'safe' oxidant, SPC, to cleanup groundwater and soils contaminated with petroleum hydrocarbons and associated contaminants (e.g., MTBE). Results from a field pilot test in Frenchglen, Oregon showed VOC concentrations in groundwater decreased substantially within 2 weeks after injecting activated SPC (RegenOx). A protocol was established for determining RegenOx TOD in soils and groundwater. Total oxidant demand tests were necessary to determine the correct dosage of RegenOx to apply in the field and sufficiently degrade the contaminants of concern. Bench studies with RegenOx showed this technology was effective in degrading diesel fuel and 1,4-dioxane. The Fe-silica activator (RegenOx Part B) was tested with another oxidant, sodium persulfate. Bench tests results showed the combination of sodium persulfate and RegenOx Part B was effective in reducing PCE, MTBE, benzene, and n-heptane concentrations in water. Overall, the results of this project indicated that most petroleum contaminants in soil and groundwater can be sufficiently degraded using the RegenOx technology.

  17. Surface-enhanced in-situ Raman-sensor applied in the arctic area for analyses of water and sediment

    Science.gov (United States)

    Kolomijeca, Anna; Kwon, Yong-Hyok; Kronfeldt, Heinz-Detlef

    2012-06-01

    Investigations on the seafloor in the arctic area are of great scientific interest as well as of progressive economic importance. Therefore, measurements in the water column and of sediments were carried out by applying different analytical methods. In JCR 253 arctic cruise a microsystem diode laser with reflection Bragg grating emitting at 671 nm was introduced and integrated into an optode housing which was laboratory pressure tested up to 200 bar. The connection to the mobile spectrometer is realized through an optical fiber. All performed measurements were carried out on the James-Clark-Ross research vessel during a three week experiment in August 2011. Conventional Raman spectra and SERS spectra of arctic surface water and sediment acquired from locations around 78 N and 9 E will be presented. Selected SERS substrates developed for SERS measurements in sea-water were tested for their capability to detect different substances in the water down to very small (pmol/l) concentrations. Additionally, the applicability of shifted excitation Raman difference spectroscopy (SERDS) and a combination of SERS with SERDS for analytical applications during sea-trials for in-situ analyses of sea-water and sediments will be discussed.

  18. Strong enhancement of Jc and Birr in binary in situ MgB2 wires after cold high pressure densification

    International Nuclear Information System (INIS)

    Cold high pressure densification was found to substantially enhance the critical current density of binary in situ Fe/MgB2 wires. A wire densified at 1.85 GPa exhibited at 20 K and 5 T an increase of Jc by 300% with respect to same wire without the application of pressure. At 4.2 K and 10 T, Jc was found to be increased by 53%. The decrease of the electrical resistance for densified wires reflects an improved connectivity. The values of Birr at 4.2 and 20 K were enhanced up to 0.7 T for densified wires. After applying pressures up to 6.5 GPa at 300 K, the relative mass density dm of the unreacted (B+Mg) mixture inside the filament increased up to 96% of the theoretical density. This corresponds to a relative mass density df in the reacted MgB2 filaments of 73%. A quantitative correlation between filament mass density and critical current density was established.

  19. Vascularization of the Dermal Support Enhances Wound Re-Epithelialization by In Situ Delivery of Epidermal Keratinocytes

    Science.gov (United States)

    Lugo, Liana M.; Lei, Pedro

    2011-01-01

    Despite significant advances in management of severe wounds such as burns and chronic ulcers, autologous split-thickness skin grafts are still the gold standard of care. The main problems with this approach include pain and discomfort associated with harvesting autologous tissue, limited availability of donor sites, and the need for multiple surgeries. Although tissue engineering has great potential to provide alternative approaches for tissue regeneration, several problems have hampered progress in translating technological advances to clinical reality. Specifically, engineering of skin substitutes requires long culture times and delayed vascularization after implantation compromises graft survival. To address these issues we developed a novel two-prong strategy for tissue regeneration in vivo: (1) vascularization of acellular dermal scaffolds by infiltration of angiogenic factors; and (2) generation of stratified epidermis by in situ delivery of epidermal keratinocytes onto the prevascularized dermal support. Using athymic mouse as a model system, we found that incorporation of angiogenic factors within acellular human dermis enhanced the density and diameter of infiltrating host blood vessels. Increased vascularization correlated with enhanced proliferation and stratification of the neoepidermis originating from the fibrin-keratinocyte cell suspension. This strategy promoted tissue regeneration in vivo with no need for engineering skin substitutes; therefore, it may be useful for treatment of major wounds when skin donor sites are scarce and rapid wound coverage is required. PMID:20929281

  20. Enhanced photoelectrochemical performance of WO3/Ti photoanode due to in situ formation of a thin interfacial composite layer

    International Nuclear Information System (INIS)

    Nanostructured WO3 thin films were prepared on titanium sheet substrates using a doctor blade technique. X-ray diffraction, Raman and field emission scanning electron microscopy studies revealed that the synthesized WO3 films are having monoclinic crystal structure, porous, polycrystalline with average grain size of ?50 nm. The photoelectrochemical responses of WO3 films prepared on treated Ti sheets were recorded in 0.5 M H2SO4 electrolyte under simulated 100 mW/cm2 illumination. WO3 film prepared on polished Ti sheet showed considerable enhancement in photocurrent as compared to WO3 films made on unpolished and pre-oxidized Ti sheets. These results suggest that in situ formation of a thin WOxTiOy interfacial composite layer and improved adhesion of WO3 nanoparticles owing to increased reactive sites on polished Ti substrate play a significant role in enhancing the photoresponse. Such photoanodes are potential candidates in photoelectrochemical water splitting system for hydrogen generation.

  1. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution

    Science.gov (United States)

    Neagu, Dragos; Oh, Tae-Sik; Miller, David N.; Mnard, Herv; Bukhari, Syed M.; Gamble, Stephen R.; Gorte, Raymond J.; Vohs, John M.; Irvine, John T. S.

    2015-09-01

    Metal particles supported on oxide surfaces are used as catalysts for a wide variety of processes in the chemical and energy conversion industries. For catalytic applications, metal particles are generally formed on an oxide support by physical or chemical deposition, or less commonly by exsolution from it. Although fundamentally different, both methods might be assumed to produce morphologically and functionally similar particles. Here we show that unlike nickel particles deposited on perovskite oxides, exsolved analogues are socketed into the parent perovskite, leading to enhanced stability and a significant decrease in the propensity for hydrocarbon coking, indicative of a stronger metal-oxide interface. In addition, we reveal key surface effects and defect interactions critical for future design of exsolution-based perovskite materials for catalytic and other functionalities. This study provides a new dimension for tailoring particle-substrate interactions in the context of increasing interest for emergent interfacial phenomena.

  2. In Situ Formation of a Biocatalytic Alginate Membrane by Enhanced Concentration Polarization.

    Science.gov (United States)

    Marpani, Fauziah; Luo, Jianquan; Mateiu, Ramona Valentina; Meyer, Anne S; Pinelo, Manuel

    2015-08-19

    A thin alginate layer induced on the surface of a commercial polysulfone membrane was used as a matrix for noncovalent immobilization of enzymes. Despite the expected decrease of flux across the membrane resulting from the coating, the initial hypothesis was that such a system should allow high immobilized enzyme loadings, which would benefit from the decreased flux in terms of increased enzyme/substrate contact time. The study was performed in a sequential fashion: first, the most suitable types of alginate able to induce a very thin, sustainable gel layer by pressure-driven membrane filtration were selected and evaluated. Then, an efficient method to make the gel layer adhere to the surface of the membrane was developed. Finally, and after confirming that the enzyme loading could remarkably be enhanced by using this method, several strategies to increase the permeate flux were evaluated. Alcohol dehydrogenase (EC 1.1.1.1), able to catalyze the conversion of formaldehyde into methanol, was selected as the model enzyme. An enzyme loading of 71.4% (44.8 ?g/cm(2)) was attained under the optimal immobilization conditions, which resulted in a 40% conversion to methanol as compared to the control setup (without alginate) where only 10.8% (6.9 ?g/cm(2)) enzyme was loaded, with less than 5% conversion. Such conversion increased to 60% when polyethylene glycol (PEG) was added during the construction of the gel layer, as a strategy to increase flux. No enzyme leakage was observed for both cases (with/without PEG addition). Modeling results showed that the dominant fouling mechanism during gel layer induction (involving enzyme entrapment) was cake layer formation in the initial and intermediate phases, while pore blocking was the dominant mechanism in the final phase. Such mechanisms had a direct consequence on the type of immobilization promoted in each phase. The results suggested that the strategy proposed could be efficiently used to enhance the enzyme loading on polymer membranes. PMID:26208080

  3. In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy.

    Science.gov (United States)

    Burghardt, Thomas P; Charlesworth, Jon E; Halstead, Miriam F; Tarara, James E; Ajtai, Katalin

    2006-06-15

    Fluorescence detection of single molecules provides a means to investigate protein dynamics minus ambiguities introduced by ensemble averages of unsynchronized protein movement or of protein movement mimicking a local symmetry. For proteins in a biological assembly, taking advantage of the single molecule approach could require single protein isolation from within a high protein concentration milieu. Myosin cross-bridges in a muscle fiber are proteins attaining concentrations of approximately 120 muM, implying single myosin detection volume for this biological assembly is approximately 1 attoL (10(-18) L) provided that just 2% of the cross-bridges are fluorescently labeled. With total internal reflection microscopy (TIRM) an exponentially decaying electromagnetic field established on the surface of a glass-substrate/aqueous-sample interface defines a subdiffraction limit penetration depth into the sample that, when combined with confocal microscopy, permits image formation from approximately 3 attoL volumes. Demonstrated here is a variation of TIRM incorporating a nanometer scale metal film into the substrate/glass interface. Comparison of TIRM images from rhodamine-labeled cross-bridges in muscle fibers contacting simultaneously the bare glass and metal-coated interface show the metal film noticeably reduces both background fluorescence and the depth into the sample from which fluorescence is detected. High contrast metal film-enhanced TIRM images allow secondary label visualization in the muscle fibers, facilitating elucidation of Z-disk structure. Reduction of both background fluorescence and detection depth will enhance TIRM's usefulness for single molecule isolation within biological assemblies. PMID:16565065

  4. in Situ Formation of a Biocatalytic Alginate Membrane by Enhanced Concentration Polarization

    DEFF Research Database (Denmark)

    Marpani, Fauziah; Luo, Jianquan

    2015-01-01

    A thin alginate layer induced on the surface of a commercial polysulfone membrane was used as a matrix for noncovalent immobilization of enzymes. Despite the expected decrease of flux across the membrane resulting from the coating, the initial hypothesis was that such a system should allow high immobilized enzyme loadings, which would benefit from the decreased flux in terms of increased enzyme/substrate contact time. The study was performed in a sequential fashion: first, the most suitable types of alginate able to induce a very thin, sustainable gel layer by pressure-driven membrane filtration were selected and evaluated. Then, an efficient method to make the gel layer adhere to the surface of the membrane was developed. Finally, and after confirming that the enzyme loading could remarkably be enhanced by using this method, several strategies to increase the permeate flux were evaluated. Alcohol dehydrogenase (EC 1.1.1.1), able to catalyze the conversion of formaldehyde into methanol, was selected as the model enzyme. An enzyme loading of 71.4% (44.8 ?g/cm2) was attained under the optimal immobilization conditions, which resulted in a 40% conversion to methanol as compared to the control setup (without alginate) where only 10.8% (6.9 ?g/cm2) enzyme was loaded, with less than 5% conversion. Such conversion increased to 60% when polyethylene glycol (PEG) was added during the construction of the gel layer, as a strategy to increase flux. No enzyme leakage was observed for both cases (with/without PEG addition). Modeling results showed that the dominant fouling mechanism during gel layer induction (involving enzyme entrapment) was cake layer formation in the initial and intermediate phases, while pore blocking was the dominant mechanism in the final phase. Such mechanisms had a direct consequence on the type of immobilization promoted in each phase. The results suggested that the strategy proposed could be efficiently used to enhance the enzyme loading on polymer membranes.

  5. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives of the project were (1) to determine the prevalence of biosurfactant producers in oil reservoirs, and (2) to develop a nutrient regime that would stimulate biosurfactant production in the oil reservoir.

  6. In-situ sonication for enhanced recovery of aquifer microbial communities.

    Science.gov (United States)

    Ugolini, Fabio; Henneberger, Ruth; Brgmann, Helmut; Zeyer, Josef; Schroth, Martin H

    2014-01-01

    Sampling methods for characterization of microbial communities in aquifers should target both suspended and attached microorganisms (biofilms). We investigated the effectiveness and reproducibility of low-frequency (200 Hz) sonication pulses on improving extraction efficiency and quality of microorganisms from a petroleum-contaminated aquifer in Studen (Switzerland). Sonication pulses at different power levels (0.65, 0.9, and 1.1 kW) were applied to three different groundwater monitoring wells. Groundwater samples extracted after each pulse were compared with background groundwater samples for cell and adenosine tri-phosphate concentration. Turbidity values were obtained to assess the release of sediment fines and associated microorganisms. The bacterial community in extracted groundwater samples was analyzed by terminal-restriction-fragment-length polymorphism and compared with communities obtained from background groundwater samples and from sediment cores. Sonication enhanced the extraction efficiency up to 13-fold, with most of the biomass being associated with the sediment fines extracted with groundwater. Consecutive pulses at constant power were decreasingly effective, while pulses with higher power yielded the best results both in terms of extraction efficiency and quality. Our results indicate that low-frequency sonication may be a viable and cost-effective tool to improve the extraction of microorganisms from aquifers, taking advantage of existing groundwater monitoring wells. PMID:23937340

  7. In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO? adsorption.

    Science.gov (United States)

    Yang, Ying; Ge, Lei; Rudolph, Victor; Zhu, Zhonghua

    2014-05-21

    A series of ZIF-8 and hydroxyl-functionalized carbon nanotube (CNT) composites were successfully synthesized by the solvothermal method. The obtained ZIF-8/CNT composites were characterized by XRD, SEM, TGA and N2 adsorption at 77 K. The contents of ZIF-8 and CNTs in the composites were calculated from thermal analysis data. CO2 and N2 adsorption at 273 K on the composites was also investigated and compared. The ZIF-8 particles in the composites exhibit similar crystal structures and morphology to those of pure ZIF-8, but display enhanced thermal stability. The surface areas and pore volumes of the ZIF-8/CNT composites are higher than the values calculated for hypothetical physical mixtures, and the synergetic effect between ZIF-8 and CNTs can be proposed. This phenomenon demonstrates that the incorporation of CNTs into ZIF-8 can facilitate the nucleation and crystallization of ZIF-8. As a result, the composites with an optimal CNT content (3.63 wt%) show improved CO2 adsorption capacity and higher relative selectivity for CO2/N2 compared with pure ZIF-8. PMID:24676235

  8. In situ detection and identification of hair dyes using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Kurouski, Dmitry; Van Duyne, Richard P

    2015-03-01

    Hair is one of the most common types of physical evidence found at a crime scene. Forensic examination may suggest a connection between a suspect and a crime scene or victim, or it may demonstrate an absence of such associations. Therefore, forensic analysis of hair evidence is invaluable to criminal investigations. Current hair forensic examinations are primarily based on a subjective microscopic comparison of hair found at the crime scene with a sample of suspect's hair. Since this is often inconclusive, the development of alternative and more-accurate hair analysis techniques is critical. In this study, we utilized surface-enhanced Raman spectroscopy (SERS) to demonstrate that artificial dyes can be directly detected on hair. This spectroscopic technique is capable of a confirmatory identification of analytes with single molecule resolution, requires minimal sample, and has the advantage of fluorescence quenching. Our study reveals that SERS can (1) identify whether hair was artificially dyed or not, (2) determine if a permanent or semipermanent colorants were used, and (3) distinguish the commercial brands that are utilized to dye hair. Such analysis is rapid, minimally destructive, and can be performed directly at the crime scene. This study provides a novel perspective of forensic investigations of hair evidence. PMID:25635868

  9. In Situ Integration of Anisotropic SnO2 Heterostructures inside Three-Dimensional Graphene Aerogel for Enhanced Lithium Storage.

    Science.gov (United States)

    Yao, Xin; Guo, Guilue; Ma, Xing; Zhao, Yang; Ang, Chung Yen; Luo, Zhong; Nguyen, Kim Truc; Li, Pei-Zhou; Yan, Qingyu; Zhao, Yanli

    2015-12-01

    Three-dimensional (3D) graphene aerogel (GA) has emerged as an outstanding support for metal oxides to enhance the overall energy-storage performance of the resulting hybrid materials. In the current stage of the studies, metals/metal oxides inside GA are in uncrafted geometries. Introducing structure-controlled metal oxides into GA may further push electrochemical properties of metal oxide-GA hybrids. Using rutile SnO2 as an example, we demonstrated here a facile hydrothermal strategy combined with a preconditioning technique named vacuum-assisted impregnation for in situ construction of controlled anisotropic SnO2 heterostructures inside GA. The obtained hybrid material was fully characterized in detail, and its formation mechanism was investigated by monitoring the phase-transformation process. Rational integration of the two advanced structures, anisotropic SnO2 and 3D GA, synergistically led to enhanced lithium-storage properties (1176 mAh/g for the first cycle and 872 mAh/g for the 50th cycle at 100 mA/g) as compared with its two counterparts, namely, rough nanoparticles@3D GA and anisotropic SnO2@2D graphene sheets (618 and 751 mAh/g for the 50th cycle at 100 mA/g, respectively). It was also well-demonstrated that this hybrid material was capable of delivering high specific capacity at rapid charge/discharge cycles (1044 mAh/g at 100 mA/g, 847 mAh/g at 200 mA/g, 698 mAh/g at 500 mA/g, and 584 mAh/g at 1000 mA/g). The in situ integration strategy along with vacuum-assisted impregnation technique presented here shows great potential as a versatile tool for accessing a variety of sophisticated smart structures in the form of anisotropic metals/metal oxides within 3D GA toward useful applications. PMID:26554275

  10. Optical engineering of uniformly decorated graphene oxide nanoflakes via in situ growth of silver nanoparticles with enhanced plasmonic resonance.

    Science.gov (United States)

    Yuan, Kai; Chen, Lie; Chen, Yiwang

    2014-12-10

    A nanocomposite of silver-nanoparticle-decorated graphene oxide (GO-Ag NPs), enhanced by the surface plasmon resonance (SPR) effect, improved the performance of polymer solar cells (PSCs). The GO-Ag NPs were fabricated in situ via ultraviolet (UV) irradiation (254 nm) of GO and an aqueous solution of AgNO3. The photoexcited GO accelerated reduction of Ag(+) ions into silver nanoparticles (Ag NPs) upon UV irradiation, and the Ag NPs spontaneously deposited on the GO nanoflakes because the numerous functional groups on GO enable efficient adsorption of Ag(+) ions and Ag NPs via electrostatic interactions. The strong coupling between the SPR effect of GO-Ag NPs and incident light offers the probability of improved light absorption and corresponding exciton generation rate with enhanced charge collection, resulting in significant enhancement in short-circuit current density and power conversion efficiency (PCE). Therefore, the PCE of PSCs based on poly[4,8-bis(2-ethylhexylthiophene-5-yl)-benzo[1,2-b:4,5-b]dithiophene-2,6-diyl]-alt-[2-(2-ethylhexanoyl)thieno[3,4-b]thiophen-4,6-diyl] and [6,6]-phenyl C71-butyric acid methyl ester has been substantially elevated to 7.54% from 6.58% by introducing GO-Ag NPs at the indium tin oxide/poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid interface. In addition, the excellent properties of GO-Ag NPs, including its simple preparation, processability in aqueous solution, cost-effectiveness, and sustainability, make it suitable for the roll-to-roll manufacturing of PSCs. PMID:25389764

  11. In Situ Analysis of a Silver Nanoparticle-Precipitating Shewanella Biofilm by Surface Enhanced Confocal Raman Microscopy.

    Science.gov (United States)

    Schkolnik, Gal; Schmidt, Matthias; Mazza, Marco G; Harnisch, Falk; Musat, Niculina

    2015-01-01

    Shewanella oneidensis MR-1 is an electroactive bacterium, capable of reducing extracellular insoluble electron acceptors, making it important for both nutrient cycling in nature and microbial electrochemical technologies, such as microbial fuel cells and microbial electrosynthesis. When allowed to anaerobically colonize an Ag/AgCl solid interface, S. oneidensis has precipitated silver nanoparticles (AgNp), thus providing the means for a surface enhanced confocal Raman microscopy (SECRaM) investigation of its biofilm. The result is the in-situ chemical mapping of the biofilm as it developed over time, where the distribution of cytochromes, reduced and oxidized flavins, polysaccharides and phosphate in the undisturbed biofilm is monitored. Utilizing AgNp bio-produced by the bacteria colonizing the Ag/AgCl interface, we could perform SECRaM while avoiding the use of a patterned or roughened support or the introduction of noble metal salts and reducing agents. This new method will allow a spatially and temporally resolved chemical investigation not only of Shewanella biofilms at an insoluble electron acceptor, but also of other noble metal nanoparticle-precipitating bacteria in laboratory cultures or in complex microbial communities in their natural habitats. PMID:26709923

  12. Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Kathe, Mandar [Ohio State University, Columbus, OH (United States); Xu, Dikai [Ohio State University, Columbus, OH (United States); Hsieh, Tien-Lin [Ohio State University, Columbus, OH (United States); Simpson, James [Ohio State University, Columbus, OH (United States); Statnick, Robert [Ohio State University, Columbus, OH (United States); Tong, Andrew [Ohio State University, Columbus, OH (United States); Fan, Liang-Shih [Ohio State University, Columbus, OH (United States)

    2014-12-31

    This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol required selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.

  13. Assessment of ALK Rearrangement in Non-small Cell Lung Cancer: Using Enhancing Immunohistochemical Way and Fluorescence in situ Hybridization

    Directory of Open Access Journals (Sweden)

    Hui MENG

    2015-02-01

    Full Text Available Background and objective Besides epidermal growth factor receptor (EGFR mutation, the non-small cell lung cancer (NSCLC of anaplastic lymphoma kinase (ALK rearrangement becomes another important clinical subtype. A specific and high-sensitive and economical detection way is convenience for identification of ALK positive NSCLC quickly and accurately. So the objective of our research is to detect ALK rearrangement in 172 cases of NSCLC by using enhancing immunohistochemical way (ventana-IHC, V-IHC. Methods ALK rearrangement in 172 NSCLC samples was detected by using V-IHC, and positive staining cases were further verified by fluorescence in situ hybridization (FISH. Results Among 172 NSCLC cases, there were 12 positive staining. The positive results were confirmed by FISH and 11 cases were FISH positive. The overall concordance between V-IHC and FISH is 91.7% (11/12. Conclusion The V-IHC method is a reliable method for ALK arrangement and could be used in clinical screen and diagnosis.

  14. In situ formation of nanocrystals from a self-microemulsifying drug delivery system to enhance oral bioavailability of fenofibrate

    Directory of Open Access Journals (Sweden)

    Lin YM

    2011-10-01

    Full Text Available You-Meei Lin1, Jui-Yu Wu2, Ying-Chen Chen3, Yu-Der Su3, Wen-Tin Ke3, Hsiu-O Ho31Department of Pharmacy, Shuang Ho Hospital, 2Department of Biochemistry, School of Medicine, 3School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROCObjectives: In situ formation of nanocrystals and dissolution profiles of fenofibrate (FFB from a self-microemulsifying drug delivery system (SMEDDS were characterized.Methods: SMEDDS formulated with Myritol and surfactant mixture (Smix of D-?-Tocopheryl polyethylene glycol 1000 succinate (TPGS and either Tween 20 (A, C, E, G, M, S, N, T, O or Tween 80 (B, D, F, H, P, U, Q, V, R at various oil/Smix ratios (Group I: A and B of 0.42, C and D of 0.25, E and F of 0.11; Group II: G and H of 1.38, M and P of 1.11, S and U of 0.9, N and Q of 0.73, T and V of 0.58, and O and R of 0.46 and water contents (1: 9.5%, 2: 5.0%, 3: 0.0%, G-V: 4.5%. Their dissolutions were conducted at different rotation speeds. Two optimal SMEDDSs containing Tween 80(B2 or a higher oil/Smix ratio(Q and B2(solution were selected for pharmacokinetic study.Results: FFB particles formed within the nanosize range from Group I gradually increased with time but decreased with increasing stirring rates. However, the mean size of FFB formed by B series was as low as 200 nm, which was smaller than that of A series at three stirring rates. The release rate from both groups obviously increased with increasing stirring rate. However, incomplete release was observed for S and N in Tween 20 series, whereas a faster release rate and complete release were observed for Tween 80 series with an insignificant difference among them. Results of pharmacokinetic study demonstrated that the highest-ranked area under the curve and Cmax values were for Q(SMEDDS and B2(solution, respectively. The relative bioavailability of Q(SMEDDS with respect to Tricor was enhanced by about 1.14-1.22-fold.Conclusion: SMEDDS, consisting of Myritol 318 and TPGS combined with Tween 80 at 4:1, was able to enhance the oral bioavailability of FFB.Keywords: SMEDDS, fenofibrate, microemulsion, dissolution, TPGS

  15. Surface-enhanced Raman Scattering (SERS) for in-situ Analysis of Mixture of Polycyclic Aromatic Hydrocarbons (PAHs) in Sea-water

    OpenAIRE

    Nguyen Thi, Bich Ha

    2004-01-01

    Diese Untersuchung soll Beitrge fr die Entwicklung einer empfindlichen Methode fr den Nachweis und die quantitative Bestimmung polyzyklischer aromatischer Kohlenwasserstoffe (polycyclic aromatic hydrocarbons, PAHs) im Meerwasser liefern, die auf der Anwendung der sog. oberflchenverstrkten Raman Streuung (surface-enhanced Raman scattering, SERS) ba-siert. Eine in-situ Messung der PAH-Konzentrationen direkt im Meer ist von groer praktischer Bedeutung, da viele PAHs bei Mensch und Tier Kre...

  16. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    OpenAIRE

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; A. Beyersdorf; P. Campuzano-Jost; Day, D. A.; Gouw, J.A. De; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Huey, G.; Jimenez, J.L.; Lack, D. A.; Liao, J.; X. LIU

    2015-01-01

    Vertical profiles of submicron aerosol over the southeastern United States (SEUS) during the summertime from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and ...

  17. Monitoring of the growth of microcrystalline silicon by plasma-enhanced chemical vapor deposition using in-situ Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Muthmann, S.; Koehler, F.; Meier, M.; Huelsbeck, M.; Carius, R.; Gordijn, A. [IEK5-Photovoltaik, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2011-04-15

    Raman spectra of microcrystalline silicon layers have been recorded in-situ during growth. The spectra have been collected under realistic conditions for solar cell deposition. To enable these measurements an electrode with an optical feed through has been developed. By using a metallic grid to shield the feed through it is possible to achieve homogeneous deposition of {mu}c-Si:H at a sufficient optical transmission. In-situ Raman measurements were carried out during the deposition of a layer with an intentionally introduced gradient in crystallinity that was seen in-situ as well in reference measurements performed on the same layer ex-situ. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Enhanced hydrogen embrittlement of Pd-coated niobium metal membrane detected by in situ small punch test under hydrogen permeation

    International Nuclear Information System (INIS)

    The hydrogen embrittlement of pure niobium metal membrane was investigated under a hydrogen atmosphere by using a newly developed in situ small punch apparatus. The boundary for the ductile-to-brittle transition of the palladium-coated pure niobium was determined from a series of the in situ small punch tests. The measured boundary was found to be shifted greatly to the lower hydrogen content region as compared to that of palladium non-coated niobium membrane. The present result will provide us a clue to the design of niobium-based permeable membrane against the hydrogen embrittlement

  19. In-situ treatment of hydrocarbons contamination through enhanced bio-remediation and two phase extraction system

    International Nuclear Information System (INIS)

    It happens frequently to find industrial site affected by contamination of subsoil and groundwater with consequent presence of free phase product floating on the water table. The remediation technologies in this case shall be properly selected and coordinated in a way that the interactions between each activities will help to decontaminate the site. The case study deals with an industrial site located near Turin, in Italy, of about 50 hectares of extension where has been found an area of about 4000 square meters with contamination of subsoil and groundwater. The compounds with higher concentrations are petroleum hydrocarbons found both in soil and in groundwater. Another big problem is represented by the presence of a layer of free product floating on the water table with a maximum measured thickness of 70 cm; this situation can be considered in fact one of the major difficulty in management of selected remediation technologies because the complete recover of the free phase is a priority for any kind of remediation system to apply subsequently. The present work is based upon the selection and implementation of a multiple treatment for definitive remediation of subsoil and groundwater. Free product recovery has been faced with a two-phase extraction technology, then for the remediation of subsoil we implemented a bio-venting system to improve biodegradation processes and finally for groundwater treatment we apply an enhanced in situ bio-remediation injecting oxygen release compounds directly into the aquifer. To reach these choices we have to pass through a complex activity of investigation of the site made up of more than 40 sampling point, 8 monitoring wells, about 140 analysis on subsoil samples and 10 on groundwater samples and one well used for an aquifer test. The preliminary design of the remediation system was therefore based on an extensive site characterization that included geological and geochemical, microbiological and hydrological data, together with analytical data. After the study of all data acquired during investigations we could select the proper technologies for site remediation but to define correctly all project data we had to implement several laboratory tests to analyse bio-remediation processes, a series of pilot test for two phase extraction and bio-venting and a pilot test to select the best product for the release of oxygen into groundwater. The collection of the necessary parameters for the implementation of full-scale treatment was carried out throughout a period of several months, both with periodical measurements and sampling and with fixed monitoring probes, in order to record the aquifer changes related to contaminant concentrations, geochemical data, etc. At the end of all the tests we proceeded first with implementation of two phase extraction system through a double line of extraction wells that cover the extension of the area interested by the presence of free phase of LNAPL. The use of this technology instead of other more common system for free product recovery, is due to the fact that two phase extraction system results in an efficient recover of LNAPL and in a low extraction of groundwater that means lower treatment costs. Another important characteristic of this technology is that while extracting oil from the water table it extracts also soil gas from subsoil enhancing hydrocarbons bio-remediation through microbial activity. The second step after the complete recover of free product was to proceed with remediation of subsoil. Bio-remediation processes, enhanced by two phase extraction application, were increased with implementation of a bio-venting system made up of two horizontal wells installed along contaminated area. The injection of air through these wells supply oxygen to subsoil providing necessary aerobic conditions for degradation of hydrocarbon compounds. The results of laboratory tests showed that it would be suitable, to further stimulate microbial activity, to supply micro-nutrient compounds, principally nitrogen and phosphorous. For this reason after a first period

  20. Long-term population dynamics and in situ physiology in activated sludge systems with enhanced biological phosphorus removal operated with and without nitrogen removal

    DEFF Research Database (Denmark)

    Lee, N.; Nielsen, P.H.; Aspegren, H.; Henze, Mogens; Schleifer, K.-H.; Jansen, J.l.C.

    2003-01-01

    Quantitative fluorescence in situ hybridization (FISH) and the combination of FISH with microautoradiography (MAR) were used in order to study the long-term population dynamics (2.5 years) and the in situ physiology in two parallel activated sludge pilot systems with enhanced biological phosphorus...... removal (EBPR). The two systems received the same influent wastewater, but were differently operated (with and without nitrogen removal, respectively). Both systems showed a significant P removal that increased when different substrates (phosphorus (P), acetate and glucose, respectively) were added to the....... However, we observed a lower correlation (0.9). The Actinobacteria were the only additional group of bacteria which showed a similar degree of correlation to the P content in activated sludge as the Rhodocyclus-related bacteria - but only for the system without nitrogen removal. Significant amounts (less...

  1. Enhanced Jc property in nano-SiC doped thin MgB 2/Fe wires by a modified in situ PIT process

    Science.gov (United States)

    Jiang, C. H.; Nakane, T.; Hatakeyama, H.; Kumakura, H.

    2005-06-01

    A modified in situ PIT process, which included a short time pre-annealing and intermediate drawing step in the conventional in situ PIT process, was employed to fabricate thin round MgB 2/Fe wires from MgH 2 and B powders. The pores and cracks resulted from the MgH 2 decomposition during the pre-annealing were effectively eliminated by the intermediate drawing step, which subsequently increased the core density and Jc property of final heat treated wires. A higher reduction rate after the pre-annealing led to a larger enhancement in Jc within this study. The reproducibility of our new process on the Jc improvement in MgB 2 wires was confirmed in two series of wires doped with 5 mol% or 10 mol% nano-SiC particles separately.

  2. Enhanced J c property in nano-SiC doped thin MgB2/Fe wires by a modified in situ PIT process

    International Nuclear Information System (INIS)

    A modified in situ PIT process, which included a short time pre-annealing and intermediate drawing step in the conventional in situ PIT process, was employed to fabricate thin round MgB2/Fe wires from MgH2 and B powders. The pores and cracks resulted from the MgH2 decomposition during the pre-annealing were effectively eliminated by the intermediate drawing step, which subsequently increased the core density and J c property of final heat treated wires. A higher reduction rate after the pre-annealing led to a larger enhancement in J c within this study. The reproducibility of our new process on the J c improvement in MgB2 wires was confirmed in two series of wires doped with 5 mol% or 10 mol% nano-SiC particles separately

  3. Comparative studies of atomic layer deposition and plasma-enhanced atomic layer deposition Ta2O5 and the effects on electrical properties of in situ nitridation

    International Nuclear Information System (INIS)

    Ta2O5 and TaOxNy thin films were deposited by atomic layer deposition (ALD) from Ta(NMe2)5 (PDMAT) with water, oxygen plasma, and nitrogen added oxygen plasma. The film properties were comparatively investigated focusing on the electrical properties from metal oxide semiconductor capacitor structure with 10 nm Ta2O5 or TaOxNy. The results show that plasma-enhanced ALD (PE-ALD) Ta2O5 film has better electrical properties including lower interface state density and leakage current than thermal ALD. Moreover, PE-ALD TaOxNy shows the best properties, indicating the beneficial effects of in situ nitridation. Especially, time dependent dielectric breakdown was significantly improved up to 4000 times of thermal ALD Ta2O5. These results show that, intentional in situ nitrogen incorporation with good electrical properties was successfully achieved by PE-ALD using nitrogen-oxygen mixture. (author)

  4. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    International Nuclear Information System (INIS)

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies

  5. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    Energy Technology Data Exchange (ETDEWEB)

    Siegrist, R.L. [Oak Ridge National Lab., TN (United States)]|[Colorado School of Mines, Golden, CO (United States). Environmental Science and Engineering Div.; Lowe, K.S. [Oak Ridge National Lab., Grand Junction, CO (United States). Life Sciences Div.; Murdoch, L.D. [FRx, Inc., Cincinnati, OH (United States)]|[Clemson Univ., SC (United States); Slack, W.W. [FRx, Inc., Cincinnati, OH (United States); Houk, T.C. [Lockheed Martin Energy Systems, Piketon, OH (United States)

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  6. In situ plasma enhanced atomic layer deposition half cycle study of Al2O3 on AlGaN/GaN high electron mobility transistors

    Science.gov (United States)

    Qin, Xiaoye; Wallace, Robert M.

    2015-08-01

    A half cycle study of plasma enhanced atomic layer deposited (PEALD) Al2O3 on AlGaN is investigated using in situ X-ray photoelectron spectroscopy, low energy ion scattering, and ex situ electrical characterizations. A faster nucleation or growth is detected from PEALD relative to purely thermal ALD using an H2O precursor. The remote O2 plasma oxidizes the AlGaN surface slightly at the initial stage, which passivates the surface and reduces the OFF-state leakage. This work demonstrates that PEALD is a useful strategy for Al2O3 growth on AlGaN/GaN devices.

  7. In situ Delivery of Antigen to DC-SIGN(+)CD14(+) Dermal Dendritic Cells Results in Enhanced CD8(+) T-Cell Responses.

    Science.gov (United States)

    Fehres, Cynthia M; van Beelen, Astrid J; Bruijns, Sven C M; Ambrosini, Martino; Kalay, Hakan; van Bloois, Louis; Unger, Wendy W J; Garcia-Vallejo, Juan J; Storm, Gert; de Gruijl, Tanja D; van Kooyk, Yvette

    2015-09-01

    CD14(+) dendritic cells (DCs) present in the dermis of human skin represent a large subset of dermal DCs (dDCs) that are considered macrophage-like cells with poor antigen (cross)-presenting capacity and limited migratory potential to the lymph nodes. CD14(+) dDC highly express DC-specific ICAM-3-grabbing non-integrin (DC-SIGN), a receptor containing potent endocytic capacity, facilitating intracellular routing of antigens to major histocompatibility complex I and II (MHC-I andII) loading compartments for the presentation to antigen-specific CD8(+) and CD4(+) T cells. Here we show using a human skin explant model that the in situ targeting of antigens to DC-SIGN using glycan-modified liposomes enhances the antigen-presenting capacity of CD14(+) dDCs. Intradermal vaccination of liposomes modified with the DC-SIGN-targeting glycan Lewis(X), containing melanoma antigens (MART-1 or Gp100), accumulated in CD14(+) dDCs and resulted in enhanced Gp100- or MART-1-specific CD8(+) T-cell responses. Simultaneous intradermal injection of the cytokines GM-CSF and IL-4 as adjuvant enhanced the migration of the skin DCs and increased the expression of DC-SIGN on the CD14(+) and CD1a(+) dDCs. These data demonstrate that human CD14(+) dDCs exhibit potent cross-presenting capacity when targeted in situ through DC-SIGN. PMID:25885805

  8. Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin

    International Nuclear Information System (INIS)

    Highlights: ► Microwave-assisted in situ growth of RGO-BiVO4 composite was proposed. ► A relatively small particle size with organic-additives free. ► Graphene was formed during the microwave-heating by oxygen capture. ► GB-2 sample exhibits the highest CIP degradation ratio (3 times over pure BiVO4). ► The enhancements of activities result from the effective charge separation. -- Abstract: To improve the photodegradation efficiency for ciprofloxacin (CIP), a new-type microwave-assisted in situ growth method is developed for the preparation of reduced graphene oxide (RGO) -BiVO4 composite photocatalysts. The as-produced RGO-BiVO4 composite photocatalysts show extremely high enhancement of CIP degradation ratio over the pure BiVO4 photocatalyst under visible light. Specially, the 2 wt% RGO-BiVO4 composite photocatalyst exhibits the highest CIP degradation ratio (68.2%) in 60 min, which is over 3 times than that (22.7%) of the pure BiVO4 particles. The enhancement of photocatalytic activities of RGO-BiVO4 photocatalysts can be attributed to the effective separation of electron–hole pairs rather than the improvement of light absorption

  9. Double-wall TiO2 nanotube arrays: enhanced photocatalytic activity and in situ TEM observations at high temperature.

    Science.gov (United States)

    Xue, Chaorui; Narushima, Takashi; Ishida, Yohei; Tokunaga, Tomoharu; Yonezawa, Tetsu

    2014-11-26

    By decreasing the water content in an NH4F and glycerol-water electrolyte, the transition from single-wall to double-wall TiO2 nanotube arrays was successfully achieved using an anodization method. The double-wall TiO2 nanotube structures exhibited better photocatalytic activity than the typical single-wall structures. After modification with platinum nanoparticles, the photocatalytic activity of both the single- and double-wall TiO2 nanotubes was improved further. In situ observations at the annealing temperature of the TiO2 nanotubes were performed using a transmission electron microscopy (TEM) system. A slower structural failure of the nanotubes was obtained with the introduction of oxygen gas into the TEM column compared with the structural changes observed under high-vacuum conditions without the introduction of oxygen gas. These behaviors suggest that oxygen injection is an important factor in stabilizing the TiO2 nanotubes during the in situ TEM annealing process. The high-magnification TEM images of the double-wall TiO2 nanotubes revealed that the sintering of the inner wall can draw a clear distinction between the inner and outer walls. PMID:25401270

  10. Enhancement of the sweep efficiency of waterflooding operations by the in-situ microbial population of petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.R.; Vadie, A.A.; Stephens, J.O.; Azadpour, A.

    1995-12-31

    Live cores were obtained from five reservoirs using special precautions to prevent contamination by exogenous microorganisms and minimize exposure to oxygen. The depths from which the cores were obtained ranged from 2,705 ft to 6,568 ft. Core plugs were cut radially from live cores, encased in heat-shrink plastic tubes, placed in core holders, and fitted with inlets and outlets. Nutrient additions stimulated the in-situ microbial population to increase, dissolve stratal material, produce gases, and release oil. Reduction in flow through the core plugs was observed in some cases, while in other cases flow was increased, probably due to the dissolution of carbonates in the formation. A field demonstration of the ability of the in-situ microbial population to increase oil recovery by blocking the more permeable zones of the reservoir is currently underway. This demonstration is being conducted in the North Blowhorn Creek Unit situated in Lamar County, Alabama. Live cores were obtained from a newly drilled well in the field and tested as described above. The field project involves four test patterns each including one injector, four to five producers, and a comparable control injector with its four to five producers. Nutrient injection in the field began November 1994.

  11. Design and implementation of two two-week Teacher Enhancement Institutes

    Science.gov (United States)

    Lambert, Lynn

    1994-01-01

    During this summer, I have been part of a four team effort that planned and executed two two-week Teacher Enhancement Institutes (TEI) for 40 K-8 teachers from this area. The TEI was designed to enhance teachers' background in aeronautics and technology so that they would be better equipped to encourage and to train students in the mathematics, science, and technology fields. The teachers were given a stipend and three graduate credits from Christopher Newport University for their participation in this program. The four ASEE fellows worked together to develop objectives and a schedule of activities for each two-week session based on the program outline given in the grants that were funding this effort. We divided the responsibilities in coordinating and implementing each part of the TEI based on the specific strengths and background of each ASEE fellow. My specific responsibilities were: (1) to develop the course syllabus and generally handle all matters involved with the graduate course; (2) coordinate the follow-up sessions; and (3) design and manage half of the technology sessions that we had scheduled (approximately 30% of the TEI was devoted to technology). Because the first two responsibilities were primarily administrative in nature, I will address only the last. The technology sessions were divided into computer-only and other technologies (e.g., television and digital technology including scanning, digital photography and CD-ROM). I had responsibility for the computer-only technology sessions. The emphasis of these sessions was on use of the Internet specifically to locate and use educational resources. To maximize learning, these sessions were hands-on with two teachers at each computer. Each teacher received instruction in, and actually used, the most popular tools available on the Internet: email (they were given temporary accounts at NASA LaRC), anonymous ftp and archie, gopher and veronica, mosaic, and telnet. Teachers participated in hands-on workshops to learn about these programs, but were also given time during the two-week session to explore on their own and to find resources on the Net that specifically met their needs. In order to ensure that Internet access continues after their return to the classroom, aIl teachers who did not have them also applied for Learning Link accounts (from WHRO, the local public television station) and Virginia Pen accounts (from the Department of Education of Virginia), both of which allow textbased access to Internet. In addition to getting exposure to and practice with Internet tools, teachers were aIso given a hands-on seminar (and also given practice time) on ClarisWorks, an integrated word processing, spreadsheet, database, and paint package. The technology sessions (and TEI as a whole) were enthusiastically received by both new and more experienced teachers as extremely helpful in improving their ability to use technology in developing lesson pIans.

  12. A surface-enhanced Raman scattering optrode prepared by in situ photoinduced reactions and its application for highly sensitive on-chip detection.

    Science.gov (United States)

    Wang, Shaoyan; Liu, Chunyu; Wang, Hailong; Chen, Gang; Cong, Ming; Song, Wei; Jia, Qiong; Xu, Shuping; Xu, Weiqing

    2014-07-23

    A surface-enhanced Raman scattering (SERS)-active optical fiber sensor combining the optical fiber waveguide with various SERS substrates has been a powerful analytical tool for in situ and long-distance SERS detection with high sensitivity. The design and modification of a high-quality SERS-active sensing layer are important topics in the development of novel SERS-active optical fiber sensors. Here, we prepared a highly sensitive SERS-active optrode by in situ fabrication of a three-dimensional porous structure on the optical fiber end via a photoinduced polymerization reaction, followed by the growth of photochemical silver nanoparticles above the porous polymer material. The fabrication process is rapid (finished within 1 h) and can be on line under light control. The porous structure supports vast silver nanoparticles, which allows for strong electromagnetic enhancement of SERS. Interestingly, the preparation of this SERS optrode and its utilization for SERS detection can all be conducted in a microfluidic chip. The qualitative and quantitative on-chip SERS sensing of organic pollutants and pesticides has been achieved by this SERS optrode-integrated microfluidic chip, and its high detection sensitivity makes it a promising factor in the analysis of liquid systems. PMID:24978908

  13. Enhanced electron emission from carbon nanotubes through density control using in situ plasma treatment of catalyst metal

    International Nuclear Information System (INIS)

    We controlled the density of carbon nanotubes (CNTs) through in situ NH3 plasma pretreatment and investigated field emission properties with the density variation. Ni catalytic layer was transformed into small nanoparticles with NH3 plasma pretreatment time and power. As NH3 plasma pretreatment time was increased, the growth rate of grown CNTs was gradually decreased. Also, the density of CNTs reduced from 2x109 to 8x106/cm2 with an increase in NH3 plasma pretreatment time from 10 to 30 min for the Ni layer of 10 Aa. With a decrease in the density of CNTs, the emission current density was increased and turn on electric field was decreased. We obtained large and uniform emission current (about 9 mA/emission area of 0.49 cm2) from CNTs film with the density of 8x106/cm2

  14. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy

    Science.gov (United States)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-01

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn2+ linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn2+ linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05718c

  15. Performance enhancements and muscular adaptations of a 16-week recreational football intervention for untrained women

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Nielsen, Jens Jung

    2010-01-01

    The present study investigated the performance effects and physiological adaptations over 16 weeks of recreational football training and continuous running for healthy untrained premenopausal women in comparison with an inactive control group [Football group (FG): n=21; running group (RG): n=18; CO: n=14]. Two weekly 1-h training sessions were performed in FG and RG. After 4 and 16 weeks of training VO(2max) was elevated (P<0.05) by 7% and 15%, respectively, in FG, and by 6% and 10%, respectively, in RG. After 16 weeks, Yo-Yo intermittent endurance level 2 performance was 33% and 19% better (P<0.05) for FG and 29% and 21% better (P<0.05) for RG than after 4 and 0 weeks, respectively. Peak sprinting speed was 12% higher (21.0 +/- 0.6 vs 18.8 +/- 0.7 km/h; P<0.05) for FG after the training period, whereas no difference was observed for RG. After 4 weeks citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activity was 9% and 8%, respectively, higher (P<0.05) than before training in FG with no further changes during the last 12 weeks. In RG, CS increased (P<0.05) by 12% after 4 weeks and no significant increase was observed for HAD. In FG, the number of capillaries per fiber was 18% higher (P<0.05) after 16 weeks (2.44 +/- 0.15 vs 2.07 +/- 0.05 cap/fiber), with no significant difference for RG. No differences were observed between 0 and 16 weeks for CO. In conclusion, recreational women's football leads to significant increases in VO(2max), performance and muscular adaptations throughout a 16-week training period. Thus, football can be used as an activity to elevate the physical capacity of untrained women.

  16. Performance enhancements and muscular adaptations of a 16-week recreational football intervention for untrained women.

    Science.gov (United States)

    Bangsbo, J; Nielsen, J J; Mohr, M; Randers, M B; Krustrup, B R; Brito, J; Nybo, L; Krustrup, P

    2010-04-01

    The present study investigated the performance effects and physiological adaptations over 16 weeks of recreational football training and continuous running for healthy untrained premenopausal women in comparison with an inactive control group [Football group (FG): n=21; running group (RG): n=18; CO: n=14]. Two weekly 1-h training sessions were performed in FG and RG. After 4 and 16 weeks of training VO(2max) was elevated (P<0.05) by 7% and 15%, respectively, in FG, and by 6% and 10%, respectively, in RG. After 16 weeks, Yo-Yo intermittent endurance level 2 performance was 33% and 19% better (P<0.05) for FG and 29% and 21% better (P<0.05) for RG than after 4 and 0 weeks, respectively. Peak sprinting speed was 12% higher (21.0 +/- 0.6 vs 18.8 +/- 0.7 km/h; P<0.05) for FG after the training period, whereas no difference was observed for RG. After 4 weeks citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activity was 9% and 8%, respectively, higher (P<0.05) than before training in FG with no further changes during the last 12 weeks. In RG, CS increased (P<0.05) by 12% after 4 weeks and no significant increase was observed for HAD. In FG, the number of capillaries per fiber was 18% higher (P<0.05) after 16 weeks (2.44 +/- 0.15 vs 2.07 +/- 0.05 cap/fiber), with no significant difference for RG. No differences were observed between 0 and 16 weeks for CO. In conclusion, recreational women's football leads to significant increases in VO(2max), performance and muscular adaptations throughout a 16-week training period. Thus, football can be used as an activity to elevate the physical capacity of untrained women. PMID:19954496

  17. Performance enhancements and muscular adaptations of a 16-week recreational football intervention for untrained women

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Nielsen, Jens Jung; Mohr, Magni; Randers, Morten Bredsgaard; Krustrup, Birgitte Rejkjr; Brito, J.; Nybo, Lars; Krustrup, Peter

    : n=14]. Two weekly 1-h training sessions were performed in FG and RG. After 4 and 16 weeks of training VO(2max) was elevated (P<0.05) by 7% and 15%, respectively, in FG, and by 6% and 10%, respectively, in RG. After 16 weeks, Yo-Yo intermittent endurance level 2 performance was 33% and 19% better (P...... was 18% higher (P<0.05) after 16 weeks (2.44 +/- 0.15 vs 2.07 +/- 0.05 cap/fiber), with no significant difference for RG. No differences were observed between 0 and 16 weeks for CO. In conclusion, recreational women's football leads to significant increases in VO(2max), performance and muscular...

  18. Enhanced Production of Botrallin and TMC-264 with in Situ Macroporous Resin Adsorption in Mycelial Liquid Culture of the Endophytic Fungus Hyalodendriella sp. Ponipodef12

    Directory of Open Access Journals (Sweden)

    Haiyu Luo

    2014-09-01

    Full Text Available Hyalodendriella sp. Ponipodef12, an endophytic fungus from the hybrid “Neva” of Populus deltoides × P. nigra, is a high producer of the bioactive dibenzo-α-pyrones botrallin and TMC-264. However, both the botrallin and TMC-264 produced by Hyalodendriella sp. Ponipodef12 were retained as both intracellular and extracellular products. The aim of this study was to evaluate an in situ macroporous resin adsorption for enhancement of botrallin and TMC-264 production in mycelial liquid culture of Hyalodendriella sp. Ponipodef12. Production of botrallin and TMC-264 was most effectively enhanced by macroporous resin DM-301 among the thirteen nonionic macroporous resins tested. The highest botrallin yield (51.47 mg/L, which was 2.29-fold higher than the control at 22.49 mg/L was obtained by adding resin DM-301 at 4.38% (g/mL to the culture broth on day 24 and allowing a period of 4 days for adsorption. The highest TMC-264 yield reached 47.74 mg/L, which was 11.76-fold higher than that of the control (4.06 mg/L, and was achieved by adding DM-301 resin at 4.38% (w/v in the culture broth on day 24 and allowing a period of 6 days for adsorption. The results show that in situ resin adsorption is an effective strategy for enhancing production of botrallin and TMC-264, and also for facilitating their recovery from mycelial liquid culture of Hyalodendriella sp. Ponipodef12.

  19. Usage of waste products from thermal recycling of plastics waste in enhanced oil recovery or in-situ coal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fink, M.; Fink, J.K. [Montanuniversitaet Leoben (Austria)

    1998-09-01

    In this contribution a thermal method for crude oil mobilization and in-situ liquefaction of coal is discussed, which will finally yield more organic material, as which has been put in from plastics waste originally into the process. The conversion product from thermal treatment is pumped down into exhausted crude oil reservoirs, where the hydrogen can degrade the residual high viscous oil to cause it to become more prone to flow so that it can be recovered. Such a process will envision two goals: 1. more organic raw material (as crude oil) will be recovered than is initially put in as waste product. 2. atmospheric pollutants from the conversion plant will be trapped in the reservoir, which simplifies the construction of the plant. An analogous process may be performed with coal seams. Coal seams with their high porosity and large specific surface are believed to be in particular useful to filter atmospheric pollutants. Depending on the type of coal the mobilization of organic material by this process may be in the background. (orig./SR)

  20. In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)

    Science.gov (United States)

    Robertson, Eric P

    2011-05-24

    A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

  1. Two-stage in situ gas stripping for enhanced butanol fermentation and energy-saving product recovery

    Energy Technology Data Exchange (ETDEWEB)

    Xue, C; Zhao, JB; Liu, FF; Lu, CC; Yang, ST; Bai, FW

    2013-05-01

    Two-stage gas stripping for butanol recovery from acetone-butanol-ethanol (ABE) fermentation with Clostridium acetobutylicum JB200 in a fibrous bed bioreactor was studied. Compared to fermentation without in situ gas stripping, more ABE (10.0 g/L acetone, 19.2 g/L butanol, 1.7 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced, with a higher butanol yield (0.25 g/g vs. 0.20 g/g) and productivity (0.40 g/L.h vs. 0.30 g/L-h) due to reduced butanol inhibition. The first-stage gas stripping produced a condensate containing 175.6 g/L butanol (227.0 g/L ABE), which after phase separation formed an organic phase containing 612.3 g/L butanol (660.7 g/L ABE) and an aqueous phase containing 101.3 g/L butanol (153.2 g/L ABE). After second-stage gas stripping, a highly concentrated product containing 420.3 g/L butanol (532.3 g/L ABE) was obtained. The process is thus effective in producing high-titer butanol that can be purified with much less energy. (C) 2012 Elsevier Ltd. All rights reserved.

  2. In situ spectroscopic ellipsometry study of TiO2 films deposited by plasma enhanced chemical vapour deposition

    International Nuclear Information System (INIS)

    TiO2 thin films of 300400 nm were deposited at low pressure (3 mTorr) and temperature (b). The impact of growth interruptions on the film characteristics was studied by in situ spectroscopic ellipsometry (SE), scanning electron microscopy (SEM) and X-ray diffraction. The interruptions were carried out by stopping the plasma generation and gas injection once the increase of the layer thickness during each deposition step was about 100 nm. Suitable ellipsometric models were built to account for the structural and optical differences among the layers grown at different stages. When no bias is applied or Vb = ?10 V, the films deposited with and without interruptions are composed of a dense layer near substrate, an intermediate gradient layer and a top roughness layer. But the growth interruptions result in an increase of the dense layer thickness and a decrease of surface roughness. The discrepancy of the refractive index measured by SE between bottom and upper layers can be reduced by growth interruptions or biasing the substrate. In the case of Vb = ?50 V, the film becomes well organized, the top surface appears smoother, and the refractive index can be increased greatly, without significant effect of growth interruptions.

  3. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    Directory of Open Access Journals (Sweden)

    N. L. Wagner

    2015-02-01

    Full Text Available Vertical profiles of submicron aerosol over the southeastern United States (SEUS during the summertime from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO. Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10% larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD, was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10% to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary organic aerosol (SOA aloft to explain the summertime enhancement of AOD (23 times greater than winter over the southeastern United States. In contrast to this hypothesis, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD.

  4. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes. PMID:26415789

  5. Enhanced oral bioavailability of piperine by self-emulsifying drug delivery systems: in vitro, in vivo and in situ intestinal permeability studies.

    Science.gov (United States)

    Shao, Bing; Cui, Chao; Ji, Hongyu; Tang, Jingling; Wang, Zhiyong; Liu, Hongmei; Qin, Mengnan; Li, Xin; Wu, Linhua

    2015-09-01

    The main purpose of this work was to develop and evaluate a self-emulsifying drug delivery system (SEDDS) of piperine to enhance its solubility and bioavailability. The formulation was optimized by solubility test and ternary phase diagrams. Then physiochemical properties and in vitro release of SEDDS were characterized. In vivo pharmacokinetics study and in situ single-pass intestinal perfusion were performed to investigate the effects of SEDDS on the bioavailability and intestinal absorption of piperine. The optimized formulation was composed of ethyl oleate, Tween 80 and Transcutol P (3:5.5:1.5, w/w), with the level of the piperine reached 2.5% (w/w). The in vitro dissolution rates of piperine SEDDS were significantly higher than the self-prepared capsules. In vivo pharmacokinetic study showed Cmax1, Cmax2 and area under the curve of piperine after oral administration of SEDDS in rats were 3.8-, 7.2- and 5.2-fold higher than the self-prepared capsules, respectively, and the relative bioavailability of SEDDS was 625.74%. The in situ intestinal absorption study revealed that the effective permeability and the effective absorption rate values of piperine for SEDDS were significantly improved comparing to solutions (p?

  6. In situ growth of TiO2 in interlayers of expanded graphite for the fabrication of TiO2-graphene with enhanced photocatalytic activity.

    Science.gov (United States)

    Jiang, Baojiang; Tian, Chungui; Zhou, Wei; Wang, Jianqiang; Xie, Ying; Pan, Qingjiang; Ren, Zhiyu; Dong, Youzhen; Fu, Dan; Han, Jiale; Fu, Honggang

    2011-07-18

    We present a facile route for the preparation of TiO(2)-graphene composites by in situ growth of TiO(2) in the interlayer of inexpensive expanded graphite (EG) under solvothermal conditions. A vacuum-assisted technique combined with the use of a surfactant (cetyltrimethylammonium bromide) plays a key role in the fabrication of such composites. Firstly, the vacuum environment promotes full infusion of the initial solution containing Ti(OBu)(4) and the surfactant into the interlayers of EG. Subsequently, numerous TiO(2) nanoparticles uniformly grow in situ in the interlayers with the help of the surfactant, which facilitates the exfoliation of EG under the solvothermal conditions in ethanol, eventually forming TiO(2)-graphene composites. The as-prepared samples have been characterized by Raman and FTIR spectroscopies, SEM, TEM, AFM, and thermogravimetic analysis. It is shown that a large number of TiO(2) nanoparticles homogeneously cover the surface of high-quality graphene sheets. The graphene exhibits a multi-layered structure (5-7 layers). Notably, the TiO(2)-graphene composite (only 30 wt?% of which is TiO(2)) synthesized by subsequent thermal treatment at high temperature under nitrogen shows high photocatalytic activity in the degradation of phenol under visible and UV lights in comparison with bare Degussa P25. The enhanced photocatalytic performance is attributed to increased charge separation, improved light absorbance and light absorption width, and high adsorptivity for pollutants. PMID:21656583

  7. Cavity-Enhanced Gas Analyzer for In-Situ Sampling of Biogenic Gases and Their Isotopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration This Small Business Innovation Research Phase I project concerns the novel application of cavity-enhanced absorption spectroscopy to quantify biogenic gases (CH4,...

  8. In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation

    Science.gov (United States)

    Zhou, Jian-Jian; Wang, Rong; Liu, Xin-Ling; Peng, Fu-Min; Li, Chuan-Hao; Teng, Fei; Yuan, Yu-Peng

    2015-08-01

    CdS nanoparticles acting as photosensitizer was grown in situ upon UiO-66 metal-organic framework octahedrons through a hydrothermal process. The resultant CdS/UiO-66 hybrid photocatalysts show remarkably active hydrogen evolution under visible light irradiation as compared to CdS and UiO-66 alone. The optimum hybrid with 16 wt% CdS loading shows a hydrogen production rate of 235 ?mol h-1, corresponding to 1.2% quantum efficiency at 420 nm. The improved photocatalytic hydrogen production over hybrid CdS/UiO-66 is ascribed to the efficient interfacial charge transfer from CdS to UiO-66, which effectively suppresses the recombination of photogenerated electron-hole pairs and thereby enhancing the photocatalytic efficiency.

  9. Enhanced visible-light photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites fabricated by facile in situ precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bo [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Li, Zhongyu, E-mail: zhongyuli@mail.tsinghua.edu.cn [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Changzhou Expansion New Stuff Technology Limited Company, Changzhou 213122 (China); Jilin Institute of Chemical Technology, Jilin 132022 (China); Xu, Song, E-mail: cyanine123@163.com [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Han, Dandan; Lu, Dayong [Jilin Institute of Chemical Technology, Jilin 132022 (China)

    2014-05-01

    Highlights: • Ag{sub 3}PO{sub 4}/MWCNT composites were facilely fabricated via in situ precipitation method. • Ag{sub 3}PO{sub 4}/MWCNT composites exhibited enhanced visible-light photocatalytic activity. • Ag{sub 3}PO{sub 4}/MWCNT composites showed good photostability compared with Ag{sub 3}PO{sub 4} particles. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: The Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were facilely fabricated via in situ precipitation method by adding (NH{sub 4}){sub 2}HPO{sub 4} into the mixture of multi-walled carbon nanotube (MWCNT) and AgNO{sub 3} solution under stirring. The as-prepared Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Brunauer–Emmett–Teller surface area (BET) and UV–vis diffuse reflectance spectroscopy. The TEM results showed that the Ag{sub 3}PO{sub 4} nanoparticles were distributed on the surface of MWCNT uniformly with an average diameter of 70 nm, indicating excellent loading result. The photocatalytic activities of Ag{sub 3}PO{sub 4}/MWCNT nanocomposites were investigated by degrading methylene blue (MB) and malachite green (MG) under visible-light irradiation. It was found that the Ag{sub 3}PO{sub 4}/MWCNT nanocomposite exhibited excellent photocatalytic performance with enhanced photocatalytic efficiency and good photostability compared with bare Ag{sub 3}PO{sub 4}. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.

  10. Origin of springtime ozone enhancements in the lower troposphere over Beijing: in situ measurements and model analysis

    Science.gov (United States)

    Huang, J.; Liu, H.; Crawford, J. H.; Chan, C.; Considine, D. B.; Zhang, Y.; Zheng, X.; Zhao, C.; Thouret, V.; Oltmans, S. J.; Liu, S. C.; Jones, D. B. A.; Steenrod, S. D.; Damon, M. R.

    2014-12-01

    Ozone (O3) concentrations in the lower troposphere (LT) over Beijing have significantly increased over the past two decades as a result of rapid industrialization in China, with important implications for regional air quality and photochemistry of the background troposphere. We characterize the vertical distribution of lower-tropospheric (0-6 km) O3 over Beijing using observations from 16 ozonesonde soundings made during a field campaign in April-May 2005 and MOZAIC (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft) aircraft measurements over 13 days in the same period. We focus on the origin of LT O3 enhancements observed over Beijing, particularly in May. We use a global 3-D chemistry and transport model (GEOS-Chem CTM) driven by assimilated meteorological fields to examine the transport pathways for O3 pollution, and quantify the sources contributing to O3 and its enhancements in the springtime LT over Beijing. Output from the Global Modeling Initiative (GMI) CTM is also used. High O3 concentrations (up to 94.7 ppbv) were frequently observed at the altitude of ~1.5-2 km. The CTMs captured the timing of the occurrences but significantly underestimated their magnitude. GEOS-Chem simulations and a case study showed that O3 produced in the Asian troposphere (especially from Asian anthropogenic pollution) made major contributions to the observed O3 enhancements. Contributions from anthropogenic pollution in the European and North American troposphere were reduced during these events, in contrast with days without O3 enhancements, when contributions from Europe and North America were substantial. The O3 enhancements typically occurred under southerly wind and warmer conditions. It is suggested that an earlier onset of the Asian summer monsoon would cause more O3 enhancement events in the lower troposphere over the North China Plain in late spring and early summer.

  11. In situ growth of CdS nanoparticles on UiO-66 metal-organic framework octahedrons for enhanced photocatalytic hydrogen production under visible light irradiation

    International Nuclear Information System (INIS)

    Graphical abstract: Enhanced photocatalytic hydrogen generation was achieved though constructing the CdS/UiO-66 MOF hybrids. In addition, the resultant hybrids show excellent photostability for hydrogen generation. - Highlights: • CdS nanoparticles were hydrothermally grown on UiO-66 octahedrons. • The resultant CdS/UiO-66 hybrids show enhanced photocatalytic H2 generation under visible light irradiation. • CdS/UiO-66 hybrids possess excellent photostability for long-term hydrogen generation. - Abstract: CdS nanoparticles acting as photosensitizer was grown in situ upon UiO-66 metal-organic framework octahedrons through a hydrothermal process. The resultant CdS/UiO-66 hybrid photocatalysts show remarkably active hydrogen evolution under visible light irradiation as compared to CdS and UiO-66 alone. The optimum hybrid with 16 wt% CdS loading shows a hydrogen production rate of 235 μmol h−1, corresponding to 1.2% quantum efficiency at 420 nm. The improved photocatalytic hydrogen production over hybrid CdS/UiO-66 is ascribed to the efficient interfacial charge transfer from CdS to UiO-66, which effectively suppresses the recombination of photogenerated electron-hole pairs and thereby enhancing the photocatalytic efficiency

  12. Resolution of an important discrepancy between remote and in-situ measurements of tropospheric BrO during Antarctic enhancements

    Directory of Open Access Journals (Sweden)

    H. K. Roscoe

    2012-08-01

    Full Text Available Tropospheric BrO was measured by a ground-based remote-sensing spectrometer at Halley in Antarctica, and BrO was measured by remote-sensing spectrometers in space using similar spectral regions and Differential Optical Absorption Spectroscopy (DOAS analyses. Near-surface BrO was simultaneously measured at Halley by Chemical Ionisation Mass Spectrometry (CIMS, and in an earlier year near-surface BrO was measured at Halley over a long path by a DOAS spectrometer. During enhancement episodes, total amounts of tropospheric BrO from the ground-based remote-sensor were similar to those from space, but if we assume that the BrO was confined to the boundary layer they were very much larger than values measured by either near-surface technique. This large apparent discrepancy can be resolved if substantial amounts of BrO were in the free troposphere during most enhancement episodes. Amounts observed by the ground-based remote sensor at different elevation angles, and their formal inversions to vertical profiles, also show that much of the BrO was often in the free troposphere. This is consistent with the ~5 day lifetime of Bry, from the enhanced BrO observed during some Antarctic blizzards, and from aircraft measurements of BrO well above the surface in the Arctic.

  13. Two weeks of metformin treatment induces AMPK dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Mller; Treebak, Jonas Thue; Schjerling, Peter; Goodyear, Laurie; Wojtaszewski, Jorgen F P; Wojtaszewski, Jrgen

    2014-01-01

    Background: Metformin-induced activation of AMPK has been associated with enhanced glucose uptake in skeletal muscle but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent upon AMPK signaling. Methods: Oral doses of metformin or saline treatment were given muscle-specific kinase ?2 dead AMPK mice (KD) and wild type (WT) littermates either once or chronically for 2 weeks. Soleus and E...

  14. Microbiological-enhanced mixing across scales during in-situ bioreduction of metals and radionuclides at Department of Energy Sites

    International Nuclear Information System (INIS)

    Bioreduction is being actively investigated as an effective strategy for subsurface remediation and long-term management of DOE sites contaminated by metals and radionuclides (i.e. U(VI)). These strategies require manipulation of the subsurface, usually through injection of chemicals (e.g., electron donor) which mix at varying scales with the contaminant to stimulate metal reducing bacteria. There is evidence from DOE field experiments suggesting that mixing limitations of substrates at all scales may affect biological growth and activity for U(VI) reduction. Although current conceptual models hold that biomass growth and reduction activity is limited by physical mixing processes, a growing body of literature suggests that reaction could be enhanced by cell-to-cell interaction occurring over length scales extending tens to thousands of microns. Our project investigated two potential mechanisms of enhanced electron transfer. The first is the formation of single- or multiple-species biofilms that transport electrons via direct electrical connection such as conductive pili (i.e. nanowire) through biofilms to where the electron acceptor is available. The second is through diffusion of electron carriers from syntrophic bacteria to dissimilatory metal reducing bacteria (DMRB). The specific objectives of this work are (i) to quantify the extent and rate that electrons are transported between microorganisms in physical mixing zones between an electron donor and electron acceptor (e.g. U(IV)), (ii) to quantify the extent that biomass growth and reaction are enhanced by interspecies electron transport, and (iii) to integrate mixing across scales (e.g., microscopic scale of electron transfer and macroscopic scale of diffusion) in an integrated numerical model to quantify these mechanisms on overall U(VI) reduction rates. We tested these hypotheses with five tasks that integrate microbiological experiments, unique micro-fluidics experiments, flow cell experiments, and multi-scale numerical models. Continuous fed-batch reactors were used to derive kinetic parameters for DMRB, and to develop an enrichment culture for elucidation of syntrophic relationships in a complex microbial community. Pore and continuum scale experiments using microfluidic and bench top flow cells were used to evaluate the impact of cell-to-cell and microbial interactions on reaction enhancement in mixing-limited bioactive zones, and the mechanisms of this interaction. Some of the microfluidic experiments were used to develop and test models that considers direct cell-to-cell interactions during metal reduction. Pore scale models were incorporated into a multi-scale hybrid modeling framework that combines pore scale modeling at the reaction interface with continuum scale modeling. New computational frameworks for combining continuum and pore-scale models were also developed

  15. Microbiological-enhanced mixing across scales during in-situ bioreduction of metals and radionuclides at Department of Energy Sites

    Energy Technology Data Exchange (ETDEWEB)

    Valocchi, Albert [Univ. of Illinois, Urbana-Champaign, IL (United States); Werth, Charles [Univ. of Texas, Austin, TX (United States); Liu, Wen-Tso [Univ. of Illinois, Urbana-Champaign, IL (United States); Sanford, Robert [Univ. of Illinois, Urbana-Champaign, IL (United States); Nakshatrala, Kalyan [Univ. of Houston, TX (United States)

    2015-10-20

    Bioreduction is being actively investigated as an effective strategy for subsurface remediation and long-term management of DOE sites contaminated by metals and radionuclides (i.e. U(VI)). These strategies require manipulation of the subsurface, usually through injection of chemicals (e.g., electron donor) which mix at varying scales with the contaminant to stimulate metal reducing bacteria. There is evidence from DOE field experiments suggesting that mixing limitations of substrates at all scales may affect biological growth and activity for U(VI) reduction. Although current conceptual models hold that biomass growth and reduction activity is limited by physical mixing processes, a growing body of literature suggests that reaction could be enhanced by cell-to-cell interaction occurring over length scales extending tens to thousands of microns. Our project investigated two potential mechanisms of enhanced electron transfer. The first is the formation of single- or multiple-species biofilms that transport electrons via direct electrical connection such as conductive pili (i.e. ‘nanowires’) through biofilms to where the electron acceptor is available. The second is through diffusion of electron carriers from syntrophic bacteria to dissimilatory metal reducing bacteria (DMRB). The specific objectives of this work are (i) to quantify the extent and rate that electrons are transported between microorganisms in physical mixing zones between an electron donor and electron acceptor (e.g. U(IV)), (ii) to quantify the extent that biomass growth and reaction are enhanced by interspecies electron transport, and (iii) to integrate mixing across scales (e.g., microscopic scale of electron transfer and macroscopic scale of diffusion) in an integrated numerical model to quantify these mechanisms on overall U(VI) reduction rates. We tested these hypotheses with five tasks that integrate microbiological experiments, unique micro-fluidics experiments, flow cell experiments, and multi-scale numerical models. Continuous fed-batch reactors were used to derive kinetic parameters for DMRB, and to develop an enrichment culture for elucidation of syntrophic relationships in a complex microbial community. Pore and continuum scale experiments using microfluidic and bench top flow cells were used to evaluate the impact of cell-to-cell and microbial interactions on reaction enhancement in mixing-limited bioactive zones, and the mechanisms of this interaction. Some of the microfluidic experiments were used to develop and test models that considers direct cell-to-cell interactions during metal reduction. Pore scale models were incorporated into a multi-scale hybrid modeling framework that combines pore scale modeling at the reaction interface with continuum scale modeling. New computational frameworks for combining continuum and pore-scale models were also developed

  16. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    Science.gov (United States)

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D.; de Gouw, J. A.; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Holloway, J. S.; Huey, G.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Liu, X.; Markovic, M. Z.; Middlebrook, A. M.; Mikoviny, T.; Peischl, J.; Perring, A. E.; Richardson, M. S.; Ryerson, T. B.; Schwarz, J. P.; Warneke, C.; Welti, A.; Wisthaler, A.; Ziemba, L. D.; Murphy, D. M.

    2015-06-01

    Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). Shallow cumulus convection was observed during many profiles. These conditions enhance vertical transport of trace gases and aerosol and create a cloudy transition layer on top of the sub-cloud mixed layer. The trace gas and aerosol concentrations in the transition layer were modeled as a mixture with contributions from the mixed layer below and the free troposphere above. The amount of vertical mixing, or entrainment of air from the free troposphere, was quantified using the observed mixing ratio of carbon monoxide (CO). Although the median aerosol mass, extinction, and volume decreased with altitude in the transition layer, they were ~10 % larger than expected from vertical mixing alone. This enhancement was likely due to secondary aerosol formation in the transition layer. Although the transition layer enhancements of the particulate sulfate and organic aerosol (OA) were both similar in magnitude, only the enhancement of sulfate was statistically significant. The column integrated extinction, or aerosol optical depth (AOD), was calculated for each individual profile, and the transition layer enhancement of extinction typically contributed less than 10 % to the total AOD. Our measurements and analysis were motivated by two recent studies that have hypothesized an enhanced layer of secondary aerosol aloft to explain the summertime enhancement of AOD (2-3 times greater than winter) over the southeastern United States. The first study attributes the layer aloft to secondary organic aerosol (SOA) while the second study speculates that the layer aloft could be SOA or secondary particulate sulfate. In contrast to these hypotheses, the modest enhancement we observed in the transition layer was not dominated by OA and was not a large fraction of the summertime AOD.

  17. AIDSRelated Pancreatic Burkitt S Lymphoma. EUSFNA Enhanced Diagnosis with Fluorescence in Situ Hybridization (FISH

    Directory of Open Access Journals (Sweden)

    Carlos Marra-Lpez Valenciano

    2008-09-01

    Full Text Available Context Non-Hodgkin's lymphoma is a common complication in HIV-patients that most frequently affects the gastrointestinal tract. Primary pancreatic lymphomas and Burkitt Lymphoma involving the pancreas are uncommon. It is important to recognize them because can mimic an adenocarcinoma or pancreatitis, but their management is completely different. Case report We report a case of a forty-seven-year-old man who presented with an AIDS-related Burkitt Lymphoma with acute pancreatitis as initial manifestation. Initially patient was admitted with abdominal pain and high amylase levels. Computed tomography imaging was suggestive of acute pancreatitis. Later was found to be human immunodeficiency virus seropositive. 4-weeks later, a control computed tomography scan revealed growth of a well-defined large pancreatic mass, with diffuse enlargement of the gland, and a normal-appearing pancreatic duct. Consequently an endoscopic ultrasound-guided fine needle aspiration was performed with a 19-gauge needle and revealed a proliferation of medium lymphocytes, inconspicuous cytoplasm and frequent mitosis. The lymphocytes were positive for CD20 and CD10. The Ki-67 labeling index was almost 80%. BCL-2 and MYC FISH molecular analysis was performed and confirmed t(8;14(q24;q32. On the basis of these results, pancreatic Burkitt's lymphoma was diagnosed. Positive emission tomography scan completed staging and showed uptake in the pancreas and multiple metastasis. Accordingly patient received chemotherapy by PHETEMA BURKIMAB protocol, obtaining complete remission. Conclusion Pancreatic Lymphoma should be considered in differential diagnosis of pancreatic masses. EUS-FNA including flow cytometry and molecular analysis are useful techniques that may help to establish early diagnosis and prompt treatment avoiding unnecessary surgery.

  18. In situ nanoscale refinement by highly controllable etching of the (111) silicon crystal plane and its influence on the enhanced electrical property of a silicon nanowire

    International Nuclear Information System (INIS)

    Nanoscale refinement on a (100) oriented silicon-on-insulator (SOI) wafer was introduced by using tetra-methyl-ammonium hydroxide (TMAH, 25 wt%) anisotropic silicon etchant, with temperature kept at 50 C to achieve precise etching of the (111) crystal plane. Specifically for a silicon nanowire (SiNW) with oxide sidewall protection, the in situ TMAH process enabled effective size reduction in both lateral (2.3 nm/min) and vertical (1.7 nm/min) dimensions. A sub-50 nm SiNW with a length of microns with uniform triangular cross-section was achieved accordingly, yielding enhanced field effect transistor (FET) characteristics in comparison with its 100 nm-wide pre-refining counterpart, which demonstrated the feasibility of this highly controllable refinement process. Detailed examination revealed that the high surface quality of the (111) plane, as well as the bulk depletion property should be the causes of this electrical enhancement, which implies the great potential of the as-made cost-effective SiNW FET device in many fields. (semiconductor materials)

  19. Rational in-situ construction of three-dimensional reduced graphene oxide supported Li2S/C composite as enhanced cathode for rechargeable lithium-sulfur batteries

    Science.gov (United States)

    Wang, D. H.; Xia, X. H.; Xie, D.; Niu, X. Q.; Ge, X.; Gu, C. D.; Wang, X. L.; Tu, J. P.

    2015-12-01

    The construction of advanced cathode materials is indispensable and vital for developing high-performance lithium-sulfur batteries. Herein, we develop a facile in-situ route to synthesize three-dimensional reduced graphene oxide supported Li2S/carbon composite (3D-rGO-Li2S/C). The Li2S/C nanoparticles are intimately anchored on the surface of 3D-rGO forming an integrated 3D porous composite. Due to the improved conductivity and reduced polysulfide dissolution, the 3D-rGO-Li2S/C cathode exhibits enhanced electrochemical performances with a high initial capacity of 819 mAh g-1 at 0.1C, as well as good cycling stability with a capacity retention of 415 mAh g-1 after 100 cycles at 1C. The integrated 3D conductive network is responsible for the enhancement of the electrochemical properties by providing fast ion/electron transfer and high mechanical stability.

  20. In-situ doping of erbium in hydrogenated amorphous carbon by low temperature metalorganic radio frequency plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hui-Lin; Leong, Keith R.; Halamicek, Michael [Department of Electrical and Computer Engineering, University of Toronto, ON M5S 3G4 (Canada); Teng, I-Ju [Centre for Interdisciplinary Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Mahtani, Pratish [Department of Electrical and Computer Engineering, University of Toronto, ON M5S 3G4 (Canada); Juang, Jenh-Yih [Centre for Interdisciplinary Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Jian, Sheng-Rui [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan (China); Qian, Li, E-mail: l.qian@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, ON M5S 3G4 (Canada); Kherani, Nazir P., E-mail: kherani@ecf.utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, ON M5S 3G4 (Canada); Department of Materials Science and Engineering, University of Toronto, ON M5S 3E4 (Canada)

    2014-11-03

    A significant improvement in the photoluminescence of erbium doped amorphous carbon (a-C:H(Er)) is reported. The effects of the RF power on the anode and cathode a-C:H films were investigated in terms of the microstructural and local bonding features. It was determined that Er doped a-C:H films should be placed on the anode to obtain wider bandgap and lower percentage of sp{sup 2} carbon bonding. The metalorganic compound, tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) Erbium(+ III) or Er(fod){sub 3}, was incorporated in-situ into an a-C:H host by metalorganic rf plasma enhanced chemical vapor deposition. This technique provides the capability of doping Er in a vertically uniform profile. The high erbium concentration (3.9 at.%), partial fluorination of the surrounding ligands, and the large optical bandgap of the host a-C:H are the primary factors that enable enhancement of the photoluminescence. - Highlights: High and uniform Er concentration (3.9 at.%) in a-C:H(Er) films is achieved. Room-temperature photoluminescence peaking at 1.54 ?m is demonstrated. Optically active Er{sup 3+} ions are preserved in as-grown samples at low growth temperature. Non-radiative C-H vibrational quenching is reduced by fluorination of a-C host. Metalorganic-RF-PECVD provides the potential of doping Er in vertically uniform profiles.

  1. Enhancement of the thermoelectric performance of ?-Zn4Sb3 by in situ nanostructures and minute Cd-doping

    International Nuclear Information System (INIS)

    ?-Zn4Sb3 compounds doped with minute amounts of Cd were synthesized by the MS-SPS technique, which involves melt spinning (MS) followed by spark plasma sintering (SPS), and the microstructures, thermoelectric and thermodynamic properties were systematically characterized. The non-equilibrium MS-SPS technique generates multi-scale nanostructures in the MS-prepared ribbon-shape samples and the resulting compacted bulk materials. These unique multiple nanostructures result in substantial reductions in lattice thermal conductivities, particularly for samples with a large number of ZnSb nanodots with sizes of 10-30 nm. Meanwhile, Cd-doping remarkably improves the electrical properties of the (Zn1-xCdx)4Sb3 compounds by a slight decrease in electrical conductivity and an apparent enhancement of the Seebeck coefficient. Therefore, the dimensionless figure of merits are significantly improved and the maximum value reaches ?1.30 for the (Zn0.99Cd0.01)4Sb3 sample at 700 K, representing ?13% and ?23% improvements compared with the undoped MS-SPS sample and the 1% Cd-doped melting ingot, respectively. In particular, this value shows no degradation after 10 heat cycles from 300 to 700 K or 30 h annealing at 680 K in vacuum, whereas the ZT of neat sample decreases by ?20% to a relatively low value of ?1.0 after 30 h annealing. The enhanced thermal stability of ZT along with the suppressing effect on the low-temperature ?-? phase transition clearly indicates a large improvement in thermodynamic stability as a result of minute Cd-doping. All the above-mentioned benefits make the minute Cd-doped ?-Zn4Sb3 compound prepared by the MS-SPS technique a promising candidate for mid-range temperature thermoelectric power generation applications.

  2. In situ evaluation of orthodontic elastomeric chains

    Scientific Electronic Library Online (English)

    Carolina, Baratieri; Cludia Trindade, Mattos; Matheus, Alves Jr; Thiago Chon Leon, Lau; Lincoln Issamu, Nojima; Margareth Maria Gomes de, Souza; Monica Tirre, Araujo; Matilde da Cunha Gonalves, Nojima.

    Full Text Available A hiptese testada foi que a exposio dos elsticos em cadeia ao meio bucal altera sua fora de tenso. Portanto, o objetivo deste estudo foi avaliar o comportamento, in situ, de diferentes cadeias elastomricas quando tensionadas durante 3 semanas. Trs tipos de elsticos em cadeia Plastic Chain ( [...] PC), Memory Chain (MC) e Super Slick Chain (SSC) foram inseridos aleatoriamente em 3 dos quadrantes de 13 pacientes com distncia fixa de 16 mm e fora inicial de 180 g. Foi realizado ensaio de trao em uma mquina de ensaio universal EMIC nos seguintes intervalos: inicial, 1 h, 24 h, 1 semana, 2 semanas e 3 semanas. O teste ANOVA a dois critrios foi aplicado para verificar a influncia do material e do tempo na degradao da fora. Subsequentemente, foi utilizado o teste ANOVA a um critrio e ps-teste de Tukey para identificar diferenas estatsticas (p Abstract in english The hypothesis tested in this study was that intraoral exposure of elastomeric chains alters their tensile strength. For such purpose, it was evaluated the in situ behavior of different elastomeric chains stretched for 3 weeks. Three kinds of elastomeric chains, Plastic chain (PC), Memory chain (MC) [...] and Super slick chain (SSC), were randomly placed in 3 quadrants of 13 patient in a fixed distance of 16 mm and mean initial force of 180 g. Tensile testing was performed in an universal testing machine at different intervals: initial, 1 h, 24 h, 1 week, 2 weeks and 3 weeks. A two-way ANOVA test was performed to identify the influence of both material and time on the force decrease. A subsequent one-way ANOVAtest with the Tukey's post hoc test was used to identify statistically significant intragroup and intergroup remaining force (g and %) differences at 5% significance level. The effect of both the material and the time factors were significant. All groups showed significant force decrease after the 1-h period (23% for PC and 14% for MC and SSC). At the end of the 3-week period, the remaining force was 57% (96 g), 67% (129 g) and 71% (125 g) for PC, MC and SSC, respectively. In conclusion, intraoral exposure of elastomeric chains altered their tensile strength. In general, the greater force decrease occurred within the first hour. The remaining force of the enhanced chains measured at each time interval was greater than the conventional one (PC). After 3 weeks, only the enhanced chains maintained the force applied over 100 g.

  3. Facile in situ solvothermal method to synthesize MWCNT/SnIn{sub 4}S{sub 8} composites with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Chaoying; Tian, Li [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); College of Hua Loogeng, Changzhou University, Changzhou 213164 (China); Liu, Bo; Liang, Qian [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Li, Zhongyu, E-mail: zhongyuli@mail.tsinghua.edu.cn [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); College of Hua Loogeng, Changzhou University, Changzhou 213164 (China); Key Laboratory of Regional Environment and Ecoremediation (Ministry of Education), Shenyang University, Shenyang 110044 (China); Xu, Song [Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Liu, Qiaoli; Lu, Dayong [Department of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China)

    2015-06-05

    Highlights: • MWCNT/SnIn{sub 4}S{sub 8} composites were facilely fabricated via in situ solvothermal method. • MWCNT/SnIn{sub 4}S{sub 8} composites exhibited significantly enhanced visible-light activity. • MWCNT/SnIn{sub 4}S{sub 8} composites showed remarkable visible light photocatalytic activity. • MWCNT/SnIn{sub 4}S{sub 8} composites exhibited excellent photo-stability. • Possible photocatalytic mechanism under visible-light irradiation was proposed. - Abstract: Superior photocatalytic activity could be achieved by multi-walled carbon nanotube (MWCNT) incorporated in the porous assembly of marigold-like SnIn{sub 4}S{sub 8} heterostructures synthesized by a flexible in-situ solvothermal method. The as-prepared MWCNT/SnIn{sub 4}S{sub 8} composites were well-characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic properties of the as-prepared samples were tested by photo-degradation of aqueous malachite green (MG) under the irradiation of visible light. It was found that the MWCNT/SnIn{sub 4}S{sub 8} composites showed enhanced visible light photocatalytic activity for dye degradation, and an optimum photocatalytic activity was observed over 3.0 wt.% MWCNT incorporated SnIn{sub 4}S{sub 8} composites. The superior photocatalytic activity of MWCNT/SnIn{sub 4}S{sub 8} composites could be ascribed to the existence of MWCNT which could serve as a good electron acceptor, mediator as well as the co-catalyst for dye degradation. The synergistic effect between SnIn{sub 4}S{sub 8} and MWCNT in the composites facilitated the interfacial charge transfer driven by the excitation of SnIn{sub 4}S{sub 8} under visible-light irradiation. Furthermore, a possible mechanism for the photocatalytic degradation of MWCNT/SnIn{sub 4}S{sub 8} composites was also discussed.

  4. Trans-resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: optimization, pharmacokinetics and in situ single pass intestinal perfusion (SPIP) studies.

    Science.gov (United States)

    Singh, Gurinder; Pai, Roopa S

    2015-01-01

    Trans-resveratrol (t-RVT) is a potent antioxidant. By virtue of extensive pre-systemic metabolism and existence of enterohepatic recirculation, t-RVT bioavailability is almost zero. The current study aimed to develop self-nanoemulsifying drug delivery systems (SNEDDS) using long-chain triglycerides (LCTs) of t-RVT in an attempt to circumvent such obstacles. Equilibrium solubility studies indicated the choice of Lauroglycol FCC as lipid, and of Labrasol and Transcutol P as surfactants, for formulating the SNEDDS. Ternary phase diagrams were constructed to select the areas of nanoemulsions, and the amounts of lipid (X(1)) and surfactant (X(2)) as the critical factor variables. The SNEDDS were optimized using 3(2) central composite design (CCD) and the optimized formulation (OPT) located using overlay plot. The nanometer size range and high negative values of zeta potential depicted non-coalescent nature of the SNEDDS. Optimized formulation indicated marked improvement in drug release profile vis--vis pure drug. Cloud point determination and accelerated stability studies ascertained the stability of OPT. Augmentation in the values of K(a) (3.29-fold) and AUC (4.31-fold) indicated significant enhancement in the rate and extent of bioavailability by the OPT compared with pure drug. In situ perfusion (SPIP) studies in Wistar rats construed remarkable enhancement in the absorptivity and permeability parameters of SNEDDS vis--vis the pure drug. Successful establishment of level A of in vitro/in vivo correlation substantiated the judicious choice of the in vitro dissolution milieu for simulating the in vivo conditions. The present study, therefore, reports the successful development of SNEDDS with distinctly enhanced bioavailability of t-RVT. PMID:24512464

  5. An innovative bioelectrochemical-anaerobic digestion-coupled system for in-situ ammonia recovery and biogas enhancement: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    Ammonia (NH4+/NH3) inhibition during anaerobic digestion process is one of the most frequent problems existing in biogas plants, resulting in unstable process and reduced biogas production. In this study, we developed a novel hybrid system, consisted of a submersed microbial resource recovery cell (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g-N/L(CSTR)/d. Meanwhile, a maximum power density of 0.710.5 W/m2 was produced (10 ?). Both current driven NH4+ migration and free NH3 diffusion were identified as the mechanisms responsible for the ammonia transportation. With an increase in initial ammonia concentration and a decrease in external resistance, the SMRC performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. In continuous reactor operation, 112% extra biogas production was achieved due to ammonia recovery. High-throughput molecular sequencing analysis showed an impact of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues.

  6. NOTE: Characterizing early contrast uptake of ductal carcinoma in situ with high temporal resolution dynamic contrast-enhanced MRI of the breast: a pilot study

    Science.gov (United States)

    Jansen, S. A.; Fan, X.; Medved, M.; Abe, H.; Shimauchi, A.; Yang, C.; Zamora, M.; Foxley, S.; Olopade, O. I.; Karczmar, G. S.; Newstead, G. M.

    2010-10-01

    Improvements in the reliable diagnosis of preinvasive ductal carcinoma in situ (DCIS) by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are needed. In this study, we present a new characterization of early contrast kinetics of DCIS using high temporal resolution (HiT) DCE-MRI and compare it with other breast lesions and normal parenchyma. Forty patients with mammographic calcifications suspicious for DCIS were selected for HiT imaging using T1-weighted DCE-MRI with ~7 s temporal resolution for 90 s post-contrast injection. Pixel-based and whole-lesion kinetic curves were fit to an empirical mathematical model (EMM) and several secondary kinetic parameters derived. Using the EMM parameterized and fitted concentration time curve for subsequent analysis allowed for calculation of kinetic parameters that were less susceptible to fluctuations due to noise. The parameters' initial area under the curve (iAUC) and contrast concentration at 1 min (C1 min) provided the highest diagnostic accuracy in the task of distinguishing pathologically proven DCIS from normal tissue. There was a trend for DCIS lesions with solid architectural pattern to exhibit a negative slope at 1 min (i.e. increased washout rate) compared to those with a cribriform pattern (p < 0.04). This pilot study demonstrates the feasibility of quantitative analysis of early contrast kinetics at high temporal resolution and points to the potential for such an analysis to improve the characterization of DCIS.

  7. Characterizing early contrast uptake of ductal carcinoma in situ with high temporal resolution dynamic contrast-enhanced MRI of the breast: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, S A; Fan, X; Medved, M; Abe, H; Shimauchi, A; Zamora, M; Foxley, S; Karczmar, G S; Newstead, G M [Department of Radiology, University of Chicago, 5841 S. Maryland Ave, MC 2026, Chicago, IL 60637 (United States); Yang, C; Olopade, O I, E-mail: gnewstead@radiology.bsd.uchicago.ed [Department of Medicine, University of Chicago, 5841 S. Maryland Ave, MC 2115, Chicago, IL 60637 (United States)

    2010-10-07

    Improvements in the reliable diagnosis of preinvasive ductal carcinoma in situ (DCIS) by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are needed. In this study, we present a new characterization of early contrast kinetics of DCIS using high temporal resolution (HiT) DCE-MRI and compare it with other breast lesions and normal parenchyma. Forty patients with mammographic calcifications suspicious for DCIS were selected for HiT imaging using T{sub 1}-weighted DCE-MRI with {approx}7 s temporal resolution for 90 s post-contrast injection. Pixel-based and whole-lesion kinetic curves were fit to an empirical mathematical model (EMM) and several secondary kinetic parameters derived. Using the EMM parameterized and fitted concentration time curve for subsequent analysis allowed for calculation of kinetic parameters that were less susceptible to fluctuations due to noise. The parameters' initial area under the curve (iAUC) and contrast concentration at 1 min (C{sub 1min}) provided the highest diagnostic accuracy in the task of distinguishing pathologically proven DCIS from normal tissue. There was a trend for DCIS lesions with solid architectural pattern to exhibit a negative slope at 1 min (i.e. increased washout rate) compared to those with a cribriform pattern (p < 0.04). This pilot study demonstrates the feasibility of quantitative analysis of early contrast kinetics at high temporal resolution and points to the potential for such an analysis to improve the characterization of DCIS. (note)

  8. Characterizing early contrast uptake of ductal carcinoma in situ with high temporal resolution dynamic contrast-enhanced MRI of the breast: a pilot study

    International Nuclear Information System (INIS)

    Improvements in the reliable diagnosis of preinvasive ductal carcinoma in situ (DCIS) by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) are needed. In this study, we present a new characterization of early contrast kinetics of DCIS using high temporal resolution (HiT) DCE-MRI and compare it with other breast lesions and normal parenchyma. Forty patients with mammographic calcifications suspicious for DCIS were selected for HiT imaging using T1-weighted DCE-MRI with ?7 s temporal resolution for 90 s post-contrast injection. Pixel-based and whole-lesion kinetic curves were fit to an empirical mathematical model (EMM) and several secondary kinetic parameters derived. Using the EMM parameterized and fitted concentration time curve for subsequent analysis allowed for calculation of kinetic parameters that were less susceptible to fluctuations due to noise. The parameters' initial area under the curve (iAUC) and contrast concentration at 1 min (C1min) provided the highest diagnostic accuracy in the task of distinguishing pathologically proven DCIS from normal tissue. There was a trend for DCIS lesions with solid architectural pattern to exhibit a negative slope at 1 min (i.e. increased washout rate) compared to those with a cribriform pattern (p < 0.04). This pilot study demonstrates the feasibility of quantitative analysis of early contrast kinetics at high temporal resolution and points to the potential for such an analysis to improve the characterization of DCIS. (note)

  9. In-situ sonosynthesis of nano N-doped ZnO on wool producing fabric with photo and bio activities, cell viability and enhanced mechanical properties.

    Science.gov (United States)

    Behzadnia, Amir; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2015-08-01

    Here, a simple processing route is introduced for preparation of N-doped nano structure ZnO at 75-80°C using in-situ sonosynthesis method through hydrolysis of zinc acetate at pH≈9-10 adjusting with ammonia. Synthesis and fabrication of nano N-doped ZnO were carried out on the wool fabric through impregnation of the fabric in ultrasound bath using different concentrations of zinc acetate followed by curing. The antibacterial and antifungal activities of the treated fabrics were assessed against two common pathogenic bacteria including Escherichia coli, Staphylococcus aureus and the diploid fungus namely Candida albicans. The photo-catalytic activity of nano N-doped ZnO particles on the wool fabric was determined by degradation of Methylene Blue under daylight irradiation. Increasing zinc acetate and prolonged sonication time led to higher photo-catalytic activity as more dye stain degraded from the stained treated fabric under daylight. Higher photo-catalytic activity was observed on the nano N-doped ZnO sonotreated wool fabric having more hydrophilicity. Finally, the treatment indicated no negative effect on the fabric safety while reduced alkaline solubility and yellowness even enhanced the fabric tensile strength. The response surface methodology was also utilized to optimize the wool fabric treatment conditions. PMID:26057020

  10. Structure Modification Function of g-C3 N4 for Al2 O3 in the In Situ Hydrothermal Process for Enhanced Photocatalytic Activity.

    Science.gov (United States)

    Li, Fa-tang; Liu, Shao-jia; Xue, Ya-bin; Wang, Xiao-jing; Hao, Ying-juan; Zhao, Jun; Liu, Rui-hong; Zhao, Dishun

    2015-07-01

    Heterojunctions of g-C3 N4 /Al2 O3 (g-C3 N4 =graphitic carbon nitride) are constructed by an in situ one-pot hydrothermal route based on the development of photoactive γ-Al2 O3 semiconductor with a mesoporous structure and a high surface area (188 m(2) g(-1) ) acting as electron acceptor. A structure modification function of g-C3 N4 for Al2 O3 in the hydrothermal process is found, which can be attributed to the coordination between unoccupied orbitals of the Al ions and lone-pair electrons of the N atoms. The as-synthesized heterojunctions exhibit much higher photocatalytic activity than pure g-C3 N4 . The hydrogen generation rate and the reaction rate constant for the degradation of methyl orange over 50 % g-C3 N4 /Al2 O3 under visible-light irradiation (λ>420 nm) are 2.5 and 7.3 times, respectively, higher than those over pristine g-C3 N4 . The enhanced activity of the heterojunctions is attributed to their large specific surface areas, their close contact, and the high interfacial areas between the components as well as their excellent adsorption performance, and efficient charge transfer ability. PMID:26043440

  11. Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems.

    Science.gov (United States)

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Zhou, Peng; Quan, Xie; Logan, Bruce E; Chen, Hongbo

    2016-01-01

    Bioelectrochemical systems (BESs) were first operated in microbial fuel cell mode for recovering Cu(II), and then shifted to microbial electrolysis cells for Cd(II) reduction on the same cathodes of titanium sheet (TS), nickel foam (NF) or carbon cloth (CC). Cu(II) reduction was similar to all materials (4.79-4.88mg/Lh) whereas CC exhibited the best Cd(II) reduction (5.860.25mg/Lh) and hydrogen evolution (0.350.07m(3)/m(3)d), followed by TS (5.270.43mg/Lh and 0.150.02m(3)/m(3)d) and NF (4.960.48mg/Lh and 0.800.07m(3)/m(3)d). These values were higher than no copper controls by factors of 2.0 and 5.0 (TS), 4.2 and 2.0 (NF), and 1.8 and 7.0 (CC). These results demonstrated cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) reduction and hydrogen production in BESs, providing an alternative approach for efficiently remediating Cu(II) and Cd(II) co-contamination with simultaneous hydrogen production. PMID:26528907

  12. In Situ Polymerized PAN-Assisted S/C Nanosphere with Enhanced High-Power Performance as Cathode for Lithium/Sulfur Batteries.

    Science.gov (United States)

    Hu, Hao; Cheng, Haoyan; Liu, Zhengfei; Li, Guojian; Zhu, Qianchen; Yu, Ying

    2015-08-12

    Carbonaceous and polymer materials are extensively employed as conductor and container to encapsulate sulfur particles and limit polysulfide dissolution. Even so, high-power performance is still far from satisfaction due to the expansion and collapse of the electrode materials during thousands of charge-discharge process. Herein, it is found that colloidal carbon sphere with high elastic coefficient can be utilized as a framework to load sulfur, which can trap soluble polysulfides species in the pores within the sphere and efficaciously improve the electronic conductivity of the cathode. After modified by polyaniline (PAN) through in situ polymerization, PAN-assisted S/C nanosphere (PSCs-73, with 73 wt % sulfur) effectively minimize polysulfide diffusion, enhance the electron transfer rate and overcome the problem of volume expansion. The fabricated PSCs-73 cell shows outstanding long high-power cycling capability over 2500 charge/discharge cycles with a capacity decay of 0.01% per cycle at 5 C. Substantially, this composite can drive 2.28 W white indicators of LED robustly after minutes of charging by three lithium batteries in series, showing a promising potential application in the future. PMID:26200760

  13. In-Situ Generation of Oxide Nanowire Arrays from AgCuZn Alloy Sulfide with Enhanced Electrochemical Oxygen-Evolving Performance.

    Science.gov (United States)

    Xie, Minghao; Ai, Shiqi; Yang, Jian; Yang, Yudi; Chen, Yihan; Jin, Yong

    2015-08-12

    In this study, AgCuZn sulfide is fabricated on the surface of AgCuZn alloys by hydrothermal sulfuration. This ternary metal sulfide is equipped with enhanced activity toward oxygen evolution reaction (OER) in an alkaline electrolyte. Through comparison of the alloys with diverse compositions, we find out the best electrochemical property of a particular alloy sulfide forming on a AgCuZn substrate (Ag:Cu:Zn=43:49:8). The alloy sulfide exhibits an onset overpotential (?) of 0.27 V with a Tafel slope of 952 mV dec(-1) and a current density of 130 mA cm(-2) at ? of 0.57 V. Moreover, the obtained AgCuZn sulfide displays excellent stability, where the current density can increase to 130% of the initial value after a water electrolysis test for 100,000 s (27.7 h). Through investigating the electrode before and after the electrocatalysis, we find a remarkable activated process during which self-supported copper-silver oxide nanowire (CuO-Ag2O NW) arrays in situ form on the surface of the electrode. This work provides a feasible strategy for synthesis of high performance nonprecious metal electrocatalysts for water splitting. PMID:26181359

  14. Immobilization of serum albumin and peptide aptamer for EPC on polydopamine coated titanium surface for enhanced in-situ self-endothelialization.

    Science.gov (United States)

    Chen, Zhuoyue; Li, Quanli; Chen, Jialong; Luo, Rifang; Maitz, Manfred F; Huang, Nan

    2016-03-01

    Restenosis and thrombosis are two major complications associated with vascular stents and grafts. The homing of circulating endothelial progenitor cells (EPCs) onto implant surfaces brings a new strategy to solve these problems by accelerating self -endothelialization in situ. Peptide aptamers with high affinity and specific recognition of EPCs can be immobilized to capture EPCs from the circulating blood. In this study, a biotinylated peptide aptamer (TPSLEQRTVYAK-GGGC-K-Biotin) for EPC, and bovine serum albumin (BSA) were co-immobilized onto titanium surface through avidin-biotin recognition to endow the surface with specific affinity for EPC and anti-platelet adhesion properties. Quartz crystal microbalance with dissipation (QCM-D), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and water contact angle measuring were adopted for coating characterization. EPC affinity and hemocompatibility of the coating were also investigated in vitro. The results demonstrated that aptamer and BSA co-immobilized surface significantly reduced platelet adhesion and fibrinogen adsorption/activation. Besides, such functional surface could remarkably enhance EPC adhesion, without affecting the behavior of endothelial cells (ECs) and smooth muscle cells (SMCs) obviously. The result shows the possibility of utilizing such a multifunctional surface in cardiovascular implants. PMID:26706525

  15. Differentiation of acute and four-week old myocardial infarct with Gd(ABE-DTTA-enhanced CMR

    Directory of Open Access Journals (Sweden)

    Ruzsics Balazs

    2010-04-01

    Full Text Available Abstract Background Standard extracellular cardiovascular magnetic resonance (CMR contrast agents (CA do not provide differentiation between acute and older myocardial infarcts (MI. The purpose of this study was to develop a method for differentiation between acute and older myocardial infarct using myocardial late-enhancement (LE CMR by a new, low molecular weight contrast agent. Dogs (n = 6 were studied in a closed-chest, reperfused, double myocardial infarct model. Myocardial infarcts were generated by occluding the Left Anterior Descending (LAD coronary artery with an angioplasty balloon for 180 min, and four weeks later occluding the Left Circumflex (LCx coronary artery for 180 min. LE images were obtained on day 3 and day 4 after second myocardial infarct, using Gd(DTPA (standard extracellular contrast agent and Gd(ABE-DTTA (new, low molecular weight contrast agent, respectively. Triphenyltetrazolium chloride (TTC histomorphometry validated existence and location of infarcts. Hematoxylin-eosin and Masson's trichrome staining provided histologic evaluation of infarcts. Results Gd(ABE-DTTA or Gd(DTPA highlighted the acute infarct, whereas the four-week old infarct was visualized by Gd(DTPA, but not by Gd(ABE-DTTA. With Gd(ABE-DTTA, the mean SD signal intensity enhancement (SIE was 366 166% and 24 59% in the acute infarct and the four-week old infarct, respectively (P Conclusions Late enhancement CMR with separate administrations of standard extracellular contrast agent, Gd(DTPA, and the new low molecular weight contrast agent, Gd(ABE-DTTA, differentiates between acute and late subacute infarct in a reperfused, double infarct, canine model.

  16. Enhanced lithium storage in a VO2(B)-multiwall carbon nanotube microsheet composite prepared via an in situ hydrothermal process

    International Nuclear Information System (INIS)

    A novel VO2(B)-multiwall carbon nanotube (MWCNT) composite with a sheet-like morphology was synthesized by a simple in situ hydrothermal process. The morphology and structural properties of the samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). FE-SEM observations demonstrated that the nanosheets are frequently grown together in the form of bundles composed of numerous nanosheets, each with a smooth surface and a typical length of 300-500 nm, width of 50-150 nm, and thickness of 10-50 nm. Electrochemical measurements were carried out using different discharge cut-off voltages. Electrochemical tests show that the VO2(B)-MWCNT composite cathode features long-term cycling stability and high discharge capacity (177 mAh g-1) in the voltage range of 2.0-3.25 V at 1 C with a capacity retention of 92% after 100 cycles. The electrochemical impedance spectra (EIS) indicate that the VO2(B)-MWCNT composite electrode has very low charge-transfer resistance compared with pure VO2(B), indicating the enhanced ionic conductivity of the VO2(B)-MWCNT composite. The enhanced cycling stability is attributed to the fact that the VO2(B)-MWCNT composite can prevent the aggregation of active materials, accommodate the large volume variation, and maintain good electronic contact. We strongly believe that the VO2(B)-MWCNT composite can be considered as a potential cathode material for lithium-ion batteries.

  17. Electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments

    Science.gov (United States)

    Mancio, Mauricio

    In reinforced concrete, a passive layer forms because of the alkaline conditions in the pores of the cement paste, where large concentrations of hydroxides create a solution with pH typically between 12 and 14. The corrosion resistance of the material depends on the characteristics and integrity of the passive film; however, currently very limited information is available about the passive films formed on carbon steel under such conditions. This work presents an electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments. More specifically, the study focuses on the characterization of the films formed on ASTM A36 steel reinforcing bar exposed to aqueous solutions that aim to reproduce the chemistry of the environment typically found within the cement paste. Electrochemical techniques such as cyclic potentiodynamic polarization curves, galvanostatic cathodic polarization and linear polarization resistance were employed, in addition to in-situ Surface Enhanced Raman Spectroscopy (SERS). The experimental setup was built in a way that SERS experiments could be performed simultaneously with potentiodynamic polarization curves, enabling a detailed analysis of the formation and reduction of the surface films as a function of applied potential. Three solutions with different pH levels were used for the polarization and SERS experiments, namely 0.55M KOH + 0.16M NaOH ([OH-]=0.71), 0.08M KOH + 0.02M NaOH ([OH-]=0.10) and 0.008M KOH + 0.002M NaOH ([OH-]=0.01). Additional NaOH solutions in which the pH was varied from 13 to 9 and the ionic strength from 10 -5 to 10-1 were prepared for a pilot study using linear polarization resistance. Results show that the features observed in the cyclic potentiodynamic polarization curves correlated well with the potential arrests observed in the GCP plots as well as with the changes observed in the SERS spectra, providing valuable information about the formation of passive films on carbon steel in each of the environments studied in this research. Although there are key differences among the films formed in the different solutions tested---particularly regarding their thickness and protectiveness---once the film-formation processes had been completed, generally the films were characterized by an inner layer of Fe(II) and an outer layer of Fe(III). A Fe(OH)2-like species appears consistently as dominating the inner Fe(II) layer, while the outer typically composed mostly by gamma-Fe2O3 and/or gamma-FeOOH. Film thickness varied from about 22 nm to 266 nm depending on the pH of the solution, and decreased as pH was reduced.

  18. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization

    International Nuclear Information System (INIS)

    Highlights: Micro-sized Si/C composites were fabricated via. spray drying and carbonization. Multi-morphology carbon was formed in the Si/C composites. Si/C composite with 5.6 wt.% C provides significant improved cycling stability. Multi-morphology carbon plays effective role in improving the electrochemical property. The method provides potential for mass production of superior Si-based anode materials. - Abstract: Micro-sized Si/C composites with in situ introduced carbon of multi-morphology were fabricated via spray drying a suspension of commercial micro-sized Si and citric acid followed by a carbonization. Different ratios of Si to citric acid were used to optimize the composition and structure of the composites and thus the electrochemical performance. Carbon flakes including crooked and flat ones were well dispersed in between the Si particles, forming Si/C composites. Floc-like carbon layers and carbon fragments were also found to cover partially the Si particles. The Si/C composite with a low carbon content of 5.6 wt.% provides an initial reversible capacity of 2700 mA h/g and a capacity of 1860 mA h/g after 60 cycles at a current density of 100 mA/g as anode material for lithium-ion batteries (LIBs), which are much higher than those of pristine Si and the Si/C composites with higher carbon content. The mechanism of the enhancement of electrochemical performance of the micro-sized Si/C composite is discussed. The fabrication method and the structure design of the composites offer valuable potential in developing adaptable Si-based anode materials for industrial applications

  19. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dingsheng; Gao, Mingxia, E-mail: gaomx@zju.edu.cn; Pan, Hongge; Liu, Yongfeng; Wang, Junhua; Li, Shouquan; Ge, Hongwei

    2014-08-01

    Highlights: • Micro-sized Si/C composites were fabricated via. spray drying and carbonization. • Multi-morphology carbon was formed in the Si/C composites. • Si/C composite with 5.6 wt.% C provides significant improved cycling stability. • Multi-morphology carbon plays effective role in improving the electrochemical property. • The method provides potential for mass production of superior Si-based anode materials. - Abstract: Micro-sized Si/C composites with in situ introduced carbon of multi-morphology were fabricated via spray drying a suspension of commercial micro-sized Si and citric acid followed by a carbonization. Different ratios of Si to citric acid were used to optimize the composition and structure of the composites and thus the electrochemical performance. Carbon flakes including crooked and flat ones were well dispersed in between the Si particles, forming Si/C composites. Floc-like carbon layers and carbon fragments were also found to cover partially the Si particles. The Si/C composite with a low carbon content of 5.6 wt.% provides an initial reversible capacity of 2700 mA h/g and a capacity of 1860 mA h/g after 60 cycles at a current density of 100 mA/g as anode material for lithium-ion batteries (LIBs), which are much higher than those of pristine Si and the Si/C composites with higher carbon content. The mechanism of the enhancement of electrochemical performance of the micro-sized Si/C composite is discussed. The fabrication method and the structure design of the composites offer valuable potential in developing adaptable Si-based anode materials for industrial applications.

  20. In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Graphical abstract: We describe a route to synthesize TiO2/ZnO/Au three-way synergistic heterostructure nanofibers with high efficiency photocatalysts. Highlights: ? Synthesis of tri-component TiO2/ZnO/Au nanofibers. ? TiO2/ZnO/Au nanofibers showed excellent photocatalytic activity. ? Easy photocatalyst separation and reuse. - Abstract: The TiO2/ZnO nanofibers embedded by Au nanoparticles (TiO2/ZnO/Au NFs) were fabricated by combining the electrospinning technique (for TiO2/ZnO nanofibers) and an in situ reduction approach (for Au nanoparticles). X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electronmicroscopy, X-ray photoelectron spectroscopy, UVvis diffuse reflectance spectroscopy and photoluminescence spectroscopy, were used to characterize the as-synthesized nanofibers. The results showed that small Au nanoparticles (Au NPs) were well dispersed on the TiO2/ZnO nanofibers (TiO2/ZnO NFs). And, the TiO2/ZnO/Au nanofibers showed high charge separation efficiency under ultraviolet excitation, as evidenced by photoluminescence spectra. The photocatalytic studies revealed that the TiO2/ZnO/Au NFs exhibited enhanced photocatalytic efficiency of photodegradation of Methyl orange (MO) and 4-nitrophenol (4-NP) compared with the pure TiO2 nanofibers, ZnO nanofibers and TiO2/ZnO NFs under ultraviolet excitation, which might be attributed to the high separation efficiency of photogenerated electronhole pairs based on the photosynergistic effect among the three components of TiO2, ZnO and Au. And, the TiO2/ZnO/Au NFs could be easily separated and recycled due to their one-dimensional nanostructural property.

  1. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice

    DEFF Research Database (Denmark)

    Kristensen, Jonas Mller; Larsen, Steen

    2013-01-01

    Metformin is used as an anti-diabetic drug. Metformin ameliorates insulin resistance by improving insulin sensitivity in liver and skeletal muscle. Reduced mitochondrial content has been reported in type 2 diabetic muscles and it may contribute to decreased insulin sensitivity characteristic for diabetic muscles. The molecular mechanism behind the effect of metformin is not fully clarified but inhibition of complex I in the mitochondria and also activation of the 5'AMP activated protein kinase (AMPK) has been reported in muscle. Furthermore, both AMPK activation and metformin treatment have been associated with stimulation of mitochondrial function and biogenesis. However, a causal relationship in skeletal muscle has not been investigated. We hypothesized that potential effects of in vivo metformin treatment on mitochondrial function and protein expressions in skeletal muscle are dependent upon AMPK signaling. We investigated this by two weeks of oral metformin treatment of muscle specific kinase dead a(2) (KD) AMPK mice and wild type (WT) littermates. We measured mitochondrial respiration and protein activity and expressions of key enzymes involved in mitochondrial carbohydrate and fat metabolism and oxidative phosphorylation. Mitochondrial respiration, HAD and CS activity, PDH and complex I-V and cytochrome c protein expression were all reduced in AMPK KD compared to WT tibialis anterior muscles. Surprisingly, metformin treatment only enhanced respiration in AMPK KD mice and thereby rescued the respiration defect compared to the WT mice. Metformin did not influence protein activities or expressions in either WT or AMPK KD mice.We conclude that two weeks of in vivo metformin treatment enhances mitochondrial respiration in the mitochondrial deficient AMPK KD but not WT mice. The improvement seems to be unrelated to AMPK, and does not involve changes in key mitochondrial proteins.

  2. Two Weeks of Metformin Treatment Enhances Mitochondrial Respiration in Skeletal Muscle of AMPK Kinase Dead but Not Wild Type Mice

    DEFF Research Database (Denmark)

    Kristensen, J. M.; Larsen, S.

    2013-01-01

    Metformin is used as an anti-diabetic drug. Metformin ameliorates insulin resistance by improving insulin sensitivity in liver and skeletal muscle. Reduced mitochondrial content has been reported in type 2 diabetic muscles and it may contribute to decreased insulin sensitivity characteristic for diabetic muscles. The molecular mechanism behind the effect of metformin is not fully clarified but inhibition of complex I in the mitochondria and also activation of the 5'AMP activated protein kinase (AMPK) has been reported in muscle. Furthermore, both AMPK activation and metformin treatment have been associated with stimulation of mitochondrial function and biogenesis. However, a causal relationship in skeletal muscle has not been investigated. We hypothesized that potential effects of in vivo metformin treatment on mitochondrial function and protein expressions in skeletal muscle are dependent upon AMPK signaling. We investigated this by two weeks of oral metformin treatment of muscle specific kinase dead alpha(2) (KD) AMPK mice and wild type (WT) littermates. We measured mitochondrial respiration and protein activity and expressions of key enzymes involved in mitochondrial carbohydrate and fat metabolism and oxidative phosphorylation. Mitochondrial respiration, HAD and CS activity, PDH and complex I-V and cytochrome c protein expression were all reduced in AMPK KD compared to WT tibialis anterior muscles. Surprisingly, metformin treatment only enhanced respiration in AMPK KD mice and thereby rescued the respiration defect compared to the WT mice. Metformin did not influence protein activities or expressions in either WT or AMPK KD mice. We conclude that two weeks of in vivo metformin treatment enhances mitochondrial respiration in the mitochondrial deficient AMPK KD but not WT mice. The improvement seems to be unrelated to AMPK, and does not involve changes in key mitochondrial proteins.

  3. Radiologic Findings of Ductal Carcinoma in Situ Arising Within a Juvenile Fibroadenoma: Mammographic, Sonographic and Dynamic Contrast-Enhanced Breast MRI Features

    International Nuclear Information System (INIS)

    Juvenile fibroadenoma is an uncommon histologic variant of fibroadenoma that frequently shows a remarkable and rapid growth. The development of a carcinoma within a fibroadenoma, either in situ or invasive, is a rare condition. We encountered a 36-year-old woman with a palpable mass in the right breast. The radiologic findings were indicative of a fibroadenoma in the breast. Sonographic guided biopsy using a 14G core needle revealed the presence of ductal carcinoma in situ (DCIS) within the juvenile fibroadenoma. Focal excision was performed and the patient underwent radiation therapy in the right breast after surgery

  4. Mechanism of Enhanced Electrochemical Oxidation of 2,4-dichlorophenoxyacetic Acid with in situ Microwave Activated Boron-doped Diamond and Platinum Anodes

    Science.gov (United States)

    Gao, Junxia; Zhao, Guohua; Liu, Meichuan; Li, Dongming

    2009-09-01

    Remarkable enhancement in degradation effect is achieved at in situ activated boron-doped diamond (BDD) and Pt anodes with different extent through electrochemical oxidation (EC) of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave (MW) radiation in a flow system. Results show that when EC is activated with MW radiation, the complete mineralization time of 2,4-D at the BDD is reduced quickly from 10 to 4 h while Chemical oxygen demand (COD) removal at Pt is increased from 37.7 to 58.3% at 10 h; the initial current efficiency is both improved about 1.5 times while the pseudo-first-order rate constant is increased by 153 and 119% at the BDD and Pt, respectively. To gain insight into the higher efficiency in microwave activated EC, the mechanism has therefore been systematically evaluated from the essence of electrochemical reaction and the accumulated hydroxyl radical concentration. 2,4-Dichlorophenol, catechol, benquinone, and maleic and oxalic acids are the main intermediates on the Pt anode measured by high performance liquid chromatography (HPLC), while the intermediates on the BDD electrode include 2,4-dichlorophenol, hydroquinone, and maleic and oxalic acids. The reaction pathway with microwave radiation is the same as that in a conventional electrochemical oxidation on both electrodes. While less and lower aromatic intermediates produce at the BDD with MW, which suggests the higher ring-open ratio and the faster oxidation of carboxylic acids. With microwave radiation, the ring-open ratio at the BDD is increased to 98.8% from 85.6%; the value at Pt is increased to 67.3% from 35.9%. So microwave radiation can activate the electrochemical oxidation, which leads to the higher efficiency. This promotion is mainly due to the higher accumulated hydroxyl radical concentration and the effects by microwave radiation. All the results prove that the BDD electrode presents much better mineralization performance with MW. To the best of our knowledge, it is the first time the systematic analysis of the mechanism of microwave activated EC has been reported.

  5. An innovative bioelectrochemical-anaerobic digestion-coupled system for in-situ ammonia recovery and biogas enhancement: process performance and microbial ecology

    OpenAIRE

    Zhang, Yifeng; Angelidaki, Irini

    2014-01-01

    Ammonia (NH4+/NH3) inhibition during anaerobic digestion process is one of the most frequent problems existing in biogas plants, resulting in unstable process and reduced biogas production. In this study, we developed a novel hybrid system, consisted of a submersed microbial resource recovery cell (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production. In batch experiment, the ammonia c...

  6. Surface-Enhanced Raman Scattering (SERS) Surfaces for in-situ trace analysis of PAHs in water by Shifted Excitation Raman Difference Spectroscopy (SERDS)

    OpenAIRE

    Kwon, Yong-Hyok

    2012-01-01

    In-situ monitoring of polycyclic aromatic hydrocarbons (PAHs) in the water body has been of worldwide interest for the last decades because they are known to be toxic to biota even at low concentration in the range of ng/l (ppt). For that purpose, fast response optical sensors based on Raman spectroscopy providing a molecular fingerprint of the analyte are suitable for a rapid identification and quantification of these substances. To achieve the high sensitivity necessary for trace detection ...

  7. In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft

    OpenAIRE

    Wagner, N. L.; Brock, C. A.; Angevine, W. M.; A. Beyersdorf; P. Campuzano-Jost; Day, D; Gouw, J.A. De; Diskin, G. S.; Gordon, T. D.; Graus, M. G.; Holloway, J.S.; Huey, G.; Jimenez, J.L.; Lack, D. A.; Liao, J.

    2015-01-01

    Vertical profiles of submicron aerosol from in situ aircraft-based measurements were used to construct aggregate profiles of chemical, microphysical, and optical properties. These vertical profiles were collected over the southeastern United States (SEUS) during the summer of 2013 as part of two separate field studies: the Southeast Nexus (SENEX) study and the Study of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS). Shallow ...

  8. In-situ remediation strategy for enhanced microbial de-acidification of geogenic sulphuric acid mining lakes - mesocosmic studies; In situ-Sanierungsstrategie zur Foerderung der mikrobiellen Entsaeuerung von geogen schwefelsauren Bergbaurestseen - Mesokosmosstudien

    Energy Technology Data Exchange (ETDEWEB)

    Froemmichen, R.

    2001-07-01

    The author investigated whether neutralisation of acid mining lakes can be enhanced by adding low-cost, complex organic carbon sources. Subjects: Selection of a complex carbon source suited for stimulation of dissimilatory iron and sulfate reduction; design and observation of a near-natural landscape compartment (mesocosmos) at different scales as a preparation for the field study; Description of reactions in the mesocosmic lake water and sediment; Assessment of neutralisation equivalents and neutralisation rates on the basis of an identification of reduced iron and sulphur compounds. [German] Die Hypothese, dass durch Zugabe kostenguenstiger komplexer organischer Kohlenstoffquellen in die sedimentnahe Wasserzone eines sauren Tagebaurestsees seeinterne Neutralisierungsprozesse gefoerdert werden, liegt dieser Arbeit zu Grunde. Seeinterne Neutralisationsprozesse, wie die dissimilatorische Eisen- und Sulfatreduktion, fuehren ueber die Akkumulierung von reduzierten Eisen- und Schwefelverbindungen im Sediment zur Alkalinitaetsbildung im Gewaessersystem und im Seewasser zu hoeheren pH-Werten. Daher leiten sich folgende Ziele fuer diese Arbeit ab: - Auswahl einer geeigneten komplexen Kohlenstoffquelle zur Stimulierung der dissimilatorischen Eisen- und Sulfatreduktion - Design und Beobachtung eines naturnahen Landschaftsausschnittes (Mesokosmos) unterschiedlicher Massstabsebenen in Vorbereitung fuer die Fallstudie im Freiland - Beschreibung von Stoffumsetzungen im Seewasser und -sediment der Mesokosmen - Abschaetzung von Neutralisationsaequivalenten und Bestimmung von Neutralisationsraten anhand der Identifizierung reduzierter Eisen- und Schwefelverbindungen. (orig.)

  9. Enhancement of electrical characteristics and reliability in crystallized ZrO{sub 2} gate dielectrics treated with in-situ atomic layer doping of nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jhih-Jie; Huang, Li-Tien; Tsai, Meng-Chen [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Lee, Min-Hung [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Chen, Miin-Jang, E-mail: mjchen@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan (China); National Nano Device Laboratories, Hsinchu 30078, Taiwan (China)

    2014-06-01

    The crystallized ZrO{sub 2} high-K gate dielectrics treated with in-situ atomic layer doping of nitrogen using remote N{sub 2} and NH{sub 3} plasma were investigated, to suppress the capacitance equivalent thickness (CET), leakage current density (J{sub g}), and interfacial state density (D{sub it}). The stress-induced leakage current (SILC) was reduced significantly as well. The tetragonal/cubic phase of ZrO{sub 2} was formed by post metallization annealing at a low temperature of 450 C to offer a high dielectric constant of the gate oxide. The in-situ atomic layer doping of nitrogen using the remote NH{sub 3} plasma contributes to the deactivation of the oxygen vacancies and the well passivation of D{sub it}. Accordingly, a suppressed J{sub g} of 4.79 10{sup ?5} A cm{sup ?2} and D{sub it} of 3.96 10{sup 11} cm{sup ?2} eV{sup ?1} were realized in the crystallized ZrO{sub 2} gate oxide with a low CET of 1.35 nm. The gate dielectrics were also optically examined by the photoluminescence from the high-K/Si interface, indicating that the D{sub it} is highly correlated with the hydrogen passivation originating from the remote NH{sub 3} plasma. The results indicate that in-situ atomic layer doping of nitrogen is an applicable and effective technique to improve the electrical properties of crystallized gate dielectrics in the advanced metal-oxide-semiconductor devices.

  10. Rapid conversion of the ester prodrug abiraterone acetate results in intestinal supersaturation and enhanced absorption of abiraterone: in vitro, rat in situ and human in vivo studies.

    Science.gov (United States)

    Stappaerts, Jef; Geboers, Sophie; Snoeys, Jan; Brouwers, Joachim; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2015-02-01

    The aim of this study was to evaluate the intestinal disposition of abiraterone acetate, an ester prodrug of the anticancer agent abiraterone. Stability of the prodrug and solubility and dissolution characteristics of both abiraterone and abiraterone acetate were monitored in vitro. Moreover, the in vivo intraluminal concentrations of abiraterone and abiraterone acetate upon intake of one tablet of 250 mg abiraterone acetate were assessed in healthy volunteers. The intestinal absorption resulting from the intraluminal behavior of the ester prodrug was determined using the rat in situ intestinal perfusion technique with mesenteric blood sampling. Simulated and aspirated human intestinal fluids of the fasted state were used as solvent systems. Upon incubation of abiraterone acetate in human intestinal fluids in vitro, rapid hydrolysis of the prodrug was observed, generating abiraterone concentrations largely exceeding the apparent solubility of abiraterone, suggesting the existence of intestinal supersaturation. These findings were confirmed in vivo, by intraluminal sampling of duodenal fluids upon oral intake of an abiraterone acetate tablet by healthy volunteers. Rat in situ intestinal perfusion experiments performed with suspensions of abiraterone and abiraterone acetate in human intestinal fluids of the fasted state revealed significantly higher flux values upon perfusion with the prodrug than with abiraterone. Moreover, rat in situ intestinal perfusion with abiraterone acetate suspensions in simulated fluids of the fasted state in presence or absence of esterases demonstrated that increased hydrolytic activity of the perfusion medium was beneficial to the intestinal absorption of abiraterone. In conclusion, the rapid hydrolysis of abiraterone acetate in the intraluminal environment appears to result in fast and extensive generation of abiraterone supersaturation, creating a strong driving force for abiraterone absorption. PMID:25592324

  11. Characterisation of vertical BrO distribution during events of enhanced tropospheric BrO in Antarctica, from combined remote and in-situ measurements

    OpenAIRE

    Roscoe, H. K.; Brough, N.; Jones, A E; Wittrock, F.; Richter, A; Van Roozendael, M.; Hendrick, F.

    2014-01-01

    Tropospheric BrO was measured by a ground-based remote-sensing spectrometer at Halley in Antarctica in spring 2007, and BrO was measured by satellite-borne remote-sensing spectrometers using similar spectral regions and similar Differential Optical Absorption Spectroscopy (DOAS) analyses. Near-surface BrO was simultaneously measured in situ at Halley by Chemical Ionisation Mass Spectrometer (CIMS), and in an earlier year near-surface BrO was measured at Halley over a long path by a ground-bas...

  12. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte; Musaeus, Peter

    2015-01-01

    Introduction: In situ simulation offers on-site training to healthcare professionals. It refers to a training strategy where simulation technology is integrated into the clinical encounter. Training in the simulation laboratory does not easily tap into situational resources, e.g. individual, team......, and organisational characteristic. Therefore, it might fail to fully mimic real clinical team processes. Though research on in situ simulation in healthcare is in its infancy, literature is abundant on patient safety and team training1. Patient safety reporting systems that identify risks to patients......-term observations, questionnaires and interviews in an emergency department 3) In situ simulation with evaluation of the team training effort with the SAQ (Safety Attitudes Questionnaire)2 and TEAM (Team Emergency Assessment Measure)3. Reported critical incidents and adverse events were collected from the Danish...

  13. Enhancement in statistical and image analysis for in situ SXRF studies of elemental distribution and co-localization, using Dioscorea balcanica

    International Nuclear Information System (INIS)

    Synchrotron-radiation-based X-ray microfluorescence has been used for in situ investigation of the distribution of micronutrient and macronutrient elements in an unstained cross section of a stem of monocotyledonous liana plant Dioscorea balcanica Koanin. The elemental allocation has been quantified and the grouping/co-localization in straight and twisted stem internodes has been analysed. Synchrotron-based X-ray microfluorescence (SXRF) is an analytical method suitable for in situ investigation of the distribution of micronutrient and macronutrient elements in several-micrometres-thick unstained biological samples, e.g. single cells and tissues. Elements are mapped and quantified at sub-p.p.m. concentrations. In this study the quantity, distribution and grouping/co-localization of various elements have been identified in straight and twisted internodes of the stems of the monocotyledonous climber D. balcanica Koanin. Three different statistical methods were employed to analyse the macro-nutrient and micronutrient distributions and co-localization. Macronutrient elements (K, P, Ca, Cl) are distributed homogeneously in both straight and twisted internodes. Micronutrient elements are mostly grouped in the vasculature and in the sclerenchyma cell layer. In addition, co-localization of micronutrient elements is much more prominent in twisted than in straight internodes. These image analyses and statistical methods provided very similar outcomes and could be applied to various types of biological samples imaged by SXRF

  14. Poly(lactic acid)-Based in Situ Microfibrillar Composites with Enhanced Crystallization Kinetics, Mechanical Properties, Rheological Behavior, and Foaming Ability.

    Science.gov (United States)

    Kakroodi, Adel Ramezani; Kazemi, Yasamin; Ding, WeiDan; Ameli, Aboutaleb; Park, Chul B

    2015-12-14

    Melt blending is one of the most promising techniques for eliminating poly(lactic acid)'s (PLA) numerous drawbacks. However, success in a typical melt blending process is usually achieved through the inclusion of high concentrations of a second polymeric phase which can compromise PLA's green nature. In a pioneering study, we introduce the production of in situ microfibrillar PLA/polyamide-6 (PA6) blends as a cost-effective and efficient technique for improving PLA's properties while minimizing the required PA6 content. Predominantly biobased products, with only 3 wt % of in situ generated PA6 microfibrils (diameter ?200 nm), were shown to have dramatically improved crystallization kinetics, mechanical properties, melt elasticity and strength, and foaming-ability compared with PLA. Crucially, the microfibrillar blends were produced using an environmentally friendly and cost-effective process. Both of these qualities are essential in guarantying the viability of the proposed technique for overcoming the obstacles associated with the vast commercialization of PLA. PMID:26536276

  15. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  16. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  17. In situ preparation of novel pn junction photocatalyst BiOI/(BiO)2CO3 with enhanced visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Graphical abstract: Novel pn junction photocatalysts BiOI/(BiO)2CO3 with different contents of BiOI were in situ synthesized by simple etching (BiO)2CO3 precursor with hydroiodic acid (HI). XRD, FE-SEM, HRTEM, FT-IR, EDS and DRS were employed to study the structures, morphologies and optical properties of the as-prepared samples. Under visible light (? > 420 nm), BiOI/(BiO)2CO3 hybrid displayed much higher photocatalytic activity than pure (BiO)2CO3 and BiOI for the degradation of methyl orange (MO). The increased photocatalytic activity of BiOI/(BiO)2CO3 could be attributed to the formation of the pn junction between p-BiOI and n-(BiO)2CO3, which effectively suppresses the recombination of photoinduced electronhole pairs. Moreover, the tests of radical scavengers confirmed that O2?and h+ were the main reactive species for the degradation of MO. Highlights: ? BiOI/(BiO)2CO3 was synthesized using an in situ hydroiodic acid etching way. ? BiOI/(BiO)2CO3 displayed excellent photocatalytic activity under visible light. ? O2? and h+ played the major roles for MO degradation over BiOI/(BiO)2CO3. ? p-BiOI/n-(BiO)2CO3 junction significantly affected MO degradation. - Abstract: Novel pn junction photocatalysts BiOI/(BiO)2CO3 with different contents of BiOI were in situ synthesized by etching (BiO)2CO3 precursor with hydroiodic acid (HI) solution. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectrometry (FT-IR), energy-dispersive spectroscopy (EDS) and UVvis diffuse reflectance spectroscopy (DRS) were employed to study the structures, morphologies and optical properties of the as-prepared samples. Under visible light (? > 420 nm), BiOI/(BiO)2CO3 hybrid displayed much higher photocatalytic activity than pure (BiO)2CO3 and BiOI for the degradation of methyl orange (MO). The increased photocatalytic activity of BiOI/(BiO)2CO3 could be attributed to the formation of the pn junction between p-BiOI and n-(BiO)2CO3, which effectively suppresses the recombination of photoinduced electronhole pairs. Moreover, the tests of radical scavengers confirmed that O2? and h+ were the main reactive species for the degradation of MO.

  18. Uranium in situ leaching

    International Nuclear Information System (INIS)

    Despite the depressed situation that has affected the uranium industry during the past years, the second Technical Committee Meeting on Uranium In Situ Leaching, organized by the International Atomic Energy Agency and held in Vienna from 5 to 8 October 1992, has attracted a relatively large number of participants. A notable development since the first meeting was that the majority of the contributions came from the actual operators of in situ leaching uranium production. At the present meeting, presentations on operations in the USA were balanced by those of the eastern European and Asian countries. Contributions from Bulgaria, China, Czechoslovakia, Germany (from the operation in the former German Democratic Republic), the Russian Federation and Uzbekistan represent new information not commonly available. In situ leach mining is defined in one of the paper presented as a ''mining method where the ore mineral is preferentially leached from the host rock in place, or in situ, by the use of leach solutions, and the mineral value is recovered. Refs, figs and tabs

  19. Enhancement of growth and structure properties of YBa2Cu3O7-? thin layers by in situ incorporation of gold nano-clusters

    International Nuclear Information System (INIS)

    For most hetero-epitactic growth techniques, structural defects due to the lattice misfit, namely tilts, precipitates or holes, turn out to be limiting factors for the successful fabrication of multilayer systems. A new approach of an in situ growth technique dealing with this problem by incorporation of gold nano-clusters is examined. Therefore, pulsed laser deposition (PLD) of a high-TC YBa2Cu3O7-? (YBCO) layer onto a strontium titanate (STO) template with a temporary interlayer of gold with a well-defined film thickness is investigated. Within this process, the gold interlayer shows nano-clustering behavior. Effects on the properties of structure like crystallographic or surface features of the ablated YBCO layer by variation of the film thickness of the gold and YBCO layers are presented. Moreover, distribution and clustering behavior of the crystallized gold nano-particles as well as the basic superconducting properties of the layer system are analyzed.

  20. An innovative bioelectrochemical-anaerobic digestion-coupled system for in-situ ammonia recovery and biogas enhancement: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    Ammonia (NH4+/NH3) inhibition during anaerobic digestion process is one of the most frequent problems existing in biogas plants, resulting in unstable process and reduced biogas production. In this study, we developed a novel hybrid system, consisted of a submersed microbial resource recovery cell...... (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g...... ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  1. The enhanced Jc and Birr of in situ MgB2 wires and tapes alloyed with C4H6O5 (malic acid) after cold high pressure densification

    International Nuclear Information System (INIS)

    Cold high pressure densification, a method recently introduced at GAP in Geneva, was applied for improving the transport critical current density, Jc, and the irreversibility field, Birr, of monofilamentary in situ MgB2 wires and tapes alloyed with 10 wt% C4H6O5 (malic acid). Tapes densified at 1.48 GPa exhibited after reaction an enhancement of Jc from 2 to 4 x 104 A cm-2 at 4.2 K/10 T and from 0.5 to 4 x 104 A cm-2 at 20 K/5 T, while the Birr was enhanced from 19.3 to 22 T at 4.2 K and from 7.5 to 10.0 T at 20 K. Cold densification also caused a strong enhancement of B(104), the field at which Jc takes the value 1 x 104 A cm-2. For tapes subjected to 1.48 GPa, B(104)|| and B(104)perpendicular at 4.2 K were found to increase from 11.8 and 10.5 T to 13.2 and 12.2 T, respectively. Almost isotropic conditions were obtained for rectangular wires with aspect ratios a/b4)||=12.7 and B(104)perpendicular=12.5 T were obtained. At 20 K, the wires exhibited an almost isotropic behavior, with B(104)||=5.9 T and B(104)perpendicular=5.75 T, Birr(20 K) being ?10 T. These values are equal to or higher than the highest values reported so far for isotropic in situ wires with SiC or other carbon based additives. Further improvements are expected on optimizing the cold high pressure densification process, which has the potential for fabrication of MgB2 wires of industrial lengths.

  2. In situ synthesis of hierarchical flower-like Bi2S3/BiOCl composite with enhanced visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Novel BiOCl micro-flower was synthesized by a facile method and used as a precursor to produce Bi2S3/BiOCl composites. The Bi2S3/BiOCl composites, synthesized by in situ etching of BiOCl precursor with thiacetamide (TAA) solution, maintain the hierarchical flower-like structure and exhibit a large surface area. X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and UVvis diffuse reflectance spectroscopy (DRS) were employed to study the structures, morphologies and optical properties of the as-prepared samples. Under visible light (? > 400 nm), the flower-like Bi2S3/BiOCl composite displayed much higher photocatalytic activity than single Bi2S3, BiOCl and 2D plate-like Bi2S3/BiOCl composite for the degradation of rhodamine B (RhB). The increased photocatalytic activity of Bi2S3/BiOCl could be attributed to the formation of the heterostructure between Bi2S3 and BiOCl and large surface area of the hierarchical structure, which effectively separate the photoinduced electronhole pairs and suppress their recombination.

  3. In situ fabrication of Ag3PO4/TiO2 nanotube heterojunctions with enhanced visible-light photocatalytic activity.

    Science.gov (United States)

    Tong, Zhen Wei; Yang, Dong; Sun, Yuan Yuan; Tian, Yao; Jiang, Zhong Yi

    2015-05-14

    Ag3PO4/TiO2 nanotube (TNT) heterojunctions were fabricated via a facile in situ growth method. Hemispherical Ag3PO4 nanocrystals were uniformly grown on the TNT surface, and their size was confined to 5-10 nm. A joint area was distinctly observed between the Ag3PO4 nanocrystals and TNT, indicating the formation of a Ag3PO4/TNT heterojunction. Compared with pure Ag3PO4, the Ag3PO4/TNT heterojunction possesses more active sites, less bulk defects, more efficient electron-hole separation, as well as better dye adsorption properties, and thus exhibits a significantly elevated photocatalytic activity for Rhodamine B (RhB) degradation. The study of the reactive species demonstrates that the photocatalytic degradation of RhB over the Ag3PO4/TNT heterojunction is primarily driven by both photogenerated h(+) and ?OH radicals. This easily-fabricated Ag3PO4/TNT heterojunction with promising photocatalytic activity may find potential applications in energy and environmental related areas. PMID:25884048

  4. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-component DNAPLS with surfactant solutions. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Laboratory studies were conducted at the State University of New York at Buffalo (SUNY) while numerical simulation and field work were undertaken by INTERA Inc. in collaboration with Martin Marietta Energy Systems Inc. at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). Ten of these were capable of solubilizing TCE to concentrations greater than 15,000 mg/L, compared to its aqueous solubility of 1,100 mg/L. Four surfactants were identified as good solubilizers of all three chlorinated solvents. Of these, a secondary alcohol ethoxylate was the first choice for in situ testing because of its excellent solubilizing ability and its low propensity to sorb. However, this surfactant did not meet the Commonwealth of Kentucky`s acceptance criteria. Consequently, it was decided to use a surfactant approved for use by the Food and Drug Administration as a food-grade additive. As a 1% micellar-surfactant solution, this sorbitan monooleate has a solubilization capacity of 16,000 mg TCE/L, but has a higher propensity to sorb to clays than has the alcohol ethoxylate.

  5. Determination of HER-2 status on FNAC material from breast carcinomas using in situ hybridization with dual chromogen visualization with silver enhancement (dual SISH

    Directory of Open Access Journals (Sweden)

    Beraki Elsa

    2010-01-01

    Full Text Available During the last years, HER-2 status kits and protocols for chromogen visualization of hybridization signals have come on the market. The first generation using chromogen visualization used single color probes. The second generation, now emerging on the market, uses dual chromogen visualization. The aim of this study has been to test a new dual color chromogen kit (Ventana INFORM HER2 Dual Colour ISH Roche and compare the results with our in-house method(s. The material consisted primarily of cytological material from invasive breast carcinomas in 49 women. Dual SISH was done on all 49 cytological and histological specimens. The histological specimens were treated according to the manufacturer?s recommendations. The procedure was modified in several steps in order to adapt it to the cytological material. Hybridization failed in two cytological specimens. Dual SISH showed concordant results on cytological and histological material as to amplified/not amplified. The included cases had the same HER-2 expression in the invasive and the in situ components on histology. Four IDC showed HER-2 amplification (8.5%. Polysomy was found in two cases. All dual SISH results except for one concurred with the results of the in-house method(s (1/47=2.1%. The dual SISH is suitable for cytological examination of HER-2 status. The protocol must be optimized for cytological material.

  6. In situ synthesis of hierarchical flower-like Bi{sub 2}S{sub 3}/BiOCl composite with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Saihua [State Key Laboratory of Fire Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026 (China); Department of Civil and Architectural Engineering, City University of Hong Kong and USTC-CityU Joint Advanced Research Centre, Suzhou (China); Zhou, Keqing [State Key Laboratory of Fire Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026 (China); Shi, Yongqian [State Key Laboratory of Fire Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026 (China); Department of Civil and Architectural Engineering, City University of Hong Kong and USTC-CityU Joint Advanced Research Centre, Suzhou (China); Lo, Siuming [Department of Civil and Architectural Engineering, City University of Hong Kong and USTC-CityU Joint Advanced Research Centre, Suzhou (China); Xu, Haiyan [Nano Science and Technology Institute, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230027 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026 (China); Gui, Zhou, E-mail: zgui@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026 (China)

    2014-01-30

    Novel BiOCl micro-flower was synthesized by a facile method and used as a precursor to produce Bi{sub 2}S{sub 3}/BiOCl composites. The Bi{sub 2}S{sub 3}/BiOCl composites, synthesized by in situ etching of BiOCl precursor with thiacetamide (TAA) solution, maintain the hierarchical flower-like structure and exhibit a large surface area. X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and UVvis diffuse reflectance spectroscopy (DRS) were employed to study the structures, morphologies and optical properties of the as-prepared samples. Under visible light (? > 400 nm), the flower-like Bi{sub 2}S{sub 3}/BiOCl composite displayed much higher photocatalytic activity than single Bi{sub 2}S{sub 3}, BiOCl and 2D plate-like Bi{sub 2}S{sub 3}/BiOCl composite for the degradation of rhodamine B (RhB). The increased photocatalytic activity of Bi{sub 2}S{sub 3}/BiOCl could be attributed to the formation of the heterostructure between Bi{sub 2}S{sub 3} and BiOCl and large surface area of the hierarchical structure, which effectively separate the photoinduced electronhole pairs and suppress their recombination.

  7. In situ photo-assisted deposition and photocatalysis of ZnIn2S4/transition metal chalcogenides for enhanced degradation and hydrogen evolution under visible light.

    Science.gov (United States)

    Lim, Wei Yang; Hong, Minghui; Ho, Ghim Wei

    2015-12-22

    The effective immobilization of a transition chalcogenide co-catalyst via an in situ aqueous photo-assisted deposition technique has shown great accessibility to complex ZnIn2S4 host hierarchical nanostructured materials with homogeneous distribution. The complementary photo-assisted deposition readily deposits finely-dispersed co-catalyst particles and simultaneously generates photocatalytic hydrogen. Another added advantage is that the photo-assisted deposition of the co-catalyst does not compromise the crystal structure or the integrity of the host photocatalyst, hence offering a better alternative to the doping technique. A systematic study of various transition metal chalcogenide co-catalysts and optimization of wt% MoS2, CuS and Ag2S loadings were demonstrated. Among them, the ZnIn2S4/MoS2 composite exhibits exceptional photocatalytic hydrogen production and stability as well as superior MO degradation under visible light irradiation. The present methodology is expected to be extendable to various transition metal oxides/chalcogenides since ionic derivatives exhibit high affinity to a variety of materials under photoirradiation. PMID:26605503

  8. In Situ Mass Spectrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The In Situ Mass Spectrometer projects focuses on a specific subsystem to leverage advanced research for laser-based in situ mass spectrometer development...

  9. Effectiveness of Start to Run, a 6-week training program for novice runners, on increasing health-enhancing physical activity: a controlled study

    OpenAIRE

    Ooms, L; Veenhof, C.; Bakker, D.H. de

    2013-01-01

    Background The use of the organized sports sector as a setting for health-promotion is a relatively new strategy. In the past few years, different countries have been investing resources in the organized sports sector for promoting health-enhancing physical activity. In the Netherlands, National Sports Federations were funded to develop and implement “easily accessible” sporting programs, aimed at the least active population groups. Start to Run, a 6-week training program for novice runners, ...

  10. Solvothermal in situ synthesis of Fe3O4-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity

    International Nuclear Information System (INIS)

    Graphical abstract: After purification, the multi-wall carbon nanotubes (MWCNTs) act as seeds for Fe3O4 nanoparticles heterogeneous nucleation. The Fe3O4 nanoparticles with diameter range of 4.210.0 nm synthesized in situ on the MWCNTs under solvothermal condition. The formed nano Fe3O4-MWCNTs decolorized the Acid Orange II effectively via Fenton-like reaction. Highlights: ? The amount of water tunes size and size distribution of the Fe3O4 nanoparticles (FNs). ? FNs are homogeneously coated on the multi-walled carbon nanotubes (MWCNTs). ? FNs have diameters in the range of 4.210.0 nm, average grain size of 7.4 nm. ? Fe3O4-MWCNTs are used as a Fenton-like catalyst to decompose Acid Orange II. ? Fe3O4-MWCNTs displayed a higher activity than nanometer-size Fe3O4. -- Abstract: Fe3O4-multi-walled carbon nanotubes (Fe3O4-MWCNTs) hybrid materials were synthesized by a solvothermal process using acid treated MWCNTs and iron acetylacetonate in a mixed solution of ethylene glycol and ultrapure water. The materials were characterized using X-ray powder diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The results showed that a small amount of water in the synthesis system played a role in controlling crystal phase formation, size of Fe3O4, and the homogeneous distribution of the Fe3O4 nanoparticles deposited on the MWCNTs. The Fe3O4 nanoparticles had diameters in the range of 4.210.0 nm. They displayed good superparamagnetism at room temperature and their magnetization was influenced by the reaction conditions. They were used as a Fenton-like catalyst to decompose Acid Orange II and displayed a higher activity than nanometer-size Fe3O4.

  11. Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 m.

    Science.gov (United States)

    Sun, Kai; Wang, Shengkai; Sur, Ritobrata; Chao, Xing; Jeffries, Jay B; Hanson, Ronald K

    2014-10-01

    Cavity-enhanced absorption spectroscopy (CEAS) using a mid-infrared DFB quantum-cascade laser is reported for sensitive time-resolved (10 ?s) in situ CO measurements in a shock tube. Off-axis alignment and fast scanning of the laser wavelength were used to minimize coupling noise in a low-finesse cavity. An absorption gain factor of 91 was demonstrated, which enabled sub-ppm detection sensitivity for gas temperatures of 1000-2100K in a 15 cm diameter shock tube. This substantial improvement in detection sensitivity compared to conventional single-pass absorption measurements, shows great potential for the study of reaction pathways of high-temperature combustion kinetics mechanisms in shock tubes. PMID:25322031

  12. LEAKING UNDERGROUND STORAGE TANKS: REMEDIATION WITH EMPHASIS ON IN SITU BIORESTORATION

    Science.gov (United States)

    The current literature indicates that in situ biorestoration has great potential for remediation of aquifers contaminated by leaking underground storage tanks. In situ aquifer restoration involves the enhancement of the indigenous microflora to degrade subsurface pollutants. The ...

  13. LEAKING UNDERGROUND STORAGE TANKS: REMEDIATION WITH EMPHASIS ON 'IN SITU' BIORESTORATION

    Science.gov (United States)

    The current literature indicates that in situ biorestoration has great potential for remediation of aquifers contaminated by leaking underground storage tanks. In situ aquifer restoration involves the enhancement of the indigenous microflora to degrade subsurface pollutants. The ...

  14. Ductal carcinoma in situ.

    Science.gov (United States)

    Bleicher, Richard J

    2013-04-01

    Management of ductal carcinoma in situ (DCIS) has evolved from radical surgery to the option of a more minimally invasive approach. Data show that breast conservation surgery performed with administration of radiotherapy, like mastectomy, is feasible and safe. Because efforts to find a safe group for elimination of radiotherapy have resulted in data that conflict, radiotherapy still remains standard of care as a part of breast conservation for DCIS. Tamoxifen has also shown a significant recurrence benefit and has become standard in the treatment of receptor-positive disease. Investigation of other agents, such as anastrazole and trastuzumab, are ongoing. PMID:23464692

  15. A NEW METHOD FOR IN-SITU CHARACTERIZATION OF IMPORTANT ACTINIDES AND TECHNETIUM COMPOUNDS VIA FIBEROPTIC SURFACE ENHANCED RAMAN SPECTROSCOPY (SERS)

    Science.gov (United States)

    This project serves to fill information gap through the development of a novel surface-enhanced Raman scattering (SERS) spectroscopy to selectively and sensitively monitor and characterize the chemical speciation of radionuclides at trace levels. The SERS technique permits both o...

  16. In situ monitoring of catalytic process variations in a single nanowire by dark-field-assisted surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Shi, Xin; Li, Hao-Wen; Ying, Yi-Lun; Liu, Chang; Zhang, Li; Long, Yi-Tao

    2016-01-01

    In this communication, we provide a new method for characterizing the kinetics of a catalytic process on multiple sites of a single nanowire by dark-field-assisted surface-enhanced Raman spectroscopy (DFSERS). The differences in the reaction rate and the extent of the photocatalysis between sites of a single nanowire were observed. PMID:26595260

  17. Effectiveness of weekly cognitive stimulation therapy for people with dementia and the additional impact of enhancing cognitive stimulation therapy with a carer training program

    Directory of Open Access Journals (Sweden)

    Cove J

    2014-12-01

    Full Text Available Jennifer Cove,1 Nicola Jacobi,2 Helen Donovan,3 Martin Orrell,4 Josh Stott,5 Aimee Spector5 1Department of Clinical, Educational and Health Psychology, University College London, London, 2Department of Psychology, City University, London, 3Clinical Psychology Service, South Essex Partnership NHS Foundation Trust, Bedford, 4Department of Psychiatry, 5Department of Clinical,Educational and Health Psychology, University College London, London, UKPurpose of the study: Cognitive stimulation therapy (CST is a widely used, evidence-based intervention for people with dementia (PwD. Although designed as a 14 session, twice weekly intervention, many services in the UK deliver CST once a week for 14 weeks. However, this method of delivery has yet to be evaluated. In addition, CST does not include any formal carer training. This study aimed to evaluate the effectiveness of once weekly CST and determine any additional impact when enhanced with a carer training program.Design and methods: A single blind, randomized controlled trial was conducted. Sixty eight PwD and their carers were recruited through three community Memory Assessment Services. PwD and their carers were randomized to one of three conditions: CST plus carer training, CST only, or a wait list control. PwD were administered standardized measures of cognition, quality of life, and quality of relationship with carer at baseline and the 15 week follow-up.Results: There were no baseline differences across the three groups. At follow-up, there were no significant differences between PwD in the three groups on any outcomes. Implications: Weekly CST with or without carer training may not be an effective form of delivery. Several possible explanations for the outcomes are proposed. Weekly CST may not offer the necessary dose required to combat decline, and equally the carer training may have been too brief to have made a difference. Services currently offering weekly CST should collect routine outcome data to support its use and provide practice-based evidence.Keywords: Alzheimers disease, cognition, intervention, caregiver

  18. Diclofenac enables unprecedented week-long microneedle-enhanced delivery of a skin impermeable medication in humans

    Science.gov (United States)

    Brogden, Nicole K.; Banks, Stan L.; Crofford, Leslie J.; Stinchcomb, Audra L.

    2013-01-01

    Microneedles applied to the skin create micropores, allowing transdermal drug delivery of skin-impermeable compounds. The first human study with this technique demonstrated delivery of naltrexone (an opioid antagonist) for two to three days. Rapid micropore closure, however, blunts the delivery window. Application of diclofenac (an anti-inflammatory) allows seven days of naltrexone delivery in animals. Purpose the purpose of the current work was to demonstrate delivery of naltrexone for seven days following one microneedle treatment in humans. Methods Human subjects were treated with microneedles, diclofenac (or placebo), and naltrexone. Impedance measurements were used as a surrogate marker to measure micropore formation, and plasma naltrexone concentrations were measured for seven days post-microneedle application. Results Impedance dropped significantly from baseline to post-microneedle treatment, confirming micropore formation. Naltrexone was detected for seven days in Group 1 (diclofenac + naltrexone, n = 6), vs. 72 hours in Group 2 (placebo + naltrexone, n = 2). At study completion, a significant difference in impedance was observed between intact and microneedle-treated skin in Group 1 (confirming the presence of micropores). Conclusion This is the first study demonstrating week-long drug delivery after one microneedle application, which would increase patient compliance and allow delivery of therapies for chronic diseases. PMID:23761054

  19. Two weeks of metformin treatment induces AMPK-dependent enhancement of insulin-stimulated glucose uptake in mouse soleus muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas Mller; Treebak, Jonas T

    2014-01-01

    Metformin-induced activation of the 5'-AMP-activated protein kinase (AMPK) has been associated with enhanced glucose uptake in skeletal muscle, but so far no direct causality has been examined. We hypothesized that an effect of in vivo metformin treatment on glucose uptake in mouse skeletal muscles is dependent on AMPK signaling. Oral doses of metformin or saline treatment were given to muscle-specific kinase dead (KD) AMPK?2 mice and wild-type (WT) littermates either once or chronically for 2 wk. Soleus and extensor digitorum longus muscles were used for measurements of glucose transport and Western blot analyses. Chronic treatment with metformin enhanced insulin-stimulated glucose uptake in soleus muscles of WT (?45%, P < 0.01) but not of AMPK KD mice. Insulin signaling at the level of Akt protein expression or Thr(308) and Ser(473) phosphorylation was not changed by metformin treatment. Insulin signaling at the level of Akt and TBC1D4 protein expression as well as Akt Thr(308)/Ser(473) and TBC1D4 Thr(642)/Ser(711) phosphorylation were not changed by metformin treatment. Also, protein expressions of Rab4, GLUT4, and hexokinase II were unaltered after treatment. The acute metformin treatment did not affect glucose uptake in muscle of either of the genotypes. In conclusion, we provide novel evidence for a role of AMPK in potentiating the effect of insulin on glucose uptake in soleus muscle in response to chronic metformin treatment.

  20. An enhanced postnatal autoimmune profile in 24 week-old C57BL/6 mice developmentally exposed to TCDD

    International Nuclear Information System (INIS)

    Developmental exposure of mice to the environmental contaminant and AhR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), causes persistent postnatal suppression of T cell-mediated immune responses. The extent to which prenatal TCDD may induce or exacerbate postnatal autoimmune disease remains unknown. In the present study, time-pregnant high affinity AhR C57BL/6 mice received a single oral administration of 0, 2.5, or 5 μg/kg TCDD on gestation day (gd) 12. Offspring of these mice (n = 5/gender/treatment) were evaluated at 24 weeks-of-age and showed considerable immune dysregulation that was often gender-specific. Decreased thymic weight and percentages of CD4+CD8+ thymocytes, and increased CD4+CD8- thymocytes, were present in the female but not male offspring. Males but not females showed decreased CD4-CD8+ T cells, and increased Vβ3+ and Vβ17a+ T cells, in the spleen. Males but not females also showed increased percentages of bone marrow CD24-B220+ B cell progenitors. Antibody titers to dsDNA, ssDNA and cardiolipin displayed increasing trends in both male and female mice, reaching significance for anti-dsDNA in both genders and for ssDNA in males at 5 μg/kg TCDD. Immunofluorescent staining of IgG and C3 deposition in kidney glomeruli increased in both genders of prenatal TCDD-exposed mice, suggestive of early stages of autoimmune glomerulonephritis. Collectively, these results show that exposure to TCDD during immune system development causes persistent humoral immune dysregulation as well as altered cell-mediated responses, and induces an adult profile of changes suggestive of increased risk for autoimmune disease

  1. Green synthesis of Pt-on-Pd bimetallic nanodendrites on graphene via in situ reduction, and their enhanced electrocatalytic activity for methanol oxidation

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Porous 3D dendrite-like structure of Pt-on-Pd bimetallic nanostructures supported on graphene were prepared. • The surface of nanostructures was very “clean” because of the surfactant-free formation process and the use of green reagent. • The hetero-nanostructures showed excellent electrocatalytic performance in methanol oxidation. - Abstract: A green synthesis of Pt-on-Pd bimetallic nanodendrites supported on graphene (GPtPdNDs) with a Pd interior and a dendrite-like Pt exterior was achieved using a two-step preparation, mixing graphene and PdCl42− first, then adding PtCl42− and ethanol without any other solvent. The morphology, structure and composition of the thus-prepared GPtPdNDs were characterized by transmission electron microscopy (TEM), high resolution TEM, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Because no halide ions (refer in particular to Br-, I−) or surfactant was involved in the synthesis, the prepared GPtPdNDs were directly modified onto a glassy carbon electrode and showed excellent electrocatalytic performance in methanol oxidation without any pretreatments. Moreover, with the special structure of PtPdNDs and the synergetic effects of Pt and Pd and the enhanced electron transfer by graphene, the GPtPdNDs composites exhibited higher electrocatalytic activity and better tolerance to Pt nanoparticles supported on graphene (GPtNPs) and Pt/C for methanol oxidation

  2. Modelling of carbon transport in fusion devices: evidence of enhanced re-erosion of in-situ re-deposited carbon

    International Nuclear Information System (INIS)

    The paper presents new Monte-Carlo transport simulations of methane 13CH4 injected through a hole in a testlimiter and exposed to the edge plasma of TEXTOR. The results show that the spatial distribution of 13C re-deposited locally on the testlimiter surface can be modelled if the parameter S for the sticking of returning hydrocarbons 13CHy is set to zero or almost zero. This is interpreted as a negligible effective sticking of the returning hydrocarbon radicals due to the instantaneous re-erosion caused by the hydrogen carried with the CHy radicals ('self re-erosion'). However, the calculated local deposition efficiency of 13C, remains too high compared with the observed value. Therefore, in addition an enhanced yield for chemical erosion caused by the background hydrogen for the fresh re-deposits has to be assumed. Similar assumptions can reproduce also the high amount of carbon deposition found on the inner louvers in the MkIIa divertor configuration of JET and on the plasma-shadowed areas of the MkIIGB divertor

  3. Cellulose Nanocrystals--Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance.

    Science.gov (United States)

    Chen, Qiang; Garcia, Rosalina Pérez; Munoz, Josemari; Pérez de Larraya, Uxua; Garmendia, Nere; Yao, Qingqing; Boccaccini, Aldo R

    2015-11-11

    Surface functionalization of orthopedic implants is being intensively investigated to strengthen bone-to-implant contact and accelerate bone healing process. A hybrid coating, consisting of 45S5 bioactive glass (BG) individually wrapped and interconnected with fibrous cellulose nanocrystals (CNCs), is deposited on 316L stainless steel from aqueous suspension by a one-step electrophoretic deposition (EPD) process. Apart from the codeposition mechanism elucidated by means of zeta-potential and scanning electron microscopy measurements, in vitro characterization of the deposited CNCs-BG coating in simulated body fluid reveals an extremely rapid mineralization of BG particles on the coating (e.g., the formation of hydroxyapatite crystals layer after 0.5 day). A series of comparative trials and characterization methods were carried out to comprehensively understand the mineralization process of BG interacting with CNCs. Furthermore, key factors for satisfying the applicability of an implant coating such as coating composition, surface topography, and adhesion strength were quantitatively investigated as a function of mineralization time. Cell culture studies (using MC3T3-E1) indicate that the presence of CNCs-BG coating substantially accelerated cell attachment, spreading, proliferation, differentiation, and mineralization of extracellular matrix. This study has confirmed the capability of CNCs to enhance and regulate the bioactivity of BG particles, leading to mineralized CNCs-BG hybrids for improved bone implant coatings. PMID:26460819

  4. In situ spectroelectrochemical surface-enhanced Raman scattering (SERS) investigations on composite Ag/TiO 2-nanotubes/Ti substrates

    Science.gov (United States)

    Roguska, A.; Kudelski, A.; Pisarek, M.; Lewandowska, M.; Kurzyd?owski, K. J.; Janik-Czachor, M.

    2009-09-01

    A tubular array of TiO 2-nanotubes on a Ti substrate was used as a support for an Ag sputter-deposited layer intended for surface-enhanced Raman scattering (SERS) investigations. Composite samples of Ag/TiO 2-nanotube/Ti were studied with the aid of scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to reveal their characteristic morphological and chemical features. Raman spectra of pyridine (as a probe molecule) were measured at different cathodic potentials ranging from -0.2 down to -1.2 V after the pyridine had been adsorbed on the TiO 2-nanotube/Ti substrates covered with the Ag deposit. In addition, SERS spectra on a bulk electrochemically-roughened Ag reference substrate, were also measured. The SERS activity of the composite samples was strongly dependent on the amount of Ag deposit and, in some cases, was even higher than that for the Ag reference substrate. The SERS intensity vs. electrode potential dependences measured were interpreted in terms of the modified electronic structure of the Ag deposits due to the interaction of the Ag clusters with the TiO 2-nanotube/Ti substrate.

  5. Electron cyclotron resonance plasma enhanced metalorganic chemical vapor deposition system with monitoring in situ for epitaxial growth of group-III nitrides

    International Nuclear Information System (INIS)

    An electron cyclotron resonance (ECR) plasma enhanced metalorganic chemical vapor deposition (PEMOCVD) system equipped with reflection high-energy electron diffraction (RHEED) has been developed and utilized for epitaxial growth of GaN and AlN on sapphire substrates by PEMOCVD. Since the multicusp cavity-coupling ECR plasma source was adopted to provide active precursors, the growth temperatures were decreased to 600-700 deg. C and the working pressures were decreased down to the region e?1.0-3.0x1010 cm-3 with a uniformity e?2-3 eV, the ion temperatures kTi?1 eV, and the plasma potentials Vso?3x10-1-8x10-1 Pa and the microwave power Pw?400-750 W. The experiment results demonstrated important roles of the plasma for sapphire substrate pretreatment, initial nucleation, and epitaxy growth of a large lattice mismatch heterojunction, GaN/(0001) Al2O3 at low temperature. The chemistry and mechanism of hydrogen (H)-plasma cleaning and nitrogen (N)-plasma nitriding, and the 30 deg. rotation of a (0001) nitride plane produced by the nitriding with respect to the (0001) Al2O3 to reduce the lattice constant mismatch are discussed. The epilayers of GaN and AlN with better quality and relatively smooth surface were obtained. The full width of half maximum (FWHM) of a GaN (0002) diffraction peak of x-ray diffraction from a 0.3 ?m thick GaN film was 15 arc min and the FWHM of AlN (0002) diffraction peak from a 0.3 ?m thick AlN film was 12 arc min. Film surface morphology was observed by atomic force microscopy

  6. In situ growth of vanadia-titania nano/micro-porous layers with enhanced photocatalytic performance by micro-arc oxidation

    International Nuclear Information System (INIS)

    Micro-arc oxidation process was used to synthesize V2O5-TiO2 porous layers for the first time. Surface morphology and topography of the layers were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM). X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques were also employed to evaluate phase structure and chemical composition of the layers. It was found that the V2O5-TiO2 layers consisted of anatase, rutile, and vanadium pentoxide phases fraction of which varied with the applied voltage and the electrolyte concentration. It was also revealed that pore size and surface roughness increased with the applied voltage and the electrolyte concentration. Optical properties of the layers were studied by a UV-vis spectrophotometer, and the band gap energies of the MAO-grown pure TiO2 and V2O5-TiO2 layers were respectively calculated as 3.21 and 2.56 eV. Furthermore, the composite layers exhibited a significantly enhanced photo-activity when compared to pure TiO2 layers. The photocatalytic reaction rate constants of degradation of methylene blue on the surface of the V2O5-TiO2 layers under ultraviolet and visible irradiations were measured as 0.0228 and 0.0117 min-1, respectively. As a consequence, micro-arc oxidation was deduced to be an appropriate and efficient method for synthesis of V2O5-TiO2 porous layers.

  7. Enhanced thermal and mechanical properties of poly(trimethylene terephthalate-block-poly(tetramethylene oxide segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets

    Directory of Open Access Journals (Sweden)

    S. Paszkiewicz

    2015-06-01

    Full Text Available Graphene nanoplatelets/single walled carbon nanotubes/poly(trimethylene terephthalate-block-poly(tetramethylene oxide segmented copolymer (GNP/SWCNT/PTT-PTMO hybrid nanocomposites were synthesized via in situ polymerization. A remarkable synergistic effect between GNPs and SWCNTs on improving thermal and mechanical properties of nanocomposites based on segmented block copolymers was observed. Heterogeneous structure of the PTT-PTMO allowed for a better and more uniform distribution of both types of nanoparticles and stabilized the structure in question. This enabled us to observe a so-called synergistic effect, caused by the use of mixture of carbon nanotubes and graphene nanopletelets, on the enhancement of thermal and mechanical properties of the obtained polymer. In order to ascertain the influence of mentioned carbon nanostructures on the nano-phase-separated structure of the synthesized PTT-PTMO block copolymers, differential scanning calorimetric (DSC and dynamic mechanical thermoanalysis (DMTA measurements were performed. Scanning electron microscopic (SEM and transmission electron microscopic (TEM images of the PTTPTMO nanocomposites displayed that hybrid nanofillers exhibited better distribution and compatibility than SWCNTs and GNPs did individually. The tensile modulus of 0.5SWCNT/0.1GNP/PTT-PTMO composites was 68% higher than that of the PTT-PTMO alone, compared to only a 10 and 28% increase in tensile modulus for 0.3GNP/PTT-PTMO and 0.3SWCNT/PTT-PTMO composites respectively (the highest concentration when single nanofiller was added.

  8. In-situ uranium leaching

    International Nuclear Information System (INIS)

    This invention provides a method for improving the recovery of mineral values from ore bodies subjected to in-situ leaching by controlling the flow behaviour of the leaching solution. In particular, the invention relates to an in-situ leaching operation employing a foam for mobility control of the leaching solution. A foam bank is either introduced into the ore bed or developed in-situ in the ore bed. The foam then becomes a diverting agent forcing the leaching fluid through the previously non-contacted regions of the deposit

  9. Tensile properties of in-situ precipitated polydimethylsiloxane networks

    OpenAIRE

    Zhang, Z.; Y-L. Yue; Zhang, C.; Zhang, H; D-H. Zhang; Chen, X.; Y-F. Chen

    2013-01-01

    Tensile propertiesof polydimethylsiloxane (PDMS) networks filled with in-situ precipitated silica were investigated. Experimental results showed that increasing the swelling time of cured rubber sheets in tetraethoxysilane (TEOS) solution or elevating the humidity and temperature of precipitation reaction atmosphere can render to a positive reinforcing effect. Moreover the in-situ precipitation method can be used to further enhance the tensile properties of fumed silica filled PDMS networks. ...

  10. In Situ Aerosol Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is developing new platform systems that have the potential to benefit Earth science research activities, which include in situ instruments for atmospheric...

  11. In Situ Non-Invasive T2*-Weighted MRI Derived Parameters Determine Ex Vivo Structural Properties of an ACL Reconstruction or Bio-enhanced Primary Repair in a Porcine Model

    Science.gov (United States)

    Biercevicz, Alison M.; Miranda, Danny L.; Machan, Jason T.; Murray, Martha M.; Fleming, Braden C.

    2012-01-01

    Background Magnetic resonance imaging (MRI) is a noninvasive technology that can quantitatively access ACL graft size and signal intensity. However, how those properties relate to reconstructed or repaired ligament strength during the healing process is yet unknown. Purpose We hypothesized that MR derived measures of graft volume and signal intensity are significant predictors of the structural properties of a healing ACL or ACL graft after 15 weeks and 52 weeks of healing. Study Design Controlled Laboratory Experiment Methods The current data were gathered from two experiments evaluating ACL reconstruction and repair techniques. In the first experiment, pigs underwent unilateral ACL transection and received: 1) ACL reconstruction, 2) ACL reconstruction with collagen platelet composite (CPC), or 3) no treatment. The surgical legs were harvested following 15 weeks of healing. In the second experiment, pigs underwent ACL transection and received: 1) ACL reconstruction, 2) ACL reconstruction with CPC, 3) bio-enhanced ACL primary repair with CPC, or 4) no treatment. The surgical legs were harvested after 52 weeks. The harvested knees were imaged using a T2* weighted 3D-CISS sequence. Each ligament was segmented from the scans, and the intra-articular volume and the median grayscale values were determined. Mechanical testing was performed to establish the ligament structural properties. Results Volume significantly predicted the structural properties (maximum load, yield load, linear stiffness) of the ligaments and grafts (R2 = 0.56, 0.56, 0.49; p?0.001). Likewise, the median grayscale values significantly predicted the structural properties of the ligaments and grafts (R2 = 0.42, 0.37, 0.40; p<0.001). The combination of these two parameters in a multiple regression model improved the predictions (R2 = 0.73, 0.72, 0.68; p?0.001). Conclusion Volume and grayscale values from high resolution T2* weighted MRI images are predictive of structural properties of the healing ligament or graft in a porcine model. Clinical Relevance This study provides a critical step in the development of a non-invasive method to predict the structural properties of the healing ACL graft or repair. This technique may prove beneficial as a surrogate outcome measure in pre-clinical animal and clinical studies. PMID:23348076

  12. In situ microbial filter used for bioremediation

    Science.gov (United States)

    Carman, M. Leslie (San Ramon, CA); Taylor, Robert T. (Roseville, CA)

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  13. Triplex in-situ hybridization

    Science.gov (United States)

    Fresco, Jacques R. (Princeton, NJ); Johnson, Marion D. (East Windsor, NJ)

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  14. In situ solution mining technique

    International Nuclear Information System (INIS)

    A method of in situ solution mining is disclosed in which a primary leaching process employing an array of 5-spot leaching patterns of production and injection wells is converted to a different pattern by converting to injection wells all the production wells in alternate rows

  15. In situ bypass og diabetes

    DEFF Research Database (Denmark)

    Jensen, Leif Panduro; Schroeder, T V; Lorentzen, J E

    1993-01-01

    From 1986 through to 1990 a total of 483 in situ bypass procedures were performed in 444 patients. Preoperative risk-factors were equally distributed among diabetic (DM) and non-diabetic (NDM) patients, except for smoking habits (DM:48%, NDM:64%, p = 0.002) and cardiac disease (DM:45%, NDM:29%, p...

  16. In situ biofilm coupon device

    Science.gov (United States)

    Peyton, Brent M. (Kennewick, WA); Truex, Michael J. (Richland, WA)

    1997-01-01

    An apparatus for characterization of in-situ microbial biofilm populations in subsurface groundwater. The device permits biofilm-forming microorganisms to adhere to packing material while emplaced in a groundwater strata, so that the packing material can be later analyzed for quantity and type of microorganisms, growth rate, and nutrient requirements.

  17. In situ uranium stabilization by microbial metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Turick, Charles E. [Environmental Science and Biotechnology, Savannah River National Laboratory, Building 999W, Aiken, SC 29808 (United States)], E-mail: Charles.Turick@srnl.doe.gov; Knox, Anna S. [Environmental Science and Biotechnology, Savannah River National Laboratory, Building 999W, Aiken, SC 29808 (United States); Leverette, Chad L.; Kritzas, Yianne G. [Department of Chemistry and Physics, University of South Carolina Aiken, Aiken, SC 29801 (United States)

    2008-06-15

    Microbial melanin production by autochthonous bacteria was explored in this study as a means to increase U immobilization in U contaminated soil. This article demonstrates the application of bacterial physiology and soil ecology for enhanced U immobilization in order to develop an in situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE), Savannah River Site (SRS), South Carolina, as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >10{sup 6} cells per g wet soil. Pyomelanin demonstrated U complexing and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in a field test demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments.

  18. In situ uranium stabilization by microbial metabolites

    International Nuclear Information System (INIS)

    Microbial melanin production by autochthonous bacteria was explored in this study as a means to increase U immobilization in U contaminated soil. This article demonstrates the application of bacterial physiology and soil ecology for enhanced U immobilization in order to develop an in situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE), Savannah River Site (SRS), South Carolina, as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >106 cells per g wet soil. Pyomelanin demonstrated U complexing and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in a field test demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments

  19. In situ atomic force microscope imaging of supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Ipsen, John Hjorth; Mouritsen, Ole G.; Jrgensen, Kent

    2001-01-01

    In situ AFM images of phospholipase A/sub 2/ (PLA/sub 2/) hydrolysis of mica-supported one- and two-component lipid bilayers are presented. For one-component DPPC bilayers an enhanced enzymatic activity is observed towards preexisting defects in the bilayer. Phase separation is observed in two...

  20. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  1. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  2. An overview of in situ air sparging

    International Nuclear Information System (INIS)

    In situ air sparging (IAS) is becoming a widely used technology for remediating sites contaminated by volatile organic materials such as petroleum hydrocarbons. Published data indicate that the injection of air into subsurface water saturated areas coupled with soil vapor extraction (SVE) can increase removal rates in comparison to SVE alone for cases where hydrocarbons are distributed within the water saturated zone. However, the technology is still in its infancy and has not been subject to adequate research, nor have adequate monitoring methods been employed or even developed. Consequently, most IAS applications are designed, operated, and monitored based upon the experience of the individual practitioner. The use of in situ air sparging poses risks not generally associated with most practiced remedial technologies: air injection can enhance the undesirable off-site migration of vapors and ground water contamination plumes. Migration of previously immobile liquid hydrocarbons can also be induced. Thus, there is an added incentive to fully understand this technology prior to application. This overview of the current state of the practice of air sparging is a review of available published literature, consultation with practitioners, a range of unpublished data reports, as well as theoretical considerations. Potential strengths and weaknesses of the technology are discussed and recommendations for future investigations are given

  3. Single cylinder in situ scanning electron microscope fatigue system

    International Nuclear Information System (INIS)

    This article introduces a single cylinder fatigue machine adaptable to a scanning electron microscope chamber. The machine includes a node control mechanism to create a still observation node at any location on the specimen as fatigue cycling occurs, thereby allowing a point of interest to remain within view. The exceptional stability of this machine enables improved in situ study of the fatigue cracking phenomenon. For example, an in situ machine enhances the researcher's ability to record material structural changes that precede crack nucleation and allows observation of the influences of microstructure (grain structure) on the early stages of crack propagation

  4. Direct in situ RT-PCR

    OpenAIRE

    Merighi, Adalberto; GAMBINO, Graziana; Lossi, Laura; SALIO, Chiara

    2011-01-01

    In situ polymerase chain reaction (PCR) is a histological technique that exploits the advantages of PCR for detection of mRNA directly in tissue sections. It somehow conjugates together PCR and in situ hybridization that is more traditionally employed for mRNA localization in cell organelles, intact cells, or tissue sections. This chapter describes the application of in situ PCR for neuropeptide mRNA localization. We provide here a detailed protocol for direct in situ reverse transcription (R...

  5. IN SITU URANIUM STABILIZATION BY MICROBIAL METABOLITES

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Anna Knox, A; Chad L Leverette,C; Yianne Kritzas, Y

    2006-11-29

    Soil contaminated with U was the focus of this study in order to develop in-situ, U bio-immobilization technology. We have demonstrated microbial production of a metal chelating biopolymer, pyomelanin, in U contaminated soil from the Tims Branch area of the Department of Energy (DOE) Savannah River Site (SRS) as a result of tyrosine amendments. Bacterial densities of pyomelanin producers were >106 cells/g wet soil. Pyomelanin demonstrated U chelating and mineral binding capacities at pH 4 and 7. In laboratory studies, in the presence of goethite or illite, pyomelanin enhanced U sequestration by these minerals. Tyrosine amended soils in field tests demonstrated increased U sequestration capacity following pyomelanin production up to 13 months after tyrosine treatments.

  6. Tensile properties of in-situ precipitated polydimethylsiloxane networks

    Directory of Open Access Journals (Sweden)

    Z. Zhang

    2013-10-01

    Full Text Available Tensile propertiesof polydimethylsiloxane (PDMS networks filled with in-situ precipitated silica were investigated. Experimental results showed that increasing the swelling time of cured rubber sheets in tetraethoxysilane (TEOS solution or elevating the humidity and temperature of precipitation reaction atmosphere can render to a positive reinforcing effect. Moreover the in-situ precipitation method can be used to further enhance the tensile properties of fumed silica filled PDMS networks. The reinforcement introduced by the in-situ precipitated silica gel particles can probably be attributed to the adsorption of polymer chains onto silica surface, the pinning effect of polymer chains within gel particles, and the fillerfiller gel structure among gel particles.

  7. Composite with In Situ Plenums

    Science.gov (United States)

    Montesano, Mark

    2012-01-01

    A document describes a high-performance thermal distribution panel (TDP) concept using high-conductivity (greater than 800 W/mK) macro composite skin with in situ heat pipes. The processing technologies proposed to build such a panel result in a one-piece, inseparable assembly with high conductance in both the X and Y planes. The TDP configuration can also be used to produce panels with high structural stiffness. The one-piece construction of the TDP eliminates the thermal interface between the cooling plenums and the heat spreader base, and obviates the need for bulky mounting flanges and thick heat spreaders used on baseline designs. The conductivity of the TDP can be configured to exceed 800 W/mK with a mass density below 2.5 grams per cubic centimeter. This material can provide efficient conductive heat transfer between the in situ heat plenums, permitting the use of thinner panel thicknesses. The plenums may be used as heat pipes, loop heat pipes, or liquid cooling channels. The panel technology used in the TDP is a macro-composite comprised of aluminum-encapsulated annealed pyrolytic graphite (APG). APG is highly aligned crystalline graphite with an in-plane thermal conductivity of 1,700 W/mK. APG has low shear strength and does not constrain the encapsulating material. The proposed concept has no thermal interfaces between the heat pipes and the spreader plate, further improving the overall conductance of the system. The in situ plenums can also be used for liquid cooling applications. The process can be used to fabricate structural panels by adding a second thin sheet.

  8. Hodoscope in-situ radiography

    International Nuclear Information System (INIS)

    The fast-neutron hodoscopes at TREAT and proposed for STF can be adapted to perform high-resolution radiography, in addition to their role of time-resolved test fuel imaging. Time resolution may be traded for increased spatial resolution by remote motorized scanning of the collimator, simulataneous collection of data from the detector array over extended time intervals, and deconvolution of the data from the collimator response function. Calculations and analysis of initial scanning experiments at TREAT indicate that an acceptable level of fuel density resolution can be achieved for TREAT and STF in-situ radiography

  9. Actinobacillus pleuropneumoniae osteomyelitis in pigs demonstrated by fluorescent in situ hybridization

    DEFF Research Database (Denmark)

    Jensen, Tim Kre; Boye, Mette; Hagedorn-Olsen, T.; Riising, H.J.; Angen, ystein

    1999-01-01

    Necrotizing osteomyelitis and fibrinopurulent arthritis with isolation of Actinobacillus pleuropneumoniae serotype 2 is reported in two pigs from a herd with lameness and mild coughing problems among 8 to 12-week-old pigs. Application of fluorescent in situ hybridization targeting 16S ribosomal RNA of A. pleuropneumoniae in formalin-fixed tissue was performed to verify the association of A. pleuropneumoniae with the bone and joint lesions. By in situ hybridization A. pleuropneumoniae was demonst...

  10. Oil field development using in-situ combustion in combination with foam systems and alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Abasov, M.T.; Khismetov, T.V. (Inst. of Deep Oil and Deposits, Academy of Sciences, Azerbaijanu (USSR))

    1991-01-01

    In this paper the results of experimental and field investigation of enhanced oil recovery (EOR) methods combining in-situ combustion with foam systems injection and alkaline flooding are generalized. 4 figs.

  11. An evaluation of satellite and in situ based sea surface temperature datasets in the North Indian Ocean region

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, O.P.; Shenoi, S.S.C.

    Satellite based daily fields of Pathfinder SST (PFSST) and blended-analysed fields like National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and Reynolds weekly SST data were compared with the in situ...

  12. In situ treatability test plan

    International Nuclear Information System (INIS)

    This document describes the plans for the in situ treatment zone (ISTZ) treatability test for groundwater contaminated with strontium-90. The treatability test is to be conducted at the Hanford Site in Richland, Washington, in a portion of the 100-N Area adjacent to the Columbia River referred to as N-Springs. The purpose of the treatability test is to evaluate the effectiveness of an innovative technology to prevent the discharge of strontium-90 contaminated groundwater into the Columbia River. The ISTZ is a passive technology that consists of placing a treatment agent in the path of the groundwater. The treatment agent must restrict target radioactive contaminants and provide time for the contaminant to decay to acceptable levels. The permeability of the treatment zone must be greater than or equal to that of the surrounding sediments to ensure that the contaminated groundwater flows through the treatment zone agent and not around the agent

  13. A bio-inspired approach for in situ synthesis of tunable adhesive

    International Nuclear Information System (INIS)

    Inspired by the strong adhesive produced by English ivy, this paper proposes an in situ synthesis approach for fabricating tunable nanoparticle enhanced adhesives. Special attention was given to tunable features of the adhesive produced by the biological process. Parameters that may be used to tune properties of the adhesive will be proposed. To illustrate and validate the proposed approach, an experimental platform was presented for fabricating tunable chitosan adhesive enhanced by Au nanoparticles synthesized in situ. This study contributes to a bio-inspired approach for in situ synthesis of tunable nanocomposite adhesives by mimicking the natural biological processes of ivy adhesive synthesis. (paper)

  14. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  15. Training for teamwork through in situ simulations

    OpenAIRE

    Sorensen, Asta; Poehlman, Jon; Bollenbacher, John; Riggan, Scott; Davis, Stan; Miller, Kristi; Ivester, Thomas; Kahwati, Leila

    2015-01-01

    In situ simulations allow healthcare teams to practice teamwork and communication as well as clinical management skills in a team's usual work setting with typically available resources and equipment. The purpose of this video is to demonstrate how to plan and conduct in situ simulation training sessions, with particular emphasis on how such training can be used to improve communication and teamwork. The video features an in situ simulation conducted at a labour and delivery unit in response ...

  16. Gold-Facilitated in Situ Hybridization : A Bright-Field Autometallographic Alternative to Fluorescence in Situ Hybridization for Detection of HER-2/neu Gene Amplification

    OpenAIRE

    Tubbs, Raymond; Pettay, James; Skacel, Marek; Powell, Richard; Stoler, Mark; Roche, Patrick; Hainfeld, James

    2002-01-01

    Fluorescence in situ hybridization (FISH) represents an excellent method for profiling gene amplification in situ, but correlation with tissue morphology is difficult because of dark-field visualization. Validation of a bright-field assay for assessment of HER-2/neu gene amplification was investigated. Streptavidin-Nanogold was used to generate bright-field gene copy signals using GoldEnhance gold-based autometallography, catalyzed reported deposition, and a biotin-labeled probe. One hundred ...

  17. Methods and systems for in-situ electroplating of electrodes

    Science.gov (United States)

    Zappi, Guillermo Daniel; Zarnoch, Kenneth Paul; Huntley, Christian Andrew; Swalla, Dana Ray

    2015-06-02

    The present techniques provide electrochemical devices having enhanced electrodes with surfaces that facilitate operation, such as by formation of a porous nickel layer on an operative surface, particularly of the cathode. The porous metal layer increases the surface area of the electrode, which may result in increasing the efficiency of the electrochemical devices. The formation of the porous metal layer is performed in situ, that is, after the assembly of the electrodes into an electrochemical device. The in situ process offers a number of advantages, including the ability to protect the porous metal layer on the electrode surface from damage during assembly of the electrochemical device. The enhanced electrode and the method for its processing may be used in any number of electrochemical devices, and is particularly well suited for electrodes in an electrolyzer useful for splitting water into hydrogen and oxygen.

  18. Enhancement of growth and structure properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin layers by in situ incorporation of gold nano-clusters

    Energy Technology Data Exchange (ETDEWEB)

    Erlebach, Ralf; Huebner, Michael; Christke, Sandra; Grosse, Veit; Schmidl, Frank; Seidel, Paul [Friedrich-Schiller-University Jena, Institute of Solid State Physics, Helmholtzweg 5, 07743 Jena (Germany); Kraeusslich, Juergen [Friedrich-Schiller-University Jena, Institute of Optics and Quantum Electronics, Max-Wien-Platz 1, 07743 Jena (Germany); Rettenmayr, Markus [Friedrich-Schiller-University Jena, Institute of Materials Science and Technology, Loebdergraben 32, 07743 Jena (Germany)

    2011-07-01

    For most hetero-epitactic growth techniques, structural defects due to the lattice misfit, namely tilts, precipitates or holes, turn out to be limiting factors for the successful fabrication of multilayer systems. A new approach of an in situ growth technique dealing with this problem by incorporation of gold nano-clusters is examined. Therefore, pulsed laser deposition (PLD) of a high-T{sub C} YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) layer onto a strontium titanate (STO) template with a temporary interlayer of gold with a well-defined film thickness is investigated. Within this process, the gold interlayer shows nano-clustering behavior. Effects on the properties of structure like crystallographic or surface features of the ablated YBCO layer by variation of the film thickness of the gold and YBCO layers are presented. Moreover, distribution and clustering behavior of the crystallized gold nano-particles as well as the basic superconducting properties of the layer system are analyzed.

  19. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest that there are...... prewritten scenarios from the simulation lab and transferring them to in situ simulation. (4) Action research insider or participant action research to obtain in-depth understanding of team processes to guide scenario design. We evaluate the approach relying on Marks et al. taxonomy that posits the...... following processes: Transition processes, Action processes and Interpersonal processes. Design and purpose This abstract suggests four approaches to in situ simulation. A pilot study will evaluate the different approaches in two emergency departments in the Central Region of Denmark. Methods The typology...

  20. Breast Ductal Carcinoma in Situ: Morphologic and Kinetic MRI Findings

    International Nuclear Information System (INIS)

    Adequate diagnosis of ductal carcinoma in situ (DCIS) could lead to efficacious treatment. Due to the fact that DCIS lesions can progress to invasive carcinomas and that the sensitivity of the standard examination mammography is between 70 and 80%, use of a more sensitive diagnostic tool was needed. In detection of DCIS, contrast-enhanced magnetic resonance imaging (CE-MRI) has the sensitivity up to 96%. Morphological features and kinetic parameters were evaluated to define the most regular morphological, kinetic and morpho-kinetic patterns on MRI assessment of breast ductal carcinoma in situ (DCIS). We retrospectively assessed eighteen patients with 23 histologically confirmed lesions (mean age, 52.4 10.5 years). All patients were clinically and mammographically examined prior to MRI examination. DCIS appeared most frequently as non-mass-like lesions (12 lesions, 52.17%). The differences in the frequency of lesion types were statistically significant (P<0.05). The following morphological patterns were detected: A: no specific morphologic features, B: linear/branching enhancement, C: focal mass-like enhancement, D: segmental enhancement, E: segmental enhancement in triangular shape, F: diffuse enhancement, G: regional heterogeneous enhancement in one quadrant not conforming to duct distribution and H: dotted or granular type of enhancement with patchy distribution. The difference in the frequency of the proposed patterns was statistically significant (P<0.05). There were eight lesions with mass enhancement, and six with segmental lesions: regional and triangular. There was no statistically significant difference in the frequency of enhancement curve types (P>0.05). There was no significant difference in the frequency of morpho-kinetic patterns. Non-mass-like lesions, lesions with focal or segmental distribution, with a plateau enhancement curve type were the most frequent findings of DCIS lesions on MRI

  1. Discerning in situ performance of an eor agent in the midst of geological uncertainty:

    OpenAIRE

    Fatemi, S.A.; Jansen, J.D.; Rossen, W.R.

    2015-01-01

    An enhanced-oil-recovery pilot test has multiple goals, among them to verify the properties of the EOR agent in situ. Given the complexity of EOR processes and the inherent uncertainty in the reservoir description, it is a challenge to discern the properties of the EOR agent in situ. We present a simple case study to illustrate this challenge: a polymer EOR process in a 2D layer-cake reservoir. The intended polymer design value is 21 cp in situ but we allow it might be that intended in the ...

  2. Magic angle spinning nuclear magnetic resonance apparatus and process for high-resolution in situ investigations

    Science.gov (United States)

    Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.

    2015-11-24

    A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.

  3. In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

    2002-09-20

    The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

  4. In-situ SHG and Raman spectroscopy at electrodes

    International Nuclear Information System (INIS)

    Second harmonic generation and surface Raman spectroscopy at metal electrodes are in-situ spectroscopies for the study of the metallic and electrolyte side of the electric double layer at the interface, and in this sense both spectroscopies are supplemental to some extent: Surface (un)enhanced Raman spectroscopy yields via vibronic spectra insight in electrochemical processes such as adsorption or reaction pathways. With second harmonic generation, however, one can monitor in-situ at a Au(111) electrode not only the formation or lifting of the (1x23) surface reconstruction, but also (indirectly) the specific adsorption of ions as they alter the non-linear in-plane and perpendicular polarizability of metal electrons at the interface in a distinct way. Hence, chemisorption processes can be studied in a novel way. (author). 90 refs, 1 fig., 1 tab

  5. At Least 39 Weeks

    Medline Plus

    Full Text Available ... questions Ask our health experts Calculating your due date Ovulation calendar 39 weeks is best Order bereavement ... questions Ask our health experts Calculating your due date Ovulation calendar 39 weeks is best Order bereavement ...

  6. At Least 39 Weeks

    Medline Plus

    Full Text Available ... Ovulation calendar 39 weeks is best Order bereavement materials News Moms Need Blog News & Media News Videos ... Ovulation calendar 39 weeks is best Order bereavement materials News Moms Need Blog Stories & Media News & Media ...

  7. In situ dehydration of yugawaralite

    DEFF Research Database (Denmark)

    Artioli, G.; Sthl, Kenny

    2001-01-01

    The structural response of the natural zeolite yugawaralite (CaAl2Si6O16. 4H(2)O) upon thermally induced dehydration has been studied by Rietveld analysis of temperature-resolved powder diffraction data collected in situ in the temperature range 315-791 K using synchrotron radiation. The room-temperature monoclinic structure [Pc, a = 6.73200(9), b = 14.0157(2), c = 10.0607(1) Angstrom, beta = 111.189(1) degrees, Z = 2, at 315 K] has the Ca cations in the channels coordinated to four framework O atoms and to four water molecules, with two of the water sites (OW1 and OW4) showing positional disorder progressively disappearing as the dehydration proceeds. The yugawaralite structure reacts to the release of water molecules with small changes in the Ca-O bond distances and minor distortions of the tetrahedral framework up to about 695 K. Above this temperature the Ca coordination falls below 7 (four framework O atoms and three water molecules) and a major rearrangement in the cation coordination takes place, causing a first order phase transition involving both a large decrease in the cell volume and the change in the space group symmetry. A satisfactory structure model for the high-temperature phase stable in the range 695-791 K could not be obtained because of the complexity of the structure. A model approximately describing the average structure [Pn, a = 12.703(1), b = 13.067(1), c = 9.839(1) Angstrom, beta = 110.894(9), Z = 4, at 749 K] has been used to follow the temperature evolution of the cell parameters in the measured temperature range. This model involves a sixfold coordination of the Ca cations (five framework O atoms and one water molecule). There is no indication of significant structure changes before collapse, likely occurring when the last water molecule is expelled from the structure and the cation coordination drops below 6, as observed in other Ca-rich zeolites (i.e., laumontite, scolecite, mesolite).

  8. In Situ Mechanical Testing Techniques for Real-Time Materials Deformation Characterization

    Science.gov (United States)

    Rudolf, Chris; Boesl, Benjamin; Agarwal, Arvind

    2016-01-01

    In situ mechanical property testing has the ability to enhance quantitative characterization of materials by revealing the occurring deformation behavior in real time. This article will summarize select recent testing performed inside a scanning electron microscope on various materials including metals, ceramics, composites, coatings, and 3-Dimensional graphene foam. Tensile and indentation testing methods are outlined with case studies and preliminary data. The benefits of performing a novel double-torsion testing technique in situ are also proposed.

  9. Spontaneous heterotopic pregnancy causing tubal rupture in a patient with intrauterine device in-situ

    OpenAIRE

    Serpil Telci; Cihan Kaya; Levent Yasar; Murat Ekin

    2014-01-01

    Spontaneous heterotopic pregnancy (HP) is a rare but life threatening condition. A case of 27 years old patient who admitted to our emergency gynecology clinic for acute abdominal pain is presented. The transvaginal ultrasound revealed two embryos with cardiac activity; one intrauterine (8 week and 3 day) , and the other one in the left adnexa (7 week and 3 day) and an intrauterine device (IUD) in situ. The patient had left salpingectomy with laparotomy and after the fifth hour of operation s...

  10. Scientific rationale of Saturn's in situ exploration

    CERN Document Server

    Mousis, O; Lebreton, J -P; Wurz, P; Cavali, T; Coustenis, A; Courtin, R; Gautier, D; Helled, R; Irwin, P G J; Morse, A D; Nettelmann, N; Marty, B; Rousselot, P; Venot, O; Atkinson, D H; Waite, J H; Reh, K R; Simon-Miller, A; Atreya, S; Andr, N; Blanc, M; Daglis, I A; Fischer, G; Geppert, W D; Guillot, T; Hedman, M M; Hueso, R; Lellouch, E; Lunine, J I; Murray, C D; O'Donoghue, J; Rengel, M; Sanchez-Lavega, A; Schmider, F -X; Spiga, A; Spilker, T; Petit, J -M; Tiscareno, M S; Ali-Dib, M; Altwegg, K; Bouquet, A; Briois, C; Fouchet, T; Guerlet, S; Kostiuk, T; Lebleu, D; Moreno, R; Orton, G S; Poncy, J

    2014-01-01

    Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn's atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn's bulk element...

  11. In situ leach: technology and potential

    International Nuclear Information System (INIS)

    In-situ leach and solution mining are described with respect to uranium mining. In the technique, leaching fluids dissolve the mineral without having to remove the ore physically from its occurence. In-situ leach can produce uranium at lower costs than other methods. The factors which are important to achieve this are discussed. In-situ leach is only suitable for one type of uranium deposit, a roll-front deposit (deposited from moving groundwater) in a permeable sandstone that must be an aquifer (sandstone filled with water). It is difficult to predict the performance of an in-situ leach project; good engineering techniques are more important than in conventional mining. The processing and subsequent recovery of the uranium are described. Some of the technological improvements in the technique are discussed. The future development of the technique is considered. (U.K.)

  12. In-situ characterization of heterogeneous catalysts

    CERN Document Server

    Rodriguez, Jose A; Chupas, Peter J

    2013-01-01

    Helps researchers develop new catalysts for sustainable fuel and chemical production Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts feat

  13. Tracking Mitochondrial DNA In Situ.

    Science.gov (United States)

    Ligasov, Anna; Koberna, Karel

    2016-01-01

    The methods of the detection of (1) non-labeled and (2) BrdU-labeled mitochondrial DNA (mtDNA) are described. They are based on the production of singlet oxygen by monovalent copper ions and the subsequent induction of DNA gaps. The ends of interrupted DNA serve as origins for the labeling of mtDNA by DNA polymerase I or they are utilized by exonuclease that degrades DNA strands, unmasking BrdU in BrdU-labeled DNA. Both methods are sensitive approaches without the need of additional enhancement of the signal or the use of highly sensitive optical systems. PMID:26530676

  14. In-situ Ground-Based and Airborne Formaldehyde Measurements in the Houston Area During TexAQS-II

    Science.gov (United States)

    Rappenglueck, B.; Byun, D.; Alvarez, S.; Buhr, M.; Coarfa, V.; Czader, B.; Dasgupta, P.; Estes, M.; Kim, S.; Leuchner, M.; Luke, W.; Shauck, M.; Zanin, G.

    2007-12-01

    Formaldehyde is considered to play a significant role in summertime photochemistry in the Houston area, in particular it is considered an important source for radicals. Secondary formation seems to be the most important fraction of ambient HCHO. Enhanced nighttime values may indicate primary sources. Potential sources may include mobile sources such as traffic exhaust, in particular not well maintained Diesel engines. Other possible sources may include point sources such as coffee roasting and flares from refineries. In this study we focused on the TexAQS-II continuous in-situ formaldehyde data set based on Hantzsch reaction which was obtained in the Ship Channel area (HRM3 and Lynchburg Ferry site) and at the Moody Tower for several weeks. We also include in-situ HCHO measurements obtained with the same technique aboard the Baylor aircraft during TexAQS-II flight missions. Formaldehyde data was compared to several trace gases that are supposed to be coemitted including CO (traffic), ethylene (flares), and SO2 (industry). In order to keep photochemical processes at a minimum special focus was on nighttime data. Case studies will be discussed where meteorological conditions including recirculation and boundary layer developments seem to play a major role in the redistribution of HCHO. Observations will be compared to CMAQ model studies.

  15. In Situ Measurement of Tritium Permeation Through Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 and 330C. In-situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. An irradiation enhancement factor (IEF) was determined by comparing in-situ permeation data with a correlation for ex-reactor hydrogen permeation through austenitic stainless steel developed from literature data and reported by Le Claire. Nominal values for the IEF ranged between 3 and 5 for 316 SS. In-situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  16. IN-SITU MEASUREMENT OF TRITIUM PERMEATION THROUGH STAINLESS STEEL

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 and 330C. In-situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. An irradiation enhancement factor (IEF) was determined by comparing in-situ permeation data with a correlation for ex-reactor hydrogen permeation through austenitic stainless steel developed from literature data and reported by Le Claire. Nominal values for the IEF ranged between 3 and 5 for 316 SS. In-situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  17. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine.

    Science.gov (United States)

    Qian, Shuai; Wong, Yin Cheong; Zuo, Zhong

    2014-07-01

    The present study aimed to develop an in situ gel formulation for intranasal delivery of tacrine (THA), an anti-Alzheimer's drug. Thermosensitive polymer Pluronic F-127 was used to prepare THA in situ gels. Sol-gel transition temperature (Tsol-gel), rheological properties, in vitro release, and in vivo nasal mucociliary transport time were optimized. The pharmacokinetics and brain dispositions of in situ gel were compared with that from THA oral solution in rats. The in situ gel demonstrated a liquid state with Newtonian fluid behavior under 20 C, while it exhibited as non-flowing gel with pseudoplastic fluid behavior beyond its Tsol-gel of 28.5 C. Based on nasal mucociliary transport time, the in situ gel significantly prolonged its retention in nasal cavity compared to solution form. Moreover, the in situ gel achieved 2-3 fold higher peak plasma concentration (Cmax) and area under the curve (AUC) of THA in plasma and brain tissue, but lowered Cmax and AUC of the THA metabolites compared to that of oral solution. The enhanced nasal residence time, improved bioavailability, increased brain uptake of parent drug and decreased exposure of metabolites suggested that the in situ gel could be an effective intranasal formulation for THA. PMID:24709220

  18. Demonstration testing and evaluation of in situ soil heating

    International Nuclear Information System (INIS)

    A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the '70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid '80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern

  19. Fabrication of in-situ grown graphene reinforced Cu matrix composites.

    Science.gov (United States)

    Chen, Yakun; Zhang, Xiang; Liu, Enzuo; He, Chunnian; Shi, Chunsheng; Li, Jiajun; Nash, Philip; Zhao, Naiqin

    2016-01-01

    Graphene/Cu composites were fabricated through a graphene in-situ grown approach, which involved ball-milling of Cu powders with PMMA as solid carbon source, in-situ growth of graphene on flaky Cu powders and vacuum hot-press sintering. SEM and TEM characterization results indicated that graphene in-situ grown on Cu powders guaranteed a homogeneous dispersion and a good combination between graphene and Cu matrix, as well as the intact structure of graphene, which was beneficial to its strengthening effect. The yield strength of 244?MPa and tensile strength of 274?MPa were achieved in the composite with 0.95?wt.% graphene, which were separately 177% and 27.4% enhancement over pure Cu. Strengthening effect of in-situ grown graphene in the matrix was contributed to load transfer and dislocation strengthening. PMID:26763313

  20. MENDING THE IN SITU MANIPULATION BARRIER

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN, S.W.

    2006-02-06

    In early 2004, the U.S. Department of Energy (DOE) Richland and Fluor Hanford requested technical assistance from the DOE Headquarters EM-23 Technical Assistance Program to provide a team of technical experts to develop recommendations for mending the In Situ Redox Manipulation (ISRM) Barrier in the 100-D Area of the Hanford Site in Washington State. To accommodate this request, EM-23 provided support to convene a group of technical experts from industry, a national laboratory, and a DOE site to participate in a 2 1/2-day workshop with the objective of identifying and recommending options to enhance the performance of the 100-D Area reactive barrier and of a planned extension to the northeast. This report provides written documentation of the team's findings and recommendations. In 1995, a plume of dissolved hexavalent chromium [Cr(VI)], which resulted from operation of the D/DR Reactors at the Hanford site, was discovered along the Columbia River shoreline and in the 100-D Area. Between 1999 and 2003, a reactive barrier using the In Situ Redox Manipulation (ISRM) technology, was installed a distance of 680 meters along the river to reduce the Cr(VI) in the groundwater. The ISRM technology creates a treatment zone within the aquifer by injection of sodium dithionite, a strong reducing agent that scavenges dissolved oxygen (DO) from the aquifer and reduces ferric iron [Fe(III)], related metals, and oxy-ions. The reduction of Fe(III) to ferrous [Fe(II)] iron provides the primary reduction capacity to reduce Cr(VI) to the +3 state, which is less mobile and less toxic. Bench-scale and field-scale treatability tests were initially conducted to demonstrate proof-of principle and to provide data for estimation of barrier longevity. These calculations estimated barrier longevity in excess of twenty years. However, several years after initial and secondary treatment, groundwater in a number of wells has been found to contain elevated chromium (Cr) concentrations, indicating some loss of reductive capacity within the aquifer. The Technical Assistance Team (TAT) was requested to perform the following activities: (1) evaluate the most probable condition(s) that has led to the presence of Cr(VI) in 12 different barrier wells (i.e. premature loss of reductive capacity), (2) recommend methods for determining the cause of the problem, (3) recommend methods for evaluating the magnitude of the problem, (4) recommend practicable method(s) for mending the barrier that involves a long-term solution, and (5) recommend methods for extending the barrier to the northeast (e.g., changing injection procedure, changing or augmenting the injected material). Since the March 2004 workshop, a decision has been made to place a hold on the barrier extension until more is known about the cause of the problem. However, the report complies with the original request for information on all of the above activities, but focuses on determining the cause of the problem and mending of the existing barrier.

  1. In Vivo Osteogenic Differentiation of Human Embryoid Bodies in an Injectable in Situ-Forming Hydrogel

    OpenAIRE

    Moon Suk Kim; Seung-Yup Ku; Shin Yong Moon; Yoon Young Kim; Hai Bang Lee; Da Yeon Kim

    2013-01-01

    In this study, we examined the in vivo osteogenic differentiation of human embryoid bodies (hEBs) by using an injectable in situ-forming hydrogel. A solution containing MPEG-b-(polycaprolactone-ran-polylactide) (MCL) and hEBs was easily prepared at room temperature. The MCL solution with hEBs and osteogenic factors was injected into nude mice and developed into in situ-forming hydrogels at the injection sites; these hydrogels maintained their shape even after 12 weeks in vivo, thereby indicat...

  2. Oil companies push in-situ recovery

    International Nuclear Information System (INIS)

    Possibly, a third Athabaska tar-sand plant using surface mining will be built in the 1980's, but future development beyond that point will probably depend on in-situ recovery. The discussion of in-situ recovery focusses on the effect it will have on the Canadian chemical industry, for example, the market for sodium hydroxide. To obtain the highest yields of oil from bitumen, an external source of hydrogen is necessary; for example Syncrude imports natural gas to make hydrogen for desulphurization. Gasification of coal is a possible source of hydrogen. Research on hydrocracking is progressing. Use of a prototype CANDU OCR reactor to raise the hot steam necessary for in-situ recovery has been suggested. Venezuela is interested in Canadian upgrading technology. (N.D.H.)

  3. In situ macromolecular crystallography using microbeams.

    Science.gov (United States)

    Axford, Danny; Owen, Robin L; Aishima, Jun; Foadi, James; Morgan, Ann W; Robinson, James I; Nettleship, Joanne E; Owens, Raymond J; Moraes, Isabel; Fry, Elizabeth E; Grimes, Jonathan M; Harlos, Karl; Kotecha, Abhay; Ren, Jingshan; Sutton, Geoff; Walter, Thomas S; Stuart, David I; Evans, Gwyndaf

    2012-05-01

    Despite significant progress in high-throughput methods in macromolecular crystallography, the production of diffraction-quality crystals remains a major bottleneck. By recording diffraction in situ from crystals in their crystallization plates at room temperature, a number of problems associated with crystal handling and cryoprotection can be side-stepped. Using a dedicated goniometer installed on the microfocus macromolecular crystallography beamline I24 at Diamond Light Source, crystals have been studied in situ with an intense and flexible microfocus beam, allowing weakly diffracting samples to be assessed without a manual crystal-handling step but with good signal to noise, despite the background scatter from the plate. A number of case studies are reported: the structure solution of bovine enterovirus 2, crystallization screening of membrane proteins and complexes, and structure solution from crystallization hits produced via a high-throughput pipeline. These demonstrate the potential for in situ data collection and structure solution with microbeams. PMID:22525757

  4. In Situ Vitrification Treatability Study Work Plan

    International Nuclear Information System (INIS)

    The Buried Waste Program was established in October, 1987 to accelerate the studies needed to develop a recommended long-term management plan for the buried mixed waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The In Situ Vitrification Project is being conducted in a Comprehensive Environmental Response, Compensation, and Liability Act Feasibility Study format to identify methods for the long-term management of the mixed waste buried. This In Situ Vitrification Treatability Study Work Plan gives a brief description of the site, work breakdown structure, and project organization: the in situ vitrification technology; the purpose of the tests and demonstrations; and the equipment and materials required for the tests and demonstration. 5 refs., 6 figs., 3 tabs

  5. In situ monitoring of gas emissions

    International Nuclear Information System (INIS)

    Classical extraction apparatuses for gaseous effluents analysis require important maintenance costs. A new in situ system for flue gas monitoring has been developed by the Californian Air Instruments and Measurements Inc. society and installed at the Red Wing refuse-fueled power plant in Minnesota. This system allows the in situ quantitative analysis of carbon monoxide and dioxide effluents using a self calibrating infrared spectrometer. This paper describes the numerous advantages and the maintenance costs reduction provided by this system. (J.S.). 2 photos

  6. In situ soil remediation using electrokinetics

    International Nuclear Information System (INIS)

    Electrokinetics is emerging as a promising technology for in situ soil remediation. This technique is especially attractive for Superfund sites and government operations which contain large volumes of contaminated soil. The approach uses an applied electric field to induce transport of both radioactive and hazardous waste ions in soil. The transport mechanisms include electroosmosis, electromigration, and electrophoresis. The feasibility of using electrokinetics to move radioactive 137Cs and 60Co at the Hanford Site in Richland, Washington, is discussed. A closed cell is used to provide in situ measurements of 137Cs and 60Co movement in Hanford soil. Preliminary results of ionic movement, along with the corresponding current response, are presented

  7. In situ ply strengths - An initial assessment

    Science.gov (United States)

    Chamis, C. C.; Sullivan, T. L.

    1978-01-01

    The in situ ply strengths in several composites were calculated using a computational procedure developed for this purpose. Laminate fracture data for appropriate low modulus and high modulus fiber composites were used in the laminate analysis in conjunction with the method of least squares. The laminate fracture data were obtained from tests on Modmor-I graphite/epoxy, AS-graphite/epoxy, boron/epoxy and E-glass/epoxy. The results obtained show that the calculated in situ ply strengths can be considerably different from those measured in unidirectional composites, especially the transverse strengths and those in angleplied laminates with transply cracks.

  8. In-situ vitrification of waste materials

    Science.gov (United States)

    Powell, James R. (Shoreham, NY); Reich, Morris (Kew Gardens Hills, NY); Barletta, Robert (Wading River, NY)

    1997-11-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed.

  9. In-situ vitrification of waste materials

    International Nuclear Information System (INIS)

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs

  10. In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotrophic microbial filter

    International Nuclear Information System (INIS)

    The Lawrence Livermore National Laboratory is testing and developing an in situ microbial filter technology for remediating migrating subsurface plumes contaminated with low concentrations of trichloroethylene (TCE). Their current focus is the establishment of a replenishable bioactive zone (catalytic filter) along expanding plume boundaries by the Injection of a representative methanotrophic bacterium, Methylosinus trichosporium OB3b. We have successfully demonstrated this microbial filter strategy using emplaced, attached resting cells (no methane additions) in a 1.1-m flow-through test bed loaded with water-saturated sand. Two separate 24 h pulses of TCE (109 ppb and 85 ppb), one week apart, were pumped through the system at a flow velocity of 1.5 cm/h; no TCE (<0.5 ppb) was detected on the downstream side of the microbial filter. Subsequent excavation of the wet sand confirmed the existence of a TCE-bioactive zone 19 days after it had been created. An enhanced longevity of the cellular, soluble-form methane monooxygenase produced by this methanotroph Is a result of our laboratory bioreactor culturing conditions. Additional experiments with cells in sealed vials and emplaced in the 1.1-m test bed yielded a high resting-cell finite TCE biotransformation capacity of ∼ 0.25 mg per mg of bacteria; this is suitable for a planned sand-filled trench field demonstration at a Lawrence Livermore National Laboratory site

  11. Aquifer restoration at in-situ leach uranium mines: evidence for natural restoration processes

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, W.J.; Serne, R.J.; Bell, N.E.; Martin, W.J.

    1983-04-01

    Pacific Northwest Laboratory conducted experiments with aquifer sediments and leaching solution (lixiviant) from an in-situ leach uranium mine. The data from these laboratory experiments and information on the normal distribution of elements associated with roll-front uranium deposits provide evidence that natural processes can enhance restoration of aquifers affected by leach mining. Our experiments show that the concentration of uranium (U) in solution can decrease at least an order of magnitude (from 50 to less than 5 ppM U) due to reactions between the lixiviant and sediment, and that a uranium solid, possibly amorphous uranium dioxide, (UO/sub 2/), can limit the concentration of uranium in a solution in contact with reduced sediment. The concentrations of As, Se, and Mo in an oxidizing lixiviant should also decrease as a result of redox and precipitation reactions between the solution and sediment. The lixiviant concentrations of major anions (chloride and sulfate) other than carbonate were not affected by short-term (less than one week) contact with the aquifer sediments. This is also true of the total dissolved solids level of the solution. Consequently, we recommend that these solution parameters be used as indicators of an excursion of leaching solution from the leach field. Our experiments have shown that natural aquifer processes can affect the solution concentration of certain constituents. This effect should be considered when guidelines for aquifer restoration are established.

  12. Aquifer restoration at in-situ leach uranium mines: evidence for natural restoration processes

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory conducted experiments with aquifer sediments and leaching solution (lixiviant) from an in-situ leach uranium mine. The data from these laboratory experiments and information on the normal distribution of elements associated with roll-front uranium deposits provide evidence that natural processes can enhance restoration of aquifers affected by leach mining. Our experiments show that the concentration of uranium (U) in solution can decrease at least an order of magnitude (from 50 to less than 5 ppM U) due to reactions between the lixiviant and sediment, and that a uranium solid, possibly amorphous uranium dioxide, (UO2), can limit the concentration of uranium in a solution in contact with reduced sediment. The concentrations of As, Se, and Mo in an oxidizing lixiviant should also decrease as a result of redox and precipitation reactions between the solution and sediment. The lixiviant concentrations of major anions (chloride and sulfate) other than carbonate were not affected by short-term (less than one week) contact with the aquifer sediments. This is also true of the total dissolved solids level of the solution. Consequently, we recommend that these solution parameters be used as indicators of an excursion of leaching solution from the leach field. Our experiments have shown that natural aquifer processes can affect the solution concentration of certain constituents. This effect should be considered when guidelines for aquifer restoration are established

  13. At Least 39 Weeks

    Medline Plus

    Full Text Available ... Conference 2015 Prematurity research centers What is team science? A unique Transdisciplinary Approach More than 75 years ... questions Ask our health experts Calculating your due date Ovulation calendar 39 weeks is best Order bereavement ...

  14. At Least 39 Weeks

    Medline Plus

    Full Text Available ... Healthy Babies are Worth the Wait 39 Weeks Study: Healthy Babies Are Worth the Wait Trying to ... share stories Become inspired by stories from the families at the heart of our mission or share ...

  15. At Least 39 Weeks

    Medline Plus

    Full Text Available ... for your baby Feeding your baby Common illnesses New parents Family health & safety Complications & Loss Pregnancy complications ... 37 Prenatal care: Early pregnancy visits 4:56 New Partnership 1:10 39 weeks public service announcement ...

  16. At Least 39 Weeks

    Medline Plus

    Full Text Available ... Your e-mail was sent. Save to my dashboard Sign in or Sign up to save this ... saved this page It's been added to your dashboard . At least 39 weeks 3:36 Stanford Prematurity ...

  17. At Least 39 Weeks

    Medline Plus

    Full Text Available ... Affairs issues and advocacy priorities What is team science? A unique Transdisciplinary Approach More than 75 years ... Ovulation calendar 39 weeks is best Order bereavement materials News Moms Need Blog Stories & Media News & Media ...

  18. At Least 39 Weeks

    Medline Plus

    Full Text Available ... weeks Description | Related videos | Most played video E-mail to a friend Please fill in all fields. Please enter a valid e-mail address. Your information: Your recipient's information: Your personal ...

  19. At Least 39 Weeks

    Medline Plus

    Full Text Available ... unit (NICU) Birth defects & other health conditions Loss & grief Tools & Resources Frequently asked health questions Ask our ... date Ovulation calendar 39 weeks is best Order bereavement materials News Moms Need Blog News & Media News ...

  20. At Least 39 Weeks

    Medline Plus

    Full Text Available ... premature birth and infant mortality. Solving premature birth Stanford University Prematurity Research Center Featured articles The impact ... your dashboard . At least 39 weeks 3:36 Stanford Prematurity Research Center Launch 3:25 Newborn care: ...

  1. In situ lyophilisation of nifedipine directly in hard gelatine capsules.

    Science.gov (United States)

    Crum, Matthew; Elkordy, Amal Ali; Zarara, Moataz; Elkordy, Eman Ali

    2013-01-01

    Hydrophobic drugs present a challenge due to: (i) adhesion and agglomeration; hence the choice of the suitable processing technique to have the drugs into orally administered dosage forms is critical. (ii) Poor dissolution and poor aqueous solubility; hence poor bioavailability. A novel method which is in situ lyophilisation directly in hard gelatin capsule shells was used in this research to enhance the dissolution of nifedipine (a model hydrophobic drug) in the presence of co-povidone, Pluronic()F-127 and inulin as enhancement excipients (to the best of our knowledge those excipients have not been previously used with nifedipine in lyophilised forms). Solutions of nifedipine and excipients in a range of concentrations (0.5, 1, 5 and 10%w/v) were prepared using a co-solvent system of tert- butyl alcohol/water mixture. These solutions were filled directly into bodies of size 000 hard gelatin capsule shells and freeze dried. Pure drug and all formulations were characterised by solubility, wetting studies and in vitro dissolution. Also, conformational integrity and thermal characteristics of nifedipine formulations were investigated using FT-IR spectroscopy and differential scanning calorimetry (DSC), respectively. The in situ lyophilisation of nifedipine with excipients, looks a promising method not only to improve the hydrophobic drug dissolution but also to be cost effective. PMID:22992055

  2. Carcinoma in situ in the testis

    DEFF Research Database (Denmark)

    Rrth, M; Rajpert-De Meyts, E; Andersson, L; Dieckmann, K P; Foss, S D; Grigor, K M; Hendry, W F; Herr, H W; Looijenga, L H; Oosterhuis, J W; Skakkebaek, N E

    2000-01-01

    Carcinoma in situ (CIS) of the testis is a common precursor of germ-cell tumours in adults and adolescents, with the exception of spermatocytic seminoma. This article reviews existing knowledge on the pathobiology, genetic aspects and epidemiology of CIS, discusses current hypotheses concerning pathogenesis and invasive progression of germ-cell neoplasms and provides guidelines for diagnosis and clinical management of CIS.

  3. Unannounced in situ simulation of obstetric emergencies

    DEFF Research Database (Denmark)

    Sorensen, Jette Led; Lottrup, Pernille; van der Vleuten, Cees; Andersen, Kristine Sylvan; Simonsen, Mette; Emmersen, Pernille; Rosthøj, Susanne; Ottesen, Bent

    2014-01-01

    AIM: To describe how unannounced in situ simulation (ISS) was perceived by healthcare professionals before and after its implementation, and to describe the organisational impact of ISS. STUDY DESIGN: Ten unannounced ISS involving all staff were scheduled March-August 2007. Questionnaire surveys ...

  4. Design Games for In-Situ Design

    DEFF Research Database (Denmark)

    Kristiansen, Erik

    2013-01-01

    The mobile culture has spawned a host of context-based products, like location-based and tag-based applications. This presents a new challenge for the designer. There is a need of design methods that acknowledge the context and allows it to influence the design ideas. This article focuses on a design problem where an in-situ design practice may further the early design process: the case of designing a pervasive game. Pervasive games are computer games, played using the city as a game board and often using mobile phones with GPS. Some contextual design methods exist, but the author proposes an approach that calls for the designer to conceptualise and perform ideas in-situ, that is on the site, where the game is supposed to be played. The problem was to design a creativity method that incorporated in-situ design work and which generated game concepts for pervasive games. The proposed design method, called sitestorming, is based on a game using Situationistic individual exploration of the site and different types of game cards, followed by a joint evaluation of the generated ideas. A series of evaluations showed that the designers found the method enjoyable to use, that the method motivated idea generation, and that using in-situ design influenced their design ideas.

  5. Refueling with In-Situ Produced Propellants

    Science.gov (United States)

    Chato, David J.

    2014-01-01

    In-situ produced propellants have been identified in many architecture studies as key to implementing feasible chemical propulsion missions to destinations beyond lunar orbit. Some of the more noteworthy ones include: launching from Mars to return to Earth (either direct from the surface, or via an orbital rendezvous); using the Earth-Moon Lagrange point as a place to refuel Mars transfer stages with Lunar surface produced propellants; and using Mars Moon Phobos as a place to produce propellants for descent and ascent stages bound for the Mars surface. However successful implementation of these strategies require an ability to successfully transfer propellants from the in-situ production equipment into the propellant tankage of the rocket stage used to move to the desired location. In many circumstances the most desirable location for this transfer to occur is in the low-gravity environment of space. In support of low earth orbit propellant depot concepts, extensive studies have been conducted on transferring propellants in-space. Most of these propellant transfer techniques will be applicable to low gravity operations in other locations. Even ground-based transfer operations on the Moon, Mars, and especially Phobos could benefit from the propellant conserving techniques used for depot refueling. This paper will review the literature of in-situ propellants and refueling to: assess the performance benefits of the use in-situ propellants for mission concepts; review the parallels with propellant depot efforts; assess the progress of the techniques required; and provide recommendations for future research.

  6. Parametric melting studies for in situ vitrification

    International Nuclear Information System (INIS)

    This report describes a series of simulation studies which examine heat conduction and electric heating during in situ vitrification (ISV). The simulation studies determine the effects of soil parameter changes on the ISV process. Changes in heat capacity, thermal conductivity and electrical conductivity are considered. The results of these studies provide a basis for experimental measurement accuracy requirements

  7. In Situ Cleanable Alternative HEPA Filter Media

    International Nuclear Information System (INIS)

    The Westinghouse Savannah River Company, located at the Savannah River Site in Aiken, South Carolina, is currently testing two types of filter media for possible deployment as in situ regenerable/cleanable High Efficiency Particulate Air (HEPA) filters. The filters are being investigated to replace conventional, disposable, glass-fiber, HEPA filters that require frequent removal, replacement, and disposal. This is not only costly and subjects site personnel to radiation exposure, but adds to the ever-growing waste disposal problem. The types of filter media being tested, as part of a National Energy Technology Laboratory procurement, are sintered nickel metal and ceramic monolith membrane. These media were subjected to a hostile environment to simulate conditions that challenge the high-level waste tank ventilation systems. The environment promoted rapid filter plugging to maximize the number of filter loading/cleaning cycles that would occur in a specified period of time. The filters were challenged using nonradioactive simulated high-level waste materials and atmospheric dust; materials that cause filter pluggage in the field. The filters are cleaned in situ using an aqueous solution. The study found that both filter media were insensitive to high humidity or moisture conditions and were easily cleaned in situ. The filters regenerated to approximately clean filter status even after numerous plugging and in situ cleaning cycles. Air Techniques International is conducting particle retention testing on the filter media at the Oak Ridge Filter Test Facility. The filters are challenged using 0.3-mm di-octyl phthalate particles. Both the ceramic and sintered media have a particle retention efficiency > 99.97%. The sintered metal and ceramic filters not only can be cleaned in situ, but also hold great potential as a long life alternative to conventional HEPA filters. The Defense Nuclear Facility Safety Board Technical Report, ''HEPA Filters Used in the Department of Energy's Hazardous Facilities'', found that conventional glass fiber HEPA filters are structurally weak and easily damaged by water or fire. The structurally stronger sintered metal and ceramic filters would reduce the potential of a catastrophic HEPA filter failure due to filter media breakthrough in the process ventilation system. An in situ regenerable system may also find application in recovering nuclear materials, such as plutonium, collected on glove box exhaust HEPA filters. This innovative approach of the in situ regenerative filtration system may be a significant improvement upon the shortfalls of conventional disposable HEPA filters

  8. In situ simulation: Taking reported critical incidents and adverse events back to the clinic

    DEFF Research Database (Denmark)

    Juul, Jonas; Paltved, Charlotte

    Introduction In situ simulation offers a novel approach to training in the healthcare setting. It models clinical processes in a real clinical environment and provides the opportunity to correct errors and adjust team interactions without endangering patients. Training in the simulation laboratory does not tap into situational resources, e.g. individual, team, and organisational characteristics such as routines, personal relations, distributed skill-levels etc. Therefore, it fails to fully mimic real clinical team processes. Alternatively, in situ simulation offers a unique opportunity to explore and improve team processes in the clinical environment. Though research on in situ simulation in healthcare is in its infancy, literature is abundant on patient safety, medical simulation, team training and human factors1. Patient safety reporting systems that identify risks to patients can improve patient safety if coupled with training and organisational support2. Insight into the nature of reported critical incidents and adverse events can be used in writing in situ simulation scenarios and thus lead to interventions that enhance patient safety. The patient safety literature emphasises well-developed non-technical skills in preventing medical errors3. Furthermore, critical incidents and adverse events reporting systems comprise a knowledgebase to gain in-depth insights into patient safety issues. This study explores the use of critical incidents and adverse events reports to inform in situ simulation to improve patient safety. Design and purpose The study uses a case study design of in situ simulation training tailored to two emergency departments in the Central Denmark Region. We aim to: - Develop a model that integrates critical incidents and adverse events, a contextual needs analysis and short-term observations in the design of in situ simulation. - Deliver and evaluate the usability of in situ simulation training to interprofessional emergency teams. Methods The project has a triple strategy: 1) Patient safety data analysis and literature review, 2) Video observational study on interprofessional emergency teams, and 3) In situ simulation intervention study with evaluation of training. Reported critical incidents and adverse events will be collected from the Danish Patient Safety Database in the Central Denmark Region and analysed using the qualitative software programme NVivo 10 for content analysis4 and thematic analysis5. Medical experts and simulation faculty will design scenarios for in situ simulation training based on the analysis. Short-term observations using time logs will be performed along with interviews with key informants at the departments. Video data will be collected and used for debriefing6 focusing on team communication and team adaptation7 after in situ simulation training. Perspective and relevance First, this study might help taking reported critical incidents and adverse events back to the clinic. Second, reported critical incidents and adverse events coupled with a contextual needs analysis and short-term observations might aid in scenario design for in situ simulation. This will shed light on how to develop specific learning goals for in situ simulation based on clinical challenges in acute healthcare settings. Third, in situ simulation offers a unique way to study team interactions associated with effective interprofessional teamwork. In particular, team non-technical skills and team adaptation, and their interplay will be scrutinised. In summary, this study offers in situ simulation faculty with a model for integrating reported critical incidents and adverse events with contextual needs analysis and short-term observations. This study generates system knowledge that might lead to changes on the individual, team, and organisational level, and thus enhancing patient safety. References (1) Rosen MA, Hunt EA, Pronovost PJ, Federowicz MA, Weaver SJ. In situ simulation in continuing medical education for the health care professions: A systematic review. J Contin Educ Health Prof 2012; 32(4):243-254.

  9. In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor

    Science.gov (United States)

    2013-01-01

    We demonstrate a powerful SERS-nanoreactor concept composed of self-assembled gold nanoparticles (AuNP) linked by the sub-nm macrocycle cucurbit[n]uril (CB[n]). The CB[n] functions simultaneously as a nanoscale reaction vessel, sequestering and templating a photoreaction within, and also as a powerful SERS-transducer through the large field enhancements generated within the nanojunctions that CB[n]s define. Through the enhanced Raman fingerprint, the real-time SERS-monitoring of a prototypical stilbene photoreaction is demonstrated. By choosing the appropriate CB[n] nanoreactor, selective photoisomerism or photodimerization is monitored in situ from within the AuNP-CB[n] nanogap. PMID:24188432

  10. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  11. Osteogenic efficiency of in situ gelling poloxamine systems with and without bone morphogenetic protein-2

    Directory of Open Access Journals (Sweden)

    A Rey-Rico

    2011-04-01

    Full Text Available In situ gelling solutions for minimally invasive local application of bone growth factors are attracting increasing attention as efficient and patient-friendly alternative to bone grafts and solid scaffolds for repairing bone defects. Poloxamines, i.e., X-shaped poly(ethylene oxide-poly(propylene oxide block copolymers with an ethylenediamine core (Tetronic, were evaluated both as an active osteogenic component and as a vehicle for rhBMP-2 injectable implants. After cytotoxicity screening of various poloxamine varieties, Tetronic 908, 1107, 1301 and 1307 solutions were chosen as the most cytocompatible and their sol-to-gel transitions were rheologically characterized. Viscoelastic gels, formed at 37 C, sustained protein release under physiological-like conditions. Formulations of rhBMP-2 led to differentiation of mesenchymal stem cells to osteoblasts, quantified as alkaline phosphatase activity with a maximum at day 7, and to mineralized nodules. Interestingly, poloxamine solely gels led to an initial proliferation of the mesenchymal stem cells (first week, followed by differentiation to osteoblasts (second to third week. Histochemical analysis revealed that Tetronic 908 is only osteoinductive; Tetronic 1107 is mostly osteoinductive, although its use leads to a minor differentiation to adipocytes; Tetronic 1307, solely or loaded with rhBMP-2, causes differentiation of both osteoblasts and adipocytes. Enhanced expression levels of CBFA-1 and collagen type I were observed for Tetronic 908, 1107 and 1307, both solely and combined with rhBMP-2. The intrinsic osteogenic activity of poloxamines (not observed for Pluronic F127 offers novel perspectives for bone regeneration using minimally invasive procedures (i.e., injectable scaffolds and overcoming the safety and the cost/effectiveness concerns associated with large scale clinical use of recombinant growth factors.

  12. Osteogenic potential of in situ TiO{sub 2} nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Tan, A.W. [Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ismail, R.; Chua, K.H. [Department of Physiology, Faculty of Medicine, National University of Malaysia, 50300 Kuala Lumpur (Malaysia); Ahmad, R. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Akbar, S.A. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States); Pingguan-Murphy, B., E-mail: bpingguan@um.edu.my [Department of Biomedical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-11-30

    Highlights: In situ titanium dioxide (TiO{sub 2}) nanowire surface structures were fabricated on Ti-6Al-4V substrate using thermal oxidation. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression of primary human osteoblasts were examined on the TiO{sub 2} nanowire surfaces. TiO{sub 2} nanowire surfaces showed enhanced osteogenic potential as compared to the planar surface. - Abstract: Titanium dioxide (TiO{sub 2}) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO{sub 2} nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO{sub 2} nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO{sub 2} nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  13. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    International Nuclear Information System (INIS)

    Highlights: In situ titanium dioxide (TiO2) nanowire surface structures were fabricated on Ti-6Al-4V substrate using thermal oxidation. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression of primary human osteoblasts were examined on the TiO2 nanowire surfaces. TiO2 nanowire surfaces showed enhanced osteogenic potential as compared to the planar surface. - Abstract: Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants

  14. In Vivo Osteogenic Differentiation of Human Embryoid Bodies in an Injectable in Situ-Forming Hydrogel

    Directory of Open Access Journals (Sweden)

    Moon Suk Kim

    2013-07-01

    Full Text Available In this study, we examined the in vivo osteogenic differentiation of human embryoid bodies (hEBs by using an injectable in situ-forming hydrogel. A solution containing MPEG-b-(polycaprolactone-ran-polylactide (MCL and hEBs was easily prepared at room temperature. The MCL solution with hEBs and osteogenic factors was injected into nude mice and developed into in situ-forming hydrogels at the injection sites; these hydrogels maintained their shape even after 12 weeks in vivo, thereby indicating that the in situ-forming MCL hydrogel was a suitable scaffold for hEBs. The in vivo osteogenic differentiation was observed only in the in situ gel-forming MCL hydrogel in the presence of hEBs and osteogenic factors. In conclusion, this preliminary study suggests that hEBs and osteogenic factors embedded in an in situ-forming MCL hydrogel may provide numerous benefits as a noninvasive alternative for allogeneic tissue engineering applications.

  15. The use of hydraulic fracturing to enhance in situ bioremediation

    International Nuclear Information System (INIS)

    Bioremediation was determined to be a viable method of degrading the hydrocarbon contaminants at a fuel distribution and storage facility in Dayton, Ohio. Laboratory tests done by the on-site contractor indicated that percolating water containing oxygen and nutrients through the soil would result in biodegradation of the contaminants. The site is underlain by silty clay till of relatively low hydraulic conductivity, so conventional methods of delivery were expected to result in either slow rates of percolation, and thus slow rates of remediation, or excessive drilling costs. Therefore, the site was selected as a candidate for hydraulic fracturing, a technique of creating high permeability channel ways in tight soils. 1 fig

  16. The determination of the in situ structure by nuclear spin contrast variation

    Energy Technology Data Exchange (ETDEWEB)

    Stuhrmann, H.B. [GKSS Forschungszentrum, Geesthacht (Germany); Nierhaus, K.H. [Max-Planch-Institut fuer Molekulare Genetik, Berlin (Germany)

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  17. The determination of the in situ structure by nuclear spin contrast variation

    International Nuclear Information System (INIS)

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome

  18. Light-Induced In Situ Transformation of Metal Clusters to Metal Nanocrystals for Photocatalysis.

    Science.gov (United States)

    Xiao, Fang-Xing; Zeng, Zhiping; Hsu, Shao-Hui; Hung, Sung-Fu; Chen, Hao Ming; Liu, Bin

    2015-12-30

    In situ transformation of glutathione-capped gold (Aux) clusters to gold (Au) nanocrystals under simulated solar light irradiation was achieved and utilized as a facile synthetic approach to rationally fabricate Aux/Au/TiO2 ternary and Au/TiO2 binary heterostructures. Synergistic interaction of Aux clusters and Au nanocrystals contributes to enhanced visible-light-driven photocatalysis. PMID:26673013

  19. International Week '13

    OpenAIRE

    Kirchhbel, Nicola; Fattoul, Soufian

    2012-01-01

    This project deals with planning the event International Week 2013 - to raise awareness about the international standing of RUC and what it has to offer both international and Danish students. The project features a discussion of potential collaborative partners that could be involved, the marketing strategies that could be used, and the mechanics of achieving the end goal.

  20. Phun Week: Understanding Physiology

    Science.gov (United States)

    Limson, Mel; Matyas, Marsha Lakes

    2009-01-01

    Topics such as sports, exercise, health, and nutrition can make the science of physiology relevant and engaging for students. In addition, many lessons on these topics, such as those on the cardiovascular, respiratory, and digestive systems, align with national and state life science education standards. Physiology Understanding Week (PhUn

  1. At Least 39 Weeks

    Medline Plus

    Full Text Available ... premature birth The newborn intensive care unit (NICU) Birth defects & other health conditions Loss & grief Tools & Resources Frequently asked health questions Ask our health experts Calculating your due date Ovulation calendar 39 weeks is best Order bereavement materials News Moms Need Blog News & Media ...

  2. At Least 39 Weeks

    Medline Plus

    Full Text Available ... Ask our health experts Calculating your due date Ovulation calendar 39 weeks is best Order bereavement materials ... 2:14 Teen2Teen: Truth and Consequences 10:17 Ovulation and pregnancy 3:13 2011 National Ambassador: Lauren ...

  3. In situ SU-8 silver nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Sren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2015-01-01

    Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to...... this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre...... reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 mu m is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver...

  4. In situ remediation of uranium contaminated groundwater

    International Nuclear Information System (INIS)

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications

  5. In-situ studies of nanocatalysis.

    Science.gov (United States)

    Zhang, Shiran; Nguyen, Luan; Zhu, Yuan; Zhan, Sihui; Tsung, Chia-Kuang Frank; Tao, Franklin Feng

    2013-08-20

    A heterogeneous catalyst in industry consists of nanoparticles with variable crystallite sizes, shapes, and compositions. Its catalytic performance (activity, selectivity, and durability) derives from surface chemistry of catalyst nanoparticles during catalysis. However, the surface chemistry of the catalyst particles during catalysis, termed in-situ information, is a "black box" because of the challenges in characterizing the catalysts during catalysis. The lack of such in-situ information about catalysts has limited the understanding of catalytic mechanisms and the development of catalysts with high selectivity and activity. The challenges in understanding heterogeneous catalysis include measurement of reaction kinetics, identification of reaction intermediates, bridging pressure gap and materials gap. The pressure gap is the difference in surface structure and chemistry between a catalyst during catalysis and under an ultrahigh vacuum (UHV) condition. The materials gap represents the difference between the structural and compositional complexity of industrial catalysts and the well-defined surface of model catalysts of metals or oxides. Development of in-situ characterization using electron spectroscopy and electron microscopy in recent decades has made possible studies of surface chemistry and structure of nanocatalysts under reaction conditions or during catalysis at near ambient pressure. In this Account, we review the new chemistries and structures of nanocatalysts during reactions revealed with in-situ analytical techniques. We discuss changes observed during catalysis including the evolution of composition, oxidation state, phase, and geometric structure of the catalyst surface, and the sintering of catalysts. These surface chemistries and structures have allowed researchers to build a correlation between surface chemistry and structure of active nanocatalysts and their corresponding catalytic performances. Such a correlation provides critical insights for understanding catalysis, optimization of existing nanocatalysts, and development of new nanocatalysts with high activity and selectivity. PMID:23618394

  6. In Situ TEM Creation of Nanowire Devices

    DEFF Research Database (Denmark)

    Alam, Sardar Bilal

    2015-01-01

    Integration of silicon nanowires (SiNWs) as active components in devices requires that desired mechanical, thermal and electrical interfaces can be established between the nanoscale geometry of the SiNW and the microscale architecture of the device. In situ transmission electron microscopy (TEM), which has proved to be a powerful method for visualizing the physical processes involved in the growth of nanowires by the vapour liquid solid (VLS) mechanism, was used to study VLS SiNW contact formati...

  7. In situ health monitoring of piezoelectric sensors

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  8. In situ vitrification of buried waste

    International Nuclear Information System (INIS)

    This report describes the application of the in situ vitrification (ISV) process to buried mixed and transuranic wastes. The results of product evaluation activities from two ISV intermediate-scale field tests conducted on simulated buried waste pits are reported. The physical properties and durability of the resulting waste form is discussed. The resulting waste form was found to be more leach resistant than high-level nuclear waste glasses and to be very comparable to stable natural materials, such as obsidian. (author)

  9. Ductal carcinoma in situ: a challenging disease

    OpenAIRE

    Sevilay Altintas; Manon T. Huizing; Eric Van Marck; Vermorken, Jan B; Tjalma, Wiebren A.

    2011-01-01

    Ductal carcinoma in situ (DCIS) represents a heterogenous group of lesions with variable malignant potential. Although it is clearly pre-invasive, not all lesions progress to an invasive malignant disease. The significant increase in the frequency of diagnosis is the result of both widespread use of screening mammography and better recognition among pathologists. Treatment is controversial, but for several decades total mastectomy has been considered as the appropriate treatment. The tendency...

  10. PREPARATION OF NANOCOMPOSITES BY IN SITU POLIMERIZATION

    OpenAIRE

    PAULA ZAPATA; RAL QUIJADA; JAIME RETUER; EDWIN MONCADA

    2008-01-01

    Polyethylene nanocomposites were obtained by in situ polymerization using both montmorillonite (natural clay) and montmorillonite organically modified with octadecylamine (O-Clo). In this proposed methodology the clays were added directly in the reactor together with the catalytic system (metallocene catalyst and methylaluminoxane) and ethylene. The nanocomposites were characterized by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and t...

  11. Femtosecond laser in laser in situ keratomileusis

    OpenAIRE

    Salomo, Marcella Q.; Wilson, Steven E.

    2010-01-01

    Flap creation is a critical step in laser in situ keratomileusis (LASIK). Efforts to improve the safety and predictability of the lamellar incision have fostered the development of femtosecond lasers. Several advantages of the femtosecond laser over mechanical microkeratomes have been reported in LASIK surgery. In this article, we review common considerations in management and complications of this step in femtosecond laserLASIK and concentrate primarily on the IntraLase laser because most p...

  12. A Novel in situ Trigger Combination Method

    International Nuclear Information System (INIS)

    Searches for rare physics processes using particle detectors in high-luminosity colliding hadronic beam environments require the use of multi-level trigger systems to reject colossal background rates in real time. In analyses like the search for the Higgs boson, there is a need to maximize the signal acceptance by combining multiple different trigger chains when forming the offline data sample. In such statistically limited searches, datasets are often amassed over periods of several years, during which the trigger characteristics evolve and their performance can vary significantly. Reliable production cross-section measurements and upper limits must take into account a detailed understanding of the effective trigger inefficiency for every selected candidate event. We present as an example the complex situation of three trigger chains, based on missing energy and jet energy, to be combined in the context of the search for the Higgs (H) boson produced in association with a W boson at the Collider Detector at Fermilab (CDF). We briefly review the existing techniques for combining triggers, namely the inclusion, division, and exclusion methods. We introduce and describe a novel fourth in situ method whereby, for each candidate event, only the trigger chain with the highest a priori probability of selecting the event is considered. The in situ combination method has advantages of scalability to large numbers of differing trigger chains and of insensitivity to correlations between triggers. We compare the inclusion and in situ methods for signal event yields in the CDF WH search.

  13. Software Tools for In-Situ Documentation of Built Heritage

    Science.gov (United States)

    Smars, P.

    2013-07-01

    The paper presents open source software tools developed by the author to facilitate in-situ documentation of architectural and archological heritage. The design choices are exposed and related to a general issue in conservation and documentation: taking decisions about a valuable object under threat . The questions of level of objectivity is central to the three steps of this process. It is our belief that in-situ documentation has to be favoured in this demanding context, full of potential discoveries. The very powerful surveying techniques in rapid development nowadays enhance our vision but often tend to bring back a critical part of the documentation process to the office. The software presented facilitate a direct treatment of the data on the site. Emphasis is given to flexibility, interoperability and simplicity. Key features of the software are listed and illustrated with examples (3D model of Gothic vaults, analysis of the shape of a column, deformation of a wall, direct interaction with AutoCAD).

  14. In situ salinity measurements in seawater with a fibre-optic probe

    OpenAIRE

    Diaz Herrera, N; Esteban, O; Navarrete, M.; Le Haitre, Michel; Gonzalez Cano, A

    2006-01-01

    We have successfully proved the feasibility of an optical salinity meter for marine applications in a two week measurement campaign, carried out for the realization of in situ salinity measurements in seawater. An optical instrument (optode), in which the main element is a fibre-optic refractive-index sensor based on surface plasmon resonance (SPR), has been developed for that purpose, and has been especially designed to be able to operate in realistic conditions. The performance of the optod...

  15. Late post-traumatic flap dislocation and macrostriae after laser in situ keratomileusis

    OpenAIRE

    Sinha, Rajesh; Shekhar, Himanshu; Tinwala, Sana; Gangar, Anita; Titiyal, Jeewan S.

    2014-01-01

    We report an unusual flap-related complication that occurred 4 years after uneventful laser in situ keratomileusis (LASIK) performed in the eye of a 20-year-old woman. She developed dislocation with partial infolding of the LASIK flap with macrostriae and epithelial ingrowth in her left eye after trauma by a wooden chip. The flap was refloated, stretched, smoothened, and hydrated on both under and outer surfaces after epithelial debridement. At 1 week, the uncorrected visual acuity was 20/20 ...

  16. In situ measurements of volatile organic compounds in a boreal forest

    OpenAIRE

    Hakola, H.; Helln, H.; Henriksson, M.; Rinne, J.; Kulmala, M

    2012-01-01

    We present biogenic VOC, including sesquiterpenes, measurements at the SMEAR II station (Station For Measuring Forest Ecosystem-Atmosphere Relations) in Finland using an in situ gas chromatograph mass-spectrometer with 2 h time resolution. The measurements were conducted over the period October 2010October 2011, at least one week every month. To our knowledge there are no earlier species-speciated semi-continuous BVOC data also covering dormant periods.

    During th...

  17. IN SITU FIELD TESTING OF PROCESSES

    International Nuclear Information System (INIS)

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes2. The scientific analysis of data for inputs to model calibration and validation as documented in2 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses provide data useful for refining and confirming the understanding of flow, drift seepage, and transport processes in the UZ. The UZ testing activities included measurement of permeability distribution, quantification of the seepage of water into the drifts, evaluation of fracture-matrix interaction, study of flow along faults, testing of flow and transport between drifts, characterization of hydrologic heterogeneity along drifts, estimation of drying effects on the rock surrounding the drifts due to ventilation, monitoring of moisture conditions in open and sealed drifts, and determination of the degree of minimum construction water migration below drift. These field tests were conducted in two underground drifts at Yucca Mountain, the Exploratory Studies Facility (ESF) drift, and the cross-drift for Enhanced Characterization of the Repository Block (ECRB), as described in Section 1.2. Samples collected in boreholes and underground drifts have been used for additional hydrochemical and isotopic analyses for additional understanding of the UZ setting. The UZ transport tests conducted at the nearby Busted Butte site (see Figure 1-4) are also described in this scientific analysis report

  18. IN SITU FIELD TESTING OF PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    J.S.Y. YANG

    2004-11-08

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses provide data useful for refining and confirming the understanding of flow, drift seepage, and transport processes in the UZ. The UZ testing activities included measurement of permeability distribution, quantification of the seepage of water into the drifts, evaluation of fracture-matrix interaction, study of flow along faults, testing of flow and transport between drifts, characterization of hydrologic heterogeneity along drifts, estimation of drying effects on the rock surrounding the drifts due to ventilation, monitoring of moisture conditions in open and sealed drifts, and determination of the degree of minimum construction water migration below drift. These field tests were conducted in two underground drifts at Yucca Mountain, the Exploratory Studies Facility (ESF) drift, and the cross-drift for Enhanced Characterization of the Repository Block (ECRB), as described in Section 1.2. Samples collected in boreholes and underground drifts have been used for additional hydrochemical and isotopic analyses for additional understanding of the UZ setting. The UZ transport tests conducted at the nearby Busted Butte site (see Figure 1-4) are also described in this scientific analysis report.

  19. In-Situ Nitrogen Doping of the TiO2 Photocatalyst Deposited by PEALD for Visible Light Activity

    International Nuclear Information System (INIS)

    In this paper, an N-doped titanium oxide (TiO2) photocatalyst is deposited by a plasma-enhanced atomic layer deposition (PEALD) system through the in-situ doping method. X-ray photoelectron spectroscopy (XPS) analysis indicates that substitutional nitrogen atoms (?395.9 eV) with 1 atom% are effectively doped into TiO2 films. UV-VIS spectrometry shows that the in-situ nitrogen doping method indeed enhances the visible-activity of TiO2 films in the 425550 nm range, and the results of the performance tests of the N-doped TiO2 films also imply that the photocatalysis activity is improved by in-situ doping. The in-situ doping mechanism of the N-doped TiO2 film is suggested according to the XPS results and the typical atomic layer deposition process

  20. In Situ TEM Creation of Nanowire Devices

    DEFF Research Database (Denmark)

    Alam, Sardar Bilal

    2015-01-01

    Integration of silicon nanowires (SiNWs) as active components in devices requires that desired mechanical, thermal and electrical interfaces can be established between the nanoscale geometry of the SiNW and the microscale architecture of the device. In situ transmission electron microscopy (TEM), which has proved to be a powerful method for visualizing the physical processes involved in the growth of nanowires by the vapour liquid solid (VLS) mechanism, was used to study VLS SiNW contact formation process. Electrical characteristics and effects of surface modification on electrical behavior of SiNW were also investigated in situ. SiNWs were grown on silicon microcantilever heaters using the VLS mechanism. When grown across a gap between adjacent cantilevers, contact was formed when the SiNW impinged on the sidewall of an adjacent cantilever. Using in situ TEM, SiNW contact formation process at high temperatures was observed in real time. As the eutectic droplet made contact, it wetted the surface; Si growth catalyzed by the eutectic continued, while at the same time Au often migrated/diffused away from the contact site. The parameters of this contact formation process were measured from movies recorded during contact events. It is demonstrated that the geometry of the final contact formed between the nanowire and the silicon surface could be controlled by varying the contact surface temperature and the electrical current through the bridging SiNW. By adjusting the contact surface temperature and nanowire current, the balance of Si deposition vs. Au migration could be controlled. This gave rise to a variety of contact geometries including a Si to Si contact with controlled shape and diameter, a nano gap, or a Si-Au-Si contact. It is further demonstrated that electromigration is the best candidate for controlling catalyst migration. Kinetics of the contact formation process was studied in detail and the conditions which resulted in different contact geometries are explained. On completion of the contact, SiNW bridging the adjacent cantilevers was electrically connected at its two ends, base and tip and its electrical properties were probed in situ TEM. Such SiNW bridges clamped between two cantilevers in situ TEM was an interesting platform for studying the effect of surface modification on SiNWs electrical properties. The effect of surface oxidation was studied and it is demonstrated that oxidation causes substantial increase in the resistance of the nanowire.

  1. In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview.

    Science.gov (United States)

    Kuppusamy, Saranya; Palanisami, Thavamani; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2016-01-01

    Though several in-situ treatment methods exist to remediate polluted sites, selecting an appropriate site-specific remediation technology is challenging and is critical for successful clean up of polluted sites. Hence, a comprehensive overview of all the available remediation technologies to date is necessary to choose the right technology for an anticipated pollutant. This review has critically evaluated the (i) technological profile of existing in-situ remediation approaches for priority and emerging pollutants, (ii) recent innovative technologies for on-site pollutant remediation, and (iii) current challenges as well as future prospects for developing innovative approaches to enhance the efficacy of remediation at contaminated sites. PMID:26423073

  2. At Least 39 Weeks

    Medline Plus

    Full Text Available ... Newborn care: Crying 2:14 39 Weeks Study: Healthy Babies Are Worth the Wait 2:05 Don't You Dare: Tips for Preconception 9:31 North Carolina ... make a difference and let your friends know you are helping end premature birth. Become the first of your ... babies. We help moms have full-term pregnancies and healthy babies. If something goes wrong, we offer information ...

  3. Spontaneous heterotopic pregnancy causing tubal rupture in a patient with intrauterine device in-situ

    Directory of Open Access Journals (Sweden)

    Serpil Telci

    2014-01-01

    Full Text Available Spontaneous heterotopic pregnancy (HP is a rare but life threatening condition. A case of 27 years old patient who admitted to our emergency gynecology clinic for acute abdominal pain is presented. The transvaginal ultrasound revealed two embryos with cardiac activity; one intrauterine (8 week and 3 day , and the other one in the left adnexa (7 week and 3 day and an intrauterine device (IUD in situ. The patient had left salpingectomy with laparotomy and after the fifth hour of operation she had spontaneous abortion of intrauterine pregnancy. We reported a case of heterotopic pregnancy and relation with IUD and a brief review of the literature.

  4. 30 CFR 828.11 - In situ processing: Performance standards.

    Science.gov (United States)

    2010-07-01

    ... in situ processing activities shall comply with 30 CFR 817 and this section. (b) In situ processing... processing activities shall submit for approval as part of the application for permit under 30 CFR 785.22... 30 Mineral Resources 3 2010-07-01 2010-07-01 false In situ processing: Performance standards....

  5. In situ laser processing in a scanning electron microscope

    International Nuclear Information System (INIS)

    Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 ?m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm2. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiOx.

  6. In situ electrical transport measurementof superconductive ultrathin films

    Science.gov (United States)

    Liu, Can-Hua; Jia, Jin-Feng

    2015-11-01

    The discovery of an extraordinarily superconductive large energy gap in SrTiO3 supported single-layer FeSe films has recently initiated a great deal of research interests in surface-enhanced superconductivity and superconductive ultrathin films fabricated on crystal surfaces. On account of the instability of ultra-thin films in air, it is desirable to perform electrical transport measurement in ultra-high vaccum (UHV). Here we review the experimental techniques of in situ electrical transport measurement and their applications on superconductive ultrathin films. The work in SJTU was supported by the National Basic Research Program of China (Grant Nos. 2013CB921902 and 2011CB922200) and the National Natural Science Foundation of China (Grant Nos. 11227404, 11274228, 11521404, 11174199, and 11134008).

  7. Aluminum induced in situ crystallization of amorphous SiC

    Science.gov (United States)

    Wang, Li; Dimitrijev, Sima; Tanner, Philip; Zou, Jin

    2009-05-01

    Experimental evidence of aluminum induced in situ crystallization of amorphous SiC is presented. The deposition of SiC films on Si substrates was performed using low pressure chemical vapor deposition method at 600 C with concurrent supply of Al(CH3)3 and H3SiCH3. Transmission electron micrographs confirm the presence of nanocrystals, whereas capacitance-voltage measurements demonstrate that the deposited films are p type doped. A crystallization mechanism is proposed based on the classic theory of nucleation in the growth rate limited regime. The introduction of Al(CH3)3 enhances the surface reaction and increases the supersaturation, which reduces the activation energy for nucleation.

  8. In situ reacted rare-earth hexaaluminate interphases

    International Nuclear Information System (INIS)

    A novel in situ reaction between a ceria-doped zirconia interphase coating on Saphikon fibers and an outer alumina coating has resulted in the formation of oriented hexaaluminate platelets which can act as a low fracture energy interface barrier for crack deflection in oxide-oxide ceramic-matrix composites (CMCs). The reaction proceeds only in reducing environments where the reduction of the cerium and zirconium ions to their 3+ valent state causes a destabilization phenomenon consistent with previously reported findings. The diffusion of the cerium from the zirconia into solid solution with the alumina can stabilize the layered hexaaluminate structure. Preferred orientational growth of the hexaaluminate parallel to the coating interface was observed which is the required orientation for enhanced debonding at the fiber/matrix interface in long-fiber-reinforced CMCs

  9. Radiation-induced autologous in situ tumor vaccines

    International Nuclear Information System (INIS)

    Radiation therapy (RT) has been used as a definitive treatment for many solid tumors. While tumoricidal properties of RT are instrumental for standard clinical application, irradiated tumors can potentially serve as a source of tumor antigens in vivo, where dying tumor cells would release tumor antigens and danger signals and serve as autologous in situ tumor vaccines. Using murine tumor models of prostate, metastatic lung cancer and melanoma, we have demonstrated evidence of radiation-enhanced tumor-specific immune response that resulted in improved primary tumor control and reduction in systemic metastasis and cure. We will discuss the immunogenic properties of RT and determine how immunotherapeutic approaches can synergize with RT in boosting immune cells cell function. (author)

  10. In-situ groundwater remediation by selective colloid mobilization

    Science.gov (United States)

    Seaman, John C. (New Ellenton, SC); Bertch, Paul M. (Aiken, SC)

    1998-01-01

    An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

  11. Air-coupled acoustic thermography for in-situ evaluation

    Science.gov (United States)

    Zalameda, Joseph N. (Inventor); Winfree, William P. (Inventor); Yost, William T. (Inventor)

    2010-01-01

    Acoustic thermography uses a housing configured for thermal, acoustic and infrared radiation shielding. For in-situ applications, the housing has an open side adapted to be sealingly coupled to a surface region of a structure such that an enclosed chamber filled with air is defined. One or more acoustic sources are positioned to direct acoustic waves through the air in the enclosed chamber and towards the surface region. To activate and control each acoustic source, a pulsed signal is applied thereto. An infrared imager focused on the surface region detects a thermal image of the surface region. A data capture device records the thermal image in synchronicity with each pulse of the pulsed signal such that a time series of thermal images is generated. For enhanced sensitivity and/or repeatability, sound and/or vibrations at the surface region can be used in feedback control of the pulsed signal applied to the acoustic sources.

  12. In situ Raman spectroscopy for growth monitoring of vertically aligned multiwall carbon nanotubes in plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Labbaye, T.; Gaillard, M.; Lecas, T.; Kovacevic, E.; Boulmer-Leborgne, Ch.; Guimbretière, G. [GREMI, Université-CNRS, BP6744, 45067 Orléans Cedex 2 (France); Canizarès, A.; Raimboux, N.; Simon, P.; Ammar, M. R., E-mail: mohamed-ramzi.ammar@cnrs-orleans.fr [CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans Cedex 2 (France); Strunskus, T. [Institute of Material Science, Chritian-Albrechts-University of Kiel, D-24143 Kiel (Germany)

    2014-11-24

    Portable and highly sensitive Raman setup was associated with a plasma-enhanced chemical vapor deposition reactor enabling in situ growth monitoring of multi-wall carbon nanotubes despite the combination of huge working distance, high growth speed and process temperature and reactive plasma condition. Near Edge X-ray absorption fine structure spectroscopy was used for ex situ sample analysis as a complementary method to in situ Raman spectroscopy. The results confirmed the fact that the “alternating” method developed here can accurately be used for in situ Raman monitoring under reactive plasma condition. The original analytic tool can be of great importance to monitor the characteristics of these nanostructured materials and readily define the ultimate conditions for targeted results.

  13. In situ Raman spectroscopy for growth monitoring of vertically aligned multiwall carbon nanotubes in plasma reactor

    International Nuclear Information System (INIS)

    Portable and highly sensitive Raman setup was associated with a plasma-enhanced chemical vapor deposition reactor enabling in situ growth monitoring of multi-wall carbon nanotubes despite the combination of huge working distance, high growth speed and process temperature and reactive plasma condition. Near Edge X-ray absorption fine structure spectroscopy was used for ex situ sample analysis as a complementary method to in situ Raman spectroscopy. The results confirmed the fact that the “alternating” method developed here can accurately be used for in situ Raman monitoring under reactive plasma condition. The original analytic tool can be of great importance to monitor the characteristics of these nanostructured materials and readily define the ultimate conditions for targeted results

  14. In situ Raman spectroscopy for growth monitoring of vertically aligned multiwall carbon nanotubes in plasma reactor

    Science.gov (United States)

    Labbaye, T.; Canizarès, A.; Gaillard, M.; Lecas, T.; Kovacevic, E.; Boulmer-Leborgne, Ch.; Strunskus, T.; Raimboux, N.; Simon, P.; Guimbretière, G.; Ammar, M. R.

    2014-11-01

    Portable and highly sensitive Raman setup was associated with a plasma-enhanced chemical vapor deposition reactor enabling in situ growth monitoring of multi-wall carbon nanotubes despite the combination of huge working distance, high growth speed and process temperature and reactive plasma condition. Near Edge X-ray absorption fine structure spectroscopy was used for ex situ sample analysis as a complementary method to in situ Raman spectroscopy. The results confirmed the fact that the "alternating" method developed here can accurately be used for in situ Raman monitoring under reactive plasma condition. The original analytic tool can be of great importance to monitor the characteristics of these nanostructured materials and readily define the ultimate conditions for targeted results.

  15. Development on device for lifting submersible pump in production well of in-situ leaching

    International Nuclear Information System (INIS)

    Aimed at the feature of pumping lixivium with submersible pump in in-situ leaching mine, the electro vehicle carried device for lifting submersible pump is developed. The device is simple in structure, easy to operation, stable in performance and reliable in safety. It is applied with perfect results in the field test of in-situ leaching of uranium in Xinjiang. In the practical application, compared with the ways of lifting submersible pump of manhandling and hoister, the device can greatly enhance operating efficiency, facilitates field multi-well operation (because it can come along car removing). The problem difficult of lifting submersible pump in the production well of in-situ leaching mine is solved

  16. Liquid crystalline polymer nanocomposites reinforced with in-situ reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    D. Pedrazzoli

    2015-08-01

    Full Text Available In this work liquid-crystalline polymer (LCP nanocomposites reinforced with in-situ reduced graphene oxide are investigated. Graphene oxide (GO was first synthesized by the Hummers method, and the kinetics of its thermal reduction was assessed. GO layers were then homogeneously dispersed in a thermotropic liquid crystalline polymer matrix (Vectran, and an in-situ thermal reduction of GO into reduced graphene oxide (rGO was performed. Even at low rGO amount, the resulting nanocomposites exhibited an enhancement of both the mechanical properties and the thermal stability. Improvements of the creep stability and of the thermo-mechanical behavior were also observed upon nanofiller incorporation. Furthermore, in-situ thermal reduction of the insulating GO into the more electrically conductive rGO led to an important surface resistivity decrease in the nanofilled samples.

  17. The in situ combustion pilot project in Bare field, Orinoco oil belt, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Perozo, H.A.; Mendoza, A.J.; Teixeira, J.; Alvarez, A.; Vasquez, P. [PDVSA Intevep (Venezuela)

    2011-07-01

    In heavy oil fields, in-situ combustion technology can be used as a means to enhance oil recovery. This process consists of burning some part of the oil present in the reservoir to produce heat that allow increased oil displacement. The aim of this study is to present an in situ combustion pilot project (ISCPP). This project will be conducted by PDVSA Intevep and its partners in the Orinoco oil belt, Venezuela, to assess the effect of in situ combustion in increasing recovery factors from heavy crude oil reservoirs. The laboratory combustion test analyses, the static and dynamic reservoir simulations, the design, construction and completion of all wells and the study, analysis and development of surface facilities are discussed. The ISCPP is expected to be running by the end of 2011.

  18. In Situ Analysis of Nitrifying Biofilms as Determined by In Situ Hybridization and the Use of Microelectrodes

    OpenAIRE

    Okabe, Satoshi; Satoh, Hisashi; Watanabe, Yoshimasa

    1999-01-01

    We investigated the in situ spatial organization of ammonia-oxidizing and nitrite-oxidizing bacteria in domestic wastewater biofilms and autotrophic nitrifying biofilms by using microsensors and fluorescent in situ hybridization (FISH) performed with 16S rRNA-targeted oligonucleotide probes. The combination of these techniques made it possible to relate in situ microbial activity directly to the occurrence of nitrifying bacterial populations. In situ hybridization revealed that bacteria belon...

  19. Next generation in-situ optical Raman sensor for seawater investigations

    Science.gov (United States)

    Kolomijeca, A.; Kwon, Y.-H.; Ahmad, H.; Kronfeldt, H.-D.

    2012-04-01

    We introduce the next generation of optical sensors based on a combination of surfaced enhanced Raman scattering (SERS) and shifted excitation Raman difference spectroscopy (SERDS) suited for investigations of tiny concentrations of pollutions in the seawater. First field measurements were carried out in the Arctic area which is of global interest since it is more affected by global warming caused climatic changes than any other areas of our planet and it is a recipient for many toxic organic pollutants. A significant long-range atmospheric transport of pollutants to Svalbard is mainly originated from industrialized countries in Europe and North America during the last decades. Therefore, the main interest is to investigate the Arctic water column and also the sediments. Standard chemical methods for water/sediment analysis are extremely accurate but complex and time-consuming. The primary objective of our study was to develop a fast response in-situ optical sensor for easy to use and quick analysis. The system comprises several components: a handheld measurement head containing a 671 nm microsystem diode laser and the Raman optical bench, a laser driver electronics board, a custom-designed miniature spectrometer with an optical resolution of 8 cm-1 and a netbook to control the spectrometer as well as for data evaluation. We introduced for the first time the portable Raman sensor system on an Artic sea-trial during a three week cruise on board of the James Clark Ross research vessel in August 2011. Numerous Raman and SERS measurements followed by SERDS evaluations were taken around locations 78 N and 9 E. Different SERS substrates developed for SERS measurements in sea-water were tested for their capability to detect different substances (PAHs) in the water down to very small (nmol/l) concentrations. Stability tests of the substrates were carried out also for the applicability of our system e.g. on a mooring. Details of the in-situ Raman sensor were presented together with the measurements results from the Arctic area.

  20. Tests of in situ formation scenarios for compact multiplanet systems

    Energy Technology Data Exchange (ETDEWEB)

    Schlaufman, Kevin C., E-mail: kschlauf@mit.edu [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-08-01

    Kepler has identified over 600 multiplanet systems, many of which have several planets with orbital distances smaller than that of Mercury. Because these systems may be difficult to explain in the paradigm of core accretion and disk migration, it has been suggested that they formed in situ within protoplanetary disks with high solid surface densities. The strong connection between giant planet occurrence and stellar metallicity is thought to be linked to enhanced solid surface densities in disks around metal-rich stars, so the presence of a giant planet can be a sign of planet formation in a high solid surface density disk. I formulate quantitative predictions for the frequency of long-period giant planets in these in situ models by translating the proposed increase in disk mass into an equivalent metallicity enhancement. I rederive the scaling of giant planet occurrence with metallicity as P{sub gp}=0.05{sub −0.02}{sup +0.02}×10{sup (2.1±0.4)[M/H]}=0.08{sub −0.03}{sup +0.02}×10{sup (2.3±0.4)[Fe/H]} and show that there is significant tension between the frequency of giant planets suggested by the minimum mass extrasolar nebula scenario and the observational upper limits. Consequently, high-mass disks alone cannot explain the observed properties of the close-in Kepler multiplanet systems and therefore migration is still important. More speculatively, I combine the metallicity scaling of giant planet occurrence with small planet occurrence rates to estimate the number of solar system analogs in the Galaxy. I find that in the Milky Way there are perhaps 4 × 10{sup 6} true solar system analogs with an FGK star hosting both a terrestrial planet in the habitable zone and a long-period giant planet companion.

  1. Challenges in subsurface in situ remediation of chlorinated solvents

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Fjordbge, Annika Sidelmann

    2014-01-01

    Chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. In situ remediation of these sites is particularly challenging in heterogeneous fractured media and where the solvents are present as DNAPL. In situ remediation by chemical as well as biological degradation of chlorinated solvents is a contact sport and requires direct contact between the contaminant and the reactants and/or degrading microorganisms. In fractured geologic media, where contaminants have spread to the low permeability matrix by diffusion, the contact between contaminant and reactant is limited by slow back diffusion of contaminant and in-diffusion of reactant if the only access for the reactant is via the high permeability fractures/conduits. Where DNAPL is present the mass distribution is very heterogeneous and the reactive degradation is often limited by dissolution of the DNAPL. Most recent research has been aimed at overcoming these challenges by enhanced and targeted reactant delivery methods. These include a wide range of very diverse technologies such as: enhanced injection methods, including fracturing; electrokinetic enhancement of delivery; ZVI-clay mixing for contact; hydrophobic and/or mobile nano-reactants targeting DNAPL. The complexity of the technologies varies greatly and the current level of implementation ranges from multiple full scale applications to bench scale testing. However, the basic degradation reaction involved is usually well established. Enhanced injection with fracturing increases the access to contaminants in clay/clayey media matrixes by shortening the diffusive distance and with ZVI-clay technology by physically mixing the reactant with the contaminated clay/clayey media. The efficiency of the injection technologies has been very variable and rather unpredictable in heterogeneous geologic media, hence, further developments are needed. The novel techniques involving electrokinetics induce migration of primarily ionic species/reactants independent of hydraulic permeability differences, hence transporting the reactant into the contaminated matrix and may be applicable for limestone/bedrock as well as clayey media. Only laboratory studies of electrokinetic enhancement have yet been published, and there is a need for thorough pilot scale studies and supporting laboratory studies. Injectable nano-particles with an affinity for DNAPL surfaces (or phases) may overcome dissolution limitations and provide direct contact with contaminant, limiting reactions with other reactive sites in the subsurface. Challenges lie in obtaining stability and mobility in water, affinity for DNAPL and at the same time maintain reactivity with contaminants. Upscaling to production for pilot studies without loss of efficiency is not trivial. In conclusion there continues to be a need for research and development and in particular for well documented pilot/full scale field studies.

  2. In-situ burning: NIST studies

    International Nuclear Information System (INIS)

    In-situ burning of spilled oil has distinct advantages over other countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue byproducts. Because the oil is converted to gaseous products of combustion by burning, the need for physical collection, storage, and transport of recovered fluids is reduced to the few percent of the original spill volume that remains as residue after burning. Burning oil spills produces a visible smoke plume containing smoke particulate and other products of combustion which may persist for many kilometers from the burn. This fact gives rise to public health concerns, related to the chemical content of the smoke plume and the downwind deposition of particulate, which need to be answered. In 1985, a joint Minerals Management Service (MMS) and Environment Canada (EC) in-situ burning research program was begun at the National Institute of Standards and Technology (NIST). This research program was designed to study the burning of large crude oil spills on water and how this burning would affect air quality by quantifying the products of combustion and developing methods to predict the downwind smoke particulate deposition. To understand the important features of in-situ burning, it is necessary to perform both laboratory and mesoscale experiments. Finally, actual burns of spilled oil at sea will be necessary to evaluate the method at the anticipated scale of actual response operations. In this research program there is a continuing interaction between findings from measurements on small fire experiments performed in the controlled laboratory environments of NIST and the Fire Research Institute (FRI) in Japan, and large fire experiments at facilities like the USCG Fire Safety and Test Detachment in Mobile, Alabama where outdoor liquid fuel burns in large pans are possible

  3. In-situ thermal testing program strategy

    International Nuclear Information System (INIS)

    In the past year the Yucca Mountain Site Characterization Project has implemented a new Program Approach to the licensing process. The Program Approach suggests a step-wise approach to licensing in which the early phases will require less site information than previously planned and necessitate a lesser degree of confidence in the longer-term performance of the repository. Under the Program Approach, the thermal test program is divided into two principal phases: (1) short-term in situ tests (in the 1996 to 2000 time period) and laboratory thermal tests to obtain preclosure information, parameters, and data along with bounding information for postclosure performance; and (2) longer-term in situ tests to obtain additional data regarding postclosure performance. This effort necessitates a rethinking of the testing program because the amount of information needed for the initial licensing phase is less than previously planned. This document proposes a revised and consolidated in situ thermal test program (including supporting laboratory tests) that is structured to meet the needs of the Program Approach. A customer-supplier model is used to define the Project data needs. These data needs, along with other requirements, were then used to define a set of conceptual experiments that will provide the required data within the constraints of the Program Approach schedule. The conceptual thermal tests presented in this document represent a consolidation and update of previously defined tests that should result in a more efficient use of Project resources. This document focuses on defining the requirements and tests needed to satisfy the goal of a successful license application in 2001, should the site be found suitable

  4. The treatment of in situ breast cancer

    International Nuclear Information System (INIS)

    Carcinoma in situ is the earliest histologically recognisable form of malignancy and as such provides an opportunity to treat the disease in a curative way. The two major variants, ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) will be considered separately as the two conditions have divergent natural histories. DCIS is increasing in incidence since microcalcification may be detected radiologically in the screening of asymptomatic women. The extent of microcalcification may not indicate the extent of disease. It has yet to be determined whether there is a difference in behaviour of the tumour forming and the asymptomatic types of DCIS. After a biopsy has shown DCIS there will be residual DCIS at the biopsy site in one-third of patients, and multifocal DCIS in another third. A coexistent infiltrating carcinoma may be present in up to 16%. Due to sampling problems areas of invasion may be missed. Axillary nodal metastases are found in only 1% of patients with histological DCIS. Radical surgery by total or modified mastectomy is almost curative, but 3% of patients will die of metastases. Taking results of uncontrolled trials, local relapse rates are as follows: excision alone 50%, wide excision 30%, wide excision plus radiotherapy 20%. Two prospective trials are underway run by the EORTC and NSABP in which patients with DCIS are treated by wide excision with or without external radiotherapy. LCIS is usually an incidental finding with a bilateral predisposition to subsequent infiltrating carcinomas. Curative procedures such as bilateral mastectomy with reconstruction may represent overtreatment. A systemic rather than local approach would seem appropriate and a trial is now underway run by the EORTC in which patients with histologically confirmed LCIS are randomised to observation alone or to receive tamoxifen 20 mg daily for 5 years. (orig./MG)

  5. The treatment of in situ breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fentiman, I.S. (Guy' s Hospital, London (UK). Clinical Oncology Unit)

    1989-01-01

    Carcinoma in situ is the earliest histologically recognisable form of malignancy and as such provides an opportunity to treat the disease in a curative way. The two major variants, ductal carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS) will be considered separately as the two conditions have divergent natural histories. DCIS is increasing in incidence since microcalcification may be detected radiologically in the screening of asymptomatic women. The extent of microcalcification may not indicate the extent of disease. It has yet to be determined whether there is a difference in behaviour of the tumour forming and the asymptomatic types of DCIS. After a biopsy has shown DCIS there will be residual DCIS at the biopsy site in one-third of patients, and multifocal DCIS in another third. A coexistent infiltrating carcinoma may be present in up to 16%. Due to sampling problems areas of invasion may be missed. Axillary nodal metastases are found in only 1% of patients with histological DCIS. Radical surgery by total or modified mastectomy is almost curative, but 3% of patients will die of metastases. Taking results of uncontrolled trials, local relapse rates are as follows: excision alone 50%, wide excision 30%, wide excision plus radiotherapy 20%. Two prospective trials are underway run by the EORTC and NSABP in which patients with DCIS are treated by wide excision with or without external radiotherapy. LCIS is usually an incidental finding with a bilateral predisposition to subsequent infiltrating carcinomas. Curative procedures such as bilateral mastectomy with reconstruction may represent overtreatment. A systemic rather than local approach would seem appropriate and a trial is now underway run by the EORTC in which patients with histologically confirmed LCIS are randomised to observation alone or to receive tamoxifen 20 mg daily for 5 years. (orig./MG).

  6. In situ surface biodegradation of restorative materials.

    Science.gov (United States)

    Padovani, Gc; Fcio, Sbp; Ambrosano, Gmb; Sinhoreti, Mac; Puppin-Rontani, Rm

    2014-01-01

    SUMMARY This study aimed to evaluate the surface characteristics of restorative materials (roughness, hardness, chemical changes by energy-dispersive spectroscopy [EDX], and scanning electron microscopy [SEM]) submitted to in situ biodegradation. Fifteen discs of each material (IPS e.max [EM], Filtek Supreme [FS], Vitremer [VI], Ketac Molar Easymix [KM], and Amalgam GS-80 [AM]) were fabricated in a metallic mold (4.0 mm 1.5 mm). Roughness, hardness, SEM, and EDX were then evaluated. Fifteen healthy volunteers used a palatal device containing one disc of each restorative material for seven days. After the biodegradation, the roughness, hardness, SEM, and EDX were once again evaluated. Data obtained from the roughness and hardness evaluations were submitted to Kolmogorov-Smirnov and Tukey-Kramer tests (phardness among the materials were seen: EM>AM>FS>KM>VI. After biodegradation, the hardness was significantly altered among the materials studied: EM>AM>FS=KM>VI, along with a significant increase in the hardness for AM, KM, and VI. SEM images indicated degradation on the surface of all materials, showing porosities, cracks, and roughness. Furthermore, after biodegradation, FS showed the presence of Cl, K, and Ca on the surface, while F was not present on the VI and KM surfaces. EM and AM did not have alterations in their chemical composition after biodegradation. It was concluded that the dental biofilm accumulation in situ on different restorative materials is a material-dependent parameter. Overall, all materials changed after biodegradation: esthetic restorative materials showed increased roughness, confirmed by SEM, and the ionomer materials and silver amalgam showed a significantly higher hardness. Finally, the initial chemical composition of the composite resin and ionomer materials evaluated was significantly altered by the action of the biofilm in situ. PMID:24555699

  7. High resolution measurements of carbon monoxide along a late Holocene Greenland ice core: evidence for in-situ production

    Directory of Open Access Journals (Sweden)

    X. Fan

    2013-05-01

    Full Text Available We present high-resolution measurements of carbon monoxide (CO concentrations from continuous analysis of a shallow ice core from the North Greenland Eemian Ice Drilling project (NEEM-2011-S1. An Optical Feedback Cavity Enhanced Absorption Spectrometer (OF-CEAS was coupled to a continuous melter system during a 4-week laboratory-based measurement campaign. This analytical setup generates highly stable measurements of CO concentrations with an external precision of 7.8 ppbv (1 sigma based on a comparison of replicate cores. The NEEM-2011-S1 CO record spans 1800 yr and exhibits highly variable concentrations at the scale of annual layers, ranging from 75 to 1327 ppbv. The most recent section of this record (i.e. since 1700 AD agrees with existing discrete CO measurements from the Eurocore ice core and the deep NEEM firn. However, it is difficult to interpret in terms of atmospheric CO variation due to high frequency, high amplitude spikes in the data. 68% of the elevated CO spikes are observed in ice layers enriched with pyrogenic aerosols. Such aerosols, originating from boreal biomass burning emissions, contain organic compounds, which can be oxidized or photodissociated to produce CO in-situ. We suggest that elevated CO concentration features could present a new integrative proxy for past biomass burning history. Furthermore, the NEEM-2011-S1 record reveals an increase in baseline CO level prior to 1700 AD (129 m depth, with the concentration remaining high even for ice layers depleted in dissolved organic carbon (DOC. Overall, the processes driving in-situ production of CO within the NEEM ice are complex and may involve multiple chemical pathways.

  8. High resolution measurements of carbon monoxide along a late Holocene Greenland ice core: evidence for in-situ production

    Science.gov (United States)

    Fan, X.; Chappellaz, J.; Rhodes, R. H.; Stowasser, C.; Blunier, T.; McConnell, J. R.; Brook, E. J.; Preunkert, S.; Legrand, M.; Desbois, T.; Romanini, D.

    2013-05-01

    We present high-resolution measurements of carbon monoxide (CO) concentrations from continuous analysis of a shallow ice core from the North Greenland Eemian Ice Drilling project (NEEM-2011-S1). An Optical Feedback - Cavity Enhanced Absorption Spectrometer (OF-CEAS) was coupled to a continuous melter system during a 4-week laboratory-based measurement campaign. This analytical setup generates highly stable measurements of CO concentrations with an external precision of 7.8 ppbv (1 sigma) based on a comparison of replicate cores. The NEEM-2011-S1 CO record spans 1800 yr and exhibits highly variable concentrations at the scale of annual layers, ranging from 75 to 1327 ppbv. The most recent section of this record (i.e. since 1700 AD) agrees with existing discrete CO measurements from the Eurocore ice core and the deep NEEM firn. However, it is difficult to interpret in terms of atmospheric CO variation due to high frequency, high amplitude spikes in the data. 68% of the elevated CO spikes are observed in ice layers enriched with pyrogenic aerosols. Such aerosols, originating from boreal biomass burning emissions, contain organic compounds, which can be oxidized or photodissociated to produce CO in-situ. We suggest that elevated CO concentration features could present a new integrative proxy for past biomass burning history. Furthermore, the NEEM-2011-S1 record reveals an increase in baseline CO level prior to 1700 AD (129 m depth), with the concentration remaining high even for ice layers depleted in dissolved organic carbon (DOC). Overall, the processes driving in-situ production of CO within the NEEM ice are complex and may involve multiple chemical pathways.

  9. CERN safety week

    CERN Multimedia

    DG Unit

    2009-01-01

    Following an increase in the number of accidents in 2008, the Safety Commission is organising a CERN safety week from 8 to 12 June for riders of bicycles, scooters and motorbikes. We invite you to take part in the programme, which will be held in the Main Building (Bldg. 500) and will consist of an exhibition, organised events and hands-on activities, including demonstrations of emergency braking, a driving simulator, simulation of what it feels like to drive under the influence of alcohol, demonstrations by the Fire Brigade, video projections, etc. There will also be a number of prizes to be won. Please sign up via your DSO.

  10. Ekstrauterin graviditet med gestagenspiral in situ

    DEFF Research Database (Denmark)

    Mikkelsen, Mette Schou; Bor, Isil Pinar

    2010-01-01

    The levonorgestrel-releasing intrauterine device (IUD) (Mirena) is a frequently used and effective method of contraception, with a Pearl index of 0.1. The ectopic pregnancy rate is 0.02 per 100 woman-years. Special attention is needed in situations where pregnancy is detected with a levonorgestrel-releasing IUD in situ, because almost two thirds of these pregnancies are ectopic. We describe one of these rare cases of ectopic pregnancy in a woman aged 37 years, who was admitted to hospital with abdominal pain and vaginal bleeding.

  11. Ekstrauterin graviditet med gestagenspiral in situ

    DEFF Research Database (Denmark)

    Mikkelsen, Mette Schou; Bor, Isil Pinar; Hjgaard, Astrid Ditte

    2010-01-01

    The levonorgestrel-releasing intrauterine device (IUD) (Mirena) is a frequently used and effective method of contraception, with a Pearl index of 0.1. The ectopic pregnancy rate is 0.02 per 100 woman-years. Special attention is needed in situations where pregnancy is detected with a levonorgestrel-releasing IUD in situ, because almost two thirds of these pregnancies are ectopic. We describe one of these rare cases of ectopic pregnancy in a woman aged 37 years, who was admitted to hospital with a...

  12. In situ Laue diffraction of metallic micropillars

    Energy Technology Data Exchange (ETDEWEB)

    Maass, R.; Van Petegem, S.; Borca, C.N. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Van Swygenhoven, H., E-mail: helena.vs@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2009-10-25

    Laue micro-diffraction performed on metallic micropillars prior to deformation revealed the presence of strain gradients and planar defects in samples made by focused ion beam (FIB) milling. In situ Laue micro-diffraction shows that such pre-existing gradients can play a role in the determination of the first activated slip system, and thus leading to un-expected geometrical strengthening. Lattice rotations resulting in the formation of substructures are observed at stresses well below the strength of the pillars usually defined as the stress at 5% strain.

  13. New horizons of genomic in situ hybridization.

    Czech Academy of Sciences Publication Activity Database

    Markov, Michaela; Vyskot, Boris

    2009-01-01

    Ro?. 126, ?. 4 (2009), s. 368-375. ISSN 1424-8581 R&D Projects: GA ?R(CZ) GD204/09/H002; GA ?R(CZ) GA522/09/0083; GA ?R(CZ) GA521/08/0932; GA Mk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : evolution * genomic in situ hybridization * phylogenetics Subject RIV: BO - Biophysics Impact factor: 1.729, year: 2009

  14. Polypropylene/graphite nanocomposites by in situ polymerization; Nanocompositos polipropileno/grafite via polimerizacao in situ

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Marceo A.; Galland, Giselda B., E-mail: griselda@iq.ufrgs.br [Instituto de Quimica, UFRGS, Porto Alegre, RS (Brazil); Quijada, Raul [Universidade de Chile, Santiago (Chile). Centro de Ciencias de los Materiales; Basso, Nara R.S. [Fac. de Quimica, PUCRS, Porto Alegre, RS (Brazil)

    2011-07-01

    This work presents the synthesis of nanocomposites of polypropylene/graphite by in situ polymerization using metallocene catalyst and graphene nanosheets. Initially was analyzed which of the metallocene catalysts rac-Et(Ind){sub 2}ZrCl{sub 2} or rac-Me{sub 2}Si(Ind){sub 2}ZrCl{sub 2} produces polypropylene with mechanical properties more relevant. Then it were performed the in situ polymerization reactions to obtain the nanocomposites. The polymeric materials were characterized by XRD, DSC, GPC and DMTA. (author)

  15. ATLAS overview week highlights

    CERN Multimedia

    D. Froidevaux

    2005-01-01

    A warm and early October afternoon saw the beginning of the 2005 ATLAS overview week, which took place Rue de La Montagne Sainte-Geneviève in the heart of the Quartier Latin in Paris. All visitors had been warned many times by the ATLAS management and the organisers that the premises would be the subject of strict security clearance because of the "plan Vigipirate", which remains at some level of alert in all public buildings across France. The public building in question is now part of the Ministère de La Recherche, but used to host one of the so-called French "Grandes Ecoles", called l'Ecole Polytechnique (in France there is only one Ecole Polytechnique, whereas there are two in Switzerland) until the end of the seventies, a little while after it opened its doors also to women. In fact, the setting chosen for this ATLAS overview week by our hosts from LPNHE Paris has turned out to be ideal and the security was never an ordeal. For those seeing Paris for the first time, there we...

  16. In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins.

    Science.gov (United States)

    Kang, Tae-Yun; Lee, Jung Ho; Kim, Bum Jin; Kang, Jo-A; Hong, Jung Min; Kim, Byoung Soo; Cha, Hyung Joon; Rhie, Jong-Won; Cho, Dong-Woo

    2015-01-01

    The use of tissue mimics in vivo, including patterned vascular networks, is expected to facilitate the regeneration of functional tissues and organs with large volumes. Maintaining patency of channels in contact with blood is an important issue in the development of a functional vascular network. Endothelium is the only known completely non-thrombogenic material; however, results from treatments to induce endothelialization are inconclusive. The present study was designed to evaluate the clinical applicability of in situ recruitment of endothelial cells/endothelial progenitor cells (EC/EPC) and pre-endothelization using a recombinant mussel adhesive protein fused with arginine-glycine-aspartic acid peptide (MAP-RGD) coating in a model of vascular graft implantation. Microporous polycaprolactone (PCL) scaffolds were fabricated with salt leaching methods and their surfaces were modified with collagen and MAP-RGD. We then evaluated their anti-thrombogenicity with an in vitro hemocompatibility assessment and a 4-week implantation in the rabbit carotid artery. We observed that MAP-RGD coating reduced the possibility of early in vivo graft failure and enhanced re-endothelization by in situ recruitment of EC/EPC (patency rate: 2/3), while endothelization prior to implantation aggravated the formation of thrombosis and/or IH (patency rate: 0/3). The results demonstrated that in situ recruitment of EC/EPC by MAP-RGD could be a promising strategy for vascular applications. In addition, it rules out several issues associated with pre-endothelization, such as cell source, purity, functional modulation and contamination. Further evaluation of long term performance and angiogenesis from the luminal surface may lead to the clinical use of MAP-RGD for tubular vascular grafts and regeneration of large-volume tissues with functional vascular networks. PMID:25599716

  17. In situ combustion field experiences in Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, M.; Estrada, M.; Bolivar, J. [INTEVEP, Caracas (Venezuela)

    1995-02-01

    A literature review of four in situ combustion projects: in Miga, Tia Juana, Melones and Morichal fields in Venezuela was made, and a summary of these projects is presented. Reservoir description and project performance data were analyzed. The behavior of the four in situ combustion field tests can be summarized as follows: The problems most often encountered were corrosion and high temperature producing wells. The direction in which the burning front moved was guided essentially by reservoir characteristics. The produced oil was upgraded by about 4{degrees} API, and viscosity was substantially reduced. For Mirochal and Miga fields, the analyses of available information from the combustion projects indicated that the process has been successful in the affected region. Conclusions from this review indicate that the two most frequent problems encountered were operational problems in producing wells and the direction of the burning front. The heterogeneous nature of the sands probably resulted in the burning front moving in a preferential direction, hence reducing areal sweep efficiency.

  18. Inherently safe in situ uranium recovery.

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  19. Speckle interferometry in situ: a feasibility study

    Science.gov (United States)

    Facchini, Massimo

    1998-06-01

    Speckle interferometry has been successfully used in many cases where a non-contact analysis of a surface's deformation state was required. This technique has been mostly applied in favorable environment, where the absence of vibrations and a reduced ambient illumination could be assured, and for the observation of areas being not in excess of some dm2. When inspecting larger surfaces, all the problems related to the spatial resolution, to the limited sensitivity of the acquisition system, to the amount of illumination and to the extension of the observed area, should be taken into account. If the observed surface belongs to a structure directly positioned in-situ, problems of vibration, air turbulence, or ambient light saturation, become very restrictive for the application of the method. After a brief introduction about the theoretical principles of speckle interferometry, some main problems related to the inspection on quite large surfaces in-situ discussed. The problem is treated with the help of some simulations, possible solutions are proposed and some applications are presented. This work is the result of a joint collaboration between may institutes and research centers in the framework of a European project named VISILAS. Special fields of application foreseen for this project are civil engineering, aircraft industry, ship building and power plants for energy production.

  20. In situ bioremediation under high saline conditions

    International Nuclear Information System (INIS)

    An in situ bioremediation treatability study is in progress at the Salton Sea Test Base (SSTB) under the NAVY CLEAN 2 contract. The site is located in the vicinity of the Salon Sea with expected groundwater saline levels of up to 50,000 ppm. The site is contaminated with diesel, gasoline and fuel oils. The treatability study is assessing the use of indigenous heterotrophic bacteria to remediate petroleum hydrocarbons. Low levels of significant macro nutrients indicate that nutrient addition of metabolic nitrogen and Orthophosphate are necessary to promote the process, requiring unique nutrient addition schemes. Groundwater major ion chemistry indicates that precipitation of calcium phosphorus compounds may be stimulated by air-sparging operations and nutrient addition, which has mandated the remedial system to include pneumatic fracturing as an option. This presentation is tailored at an introductory level to in situ bioremediation technologies, with some emphasize on innovations in sparge air delivery, dissolved oxygen uptake rates, nutrient delivery, and pneumatic fracturing that should keep the expert's interest

  1. In situ SU-8 silver nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Sren Vang; Uthuppu, Basil

    2015-01-01

    Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications. However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduction of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 degrees C. A further high-temperature treatment at 300 degrees C resulted in the formation of densely homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5 mu m is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concentration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic and optical sensing devices.

  2. GAS TURBINE REHEAT USING IN SITU COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Bachovchin; T.E. Lippert; R.A. Newby P.G.A. Cizmas

    2004-05-17

    In situ reheat is an alternative to traditional gas turbine reheat design in which fuel is fed through airfoils rather than in a bulky discrete combustor separating HP and LP turbines. The goals are to achieve increased power output and/or efficiency without higher emissions. In this program the scientific basis for achieving burnout with low emissions has been explored. In Task 1, Blade Path Aerodynamics, design options were evaluated using CFD in terms of burnout, increase of power output, and possible hot streaking. It was concluded that Vane 1 injection in a conventional 4-stage turbine was preferred. Vane 2 injection after vane 1 injection was possible, but of marginal benefit. In Task 2, Combustion and Emissions, detailed chemical kinetics modeling, validated by Task 3, Sub-Scale Testing, experiments, resulted in the same conclusions, with the added conclusion that some increase in emissions was expected. In Task 4, Conceptual Design and Development Plan, Siemens Westinghouse power cycle analysis software was used to evaluate alternative in situ reheat design options. Only single stage reheat, via vane 1, was found to have merit, consistent with prior Tasks. Unifying the results of all the tasks, a conceptual design for single stage reheat utilizing 24 holes, 1.8 mm diameter, at the trailing edge of vane 1 is presented. A development plan is presented.

  3. In situ PEM fuel cell water measurements

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Hussey, Daniel S [NIST; Jacobson, David L [NIST; Arif, Muhammad [NIST

    2009-01-01

    Efficient PEM (Polymer Electrolyte Membrane) fuel cell performance requires effective water management. To achieve a deeper understanding of water transport and performance issues associated with water management, we have conducted in situ water examinations to help understand the effects of components and operations. High Frequency Resistance (HFR), AC Impedance and Neutron imaging were used to measure water content in operating fuel cells, with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable Gas Diffusion Layer (GDL) properties. High resolution neutron radiography was used to image fuel cells during a variety of conditions. The effect of specific operating conditions, including flow direction (co-flow or counter-flow) was examined. Counter-flow operation was found to result in higher water content than co-flow operation, which correlates to lower membrane resistivity. A variety of cells were used to quantify the membrane water in situ during exposure to saturated gases, during fuel cell operation, and during hydrogen pump operation. The quantitative results show lower membrane water content than previous results suggested.

  4. Biophotonic in situ sensor for plant leaves

    Energy Technology Data Exchange (ETDEWEB)

    Conejo, Elian; Frangi, Jean-Pierre; Rosny, Gilles de

    2010-04-01

    Knowledge of the water concentration of plants can be helpful in several environmental and agricultural domains. There are many methods for the determination of water content in plant leaves; however, most of them give a relative moisture level or an analytical measure after a previous calibration procedure. Even for other biochemical compounds such as dry matter or chlorophyll, the measurement techniques could be destructive. For this reason, a nondestructive method has been developed to measure the biochemical compounds of a plant leaf, using an infrared spectroscopy technique. One important advantage is the simplicity of the device (RAdiometre portatif de Mesure In Situ, RAMIS) and its capability to perform measurements in situ. The prototype is a leaf-clip configuration and is made of LEDs at five wavelengths (656, 721, 843, 937, and 1550 nm), and a silicon/germanium photosensor. To compute the water content of vegetative leaves, the radiative transfer model PROSPECT was implemented. This model can accurately predict spectral transmittances in the 400 nm to 2500 nm spectral region as a function of the principal leaf biochemical contents: water, dry matter, and chlorophyll. Using the transmittance measured by RAMIS into an inversion procedure of PROSPECT: A Model of Leaf Optical Properties Spectra, we are able to compute the values of water contents that show an agreement with the water contents measured directly using dry weight procedures. This method is presented as a possibility to estimate other leaf biochemical compounds using appropriate wavelengths.

  5. Biophotonic in situ sensor for plant leaves

    International Nuclear Information System (INIS)

    Knowledge of the water concentration of plants can be helpful in several environmental and agricultural domains. There are many methods for the determination of water content in plant leaves; however, most of them give a relative moisture level or an analytical measure after a previous calibration procedure. Even for other biochemical compounds such as dry matter or chlorophyll, the measurement techniques could be destructive. For this reason, a nondestructive method has been developed to measure the biochemical compounds of a plant leaf, using an infrared spectroscopy technique. One important advantage is the simplicity of the device (RAdiometre portatif de Mesure In Situ, RAMIS) and its capability to perform measurements in situ. The prototype is a leaf-clip configuration and is made of LEDs at five wavelengths (656, 721, 843, 937, and 1550 nm), and a silicon/germanium photosensor. To compute the water content of vegetative leaves, the radiative transfer model PROSPECT was implemented. This model can accurately predict spectral transmittances in the 400 nm to 2500 nm spectral region as a function of the principal leaf biochemical contents: water, dry matter, and chlorophyll. Using the transmittance measured by RAMIS into an inversion procedure of PROSPECT: A Model of Leaf Optical Properties Spectra, we are able to compute the values of water contents that show an agreement with the water contents measured directly using dry weight procedures. This method is presented as a possibility to estimate other leaf biochemical compounds using appropriate wavelengths.

  6. Dosimetry of in situ activated dysprosium microspheres

    International Nuclear Information System (INIS)

    This paper presents the results of a study aimed at investigating the dosimetry of stable dysprosium microspheres activated, in situ, by a linac generated photon beam. In phantom measurements of the neutron flux within an 18 MV photon beam were performed using CR-39 detectors and gold activation. The results were used in conjunction with a Monte Carlo computer simulation to investigate the dose distribution resulting from the activation of dysprosium (Dy) microspheres using an 18 MV photon beam. Different depths, lesion volumes and volume concentrations of microspheres are investigated. The linac lower collimator jaws are assumed completely closed to shield the tumour volume from the photon dose. Using a single AP field with 0 x 0 cm2 field size (closed jaws), a photon dose rate of 600 MU min-1 and 80 cm SSD for 10 min, an average dose exceeding 1 Gy can be delivered to spherical lesions of 0.5 cm and higher diameter. The variation of the average dose with the size of the lesion reaches saturation for tumour volumes exceeding 1 cm in diameter. This report shows that the photon beam of a high-energy linac can be used to activate Dy microspheres in situ and, as a result, deliver a significant dose of beta radiation. Non-radioactive Dy microspheres do not have the toxicity and imaging problems associated with commercially available yttrium-90 based products

  7. Molecular cytogenetics using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.W.; Kuo, Wen-Lin; Lucas, J.; Pinkel, D.; Weier, H-U.; Yu, Loh-Chung.

    1990-12-07

    Fluorescence in situ hybridization (FISH) with chromosome-specific probes enables several new areas of cytogenetic investigation by allowing visual determination of the presence and normality of specific genetic sequences in single metaphase or interphase cells. in this approach, termed molecular cytogenetics, the genetic loci to be analyzed are made microscopically visible in single cells using in situ hybridization with nucleic acid probes specific to these loci. To accomplish this, the DNA in the target cells is made single stranded by thermal denaturation and incubated with single-stranded, chemically modified probe under conditions where the probe will anneal only with DNA sequences to which it has high DNA sequence homology. The bound probe is then made visible by treatment with a fluorescent reagent such as fluorescein that binds to the chemical modification carried by the probe. The DNA to which the probe does not bind is made visible by staining with a dye such as propidium iodide that fluoresces at a wavelength different from that of the reagent used for probe visualization. We show in this report that probes are now available that make this technique useful for biological dosimetry, prenatal diagnosis and cancer biology. 31 refs., 3 figs.

  8. In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking.

    Science.gov (United States)

    Moura, M Jos; Faneca, H; Lima, M Pedroso; Gil, M Helena; Figueiredo, M Margarida

    2011-09-12

    In situ forming chitosan hydrogels have been prepared via coupled ionic and covalent cross-linking. Thus, different amounts of genipin (0.05, 0.10, 0.15, and 0.20% (w/w)), used as a chemical cross-linker, were added to a solution of chitosan that was previously neutralized with a glycerol-phosphate complex (ionic cross-linker). In this way, it was possible to overcome the pH barrier of the chitosan solution, to preserve its thermosensitive character, and to enhance the extent of cross-linking in the matrix simultaneously. To investigate the contributions of the ionic cross-linking and the chemical cross-linking, separately, we prepared the hydrogels without the addition of either genipin or the glycerol-phosphate complex. The addition of genipin to the neutralized solution disturbs the ionic cross-linking process and the chemical cross-linking becomes the dominant process. Moreover, the genipin concentration was used to modulate the network structure and performance. The more promising formulations were fully characterized, in a hydrated state, with respect to any equilibrium swelling, the development of internal structure, the occurrence of in vitro degradability and cytotoxicity, and the creation of in vivo injectability. Each of the hydrogel systems exhibited a notably high equilibrium water content, arising from the fact that their internal structure (examined by conventional SEM, and environmental SEM) was highly porous with interconnecting pores. The porosity and the pore size distribution were quantified by mercury intrusion porosimetry. Although all gels became degraded in the presence of lysozyme, their degradation rate greatly depended on the genipin load. Through in vitro viability tests, the hydrogel-based formulations were shown to be nontoxic. The in vivo injection of a co-cross-linking formulation revealed that the gel was rapidly formed and localized at the injection site, remaining in position for at least 1 week. PMID:21774479

  9. Radiological aspects of in situ uranium recovery

    International Nuclear Information System (INIS)

    In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium in situ leaching in situ recovery (ISL / ISR), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and may make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since 1975. Solution mining involves the pumping of groundwater, fortified with oxidizing and complexing agents into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant. Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which Radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. An overview of the major aspects of the health physics and radiation protection programs that were developed at these facilities are discussed and contrasted to circumstances of the current generation and state of the art of Uranium ISR technologies and facilities. (authors)

  10. In situ vitrification large-scale operational acceptance test analysis

    International Nuclear Information System (INIS)

    A thermal treatment process is currently under study to provide possible enhancement of in-place stabilization of transuranic and chemically contaminated soil sites. The process is known as in situ vitrification (ISV). In situ vitrification is a remedial action process that destroys solid and liquid organic contaminants and incorporates radionuclides into a glass-like material that renders contaminants substantially less mobile and less likely to impact the environment. A large-scale operational acceptance test (LSOAT) was recently completed in which more than 180 t of vitrified soil were produced in each of three adjacent settings. The LSOAT demonstrated that the process conforms to the functional design criteria necessary for the large-scale radioactive test (LSRT) to be conducted following verification of the performance capabilities of the process. The energy requirements and vitrified block size, shape, and mass are sufficiently equivalent to those predicted by the ISV mathematical model to confirm its usefulness as a predictive tool. The LSOAT demonstrated an electrode replacement technique, which can be used if an electrode fails, and techniques have been identified to minimize air oxidation, thereby extending electrode life. A statistical analysis was employed during the LSOAT to identify graphite collars and an insulative surface as successful cold cap subsidence techniques. The LSOAT also showed that even under worst-case conditions, the off-gas system exceeds the flow requirements necessary to maintain a negative pressure on the hood covering the area being vitrified. The retention of simulated radionuclides and chemicals in the soil and off-gas system exceeds requirements so that projected emissions are one to two orders of magnitude below the maximum permissible concentrations of contaminants at the stack

  11. Demonstration testing and evaluation of in situ soil heating. Revision 1, Demonstration system design

    International Nuclear Information System (INIS)

    Over the last nine years IIT Research Institute (IITRI) has been developing and testing the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. The vaporized contaminants, water vapor and air are recovered from the heated zone by means of a vacuum manifold system which collects gases from below surface as well as from the soil surface. A vapor barrier is used to prevent fugitive emissions of the contaminants and to control air infiltration to minimize dilution of the contaminant gases and vapors. The recovered gases and vapors are conveyed to an on site vapor treatment system for the clean up of the vent gases. Electrical energy is applied to the soil by forming an array of electrodes in the soil which are electrically interconnected and supplied with power. The electrodes are placed in drilled bore holes which are made through the contaminated zone. There are two versions of the in situ heating and soil treatment process: the f irst version is called the In Situ Radio Frequency (RF) Soil Decontamination Process and the second version is called the In Situ Electromagnetic (EM) Soil Decontamination Process. The first version, the RF Process is capable of heating the soil in a temperature range of 100 degrees to 400 degrees C. The soil temperature in the second version, the EM Process, is limited to the boiling point of water under native conditions. Thus the soil will be heated to a temperature of about 85 degrees to 95 degrees C. In this project IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site due to the fact that most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 degrees to 95 degrees C

  12. Exprimentation in situ : principes et perspectives

    Directory of Open Access Journals (Sweden)

    Olivier Geffard, Benoit Ferrari, Arnaud Chaumot et Bernard Montuelle

    2010-05-01

    Full Text Available Identifier l'origine d'une perturbation, discriminer un stress physique ou chimique, et quantifier les liens de cause effet des pollutions supposent de recueillir des donnes ncessaires l'valuation de la qualit des eaux. l'heure actuelle, la majorit des donnes est issue de tests de laboratoire, obtenue dans un cadre trs contrl. Les donnes recueillies dans les conditions naturelles sont trs parcellaires et encore peu rpandues mme si leur dveloppement serait extrmement utile. Quels sont les principes de ces exprimentations in situ, leur intrt, dans quelle mesure peuvent-elles tre dployes une large chelle ? Les auteurs font le point sur ces questions.

  13. In-situ Resources In Space

    Science.gov (United States)

    Curreri, Peter A.

    2005-01-01

    This tutorial is a primer on the motivational and materials science basis for utilizing space resources to lower the cost and increase the safety and reliability of human systems beyond Earth's orbit. Past research in materials processing in orbit will be briefly reviewed to emphasize the challenges and advantages inherent in processing materials in space. Data on resource availability from human Lunar and robotic/sensor missions beyond the Moon will be overviewed for resource relevance to human exploration and development of space. Specific scenarios such as propellant production on the Moon and Mars, and lunar photovoltaic power production from in-situ materials will be discussed in relation to exploration and commercialization of space. A conclusion will cover some of the visionary proposals for the use of space resources to extend human society and prosperity beyond Earth.

  14. Guiding neuronal development with in situ microfabrication

    Science.gov (United States)

    Kaehr, Bryan; Allen, Richard; Javier, David J.; Currie, John; Shear, Jason B.

    2004-11-01

    We report the ability to modify microscopic 3D topographies within dissociated cultures, providing a means to alter the development of neurons as they extend neurites and establish interconnections. In this approach, multiphoton excitation is used to focally excite noncytotoxic photosensitizers that promote protein crosslinking, such as BSA, into matrices having feature sizes 250 nm. Barriers, growth lanes, and pinning structures comprised of crosslinked proteins are fabricated under conditions that do not compromise the viability of neurons both on short time scales and over periods of days. In addition, the ability to fabricate functional microstructures from crosslinked avidin enables submicrometer localization of controllable quantities of biotinylated ligands, such as indicators and biological effectors. Feasibility is demonstrated for using in situ microfabrication to guide the contact position of cortical neurons with micrometer accuracy, opening the possibility for engineering well defined sets of synaptic interactions. biofabrication | multiphoton cell patterning | growth cone

  15. In situ secondary ion mass spectrometry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  16. PREPARATION OF NANOCOMPOSITES BY IN SITU POLIMERIZATION

    Directory of Open Access Journals (Sweden)

    PAULA ZAPATA

    2008-03-01

    Full Text Available Polyethylene nanocomposites were obtained by in situ polymerization using both montmorillonite (natural clay and montmorillonite organically modified with octadecylamine (O-Clo. In this proposed methodology the clays were added directly in the reactor together with the catalytic system (metallocene catalyst and methylaluminoxane and ethylene. The nanocomposites were characterized by gel permeation chromatography (GPC, differential scanning calorimetry (DSC, X-ray diffraction (XRD, and transmission electron microscopy (TEM, and by tensile stress-strain tests. It was found that the catalytic activity increased around 20% when natural clay was used compared with the standard polymer. But when modified clay was used the catalytic activity did not show important changes. On the other hand, XRD and TEM showed that the clays are in a disordered state and well dispersed in the polyethylene matrix. Finally, the nanocomposites showed an increase of about 30% in Young's modulus compared with the standard polymer

  17. PREPARATION OF NANOCOMPOSITES BY IN SITU POLIMERIZATION

    Scientific Electronic Library Online (English)

    PAULA, ZAPATA; RAL, QUIJADA; JAIME, RETUER; EDWIN, MONCADA.

    2008-03-01

    Full Text Available Polyethylene nanocomposites were obtained by in situ polymerization using both montmorillonite (natural clay) and montmorillonite organically modified with octadecylamine (O-Clo). In this proposed methodology the clays were added directly in the reactor together with the catalytic system (metallocen [...] e catalyst and methylaluminoxane) and ethylene. The nanocomposites were characterized by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM), and by tensile stress-strain tests. It was found that the catalytic activity increased around 20% when natural clay was used compared with the standard polymer. But when modified clay was used the catalytic activity did not show important changes. On the other hand, XRD and TEM showed that the clays are in a disordered state and well dispersed in the polyethylene matrix. Finally, the nanocomposites showed an increase of about 30% in Young's modulus compared with the standard polymer

  18. Cryogenic in situ microcompression testing of Sn

    International Nuclear Information System (INIS)

    Characterizing plasticity mechanisms below the ductile-to-brittle transition temperature is traditionally difficult to accomplish in a systematic fashion. Here, we use a new experimental setup to perform in situ cryogenic mechanical testing of pure Sn micropillars at room temperature and at ?142 C. Subsequent electron microscopy characterization of the micropillars shows a clear difference in the deformation mechanisms at room temperature and at cryogenic temperatures. At room temperature, the Sn micropillars deformed through dislocation plasticity, while at ?142 C they exhibited both higher strength and deformation twinning. Two different orientations were tested, a symmetric (1 0 0) orientation and a non-symmetric (4 5 1) orientation. The deformation mechanisms were found to be the same for both orientations

  19. In situ erosion of cohesive sediment

    International Nuclear Information System (INIS)

    There has been increasing interest in tidal power schemes and the effect of a tidal energy barrage on the environment. A large man-made environmental change, such as a barrage, would be expected to have significant effects on the sediment distribution and stability of an estuary and these effects need to be assessed when considering a tidal barrage project. This report describes the development of apparatus for in-situ measurements of cohesive sediment erosion on inter-tidal mudflats. Development of the prototype field erosion bell and field testing was commissioned on behalf of the Department of Trade and Industry by the Energy Technology Support Unit (ETSU). This later work commenced in August 1991 and was completed in September 1992. (Author)

  20. Complications of laser-in-situ-keratomileusis

    Directory of Open Access Journals (Sweden)

    Sridhar Mittanamalli

    2002-01-01

    Full Text Available Laser-in-situ-keratomileusis (LASIK has become a popular technique of refractive surgery because of lower postoperative discomfort, early visual rehabilitation and decreased postoperative haze. Compared to photorefractive keratectomy (PRK, LASIK involves an additional procedure of creating a corneal flap. This may result in complications related to the flap, interface and underlying stromal bed. The common flap-related complications include thin flap, button holing, free caps, flap dislocation and flap striae. The interface complications of diffuse lamellar keratitis, epithelial ingrowth and microbial keratitis are potentially sight threatening. Compared to PRK, there is less inflammation and faster healing after LASIK, but there is a longer period of sensory denervation leading to the complication of dry eyes. The refractive complications include undercorrection, regression, irregular astigmatism, decentration and visual aberrations. Honest and unbiased reporting is important to understand the aetiology and redefine the management.

  1. In situ corrosion monitoring of steam generators

    International Nuclear Information System (INIS)

    An a.c. electrochemical technique that meets the basic requirements for an in situ localized corrosion monitor within the secondary coolant of PWR steam generators has been investigated. The technique uses two electrodes to measure the electrochemical impedance of a surface in an occluded region with high heat flux. This impedance is related to the kinetics of corrosion and marked decreases indicate the onset of a high corrosion rate. Experiments have demonstrated the ability of the technique to determine the onset of corrosion under conditions of high solution resistance and solution agitation due to local boiling. The technique operates similarly in pressurized 3000C water containing 1400 ppm Na2SO4. (author)

  2. Reverse osmosis membrane allows in situ regeneration

    International Nuclear Information System (INIS)

    The use of mineral membranes on metallic supports has provided a novel solution to the problem of filtration by the reverse osmosis process. A new reverse osmosis membrane is described which is capable of resisting high operational temperatures (1200C), fluctuations in pH(3 to 12) and high pressure (100 bar), as well as significant chlorine concentrations. In addition, the membrane can be regenerated in-situ on the same porous metal support. Numerous membranes can thus be used over the multi-year life of the porous support. Moreover, accidental damage to the membrane is of no great consequence as the membrane itself can be easily replaced. The life of the installation can thus be extended and the overall cost of filtration reduced. The membrane's various applications include water and effluent treatment in the nuclear power industry. (author)

  3. In situ preparation of calcium carbonate films

    International Nuclear Information System (INIS)

    The in situ preparation of calcium carbonate films in an ultra high vacuum (UHV) is inhibited by the decomposition of CO2 molecules at the surface and the absence of CO2 bulk diffusion. Therefore, it is not possible to prepare such films simply by CO2 exposure to a calcium layer. We investigated different approaches for the preparation of CaCO3 films in an UHV. Among these, only the simultaneous evaporation of Ca atoms in a mixed O2 and CO2 atmosphere is able to produce well defined stoichiometric calcium carbonate films. Metastable Induced Electron Spectroscopy, Ultraviolet Photoelectron Spectroscopy and X-ray Photoelectron Spectroscopy are employed to verify quality and purity of the films.

  4. In situ preparation of Calcium hydroxide films

    International Nuclear Information System (INIS)

    The in situ preparation of Calcium hydroxide films in an ultra high vacuum (UHV) is constrained by the decomposition of species at the surface and the absence of OH bulk diffusion. Therefore, it is not possible to prepare such films simply by water exposure to a Calcium layer. We present four different approaches for the preparation of Ca(OH)2 films in an UHV. Two of these methods are found to be ineffective for the preparation, the other two are shown to produce Calcium hydroxide films. Both of the two effective procedures make use of H2 gas exposure. Metastable Induced Electron Spectroscopy, Ultraviolet Photoelectron Spectroscopy, and X-ray Photoelectron Spectroscopy are employed to verify quality and purity of the films.

  5. In situ preparation of Calcium hydroxide films

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, S.; Voigts, F. [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); Maus-Friedrichs, W., E-mail: w.maus-friedrichs@pe.tu-clausthal.de [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); Clausthaler Zentrum fuer Materialtechnik, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany)

    2011-10-31

    The in situ preparation of Calcium hydroxide films in an ultra high vacuum (UHV) is constrained by the decomposition of species at the surface and the absence of OH bulk diffusion. Therefore, it is not possible to prepare such films simply by water exposure to a Calcium layer. We present four different approaches for the preparation of Ca(OH){sub 2} films in an UHV. Two of these methods are found to be ineffective for the preparation, the other two are shown to produce Calcium hydroxide films. Both of the two effective procedures make use of H{sub 2} gas exposure. Metastable Induced Electron Spectroscopy, Ultraviolet Photoelectron Spectroscopy, and X-ray Photoelectron Spectroscopy are employed to verify quality and purity of the films.

  6. In situ preparation of calcium carbonate films

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, S. [Clausthaler Zentrum fuer Materialtechnik, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); Voigts, F. [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); Maus-Friedrichs, W., E-mail: w.maus-friedrichs@pe.tu-clausthal.de [Clausthaler Zentrum fuer Materialtechnik, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany)

    2012-01-01

    The in situ preparation of calcium carbonate films in an ultra high vacuum (UHV) is inhibited by the decomposition of CO{sub 2} molecules at the surface and the absence of CO{sub 2} bulk diffusion. Therefore, it is not possible to prepare such films simply by CO{sub 2} exposure to a calcium layer. We investigated different approaches for the preparation of CaCO{sub 3} films in an UHV. Among these, only the simultaneous evaporation of Ca atoms in a mixed O{sub 2} and CO{sub 2} atmosphere is able to produce well defined stoichiometric calcium carbonate films. Metastable Induced Electron Spectroscopy, Ultraviolet Photoelectron Spectroscopy and X-ray Photoelectron Spectroscopy are employed to verify quality and purity of the films.

  7. In situ studies of fracture in solids

    International Nuclear Information System (INIS)

    Electron microscope studies were made of the propagation of microcracks during in situ tensile deformation of stainless steel, molybdenum and magnesium oxide representing ductile, semi-brittle and brittle solids. As the stress is applied, the cracks are initiated at the edge of holes in the thinned foils. The extent of plastic activity around the cracks is measured in terms of the density and the distribution of dislocations and is sensitive to the ductile/brittle nature of the solid. The slip systems of the dislocations are determined by contrast analysis and stereoscopic observation. In stainless steel and magnesium oxide, the dislocations are relatively straight and they lie nearly perpendicular to the direction of the crack propagation, whereas in molybdenum the dislocations are in the form of irregular tangles which are stretched along the direction of the crack propagation. These observations are discussed in terms of the model of Dugdale concerning the formation of plastic zones under uniaxial loading in plane stress conditions

  8. In situ PEM fuel cell water measurements

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Spendalow, Jacob S [Los Alamos National Laboratory

    2008-01-01

    Efficient PEM fuel cell performance requires effective water management. The materials used, their durability, and the operating conditions under which fuel cells run, make efficient water management within a practical fuel cell system a primary challenge in developing commercially viable systems. We present experimental measurements of water content within operating fuel cells. in response to operational conditions, including transients and freezing conditions. To help understand the effect of components and operations, we examine water transport in operating fuel cells, measure the fuel cell water in situ and model the water transport within the fuel cell. High Frequency Resistance (HFR), AC Impedance and Neutron imaging (using NIST's facilities) were used to measure water content in operating fuel cells with various conditions, including current density, relative humidity, inlet flows, flow orientation and variable GDL properties. Ice formation in freezing cells was also monitored both during operation and shut-down conditions.

  9. Chemoport anchoring the in situ technique

    Directory of Open Access Journals (Sweden)

    Krishnamachar Harish

    2011-08-01

    Full Text Available Chemoports are subcutaneously placed long term central venous access devices usually inserted under local anaesthesia. Rare complications include port inversion or flip over. These can be prevented by anchoring the port to the tissues at its base. We describe an in situ technique of port anchoring. Here, the port is first fixed temporarily to the overlying skin by Huber needle, thus facilitating placement of fixing sutures without port manipulation. The described technique is safe and we have not encountered complications. In addition, ex - planting the port was easier due to the use of delayed absorbable sutures. It is safer to anchor the port even if the port pocket ensures that the port fits in snugly. This described technique results in minimal manipulation of portcatheter system thereby ensuring that the catheter tip which is properly placed remains unaltered.

  10. In situ investigations at Avery Island

    International Nuclear Information System (INIS)

    Descriptions and representative data are given for the in situ investigations being performed in the Avery Island Mine. Sufficient detail is presented such that investigators can judge whether any of the studies being performed would be valuable for their numerical modeling exercises. The basic investigations being performed include heater tests, brine migration experiments, and flatjack tests. The heater tests consist of the emplacement of single simulated waste canisters with different power levels. The bulk thermal and mechanical response is measured of the salt surrounding the emplacement. The brine migration studies involve the measurement of moisture inflow into heated boreholes. The flatjack studies are an investigation of the deformation of the borehole when subjected to controlled boundary conditions of stress and temperature

  11. In situ soil remediation: Bacteria or fungi?

    International Nuclear Information System (INIS)

    Contamination of the environment is not a new problem. For most of recorded history, the unwanted byproducts of industrial and residential processes have been dumped into unlined pits or nearby streams. Although disposal techniques have greatly improved, significant quantities of hazardous materials are still being released to the environment via accidental spills and leaking underground storage tanks. One particular group of contaminants of critical environmental concern is polycyclic aromatic hydrocarbons (PAHs). PAH-contaminated sites typically cover large areas; therefore, the development of in situ remediation techniques such as bioremediation is strongly emphasized. In situations when inherent microorganisms are not capable of degrading the contaminants, foreign strains must be used. Bioremediation experiments were conducted to compare the remediation efficiencies of a bacteria and a fungus for an industrially PAH contaminated soil. Specifically, the use of three supplemental nutrient solutions were investigated in conjunction with the bacteria Achromobacter sp. and fungus Cunninghamella echinulata var. elegans

  12. In situ corrosion monitoring of steam generators

    International Nuclear Information System (INIS)

    An ac electrochemical technique which meets the basic requirements for an in situ localized corrosion monitor within the secondary coolant of PWR steam generators has been investigated. The technique uses two electrodes to measure the electrochemical impedance of a surface in an occluded region with high heat flux. The impedance is related to the kinetics of corrosion. Marked decreases indicate the onset of a high corrosion rate. Experiments have demonstrated the ability of the technique to determine the onset of corrosion under conditions of high solution resistance and solution agitation due to local boiling. Experiments have shown the technique operates similarly in pressurized 3000C water, 1,400 ppM in Na2SO4

  13. The LISA1 experiment: In-situ tritium release investigations

    International Nuclear Information System (INIS)

    The LISA1 experiment is a test of in-situ tritium release. Conducted in the SILOE reactor at CEN Grenoble, the experiment uses the same facilities as the LILA1. The experiment has six capsules, four with Li2SiO3, one with Li4SiO4 and one with LiAlO2. Each capsule is separately purged. The tritium activity is determined by ionization chambers and scintillation counting. An important difference as compared to LILA1 is the use of zinc beds to reduce tritiated water and thereby prevent sorption of T2O on the lines. Irradiation began on October 25, 1985 and was continued for three 3-weeks-cycles. The testing included systematic variation of four parameters: temperature (450 to 7300C), neutron flux (0.8 to 2.7x1017 m-2 s-1), sweep gas flow rate (1.8 to 7.0 l/h), and sweep gas composition (He, He+0.1% H2, He+0.2% O2). Preliminary results are given. (orig.)

  14. In-situ calibration of the implantable force transducer.

    Science.gov (United States)

    Herzog, W; Hasler, E M; Leonard, T R

    1996-12-01

    Recently, an implantable force transducer (IFT) has been introduced [Xu et al. (1992, J. Biomech. Engng 114, 170-177)] which can be used in tight spaces where force recordings with established transducers, such as the buckle-type transducers, are not possible because of impingement artifacts. The IFT is easily implanted in chronic animal preparations; however, calibration of the IFT in terminal experiments has produced unreliable results. The problems of IFT calibration are that minute movements of the transducer within the tendon, slight misalignments of the tendon, or slight errors in the line of pull cause dramatic changes in the IFT voltage output for a given applied calibration load. Here, we propose a method that eliminates the above calibration problems primarily because the target tendon is left in situ, the calibration loads are applied by the muscles which insert into the target tendon, and the transducer is implanted into the target tendon about two weeks prior to calibration. The theoretical and experimental approaches are demonstrated for the cat patellar tendon, but in principle can be performed with any tendon. The results are repeatable, lie within expected values, and reproduce some of the basic properties which have been observed in prior IFT testing. PMID:8945667

  15. PERFORMANCE CONFIRMATION IN-SITU INSTRUMENTATION

    International Nuclear Information System (INIS)

    The purpose of this document is to identify and analyze the types of in-situ instruments and methods that could be used in support of the data acquisition portion of the Performance Confirmation (PC) program at the potential nuclear waste repository at Yucca Mountain. The PC program will require geomechanical , geophysical, thermal, and hydrologic instrumentation of several kinds. This analysis is being prepared to document the technical issues associated with each type of measurement during the PC period. This analysis utilizes the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a) as its starting point. The scope of this analysis is primarily on the period after the start of waste package emplacement and before permanent closure of the repository, a period lasting between 15 and 300 years after last package emplacement (Stroupe 2000, Attachment 1, p. 1). The primary objectives of this analysis are to: (1) Review the design criteria as presented in the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a). The scope of this analysis will be limited to the instrumentation related to parameters that require continuous monitoring of the conditions underground. (2) Preliminary identification and listing of the data requirements and parameters as related to the current repository layout in support of PC monitoring. (3) Preliminary identification of methods and instrumentation for the acquisition of the required data. Although the ''Performance Confirmation Input Criteria'' (CRWMS M andO 1999a) defines a broad range of data that must be obtained from a variety of methods, the focus of this analysis is on instrumentation related to the performance of the rock mass and the formation of water in the repository environment, that is obtainable from in-situ observation, testing, and monitoring

  16. PERFORMANCE CONFIRMATION IN-SITU INSTRUMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    N.T. Raczka

    2000-05-23

    The purpose of this document is to identify and analyze the types of in-situ instruments and methods that could be used in support of the data acquisition portion of the Performance Confirmation (PC) program at the potential nuclear waste repository at Yucca Mountain. The PC program will require geomechanical , geophysical, thermal, and hydrologic instrumentation of several kinds. This analysis is being prepared to document the technical issues associated with each type of measurement during the PC period. This analysis utilizes the ''Performance Confirmation Input Criteria'' (CRWMS M&O 1999a) as its starting point. The scope of this analysis is primarily on the period after the start of waste package emplacement and before permanent closure of the repository, a period lasting between 15 and 300 years after last package emplacement (Stroupe 2000, Attachment 1, p. 1). The primary objectives of this analysis are to: (1) Review the design criteria as presented in the ''Performance Confirmation Input Criteria'' (CRWMS M&O 1999a). The scope of this analysis will be limited to the instrumentation related to parameters that require continuous monitoring of the conditions underground. (2) Preliminary identification and listing of the data requirements and parameters as related to the current repository layout in support of PC monitoring. (3) Preliminary identification of methods and instrumentation for the acquisition of the required data. Although the ''Performance Confirmation Input Criteria'' (CRWMS M&O 1999a) defines a broad range of data that must be obtained from a variety of methods, the focus of this analysis is on instrumentation related to the performance of the rock mass and the formation of water in the repository environment, that is obtainable from in-situ observation, testing, and monitoring.

  17. In Situ Field Testing of Processes

    International Nuclear Information System (INIS)

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR

  18. In situ permeability testing of rock salt

    International Nuclear Information System (INIS)

    Storage of transuranic (TRU) wastes in bedded salt formations requires a knowledge of the in situ permeability of SENM rock salt. Since assumptions for safety assessments have been made in which these wastes could generate gas pressures on the order of the lithostatic pressure over geologic time scales, the permeability of the surrounding formation becomes an important parameter for determining the manner in which the gases will be contained or dispersed. This report describes the series of tests conducted in the AEC-7 borehole, located near the WIPP site, to determine the in situ gas flow characteristics of the bedded salt. In these tests, compressed air was injected into the borehole and flow into the surrounding formation measured. These measured flow rates were interpreted in terms of formation permeabilities and porosities which were, in turn, used as modeling parameters for the repository response analysis. Two series of field tests were performed. The first series consisted of a number of whole-hole flow tests conducted to provide preliminary design information required for future operation of a guarded straddle packer system capable of measuring permeabilities > or = 0.1 ?darcy. The second series of tests were conducted using the Systems, Science and Software (S-Cubed) designed guarded straddle packer system. In these interval permeability tests, 100-foot lengths of borehole were isolated and the flow characteristics of the surrounding formation examined. In this report, a complete description of the test procedures, instrumentation, and measurement techniques is first given. The analytical/numerical methods used for data interpretation are then presented, followed by results of the interval and permeability tests. (The whole-hole tests are summarized in Appendix A.) Conclusions are presented in the final section

  19. In situ exploration of large dynamic networks.

    Science.gov (United States)

    Hadlak, Steffen; Schulz, Hans-Jrg; Schumann, Heidrun

    2011-12-01

    The analysis of large dynamic networks poses a challenge in many fields, ranging from large bot-nets to social networks. As dynamic networks exhibit different characteristics, e.g., being of sparse or dense structure, or having a continuous or discrete time line, a variety of visualization techniques have been specifically designed to handle these different aspects of network structure and time. This wide range of existing techniques is well justified, as rarely a single visualization is suitable to cover the entire visual analysis. Instead, visual representations are often switched in the course of the exploration of dynamic graphs as the focus of analysis shifts between the temporal and the structural aspects of the data. To support such a switching in a seamless and intuitive manner, we introduce the concept of in situ visualization--a novel strategy that tightly integrates existing visualization techniques for dynamic networks. It does so by allowing the user to interactively select in a base visualization a region for which a different visualization technique is then applied and embedded in the selection made. This permits to change the way a locally selected group of data items, such as nodes or time points, are shown--right in the place where they are positioned, thus supporting the user's overall mental map. Using this approach, a user can switch seamlessly between different visual representations to adapt a region of a base visualization to the specifics of the data within it or to the current analysis focus. This paper presents and discusses the in situ visualization strategy and its implications for dynamic graph visualization. Furthermore, it illustrates its usefulness by employing it for the visual exploration of dynamic networks from two different fields: model versioning and wireless mesh networks. PMID:22034354

  20. In Situ Field Testing of Processes

    Energy Technology Data Exchange (ETDEWEB)

    J. Wang

    2001-12-14

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

  1. A memorable week

    CERN Multimedia

    2012-01-01

    This has been a memorable week for CERN, starting with the award of a Special Fundamental Physics Prize and ending with the handover of the CERN Council Presidency from Michel Spiro to Agnieszka Zalewska. In between, the LHC team demonstrated its expertise with a successful pilot run with 25 nanosecond bunch spacing, a new application for Associate Membership was received, and we had good news on the budget.   The award of the Fundamental Physics Prize, and the manner in which it was divided between ATLAS, CMS and the LHC, is fitting recognition of the efforts of the thousands of people who have contributed over many years to the success of our flagship scientific endeavour. In making the award, the Milner Foundation aims to raise the profile of fundamental physics and its value to society. The Fundamental Physics Prize comes hot on the heels of the European Physical Society’s first Edison Volta Prize, which Sergio Bertolucci, Steve Myers and I were honoured to accept on behalf of t...

  2. Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD

    Science.gov (United States)

    Wei, Min; Shi, Shuxian; Wang, Ji; Li, Yong; Duan, Xue

    2004-07-01

    Layered double hydroxides, novel anionic clay, meet the first requirement as inorganic matrices for encapsulating functional drugs or biomolecules with negative charge in aqueous media. In this study, naproxen has been intercalated into Mg-Al layered double hydroxide by the methods of ion exchange. The structure and composition of the intercalated material have been studied by X-ray diffraction (XRD), UV-vis spectroscopy and inductively coupled plasma emission spectroscopy. A schematic model has been proposed. Furthermore, in situ Fourier transform infrared spectroscopy, in situ high-temperature XRD, and thermogravimetry (TG) have been used to characterize the thermal decomposition of the hybrid material. It has been found that the thermal stability of the intercalated naproxen is significantly enhanced compared with the pure form before intercalation, which suggests that this drug-inorganic layered material may have prospective application as the basis of a novel drug delivery system.

  3. Studies on the intercalation of naproxen into layered double hydroxide and its thermal decomposition by in situ FT-IR and in situ HT-XRD

    International Nuclear Information System (INIS)

    Layered double hydroxides, novel anionic clay, meet the first requirement as inorganic matrices for encapsulating functional drugs or biomolecules with negative charge in aqueous media. In this study, naproxen has been intercalated into Mg-Al layered double hydroxide by the methods of ion exchange. The structure and composition of the intercalated material have been studied by X-ray diffraction (XRD), UV-vis spectroscopy and inductively coupled plasma emission spectroscopy. A schematic model has been proposed. Furthermore, in situ Fourier transform infrared spectroscopy, in situ high-temperature XRD, and thermogravimetry (TG) have been used to characterize the thermal decomposition of the hybrid material. It has been found that the thermal stability of the intercalated naproxen is significantly enhanced compared with the pure form before intercalation, which suggests that this drug-inorganic layered material may have prospective application as the basis of a novel drug delivery system

  4. Mitigating Extreme Environments for In-Situ Jupiter and Venus Missions

    Science.gov (United States)

    Balint, Tibor S.; Kolawa, Elizabeth A.; Cutts, James A.

    2006-01-01

    In response to the recommendations by the National Research Council (NRC), NASA's Solar System Exploration (SSE) Roadmap identified the in situ exploration of Venus and Jupiter as high priority science objectives. For Jupiter, deep entry probes are recommended, which would descend to approx.250 km - measured from the 1 bar pressure depth. At this level the pressure would correspond to approx.100 bar and the temperature would reach approx.500(deg)C. Similarly, at the surface of Venus the temperature and pressure conditions are approx.460(deg)C and approx.90 bar. Lifetime of the Jupiter probes during descent can be measured in hours, while in{situ operations at and near the surface of Venus are envisioned over weeks or months. In this paper we discuss technologies, which share commonalities in mitigating these extreme conditions over proposed mission lifetimes, specially focusing on pressure and temperature environments.

  5. Economic analysis of open-pit and in situ mining

    International Nuclear Information System (INIS)

    Today, in any feasibility study of uranium properties, the project manager would be prudent to compare the economics of in situ methods with conventional surface and underground techniques. In this comparison of in situ and open-pit uranium mining, a group of hypothetical uranium deposits was evaluated, using the three most sensitive depositional characteristics of depth, size and grade. In situ mining was shown to challenge conventional open pit methods and, even at lower uranium recoveries, to yield higher profits

  6. An expert support model for in situ soil remediation

    OpenAIRE

    Okx, J.P.; Stein, A. (Alwina)

    2000-01-01

    This article presents an expert support model for in situ soil remediation. It combines knowledge and experiences obtained from previous in situ soil remediations. The aim of this model is to optimise knowledge transfer among the various parties involved in contaminated site management. Structured Knowledge Engineering (SKE) has been used as a framework for model development. This approach requires scrutinising all relevant data to answer questions related to an in situ soil remediation opera...

  7. In-situ gelling polymers for biomedical applications

    CERN Document Server

    2015-01-01

    This book presents the research involving in situ gelling polymers and can be used as a guidebook for academics, industrialists and postgraduates interested in this area. This work summaries the academic contributions from the top authorities in the field and explore the fundamental principles of in situ gelling polymeric networks, along with examples of their major applications. This book aims to provide an up-to-date resource of in situ gelling polymer research.

  8. Human papillomavirus (HPV) in vulvar dysplasia and carcinoma in situ

    DEFF Research Database (Denmark)

    Junge, Jette; Poulsen, H; Horn, T; Hrding, U; Lundvall, F

    1995-01-01

    Surgical specimens from 62 patients with vulvar dysplasia and carcinoma in situ were morphologically investigated. Lesions were classified according to WHO (mild, moderate, severe dysplasia and carcinoma in situ) and according to Toki et al. (1991) (warty, basaloid, combined warty/basaloid or basaloid/warty types or mixed (warty, basaloid and simple) forms). Following the WHO classification, moderate dysplasia was shown in 4 cases, severe dysplasia in 47 and carcinoma in situ in 11 cases. Pure w...

  9. In situ lubricant degradation in Antarctic marine sediments. 1. Short-term changes.

    Science.gov (United States)

    Thompson, Belinda A W; Davies, Noel W; Goldsworthy, Paul M; Riddle, Martin J; Snape, Ian; Stark, Jonathan S

    2006-02-01

    A large-scale, in situ experiment was set up near the Bailey Peninsula area (Casey Station, East Antarctica) to monitor the natural attenuation of synthetic lubricants in marine sediments over five years. Here, we report the short-term changes after 5 and 56 weeks. The lubricants tested were an unused and used Mobil lubricant (0W/40; Exxon Mobil, Irving, TX, USA) and a biodegradable alternative (0W/20; Fuchs Lubricants, Harvey, IL, USA). Clean sediment was collected, contaminated with the lubricants, and deployed by divers onto the seabed in a randomized block design. The sampled sediments were analyzed by gas chromatography-flame-ionization detector and gas chromatography-mass spectrometry with selective ion monitoring. The base fluid of all lubricant treatments did not decrease significantly after 56 weeks in situ. Alkanoate esters of 1,1,1-tris(hydroxymethyl)propane in the biodegradable and unused lubricants were degraded extensively in situ; however, these esters constituted only a minor proportion of the lubricant volume. The additives, alkylated naphthalenes and substituted diphenylamines, were fairly resistant to degradation, which is of environmental concern because of their toxicity. The biodegradable lubricant did not break down to recognized biodegradable thresholds and, as such, should not be classified as biodegradable under Antarctic marine conditions. A separate experiment was conducted to determine the influence of sediment preparation and deployment on compound ratios within the lubricants, and we found that preparation and deployment of the contaminated sediments had only a minor effect on compound recovery. Further monitoring of this in situ experiment will provide much needed information about the long-term natural attenuation of lubricants. PMID:16519295

  10. SMAPVEX08 In Situ Vegetation Data V001

    Data.gov (United States)

    National Aeronautics and Space Administration This data set includes in situ vegetation data collected during the Soil Moisture Active Passive Validation Experiment 2008 (SMAPVEX08) campaign. Sampling was...

  11. In situ test requirements for repository in salt

    International Nuclear Information System (INIS)

    For the characterization and evaluation of salt as suitable geologic media, a comprehensive investigative program is being implemented in the U.S.A. A key element of the program is in situ testing. In situ tests have been performed in the past at Lyons, Kansas, and are currently under way at Avery Island, Louisiana and at the Asse Mine in the Federal Republic of Germany (FRG). This paper presents the rationale and requirements for in situ testing in salt, status of current testing programs, and planning for in situ tests from an exploratory shaft. 6 refs.; 6 figs.; 2 tabs

  12. A simplified in-situ electrochemical decontamination of lead from polluted soil (abstract)

    International Nuclear Information System (INIS)

    This paper reports a simplified In-Situ electrochemical method for remediation of field soil contaminated with lead. A series of electrochemical decontamination experiments including variable conditions such as operating duration and application of enhancement reagent were performed to demonstrate the efficiency of lead removal from spiked and polluted soil samples collected from Lahore, Pakistan. The results showed that the efficiency of lead removal from the contaminated soil increased with increasing the operating duration under a set of experimental conditions. The reagent used as complexing and solubilizing agent i.e. EDTA was found to be efficient in removing lead from the polluted soil. After 15 days duration, 85 % lead removal efficiency was observed in spiked soil under enhanced conditions , however, 63 % lead removal was achieved from the polluted soil samples by the simplified In-situ electrochemical decontamination method. The method is simple, rapid, cheaper and suitable for soil remediation purposes. (author)

  13. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    Science.gov (United States)

    Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.

    2014-11-01

    Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  14. Melanoma "in situ" tratado con Imiquimod Melanoma in situ treated with Imiquimod

    Directory of Open Access Journals (Sweden)

    RE Achenbach

    Full Text Available Comunicamos un caso con dos melanomas "in situ", en un varn de 86 aos, localizados en ambos lados de la cara con alto riesgo quirrgico, quien fuera tratado con imiquimod al 5% una vez al da durante dos meses; los resultados hasta el momento, clnicos e histolgicos han sido satisfactorios.A 86 years-old man with two melanomas "in situ" at both sides of his face, treated with imiquimod 5% are presented. The patient has a cardiovascular high risk due to isquemic heart disease, for that reason we start the treatment with imiquimod once a day for two months. The clinical and histological response was good and a follow up will be as long as we can.

  15. Dynamics of silver nanoparticle release from wound dressings revealed via in situ nanoscale imaging

    OpenAIRE

    Holbrook, R David; Rykaczewski, Konrad; Staymates, Matthew E.

    2014-01-01

    The use of silver nanoparticles (AgNPs) in textiles for enhanced anti-microbial properties has led to concern about their release and impact on both human and environmental health. Here a novel method for in situ visualization of AgNP release from silver-impregnated wound dressings is introduced. By combining an environmental scanning electron microscope, a gaseous analytical detector and a peltier cooling stage, this technique provides near-instantaneous nanoscale characterization of interac...

  16. Thermally Triggered Mucoadhesive In Situ Gel of Loratadine: ?-Cyclodextrin Complex for Nasal Delivery

    OpenAIRE

    Singh, Reena M. P.; Kumar, Anil; Pathak, Kamla

    2013-01-01

    The aim of the present study was to increase the solubility of an anti-allergic drug loratadine by making its inclusion complex with ?-cyclodextrin and to develop its thermally triggered mucoadhesive in situ nasal gel so as to overcome first-pass effect and consequently enhance its bioavailability. A total of eight formulations were prepared by cold method and optimized by 23 full factorial design. Independent variables (concentration of poloxamer 407, concentration of carbopol 934 P, and pu...

  17. In situ-grown hexagonal silicon nanocrystals in silicon carbide-based films

    OpenAIRE

    Kim, Tae-Youb; Huh, Chul; Park, Nae-Man; Choi, Cheol-Jong; Suemitsu, Maki

    2012-01-01

    Silicon nanocrystals (Si-NCs) were grown in situ in carbide-based film using a plasma-enhanced chemical vapor deposition method. High-resolution transmission electron microscopy indicates that these nanocrystallites were embedded in an amorphous silicon carbide-based matrix. Electron diffraction pattern analyses revealed that the crystallites have a hexagonal-wurtzite silicon phase structure. The peak position of the photoluminescence can be controlled within a wavelength of 500 to 650 nm by ...

  18. Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets

    KAUST Repository

    Ansari, Seema

    2010-01-18

    Graphite oxide-Nafion hybrids with a high degree of alignment are cast from aqueous solution in the absence of any external field and reduced in situ by exposure to hydrazine to produce graphene-Nafion hybrids. Dramatic enhancement of electrical conductivity indicates sufficient accessibility of the inorganic nanosheets to the reducing agent, through the nanochannels formed by the polymeric ionic domains. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Optimizing the Environmental Performance of In Situ Thermal Remediation Technologies Using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Lemming, Gitte; Nielsen, Steffen G.; Weber, Klaus; Heron, Gorm; Baker, Ralph S.; Falkenberg, Jacqueline A.; Terkelsen, Mads; Jensen, Carsten B.; Bjerg, Poul Lgstrup

    2013-01-01

    situ thermal remediation technologies (steam enhanced extraction, thermal conduction heating, electrical resistance heating, and radio frequency heating) in order to (1) compare the life-cycle environmental impacts and resource consumption associated with each thermal technology, and (2) identify...... options to reduce these adverse effects. The study identifies a number of options for environmental optimization of in situ thermal remediation. In general, environmental optimization can be achieved by increasing the percentage of heating supplied in off peak electricity demand periods as this reduces...

  20. In Situ-Synthesized Virulence and Marker Gene Biochip for Detection of Bacterial Pathogens in Water?

    OpenAIRE

    Miller, Sarah M.; Tourlousse, Dieter M; Stedtfeld, Robert D; Baushke, Samuel W.; Herzog, Amanda B.; Wick, Lukas M.; Rouillard, Jean Marie; Gulari, Erdogan; Tiedje, James M.; Hashsham, Syed A

    2008-01-01

    Pathogen detection tools with high reliability are needed for various applications, including food and water safety and clinical diagnostics. In this study, we designed and validated an in situ-synthesized biochip for detection of 12 microbial pathogens, including a suite of pathogens relevant to water safety. To enhance the reliability of presence/absence calls, probes were designed for multiple virulence and marker genes (VMGs) of each pathogen, and each VMG was targeted by an average of 17...

  1. Comparacin de las tcnicas in situ, in vitro y enzimtica (celulasa) para estimar la digestibilidad de forrajes en ovinos / Comparison of the in situ, in vitro and Enzimatic (Cellulase) Techniques for Digestibility Estimation of Forages in Sheep

    Scientific Electronic Library Online (English)

    Giovanna, Torres G.; Teresa, Arbaiza F.; Fernando, Carceln C.; Orlando, Lucas A..

    Full Text Available Se compar los resultados de las tcnicas in vitro, in situ y enzimtica (celulasa) para estimar la digestibilidad de forrajes de diferente calidad nutritiva en ovinos. Se colect muestras de forraje de tres calidades: alta (rye grass de 2-4 semanas), media (rye grass de 8 semanas y heno de alfalfa) [...] y baja (paja de avena). Las muestras fueron secadas, molidas y pasaron por tamiz de 1 mm para la tcnica in vitro y celulasa y 3 mm para la tcnica in situ. Se determin la digestibilidad in vitro de la materia seca (DIVMS), digestibilidad in situ de la materia seca (DISMS) y digestibilidad a la celulasa de la materia seca (DCMS). Se emplearon tres ovinos con fstula ruminal y alimentados con maz forrajero y heno de alfalfa. Se us un diseo experimental con arreglo factorial de 4 x 3 (4 calidades de forraje y 3 tcnicas). La DISMS fue superior (p Abstract in english The objective of the study was to compare the efficiency of the in situ, in vitro and enzymatic (cellulose) techniques in estimating the digestibility of forage with different nutritional quality in sheep. Samples of three qualities of forage were collected: high (rye grass of 2-4 weeks), medium (ry [...] e grass of 8 weeks and alfalfa hay), and low (oat straw). The samples were dried, grounded and passed through 1 mm sieve for the in vitro and cellulose technique and 3 mm sieve for the in situ technique. The in vitro digestibility of dry matter (IVDDM), in situ digestibility of dry matter (ISDDM), and cellulose digestibility of dry matter (CDDM) were determined. Three adult rams with ruminal fistula and fed with a diet based on alfalfa hay and corn stalk. A complete randomized 4 x 3 experimental design (4 quality forages and 3 techniques) was used. The ISDDM was higher (p

  2. IN-SITU TRITIUM BETA DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Berthold; L.A. Jeffers

    1998-04-15

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype design for construction and test. Significant improvements must be made in fluor-doped fiber performance in order to use the method for in situ monitoring to verify compliance with current EPA drinking water standards. Additional Phase 1 fiber development work should be performed to increase the fluor dopant concentration above 2% until the self-absorption limit is observed. Continued fiber optimization work is expected to improve the sensitivity limits, and will enable application of the detector to verify compliance with the US EPA drinking water standard of 20,000 pico Curies per liter. However, if the need for monitoring higher levels of tritium in water at concentrations greater than 200,000 pico Curies per liter is justified, then prototype development and testing could proceed either as a Phase 2 stand-alone effort or in parallel with continued Phase 1 development work.

  3. IN-SITU TRITIUM BETA DETECTOR

    International Nuclear Information System (INIS)

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype design for construction and test. Significant improvements must be made in fluor-doped fiber performance in order to use the method for in situ monitoring to verify compliance with current EPA drinking water standards. Additional Phase 1 fiber development work should be performed to increase the fluor dopant concentration above 2% until the self-absorption limit is observed. Continued fiber optimization work is expected to improve the sensitivity limits, and will enable application of the detector to verify compliance with the US EPA drinking water standard of 20,000 pico Curies per liter. However, if the need for monitoring higher levels of tritium in water at concentrations greater than 200,000 pico Curies per liter is justified, then prototype development and testing could proceed either as a Phase 2 stand-alone effort or in parallel with continued Phase 1 development work

  4. Numerical study on in-situ leaching uranium with pressure fluctuation

    International Nuclear Information System (INIS)

    Recent researches and innovation of in-situ leaching focus on the chemical process, which can not solve the low recovery in 'dead leaching zone' and 'non-preferential zone' caused by preferential flow and solute transport phenomena in heterogeneous ore deposits. Based on hydrodynamic effects and phenomena in highly heterogeneous porous media, gas injection experiments and laboratory experiment results, an innovative method for in-situ leaching, named as leaching with pressure fluctuation, was put forward to enhance the leaching effect and uranium recovery, especially in those uranium ore deposits with high heterogeneity. Based on the characteristics of gas/liquid mixture and flow-reactive-transport theory, a numerical modeling tool is established. By the numerical simulation, the field-scale traditional leaching method and the new method were studied. The simulation results show that the gas-liquid mixture will expand/shrink greatly in different flow zone during the pressure fluctuation process, and the deformation will enhance the solute transport effect among different flow zones, especially in non-preferential flow zone, and enhance the uranium recovery. The primary results show that in-situ leaching with pressure fluctuation is feasible technically. (authors)

  5. Autonomous In-Situ Resources Prospector

    Science.gov (United States)

    Dissly, R. W.; Buehler, M. G.; Schaap, M. G.; Nicks, D.; Taylor, G. J.; Castano, R.; Suarez, D.

    2004-01-01

    This presentation will describe the concept of an autonomous, intelligent, rover-based rapid surveying system to identify and map several key lunar resources to optimize their ISRU (In Situ Resource Utilization) extraction potential. Prior to an extraction phase for any target resource, ground-based surveys are needed to provide confirmation of remote observation, to quantify and map their 3-D distribution, and to locate optimal extraction sites (e.g. ore bodies) with precision to maximize their economic benefit. The system will search for and quantify optimal minerals for oxygen production feedstock, water ice, and high glass-content regolith that can be used for building materials. These are targeted because of their utility and because they are, or are likely to be, variable in quantity over spatial scales accessible to a rover (i.e., few km). Oxygen has benefits for life support systems and as an oxidizer for propellants. Water is a key resource for sustainable exploration, with utility for life support, propellants, and other industrial processes. High glass-content regolith has utility as a feedstock for building materials as it readily sinters upon heating into a cohesive matrix more readily than other regolith materials or crystalline basalts. Lunar glasses are also a potential feedstock for oxygen production, as many are rich in iron and titanium oxides that are optimal for oxygen extraction. To accomplish this task, a system of sensors and decision-making algorithms for an autonomous prospecting rover is described. One set of sensors will be located in the wheel tread of the robotic search vehicle providing contact sensor data on regolith composition. Another set of instruments will be housed on the platform of the rover, including VIS-NIR imagers and spectrometers, both for far-field context and near-field characterization of the regolith in the immediate vicinity of the rover. Also included in the sensor suite are a neutron spectrometer, ground-penetrating radar, and an instrumented cone penetrometer for subsurface assessment. Output from these sensors will be evaluated autonomously in real-time by decision-making software to evaluate if any of the targeted resources has been detected, and if so, to quantify their abundance. Algorithms for optimizing the mapping strategy based on target resource abundance and distribution are also included in the autonomous software. This approach emphasizes on-the-fly survey measurements to enable efficient and rapid prospecting of large areas, which will improve the economics of ISRU system approaches. The mature technology will enable autonomous rovers to create in-situ resource maps of lunar or other planetary surfaces, which will facilitate human and robotic exploration.

  6. Debottlenecking product inhibition in 1,3-propanediol fermentation by In-Situ Product Recovery.

    Science.gov (United States)

    Kaur, Guneet; Srivastava, A K; Chand, Subhash

    2015-12-01

    The present work describes the application of liquid-liquid extraction as an In-Situ product recovery (ISPR) technique to overcome the problem of product inhibition in 1,3-PD fermentation. As a part of initial screening experiments, six solvents were subjected to phase separation and biocompatibility tests to find the best extractant for in-situ removal of 1,3-PD from the bioreactor. These included tributylphosphate, ethyl acetate, butyl acetate, oleyl alcohol, oleic acid and hexanol. Of these, ethyl acetate was found to be the most suitable solvent for 1,3-PD extraction. Use of the selected extractant in continuous integrated fermentation-extraction was established by batch and fed-batch extractive fermentations which demonstrated a significantly improved 1,3-PD production of 35g/L and 74.5g/L, respectively. A steady state 1,3-PD concentration of 58g/L was obtained in continuous extractive system. Continuous cultivation with in-situ cell retention and in-situ 1,3-PD removal demonstrated a 5-fold enhancement in 1,3-PD productivity over non-extractive batch. PMID:26356117

  7. Preparation and characterization of electrospun in-situ cross-linked gelatin-graphite oxide nanofibers.

    Science.gov (United States)

    Zhan, Jianchao; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-04-01

    Electrospun gelatin(Gel) nanofibers scaffold has such defects as poor mechanical property and quick degradation due to high solubility. In this study, the in situ cross-linked electrospinning technique was used for the production of gelatin nanofibers. Deionized water was chosen as the spinning solvent and graphite oxide (GO) was chosen as the enhancer. The morphological structure, porosity, thermal property, moisture absorption, and moisture retention performance, hydrolysis resistance, mechanical property, and biocompatibility of the produced nanofibers were investigated. Compared with in situ cross-linked gelatin nanofibers scaffold, in situ cross-linked Gel-GO nanofibers scaffold has the following features: (1) the hydrophilicity, moisture absorption, and moisture retention performance slightly reduce, while the hydrolysis resistance is improved; (2) the breaking strength, breaking elongation, and Young's modulus are significantly improved; (3) the porosity slightly reduces while the biocompatibility considerably increases. The in situ cross-linked Gel-GO nanofibers scaffold is likely to be applied in such fields as drug delivery and scaffold for skin tissue engineering. PMID:26733331

  8. Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route.

    Science.gov (United States)

    Gabal, Yasmine M; Kamel, Amany O; Sammour, Omaima A; Elshafeey, Ahmed H

    2014-10-01

    The aim of this study was to investigate the influence of the nanocarrier surface charge on brain delivery of a model hydrophilic drug via the nasal route. Anionic and cationic nanostructured lipid carriers (NLCs) were prepared and optimized for their particle size and zeta potential. The optimum particles were incorporated in poloxamer in situ gels and their in vivo behavior was studied in the plasma and brain after administration to rats. Optimum anionic and cationic NLCs of size NLCs (A7), and destruction of the lining mucosal nasal epithelium in rats treated with the cationic NLCs (C7L). The absolute bioavailability of both drug loaded anionic and cationic NLCs in situ gels was enhanced compared to that of the intranasal solution (IN) of the drug with values of 44% and 77.3%, respectively. Cationic NLCs in situ gel showed a non significant higher Cmax (maximum concentration) in the brain compared to the anionic NLCs in situ gel. Anionic NLCs in situ gel gave highest drug targeting efficiency in the brain (DTE%) with a value of 158.5 which is nearly 1.2 times that of the cationic NLCs in situ gel. PMID:25062866

  9. In situ produced hydrogen (hydrogen on demand)

    Energy Technology Data Exchange (ETDEWEB)

    Morris, John [Syringa Bioscience (Pty) Ltd, 137 Edward Avenue, Hennops Park, Centurion 0157 (South Africa); Radu, Marin [Centrul de Cercetari pentru Materiale Macromoleculare si Membrane - CCMMM, 202B, Splaiul Independentei, Sector 6, 060023, Bucuresti (Romania)

    2010-07-15

    Pollution created by the increased number of people and by industrial and domestic activities put pressure in the planet's climate that can result in a catastrophe which may end the humans' life on the planet. Hydrogen is an endless source of energy, clean and efficient, which exist in the Universe in a high proportion, over 88%. Current problems that stop the development of an efficient Hydrogen Economy are the high production costs, storage problems, and transport and supply problems, due to the high cost of operational structure needed for supply to the end user. To all these objective reasons may be added the high rate of international terrorism that may use storage of liquid hydrogen as a target for its activity. Looking in the right direction, Marin Radu solved the above problems by producing hydrogen in situ, via an electro-catalytic membrane, which decomposes the water molecules efficiently, with low input of electric current (9 V-24 V) and produces hydrogen on demand [. unpublished]. (author)

  10. Innovative technologies for in-situ remediation

    International Nuclear Information System (INIS)

    LLNL is developing several innovative remediation technologies as long-term improvements to the current pump and treat approaches to cleaning up contaminated soils and groundwater. These technologies include dynamic underground stripping, in-situ microbial filters, and remediation using bremsstrahlung radiation. Concentrated underground organic contaminant plumes are one of the most prevalent groundwater contamination sources. The solvent or fuel can percolate deep into the earth, often into water-bearing regions. Collecting as a separate, liquid organic phase called dense non-aqueous-phase liquids (DNAPLs), or light NAPLs (LNAPLs), these contaminants provide a source term that continuously compromises surrounding groundwater. This type of spill is one of the most difficult environmental problems to remediate. Attempts to remove such material requires a huge amount of water which must be washed through the system to clean it, requiring decades. Traditional pump and treat approaches have not been successful. LLNL has developed several innovative technologies to clean up NAPL contamination. Detailed descriptions of these technologies are given

  11. In Situ and Satellite Measured Temperature Comparability

    Science.gov (United States)

    Schmidlin, F. J.; Goldberg, R. A.; Bedrick, M.; Rose, R.

    2011-12-01

    Following the International Geophysical Year in the late 1950's, small meteorological rockets caught the interest of scientists as a potentially inexpensive method to obtain meteorological information (density, temperature, wind) above balloon-borne radiosonde altitudes. These small rocketsondes have served many important observational roles in terms of studies conducted of atmospheric structure and processes, enabling many new ideas about the atmosphere to emerge. Although no longer manufactured a small residual inventory of meteorological rocketsondes exist for specific research projects. The value of data from meteorological rocketsondes is without question but with their disappearance data from many different satellites are filling the need, some able to resolve high-altitude temperatures quite well. However, the rocketsonde vertical profile is more localized to the launch site whereas satellites move several kilometers per second. The objective of this presentation is to compare in situ temperature data with remotely measured/retrieved temperature data. There have been a number of U.S. conducted missions utilizing the passive falling sphere data that we use to verify the comparability of retrieved temperatures from these satellites. Missions, some as early as 1991, were conducted in polar, equatorial, and mid-latitude locations. An important aspect is that a single satellite profile compared to a falling sphere profile often does not agree while high density satellite measurements when averaged over an area near the rocketsonde data area seems to be in better agreement. Radiosonde temperature data are used in the analysis when appropriate.

  12. In situ vitrification of radioactive underground tanks

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, S.S.; Gibby, R.D.; Thompson, L.E.

    1991-10-01

    In situ vitrification (ISV) is a treatment process with great potential for remediating underground tanks previously used for storing radioactive and hazardous chemical wastes at US Department of Energy (DOE) sites. Tests at several scales have demonstrated the utility of ISV for these tanks. An engineering-scale test vitrified a 30-cm-diameter buried steel and concrete tank that contained simulated tank sludge. Hazardous components of the tank sludge were immobilized, or removed and captured in the off-gas treatment system, and the tank walls were melted or incorporated into the ISV block. A pilot-scale ISV test vitrified a 1-m simulated underground tank than contained a simulated refractory sludge. The ISV process completely vitrified the tank, its contents, and the soil below the tank to a depth of 2.4 m, producing a uniform glass and crystalline monolith with an estimated mass of 30 tons. A large-scale underground tank test is scheduled for early 1991. 5 refs., 4 figs.

  13. Cubesat in-situ degradation detector (CIDD)

    Science.gov (United States)

    Rievers, Benny; Milke, Alexander; Salden, Daniel

    2015-07-01

    The design of the thermal control and management system (TCS) is a central task in satellite design. In order to evaluate and dimensionize the properties of the TCS, material parameters specifying the conductive and radiative properties of the different TCS components have to be known including their respective variations within the mission lifetime. In particular the thermo-optical properties of the outer surfaces including critical TCS components such as radiators and thermal insulation are subject to degradation caused by interaction with the space environment. The evaluation of these material parameters by means of ground testing is a time-consuming and expensive endeavor. Long-term in-situ measurements on board the ISS or large satellites not only realize a better implementation of the influence of the space environment but also imply high costs. Motivated by this we propose the utilization of low-cost nano-satellite systems to realize material tests within space at a considerably reduced cost. We present a nanosat-scale degradation sensor concept which realizes low power consumption and data rates compatible with nanosat boundaries at UHF radio. By means of a predefined measurement and messaging cycle temperature curves are measured and evaluated on ground to extract the change of absorptivity and emissivity over mission lifetime.

  14. Backfilling of deposition tunnels, in situ alternative

    International Nuclear Information System (INIS)

    The backfilling process described in this report is based on in situ compaction of a mixture of bentonite and ballast (30:70) into the deposition tunnel. This method has been tested in practice in various field tests by SKB, most recently in the Prototype repository test performed at Aespoe HRL. The backfill mixture is prepared above ground and transported to the repository level with a tank truck. The material is compacted into layers with an inclination of 35 deg C and a thickness of approximately 20 cm. The compaction is performed with a vibratory plate attached to a boom of an excavator. In order to keep up with the required canister installation rate determined for the Finnish repository, at least 13 layers need to be compacted daily. This means working in 2-3 shifts on the working days that are available for backfilling operations. The dry densities achieved in field tests for the wall/roof section of the backfill have been insufficient compared with the dry density criteria set for the backfill. In theory, it may be possible to reach dry densities that fulfil the criteria, although with a relatively small safety margin. Another open issue is whether the mixture of bentonite and ballast has sufficient self-healing ability to seal-off erosion channels after the tunnels have been closed and the backfill has reached full saturation. (orig.)

  15. In-situ heat transfer experiment (ISHTE)

    International Nuclear Information System (INIS)

    The Applied Physics Laboratory (APL) of the University of Washington is building and testing equipment to support in-situ heat transfer experiment (ISHTE). This experiment will implant a heat source in the clay sediments of the deep ocean and monitor the effects of the heat on the sediment for one year. At the end of the experiment the equipment and samples of the heat-affected sediment will be recovered for study. The experiment is part of the near-field studies in the Subseabed Disposal Program. APL is in the equipment design and testing phase of the project. Major tasks this year have been focused toward two field activities. The first was an oceanographic cruise aboard the USNS De Steiguer at MPG-I during May. The main objectives of the cruise were to recover a mooring deployed in 1980, to test a hydrostatic corer and to evaluate the acoustic data transmission system. The second activity was a scale model test of ISHTE in a pressure chamber at the David Taylor Naval Ship Research and Development Center at Annapolis, Maryland, during the last quarter of 1981

  16. [Fluorescence in situ hybridization on histologic sections].

    Science.gov (United States)

    Mrhalov, Marcela; Kodet, Roman

    2013-10-01

    I-FISH (fluorescence in situ hybridization on interphasic nuclei) represents a laboratory method linking morphological investigations (histological sections of formaldehyde fixed and paraffin embedded tissues) with molecular techniques (sequence specificity of nucleic acids bases for a certain locus). I-FISH is relatively undemanding for a laboratory workout, but offering a lot of important information about the investigated cells. Within a scope of pathology departments I-FISH is utilized mostly in diagnostics of neoplasms. I-FISH is helpful in detecting gene copy numbers (amplifications or deletions), and, importantly, in establishing copy numbers of individual chromosomes (polysomies or monosomies), chromosomal breaks and translocations. At present, I-FISH is used not only for diagnosis and estimation of prognosis, but also as a method to qualify a patient for a targeted biological therapy. Because demands on investigation of solid tumors keep raising I-FISH becomes a part of routine investigations. The aim of this paper is to summarize principles and the utility of I-FISH and to help the interested readers in finding a basic orientation in this laboratory method. PMID:24289480

  17. Calibration of in-situ plasma instruments

    Science.gov (United States)

    West, M.

    2003-12-01

    Calibration of scientific instruments is an important task. Only by proper calibration and understanding of the instrument can we address the scientific questions. Unfortunately, in the field of space plasma physics calibration is not considered science and therefore, calibration techniques and results are often not reported in the space physics literature. This paper reviews how in-situ particle instruments for plasma measurements are calibrated in the laboratory and in flight. Absolute calibration traceable to a national measurements institute is very difficult to achieve. A calibration transfer standard is suggested to reduce relative differences of individual calibration facilities with each other. Instrument degradation is of particular concern for long-term studies, but there is no inflight calibration standard either. Cross calibration with other instruments on the same spacecraft is described. In order to speed up the calibration for multi-spacecraft missions, several methods ranging from artificial intelligence methods, numerical ray tracing to improved vacuum chamber pump speed are suggested. In summary, there is a need for further improvements in the area of instrument calibrations, especially in light of the up-coming multi-spacecraft missions or for long-term studies of solar cycle effects.

  18. Detection of denitrification genes by in situ rolling circle amplification - fluorescence in situ hybridization (in situ RCA-FISH) to link metabolic potential with identity inside bacterial cells

    DEFF Research Database (Denmark)

    Hoshino, Tatsuhiko; Schramm, Andreas

    2010-01-01

    A target-primed in situ rolling circle amplification (in situ RCA) protocol was developed for detection of single-copy genes inside bacterial cells and optimized with Pseudomonas stutzeri, targeting nitrite and nitrous oxide reductase genes (nirS and nosZ). Two padlock probes were designed per gene to target both DNA strands; the target DNA was cut by a restriction endonuclease close to the probe binding sites, which subsequently were made accessible by 5'-3' exonucleolysis. After hybridization,...

  19. In situ X-ray diffraction of oxide scales on high-temperature materials; In-situ-Roentgenbeugung von Oxidschichten auf Hochtemperaturwerkstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Gross, M.

    1999-07-01

    The subject of this dissertation is examination of high-temperature oxidation processes primarily by in situ X-ray diffraction, accompanied by metallographic and microprobe analyses. The studies reported focus on two major aspects: Time and temperature-resolved investigation of the behaviour of nickel-base alloys intended for use as turbine blade materials, as some of the processes contributing to their complex oxidation behaviour can only be revealed by in situ analysis; and temperature-resolved detection of mechanical stresses in oxide scales. For this last task, a novel parallel-ray optics with a Goebel mirror was used, in order to avoid measuring errors due to the high-temperature system conditions. The nickel-base alloys DS CM247 LC and CMSX4 were examined for their oxidation behaviour because they are candidate materials of interest to the gas turbine industry. The stress analyses were performed with the iron-base alloy PM 2000 prepared by powder metallurgy, because oxidation processes on PM 2000 form a homogeneous {alpha}-Al{sub 2}O{sub 3} layer as from 1000 C upward, thus offering good prospects for gaining enhanced insight into the processes involved, and for further developing the methodology for in situ stress analysis. (orig./CB) [German] Ziel dieser Arbeit war die Untersuchung von Hochtemperaturoxidationsvorgaengen vor allem mit in situ Roentgenbeugung, die durch metallographische Analysen und Mikrosondenuntersuchungen ergaenzt wurde. Dabei wurden zwei Schwerpunkte gewaehlt. Der eine Schwerpunkt lag auf zeit- und temperaturaufgeloesten Studien bei Nickelbasissuperlegierungen fuer die Anwendung als Turbinenschaufelwerkstoff, deren komplexes Oxidationsverhalten in manchen Aspekten nur mit in situ Methoden zu bestimmen war. Der zweite Schwerpunkt lag auf der temperaturaufgeloesten Erfassung mechanischer Spannungen in Oxidschichten. In diesem Schwerpunkt kam eine neuartige Parallelstrahloptik mit Goebelspiegel zum Einsatz, zur Vermeidung von Messfehlern verursacht durch die Hochtemperaturanordnung. Im ersten Schwerpunkt wurden das Oxidationsverhalten der Turbinenschaufelwerkstoffe DS CM247 LC und CMSX4 untersucht, an dessen Kenntnis von Seiten der Gasturbinenhersteller Interesse besteht. Die Spannungsuntersuchungen des zweiten Schwerpunkts erfolgten an der pulvermetallurgisch hergestellten Eisenbasislegierung PM 2000. Da PM 2000 ab 1000 C eine homogene {alpha}-Al{sub 2}O{sub 3}-Schicht bildet, bot es die Voraussetzungen zur methodischen Weiterentwicklung in den Bereich der in situ Spannungsuntersuchungen. (orig.)

  20. Superconducting proximity effect for in situ and model layered systems

    International Nuclear Information System (INIS)

    Large-scale magnets in the 8- to 14-tesla range can be prepared using in situ composites fabricated on a commercial scale. The main drawback for using in situ materials is that AC losses are higher than from mechanically produced multifilamentary wire, due to more tight coupling of filaments, because the average spacing between fibers is comparable to superconducting pair potential decay length

  1. An overview of in situ waste treatment technologies

    International Nuclear Information System (INIS)

    In situ technologies are becoming an attractive remedial alternative for eliminating environmental problems. In situ treatments typically reduce risks and costs associated with retrieving, packaging, and storing or disposing-waste and are generally preferred over ex situ treatments. Each in situ technology has specific applications, and, in order to provide the most economical and practical solution to a waste problem, these applications must be understood. This paper presents an overview of thirty different in situ remedial technologies for buried wastes or contaminated soil areas. The objective of this paper is to familiarize those involved in waste remediation activities with available and emerging in situ technologies so that they may consider these options in the remediation of hazardous and/or radioactive waste sites. Several types of in situ technologies are discussed, including biological treatments, containment technologies, physical/chemical treatments, solidification/stabilization technologies, and thermal treatments. Each category of in situ technology is briefly examined in this paper. Specific treatments belonging to these categories are also reviewed. Much of the information on in situ treatment technologies in this paper was obtained directly from vendors and universities and this information has not been verified

  2. Successful Treatment of Lower Eyelid Melanoma in Situ

    Directory of Open Access Journals (Sweden)

    Andrew A. Gassman, MD

    2014-05-01

    Full Text Available Summary: We present a brief literature review of the topical immune-modulating medication Imiquimod. The treatment of periorbital melanoma in situ typically requires surgical resection. Here we discuss a case of lower eyelid melanoma in situ successfully treated non-operatively with Imiquimod.

  3. Some implications of in situ uranium mining technology development

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, C.E.; Parkhurst, M.A.; Cole, R.J.; Keller, D.; Mellinger, P.J.; Wallace, R.W.

    1980-09-01

    A technology assessment was initiated in March 1979 of the in-situ uranium mining technology. This report explores the impediments to development and deployment of this technology and evaluates the environmental impacts of a generic in-situ facility. The report is divided into the following sections: introduction, technology description, physical environment, institutional and socioeconomic environment, impact assessment, impediments, and conclusions. (DLC)

  4. Zebrafish Whole-Mount In Situ Hybridization Followed by Sectioning

    DEFF Research Database (Denmark)

    Doganli, Canan; Nyengaard, Jens Randel; Lykke-Hartmann, Karin

    2016-01-01

    In situ hybridization is a powerful technique used for locating specific nucleic acid targets within morphologically preserved tissues and cell preparations. A labeled RNA or DNA probe hybridizes to its complementary mRNA or DNA sequence within a sample. Here, we describe RNA in situ hybridization...

  5. Some implications of in situ uranium mining technology development

    International Nuclear Information System (INIS)

    A technology assessment was initiated in March 1979 of the in-situ uranium mining technology. This report explores the impediments to development and deployment of this technology and evaluates the environmental impacts of a generic in-situ facility. The report is divided into the following sections: introduction, technology description, physical environment, institutional and socioeconomic environment, impact assessment, impediments, and conclusions

  6. Development of the integrated in situ Lasagna process

    International Nuclear Information System (INIS)

    Contamination in deep, low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in uniform delivery of treatment reagents have rendered existing in-situ methods such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites

  7. In situ monitoring of liquid phase electroepitaxial growth

    Science.gov (United States)

    Okamoto, A.; Isozumi, S.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    In situ monitoring of the layer thickness during liquid phase electroepitaxy (LPEE) was achieved with a submicron resolution through precise resistance measurements. The new approach to the study and control of LPEE was applied to growth of undoped and Ge-doped GaAs layers. The in situ determined growth kinetics was found to be in excellent agreement with theory.

  8. A NOVEL OPHTHALMIC DRUG DELIVERY SYSTEM: IN-SITU GEL

    Directory of Open Access Journals (Sweden)

    A.P. Patil*, A.A. Tagalpallewar, G.M. Rasve, A.V. Bendre, P.G. Khapekar

    2012-09-01

    Full Text Available The ophthalmic in-situ gels now days proved an palpable sustained drug delivery in various eye diseases. The formulation of in-situ gels for eye which carries the advantages like easy for administration, reduces frequency of dose and improves patient compliance. The formation of in-situ gels depends on phase transition system or sol-gel transition system. The formulation approaches like temperature intonation, pH change and presence of ions from which the drug gets released in a sustained and controlled manner are utilised for in-situ gels. Various polymers that are used for the formulation of in-situ gels include chitosan, Pluronic F-127, poly-caprolactone, gellan gum, alginic acid, xyloglucan, pectin etc.

  9. In situ containment and stabilization of buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

    1992-11-01

    The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

  10. Common In-Situ Consumable Production Plant for Robotic Mars Exploration

    Science.gov (United States)

    Sanders, G. B.; Trevathan, J. R.; Peters, T. A.; Baird, R. S.

    2000-01-01

    Utilization of extraterrestrial resources, or In-Situ Resource Utilization (ISRU), is viewed by the Human Exploration and Development of Space (HEDS) Enterprise as an enabling technology for the exploration and commercial development of space. A key subset of ISRU which has significant cost, mass, and risk reduction benefits for robotic and human exploration, and which requires a minimum of infrastructure, is In-Situ Consumable Production (ISCP). ISCP involves acquiring, manufacturing, and storing mission consumables from in situ resources, such as propellants, fuel cell reagents, and gases for crew and life support, inflation, science and pneumatic equipment. One of the four long-term goals for the Space Science Enterprise (SSE) is to 'pursue space science programs that enable and are enabled by future human exploration beyond low-Earth orbit - a goal exploiting the synergy with the human exploration of space'. Adequate power and propulsion capabilities are critical for both robotic and human exploration missions. Minimizing the mass and volume of these systems can reduce mission cost or enhance the mission by enabling the incorporation of new science or mission-relevant equipment. Studies have shown that in-situ production of oxygen and methane propellants can enhance sample return missions by enabling larger samples to be returned to Earth or by performing Direct Earth Return (DER) sample return missions instead of requiring a Mars Orbit Rendezvous (MOR). Recent NASA and Department of Energy (DOE) work on oxygen and hydrocarbon-based fuel cell power systems shows the potential of using fuel cell power systems instead of solar arrays and batteries for future rovers and science equipment. The development and use of a common oxygen/methane ISCP plant for propulsion and power generation can extend and enhance the scientific exploration of Mars while supporting the development and demonstration of critical technologies and systems for the human exploration of Mars.

  11. In situ treatment of VOCs by recirculation technologies

    International Nuclear Information System (INIS)

    The project described herein was conducted by Oak Ridge National Laboratory (ORNL) to identify processes and technologies developed in Germany that appeared to have near-term potential for enhancing the cleanup of volatile organic compound (VOC) contaminated soil and groundwater at DOE sites. Members of the ORNL research team identified and evaluated selected German technologies developed at or in association with the University of Karlsruhe (UoK) for in situ treatment of VOC contaminated soils and groundwater. Project activities included contacts with researchers within three departments of the UoK (i.e., Applied Geology, Hydromechanics, and Soil and Foundation Engineering) during fall 1991 and subsequent visits to UoK and private industry collaborators during February 1992. Subsequent analyses consisted of engineering computations, groundwater flow modeling, and treatment process modeling. As a result of these project efforts, two processes were identified as having near-term potential for DOE: (1) the vacuum vaporizer well/groundwater recirculation well and (2) the porous pipe/horizontal well. This document was prepared to summarize the methods and results of the assessment activities completed during the initial year of the project. The project is still ongoing, so not all facets of the effort are completely described in this document. Recommendations for laboratory and field experiments are provided

  12. In situ vadose zone remediation of petroleum-contaminated soils

    International Nuclear Information System (INIS)

    This paper discusses a pilot-scale system treating vadose zone soils contaminated with petroleum products constructed and operated at a former petroleum bulk storage terminal in New England. A site investigation following decommissioning activities identified more than 100,000 yds of soil at the site contaminated by both No. 2 fuel oil and gasoline. Soil cleanup criteria of 50 ppm TPH and 0.25 ppm BTEX were established. A pilot-scale treatment unit with dimensions of 125 ft x 125 ft x 6 ft was constructed to evaluate the potential for in situ treatment of vadose zone soils. Contaminant levels in pilot cell soils ranged from 0 to 5,250 ppm TPH and 0.0 to 4.2 ppm BTEX. Two soil treatment methods n the pilot system were implemented; venting to treat the lighter petroleum fractions and bioremediation to treat the nonvolatile petroleum constituents. Seven soil gas probes were installed to monitor pressure and soil gas vapor concentrations in the subsurface. Changes in soil gas oxygen and carbon dioxide concentrations were used as an indirect measure of enhanced bioremediation of pilot cell soils. After operating the system for a period of 2.5 months, soil BTEX concentrations were reduced to concentrations below the remediation criteria for the site

  13. Comparing in situ removal strategies for improving styrene bioproduction.

    Science.gov (United States)

    McKenna, Rebekah; Moya, Luis; McDaniel, Matthew; Nielsen, David R

    2015-01-01

    As an important conventional monomer compound, the biological production of styrene carries significant promise with respect to creating novel sustainable materials. Since end-product toxicity presently limits styrene production by previously engineered Escherichia coli, in situ product removal by both solvent extraction and gas stripping were explored as process-based strategies for circumventing its inhibitory effects. In solvent extraction, the addition of bis(2-ethylhexyl)phthalate offered the greatest productivity enhancement, allowing net volumetric production of 83664mg/L to be reached, representing a 320% improvement over single-phase cultures. Gas stripping rates, meanwhile, were controlled by rates of bioreactor agitation and, to a greater extent, aeration. A periodic gas stripping protocol ultimately enabled up to 56115mg/L styrene to be attained. Lastly, by relieving the effects of styrene toxicity, new insight was gained regarding subsequent factors limiting its biosynthesis in E. coli and strategies for future strain improvement are discussed. PMID:25034182

  14. Solvent screening methodology for in situ ABE extractive fermentation.

    Science.gov (United States)

    Gonzlez-Peas, H; Lu-Chau, T A; Moreira, M T; Lema, J M

    2014-07-01

    Solvent screening for in situ liquid extraction of products from acetone-butanol-ethanol (ABE) fermentation was carried out, taking into account biological parameters (biocompatibility, bioavailability, and product yield) and extraction performance (partition coefficient and selectivity) determined in real fermentation broth. On the basis of different solvent characteristics obtained from literature, 16 compounds from different chemical families were selected and experimentally evaluated for their extraction capabilities in a real ABE fermentation broth system. From these compounds, nine potential solvents were also tested for their biocompatibility towards Clostridium acetobutylicum. Moreover, bioavailability and differences in substrate consumption and total n-butanol production with respect to solvent-free fermentations were quantified for each biocompatible solvent. Product yield was enhanced in the presence of organic solvents having higher affinity for butanol and butyric acid. Applying this methodology, it was found that the Guerbet alcohol 2-butyl-1-octanol presented the best extracting characteristics (the highest partition coefficient (6.76) and the third highest selectivity (644)), the highest butanol yield (27.4%), and maintained biocompatibility with C. acetobutylicum. PMID:24676748

  15. In situ recycling of contaminated soil uses bioremediation

    International Nuclear Information System (INIS)

    OxyChem Pipeline Operations, primarily an ethylene and propylene products mover, has determined that substantial savings can be realized by adopting a bioremediation maintenance and recycling approach to hydrocarbon-contaminated soil. By this method, the soil can be recycled in situ, or in containers. To implement the soil-recycling program, OxyChem elected to use a soil remediator and natural absorbent product, Oil Snapper. This field maintenance material, based on an Enhanced Urea Technology, provides a diet to stimulate the growth of hydrocarbon-eating microbes. It works well either with indigenous soil microbes or with commercial microbes. The product is carried in field vehicles, which makes it immediately available when leaks or spills are discovered. Procedure for clean-up is to apply product and mix it into affected soil. Thus the contaminant is contained, preventing further migration; the contaminant is dispersed throughout the product, making it more accessible to the microbes; nutrients are immediately available to the microbes; and the material contributes aeration and moisture-retention properties

  16. In situ X-ray investigations of oxygen precipitation in semiconductor silicon; In-situ-Roentgenuntersuchungen der Sauerstoffpraezipitation in Halbleitersilizium

    Energy Technology Data Exchange (ETDEWEB)

    Grillenberger, Hannes

    2011-03-04

    The precipitation of oxygen in Czochralski grown semiconductor silicon is investigated in situ during thermal treatments up to 1000 C with high energy X-rays. All investigations are performed with a focusing Laue diffractometer. The parameters of the diffraction curve are the relative full width at half maximum (rFHWM) and the enhancement of the integral intensity (EII). A readout software has been developed to extract these automatically from the detector image for the measured 220, -220 and 040 Bragg peaks. The sample thickness is set to 15 mm as this enhances the sensitivity of the method and the samples are processed after the strain-field diffraction (SFD) experiments to wafers for an ex situ characterization demanding wafers. Three experimental series with a total of 21 in situ SFD experiments with different thermal treatments have been performed. The slope of the initial temperature ramp is set to 1 K/min in the first and the third series to generate a high precipitate (Bulk Micro Defect, BMD) density. In the second series the slope is chosen as 10 K/min to generate a lower density in the same silicon material. It is shown with all experiments and with preliminary works that the built up of strain during the heat treatment is caused by BMDs during the high temperature period of the treatment. The detection limit of series 1 is found at 7 nm at a density of 10{sup 13}/cm{sup 3}, of series 2 at 40 nm at a density of 2 x 10{sup 8}/cm{sup 3}, and at 8 nm at a density of 4.8 x 10{sup 12}/cm{sup 3} for series 3. The local maximum of the EII at 450 C, which emerges coincident with a local minimum of the rFWHM in series 2 may be caused by thermal donors (TD). With the experiments is shown that SFD operates in the infrared-laser scattering tomography detection range, but also reaches in a region covered only by transmission electron microscopy (TEM) so far. In contrast to these methods SFD is not limited to low temperatures and in situ experiments can be done. Thus not only the ex situ verified BMD parameters but their temporal development can detected by SFD for the first time with a laboratory setup. An other difference to TEM is the number of BMDs detected. Measurements of the BMD parameters of a small number of BMDs can be done with TEM at a very high resolution to deduce the properties of the total BMD ensemble. The SFD signal is influenced directly by all BMDs in the analyzed sample volume being in the order of 10{sup 14}/cm{sup 3}. Correlations of the EII and BMD parameters are made for the first and the third series. A linear relation is found between the EII level and the BMD diameter if the BMD density is constant as in series 1. The influence of the BMD density on the EII signal is considerably in series 3. The final EII level is mainly depending on the density of the BMDs. The BMD diameters in the series may be assumed as constant in most of the samples, as the distribution of the diameters within one sample is wider than between the samples. A correlation of the BMD density measured with TEM with the maximum of the slope of the EII shows a strong linear relationship for first and third series. Values of the second series reduce the correlation coefficient, as the EII signal depends on the BMD diameter which is in a different order of magnitude in this series. (orig.)

  17. Multimodal confocal mosaics enable high sensitivity and specificity in screening of in situ squamous cell carcinoma

    Science.gov (United States)

    Grados Luyando, Maria del Carmen; Bar, Anna; Snavely, Nicholas; Jacques, Steven; Gareau, Daniel S.

    2014-02-01

    Screening cancer in excision margins with confocal microscopy may potentially save time and cost over the gold standard histopathology (H and E). However, diagnostic accuracy requires sufficient contrast and resolution to reveal pathological traits in a growing set of tumor types. Reflectance mode images structural details due to microscopic refractive index variation. Nuclear contrast with acridine orange fluorescence provides enhanced diagnostic value, but fails for in situ squamous cell carcinoma (SCC), where the cytoplasm is important to visualize. Combination of three modes [eosin (Eo) fluorescence, reflectance (R) and acridine orange (AO) fluorescence] enable imaging of cytoplasm, collagen and nuclei respectively. Toward rapid intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaics can image wide surgical margins (~1cm) with sub-cellular resolution and mimic the appearance of conventional H and E. Absorption contrast is achieved by alternating the excitation wavelength: 488nm (AO fluorescence) and 532nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H and E, enabling detection of the carcinoma in situ in the epidermal layer The sum mosaic Eo+R is false-colored pink to mimic eosins' appearance in H and E, while the AO mosaic is false-colored purple to mimic hematoxylins' appearance in H and E. In this study, mosaics of 10 Mohs surgical excisions containing SCC in situ and 5 containing only normal tissue were subdivided for digital presentation equivalent to 4X histology. Of the total 16 SCC in situ multimodal mosaics and 16 normal cases presented, two reviewers made 1 and 2 (respectively) type-2 errors (false positives) but otherwise scored perfectly when using the confocal images to screen for the presence of SCC in situ as compared to the gold standard histopathology. Limitations to precisely mimic H and E included occasional elastin staining by AO. These results suggest that confocal mosaics may effectively guide staged SCC excisions in skin and other tissues.

  18. Cost performance assessment of in situ vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, W.E.; Letellier, B.C.; Booth, S.R. [Los Alamos National Lab., NM (United States); Barnes-Smith, P. [ICF Kaiser Engineers, Inc., Albuquerque, NM (United States)

    1992-09-01

    In situ vitrification (ISV) is a thermal treatment technology with promise for the destruction or immobilization of hazardous materials in contaminated soils. It has developed over the past decade to a level of maturity where meaningful cost effectiveness studies may be performed. The ISV process melts 4 to 25 m{sup 2} of undisturbed soil to a maximum depth of 6 m into an obsidian-like glass waste form by applying electric current (3750 kill) between symmetrically spaced electrodes. Temperatures of approximately 2000{degree}C drive off and destroy complex organics which are captured in an off-gas treatment system, while radio-nuclides are incorporated into the homogeneous glass monolith. A comparative life-cycle cost evaluation between mobile rotary kiln incineration and ISV was performed to quantitatively identify appropriate performance regimes and components of cost which are sensitive to the implementation of each technology. Predictions of melt times and power consumption were obtained from an ISV performance model over ranges of several parameters including electrode spacing, soil moisture, melt depth, electrical resistivity, and soil density. These data were coupled with manpower requirements, capitalization costs, and a melt placement optimization routine to allow interpolation over a wide variety of site characteristics. For the purpose of this study, a single site scenario representative of a mixed waste evaporation pond was constructed. Preliminary comparisons between ISV and incineration show that while operating costs are comparable, ISV avoids secondary treatment and monitored storage of radioactive waste that would be required following conventional incineration. It is the long term storage of incinerated material that is the most expensive component.

  19. Cost performance assessment of in situ vitrification

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, W.E.; Letellier, B.C.; Booth, S.R. (Los Alamos National Lab., NM (United States)); Barnes-Smith, P. (ICF Kaiser Engineers, Inc., Albuquerque, NM (United States))

    1992-01-01

    In situ vitrification (ISV) is a thermal treatment technology with promise for the destruction or immobilization of hazardous materials in contaminated soils. It has developed over the past decade to a level of maturity where meaningful cost effectiveness studies may be performed. The ISV process melts 4 to 25 m{sup 2} of undisturbed soil to a maximum depth of 6 m into an obsidian-like glass waste form by applying electric current (3750 kill) between symmetrically spaced electrodes. Temperatures of approximately 2000{degree}C drive off and destroy complex organics which are captured in an off-gas treatment system, while radio-nuclides are incorporated into the homogeneous glass monolith. A comparative life-cycle cost evaluation between mobile rotary kiln incineration and ISV was performed to quantitatively identify appropriate performance regimes and components of cost which are sensitive to the implementation of each technology. Predictions of melt times and power consumption were obtained from an ISV performance model over ranges of several parameters including electrode spacing, soil moisture, melt depth, electrical resistivity, and soil density. These data were coupled with manpower requirements, capitalization costs, and a melt placement optimization routine to allow interpolation over a wide variety of site characteristics. For the purpose of this study, a single site scenario representative of a mixed waste evaporation pond was constructed. Preliminary comparisons between ISV and incineration show that while operating costs are comparable, ISV avoids secondary treatment and monitored storage of radioactive waste that would be required following conventional incineration. It is the long term storage of incinerated material that is the most expensive component.

  20. Retinal detachment after laser In Situ keratomileusis

    Directory of Open Access Journals (Sweden)

    Saba Al-Rashaed

    2011-01-01

    Full Text Available Purpose : To report characteristics and outcome of rhegmatogenous retinal detachment (RRD after laser in situ keratomileusis (LASIK for myopia. Materials and Methods : A retrospective chart review of patients who presented with RRD after myopic LASIK over a 10-year period. Results : Fourteen eyes were identified with RRD. Of these, two of 6112 LASIK procedures were from our center. The mean age of patients with RRD was 35.43 years. The mean interval of RRD after LASIK was 37.71 months (range, 4 months to 10 years. The macula was involved in eight eyes and spared in six eyes. Retinal breaks included a macular hole in two eyes, and giant tear in two eyes. Multiple breaks (>2 breaks occurred in 6 cases. Pars plana vitrectomy (PPV was performed in 3 (21.4% eyes, a scleral buckle (SB was performed in 4 (28.5% eyes and 7 (50% eyes underwent combined PPV and SB. Mean follow-up was 15.18 months (range, 1 month to 7 years. The retina was successfully attached in all cases. The final visual acuity was 20/40 or better in 7 (50% eyes, 20/40 to 20/60 in 4 (28.5% eyes, and 20/200 or less in 3 (21.4% eyes. Poor visual outcome was secondary to proliferative vitreoretinopathy, epiretinal membrane, macular scar and amblyopia. Conclusion : The prevalence of RRD after LASIK was low at our institute. Anatomical and visual outcomes were acceptable in eyes that were managed promptly. Although there is no cause-effect relationship between LASIK and RRD, a dilated fundus examination is highly recommended before and after LASIK for myopia.

  1. Ductal carcinoma in situ: a challenging disease

    Directory of Open Access Journals (Sweden)

    Sevilay Altintas

    2011-12-01

    Full Text Available Ductal carcinoma in situ (DCIS represents a heterogenous group of lesions with variable malignant potential. Although it is clearly pre-invasive, not all lesions progress to an invasive malignant disease. The significant increase in the frequency of diagnosis is the result of both widespread use of screening mammography and better recognition among pathologists. Treatment is controversial, but for several decades total mastectomy has been considered as the appropriate treatment. The tendency to be less aggressive in terms of surgery has followed the pattern of events observed in the treatment of invasive breast carcinomas. More recently, it has become clear that breastconserving procedures could be applied and selected on the basis of diagnostics and risk factors. When all patients with DCIS are considered, the overall mortality is extremely low, only about 1–2%. On the other hand, breast-conserving surgery is only curative in 75–85%; 50% of the local recurrences have proven to be invasive with a mortality rate of 12–15%. There is no place for axillary node dissection, adjuvant hormonal treatment or chemotherapy in the treatment. Important factors in predicting local recurrence are age, family history, nuclear grade, comedo-type necrosis, tumor size and margin width. With the addition of radiation therapy to excisional surgery, there is a 50% reduction in the overall local recurrence rate. The Van Nuys Prognostic Index (VNPI, recently updated, is a tool that quantifies measurable prognostic factors that can be used in the decision-making process of treatment. Recent data from large cohort studies and randomized trials have emerged to guide treatment. DCIS is now understood to have diverse malignant potential and it is unlikely that there will be a single treatment for this wide range of lesions. Advances in molecular biology and gene expression profiling of human breast tumors have been providing important insights into the relationship between DCIS and invasive breast cancer.

  2. In-Situ Wire Damage Detection System

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Tate, Lanetra; Smith, Trent; Gibson, Tracy; Medelius, Pedro; Jolley, Scott

    2012-01-01

    An In-Situ Wire Damage Detection System (ISWDDS) has been developed that is capable of detecting damage to a wire insulation, or a wire conductor, or to both. The system will allow for realtime, continuous monitoring of wiring health/integrity and reduce the number of false negatives and false positives while being smaller, lighter in weight, and more robust than current systems. The technology allows for improved safety and significant reduction in maintenance hours for aircraft, space vehicles, satellites, and other critical high-performance wiring systems for industries such as energy production and mining. The integrated ISWDDS is comprised of two main components: (1) a wire with an innermost core conductor, an inner insulation film, a conductive layer or inherently conductive polymer (ICP) covering the inner insulation film, an outermost insulation jacket; and (2) smart connectors and electronics capable of producing and detecting electronic signals, and a central processing unit (CPU) for data collection and analysis. The wire is constructed by applying the inner insulation films to the conductor, followed by the outer insulation jacket. The conductive layer or ICP is on the outer surface of the inner insulation film. One or more wires are connected to the CPU using the smart connectors, and up to 64 wires can be monitored in real-time. The ISWDDS uses time domain reflectometry for damage detection. A fast-risetime pulse is injected into either the core conductor or conductive layer and referenced against the other conductor, producing transmission line behavior. If either conductor is damaged, then the signal is reflected. By knowing the speed of propagation of the pulse, and the time it takes to reflect, one can calculate the distance to and location of the damage.

  3. In situ radionuclide transfers in the deep-sea Lysianassidae amphipod Eurythenes gryllus

    International Nuclear Information System (INIS)

    Previous studies at the NEA dumpsite confirmed the existence of the scavenging amphipod Eurythenes gryllus. The aim of this study was to inquire if, under deep-sea conditions of low temperature and high pressure, this species of crustacean would retain artificial radionuclides in the same organ as those observed in similar coastal species of the same family. This necrophagous species is easily attracted by bait. It can ingest 30 to 60% of its body weight in 30 10 min. In addition, this species can store ingested food for several weeks. Thus, the ingestion of radiolabelled food over a period of several days could be considered as a single-meal contamination experiment. For all these reasons Eurythenes gryllus appeared to be a good test animal to compare laboratory experiments on coastal species with in situ radionuclide retention studies on deep-sea fauna. In order to prevent any disturbance of their physiological conditions, a special device was used to attract and feed the animals with radiolabelled baits, in situ at a depth of 4000 m, rather than recovering amphipods without decompression and keeping them alive aboard ship. Qualitatively speaking results yielded by in situ experiments support those obtained from laboratory studies with coastal animals and the same radionuclides

  4. Ecological impact assessment of metallurgic effluents using in situ biomarker assays

    International Nuclear Information System (INIS)

    An ecological impact study was performed based on in situ biomarker assays with the waterflea Daphnia magna. The effects of metallurgic effluents on the energy metabolism, anti-oxidative metabolism and DNA damage were assessed in caged daphnids during a 4-week study. In situ survival and reproduction studies demonstrated a clear impact on these parameters in organisms exposed in the most polluted areas. At the downstream-sublethal-zone the organisms were disturbed within their tolerance limits, resulting in alterations of their energy metabolism. These data suggest an acclimation hypothesis, which was tested through the analysis of the energy metabolism of resident species: isopods and amphipods. These organisms had shifted to a decrease in their overall energy metabolism compared to the upstream region. This change in some biochemical processes suggests a selective advantage to cope with the prevailing environmental conditions. In addition, we found clear genotoxic effects caused by the industrial discharges that might correlate with a reduction in (long-term) survival. - In situ monitoring of metallurgic effluents using biomarker analysis

  5. Environmental monitoring with in-situ gamma spectrometer; Umweltueberwachung mit in-situ-Gamma-Spektrometer

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, S. [ENVINET GmbH, Haar (Germany)

    2014-01-20

    The in-situ gamma spectroscopy allows large area and continuous monitoring of the radio nuclides and there composition in the environment. In comparison to the gamma dose rate measurement the additional spectral information gives the possibility for a quick and effective action in the case of a man-made radiation exposition in the environment. The knowledge respectively localization of the possible nuclides, which a responsible for the increased dose rate, supports responsible organization in the quick identification of the situation, definition of the actions and tracking of the temporal and local process of the radiation exposition. Due to dedicate actions the risk for people and environment is reduced.

  6. Laser in situ keratomileusis in adult patients with anisometropic amblyopia

    Directory of Open Access Journals (Sweden)

    Dilek Ya?a

    2013-06-01

    Full Text Available AIM: To evaluate the increase in corrected distance visual acuity (CDVA after laser in situ keratomileusis (LASIK in adults with anisometropic amblyopia.METHODS: The medical records of consecutive patients diagnosed with anisometropic amblyopia at the time of refractive evaluation who underwent LASIK were retrospectively reviewed. Patients with at least a two-line difference of visual acuity (VA between the eyes with a spherical refractive error difference of at least 3.00 diopters (D or an astigmatic difference of at least 2.00D were included. Patients with any other possible reason for amblyopia other than anisometropia or those who had undergone previous amblyopia treatment were excluded. Amblyopic eyes with myopia or myopic astigmatism were considered as group 1, hypermetropia or hypermetropic astigmatism constituted group 2, and mixed astigmatism patients comprised group 3. Uncorrected distance visual acuity (UDVA, subjective manifest refraction, and CDVA were analyzed at 1 week and 1 month, 3, and 6 months. RESULTS: The study included 57 eyes of 57 patients. There were 33 eyes in group 1, 12 eyes in group 2, and 12 eyes in group 3. The preoperative mean values for spherical equivalent of subjective manifest refraction (SE in groups 1, 2, and 3 were (-4.661.97D, (4.401.00D, and (0.151.05D, respectively. Mean CDVA improved 0.1 log units (1 line LogMAR at 6 months (P0.05. Moreover, age, the amount of preoperative refractive error, and the levels of preoperative corrected and UDVA had no effect on postoperative CDVA improvement (P>0.05.CONCLUSION: Correction of refractive errors with LASIK produced significant CDVA improvement in adult patients with anisometropic amblyopia and no previous amblyopia treatment.

  7. Adult Learners' Week in Russia.

    Science.gov (United States)

    Litvinova, Nina

    2002-01-01

    In Russia International Adult Learners Week highlights the democratization process the country is undergoing. Government attention to rural development and training and agrarian policy is needed. (SK)

  8. Fractionation of stable isotopes in perchlorate and nitrate during in situ biodegradation in a sandy aquifer

    Science.gov (United States)

    Hatzinger, P.B.; Bhlke, J.K.; Sturchio, N.C.; Gu, B.; Heraty, L.J.; Borden, R.C.

    2009-01-01

    Environmental context. Perchlorate (ClO4-) and nitrate (NO3-) are common co-contaminants in groundwater, with both natural and anthropogenic sources. Each of these compounds is biodegradable, so in situ enhanced bioremediation is one alternative for treating them in groundwater. Because bacteria typically fractionate isotopes during biodegradation, stable isotope analysis is increasingly used to distinguish this process from transport or mixing-related decreases in contaminant concentrations. However, for this technique to be useful in the field to monitor bioremediation progress, isotope fractionation must be quantified under relevant environmental conditions. In the present study, we quantify the apparent in situ fractionation effects for stable isotopes in ClO4- (Cl and O) and NO3- (N and O) resulting from biodegradation in an aquifer. Abstract. An in situ experiment was performed in a shallow alluvial aquifer in Maryland to quantify the fractionation of stable isotopes in perchlorate (Cl and O) and nitrate (N and O) during biodegradation. An emulsified soybean oil substrate that was previously injected into this aquifer provided the electron donor necessary for biological perchlorate reduction and denitrification. During the field experiment, groundwater extracted from an upgradient well was pumped into an injection well located within the in situ oil barrier, and then groundwater samples were withdrawn for the next 30 h. After correction for dilution (using Br- as a conservative tracer of the injectate), perchlorate concentrations decreased by 78% and nitrate concentrations decreased by 82% during the initial 8.6 h after the injection. The observed ratio of fractionation effects of O and Cl isotopes in perchlorate (18O/37Cl) was 2.6, which is similar to that observed in the laboratory using pure cultures (2.5). Denitrification by indigenous bacteria fractionated O and N isotopes in nitrate at a ratio of ???0.8 (18O/15N), which is within the range of values reported previously for denitrification. However, the magnitudes of the individual apparent in situ isotope fractionation effects for perchlorate and nitrate were appreciably smaller than those reported in homogeneous closed systems (0.2 to 0.6 times), even after adjustment for dilution. These results indicate that (1) isotope fractionation factor ratios (18O/37Cl, 18O/15N) derived from homogeneous laboratory systems (e.g. pure culture studies) can be used qualitatively to confirm the occurrence of in situ biodegradation of both perchlorate and nitrate, but (2) the magnitudes of the individual apparent values cannot be used quantitatively to estimate the in situ extent of biodegradation of either anion. ?? CSIRO 2009.

  9. Evaluation of LIDAR/Polarimeter Aerosol Measurements by In Situ Instrumentation during DEVOTE

    Science.gov (United States)

    Beyersdorf, A. J.; Ziemba, L. D.; Anderson, B. E.; Dolgos, G.; Ottaviani, M.; Obland, M. D.; Rogers, R.; Thornhill, K. L.; Winstead, E. L.; Yang, M. M.; Hair, J. W.

    2011-12-01

    Combined measurements from LIDAR (LIght Detection And Ranging) and polarimeter instruments provide the opportunity for enhanced satellite observations of aerosol properties including retrievals of aerosol optical depth, single scattering albedo, effective radius, and refractive index. However, these retrievals (specifically for refractive index) have not been fully vetted and require additional intercomparisons with in situ measurements to improve accuracy. Proper validation of these combined LIDAR/polarimeter retrievals requires evaluation in varying atmospheric conditions and of varying aerosol composition. As part of this effort, two NASA Langley King Air aircraft have been outfitted to provide coordinated measurements of aerosol properties. One will be used as a remote sensing platform with the NASA Langley high-spectral resolution LIDAR (HSRL) and NASA GISS research scanning polarimeter (RSP). The second aircraft has been modified for use as an in situ platform and will house a suite of aerosol microphysical instrumentation, a pair of diode laser hygrometers (DLHs) for water vapor and cloud extinction measurements, and a polarized imaging nephelometer (PI-Neph). The remote sensing package has flown in a variety of campaigns, however only rarely has been able to coordinate with in situ measurements. The use of two collocated aircraft will allow for future coordinated flights to provide a more complete dataset for evaluation of aerosol retrievals and allow for fast-response capability. Results from the first coordinated King Air flights as part of DEVOTE (Development and Evaulation of satellite ValidatiOn Tools by Experimenters) will be presented. Flights are planned out of Hampton, VA during September and October 2011 including underflights of the CALIPSO satellite and overflights of ground-based AERONET (AErosol RObotic NETwork) sites. These will provide a comparison of aerosol properties between in situ and remote instruments (ground, aircraft, and satellite-based). In situ measurements include aerosol number density, size, scattering, absorption and hygroscopicity (aerosol scattering as a function of relative humidity). The PI-Neph will provide the first airborne in situ measurements of aerosol polarized phase function for comparison to the RSP retrievals. As this is the first airborne use of the PI-Neph, aerosol scattering measurements from the PI-Neph will be compared to an integrating nephelometer to provide a primary indication of instrument functionality. Specific flights will be performed to study a range of aerosol classifications including fresh anthropogenic pollution (flights over populated regions), aged pollution (tracking pollution as it moves off shore), sea salt (low altitude ocean flights by the in situ aircraft) and biogenic (flights over forest canopies). In addition, the DLH and a wing-mounted cloud aerosol precipitation spectrometer will provide insight into aerosol retrievals above and near clouds.

  10. Preparation and thermal properties of mesoporous silica/phenolic resin nanocomposites via in situ polymerization

    Directory of Open Access Journals (Sweden)

    J. Lv

    2012-10-01

    Full Text Available In order to enhance the adhesion between inorganic particles and polymer matrix, in this paper, the mesoporous silica SBA-15 material was synthesized by the sol-gel method. The surface of SBA-15 was modified using ?-glycidyloxypropyltrimethoxysilane (GOTMS as a coupling agent, and then mesoporous silica/phenolic resin (SBA-15/PF nanocomposites were prepared via in situ polymerization. The structural parameters and physical properties of SBA-15, SBA-15-GOTMS (SBA-15 surface treated using GOTMS as coupling agents and E-SBA-15/PF (SBA-15/PF nanocomposites extracted using ethanol as solvent were characterized by X-ray diffraction (XRD, N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. The thermal properties of the nanocomposites were studied by differential scanning calorimetry (DSC and thermogravimetric analysis (TGA. The results demonstrated that the GOTMS were successfully grafted onto the surface of SBA-15, and chemical bonds between PF and SBA-15-GOTMS were formed after in situ polymerization. In addition, it is found that the in situ polymerization method has great effects on the textural parameters of SBA-15. The results also showed that the glass transition temperatures and thermal stability of the PF nanocomposites were obviously enhanced as compared with the pure PF at silica contents between 13 wt%, due to the uniform dispersion of the modified SBA-15 in the matrix.

  11. Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin.

    Science.gov (United States)

    Lin, Ning; Dufresne, Alain

    2013-03-11

    When grafted ?-cyclodextrin is used as targeting sites, Pluronic polymers have been introduced on the surface of cellulose nanocrystals by means of inclusion interaction between ?-cyclodextrin and hydrophobic segment of the polymer. Because of the steric stabilization effect, surface poly(ethylene glycol) chains facilitate the dispersion and compatibility of nanocrystals, which also enhance the loading levels of nanocrystals in the hydrogel system. Meanwhile, uncovered poly(ethylene glycol) segments render the participating inclusion of ?-cyclodextrin for the architecture of in situ hydrogels. Surface grafting and inclusion reactions were proved by solid (13)C NMR and FTIR. Grafting efficiency of ?-cyclodextrin and inclusion efficiency of Pluronic on the surface of nanocrystals were confirmed by UV spectroscopy and elemental analysis. A significant enhancement of the structural and thermal stability of in situ hydrogels with high loading levels of modified nanocrystals (>5.77 wt %) was observed by rheological analysis. Further study reveals the performance and behavior of hydrogels under a different pH environment. Finally, in situ hydrogels were used as drug carrier for in vitro release of doxorubicin and exhibit the behavior of prolonged drug release with special release kinetics. PMID:23347071

  12. In-situ electrochemical route to aerogel electrode materials of graphene and hexagonal CeO?.

    Science.gov (United States)

    Chen, Kunfeng; Xue, Dongfeng

    2015-05-15

    We reported a one-step in-situ electrochemical route to synthesize 3D aerogel electrode materials including graphene and hexagonal CeO2 composites. The graphene/CeO2 aerogel can be formed via freeze-drying graphene/CeO2 colloidal solution that was obtained by electrochemical exfoliation of graphite anode and in-situ deposition of CeO2 nanoparticles on graphene sheets in mixing electrolyte of (NH4)2SO4/Ce(NO3)3 and (NH4)2SO4/(NH4)2Ce(NO3)6. The as-obtained CeO2 nanoparticles were closely contacted with graphene, which can enhance the synergistic effect between graphene and CeO2. It is interesting that the as-obtained CeO2 products possessed hexagonal crystal structure that was rarely reported. The Faradaic reactivity of the graphene/CeO2 composites as supercapacitor was enhanced with the increase of the concentration of Ce salts in initial electrolyte. The introduction of CeO2 to graphene electrode can lead to the presence of additional pseudocapacitance besides the electric double-layer capacitance. This simple one-step in-situ electrochemical route can be extended to synthesize various graphene/metal oxide aerogel electrode materials for electric energy storage. PMID:25660707

  13. In situ bioremediation strategies for oiled shoreline environments

    International Nuclear Information System (INIS)

    Despite advances in preventative measures, recent events have demonstrated that accidental oil spills at sea will still occur. While physical (e.g. booms and skimmers) and chemical (e.g. chemical dispersants) methods have been developed to recover and/or disperse oil spilled at sea, they are not 100% effective and are frequently limited by operational constraints attributed to sea state and/or nature of the contamination. As a result, oil spills frequently impact shoreline environments. In situ bioremediation, the addition of substances or modification of habitat at contaminated sites to accelerate natural biodegradation processes, is now recognised as an alternative spill response technology of the remediation of these sites. Recommended for use following the physical removal of bulk oil, this treatment strategy has an operational advantage in that it breaks down and/or removes the residual contamination in place. Laboratory experiments and field trials have demonstrated the feasibility and success of bioremediation strategies such as nutrient enrichment to enhance bacterial degradation of oil on cobble, sand beach and salt marsh environments. With improved knowledge of the factors that limit natural oil degradation rates, the feasibility of other strategies such as phytoremediation, enhanced oil-mineral fines interaction and the addition of oxygen or alternative electron acceptors are now being evaluated. Laboratory and field test protocols are being refined for the selection of effective bioremediation agents and methods of application. It is recommended that future operational guidelines include real time product efficacy test and environmental effects monitoring programs. Termination of treatment should be implemented when: 1) it is no longer effective; 2) the oil has degraded to acceptable biologically benign concentrations; or 3) toxicity due to the treatment is increasing. (Author)

  14. Association of Serpulina hyodysenteriae with the colonic mucosa in experimental swine dysentery studied by fluorescent in situ hybridization

    DEFF Research Database (Denmark)

    Jensen, Tim Kre; Boye, Mette; Mller, Kristian; Leser, T. D.; Jorsal, Sven Erik Lind

    1998-01-01

    The localization of Serpulina hyodysenteriae in experimental swine dysentery was studied by fluorescent in situ hybridization (FISH) using an oligonucleotide probe targeting the 23S rRNA of S. hyodysenteriae. Nine 8-week-old pigs were challenged. Seven of the pigs were intragastrically dosed with 1x10(9) cfu S. hyodysenteriae for 3 consecutive days, whereas two pigs were infected by contact. Six non-challenged pigs served as negative controls. The challenged pigs developed clinical swine dysente...

  15. Medical image of the week: lepidic growth

    Directory of Open Access Journals (Sweden)

    Knox KS

    2013-08-01

    Full Text Available Lepidic growth is most often seen in adenocarcinoma in situ (Figure A, 40x magnification. Adenocarcinoma in situ is formerly known as bronchoalveolar cell carcinoma (BAC. A similar growth pattern in a morphologically very different tumor (mucinous adenocarcinoma is shown for comparison (Figure B, 400x. Mucinous adenocarcinoma growing on alveolar septae nearly always is invasive, so the entity of mucinous adencioarcinoma in situ practically doesn't exist, further differentiating this entity from BAC.

  16. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    International Nuclear Information System (INIS)

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblages collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO2 could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO2 was used as the indicator of hydrocarbon degradation and (delta)13C analysis of the resultant CO2 was used to evaluate the source of the respired CO2 (i.e. petroleum hydrocarbons or the pinfish cometabolite). Results from these time series experiments demonstrated that short-term exposure of petroleum to UV light enhanced hydrocarbon degradation by 48% over that observed for non-photo-oxidized petroleum. Despite the greater bio-availability of the photo-oxidized over the non-photo-oxidized petroleum, an initial lag in CO2 production was observed indicating potential phototoxicity of the photo- by-products. (delta)13C analysis and mass balance calculations reveal that co-metabolism with pinfish resulted in increased hydrocarbon degradation for both photo-oxidized and non-photo-oxidized petroleum each by over 100%. These results demonstrate the cumulative effect of photo-oxidation and co-metabolism on petroleum hydrocarbon degradation by natural bacterial populations indigenous to systems chronically impacted by hydrocarbon input. To address the second objective of this proposal bacterial concentrates were collected from Bayboro Harbor in April 2001 for nucleic acid extraction and subsequent natural radiocarbon abundance analyses. Unfortunately, however, all of these samples were lost due to a faulty compressor in our -70 freezer. The freezer was subsequently repaired and samples were again collected from Bayboro Harbor in June 2002 and again December 2002. Several attempts were made to extract the nucleic acid samples--however, the student was not able to successfully extract and an adequate amount of uncontaminated nucleic acid samples for subsequent natural radiocarbon abundance measurements of the bacterial carbon by accelerator mass spectrometry (i.e. require at least 50 (micro)g carbon for AMS measurement). Consequently, we were not able to address the second objective of this proposed work

  17. Demonstration, testing, and evaluation of in situ heating of soil. Volume 1, Final report

    International Nuclear Information System (INIS)

    This document is a final reports in two volumes. Volume I contains the technical report and Volume II contains appendices with background information and data. In this project approximately 300 cubic yards of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow was increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. It was demonstrated that the mass flow rate of the volatile organic chemicals was enhanced in the recovered soil gas as a result of heating

  18. The growth and in situ characterization of chemical vapor deposited SiO2

    Science.gov (United States)

    Iyer, R.; Chang, R. R.; Lile, D. L.

    1987-01-01

    This paper reports the results of studies of the kinetics of remote (indirect) plasma enhanced low pressure CVD growth of SiO2 on Si and InP and of the in situ characterization of the electrical surface properties of InP during CVD processing. In the latter case photoluminescence was employed as a convenient and sensitive noninvasive method for characterizing surface trap densities. It was determined that, provided certain precautions are taken, the growth of SiO2 occurs in a reproducible and systematic fashion that can be expressed in an analytic form useful for growth rate prediction. Moreover, the in situ photoluminescence studies have yielded information on sample degradation resulting from heating and chemical exposure during the CVD growth.

  19. Orientation relationship in WC-Co composite nanoparticles synthesized by in situ reactions

    Science.gov (United States)

    Wang, Xilong; Song, Xiaoyan; Liu, Xuemei; Liu, Xingwei; Wang, Haibin; Zhou, Cheng

    2015-04-01

    Using the nanoscale violet tungsten oxide as the tungsten source, the WC-Co composite powder was synthesized by the in situ reactions. The particle size of the WC-Co composite powder has a narrow distribution with the mean particle size below 100 nm, and the single composite particle has a nanocrystalline structure with a mean grain size smaller than 10 nm. The detailed characterizations of the nanoparticle microstructure reveal that the orientation relationship and coherence at the interfaces can form during the in situ reactions and further inherit in the consolidated cemented carbide bulk material. The favorable crystallographic characteristics of the WC-Co composite nanoparticles play a significant role in the enhancement of the mechanical properties of the prepared cemented carbide bulk material.

  20. In situ luminescence qualification of radiation damage in aluminas: F-aggregation and Al colloids

    International Nuclear Information System (INIS)

    Highlights: Correlation between IBIL and surface electrical degradation. Potential to remotely monitor degradation of insulating materials. Possibility for in situ recovery of the insulating properties by thermal annealing. -- Abstract: Recent work for in situ sequential measurement of ion beam induced luminescence and surface electrical conductivity has identified a correlation between surface electrical degradation and the luminescence for aluminas and sapphire during 45 keV He ion bombardment. Detailed measurements for the initial stages of degradation where rapid changes in the luminescence emission bands occur, have now identified processes related to oxygen vacancy (F centre) aggregation and aluminium colloid production as precursors to measurable surface electrical degradation in the irradiated region. This understanding enhances the possibility of using ion beam induced luminescence as a potential monitoring tool for material evolution and insulator surface degradation during irradiation, not only in ITER and future fusion devices, but also in present experimental reactor materials test programmes

  1. Doxorubicin-loaded zein in situ gel for interstitial chemotherapy of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Ning Shen

    2012-12-01

    Full Text Available The aim of this research was to evaluate doxorubicin (DOX-loaded zein in situ gels, a new drug delivery system in which a liquid state drug can be transformed into semi-solid after intratumoral injection. In vitro release of DOX-loaded zein was investigated and the pharmacokinetics, biodistribution and therapeutic efficacy of these DOX-loaded zein formulations were investigated using BALB/c nude tumor-bearing mice. In vitro release of DOX from the gels extended up to 7 days. Efficient accumulation of DOX in the tumor with lower drug concentration in blood and normal organs was obtained resulting in effective inhibition of tumor growth and fewer off-target side effects. In conclusion, a DOX-loaded in situ gel was developed with sustained release, enhanced anti-cancer efficacy for colorectal cancer in vivo, and especially with reduced off-target side effects.

  2. In situ luminescence qualification of radiation damage in aluminas: F-aggregation and Al colloids

    Energy Technology Data Exchange (ETDEWEB)

    Malo, M., E-mail: marta.malo@ciemat.es; Moroo, A.; Hodgson, E.R.

    2014-10-15

    Highlights: Correlation between IBIL and surface electrical degradation. Potential to remotely monitor degradation of insulating materials. Possibility for in situ recovery of the insulating properties by thermal annealing. -- Abstract: Recent work for in situ sequential measurement of ion beam induced luminescence and surface electrical conductivity has identified a correlation between surface electrical degradation and the luminescence for aluminas and sapphire during 45 keV He ion bombardment. Detailed measurements for the initial stages of degradation where rapid changes in the luminescence emission bands occur, have now identified processes related to oxygen vacancy (F centre) aggregation and aluminium colloid production as precursors to measurable surface electrical degradation in the irradiated region. This understanding enhances the possibility of using ion beam induced luminescence as a potential monitoring tool for material evolution and insulator surface degradation during irradiation, not only in ITER and future fusion devices, but also in present experimental reactor materials test programmes.

  3. In-situ microcosms, a tool for assessment of pesticide impacts on oyster spat (Crassostrea gigas).

    Science.gov (United States)

    Stachowski-Haberkorn, Sabine; Quiniou, Franoise; Nedelec, Morgane; Robert, Ren; Limon, Gwendolina; de la Broise, Denis

    2008-05-01

    Effects of the herbicide Basamas (bentazon) and the fungicide Opus (epoxiconazole) on oyster spat (Crassostrea gigas) were assessed using in-situ microcosms in a field experiment lasting 13 days. Six-week-old hatchery spat (mean size 1.1 mm), previously collected on PVC plates, was immersed in glass bottles filled with 200 mum filtered seawater. Bottles were maintained underwater at 6 m depth and their water content changed every other day. Growth, measured as shell area index increase, was 126 +/- 4% in the control bottles. While no growth differences were observed between control and individual pesticide treatments at 10 microg l(-1), oysters treated with a mix of 10 microg l(-1) Opus and 10 microg l(-1) Basamas showed a 50% growth reduction compared with the control (P < 0.0001), suggesting a synergistic effect of these contaminants. Laboratory controls in microcosms maintained in a water bath with filtered natural light, were not significantly different from in-situ microcosm controls in the field, for organic weight content or growth. This in-situ experiment in microcosms allowed us to conclude that: (1) oyster spat can achieve significant growth in bottles immersed in situ without supplementary food; (2) this microcosm system is reliable and easy to use for environmental toxicity tests with C. gigas spat; (3) such microcosm systems can also be run in a laboratory water bath instead of more technically difficult immersed field experiments; (4) the synergistic effect observed here, at a concentration simulating a peak agricultural runoff event, suggests that the impacts of pesticides could be a real threat for oysters in estuarine areas. PMID:18236155

  4. NOVEL IN-SITU METAL AND MINERAL EXTRACTION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Glenn O' Gorman; Hans von Michaelis; Gregory J. Olson

    2004-09-22

    This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.

  5. Magnetospheric Interaction at Jupiter's Galilean Moons Io, Europa, Ganymede, Callisto: Galileo in-Situ Measurements Compared with Simulation Results

    Science.gov (United States)

    Krupp, N.; Jia, X.; Roussos, E.; Fraenz, M.

    2014-12-01

    Between 1995 and 2003 the Galileo spacecraft orbited Jupiter and flew-by multiple times at the Galilean satellites Io (7), Europa (12), Ganymede (5), and Callisto (8). The wealth of new unprecedented data from Galileo in-situ measurements in comparison to hybrid- and MHD simulation results enhanced our view of the understanding of the interaction between the moons (or in the case of Ganymede's own magnetosphere) and the surrounding highly dynamic Jovian magnetosphere. In this paper the in-situ particles and fields measurements are reviewed in the context of the future ESA-mission JUICE to arrive in the Jovian system in 2030.

  6. In Situ Probe Science at Saturn

    Science.gov (United States)

    Atkinson, D.H.; Lunine, J.I.; Simon-Miller, A. A.; Atreya, S. K.; Brinckerhoff, W.; Colaprete, A.; Coustenis, A.; Fletcher, L. N.; Guillot, T.; Lebreton, J.-P.; Mahaffy, P.; Mousis, O.; Orton, G. S.; Reh, K.; Spilker, L. J.; Spilker, T. R.; Webster, C.

    2014-01-01

    A fundamental goal of solar system exploration is to understand the origin of the solar sys-tem, the initial stages, conditions, and processes by which the solar system formed, how the formation pro-cess was initiated, and the nature of the interstellar seed material from which the solar system was born. Key to understanding solar system formation and subsequent dynamical and chemical evolution is the origin and evolution of the giant planets and their atmospheres. Several theories have been put forward to explain the process of solar system formation, and the origin and evolution of the giant planets and their atmospheres. Each theory offers quantifiable predictions of the abundances of noble gases He, Ne, Ar, Kr, and Xe, and abundances of key isotopic ratios 4He3He, DH, 15N14N, 18O16O, and 13C12C. Detection of certain dis-equilibrium species, diagnostic of deeper internal pro-cesses and dynamics of the atmosphere, would also help discriminate between competing theories. Measurements of the critical abundance profiles of these key constituents into the deeper well-mixed at-mosphere must be complemented by measurements of the profiles of atmospheric structure and dynamics at high vertical resolution and also require in situ explora-tion. The atmospheres of the giant planets can also serve as laboratories to better understand the atmospheric chem-istries, dynamics, processes, and climates on all planets including Earth, and offer a context and provide a ground truth for exoplanets and exoplanetary systems. Additionally, Giant planets have long been thought to play a critical role in the development of potentially habitable planetary systems. In the context of giant planet science provided by the Galileo, Juno, and Cassini missions to Jupiter and Sat-urn, a small, relatively shallow Saturn probe capable of measuring abundances and isotopic ratios of key at-mospheric constituents, and atmospheric structure in-cluding pressures, temperatures, dynamics, and cloud locations and properties not accessible by remote sens-ing can serve to test competing theories of solar system and giant planet origin, chemical, and dynamical evolution.

  7. LIBS for Tokamak in situ tritium inventory

    International Nuclear Information System (INIS)

    Full text of publication follows: During Tokamak operation and due to high energy and particle fluxes interacting with Plasma Facing Components (PFCs), wall materials are eroded, transported and redeposited in layers able to trap tritium. The accumulation of tritium in the vacuum vessel is limited due to safety constraint and the evaluation of the in vessel tritium inventory is of crucial interest. The spectroscopic analysis of the plasma produced by laser ablation of the PFCs and/or of the redeposited material, known as laser-induced breakdown spectroscopy (LIBS), is a promising technique to achieve this goal. Laser methods for surface characterisation and cleaning are under intensive studies in CEA within the frames of the ITER project and EFDA programs 1-5. In the following paper, a parametric study performed to determine the optimised operational conditions for LIBS analyses with tokamak samples will be first described. The influence on the plasma properties of the irradiation conditions (laser wavelength and pulse duration) and of the gas pressure and nature are investigated. Using several experimental techniques, it will be shown that long pulse duration (>10 ns) induced a too small plasma temperature for Tritium quantitative measurements. Usually, quantitative LIBS analyses require calibration measurements using standard samples having compositions close to that of the material to be analyzed. Calibration during tokamak operation is always difficult due to the complex material supposed to be produced. For ITER application, it is proposed here to apply a calibration-free LIBS procedure based on the calculation of the spectral radiance of the plasma in Local Thermodynamic Equilibrium. These new procedure will be exemplified on the determination of the deuterium concentration on real Tokamak samples coming from the Tore Supra tokamak. Then, the first experimental results obtained in Tokamak are recalled. It is observed that the complexity of the Tokamak environment leads to a complicated diagnostic especially if all the surface of the in vessel components must be analysed. The extrapolation of the LIBS diagnostic to ITER is then addressed with a special insight on embarked diagnostic able to scan the entire vessel walls. References: 1) 'Evaluation of Laser Ablation Optical Emission Spectroscopy Method for Graphite co-deposited Layer Characterisation', CEA report NT DPC/SCP/05-124-A, February 2005, 77 pp.; 2) 'Fusion Engineering and Design' 81 (2006) 1503-1509; 3) 'Fusion Science and Technology', 54 (2008) 51-54; 4) 'In situ Laser Breakdown Spectroscopy of JET Deposited Layers', CEA report NT DPC/SCP 08-293, Dec. 2008, 72 pp.; 5) 'Laser-Induced Breakdown Spectroscopy for deposited layer characterisation', CEA report NT DPC / SCP 09-309, May 2009, 83 pp. (authors)

  8. Virtual Savannah : In Situ Test of a Virtual Learning 3D Visualization for children

    DEFF Research Database (Denmark)

    Rodil, Kasper; Eskildsen, Sren

    2012-01-01

    Virtual Savannah is constructed to visualize parts of a curriculum, which the educational service at Aalborg Zoo has difficulties in teaching children visiting the zoo. It contains rich media like audio, text, video and picture galleries about African ecology, but some of this episodic information has been visualized to a further extent in order to transfer it as semantic knowledge for the children to assimilate. Three in situ tests reflected through a set of assignments which prior knowledge the children had on the subject, if they could assimilate information from the system, and finally the childrens retention one week after the test, measuring if any learning had happened. The tests showed significant results by comparing prior knowledge with assimilated knowledge. It also showed significant results by comparing prior knowledge and knowledge retained one week after the test, which indicate that the children were not only able to use the system as intended, but they also learned from it.

  9. Conservative Management of an Advanced Abdominal Pregnancy at 22 Weeks

    Directory of Open Access Journals (Sweden)

    Louis Marcellin

    2014-05-01

    Full Text Available Objective - We report an uneventful conservative approach of an advanced abdominal pregnancy discovered at 22 weeks of gestation. Study Design - This study is a case report. Results - Attempting to extend gestation of an advanced abdominal pregnancy is not a common strategy and is widely questioned. According to the couple's request, the management consisted in continuous hospitalization, regular ultrasound scan, and antenatal corticosteroids. While the woman remained asymptomatic, surgery was planned at 32 weeks, leading to the birth of a preterm child without any long-term complications. Placenta was left in situ with a prophylactic embolization, and its resorption was monitored. Conclusion - Depending on multidisciplinary cares and agreement of the parents, when late discovered, prolonging advanced abdominal pregnancy appears to be a reasonable option.

  10. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-24

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

  11. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions. Phase 1: Laboratory and pilot field-scale testing. Phase 2: Solubilization test and partitioning interwell tracer tests. Final report

    International Nuclear Information System (INIS)

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km2 in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation

  12. In-situ Airborne Sampler for Advanced Guided Dropsonde Project

    Data.gov (United States)

    National Aeronautics and Space Administration The proposed innovation is a low-cost, retrievable and reusable, autonomously guided dropsonde capable of in-situ atmospheric measurements. The proposed effort will...

  13. Novel Instrumentation for In Situ Combustion Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase I is to develop, demonstrate and test a novel instrument based on laser absorption diagnostics for fast, in situ measurements of...

  14. Advanced hydraulic fracturing methods to create in situ reactive barriers

    International Nuclear Information System (INIS)

    This article describes the use of hydraulic fracturing to increase permeability in geologic formations where in-situ remedial action of contaminant plumes will be performed. Several in-situ treatment strategies are discussed including the use of hydraulic fracturing to create in situ redox zones for treatment of organics and inorganics. Hydraulic fracturing methods offer a mechanism for the in-situ treatment of gently dipping layers of reactive compounds. Specialized methods using real-time monitoring and a high-energy jet during fracturing allow the form of the fracture to be influenced, such as creation of assymmetric fractures beneath potential sources (i.e. tanks, pits, buildings) that should not be penetrated by boring. Some examples of field applications of this technique such as creating fractures filled with zero-valent iron to reductively dechlorinate halogenated hydrocarbons, and the use of granular activated carbon to adsorb compounds are discussed

  15. In Situ Oxygen Production from Lunar and Martian Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ oxygen production is of immense importance to NASA in the support of the NASA initiative to sustain man's permanent presence in space. The oxygen produced...

  16. Novel Instrumentation for In Situ Combustion Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration The objective of the Phase I is to develop, demonstrate and test a novel instrument based on laser absorption diagnostics for fast, in situ measurements of...

  17. An Efficient Heat Exchanger for In Situ Resource Utilization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ resource utilization (ISRU) is essential for several of NASA's future flagship missions. Currently envisioned ISRU plants include production of oxygen from...

  18. In situ bioremediation of chlorinated solvent with natural gas

    International Nuclear Information System (INIS)

    A bioremediation system for the removal of chlorinated solvents from ground water and sediments is described. The system involves the the in-situ injection of natural gas (as a microbial nutrient) through an innovative configuration of horizontal wells

  19. In situ sampling cart development engineering task plan

    International Nuclear Information System (INIS)

    This Engineering Task Plan (ETP) supports the development for facility use of the next generation in situ sampling system for characterization of tank vapors. In situ sampling refers to placing sample collection devices (primarily sorbent tubes) directly into the tank headspace, then drawing tank gases through the collection devices to obtain samples. The current in situ sampling system is functional but was not designed to provide the accurate flow measurement required by today's data quality objectives (DQOs) for vapor characterization. The new system will incorporate modern instrumentation to achieve much tighter control. The next generation system will be referred to in this ETP as the New In Situ System (NISS) or New System. The report describes the current sampling system and the modifications that are required for more accuracy

  20. CLASIC07 In Situ Vegetation Data V001

    Data.gov (United States)

    National Aeronautics and Space Administration This data set includes in situ vegetation data collected during the Cloud and Land Surface Interaction Campaign 2007 (CLASIC07) campaign. Sampling was designed to...